LLVM 20.0.0git
VectorUtils.h
Go to the documentation of this file.
1//===- llvm/Analysis/VectorUtils.h - Vector utilities -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines some vectorizer utilities.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ANALYSIS_VECTORUTILS_H
14#define LLVM_ANALYSIS_VECTORUTILS_H
15
16#include "llvm/ADT/MapVector.h"
19#include "llvm/IR/Module.h"
22
23namespace llvm {
24class TargetLibraryInfo;
25
26/// The Vector Function Database.
27///
28/// Helper class used to find the vector functions associated to a
29/// scalar CallInst.
31 /// The Module of the CallInst CI.
32 const Module *M;
33 /// The CallInst instance being queried for scalar to vector mappings.
34 const CallInst &CI;
35 /// List of vector functions descriptors associated to the call
36 /// instruction.
37 const SmallVector<VFInfo, 8> ScalarToVectorMappings;
38
39 /// Retrieve the scalar-to-vector mappings associated to the rule of
40 /// a vector Function ABI.
41 static void getVFABIMappings(const CallInst &CI,
42 SmallVectorImpl<VFInfo> &Mappings) {
43 if (!CI.getCalledFunction())
44 return;
45
46 const StringRef ScalarName = CI.getCalledFunction()->getName();
47
48 SmallVector<std::string, 8> ListOfStrings;
49 // The check for the vector-function-abi-variant attribute is done when
50 // retrieving the vector variant names here.
51 VFABI::getVectorVariantNames(CI, ListOfStrings);
52 if (ListOfStrings.empty())
53 return;
54 for (const auto &MangledName : ListOfStrings) {
55 const std::optional<VFInfo> Shape =
57 // A match is found via scalar and vector names, and also by
58 // ensuring that the variant described in the attribute has a
59 // corresponding definition or declaration of the vector
60 // function in the Module M.
61 if (Shape && (Shape->ScalarName == ScalarName)) {
62 assert(CI.getModule()->getFunction(Shape->VectorName) &&
63 "Vector function is missing.");
64 Mappings.push_back(*Shape);
65 }
66 }
67 }
68
69public:
70 /// Retrieve all the VFInfo instances associated to the CallInst CI.
73
74 // Get mappings from the Vector Function ABI variants.
75 getVFABIMappings(CI, Ret);
76
77 // Other non-VFABI variants should be retrieved here.
78
79 return Ret;
80 }
81
82 static bool hasMaskedVariant(const CallInst &CI,
83 std::optional<ElementCount> VF = std::nullopt) {
84 // Check whether we have at least one masked vector version of a scalar
85 // function. If no VF is specified then we check for any masked variant,
86 // otherwise we look for one that matches the supplied VF.
87 auto Mappings = VFDatabase::getMappings(CI);
88 for (VFInfo Info : Mappings)
89 if (!VF || Info.Shape.VF == *VF)
90 if (Info.isMasked())
91 return true;
92
93 return false;
94 }
95
96 /// Constructor, requires a CallInst instance.
98 : M(CI.getModule()), CI(CI),
99 ScalarToVectorMappings(VFDatabase::getMappings(CI)) {}
100
101 /// \defgroup VFDatabase query interface.
102 ///
103 /// @{
104 /// Retrieve the Function with VFShape \p Shape.
106 if (Shape == VFShape::getScalarShape(CI.getFunctionType()))
107 return CI.getCalledFunction();
108
109 for (const auto &Info : ScalarToVectorMappings)
110 if (Info.Shape == Shape)
111 return M->getFunction(Info.VectorName);
112
113 return nullptr;
114 }
115 /// @}
116};
117
118template <typename T> class ArrayRef;
119class DemandedBits;
120template <typename InstTy> class InterleaveGroup;
121class IRBuilderBase;
122class Loop;
123class TargetTransformInfo;
124class Value;
125
126namespace Intrinsic {
127typedef unsigned ID;
128}
129
130/// A helper function for converting Scalar types to vector types. If
131/// the incoming type is void, we return void. If the EC represents a
132/// scalar, we return the scalar type.
133inline Type *ToVectorTy(Type *Scalar, ElementCount EC) {
134 if (Scalar->isVoidTy() || Scalar->isMetadataTy() || EC.isScalar())
135 return Scalar;
136 return VectorType::get(Scalar, EC);
137}
138
139inline Type *ToVectorTy(Type *Scalar, unsigned VF) {
140 return ToVectorTy(Scalar, ElementCount::getFixed(VF));
141}
142
143/// Identify if the intrinsic is trivially vectorizable.
144/// This method returns true if the intrinsic's argument types are all scalars
145/// for the scalar form of the intrinsic and all vectors (or scalars handled by
146/// isVectorIntrinsicWithScalarOpAtArg) for the vector form of the intrinsic.
