LLVM 22.0.0git
TargetTransformInfo.h
Go to the documentation of this file.
1//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This pass exposes codegen information to IR-level passes. Every
10/// transformation that uses codegen information is broken into three parts:
11/// 1. The IR-level analysis pass.
12/// 2. The IR-level transformation interface which provides the needed
13/// information.
14/// 3. Codegen-level implementation which uses target-specific hooks.
15///
16/// This file defines #2, which is the interface that IR-level transformations
17/// use for querying the codegen.
18///
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/ArrayRef.h"
29#include "llvm/IR/FMF.h"
30#include "llvm/IR/InstrTypes.h"
31#include "llvm/IR/PassManager.h"
32#include "llvm/Pass.h"
37#include <functional>
38#include <optional>
39#include <utility>
40
41namespace llvm {
42
43namespace Intrinsic {
44typedef unsigned ID;
45}
46
47class AllocaInst;
48class AssumptionCache;
50class DominatorTree;
51class BranchInst;
52class Function;
53class GlobalValue;
54class InstCombiner;
57class IntrinsicInst;
58class LoadInst;
59class Loop;
60class LoopInfo;
64class SCEV;
65class ScalarEvolution;
66class SmallBitVector;
67class StoreInst;
68class SwitchInst;
70class Type;
71class VPIntrinsic;
72struct KnownBits;
73
74/// Information about a load/store intrinsic defined by the target.
76 /// This is the pointer that the intrinsic is loading from or storing to.
77 /// If this is non-null, then analysis/optimization passes can assume that
78 /// this intrinsic is functionally equivalent to a load/store from this
79 /// pointer.
80 Value *PtrVal = nullptr;
81
82 // Ordering for atomic operations.
84
85 // Same Id is set by the target for corresponding load/store intrinsics.
86 unsigned short MatchingId = 0;
87
88 bool ReadMem = false;
89 bool WriteMem = false;
90 bool IsVolatile = false;
91
93
99};
100
101/// Attributes of a target dependent hardware loop.
105 Loop *L = nullptr;
108 const SCEV *ExitCount = nullptr;
110 Value *LoopDecrement = nullptr; // Decrement the loop counter by this
111 // value in every iteration.
112 bool IsNestingLegal = false; // Can a hardware loop be a parent to
113 // another hardware loop?
114 bool CounterInReg = false; // Should loop counter be updated in
115 // the loop via a phi?
116 bool PerformEntryTest = false; // Generate the intrinsic which also performs
117 // icmp ne zero on the loop counter value and
118 // produces an i1 to guard the loop entry.
120 DominatorTree &DT,
121 bool ForceNestedLoop = false,
122 bool ForceHardwareLoopPHI = false);
123 LLVM_ABI bool canAnalyze(LoopInfo &LI);
124};
125
126/// Information for memory intrinsic cost model.
128 /// Optional context instruction, if one exists, e.g. the
129 /// load/store to transform to the intrinsic.
130 const Instruction *I = nullptr;
131
132 /// Address in memory.
133 const Value *Ptr = nullptr;
134
135 /// Vector type of the data to be loaded or stored.
136 Type *DataTy = nullptr;
137
138 /// ID of the memory intrinsic.
139 Intrinsic::ID IID;
140
141 /// True when the memory access is predicated with a mask
142 /// that is not a compile-time constant.
143 bool VariableMask = true;
144
145 /// Address space of the pointer.
146 unsigned AddressSpace = 0;
147
148 /// Alignment of single element.
149 Align Alignment;
150
151public:
153 const Value *Ptr, bool VariableMask,
154 Align Alignment,
155 const Instruction *I = nullptr)
156 : I(I), Ptr(Ptr), DataTy(DataTy), IID(Id), VariableMask(VariableMask),
157 Alignment(Alignment) {}
158
160 Align Alignment,
161 unsigned AddressSpace = 0)
162 : DataTy(DataTy), IID(Id), AddressSpace(AddressSpace),
163 Alignment(Alignment) {}
164
166 bool VariableMask, Align Alignment,
167 const Instruction *I = nullptr)
168 : I(I), DataTy(DataTy), IID(Id), VariableMask(VariableMask),
169 Alignment(Alignment) {}
170
171 Intrinsic::ID getID() const { return IID; }
172 const Instruction *getInst() const { return I; }
173 const Value *getPointer() const { return Ptr; }
174 Type *getDataType() const { return DataTy; }
175 bool getVariableMask() const { return VariableMask; }
176 unsigned getAddressSpace() const { return AddressSpace; }
177 Align getAlignment() const { return Alignment; }
178};
179
181 const IntrinsicInst *II = nullptr;
182 Type *RetTy = nullptr;
183 Intrinsic::ID IID;
184 SmallVector<Type *, 4> ParamTys;
186 FastMathFlags FMF;
187 // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
188 // arguments and the return value will be computed based on types.
189 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
190 TargetLibraryInfo const *LibInfo = nullptr;
191
192public:
194 Intrinsic::ID Id, const CallBase &CI,
196 bool TypeBasedOnly = false, TargetLibraryInfo const *LibInfo = nullptr);
197
199 Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
200 FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
202
205
209 const IntrinsicInst *I = nullptr,
211 TargetLibraryInfo const *LibInfo = nullptr);
212
213 Intrinsic::ID getID() const { return IID; }
214 const IntrinsicInst *getInst() const { return II; }
215 Type *getReturnType() const { return RetTy; }
216 FastMathFlags getFlags() const { return FMF; }
217 InstructionCost getScalarizationCost() const { return ScalarizationCost; }
218 const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
219 const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
220 const TargetLibraryInfo *getLibInfo() const { return LibInfo; }
221
222 bool isTypeBasedOnly() const {
223 return Arguments.empty();
224 }
225
226 bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
227};
228
230 /// Don't use tail folding
232 /// Use predicate only to mask operations on data in the loop.
233 /// When the VL is not known to be a power-of-2, this method requires a
234 /// runtime overflow check for the i + VL in the loop because it compares the
235 /// scalar induction variable against the tripcount rounded up by VL which may
236 /// overflow. When the VL is a power-of-2, both the increment and uprounded
237 /// tripcount will overflow to 0, which does not require a runtime check
238 /// since the loop is exited when the loop induction variable equals the
239 /// uprounded trip-count, which are both 0.
241 /// Same as Data, but avoids using the get.active.lane.mask intrinsic to
242 /// calculate the mask and instead implements this with a
243 /// splat/stepvector/cmp.
244 /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the
245 /// active.lane.mask intrinsic when it is not natively supported?
247 /// Use predicate to control both data and control flow.
248 /// This method always requires a runtime overflow check for the i + VL
249 /// increment inside the loop, because it uses the result direclty in the
250 /// active.lane.mask to calculate the mask for the next iteration. If the
251 /// increment overflows, the mask is no longer correct.
253 /// Use predicate to control both data and control flow, but modify
254 /// the trip count so that a runtime overflow check can be avoided
255 /// and such that the scalar epilogue loop can always be removed.
257 /// Use predicated EVL instructions for tail-folding.
258 /// Indicates that VP intrinsics should be used.
260};
261
270
271class TargetTransformInfo;
274
275/// This pass provides access to the codegen interfaces that are needed
276/// for IR-level transformations.
278public:
280
281 /// Get the kind of extension that an instruction represents.
284 /// Get the kind of extension that a cast opcode represents.
287
288 /// Construct a TTI object using a type implementing the \c Concept
289 /// API below.
290 ///
291 /// This is used by targets to construct a TTI wrapping their target-specific
292 /// implementation that encodes appropriate costs for their target.
294 std::unique_ptr<const TargetTransformInfoImplBase> Impl);
295
296 /// Construct a baseline TTI object using a minimal implementation of
297 /// the \c Concept API below.
298 ///
299 /// The TTI implementation will reflect the information in the DataLayout
300 /// provided if non-null.
301 LLVM_ABI explicit TargetTransformInfo(const DataLayout &DL);
302
303 // Provide move semantics.
306
307 // We need to define the destructor out-of-line to define our sub-classes
308 // out-of-line.
310
311 /// Handle the invalidation of this information.
312 ///
313 /// When used as a result of \c TargetIRAnalysis this method will be called
314 /// when the function this was computed for changes. When it returns false,
315 /// the information is preserved across those changes.
317 FunctionAnalysisManager::Invalidator &) {
318 // FIXME: We should probably in some way ensure that the subtarget
319 // information for a function hasn't changed.
320 return false;
321 }
322
323 /// \name Generic Target Information
324 /// @{
325
326 /// The kind of cost model.
327 ///
328 /// There are several different cost models that can be customized by the
329 /// target. The normalization of each cost model may be target specific.
330 /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
331 /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
333 TCK_RecipThroughput, ///< Reciprocal throughput.
334 TCK_Latency, ///< The latency of instruction.
335 TCK_CodeSize, ///< Instruction code size.
336 TCK_SizeAndLatency ///< The weighted sum of size and latency.
337 };
338
339 /// Underlying constants for 'cost' values in this interface.
340 ///
341 /// Many APIs in this interface return a cost. This enum defines the
342 /// fundamental values that should be used to interpret (and produce) those
343 /// costs. The costs are returned as an int rather than a member of this
344 /// enumeration because it is expected that the cost of one IR instruction
345 /// may have a multiplicative factor to it or otherwise won't fit directly
346 /// into the enum. Moreover, it is common to sum or average costs which works
347 /// better as simple integral values. Thus this enum only provides constants.
348 /// Also note that the returned costs are signed integers to make it natural
349 /// to add, subtract, and test with zero (a common boundary condition). It is
350 /// not expected that 2^32 is a realistic cost to be modeling at any point.
351 ///
352 /// Note that these costs should usually reflect the intersection of code-size
353 /// cost and execution cost. A free instruction is typically one that folds
354 /// into another instruction. For example, reg-to-reg moves can often be
355 /// skipped by renaming the registers in the CPU, but they still are encoded
356 /// and thus wouldn't be considered 'free' here.
358 TCC_Free = 0, ///< Expected to fold away in lowering.
359 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
360 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
361 };
362
363 /// Estimate the cost of a GEP operation when lowered.
364 ///
365 /// \p PointeeType is the source element type of the GEP.
366 /// \p Ptr is the base pointer operand.
367 /// \p Operands is the list of indices following the base pointer.
368 ///
369 /// \p AccessType is a hint as to what type of memory might be accessed by
370 /// users of the GEP. getGEPCost will use it to determine if the GEP can be
371 /// folded into the addressing mode of a load/store. If AccessType is null,
372 /// then the resulting target type based off of PointeeType will be used as an
373 /// approximation.
375 getGEPCost(Type *PointeeType, const Value *Ptr,
376 ArrayRef<const Value *> Operands, Type *AccessType = nullptr,
377 TargetCostKind CostKind = TCK_SizeAndLatency) const;
378
379 /// Describe known properties for a set of pointers.
381 /// All the GEPs in a set have same base address.
382 unsigned IsSameBaseAddress : 1;
383 /// These properties only valid if SameBaseAddress is set.
384 /// True if all pointers are separated by a unit stride.
385 unsigned IsUnitStride : 1;
386 /// True if distance between any two neigbouring pointers is a known value.
387 unsigned IsKnownStride : 1;
388 unsigned Reserved : 29;
389
390 bool isSameBase() const { return IsSameBaseAddress; }
391 bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; }
393
395 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1,
396 /*IsKnownStride=*/1, 0};
397 }
399 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
400 /*IsKnownStride=*/1, 0};
401 }
403 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
404 /*IsKnownStride=*/0, 0};
405 }
406 };
407 static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?");
408
409 /// Estimate the cost of a chain of pointers (typically pointer operands of a
410 /// chain of loads or stores within same block) operations set when lowered.
411 /// \p AccessTy is the type of the loads/stores that will ultimately use the
412 /// \p Ptrs.
415 const PointersChainInfo &Info, Type *AccessTy,
416 TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
417
418 /// \returns A value by which our inlining threshold should be multiplied.
419 /// This is primarily used to bump up the inlining threshold wholesale on
420 /// targets where calls are unusually expensive.
