LLVM 19.0.0git
LoopAccessAnalysis.cpp
Go to the documentation of this file.
1//===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The implementation for the loop memory dependence that was originally
10// developed for the loop vectorizer.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/SmallSet.h"
37#include "llvm/IR/BasicBlock.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/Function.h"
46#include "llvm/IR/InstrTypes.h"
47#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Operator.h"
50#include "llvm/IR/PassManager.h"
52#include "llvm/IR/Type.h"
53#include "llvm/IR/Value.h"
54#include "llvm/IR/ValueHandle.h"
57#include "llvm/Support/Debug.h"
60#include <algorithm>
61#include <cassert>
62#include <cstdint>
63#include <iterator>
64#include <utility>
65#include <variant>
66#include <vector>
67
68using namespace llvm;
69using namespace llvm::PatternMatch;
70
71#define DEBUG_TYPE "loop-accesses"
72
74VectorizationFactor("force-vector-width", cl::Hidden,
75 cl::desc("Sets the SIMD width. Zero is autoselect."),
78
80VectorizationInterleave("force-vector-interleave", cl::Hidden,
81 cl::desc("Sets the vectorization interleave count. "
82 "Zero is autoselect."),
86
88 "runtime-memory-check-threshold", cl::Hidden,
89 cl::desc("When performing memory disambiguation checks at runtime do not "
90 "generate more than this number of comparisons (default = 8)."),
93
94/// The maximum iterations used to merge memory checks
96 "memory-check-merge-threshold", cl::Hidden,
97 cl::desc("Maximum number of comparisons done when trying to merge "
98 "runtime memory checks. (default = 100)"),
99 cl::init(100));
100
101/// Maximum SIMD width.
102const unsigned VectorizerParams::MaxVectorWidth = 64;
103
104/// We collect dependences up to this threshold.
106 MaxDependences("max-dependences", cl::Hidden,
107 cl::desc("Maximum number of dependences collected by "
108 "loop-access analysis (default = 100)"),
109 cl::init(100));
110
111/// This enables versioning on the strides of symbolically striding memory
112/// accesses in code like the following.
113/// for (i = 0; i < N; ++i)
114/// A[i * Stride1] += B[i * Stride2] ...
115///
116/// Will be roughly translated to
117/// if (Stride1 == 1 && Stride2 == 1) {
118/// for (i = 0; i < N; i+=4)
119/// A[i:i+3] += ...
120/// } else
121/// ...
123 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124 cl::desc("Enable symbolic stride memory access versioning"));
125
126/// Enable store-to-load forwarding conflict detection. This option can
127/// be disabled for correctness testing.
129 "store-to-load-forwarding-conflict-detection", cl::Hidden,
130 cl::desc("Enable conflict detection in loop-access analysis"),
131 cl::init(true));
132
134 "max-forked-scev-depth", cl::Hidden,
135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
136 cl::init(5));
137
139 "laa-speculate-unit-stride", cl::Hidden,
140 cl::desc("Speculate that non-constant strides are unit in LAA"),
141 cl::init(true));
142
144 "hoist-runtime-checks", cl::Hidden,
145 cl::desc(
146 "Hoist inner loop runtime memory checks to outer loop if possible"),
149
151 return ::VectorizationInterleave.getNumOccurrences() > 0;
152}
153
155 const DenseMap<Value *, const SCEV *> &PtrToStride,
156 Value *Ptr) {
157 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
158
159 // If there is an entry in the map return the SCEV of the pointer with the
160 // symbolic stride replaced by one.
162 if (SI == PtrToStride.end())
163 // For a non-symbolic stride, just return the original expression.
164 return OrigSCEV;
165
166 const SCEV *StrideSCEV = SI->second;
167 // Note: This assert is both overly strong and overly weak. The actual
168 // invariant here is that StrideSCEV should be loop invariant. The only
169 // such invariant strides we happen to speculate right now are unknowns
170 // and thus this is a reasonable proxy of the actual invariant.
171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
172
173 ScalarEvolution *SE = PSE.getSE();
174 const auto *CT = SE->getOne(StrideSCEV->getType());
175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
176 auto *Expr = PSE.getSCEV(Ptr);
177
178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 << " by: " << *Expr << "\n");
180 return Expr;
181}
182
184 unsigned Index, RuntimePointerChecking &RtCheck)
185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
186 AddressSpace(RtCheck.Pointers[Index]
187 .PointerValue->getType()
189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
191}
192
193/// Calculate Start and End points of memory access.
194/// Let's assume A is the first access and B is a memory access on N-th loop
195/// iteration. Then B is calculated as:
196/// B = A + Step*N .