148
149/// Identifies if the vector form of the intrinsic has a scalar operand.
151 unsigned ScalarOpdIdx);
152
153/// Identifies if the vector form of the intrinsic is overloaded on the type of
154/// the operand at index \p OpdIdx, or on the return type if \p OpdIdx is -1.
156
157/// Returns intrinsic ID for call.
158/// For the input call instruction it finds mapping intrinsic and returns
159/// its intrinsic ID, in case it does not found it return not_intrinsic.
161 const TargetLibraryInfo *TLI);
162
163/// Given a vector and an element number, see if the scalar value is
164/// already around as a register, for example if it were inserted then extracted
165/// from the vector.
166Value *findScalarElement(Value *V, unsigned EltNo);
167
168/// If all non-negative \p Mask elements are the same value, return that value.
169/// If all elements are negative (undefined) or \p Mask contains different
170/// non-negative values, return -1.
171int getSplatIndex(ArrayRef<int> Mask);
172
173/// Get splat value if the input is a splat vector or return nullptr.
174/// The value may be extracted from a splat constants vector or from
175/// a sequence of instructions that broadcast a single value into a vector.
176Value *getSplatValue(const Value *V);
177
178/// Return true if each element of the vector value \p V is poisoned or equal to
179/// every other non-poisoned element. If an index element is specified, either
180/// every element of the vector is poisoned or the element at that index is not
181/// poisoned and equal to every other non-poisoned element.
182/// This may be more powerful than the related getSplatValue() because it is
183/// not limited by finding a scalar source value to a splatted vector.
184bool isSplatValue(const Value *V, int Index = -1, unsigned Depth = 0);
185
186/// Transform a shuffle mask's output demanded element mask into demanded
187/// element masks for the 2 operands, returns false if the mask isn't valid.
188/// Both \p DemandedLHS and \p DemandedRHS are initialised to [SrcWidth].
189/// \p AllowUndefElts permits "-1" indices to be treated as undef.
190bool getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
191 const APInt &DemandedElts, APInt &DemandedLHS,
192 APInt &DemandedRHS, bool AllowUndefElts = false);
193
194/// Replace each shuffle mask index with the scaled sequential indices for an
195/// equivalent mask of narrowed elements. Mask elements that are less than 0
196/// (sentinel values) are repeated in the output mask.
197///
198/// Example with Scale = 4:
199/// <4 x i32> <3, 2, 0, -1> -->
200/// <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1>
201///
202/// This is the reverse process of widening shuffle mask elements, but it always
203/// succeeds because the indexes can always be multiplied (scaled up) to map to
204/// narrower vector elements.
205void narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
206 SmallVectorImpl<int> &ScaledMask);
207
208/// Try to transform a shuffle mask by replacing elements with the scaled index
209/// for an equivalent mask of widened elements. If all mask elements that would
210/// map to a wider element of the new mask are the same negative number
211/// (sentinel value), that element of the new mask is the same value. If any
212/// element in a given slice is negative and some other element in that slice is
213/// not the same value, return false (partial matches with sentinel values are
214/// not allowed).
215///
216/// Example with Scale = 4:
217/// <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1> -->
218/// <4 x i32> <3, 2, 0, -1>
219///
220/// This is the reverse process of narrowing shuffle mask elements if it
221/// succeeds. This transform is not always possible because indexes may not
222/// divide evenly (scale down) to map to wider vector elements.
223bool widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
224 SmallVectorImpl<int> &ScaledMask);
225
226/// Attempt to narrow/widen the \p Mask shuffle mask to the \p NumDstElts target
227/// width. Internally this will call narrowShuffleMaskElts/widenShuffleMaskElts.
228/// This will assert unless NumDstElts is a multiple of Mask.size (or vice-versa).
229/// Returns false on failure, and ScaledMask will be in an undefined state.
230bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask,
231 SmallVectorImpl<int> &ScaledMask);
232
233/// Repetitively apply `widenShuffleMaskElts()` for as long as it succeeds,
234/// to get the shuffle mask with widest possible elements.
235void getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
236 SmallVectorImpl<int> &ScaledMask);
237
238/// Splits and processes shuffle mask depending on the number of input and
239/// output registers. The function does 2 main things: 1) splits the
240/// source/destination vectors into real registers; 2) do the mask analysis to
241/// identify which real registers are permuted. Then the function processes
242/// resulting registers mask using provided action items. If no input register
243/// is defined, \p NoInputAction action is used. If only 1 input register is
244/// used, \p SingleInputAction is used, otherwise \p ManyInputsAction is used to
245/// process > 2 input registers and masks.
246/// \param Mask Original shuffle mask.