421 ///
422 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
423 /// individual classes of instructions would be better.
425
428
429 /// \returns The bonus of inlining the last call to a static function.
431
432 /// \returns A value to be added to the inlining threshold.
433 LLVM_ABI unsigned adjustInliningThreshold(const CallBase *CB) const;
434
435 /// \returns The cost of having an Alloca in the caller if not inlined, to be
436 /// added to the threshold
437 LLVM_ABI unsigned getCallerAllocaCost(const CallBase *CB,
438 const AllocaInst *AI) const;
439
440 /// \returns Vector bonus in percent.
441 ///
442 /// Vector bonuses: We want to more aggressively inline vector-dense kernels
443 /// and apply this bonus based on the percentage of vector instructions. A
444 /// bonus is applied if the vector instructions exceed 50% and half that
445 /// amount is applied if it exceeds 10%. Note that these bonuses are some what
446 /// arbitrary and evolved over time by accident as much as because they are
447 /// principled bonuses.
448 /// FIXME: It would be nice to base the bonus values on something more
449 /// scientific. A target may has no bonus on vector instructions.
451
452 /// \return the expected cost of a memcpy, which could e.g. depend on the
453 /// source/destination type and alignment and the number of bytes copied.
455
456 /// Returns the maximum memset / memcpy size in bytes that still makes it
457 /// profitable to inline the call.
459
460 /// \return The estimated number of case clusters when lowering \p 'SI'.
461 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
462 /// table.
463 LLVM_ABI unsigned
464 getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
466 BlockFrequencyInfo *BFI) const;
467
468 /// Estimate the cost of a given IR user when lowered.
469 ///
470 /// This can estimate the cost of either a ConstantExpr or Instruction when
471 /// lowered.
472 ///
473 /// \p Operands is a list of operands which can be a result of transformations
474 /// of the current operands. The number of the operands on the list must equal
475 /// to the number of the current operands the IR user has. Their order on the
476 /// list must be the same as the order of the current operands the IR user
477 /// has.
478 ///
479 /// The returned cost is defined in terms of \c TargetCostConstants, see its
480 /// comments for a detailed explanation of the cost values.
483 TargetCostKind CostKind) const;
484
485 /// This is a helper function which calls the three-argument
486 /// getInstructionCost with \p Operands which are the current operands U has.
488 TargetCostKind CostKind) const {
489 SmallVector<const Value *, 4> Operands(U->operand_values());
490 return getInstructionCost(U, Operands, CostKind);
491 }
492
493 /// If a branch or a select condition is skewed in one direction by more than
494 /// this factor, it is very likely to be predicted correctly.
496
497 /// Returns estimated penalty of a branch misprediction in latency. Indicates
498 /// how aggressive the target wants for eliminating unpredictable branches. A
499 /// zero return value means extra optimization applied to them should be
500 /// minimal.
502
503 /// Return true if branch divergence exists.
504 ///
505 /// Branch divergence has a significantly negative impact on GPU performance
506 /// when threads in the same wavefront take different paths due to conditional
507 /// branches.
508 ///
509 /// If \p F is passed, provides a context function. If \p F is known to only
510 /// execute in a single threaded environment, the target may choose to skip
511 /// uniformity analysis and assume all values are uniform.
512 LLVM_ABI bool hasBranchDivergence(const Function *F = nullptr) const;
513
514 /// Returns whether V is a source of divergence.
515 ///
516 /// This function provides the target-dependent information for
517 /// the target-independent UniformityAnalysis.
518 LLVM_ABI bool isSourceOfDivergence(const Value *V) const;
519
520 // Returns true for the target specific
521 // set of operations which produce uniform result
522 // even taking non-uniform arguments
523 LLVM_ABI bool isAlwaysUniform(const Value *V) const;
524
525 /// Query the target whether the specified address space cast from FromAS to
526 /// ToAS is valid.
527 LLVM_ABI bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
528
529 /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address.
530 LLVM_ABI bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const;
531
532 /// Returns the address space ID for a target's 'flat' address space. Note
533 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
534 /// refers to as the generic address space. The flat address space is a
535 /// generic address space that can be used access multiple segments of memory
536 /// with different address spaces. Access of a memory location through a
537 /// pointer with this address space is expected to be legal but slower
538 /// compared to the same memory location accessed through a pointer with a
539 /// different address space.
540 //
541 /// This is for targets with different pointer representations which can
542 /// be converted with the addrspacecast instruction. If a pointer is converted
543 /// to this address space, optimizations should attempt to replace the access
544 /// with the source address space.
545 ///
546 /// \returns ~0u if the target does not have such a flat address space to
547 /// optimize away.
548 LLVM_ABI unsigned getFlatAddressSpace() const;
549
550 /// Return any intrinsic address operand indexes which may be rewritten if
551 /// they use a flat address space pointer.
552 ///
553 /// \returns true if the intrinsic was handled.
555 Intrinsic::ID IID) const;
556
557 LLVM_ABI bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
558
559 /// Return true if globals in this address space can have initializers other
560 /// than `undef`.
561 LLVM_ABI bool
563
564 LLVM_ABI unsigned getAssumedAddrSpace(const Value *V) const;
565
566 LLVM_ABI bool isSingleThreaded() const;
567
568 LLVM_ABI std::pair<const Value *, unsigned>
569 getPredicatedAddrSpace(const Value *V) const;
570
571 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
572 /// NewV, which has a different address space. This should happen for every
573 /// operand index that collectFlatAddressOperands returned for the intrinsic.
574 /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
575 /// new value (which may be the original \p II with modified operands).
577 Value *OldV,
578 Value *NewV) const;
579
580 /// Test whether calls to a function lower to actual program function
581 /// calls.
582 ///
583 /// The idea is to test whether the program is likely to require a 'call'
584 /// instruction or equivalent in order to call the given function.
585 ///
586 /// FIXME: It's not clear that this is a good or useful query API. Client's
587 /// should probably move to simpler cost metrics using the above.
588 /// Alternatively, we could split the cost interface into distinct code-size
589 /// and execution-speed costs. This would allow modelling the core of this
590 /// query more accurately as a call is a single small instruction, but
591 /// incurs significant execution cost.
592 LLVM_ABI bool isLoweredToCall(const Function *F) const;
593
594 struct LSRCost {
595 /// TODO: Some of these could be merged. Also, a lexical ordering
596 /// isn't always optimal.
597 unsigned Insns;
598 unsigned NumRegs;
599 unsigned AddRecCost;
600 unsigned NumIVMuls;
601 unsigned NumBaseAdds;
602 unsigned ImmCost;
603 unsigned SetupCost;
604 unsigned ScaleCost;
605 };
606
607 /// Parameters that control the generic loop unrolling transformation.
609 /// The cost threshold for the unrolled loop. Should be relative to the
610 /// getInstructionCost values returned by this API, and the expectation is
611 /// that the unrolled loop's instructions when run through that interface
612 /// should not exceed this cost. However, this is only an estimate. Also,
613 /// specific loops may be unrolled even with a cost above this threshold if
614 /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
615 /// restriction.
616 unsigned Threshold;
617 /// If complete unrolling will reduce the cost of the loop, we will boost
618 /// the Threshold by a certain percent to allow more aggressive complete
619 /// unrolling. This value provides the maximum boost percentage that we
620 /// can apply to Threshold (The value should be no less than 100).
621 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
622 /// MaxPercentThresholdBoost / 100)
623 /// E.g. if complete unrolling reduces the loop execution time by 50%
624 /// then we boost the threshold by the factor of 2x. If unrolling is not
625 /// expected to reduce the running time, then we do not increase the
626 /// threshold.
628 /// The cost threshold for the unrolled loop when optimizing for size (set
629 /// to UINT_MAX to disable).
631 /// The cost threshold for the unrolled loop, like Threshold, but used
632 /// for partial/runtime unrolling (set to UINT_MAX to disable).
634 /// The cost threshold for the unrolled loop when optimizing for size, like
635 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
636 /// UINT_MAX to disable).
638 /// A forced unrolling factor (the number of concatenated bodies of the
639 /// original loop in the unrolled loop body). When set to 0, the unrolling
640 /// transformation will select an unrolling factor based on the current cost
641 /// threshold and other factors.
642 unsigned Count;
643 /// Default unroll count for loops with run-time trip count.
645 // Set the maximum unrolling factor. The unrolling factor may be selected
646 // using the appropriate cost threshold, but may not exceed this number
647 // (set to UINT_MAX to disable). This does not apply in cases where the
648 // loop is being fully unrolled.
649 unsigned MaxCount;
650 /// Set the maximum upper bound of trip count. Allowing the MaxUpperBound
651 /// to be overrided by a target gives more flexiblity on certain cases.
652 /// By default, MaxUpperBound uses UnrollMaxUpperBound which value is 8.
654 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
655 /// applies even if full unrolling is selected. This allows a target to fall
656 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
658 // Represents number of instructions optimized when "back edge"
659 // becomes "fall through" in unrolled loop.
660 // For now we count a conditional branch on a backedge and a comparison
661 // feeding it.
662 unsigned BEInsns;
663 /// Allow partial unrolling (unrolling of loops to expand the size of the
664 /// loop body, not only to eliminate small constant-trip-count loops).
666 /// Allow runtime unrolling (unrolling of loops to expand the size of the
667 /// loop body even when the number of loop iterations is not known at
668 /// compile time).
670 /// Allow generation of a loop remainder (extra iterations after unroll).
672 /// Allow emitting expensive instructions (such as divisions) when computing
673 /// the trip count of a loop for runtime unrolling.
675 /// Apply loop unroll on any kind of loop
676 /// (mainly to loops that fail runtime unrolling).
677 bool Force;
678 /// Allow using trip count upper bound to unroll loops.
680 /// Allow unrolling of all the iterations of the runtime loop remainder.
682 /// Allow unroll and jam. Used to enable unroll and jam for the target.
684 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
685 /// value above is used during unroll and jam for the outer loop size.
686 /// This value is used in the same manner to limit the size of the inner
687 /// loop.
689 /// Don't allow loop unrolling to simulate more than this number of
690 /// iterations when checking full unroll profitability
692 /// Don't disable runtime unroll for the loops which were vectorized.
694 /// Don't allow runtime unrolling if expanding the trip count takes more
695 /// than SCEVExpansionBudget.
697 /// Allow runtime unrolling multi-exit loops. Should only be set if the
698 /// target determined that multi-exit unrolling is profitable for the loop.
699 /// Fall back to the generic logic to determine whether multi-exit unrolling
700 /// is profitable if set to false.
702 /// Allow unrolling to add parallel reduction phis.
704 };
705
706 /// Get target-customized preferences for the generic loop unrolling
707 /// transformation. The caller will initialize UP with the current
708 /// target-independent defaults.
711 OptimizationRemarkEmitter *ORE) const;
712
713 /// Query the target whether it would be profitable to convert the given loop
714 /// into a hardware loop.
716 AssumptionCache &AC,
717 TargetLibraryInfo *LibInfo,
718 HardwareLoopInfo &HWLoopInfo) const;
719
720 // Query the target for which minimum vectorization factor epilogue
721 // vectorization should be considered.
723
724 /// Query the target whether it would be prefered to create a predicated
725 /// vector loop, which can avoid the need to emit a scalar epilogue loop.
727
728 /// Query the target what the preferred style of tail folding is.
729 /// \param IVUpdateMayOverflow Tells whether it is known if the IV update
730 /// may (or will never) overflow for the suggested VF/UF in the given loop.
731 /// Targets can use this information to select a more optimal tail folding
732 /// style. The value conservatively defaults to true, such that no assumptions
733 /// are made on overflow.
735 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const;
736
737 // Parameters that control the loop peeling transformation
739 /// A forced peeling factor (the number of bodied of the original loop
740 /// that should be peeled off before the loop body). When set to 0, the
741 /// a peeling factor based on profile information and other factors.
742 unsigned PeelCount;
743 /// Allow peeling off loop iterations.
745 /// Allow peeling off loop iterations for loop nests.