197/// Step value may be positive or negative.
198/// N is a calculated back-edge taken count:
199/// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
200/// Start and End points are calculated in the following way:
201/// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
202/// where SizeOfElt is the size of single memory access in bytes.
203///
204/// There is no conflict when the intervals are disjoint:
205/// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
206static std::pair<const SCEV *, const SCEV *>
207getStartAndEndForAccess(const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy,
209 ScalarEvolution *SE = PSE.getSE();
210
211 const SCEV *ScStart;
212 const SCEV *ScEnd;
213
214 if (SE->isLoopInvariant(PtrExpr, Lp)) {
215 ScStart = ScEnd = PtrExpr;
216 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
217 const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount();
218
219 ScStart = AR->getStart();
220 ScEnd = AR->evaluateAtIteration(Ex, *SE);
221 const SCEV *Step = AR->getStepRecurrence(*SE);
222
223 // For expressions with negative step, the upper bound is ScStart and the
224 // lower bound is ScEnd.
225 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
226 if (CStep->getValue()->isNegative())
227 std::swap(ScStart, ScEnd);
228 } else {
229 // Fallback case: the step is not constant, but we can still
230 // get the upper and lower bounds of the interval by using min/max
231 // expressions.
232 ScStart = SE->getUMinExpr(ScStart, ScEnd);
233 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
234 }
235 } else
236 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
237
238 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
239 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");
240
241 // Add the size of the pointed element to ScEnd.
242 auto &DL = Lp->getHeader()->getDataLayout();
243 Type *IdxTy = DL.getIndexType(PtrExpr->getType());
244 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
245 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
246
247 return {ScStart, ScEnd};
248}
249
250/// Calculate Start and End points of memory access using
251/// getStartAndEndForAccess.
253 Type *AccessTy, bool WritePtr,
254 unsigned DepSetId, unsigned ASId,
256 bool NeedsFreeze) {
257 const auto &[ScStart, ScEnd] =
258 getStartAndEndForAccess(Lp, PtrExpr, AccessTy, PSE);
259 assert(!isa<SCEVCouldNotCompute>(ScStart) &&
260 !isa<SCEVCouldNotCompute>(ScEnd) &&
261 "must be able to compute both start and end expressions");
262 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
263 NeedsFreeze);
264}
265
266bool RuntimePointerChecking::tryToCreateDiffCheck(
267 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
268 // If either group contains multiple different pointers, bail out.
269 // TODO: Support multiple pointers by using the minimum or maximum pointer,
270 // depending on src & sink.
271 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1)
272 return false;
273
274 PointerInfo *Src = &Pointers[CGI.Members[0]];
275 PointerInfo *Sink = &Pointers[CGJ.Members[0]];
276
277 // If either pointer is read and written, multiple checks may be needed. Bail
278 // out.
279 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
280 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty())
281 return false;
282
283 ArrayRef<unsigned> AccSrc =
284 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
285 ArrayRef<unsigned> AccSink =
286 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
287 // If either pointer is accessed multiple times, there may not be a clear
288 // src/sink relation. Bail out for now.
289 if (AccSrc.size() != 1 || AccSink.size() != 1)
290 return false;
291
292 // If the sink is accessed before src, swap src/sink.
293 if (AccSink[0] < AccSrc[0])
294 std::swap(Src, Sink);
295
296 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
297 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
298 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
299 SinkAR->getLoop() != DC.getInnermostLoop())
300 return false;
301
303 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
305 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
306 Type *SrcTy = getLoadStoreType(SrcInsts[0]);
307 Type *DstTy = getLoadStoreType(SinkInsts[0]);
308 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
309 return false;
310
311 const DataLayout &DL =
312 SinkAR->getLoop()->getHeader()->getDataLayout();
313 unsigned AllocSize =
314 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
315
316 // Only matching constant steps matching the AllocSize are supported at the
317 // moment. This simplifies the difference computation. Can be extended in the
318 // future.
319 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
320 if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
321 Step->getAPInt().abs() != AllocSize)
322 return false;
323
324 IntegerType *IntTy =
325 IntegerType::get(Src->PointerValue->getContext(),
326 DL.getPointerSizeInBits(CGI.AddressSpace));
327
328 // When counting down, the dependence distance needs to be swapped.
329 if (Step->getValue()->isNegative())
330 std::swap(SinkAR, SrcAR);
331
332 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
333 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
334 if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
335 isa<SCEVCouldNotCompute>(SrcStartInt))
336 return false;
337
338 const Loop *InnerLoop = SrcAR->getLoop();
339 // If the start values for both Src and Sink also vary according to an outer
340 // loop, then it's probably better to avoid creating diff checks because
341 // they may not be hoisted. We should instead let llvm::addRuntimeChecks
342 // do the expanded full range overlap checks, which can be hoisted.