247/// \param NumOfSrcRegs Number of source registers.
248/// \param NumOfDestRegs Number of destination registers.
249/// \param NumOfUsedRegs Number of actually used destination registers.
251 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
252 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
253 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
254 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction);
255
256/// Compute the demanded elements mask of horizontal binary operations. A
257/// horizontal operation combines two adjacent elements in a vector operand.
258/// This function returns a mask for the elements that correspond to the first
259/// operand of this horizontal combination. For example, for two vectors
260/// [X1, X2, X3, X4] and [Y1, Y2, Y3, Y4], the resulting mask can include the
261/// elements X1, X3, Y1, and Y3. To get the other operands, simply shift the
262/// result of this function to the left by 1.
263///
264/// \param VectorBitWidth the total bit width of the vector
265/// \param DemandedElts the demanded elements mask for the operation
266/// \param DemandedLHS the demanded elements mask for the left operand
267/// \param DemandedRHS the demanded elements mask for the right operand
268void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth,
269 const APInt &DemandedElts,
270 APInt &DemandedLHS,
271 APInt &DemandedRHS);
272
273/// Compute a map of integer instructions to their minimum legal type
274/// size.
275///
276/// C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int
277/// type (e.g. i32) whenever arithmetic is performed on them.
278///
279/// For targets with native i8 or i16 operations, usually InstCombine can shrink
280/// the arithmetic type down again. However InstCombine refuses to create
281/// illegal types, so for targets without i8 or i16 registers, the lengthening
282/// and shrinking remains.
283///
284/// Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when
285/// their scalar equivalents do not, so during vectorization it is important to
286/// remove these lengthens and truncates when deciding the profitability of
287/// vectorization.
288///
289/// This function analyzes the given range of instructions and determines the
290/// minimum type size each can be converted to. It attempts to remove or
291/// minimize type size changes across each def-use chain, so for example in the
292/// following code:
293///
294/// %1 = load i8, i8*
295/// %2 = add i8 %1, 2
296/// %3 = load i16, i16*
297/// %4 = zext i8 %2 to i32
298/// %5 = zext i16 %3 to i32
299/// %6 = add i32 %4, %5
300/// %7 = trunc i32 %6 to i16
301///
302/// Instruction %6 must be done at least in i16, so computeMinimumValueSizes
303/// will return: {%1: 16, %2: 16, %3: 16, %4: 16, %5: 16, %6: 16, %7: 16}.
304///
305/// If the optional TargetTransformInfo is provided, this function tries harder
306/// to do less work by only looking at illegal types.
307MapVector<Instruction*, uint64_t>
308computeMinimumValueSizes(ArrayRef<BasicBlock*> Blocks,
309 DemandedBits &DB,
310 const TargetTransformInfo *TTI=nullptr);
311
312/// Compute the union of two access-group lists.
313///
314/// If the list contains just one access group, it is returned directly. If the
315/// list is empty, returns nullptr.
316MDNode *uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2);
317
318/// Compute the access-group list of access groups that @p Inst1 and @p Inst2
319/// are both in. If either instruction does not access memory at all, it is
320/// considered to be in every list.
321///
322/// If the list contains just one access group, it is returned directly. If the
323/// list is empty, returns nullptr.
324MDNode *intersectAccessGroups(const Instruction *Inst1,
325 const Instruction *Inst2);
326
327/// Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath,
328/// MD_nontemporal, MD_access_group, MD_mmra].
329/// For K in Kinds, we get the MDNode for K from each of the
330/// elements of VL, compute their "intersection" (i.e., the most generic
331/// metadata value that covers all of the individual values), and set I's
332/// metadata for M equal to the intersection value.
333///
334/// This function always sets a (possibly null) value for each K in Kinds.
335Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL);
336
337/// Create a mask that filters the members of an interleave group where there
338/// are gaps.
339///
340/// For example, the mask for \p Group with interleave-factor 3
341/// and \p VF 4, that has only its first member present is:
342///
343/// <1,0,0,1,0,0,1,0,0,1,0,0>
344///
345/// Note: The result is a mask of 0's and 1's, as opposed to the other
346/// create[*]Mask() utilities which create a shuffle mask (mask that
347/// consists of indices).
348Constant *createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
349 const InterleaveGroup<Instruction> &Group);
350
351/// Create a mask with replicated elements.
352///
353/// This function creates a shuffle mask for replicating each of the \p VF
354/// elements in a vector \p ReplicationFactor times. It can be used to
355/// transform a mask of \p VF elements into a mask of
356/// \p VF * \p ReplicationFactor elements used by a predicated
357/// interleaved-group of loads/stores whose Interleaved-factor ==
358/// \p ReplicationFactor.