747 /// Allow peeling basing on profile. Uses to enable peeling off all
748 /// iterations basing on provided profile.
749 /// If the value is true the peeling cost model can decide to peel only
750 /// some iterations and in this case it will set this to false.
752
753 /// Peel off the last PeelCount loop iterations.
755 };
756
757 /// Get target-customized preferences for the generic loop peeling
758 /// transformation. The caller will initialize \p PP with the current
759 /// target-independent defaults with information from \p L and \p SE.
761 PeelingPreferences &PP) const;
762
763 /// Targets can implement their own combinations for target-specific
764 /// intrinsics. This function will be called from the InstCombine pass every
765 /// time a target-specific intrinsic is encountered.
766 ///
767 /// \returns std::nullopt to not do anything target specific or a value that
768 /// will be returned from the InstCombiner. It is possible to return null and
769 /// stop further processing of the intrinsic by returning nullptr.
770 LLVM_ABI std::optional<Instruction *>
772 /// Can be used to implement target-specific instruction combining.
773 /// \see instCombineIntrinsic
774 LLVM_ABI std::optional<Value *>
776 APInt DemandedMask, KnownBits &Known,
777 bool &KnownBitsComputed) const;
778 /// Can be used to implement target-specific instruction combining.
779 /// \see instCombineIntrinsic
780 LLVM_ABI std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
781 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
782 APInt &UndefElts2, APInt &UndefElts3,
783 std::function<void(Instruction *, unsigned, APInt, APInt &)>
784 SimplifyAndSetOp) const;
785 /// @}
786
787 /// \name Scalar Target Information
788 /// @{
789
790 /// Flags indicating the kind of support for population count.
791 ///
792 /// Compared to the SW implementation, HW support is supposed to
793 /// significantly boost the performance when the population is dense, and it
794 /// may or may not degrade performance if the population is sparse. A HW
795 /// support is considered as "Fast" if it can outperform, or is on a par
796 /// with, SW implementation when the population is sparse; otherwise, it is
797 /// considered as "Slow".
799
800 /// Return true if the specified immediate is legal add immediate, that
801 /// is the target has add instructions which can add a register with the
802 /// immediate without having to materialize the immediate into a register.
803 LLVM_ABI bool isLegalAddImmediate(int64_t Imm) const;
804
805 /// Return true if adding the specified scalable immediate is legal, that is
806 /// the target has add instructions which can add a register with the
807 /// immediate (multiplied by vscale) without having to materialize the
808 /// immediate into a register.
809 LLVM_ABI bool isLegalAddScalableImmediate(int64_t Imm) const;
810
811 /// Return true if the specified immediate is legal icmp immediate,
812 /// that is the target has icmp instructions which can compare a register
813 /// against the immediate without having to materialize the immediate into a
814 /// register.
815 LLVM_ABI bool isLegalICmpImmediate(int64_t Imm) const;
816
817 /// Return true if the addressing mode represented by AM is legal for
818 /// this target, for a load/store of the specified type.
819 /// The type may be VoidTy, in which case only return true if the addressing
820 /// mode is legal for a load/store of any legal type.
821 /// If target returns true in LSRWithInstrQueries(), I may be valid.
822 /// \param ScalableOffset represents a quantity of bytes multiplied by vscale,
823 /// an invariant value known only at runtime. Most targets should not accept
824 /// a scalable offset.
825 ///
826 /// TODO: Handle pre/postinc as well.
828 int64_t BaseOffset, bool HasBaseReg,
829 int64_t Scale, unsigned AddrSpace = 0,
830 Instruction *I = nullptr,
831 int64_t ScalableOffset = 0) const;
832
833 /// Return true if LSR cost of C1 is lower than C2.
835 const TargetTransformInfo::LSRCost &C2) const;
836
837 /// Return true if LSR major cost is number of registers. Targets which
838 /// implement their own isLSRCostLess and unset number of registers as major
839 /// cost should return false, otherwise return true.
841
842 /// Return true if LSR should drop a found solution if it's calculated to be
843 /// less profitable than the baseline.
845
846 /// \returns true if LSR should not optimize a chain that includes \p I.
848
849 /// Return true if the target can fuse a compare and branch.
850 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
851 /// calculation for the instructions in a loop.
852 LLVM_ABI bool canMacroFuseCmp() const;
853
854 /// Return true if the target can save a compare for loop count, for example
855 /// hardware loop saves a compare.
858 TargetLibraryInfo *LibInfo) const;
859
860 /// Which addressing mode Loop Strength Reduction will try to generate.
862 AMK_None = 0x0, ///< Don't prefer any addressing mode
863 AMK_PreIndexed = 0x1, ///< Prefer pre-indexed addressing mode
864 AMK_PostIndexed = 0x2, ///< Prefer post-indexed addressing mode
865 AMK_All = 0x3, ///< Consider all addressing modes
866 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/AMK_All)
867 };
868
869 /// Return the preferred addressing mode LSR should make efforts to generate.
872
873 /// Some targets only support masked load/store with a constant mask.
878
879 /// Return true if the target supports masked store.
880 LLVM_ABI bool
881 isLegalMaskedStore(Type *DataType, Align Alignment, unsigned AddressSpace,
883 /// Return true if the target supports masked load.
884 LLVM_ABI bool
885 isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned AddressSpace,
887
888 /// Return true if the target supports nontemporal store.
889 LLVM_ABI bool isLegalNTStore(Type *DataType, Align Alignment) const;
890 /// Return true if the target supports nontemporal load.
891 LLVM_ABI bool isLegalNTLoad(Type *DataType, Align Alignment) const;
892
893 /// \Returns true if the target supports broadcasting a load to a vector of
894 /// type <NumElements x ElementTy>.
895 LLVM_ABI bool isLegalBroadcastLoad(Type *ElementTy,
896 ElementCount NumElements) const;
897
898 /// Return true if the target supports masked scatter.
899 LLVM_ABI bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
900 /// Return true if the target supports masked gather.
901 LLVM_ABI bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
902 /// Return true if the target forces scalarizing of llvm.masked.gather
903 /// intrinsics.
905 Align Alignment) const;
906 /// Return true if the target forces scalarizing of llvm.masked.scatter
907 /// intrinsics.
909 Align Alignment) const;
910
911 /// Return true if the target supports masked compress store.
913 Align Alignment) const;
914 /// Return true if the target supports masked expand load.
915 LLVM_ABI bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const;
916
917 /// Return true if the target supports strided load.
918 LLVM_ABI bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const;
919
920 /// Return true is the target supports interleaved access for the given vector
921 /// type \p VTy, interleave factor \p Factor, alignment \p Alignment and
922 /// address space \p AddrSpace.
923 LLVM_ABI bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
924 Align Alignment,
925 unsigned AddrSpace) const;
926
927 // Return true if the target supports masked vector histograms.
929 Type *DataType) const;
930
931 /// Return true if this is an alternating opcode pattern that can be lowered
932 /// to a single instruction on the target. In X86 this is for the addsub
933 /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
934 /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
935 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
936 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
937 /// \p VecTy is the vector type of the instruction to be generated.
938 LLVM_ABI bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
939 unsigned Opcode1,
940 const SmallBitVector &OpcodeMask) const;
941
942 /// Return true if we should be enabling ordered reductions for the target.
944
945 /// Return true if the target has a unified operation to calculate division
946 /// and remainder. If so, the additional implicit multiplication and
947 /// subtraction required to calculate a remainder from division are free. This
948 /// can enable more aggressive transformations for division and remainder than
949 /// would typically be allowed using throughput or size cost models.
950 LLVM_ABI bool hasDivRemOp(Type *DataType, bool IsSigned) const;
951
952 /// Return true if the given instruction (assumed to be a memory access
953 /// instruction) has a volatile variant. If that's the case then we can avoid
954 /// addrspacecast to generic AS for volatile loads/stores. Default
955 /// implementation returns false, which prevents address space inference for
956 /// volatile loads/stores.
957 LLVM_ABI bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
958
959 /// Return true if target doesn't mind addresses in vectors.
961
962 /// Return the cost of the scaling factor used in the addressing
963 /// mode represented by AM for this target, for a load/store
964 /// of the specified type.
965 /// If the AM is supported, the return value must be >= 0.
966 /// If the AM is not supported, it returns a negative value.
967 /// TODO: Handle pre/postinc as well.
969 StackOffset BaseOffset,
970 bool HasBaseReg, int64_t Scale,
971 unsigned AddrSpace = 0) const;
972
973 /// Return true if the loop strength reduce pass should make
974 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
975 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
976 /// immediate offset and no index register.
977 LLVM_ABI bool LSRWithInstrQueries() const;
978
979 /// Return true if it's free to truncate a value of type Ty1 to type
980 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
981 /// by referencing its sub-register AX.
982 LLVM_ABI bool isTruncateFree(Type *Ty1, Type *Ty2) const;
983
984 /// Return true if it is profitable to hoist instruction in the
985 /// then/else to before if.
987
988 LLVM_ABI bool useAA() const;
989
990 /// Return true if this type is legal.
991 LLVM_ABI bool isTypeLegal(Type *Ty) const;
992
993 /// Returns the estimated number of registers required to represent \p Ty.
994 LLVM_ABI unsigned getRegUsageForType(Type *Ty) const;
995
996 /// Return true if switches should be turned into lookup tables for the
997 /// target.
999
1000 /// Return true if switches should be turned into lookup tables
1001 /// containing this constant value for the target.
1003
1004 /// Return true if lookup tables should be turned into relative lookup tables.
1006
1007 /// Return true if the input function which is cold at all call sites,
1008 /// should use coldcc calling convention.
1010
1011 /// Return true if the input function is internal, should use fastcc calling
1012 /// convention.
1014
1016
1017 /// Identifies if the vector form of the intrinsic has a scalar operand.
1019 unsigned ScalarOpdIdx) const;
1020
1021 /// Identifies if the vector form of the intrinsic is overloaded on the type
1022 /// of the operand at index \p OpdIdx, or on the return type if \p OpdIdx is
1023 /// -1.
1025 int OpdIdx) const;
1026
1027 /// Identifies if the vector form of the intrinsic that returns a struct is
1028 /// overloaded at the struct element index \p RetIdx.
1029 LLVM_ABI bool
1031 int RetIdx) const;
1032
1033 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
1034 /// are set if the demanded result elements need to be inserted and/or
1035 /// extracted from vectors. The involved values may be passed in VL if
1036 /// Insert is true.
1038 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
1039 TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
1040 ArrayRef<Value *> VL = {}) const;
1041
1042 /// Estimate the overhead of scalarizing operands with the given types. The
1043 /// (potentially vector) types to use for each of argument are passes via Tys.
1046
1047 /// If target has efficient vector element load/store instructions, it can
1048 /// return true here so that insertion/extraction costs are not added to
1049 /// the scalarization cost of a load/store.
1051
1052 /// If the target supports tail calls.
1053 LLVM_ABI bool supportsTailCalls() const;
1054
1055 /// If target supports tail call on \p CB
1056 LLVM_ABI bool supportsTailCallFor(const CallBase *CB) const;
1057
1058 /// Don't restrict interleaved unrolling to small loops.
1059 LLVM_ABI bool enableAggressiveInterleaving(bool LoopHasReductions) const;
1060
1061 /// Returns options for expansion of memcmp. IsZeroCmp is
1062 // true if this is the expansion of memcmp(p1, p2, s) == 0.
1064 // Return true if memcmp expansion is enabled.
1065 operator bool() const { return MaxNumLoads > 0; }
1066
1067 // Maximum number of load operations.
1068 unsigned MaxNumLoads = 0;
1069
1070 // The list of available load sizes (in bytes), sorted in decreasing order.
1072
1073 // For memcmp expansion when the memcmp result is only compared equal or
1074 // not-equal to 0, allow up to this number of load pairs per block. As an
1075 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
1076 // a0 = load2bytes &a[0]
1077 // b0 = load2bytes &b[0]
1078 // a2 = load1byte &a[2]
1079 // b2 = load1byte &b[2]
1080 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
1081 unsigned NumLoadsPerBlock = 1;
1082
1083 // Set to true to allow overlapping loads. For example, 7-byte compares can
1084 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
1085 // requires all loads in LoadSizes to be doable in an unaligned way.