359///
360/// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
361///
362/// <0,0,0,1,1,1,2,2,2,3,3,3>
363llvm::SmallVector<int, 16> createReplicatedMask(unsigned ReplicationFactor,
364 unsigned VF);
365
366/// Create an interleave shuffle mask.
367///
368/// This function creates a shuffle mask for interleaving \p NumVecs vectors of
369/// vectorization factor \p VF into a single wide vector. The mask is of the
370/// form:
371///
372/// <0, VF, VF * 2, ..., VF * (NumVecs - 1), 1, VF + 1, VF * 2 + 1, ...>
373///
374/// For example, the mask for VF = 4 and NumVecs = 2 is:
375///
376/// <0, 4, 1, 5, 2, 6, 3, 7>.
377llvm::SmallVector<int, 16> createInterleaveMask(unsigned VF, unsigned NumVecs);
378
379/// Create a stride shuffle mask.
380///
381/// This function creates a shuffle mask whose elements begin at \p Start and
382/// are incremented by \p Stride. The mask can be used to deinterleave an
383/// interleaved vector into separate vectors of vectorization factor \p VF. The
384/// mask is of the form:
385///
386/// <Start, Start + Stride, ..., Start + Stride * (VF - 1)>
387///
388/// For example, the mask for Start = 0, Stride = 2, and VF = 4 is:
389///
390/// <0, 2, 4, 6>
391llvm::SmallVector<int, 16> createStrideMask(unsigned Start, unsigned Stride,
392 unsigned VF);
393
394/// Create a sequential shuffle mask.
395///
396/// This function creates shuffle mask whose elements are sequential and begin
397/// at \p Start. The mask contains \p NumInts integers and is padded with \p
398/// NumUndefs undef values. The mask is of the form:
399///
400/// <Start, Start + 1, ... Start + NumInts - 1, undef_1, ... undef_NumUndefs>
401///
402/// For example, the mask for Start = 0, NumInsts = 4, and NumUndefs = 4 is:
403///
404/// <0, 1, 2, 3, undef, undef, undef, undef>
406createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs);
407
408/// Given a shuffle mask for a binary shuffle, create the equivalent shuffle
409/// mask assuming both operands are identical. This assumes that the unary
410/// shuffle will use elements from operand 0 (operand 1 will be unused).
412 unsigned NumElts);
413
414/// Concatenate a list of vectors.
415///
416/// This function generates code that concatenate the vectors in \p Vecs into a
417/// single large vector. The number of vectors should be greater than one, and
418/// their element types should be the same. The number of elements in the
419/// vectors should also be the same; however, if the last vector has fewer
420/// elements, it will be padded with undefs.
421Value *concatenateVectors(IRBuilderBase &Builder, ArrayRef<Value *> Vecs);
422
423/// Given a mask vector of i1, Return true if all of the elements of this
424/// predicate mask are known to be false or undef. That is, return true if all
425/// lanes can be assumed inactive.
426bool maskIsAllZeroOrUndef(Value *Mask);
427
428/// Given a mask vector of i1, Return true if all of the elements of this
429/// predicate mask are known to be true or undef. That is, return true if all
430/// lanes can be assumed active.
431bool maskIsAllOneOrUndef(Value *Mask);
432
433/// Given a mask vector of i1, Return true if any of the elements of this
434/// predicate mask are known to be true or undef. That is, return true if at
435/// least one lane can be assumed active.
436bool maskContainsAllOneOrUndef(Value *Mask);
437
438/// Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y)
439/// for each lane which may be active.
440APInt possiblyDemandedEltsInMask(Value *Mask);
441
442/// The group of interleaved loads/stores sharing the same stride and
443/// close to each other.
444///
445/// Each member in this group has an index starting from 0, and the largest
446/// index should be less than interleaved factor, which is equal to the absolute
447/// value of the access's stride.
448///
449/// E.g. An interleaved load group of factor 4:
450/// for (unsigned i = 0; i < 1024; i+=4) {
451/// a = A[i]; // Member of index 0
452/// b = A[i+1]; // Member of index 1
453/// d = A[i+3]; // Member of index 3
454/// ...
455/// }
456///
457/// An interleaved store group of factor 4:
458/// for (unsigned i = 0; i < 1024; i+=4) {
459/// ...
460/// A[i] = a; // Member of index 0
461/// A[i+1] = b; // Member of index 1
462/// A[i+2] = c; // Member of index 2
463/// A[i+3] = d; // Member of index 3
464/// }
465///
466/// Note: the interleaved load group could have gaps (missing members), but
467/// the interleaved store group doesn't allow gaps.
468template <typename InstTy> class InterleaveGroup {
469public:
470 InterleaveGroup(uint32_t Factor, bool Reverse, Align Alignment)
471 : Factor(Factor), Reverse(Reverse), Alignment(Alignment),
472 InsertPos(nullptr) {}
473
474 InterleaveGroup(InstTy *Instr, int32_t Stride, Align Alignment)
475 : Alignment(Alignment), InsertPos(Instr) {
476 Factor = std::abs(Stride);
477 assert(Factor > 1 && "Invalid interleave factor");
478
479 Reverse = Stride < 0;
480 Members[0] = Instr;
481 }
482
483 bool isReverse() const { return Reverse; }
484 uint32_t getFactor() const { return Factor; }
485 Align getAlign() const { return Alignment; }
486 uint32_t getNumMembers() const { return Members.size(); }
487
488 /// Try to insert a new member \p Instr with index \p Index and
489 /// alignment \p NewAlign. The index is related to the leader and it could be
490 /// negative if it is the new leader.
491 ///
492 /// \returns false if the instruction doesn't belong to the group.
493 bool insertMember(InstTy *Instr, int32_t Index, Align NewAlign) {
494 // Make sure the key fits in an int32_t.
495 std::optional<int32_t> MaybeKey = checkedAdd(Index, SmallestKey);
496 if (!MaybeKey)
497 return false;
498 int32_t Key = *MaybeKey;
499
500 // Skip if the key is used for either the tombstone or empty special values.
503 return false;
504
505 // Skip if there is already a member with the same index.
506 if (Members.contains(Key))
507 return false;
508
509 if (Key > LargestKey) {
510 // The largest index is always less than the interleave factor.
511 if (Index >= static_cast<int32_t>(Factor))
512 return false;
513
514 LargestKey = Key;
515 } else if (Key < SmallestKey) {
516
517 // Make sure the largest index fits in an int32_t.
518 std::optional<int32_t> MaybeLargestIndex = checkedSub(LargestKey, Key);
519 if (!MaybeLargestIndex)
520 return false;
521
522 // The largest index is always less than the interleave factor.
523 if (*MaybeLargestIndex >= static_cast<int64_t>(Factor))
524 return false;
525
526 SmallestKey = Key;
527 }
528
529 // It's always safe to select the minimum alignment.
530 Alignment = std::min(Alignment, NewAlign);
531 Members[Key] = Instr;
532 return true;
533 }
534
535 /// Get the member with the given index \p Index
536 ///
537 /// \returns nullptr if contains no such member.
538 InstTy *getMember(uint32_t Index) const {
539 int32_t Key = SmallestKey + Index;
540 return Members.lookup(Key);
541 }
542
543 /// Get the index for the given member. Unlike the key in the member
544 /// map, the index starts from 0.
545 uint32_t getIndex(const InstTy *Instr) const {
546 for (auto I : Members) {
547 if (I.second == Instr)
548 return I.first - SmallestKey;
549 }
550
551 llvm_unreachable("InterleaveGroup contains no such member");
552 }
553
554 InstTy *getInsertPos() const { return InsertPos; }
555 void setInsertPos(InstTy *Inst) { InsertPos = Inst; }
556
557 /// Add metadata (e.g. alias info) from the instructions in this group to \p
558 /// NewInst.
559 ///
560 /// FIXME: this function currently does not add noalias metadata a'la
561 /// addNewMedata. To do that we need to compute the intersection of the
562 /// noalias info from all members.
563 void addMetadata(InstTy *NewInst) const;
564
565 /// Returns true if this Group requires a scalar iteration to handle gaps.
567 // If the last member of the Group exists, then a scalar epilog is not
568 // needed for this group.
569 if (getMember(getFactor() - 1))
570 return false;
571
572 // We have a group with gaps. It therefore can't be a reversed access,
573 // because such groups get invalidated (TODO).
574 assert(!isReverse() && "Group should have been invalidated");
575
576 // This is a group of loads, with gaps, and without a last-member
577 return true;
578 }
579
580private:
581 uint32_t Factor; // Interleave Factor.
582 bool Reverse;
583 Align Alignment;
585 int32_t SmallestKey = 0;
586 int32_t LargestKey = 0;
587
588 // To avoid breaking dependences, vectorized instructions of an interleave
589 // group should be inserted at either the first load or the last store in
590 // program order.
591 //
592 // E.g. %even = load i32 // Insert Position
593 // %add = add i32 %even // Use of %even
594 // %odd = load i32
595 //
596 // store i32 %even
597 // %odd = add i32 // Def of %odd
598 // store i32 %odd // Insert Position
599 InstTy *InsertPos;
600};
601
602/// Drive the analysis of interleaved memory accesses in the loop.
603///
604/// Use this class to analyze interleaved accesses only when we can vectorize
605/// a loop. Otherwise it's meaningless to do analysis as the vectorization
606/// on interleaved accesses is unsafe.