1087
1088 // Sometimes, the amount of data that needs to be compared is smaller than
1089 // the standard register size, but it cannot be loaded with just one load
1090 // instruction. For example, if the size of the memory comparison is 6
1091 // bytes, we can handle it more efficiently by loading all 6 bytes in a
1092 // single block and generating an 8-byte number, instead of generating two
1093 // separate blocks with conditional jumps for 4 and 2 byte loads. This
1094 // approach simplifies the process and produces the comparison result as
1095 // normal. This array lists the allowed sizes of memcmp tails that can be
1096 // merged into one block
1098 };
1100 bool IsZeroCmp) const;
1101
1102 /// Should the Select Optimization pass be enabled and ran.
1103 LLVM_ABI bool enableSelectOptimize() const;
1104
1105 /// Should the Select Optimization pass treat the given instruction like a
1106 /// select, potentially converting it to a conditional branch. This can
1107 /// include select-like instructions like or(zext(c), x) that can be converted
1108 /// to selects.
1110
1111 /// Enable matching of interleaved access groups.
1113
1114 /// Enable matching of interleaved access groups that contain predicated
1115 /// accesses or gaps and therefore vectorized using masked
1116 /// vector loads/stores.
1118
1119 /// Indicate that it is potentially unsafe to automatically vectorize
1120 /// floating-point operations because the semantics of vector and scalar
1121 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
1122 /// does not support IEEE-754 denormal numbers, while depending on the
1123 /// platform, scalar floating-point math does.
1124 /// This applies to floating-point math operations and calls, not memory
1125 /// operations, shuffles, or casts.
1127
1128 /// Determine if the target supports unaligned memory accesses.
1130 unsigned BitWidth,
1131 unsigned AddressSpace = 0,
1132 Align Alignment = Align(1),
1133 unsigned *Fast = nullptr) const;
1134
1135 /// Return hardware support for population count.
1136 LLVM_ABI PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
1137
1138 /// Return true if the hardware has a fast square-root instruction.
1139 LLVM_ABI bool haveFastSqrt(Type *Ty) const;
1140
1141 /// Return true if the cost of the instruction is too high to speculatively
1142 /// execute and should be kept behind a branch.
1143 /// This normally just wraps around a getInstructionCost() call, but some
1144 /// targets might report a low TCK_SizeAndLatency value that is incompatible
1145 /// with the fixed TCC_Expensive value.
1146 /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
1148
1149 /// Return true if it is faster to check if a floating-point value is NaN
1150 /// (or not-NaN) versus a comparison against a constant FP zero value.
1151 /// Targets should override this if materializing a 0.0 for comparison is
1152 /// generally as cheap as checking for ordered/unordered.
1154
1155 /// Return the expected cost of supporting the floating point operation
1156 /// of the specified type.
1158
1159 /// Return the expected cost of materializing for the given integer
1160 /// immediate of the specified type.
1162 TargetCostKind CostKind) const;
1163
1164 /// Return the expected cost of materialization for the given integer
1165 /// immediate of the specified type for a given instruction. The cost can be
1166 /// zero if the immediate can be folded into the specified instruction.
1167 LLVM_ABI InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1168 const APInt &Imm, Type *Ty,
1170 Instruction *Inst = nullptr) const;
1172 const APInt &Imm, Type *Ty,
1173 TargetCostKind CostKind) const;
1174
1175 /// Return the expected cost for the given integer when optimising
1176 /// for size. This is different than the other integer immediate cost
1177 /// functions in that it is subtarget agnostic. This is useful when you e.g.
1178 /// target one ISA such as Aarch32 but smaller encodings could be possible
1179 /// with another such as Thumb. This return value is used as a penalty when
1180 /// the total costs for a constant is calculated (the bigger the cost, the
1181 /// more beneficial constant hoisting is).
1182 LLVM_ABI InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1183 const APInt &Imm,
1184 Type *Ty) const;
1185
1186 /// It can be advantageous to detach complex constants from their uses to make
1187 /// their generation cheaper. This hook allows targets to report when such
1188 /// transformations might negatively effect the code generation of the
1189 /// underlying operation. The motivating example is divides whereby hoisting
1190 /// constants prevents the code generator's ability to transform them into
1191 /// combinations of simpler operations.
1193 const Function &Fn) const;
1194
1195 /// @}
1196
1197 /// \name Vector Target Information
1198 /// @{
1199
1200 /// The various kinds of shuffle patterns for vector queries.
1202 SK_Broadcast, ///< Broadcast element 0 to all other elements.
1203 SK_Reverse, ///< Reverse the order of the vector.
1204 SK_Select, ///< Selects elements from the corresponding lane of
1205 ///< either source operand. This is equivalent to a
1206 ///< vector select with a constant condition operand.
1207 SK_Transpose, ///< Transpose two vectors.
1208 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
1209 SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
1210 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
1211 ///< with any shuffle mask.
1212 SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
1213 ///< shuffle mask.
1214 SK_Splice ///< Concatenates elements from the first input vector
1215 ///< with elements of the second input vector. Returning
1216 ///< a vector of the same type as the input vectors.
1217 ///< Index indicates start offset in first input vector.
1218 };
1219
1220 /// Additional information about an operand's possible values.
1222 OK_AnyValue, // Operand can have any value.
1223 OK_UniformValue, // Operand is uniform (splat of a value).
1224 OK_UniformConstantValue, // Operand is uniform constant.
1225 OK_NonUniformConstantValue // Operand is a non uniform constant value.
1226 };
1227
1228 /// Additional properties of an operand's values.
1234
1235 // Describe the values an operand can take. We're in the process
1236 // of migrating uses of OperandValueKind and OperandValueProperties
1237 // to use this class, and then will change the internal representation.
1241
1242 bool isConstant() const {
1244 }
1245 bool isUniform() const {
1247 }
1248 bool isPowerOf2() const {
1249 return Properties == OP_PowerOf2;
1250 }
1251 bool isNegatedPowerOf2() const {
1253 }
1254
1256 return {Kind, OP_None};
1257 }
1258 };
1259
1260 /// \return the number of registers in the target-provided register class.
1261 LLVM_ABI unsigned getNumberOfRegisters(unsigned ClassID) const;
1262
1263 /// \return true if the target supports load/store that enables fault
1264 /// suppression of memory operands when the source condition is false.
1265 LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const;
1266
1267 /// \return the target-provided register class ID for the provided type,
1268 /// accounting for type promotion and other type-legalization techniques that
1269 /// the target might apply. However, it specifically does not account for the
1270 /// scalarization or splitting of vector types. Should a vector type require
1271 /// scalarization or splitting into multiple underlying vector registers, that
1272 /// type should be mapped to a register class containing no registers.
1273 /// Specifically, this is designed to provide a simple, high-level view of the
1274 /// register allocation later performed by the backend. These register classes
1275 /// don't necessarily map onto the register classes used by the backend.
1276 /// FIXME: It's not currently possible to determine how many registers
1277 /// are used by the provided type.
1279 Type *Ty = nullptr) const;
1280
1281 /// \return the target-provided register class name
1282 LLVM_ABI const char *getRegisterClassName(unsigned ClassID) const;
1283
1285
1286 /// \return The width of the largest scalar or vector register type.
1287 LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const;
1288
1289 /// \return The width of the smallest vector register type.
1290 LLVM_ABI unsigned getMinVectorRegisterBitWidth() const;
1291
1292 /// \return The maximum value of vscale if the target specifies an
1293 /// architectural maximum vector length, and std::nullopt otherwise.
1294 LLVM_ABI std::optional<unsigned> getMaxVScale() const;
1295
1296 /// \return the value of vscale to tune the cost model for.
1297 LLVM_ABI std::optional<unsigned> getVScaleForTuning() const;
1298
1299 /// \return true if vscale is known to be a power of 2
1301
1302 /// \return True if the vectorization factor should be chosen to
1303 /// make the vector of the smallest element type match the size of a
1304 /// vector register. For wider element types, this could result in
1305 /// creating vectors that span multiple vector registers.
1306 /// If false, the vectorization factor will be chosen based on the
1307 /// size of the widest element type.
1308 /// \p K Register Kind for vectorization.
1309 LLVM_ABI bool
1311
1312 /// \return The minimum vectorization factor for types of given element
1313 /// bit width, or 0 if there is no minimum VF. The returned value only
1314 /// applies when shouldMaximizeVectorBandwidth returns true.
1315 /// If IsScalable is true, the returned ElementCount must be a scalable VF.
1316 LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
1317
1318 /// \return The maximum vectorization factor for types of given element
1319 /// bit width and opcode, or 0 if there is no maximum VF.
1320 /// Currently only used by the SLP vectorizer.
1321 LLVM_ABI unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
1322
1323 /// \return The minimum vectorization factor for the store instruction. Given
1324 /// the initial estimation of the minimum vector factor and store value type,
1325 /// it tries to find possible lowest VF, which still might be profitable for
1326 /// the vectorization.
1327 /// \param VF Initial estimation of the minimum vector factor.
1328 /// \param ScalarMemTy Scalar memory type of the store operation.
1329 /// \param ScalarValTy Scalar type of the stored value.
1330 /// Currently only used by the SLP vectorizer.
1331 LLVM_ABI unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1332 Type *ScalarValTy) const;
1333
1334 /// \return True if it should be considered for address type promotion.
1335 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
1336 /// profitable without finding other extensions fed by the same input.
1338 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
1339
1340 /// \return The size of a cache line in bytes.
1341 LLVM_ABI unsigned getCacheLineSize() const;
1342
1343 /// The possible cache levels
1344 enum class CacheLevel {
1345 L1D, // The L1 data cache
1346 L2D, // The L2 data cache
1347
1348 // We currently do not model L3 caches, as their sizes differ widely between
1349 // microarchitectures. Also, we currently do not have a use for L3 cache
1350 // size modeling yet.
1351 };
1352
1353 /// \return The size of the cache level in bytes, if available.
1354 LLVM_ABI std::optional<unsigned> getCacheSize(CacheLevel Level) const;
1355
1356 /// \return The associativity of the cache level, if available.
1357 LLVM_ABI std::optional<unsigned>
1358 getCacheAssociativity(CacheLevel Level) const;
1359
1360 /// \return The minimum architectural page size for the target.
1361 LLVM_ABI std::optional<unsigned> getMinPageSize() const;
1362
1363 /// \return How much before a load we should place the prefetch
1364 /// instruction. This is currently measured in number of
1365 /// instructions.
1366 LLVM_ABI unsigned getPrefetchDistance() const;
1367
1368 /// Some HW prefetchers can handle accesses up to a certain constant stride.
1369 /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
1370 /// and the arguments provided are meant to serve as a basis for deciding this
1371 /// for a particular loop.
1372 ///
1373 /// \param NumMemAccesses Number of memory accesses in the loop.
1374 /// \param NumStridedMemAccesses Number of the memory accesses that
1375 /// ScalarEvolution could find a known stride
1376 /// for.
1377 /// \param NumPrefetches Number of software prefetches that will be
1378 /// emitted as determined by the addresses
1379 /// involved and the cache line size.
1380 /// \param HasCall True if the loop contains a call.
1381 ///
1382 /// \return This is the minimum stride in bytes where it makes sense to start
1383 /// adding SW prefetches. The default is 1, i.e. prefetch with any
1384 /// stride.
1385 LLVM_ABI unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1386 unsigned NumStridedMemAccesses,
1387 unsigned NumPrefetches,
1388 bool HasCall) const;
1389
1390 /// \return The maximum number of iterations to prefetch ahead. If
1391 /// the required number of iterations is more than this number, no
1392 /// prefetching is performed.
1393 LLVM_ABI unsigned getMaxPrefetchIterationsAhead() const;
1394
1395 /// \return True if prefetching should also be done for writes.
1396 LLVM_ABI bool enableWritePrefetching() const;
1397
1398 /// \return if target want to issue a prefetch in address space \p AS.
1399 LLVM_ABI bool shouldPrefetchAddressSpace(unsigned AS) const;
1400
1401 /// \return The cost of a partial reduction, which is a reduction from a
1402 /// vector to another vector with fewer elements of larger size. They are
1403 /// represented by the llvm.vector.partial.reduce.add intrinsic, which
1404 /// takes an accumulator of type \p AccumType and a second vector operand to
1405 /// be accumulated, whose element count is specified by \p VF. The type of
1406 /// reduction is specified by \p Opcode. The second operand passed to the
1407 /// intrinsic could be the result of an extend, such as sext or zext. In
1408 /// this case \p BinOp is nullopt, \p InputTypeA represents the type being
1409 /// extended and \p OpAExtend the operation, i.e. sign- or zero-extend.
1410 /// Also, \p InputTypeB should be nullptr and OpBExtend should be None.
1411 /// Alternatively, the second operand could be the result of a binary
1412 /// operation performed on two extends, i.e.
1413 /// mul(zext i8 %a -> i32, zext i8 %b -> i32).
1414 /// In this case \p BinOp may specify the opcode of the binary operation,
1415 /// \p InputTypeA and \p InputTypeB the types being extended, and
1416 /// \p OpAExtend, \p OpBExtend the form of extensions. An example of an
1417 /// operation that uses a partial reduction is a dot product, which reduces
1418 /// two vectors in binary mul operation to another of 4 times fewer and 4
1419 /// times larger elements.
1421 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
1423 PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
1425
1426 /// \return The maximum interleave factor that any transform should try to
1427 /// perform for this target. This number depends on the level of parallelism
1428 /// and the number of execution units in the CPU.
1429 LLVM_ABI unsigned getMaxInterleaveFactor(ElementCount VF) const;
1430
1431 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1432 LLVM_ABI static OperandValueInfo getOperandInfo(const Value *V);
1433
1434 /// This is an approximation of reciprocal throughput of a math/logic op.
1435 /// A higher cost indicates less expected throughput.
1436 /// From Agner Fog's guides, reciprocal throughput is "the average number of
1437 /// clock cycles per instruction when the instructions are not part of a
1438 /// limiting dependency chain."
1439 /// Therefore, costs should be scaled to account for multiple execution units
1440 /// on the target that can process this type of instruction. For example, if
1441 /// there are 5 scalar integer units and 2 vector integer units that can
1442 /// calculate an 'add' in a single cycle, this model should indicate that the
1443 /// cost of the vector add instruction is 2.5 times the cost of the scalar
1444 /// add instruction.
1445 /// \p Args is an optional argument which holds the instruction operands
1446 /// values so the TTI can analyze those values searching for special
1447 /// cases or optimizations based on those values.
1448 /// \p CxtI is the optional original context instruction, if one exists, to
1449 /// provide even more information.
1450 /// \p TLibInfo is used to search for platform specific vector library
1451 /// functions for instructions that might be converted to calls (e.g. frem).
1453 unsigned Opcode, Type *Ty,
1457 ArrayRef<const Value *> Args = {}, const Instruction *CxtI = nullptr,
1458 const TargetLibraryInfo *TLibInfo = nullptr) const;
1459
1460 /// Returns the cost estimation for alternating opcode pattern that can be
1461 /// lowered to a single instruction on the target. In X86 this is for the
1462 /// addsub instruction which corrsponds to a Shuffle + Fadd + FSub pattern in
1463 /// IR. This function expects two opcodes: \p Opcode1 and \p Opcode2 being
1464 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
1465 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
1466 /// \p VecTy is the vector type of the instruction to be generated.
1468 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
1469 const SmallBitVector &OpcodeMask,
1471
1472 /// \return The cost of a shuffle instruction of kind Kind with inputs of type
1473 /// SrcTy, producing a vector of type DstTy. The exact mask may be passed as
1474 /// Mask, or else the array will be empty. The Index and SubTp parameters
1475 /// are used by the subvector insertions shuffle kinds to show the insert
1476 /// point and the type of the subvector being inserted. The operands of the
1477 /// shuffle can be passed through \p Args, which helps improve the cost
1478 /// estimation in some cases, like in broadcast loads.
1480 ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy,
1481 ArrayRef<int> Mask = {},
1483 VectorType *SubTp = nullptr, ArrayRef<const Value *> Args = {},
1484 const Instruction *CxtI = nullptr) const;
1485
1486 /// Represents a hint about the context in which a cast is used.
1487 ///
1488 /// For zext/sext, the context of the cast is the operand, which must be a
1489 /// load of some kind. For trunc, the context is of the cast is the single
1490 /// user of the instruction, which must be a store of some kind.
1491 ///
1492 /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1493 /// type of cast it's dealing with, as not every cast is equal. For instance,
1494 /// the zext of a load may be free, but the zext of an interleaving load can
1495 //// be (very) expensive!
1496 ///
1497 /// See \c getCastContextHint to compute a CastContextHint from a cast
1498 /// Instruction*. Callers can use it if they don't need to override the
1499 /// context and just want it to be calculated from the instruction.
1500 ///
1501 /// FIXME: This handles the types of load/store that the vectorizer can
1502 /// produce, which are the cases where the context instruction is most
1503 /// likely to be incorrect. There are other situations where that can happen
1504 /// too, which might be handled here but in the long run a more general
1505 /// solution of costing multiple instructions at the same times may be better.
1507 None, ///< The cast is not used with a load/store of any kind.
1508 Normal, ///< The cast is used with a normal load/store.
1509 Masked, ///< The cast is used with a masked load/store.
1510 GatherScatter, ///< The cast is used with a gather/scatter.
1511 Interleave, ///< The cast is used with an interleaved load/store.
1512 Reversed, ///< The cast is used with a reversed load/store.
1513 };
1514
1515 /// Calculates a CastContextHint from \p I.
1516 /// This should be used by callers of getCastInstrCost if they wish to
1517 /// determine the context from some instruction.
1518 /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1519 /// or if it's another type of cast.
1521
1522 /// \return The expected cost of cast instructions, such as bitcast, trunc,
1523 /// zext, etc. If there is an existing instruction that holds Opcode, it
1524 /// may be passed in the 'I' parameter.
1526 unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH,
1528 const Instruction *I = nullptr) const;
1529
1530 /// \return The expected cost of a sign- or zero-extended vector extract. Use
1531 /// Index = -1 to indicate that there is no information about the index value.
1533 getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1534 unsigned Index, TTI::TargetCostKind CostKind) const;
1535
1536 /// \return The expected cost of control-flow related instructions such as
1537 /// Phi, Ret, Br, Switch.
1540 const Instruction *I = nullptr) const;
1541
1542 /// \returns The expected cost of compare and select instructions. If there
1543 /// is an existing instruction that holds Opcode, it may be passed in the
1544 /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1545 /// is using a compare with the specified predicate as condition. When vector
1546 /// types are passed, \p VecPred must be used for all lanes. For a
1547 /// comparison, the two operands are the natural values. For a select, the
1548 /// two operands are the *value* operands, not the condition operand.
1550 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
1552 OperandValueInfo Op1Info = {OK_AnyValue, OP_None},
1553 OperandValueInfo Op2Info = {OK_AnyValue, OP_None},
1554 const Instruction *I = nullptr) const;
1555
1556 /// \return The expected cost of vector Insert and Extract.
1557 /// Use -1 to indicate that there is no information on the index value.
1558 /// This is used when the instruction is not available; a typical use
1559 /// case is to provision the cost of vectorization/scalarization in
1560 /// vectorizer passes.
1561 LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1563 unsigned Index = -1,
1564 const Value *Op0 = nullptr,
1565 const Value *Op1 = nullptr) const;
1566
1567 /// \return The expected cost of vector Insert and Extract.
1568 /// Use -1 to indicate that there is no information on the index value.
1569 /// This is used when the instruction is not available; a typical use
1570 /// case is to provision the cost of vectorization/scalarization in
1571 /// vectorizer passes.
1572 /// \param ScalarUserAndIdx encodes the information about extracts from a
1573 /// vector with 'Scalar' being the value being extracted,'User' being the user
1574 /// of the extract(nullptr if user is not known before vectorization) and
1575 /// 'Idx' being the extract lane.
1577 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
1578 Value *Scalar,
1579 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) const;
1580
1581 /// \return The expected cost of vector Insert and Extract.
1582 /// This is used when instruction is available, and implementation
1583 /// asserts 'I' is not nullptr.
1584 ///
1585 /// A typical suitable use case is cost estimation when vector instruction
1586 /// exists (e.g., from basic blocks during transformation).
1587 LLVM_ABI InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1589 unsigned Index = -1) const;
1590
1591 /// \return The expected cost of inserting or extracting a lane that is \p
1592 /// Index elements from the end of a vector, i.e. the mathematical expression
1593 /// for the lane is (VF - 1 - Index). This is required for scalable vectors
1594 /// where the exact lane index is unknown at compile time.
1596 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind,
1597 unsigned Index) const;
1598
1599 /// \return The expected cost of aggregate inserts and extracts. This is
1600 /// used when the instruction is not available; a typical use case is to
1601 /// provision the cost of vectorization/scalarization in vectorizer passes.
1603 unsigned Opcode, TTI::TargetCostKind CostKind) const;
1604
1605 /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
1606 /// \p ReplicationFactor times.
1607 ///
1608 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
1609 /// <0,0,0,1,1,1,2,2,2,3,3,3>
1611 Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
1613
1614 /// \return The cost of Load and Store instructions. The operand info
1615 /// \p OpdInfo should refer to the stored value for stores and the address
1616 /// for loads.
1618 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1621 const Instruction *I = nullptr) const;
1622
1623 /// \return The cost of the interleaved memory operation.
1624 /// \p Opcode is the memory operation code
1625 /// \p VecTy is the vector type of the interleaved access.
1626 /// \p Factor is the interleave factor
1627 /// \p Indices is the indices for interleaved load members (as interleaved
1628 /// load allows gaps)
1629 /// \p Alignment is the alignment of the memory operation
1630 /// \p AddressSpace is address space of the pointer.
1631 /// \p UseMaskForCond indicates if the memory access is predicated.
1632 /// \p UseMaskForGaps indicates if gaps should be masked.
1634 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1635 Align Alignment, unsigned AddressSpace,
1637 bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1638
1639 /// A helper function to determine the type of reduction algorithm used
1640 /// for a given \p Opcode and set of FastMathFlags \p FMF.
1641 static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
1642 return FMF && !(*FMF).allowReassoc();
1643 }
1644
1645 /// Calculate the cost of vector reduction intrinsics.
1646 ///
1647 /// This is the cost of reducing the vector value of type \p Ty to a scalar
1648 /// value using the operation denoted by \p Opcode. The FastMathFlags
1649 /// parameter \p FMF indicates what type of reduction we are performing:
1650 /// 1. Tree-wise. This is the typical 'fast' reduction performed that
1651 /// involves successively splitting a vector into half and doing the
1652 /// operation on the pair of halves until you have a scalar value. For
1653 /// example:
1654 /// (v0, v1, v2, v3)
1655 /// ((v0+v2), (v1+v3), undef, undef)
1656 /// ((v0+v2+v1+v3), undef, undef, undef)
1657 /// This is the default behaviour for integer operations, whereas for
1658 /// floating point we only do this if \p FMF indicates that
1659 /// reassociation is allowed.
1660 /// 2. Ordered. For a vector with N elements this involves performing N
1661 /// operations in lane order, starting with an initial scalar value, i.e.
1662 /// result = InitVal + v0
1663 /// result = result + v1
1664 /// result = result + v2
1665 /// result = result + v3
1666 /// This is only the case for FP operations and when reassociation is not
1667 /// allowed.
1668 ///
1670 unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1672
1676
1677 /// Calculate the cost of an extended reduction pattern, similar to
1678 /// getArithmeticReductionCost of an Add/Sub reduction with multiply and
1679 /// optional extensions. This is the cost of as:
1680 /// * ResTy vecreduce.add/sub(mul (A, B)) or,
1681 /// * ResTy vecreduce.add/sub(mul(ext(Ty A), ext(Ty B)).