607///
608/// The analysis collects interleave groups and records the relationships
609/// between the member and the group in a map.
611public:
613 DominatorTree *DT, LoopInfo *LI,
614 const LoopAccessInfo *LAI)
615 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {}
616
618
619 /// Analyze the interleaved accesses and collect them in interleave
620 /// groups. Substitute symbolic strides using \p Strides.
621 /// Consider also predicated loads/stores in the analysis if
622 /// \p EnableMaskedInterleavedGroup is true.
623 void analyzeInterleaving(bool EnableMaskedInterleavedGroup);
624
625 /// Invalidate groups, e.g., in case all blocks in loop will be predicated
626 /// contrary to original assumption. Although we currently prevent group
627 /// formation for predicated accesses, we may be able to relax this limitation
628 /// in the future once we handle more complicated blocks. Returns true if any
629 /// groups were invalidated.
631 if (InterleaveGroups.empty()) {
632 assert(
633 !RequiresScalarEpilogue &&
634 "RequiresScalarEpilog should not be set without interleave groups");
635 return false;
636 }
637
638 InterleaveGroupMap.clear();
639 for (auto *Ptr : InterleaveGroups)
640 delete Ptr;
641 InterleaveGroups.clear();
642 RequiresScalarEpilogue = false;
643 return true;
644 }
645
646 /// Check if \p Instr belongs to any interleave group.
647 bool isInterleaved(Instruction *Instr) const {
648 return InterleaveGroupMap.contains(Instr);
649 }
650
651 /// Get the interleave group that \p Instr belongs to.
652 ///
653 /// \returns nullptr if doesn't have such group.
655 getInterleaveGroup(const Instruction *Instr) const {
656 return InterleaveGroupMap.lookup(Instr);
657 }
658
661 return make_range(InterleaveGroups.begin(), InterleaveGroups.end());
662 }
663
664 /// Returns true if an interleaved group that may access memory
665 /// out-of-bounds requires a scalar epilogue iteration for correctness.
666 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
667
668 /// Invalidate groups that require a scalar epilogue (due to gaps). This can
669 /// happen when optimizing for size forbids a scalar epilogue, and the gap
670 /// cannot be filtered by masking the load/store.
672
673 /// Returns true if we have any interleave groups.
674 bool hasGroups() const { return !InterleaveGroups.empty(); }
675
676private:
677 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
678 /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
679 /// The interleaved access analysis can also add new predicates (for example
680 /// by versioning strides of pointers).
682
683 Loop *TheLoop;
684 DominatorTree *DT;
685 LoopInfo *LI;
686 const LoopAccessInfo *LAI;
687
688 /// True if the loop may contain non-reversed interleaved groups with
689 /// out-of-bounds accesses. We ensure we don't speculatively access memory
690 /// out-of-bounds by executing at least one scalar epilogue iteration.
691 bool RequiresScalarEpilogue = false;
692
693 /// Holds the relationships between the members and the interleave group.
695
696 SmallPtrSet<InterleaveGroup<Instruction> *, 4> InterleaveGroups;
697
698 /// Holds dependences among the memory accesses in the loop. It maps a source
699 /// access to a set of dependent sink accesses.
701
702 /// The descriptor for a strided memory access.
703 struct StrideDescriptor {
704 StrideDescriptor() = default;
705 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
706 Align Alignment)
707 : Stride(Stride), Scev(Scev), Size(Size), Alignment(Alignment) {}
708
709 // The access's stride. It is negative for a reverse access.
710 int64_t Stride = 0;
711
712 // The scalar expression of this access.
713 const SCEV *Scev = nullptr;
714
715 // The size of the memory object.
716 uint64_t Size = 0;
717
718 // The alignment of this access.
719 Align Alignment;
720 };
721
722 /// A type for holding instructions and their stride descriptors.
723 using StrideEntry = std::pair<Instruction *, StrideDescriptor>;
724
725 /// Create a new interleave group with the given instruction \p Instr,
726 /// stride \p Stride and alignment \p Align.
727 ///
728 /// \returns the newly created interleave group.
729 InterleaveGroup<Instruction> *
730 createInterleaveGroup(Instruction *Instr, int Stride, Align Alignment) {
731 assert(!InterleaveGroupMap.count(Instr) &&
732 "Already in an interleaved access group");
733 InterleaveGroupMap[Instr] =
734 new InterleaveGroup<Instruction>(Instr, Stride, Alignment);
735 InterleaveGroups.insert(InterleaveGroupMap[Instr]);
736 return InterleaveGroupMap[Instr];
737 }
738
739 /// Release the group and remove all the relationships.