1683 bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty,
1685
1686 /// Calculate the cost of an extended reduction pattern, similar to
1687 /// getArithmeticReductionCost of a reduction with an extension.
1688 /// This is the cost of as:
1689 /// ResTy vecreduce.opcode(ext(Ty A)).
1691 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1692 std::optional<FastMathFlags> FMF,
1694
1695 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1696 /// Three cases are handled: 1. scalar instruction 2. vector instruction
1697 /// 3. scalar instruction which is to be vectorized.
1700
1701 /// \returns The cost of memory intrinsic instructions.
1702 /// Used when IntrinsicInst is not materialized.
1706
1707 /// \returns The cost of Call instructions.
1709 Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1711
1712 /// \returns The number of pieces into which the provided type must be
1713 /// split during legalization. Zero is returned when the answer is unknown.
1714 LLVM_ABI unsigned getNumberOfParts(Type *Tp) const;
1715
1716 /// \returns The cost of the address computation. For most targets this can be
1717 /// merged into the instruction indexing mode. Some targets might want to
1718 /// distinguish between address computation for memory operations with vector
1719 /// pointer types and scalar pointer types. Such targets should override this
1720 /// function. \p SE holds the pointer for the scalar evolution object which
1721 /// was used in order to get the Ptr step value. \p Ptr holds the SCEV of the
1722 /// access pointer.
1724 getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr,
1726
1727 /// \returns The cost, if any, of keeping values of the given types alive
1728 /// over a callsite.
1729 ///
1730 /// Some types may require the use of register classes that do not have
1731 /// any callee-saved registers, so would require a spill and fill.
1734
1735 /// \returns True if the intrinsic is a supported memory intrinsic. Info
1736 /// will contain additional information - whether the intrinsic may write
1737 /// or read to memory, volatility and the pointer. Info is undefined
1738 /// if false is returned.
1740 MemIntrinsicInfo &Info) const;
1741
1742 /// \returns The maximum element size, in bytes, for an element
1743 /// unordered-atomic memory intrinsic.
1745
1746 /// \returns A value which is the result of the given memory intrinsic. If \p
1747 /// CanCreate is true, new instructions may be created to extract the result
1748 /// from the given intrinsic memory operation. Returns nullptr if the target
1749 /// cannot create a result from the given intrinsic.
1750 LLVM_ABI Value *
1752 bool CanCreate = true) const;
1753
1754 /// \returns The type to use in a loop expansion of a memcpy call.
1756 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1757 unsigned DestAddrSpace, Align SrcAlign, Align DestAlign,
1758 std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
1759
1760 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1761 /// \param RemainingBytes The number of bytes to copy.
1762 ///
1763 /// Calculates the operand types to use when copying \p RemainingBytes of
1764 /// memory, where source and destination alignments are \p SrcAlign and
1765 /// \p DestAlign respectively.
1767 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1768 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1769 Align SrcAlign, Align DestAlign,
1770 std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
1771
1772 /// \returns True if the two functions have compatible attributes for inlining
1773 /// purposes.
1774 LLVM_ABI bool areInlineCompatible(const Function *Caller,
1775 const Function *Callee) const;
1776
1777 /// Returns a penalty for invoking call \p Call in \p F.
1778 /// For example, if a function F calls a function G, which in turn calls
1779 /// function H, then getInlineCallPenalty(F, H()) would return the
1780 /// penalty of calling H from F, e.g. after inlining G into F.
1781 /// \p DefaultCallPenalty is passed to give a default penalty that
1782 /// the target can amend or override.
1783 LLVM_ABI unsigned getInlineCallPenalty(const Function *F,
1784 const CallBase &Call,
1785 unsigned DefaultCallPenalty) const;
1786
1787 /// \returns True if the caller and callee agree on how \p Types will be
1788 /// passed to or returned from the callee.
1789 /// to the callee.
1790 /// \param Types List of types to check.
1791 LLVM_ABI bool areTypesABICompatible(const Function *Caller,
1792 const Function *Callee,
1793 ArrayRef<Type *> Types) const;
1794
1795 /// The type of load/store indexing.
1797 MIM_Unindexed, ///< No indexing.
1798 MIM_PreInc, ///< Pre-incrementing.
1799 MIM_PreDec, ///< Pre-decrementing.
1800 MIM_PostInc, ///< Post-incrementing.
1801 MIM_PostDec ///< Post-decrementing.
1802 };
1803
1804 /// \returns True if the specified indexed load for the given type is legal.
1805 LLVM_ABI bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1806
1807 /// \returns True if the specified indexed store for the given type is legal.
1808 LLVM_ABI bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1809
1810 /// \returns The bitwidth of the largest vector type that should be used to
1811 /// load/store in the given address space.
1812 LLVM_ABI unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1813
1814 /// \returns True if the load instruction is legal to vectorize.
1816
1817 /// \returns True if the store instruction is legal to vectorize.
1819
1820 /// \returns True if it is legal to vectorize the given load chain.
1821 LLVM_ABI bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1822 Align Alignment,
1823 unsigned AddrSpace) const;
1824
1825 /// \returns True if it is legal to vectorize the given store chain.
1826 LLVM_ABI bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1827 Align Alignment,
1828 unsigned AddrSpace) const;
1829
1830 /// \returns True if it is legal to vectorize the given reduction kind.
1832 ElementCount VF) const;
1833
1834 /// \returns True if the given type is supported for scalable vectors
1836
1837 /// \returns The new vector factor value if the target doesn't support \p
1838 /// SizeInBytes loads or has a better vector factor.
1839 LLVM_ABI unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1840 unsigned ChainSizeInBytes,
1841 VectorType *VecTy) const;
1842
1843 /// \returns The new vector factor value if the target doesn't support \p
1844 /// SizeInBytes stores or has a better vector factor.
1845 LLVM_ABI unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1846 unsigned ChainSizeInBytes,
1847 VectorType *VecTy) const;
1848
1849 /// \returns True if the target prefers fixed width vectorization if the
1850 /// loop vectorizer's cost-model assigns an equal cost to the fixed and
1851 /// scalable version of the vectorized loop.
1852 /// \p IsEpilogue is true if the decision is for the epilogue loop.
1853 LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const;
1854
1855 /// \returns True if target prefers SLP vectorizer with altermate opcode
1856 /// vectorization, false - otherwise.
1858
1859 /// \returns True if the target prefers reductions of \p Kind to be performed
1860 /// in the loop.
1861 LLVM_ABI bool preferInLoopReduction(RecurKind Kind, Type *Ty) const;
1862
1863 /// \returns True if the target prefers reductions select kept in the loop
1864 /// when tail folding. i.e.
1865 /// loop:
1866 /// p = phi (0, s)
1867 /// a = add (p, x)
1868 /// s = select (mask, a, p)
1869 /// vecreduce.add(s)
1870 ///
1871 /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1872 /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1873 /// by the target, this can lead to cleaner code generation.
1875
1876 /// Return true if the loop vectorizer should consider vectorizing an
1877 /// otherwise scalar epilogue loop.
1879
1880 /// \returns True if the loop vectorizer should discard any VFs where the
1881 /// maximum register pressure exceeds getNumberOfRegisters.
1883
1884 /// \returns True if the target wants to expand the given reduction intrinsic
1885 /// into a shuffle sequence.
1887
1889
1890 /// \returns The shuffle sequence pattern used to expand the given reduction
1891 /// intrinsic.
1894
1895 /// \returns the size cost of rematerializing a GlobalValue address relative
1896 /// to a stack reload.
1897 LLVM_ABI unsigned getGISelRematGlobalCost() const;
1898
1899 /// \returns the lower bound of a trip count to decide on vectorization
1900 /// while tail-folding.
1902
1903 /// \returns True if the target supports scalable vectors.
1904 LLVM_ABI bool supportsScalableVectors() const;
1905
1906 /// \return true when scalable vectorization is preferred.
1908
1909 /// \name Vector Predication Information
1910 /// @{
1911 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1912 /// in hardware. (see LLVM Language Reference - "Vector Predication
1913 /// Intrinsics"). Use of %evl is discouraged when that is not the case.
1914 LLVM_ABI bool hasActiveVectorLength() const;
1915
1916 /// Return true if sinking I's operands to the same basic block as I is
1917 /// profitable, e.g. because the operands can be folded into a target
1918 /// instruction during instruction selection. After calling the function
1919 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
1920 /// come first).
1923
1924 /// Return true if it's significantly cheaper to shift a vector by a uniform
1925 /// scalar than by an amount which will vary across each lane. On x86 before
1926 /// AVX2 for example, there is a "psllw" instruction for the former case, but
1927 /// no simple instruction for a general "a << b" operation on vectors.
1928 /// This should also apply to lowering for vector funnel shifts (rotates).
1930
1933 // keep the predicating parameter
1935 // where legal, discard the predicate parameter
1937 // transform into something else that is also predicating
1939 };
1940
1941 // How to transform the EVL parameter.
1942 // Legal: keep the EVL parameter as it is.
1943 // Discard: Ignore the EVL parameter where it is safe to do so.
1944 // Convert: Fold the EVL into the mask parameter.
1946
1947 // How to transform the operator.
1948 // Legal: The target supports this operator.
1949 // Convert: Convert this to a non-VP operation.
1950 // The 'Discard' strategy is invalid.
1952
1953 bool shouldDoNothing() const {
1954 return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
1955 }
1958 };
1959
1960 /// \returns How the target needs this vector-predicated operation to be
1961 /// transformed.
1963 getVPLegalizationStrategy(const VPIntrinsic &PI) const;
1964 /// @}
1965
1966 /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb
1967 /// state.
1968 ///
1969 /// Used by the LowerTypeTests pass, which constructs an IR inline assembler
1970 /// node containing a jump table in a format suitable for the target, so it
1971 /// needs to know what format of jump table it can legally use.
1972 ///
1973 /// For non-Arm targets, this function isn't used. It defaults to returning
1974 /// false, but it shouldn't matter what it returns anyway.
1975 LLVM_ABI bool hasArmWideBranch(bool Thumb) const;
1976
1977 /// Returns a bitmask constructed from the target-features or fmv-features
1978 /// metadata of a function.
1979 LLVM_ABI APInt getFeatureMask(const Function &F) const;
1980
1981 /// Returns true if this is an instance of a function with multiple versions.
1982 LLVM_ABI bool isMultiversionedFunction(const Function &F) const;
1983
1984 /// \return The maximum number of function arguments the target supports.
1985 LLVM_ABI unsigned getMaxNumArgs() const;
1986
1987 /// \return For an array of given Size, return alignment boundary to
1988 /// pad to. Default is no padding.
1989 LLVM_ABI unsigned getNumBytesToPadGlobalArray(unsigned Size,
1990 Type *ArrayType) const;
1991
1992 /// @}
1993
1994 /// Collect kernel launch bounds for \p F into \p LB.
1996 const Function &F,
1997 SmallVectorImpl<std::pair<StringRef, int64_t>> &LB) const;
1998
1999 /// Returns true if GEP should not be used to index into vectors for this
2000 /// target.
2002
2003private:
2004 std::unique_ptr<const TargetTransformInfoImplBase> TTIImpl;
2005};
2006
2007/// Analysis pass providing the \c TargetTransformInfo.
2008///
2009/// The core idea of the TargetIRAnalysis is to expose an interface through
2010/// which LLVM targets can analyze and provide information about the middle
2011/// end's target-independent IR. This supports use cases such as target-aware
2012/// cost modeling of IR constructs.
2013///
2014/// This is a function analysis because much of the cost modeling for targets
2015/// is done in a subtarget specific way and LLVM supports compiling different
2016/// functions targeting different subtargets in order to support runtime
2017/// dispatch according to the observed subtarget.
2018class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
2019public:
2021
2022 /// Default construct a target IR analysis.
2023 ///
2024 /// This will use the module's datalayout to construct a baseline
2025 /// conservative TTI result.
2027
2028 /// Construct an IR analysis pass around a target-provide callback.
2029 ///
2030 /// The callback will be called with a particular function for which the TTI
2031 /// is needed and must return a TTI object for that function.