740 void releaseGroup(InterleaveGroup<Instruction> *Group) {
741 InterleaveGroups.erase(Group);
742 releaseGroupWithoutRemovingFromSet(Group);
743 }
744
745 /// Do everything necessary to release the group, apart from removing it from
746 /// the InterleaveGroups set.
747 void releaseGroupWithoutRemovingFromSet(InterleaveGroup<Instruction> *Group) {
748 for (unsigned i = 0; i < Group->getFactor(); i++)
749 if (Instruction *Member = Group->getMember(i))
750 InterleaveGroupMap.erase(Member);
751
752 delete Group;
753 }
754
755 /// Collect all the accesses with a constant stride in program order.
756 void collectConstStrideAccesses(
757 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
758 const DenseMap<Value *, const SCEV *> &Strides);
759
760 /// Returns true if \p Stride is allowed in an interleaved group.
761 static bool isStrided(int Stride);
762
763 /// Returns true if \p BB is a predicated block.
764 bool isPredicated(BasicBlock *BB) const {
765 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
766 }
767
768 /// Returns true if LoopAccessInfo can be used for dependence queries.
769 bool areDependencesValid() const {
770 return LAI && LAI->getDepChecker().getDependences();
771 }
772
773 /// Returns true if memory accesses \p A and \p B can be reordered, if
774 /// necessary, when constructing interleaved groups.
775 ///
776 /// \p A must precede \p B in program order. We return false if reordering is
777 /// not necessary or is prevented because \p A and \p B may be dependent.
778 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
779 StrideEntry *B) const {
780 // Code motion for interleaved accesses can potentially hoist strided loads
781 // and sink strided stores. The code below checks the legality of the
782 // following two conditions:
783 //
784 // 1. Potentially moving a strided load (B) before any store (A) that
785 // precedes B, or
786 //
787 // 2. Potentially moving a strided store (A) after any load or store (B)
788 // that A precedes.
789 //
790 // It's legal to reorder A and B if we know there isn't a dependence from A
791 // to B. Note that this determination is conservative since some
792 // dependences could potentially be reordered safely.
793
794 // A is potentially the source of a dependence.
795 auto *Src = A->first;
796 auto SrcDes = A->second;
797
798 // B is potentially the sink of a dependence.
799 auto *Sink = B->first;
800 auto SinkDes = B->second;
801
802 // Code motion for interleaved accesses can't violate WAR dependences.
803 // Thus, reordering is legal if the source isn't a write.
804 if (!Src->mayWriteToMemory())
805 return true;
806
807 // At least one of the accesses must be strided.
808 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
809 return true;
810
811 // If dependence information is not available from LoopAccessInfo,
812 // conservatively assume the instructions can't be reordered.
813 if (!areDependencesValid())
814 return false;
815
816 // If we know there is a dependence from source to sink, assume the
817 // instructions can't be reordered. Otherwise, reordering is legal.
818 return !Dependences.contains(Src) || !Dependences.lookup(Src).count(Sink);
819 }
820
821 /// Collect the dependences from LoopAccessInfo.
822 ///
823 /// We process the dependences once during the interleaved access analysis to
824 /// enable constant-time dependence queries.
825 void collectDependences() {
826 if (!areDependencesValid())
827 return;
828 const auto &DepChecker = LAI->getDepChecker();
829 auto *Deps = DepChecker.getDependences();
830 for (auto Dep : *Deps)
831 Dependences[Dep.getSource(DepChecker)].insert(
832 Dep.getDestination(DepChecker));
833 }
834};
835
836} // llvm namespace
837
838#endif
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
#define I(x, y, z)
Definition: MD5.cpp:58
This file implements a map that provides insertion order iteration.
Module.h This file contains the declarations for the Module class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1465
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1323
This class represents a function call, abstracting a target machine's calling convention.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
bool erase(const KeyT &Val)
Definition: DenseMap.h:336
unsigned size() const
Definition: DenseMap.h:99
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:151
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:146
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:311
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:66
The group of interleaved loads/stores sharing the same stride and close to each other.
Definition: VectorUtils.h:468
bool requiresScalarEpilogue() const
Returns true if this Group requires a scalar iteration to handle gaps.
Definition: VectorUtils.h:566
uint32_t getFactor() const
Definition: VectorUtils.h:484
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
Definition: VectorUtils.h:538
InterleaveGroup(uint32_t Factor, bool Reverse, Align Alignment)
Definition: VectorUtils.h:470
uint32_t getIndex(const InstTy *Instr) const
Get the index for the given member.
Definition: VectorUtils.h:545
void setInsertPos(InstTy *Inst)
Definition: VectorUtils.h:555
bool isReverse() const
Definition: VectorUtils.h:483
InstTy * getInsertPos() const
Definition: VectorUtils.h:554
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
Align getAlign() const
Definition: VectorUtils.h:485
InterleaveGroup(InstTy *Instr, int32_t Stride, Align Alignment)
Definition: VectorUtils.h:474
bool insertMember(InstTy *Instr, int32_t Index, Align NewAlign)
Try to insert a new member Instr with index Index and alignment NewAlign.
Definition: VectorUtils.h:493
uint32_t getNumMembers() const
Definition: VectorUtils.h:486
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:610
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
Definition: VectorUtils.h:655
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
Definition: VectorUtils.h:666
bool hasGroups() const
Returns true if we have any interleave groups.
Definition: VectorUtils.h:674
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
Definition: VectorUtils.h:647
bool invalidateGroups()
Invalidate groups, e.g., in case all blocks in loop will be predicated contrary to original assumptio...
Definition: VectorUtils.h:630
iterator_range< SmallPtrSetIterator< llvm::InterleaveGroup< Instruction > * > > getInterleaveGroups()
Definition: VectorUtils.h:660
void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, DominatorTree *DT, LoopInfo *LI, const LoopAccessInfo *LAI)
Definition: VectorUtils.h:612
Drive the analysis of memory accesses in the loop.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
const SmallVectorImpl< Dependence > * getDependences() const
Returns the memory dependences.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition: Module.cpp:193
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
This class represents an analyzed expression in the program.
bool erase(PtrType Ptr)
Remove pointer from the set.
Definition: SmallPtrSet.h:384
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:367
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:502
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
The Vector Function Database.
Definition: VectorUtils.h:30
VFDatabase(CallInst &CI)
Constructor, requires a CallInst instance.
Definition: VectorUtils.h:97
static bool hasMaskedVariant(const CallInst &CI, std::optional< ElementCount > VF=std::nullopt)
Definition: VectorUtils.h:82
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition: VectorUtils.h:71
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:664
A range adaptor for a pair of iterators.
Function * getVectorizedFunction(const VFShape &Shape) const
Definition: VectorUtils.h:105
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
std::optional< VFInfo > tryDemangleForVFABI(StringRef MangledName, const FunctionType *FTy)
Function to construct a VFInfo out of a mangled names in the following format:
void getVectorVariantNames(const CallInst &CI, SmallVectorImpl< std::string > &VariantMappings)
Populates a set of strings representing the Vector Function ABI variants associated to the CallInst C...
NodeAddr< InstrNode * > Instr
Definition: RDFGraph.h:389
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
APInt possiblyDemandedEltsInMask(Value *Mask)
Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y) for each lane which may be ...
bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
llvm::SmallVector< int, 16 > createUnaryMask(ArrayRef< int > Mask, unsigned NumElts)
Given a shuffle mask for a binary shuffle, create the equivalent shuffle mask assuming both operands ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
Instruction * propagateMetadata(Instruction *I, ArrayRef< Value * > VL)
Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, MD_nontemporal,...
Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
MDNode * intersectAccessGroups(const Instruction *Inst1, const Instruction *Inst2)
Compute the access-group list of access groups that Inst1 and Inst2 are both in.
bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
bool maskIsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
Type * ToVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
Definition: VectorUtils.h:133
TargetTransformInfo TTI
void processShuffleMasks(ArrayRef< int > Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, unsigned NumOfUsedRegs, function_ref< void()> NoInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned)> SingleInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned)> ManyInputsAction)
Splits and processes shuffle mask depending on the number of input and output registers.
void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
MDNode * uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2)
Compute the union of two access-group lists.
bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
std::enable_if_t< std::is_signed_v< T >, std::optional< T > > checkedSub(T LHS, T RHS)
Subtract two signed integers LHS and RHS.
void getShuffleMaskWithWidestElts(ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Repetitively apply widenShuffleMaskElts() for as long as it succeeds, to get the shuffle mask with wi...
std::enable_if_t< std::is_signed_v< T >, std::optional< T > > checkedAdd(T LHS, T RHS)
Add two signed integers LHS and RHS.
bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx)
Identifies if the vector form of the intrinsic has a scalar operand.
bool maskContainsAllOneOrUndef(Value *Mask)
Given a mask vector of i1, Return true if any of the elements of this predicate mask are known to be ...
bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
Definition: VectorUtils.cpp:46
llvm::SmallVector< int, 16 > createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs)
Create a sequential shuffle mask.
MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
bool scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Attempt to narrow/widen the Mask shuffle mask to the NumDstElts target width.
int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:52
Holds the VFShape for a specific scalar to vector function mapping.
Contains the information about the kind of vectorization available.
static VFShape getScalarShape(const FunctionType *FTy)
Retrieve the VFShape that can be used to map a scalar function to itself, with VF = 1.