2032 LLVM_ABI
2033 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2034
2035 // Value semantics. We spell out the constructors for MSVC.
2037 : TTICallback(Arg.TTICallback) {}
2039 : TTICallback(std::move(Arg.TTICallback)) {}
2041 TTICallback = RHS.TTICallback;
2042 return *this;
2043 }
2045 TTICallback = std::move(RHS.TTICallback);
2046 return *this;
2047 }
2048
2050
2051private:
2053 LLVM_ABI static AnalysisKey Key;
2054
2055 /// The callback used to produce a result.
2056 ///
2057 /// We use a completely opaque callback so that targets can provide whatever
2058 /// mechanism they desire for constructing the TTI for a given function.
2059 ///
2060 /// FIXME: Should we really use std::function? It's relatively inefficient.
2061 /// It might be possible to arrange for even stateful callbacks to outlive
2062 /// the analysis and thus use a function_ref which would be lighter weight.
2063 /// This may also be less error prone as the callback is likely to reference
2064 /// the external TargetMachine, and that reference needs to never dangle.
2065 std::function<Result(const Function &)> TTICallback;
2066
2067 /// Helper function used as the callback in the default constructor.
2068 static Result getDefaultTTI(const Function &F);
2069};
2070
2071/// Wrapper pass for TargetTransformInfo.
2072///
2073/// This pass can be constructed from a TTI object which it stores internally
2074/// and is queried by passes.
2076 TargetIRAnalysis TIRA;
2077 std::optional<TargetTransformInfo> TTI;
2078
2079 virtual void anchor();
2080
2081public:
2082 static char ID;
2083
2084 /// We must provide a default constructor for the pass but it should
2085 /// never be used.
2086 ///
2087 /// Use the constructor below or call one of the creation routines.
2089
2091
2093};
2094
2095/// Create an analysis pass wrapper around a TTI object.
2096///
2097/// This analysis pass just holds the TTI instance and makes it available to
2098/// clients.
2101
2102} // namespace llvm
2103
2104#endif
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
Analysis containing CSE Info
Definition CSEInfo.cpp:27
#define LLVM_ABI
Definition Compiler.h:213
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
TargetTransformInfo::VPLegalization VPLegalization
static cl::opt< bool > ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops"))
static cl::opt< bool > ForceHardwareLoopPHI("force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi"))
This header defines various interfaces for pass management in LLVM.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
uint64_t IntrinsicInst * II
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
Value * RHS
Class for arbitrary precision integers.
Definition APInt.h:78
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
Class to represent array types.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
ImmutablePass class - This class is used to provide information that does not need to be run.
Definition Pass.h:285
ImmutablePass(char &pid)
Definition Pass.h:287
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
Class to represent integer types.
Drive the analysis of interleaved memory accesses in the loop.
const TargetLibraryInfo * getLibInfo() const
const SmallVectorImpl< Type * > & getArgTypes() const
const SmallVectorImpl< const Value * > & getArgs() const
LLVM_ABI IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarCost=InstructionCost::getInvalid(), bool TypeBasedOnly=false, TargetLibraryInfo const *LibInfo=nullptr)
InstructionCost getScalarizationCost() const
const IntrinsicInst * getInst() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Information for memory intrinsic cost model.
LLVM_ABI MemIntrinsicCostAttributes(Intrinsic::ID Id, Type *DataTy, bool VariableMask, Align Alignment, const Instruction *I=nullptr)
LLVM_ABI MemIntrinsicCostAttributes(Intrinsic::ID Id, Type *DataTy, Align Alignment, unsigned AddressSpace=0)
const Instruction * getInst() const
LLVM_ABI MemIntrinsicCostAttributes(Intrinsic::ID Id, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, const Instruction *I=nullptr)
The optimization diagnostic interface.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
Definition TypeSize.h:30
An instruction for storing to memory.
Multiway switch.
Analysis pass providing the TargetTransformInfo.
TargetIRAnalysis(const TargetIRAnalysis &Arg)
TargetIRAnalysis & operator=(const TargetIRAnalysis &RHS)
LLVM_ABI Result run(const Function &F, FunctionAnalysisManager &)
LLVM_ABI TargetIRAnalysis()
Default construct a target IR analysis.
TargetIRAnalysis & operator=(TargetIRAnalysis &&RHS)
TargetIRAnalysis(TargetIRAnalysis &&Arg)
Provides information about what library functions are available for the current target.
Base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class.
TargetTransformInfoWrapperPass()
We must provide a default constructor for the pass but it should never be used.
TargetTransformInfo & getTTI(const Function &F)
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
LLVM_ABI Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType, bool CanCreate=true) const
LLVM_ABI bool isLegalToVectorizeLoad(LoadInst *LI) const
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
static LLVM_ABI CastContextHint getCastContextHint(const Instruction *I)
Calculates a CastContextHint from I.
LLVM_ABI unsigned getMaxNumArgs() const
LLVM_ABI bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const
Return false if a AS0 address cannot possibly alias a AS1 address.
LLVM_ABI bool isLegalMaskedScatter(Type *DataType, Align Alignment) const
Return true if the target supports masked scatter.
LLVM_ABI bool shouldBuildLookupTables() const
Return true if switches should be turned into lookup tables for the target.
LLVM_ABI bool isLegalToVectorizeStore(StoreInst *SI) const
LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index=-1, const Value *Op0=nullptr, const Value *Op1=nullptr) const
LLVM_ABI InstructionCost getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of an Add/...
LLVM_ABI bool areTypesABICompatible(const Function *Caller, const Function *Callee, ArrayRef< Type * > Types) const
LLVM_ABI bool enableAggressiveInterleaving(bool LoopHasReductions) const
Don't restrict interleaved unrolling to small loops.
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool isMultiversionedFunction(const Function &F) const
Returns true if this is an instance of a function with multiple versions.
LLVM_ABI bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const
Return true if it is faster to check if a floating-point value is NaN (or not-NaN) versus a compariso...
LLVM_ABI bool isLegalMaskedStore(Type *DataType, Align Alignment, unsigned AddressSpace, MaskKind MaskKind=VariableOrConstantMask) const
Return true if the target supports masked store.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool isAlwaysUniform(const Value *V) const
LLVM_ABI unsigned getAssumedAddrSpace(const Value *V) const
LLVM_ABI bool preferAlternateOpcodeVectorization() const
LLVM_ABI bool shouldDropLSRSolutionIfLessProfitable() const
Return true if LSR should drop a found solution if it's calculated to be less profitable than the bas...
LLVM_ABI bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const
Return true if LSR cost of C1 is lower than C2.
LLVM_ABI unsigned getPrefetchDistance() const
LLVM_ABI Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicElementSize=std::nullopt) const
LLVM_ABI bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const
Return true if the target supports masked expand load.
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo Op1Info={OK_AnyValue, OP_None}, OperandValueInfo Op2Info={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI bool hasBranchDivergence(const Function *F=nullptr) const
Return true if branch divergence exists.
LLVM_ABI MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const
bool invalidate(Function &, const PreservedAnalyses &, FunctionAnalysisManager::Invalidator &)
Handle the invalidation of this information.
LLVM_ABI void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const
Get target-customized preferences for the generic loop unrolling transformation.
LLVM_ABI bool shouldBuildLookupTablesForConstant(Constant *C) const
Return true if switches should be turned into lookup tables containing this constant value for the ta...
LLVM_ABI bool supportsTailCallFor(const CallBase *CB) const
If target supports tail call on CB.
LLVM_ABI std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
Targets can implement their own combinations for target-specific intrinsics.
LLVM_ABI bool isProfitableLSRChainElement(Instruction *I) const
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
MaskKind
Some targets only support masked load/store with a constant mask.
LLVM_ABI unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const
Returns a penalty for invoking call Call in F.
LLVM_ABI bool hasActiveVectorLength() const
LLVM_ABI bool isExpensiveToSpeculativelyExecute(const Instruction *I) const
Return true if the cost of the instruction is too high to speculatively execute and should be kept be...
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI bool isLegalMaskedGather(Type *DataType, Align Alignment) const
Return true if the target supports masked gather.
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI std::optional< unsigned > getMaxVScale() const
LLVM_ABI InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) const
LLVM_ABI bool allowVectorElementIndexingUsingGEP() const
Returns true if GEP should not be used to index into vectors for this target.
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI bool isSingleThreaded() const
LLVM_ABI std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
Can be used to implement target-specific instruction combining.
LLVM_ABI bool enableOrderedReductions() const
Return true if we should be enabling ordered reductions for the target.
InstructionCost getInstructionCost(const User *U, TargetCostKind CostKind) const
This is a helper function which calls the three-argument getInstructionCost with Operands which are t...
LLVM_ABI unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
LLVM_ABI InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of vector reduction intrinsics.
LLVM_ABI unsigned getAtomicMemIntrinsicMaxElementSize() const
LLVM_ABI InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
LLVM_ABI bool LSRWithInstrQueries() const
Return true if the loop strength reduce pass should make Instruction* based TTI queries to isLegalAdd...
LLVM_ABI unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
LLVM_ABI VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
LLVM_ABI bool shouldConsiderVectorizationRegPressure() const
LLVM_ABI bool enableWritePrefetching() const
LLVM_ABI bool shouldTreatInstructionLikeSelect(const Instruction *I) const
Should the Select Optimization pass treat the given instruction like a select, potentially converting...
LLVM_ABI bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
LLVM_ABI bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
LLVM_ABI TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Query the target what the preferred style of tail folding is.
LLVM_ABI InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType=nullptr, TargetCostKind CostKind=TCK_SizeAndLatency) const
Estimate the cost of a GEP operation when lowered.
LLVM_ABI bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
LLVM_ABI bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace) const
Return true is the target supports interleaved access for the given vector type VTy,...
LLVM_ABI unsigned getRegUsageForType(Type *Ty) const
Returns the estimated number of registers required to represent Ty.
LLVM_ABI bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const
\Returns true if the target supports broadcasting a load to a vector of type <NumElements x ElementTy...
LLVM_ABI bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const
LLVM_ABI std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
LLVM_ABI InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of a reduc...
LLVM_ABI unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
LLVM_ABI ReductionShuffle getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
LLVM_ABI bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0, Instruction *I=nullptr, int64_t ScalableOffset=0) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
LLVM_ABI PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const
Return hardware support for population count.
LLVM_ABI unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.gather intrinsics.
LLVM_ABI unsigned getMaxPrefetchIterationsAhead() const
LLVM_ABI bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const
Return true if globals in this address space can have initializers other than undef.
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
LLVM_ABI InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
LLVM_ABI bool enableMaskedInterleavedAccessVectorization() const
Enable matching of interleaved access groups that contain predicated accesses or gaps and therefore v...
LLVM_ABI InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst=nullptr) const
Return the expected cost of materialization for the given integer immediate of the specified type for...
LLVM_ABI bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const
Return true if the target supports strided load.
LLVM_ABI TargetTransformInfo & operator=(TargetTransformInfo &&RHS)
LLVM_ABI InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF=FastMathFlags(), TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
LLVM_ABI bool enableSelectOptimize() const
Should the Select Optimization pass be enabled and ran.
LLVM_ABI bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
Return any intrinsic address operand indexes which may be rewritten if they use a flat address space ...
OperandValueProperties
Additional properties of an operand's values.
LLVM_ABI int getInliningLastCallToStaticBonus() const
LLVM_ABI InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const PointersChainInfo &Info, Type *AccessTy, TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Estimate the cost of a chain of pointers (typically pointer operands of a chain of loads or stores wi...
LLVM_ABI bool isVScaleKnownToBeAPowerOfTwo() const
LLVM_ABI bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const
LLVM_ABI unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
LLVM_ABI bool isSourceOfDivergence(const Value *V) const
Returns whether V is a source of divergence.
LLVM_ABI bool isLegalICmpImmediate(int64_t Imm) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
LLVM_ABI bool isTypeLegal(Type *Ty) const
Return true if this type is legal.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
LLVM_ABI bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const
LLVM_ABI std::optional< unsigned > getCacheAssociativity(CacheLevel Level) const
LLVM_ABI bool isLegalNTLoad(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal load.
LLVM_ABI InstructionCost getMemcpyCost(const Instruction *I) const
LLVM_ABI unsigned adjustInliningThreshold(const CallBase *CB) const
LLVM_ABI bool isLegalAddImmediate(int64_t Imm) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
LLVM_ABI bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
LLVM_ABI unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
LLVM_ABI InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
LLVM_ABI bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const
Return true if the target can save a compare for loop count, for example hardware loop saves a compar...
LLVM_ABI bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const
LLVM_ABI Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
Rewrite intrinsic call II such that OldV will be replaced with NewV, which has a different address sp...
LLVM_ABI InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const
LLVM_ABI unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const
Some HW prefetchers can handle accesses up to a certain constant stride.
LLVM_ABI bool shouldPrefetchAddressSpace(unsigned AS) const
LLVM_ABI InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
Return the expected cost of materializing for the given integer immediate of the specified type.
LLVM_ABI unsigned getMinVectorRegisterBitWidth() const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool isLegalNTStore(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal store.
LLVM_ABI InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, PartialReductionExtendKind OpAExtend, PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const
LLVM_ABI unsigned getFlatAddressSpace() const
Returns the address space ID for a target's 'flat' address space.
LLVM_ABI bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const
It can be advantageous to detach complex constants from their uses to make their generation cheaper.
LLVM_ABI bool hasArmWideBranch(bool Thumb) const
LLVM_ABI const char * getRegisterClassName(unsigned ClassID) const
LLVM_ABI bool preferEpilogueVectorization() const
Return true if the loop vectorizer should consider vectorizing an otherwise scalar epilogue loop.
LLVM_ABI bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const
LLVM_ABI BranchProbability getPredictableBranchThreshold() const
If a branch or a select condition is skewed in one direction by more than this factor,...
LLVM_ABI TargetTransformInfo(std::unique_ptr< const TargetTransformInfoImplBase > Impl)
Construct a TTI object using a type implementing the Concept API below.
LLVM_ABI bool preferInLoopReduction(RecurKind Kind, Type *Ty) const
LLVM_ABI unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const
LLVM_ABI unsigned getCacheLineSize() const
LLVM_ABI bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace=0, Align Alignment=Align(1), unsigned *Fast=nullptr) const
Determine if the target supports unaligned memory accesses.
LLVM_ABI int getInlinerVectorBonusPercent() const
LLVM_ABI unsigned getEpilogueVectorizationMinVF() const
LLVM_ABI void collectKernelLaunchBounds(const Function &F, SmallVectorImpl< std::pair< StringRef, int64_t > > &LB) const
Collect kernel launch bounds for F into LB.
PopcntSupportKind
Flags indicating the kind of support for population count.
LLVM_ABI bool preferPredicatedReductionSelect() const
LLVM_ABI InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) const
Return the expected cost for the given integer when optimising for size.
LLVM_ABI AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
Return the preferred addressing mode LSR should make efforts to generate.
LLVM_ABI bool isLoweredToCall(const Function *F) const
Test whether calls to a function lower to actual program function calls.
LLVM_ABI bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
LLVM_ABI bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
Query the target whether it would be profitable to convert the given loop into a hardware loop.
LLVM_ABI unsigned getInliningThresholdMultiplier() const
LLVM_ABI InstructionCost getBranchMispredictPenalty() const
Returns estimated penalty of a branch misprediction in latency.
LLVM_ABI unsigned getNumberOfRegisters(unsigned ClassID) const
LLVM_ABI bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const
Return true if this is an alternating opcode pattern that can be lowered to a single instruction on t...
LLVM_ABI bool isProfitableToHoist(Instruction *I) const
Return true if it is profitable to hoist instruction in the then/else to before if.
LLVM_ABI bool supportsScalableVectors() const
LLVM_ABI bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
Return true if the given instruction (assumed to be a memory access instruction) has a volatile varia...
LLVM_ABI bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const
Return true if the target supports masked compress store.
LLVM_ABI std::optional< unsigned > getMinPageSize() const
LLVM_ABI bool isFPVectorizationPotentiallyUnsafe() const
Indicate that it is potentially unsafe to automatically vectorize floating-point operations because t...
LLVM_ABI InstructionCost getInsertExtractValueCost(unsigned Opcode, TTI::TargetCostKind CostKind) const
LLVM_ABI bool shouldBuildRelLookupTables() const
Return true if lookup tables should be turned into relative lookup tables.
LLVM_ABI unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const
LLVM_ABI std::optional< unsigned > getCacheSize(CacheLevel Level) const
LLVM_ABI std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
Can be used to implement target-specific instruction combining.
LLVM_ABI bool isLegalAddScalableImmediate(int64_t Imm) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
LLVM_ABI bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI bool hasDivRemOp(Type *DataType, bool IsSigned) const
Return true if the target has a unified operation to calculate division and remainder.
LLVM_ABI InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Returns the cost estimation for alternating opcode pattern that can be lowered to a single instructio...
TargetCostConstants
Underlying constants for 'cost' values in this interface.
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Free
Expected to fold away in lowering.
@ TCC_Basic
The cost of a typical 'add' instruction.
LLVM_ABI bool enableInterleavedAccessVectorization() const
Enable matching of interleaved access groups.
LLVM_ABI unsigned getMinTripCountTailFoldingThreshold() const
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI unsigned getMaxInterleaveFactor(ElementCount VF) const
LLVM_ABI bool enableScalableVectorization() const
LLVM_ABI bool useFastCCForInternalCall(Function &F) const
Return true if the input function is internal, should use fastcc calling convention.
LLVM_ABI bool isVectorShiftByScalarCheap(Type *Ty) const
Return true if it's significantly cheaper to shift a vector by a uniform scalar than by an amount whi...
LLVM_ABI bool isNumRegsMajorCostOfLSR() const
Return true if LSR major cost is number of registers.
LLVM_ABI unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const
LLVM_ABI bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const
LLVM_ABI unsigned getGISelRematGlobalCost() const
LLVM_ABI unsigned getNumBytesToPadGlobalArray(unsigned Size, Type *ArrayType) const
MemIndexedMode
The type of load/store indexing.
LLVM_ABI bool isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned AddressSpace, MaskKind MaskKind=VariableOrConstantMask) const
Return true if the target supports masked load.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI bool areInlineCompatible(const Function *Caller, const Function *Callee) const
LLVM_ABI bool useColdCCForColdCall(Function &F) const
Return true if the input function which is cold at all call sites, should use coldcc calling conventi...
LLVM_ABI InstructionCost getFPOpCost(Type *Ty) const
Return the expected cost of supporting the floating point operation of the specified type.
LLVM_ABI bool supportsTailCalls() const
If the target supports tail calls.
LLVM_ABI bool canMacroFuseCmp() const
Return true if the target can fuse a compare and branch.
LLVM_ABI bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Query the target whether the specified address space cast from FromAS to ToAS is valid.
LLVM_ABI unsigned getNumberOfParts(Type *Tp) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
AddressingModeKind
Which addressing mode Loop Strength Reduction will try to generate.
@ AMK_PostIndexed
Prefer post-indexed addressing mode.
@ AMK_All
Consider all addressing modes.
@ AMK_PreIndexed
Prefer pre-indexed addressing mode.
@ AMK_None
Don't prefer any addressing mode.
LLVM_ABI InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0) const
Return the cost of the scaling factor used in the addressing mode represented by AM for this target,...
LLVM_ABI bool isTruncateFree(Type *Ty1, Type *Ty2) const
Return true if it's free to truncate a value of type Ty1 to type Ty2.
LLVM_ABI bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
Return true if sinking I's operands to the same basic block as I is profitable, e....
LLVM_ABI void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize=std::nullopt) const
LLVM_ABI bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
Query the target whether it would be prefered to create a predicated vector loop, which can avoid the...
LLVM_ABI bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.scatter intrinsics.
LLVM_ABI bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
LLVM_ABI bool haveFastSqrt(Type *Ty) const
Return true if the hardware has a fast square-root instruction.
LLVM_ABI bool shouldExpandReduction(const IntrinsicInst *II) const
LLVM_ABI uint64_t getMaxMemIntrinsicInlineSizeThreshold() const
Returns the maximum memset / memcpy size in bytes that still makes it profitable to inline the call.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
LLVM_ABI APInt getFeatureMask(const Function &F) const
Returns a bitmask constructed from the target-features or fmv-features metadata of a function.
LLVM_ABI void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) const
Get target-customized preferences for the generic loop peeling transformation.
LLVM_ABI InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency) const
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
LLVM_ABI InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index, TTI::TargetCostKind CostKind) const
OperandValueKind
Additional information about an operand's possible values.
CacheLevel
The possible cache levels.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Base class of all SIMD vector types.
CallInst * Call
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
@ Length
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ LLVM_MARK_AS_BITMASK_ENUM
Definition ModRef.h:37
TargetTransformInfo TTI
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI ImmutablePass * createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)
Create an analysis pass wrapper around a TTI object.
RecurKind
These are the kinds of recurrences that we support.
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1867
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:867
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition PassManager.h:92
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
Attributes of a target dependent hardware loop.
LLVM_ABI bool canAnalyze(LoopInfo &LI)
LLVM_ABI bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
Information about a load/store intrinsic defined by the target.
SmallVector< InterestingMemoryOperand, 1 > InterestingOperands
Value * PtrVal
This is the pointer that the intrinsic is loading from or storing to.
InterleavedAccessInfo * IAI
TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL, InterleavedAccessInfo *IAI)
TargetLibraryInfo * TLI
LoopVectorizationLegality * LVL
unsigned Insns
TODO: Some of these could be merged.
Returns options for expansion of memcmp. IsZeroCmp is.
bool AllowPeeling
Allow peeling off loop iterations.
bool AllowLoopNestsPeeling
Allow peeling off loop iterations for loop nests.
bool PeelLast
Peel off the last PeelCount loop iterations.
bool PeelProfiledIterations
Allow peeling basing on profile.
unsigned PeelCount
A forced peeling factor (the number of bodied of the original loop that should be peeled off before t...
Describe known properties for a set of pointers.
unsigned IsKnownStride
True if distance between any two neigbouring pointers is a known value.
unsigned IsUnitStride
These properties only valid if SameBaseAddress is set.
unsigned IsSameBaseAddress
All the GEPs in a set have same base address.
Parameters that control the generic loop unrolling transformation.
unsigned Count
A forced unrolling factor (the number of concatenated bodies of the original loop in the unrolled loo...
bool UpperBound
Allow using trip count upper bound to unroll loops.
unsigned Threshold
The cost threshold for the unrolled loop.
bool Force
Apply loop unroll on any kind of loop (mainly to loops that fail runtime unrolling).
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
unsigned DefaultUnrollRuntimeCount
Default unroll count for loops with run-time trip count.
unsigned MaxPercentThresholdBoost
If complete unrolling will reduce the cost of the loop, we will boost the Threshold by a certain perc...
bool RuntimeUnrollMultiExit
Allow runtime unrolling multi-exit loops.
unsigned SCEVExpansionBudget
Don't allow runtime unrolling if expanding the trip count takes more than SCEVExpansionBudget.
bool AddAdditionalAccumulators
Allow unrolling to add parallel reduction phis.
unsigned UnrollAndJamInnerLoopThreshold
Threshold for unroll and jam, for inner loop size.
unsigned MaxIterationsCountToAnalyze
Don't allow loop unrolling to simulate more than this number of iterations when checking full unroll ...
bool AllowRemainder
Allow generation of a loop remainder (extra iterations after unroll).
bool UnrollAndJam
Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollRemainder
Allow unrolling of all the iterations of the runtime loop remainder.
unsigned FullUnrollMaxCount
Set the maximum unrolling factor for full unrolling.
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).
bool AllowExpensiveTripCount
Allow emitting expensive instructions (such as divisions) when computing the trip count of a loop for...
unsigned MaxUpperBound
Set the maximum upper bound of trip count.
VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)