343 if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
344 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
345 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
346 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
347 const Loop *StartARLoop = SrcStartAR->getLoop();
348 if (StartARLoop == SinkStartAR->getLoop() &&
349 StartARLoop == InnerLoop->getParentLoop() &&
350 // If the diff check would already be loop invariant (due to the
351 // recurrences being the same), then we prefer to keep the diff checks
352 // because they are cheaper.
353 SrcStartAR->getStepRecurrence(*SE) !=
354 SinkStartAR->getStepRecurrence(*SE)) {
355 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
356 "cannot be hoisted out of the outer loop\n");
357 return false;
358 }
359 }
360
361 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
362 << "SrcStart: " << *SrcStartInt << '\n'
363 << "SinkStartInt: " << *SinkStartInt << '\n');
364 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
365 Src->NeedsFreeze || Sink->NeedsFreeze);
366 return true;
367}
368
369SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
371
372 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
373 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
376
377 if (needsChecking(CGI, CGJ)) {
378 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
379 Checks.push_back(std::make_pair(&CGI, &CGJ));
380 }
381 }
382 }
383 return Checks;
384}
385
386void RuntimePointerChecking::generateChecks(
387 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
388 assert(Checks.empty() && "Checks is not empty");
389 groupChecks(DepCands, UseDependencies);
390 Checks = generateChecks();
391}
392
394 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
395 for (const auto &I : M.Members)
396 for (const auto &J : N.Members)
397 if (needsChecking(I, J))
398 return true;
399 return false;
400}
401
402/// Compare \p I and \p J and return the minimum.
403/// Return nullptr in case we couldn't find an answer.
404static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
405 ScalarEvolution *SE) {
406 const SCEV *Diff = SE->getMinusSCEV(J, I);
407 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
408
409 if (!C)
410 return nullptr;
411 return C->getValue()->isNegative() ? J : I;
412}
413
415 RuntimePointerChecking &RtCheck) {
416 return addPointer(
417 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
418 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
419 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
420}
421
423 const SCEV *End, unsigned AS,
424 bool NeedsFreeze,
425 ScalarEvolution &SE) {
426 assert(AddressSpace == AS &&
427 "all pointers in a checking group must be in the same address space");
428
429 // Compare the starts and ends with the known minimum and maximum
430 // of this set. We need to know how we compare against the min/max
431 // of the set in order to be able to emit memchecks.
432 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
433 if (!Min0)
434 return false;
435
436 const SCEV *Min1 = getMinFromExprs(End, High, &SE);
437 if (!Min1)
438 return false;
439
440 // Update the low bound expression if we've found a new min value.
441 if (Min0 == Start)
442 Low = Start;
443
444 // Update the high bound expression if we've found a new max value.
445 if (Min1 != End)
446 High = End;
447
449 this->NeedsFreeze |= NeedsFreeze;
450 return true;
451}
452
453void RuntimePointerChecking::groupChecks(
454 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
455 // We build the groups from dependency candidates equivalence classes
456 // because:
457 // - We know that pointers in the same equivalence class share
458 // the same underlying object and therefore there is a chance
459 // that we can compare pointers
460 // - We wouldn't be able to merge two pointers for which we need
461 // to emit a memcheck. The classes in DepCands are already
462 // conveniently built such that no two pointers in the same
463 // class need checking against each other.
464
465 // We use the following (greedy) algorithm to construct the groups
466 // For every pointer in the equivalence class:
467 // For each existing group:
468 // - if the difference between this pointer and the min/max bounds
469 // of the group is a constant, then make the pointer part of the
470 // group and update the min/max bounds of that group as required.
471
472 CheckingGroups.clear();
473
474 // If we need to check two pointers to the same underlying object
475 // with a non-constant difference, we shouldn't perform any pointer
476 // grouping with those pointers. This is because we can easily get
477 // into cases where the resulting check would return false, even when
478 // the accesses are safe.
479 //
480 // The following example shows this:
481 // for (i = 0; i < 1000; ++i)
482 // a[5000 + i * m] = a[i] + a[i + 9000]
483 //
484 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
485 // (0, 10000) which is always false. However, if m is 1, there is no
486 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
487 // us to perform an accurate check in this case.
488 //
489 // The above case requires that we have an UnknownDependence between
490 // accesses to the same underlying object. This cannot happen unless
491 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
492 // is also false. In this case we will use the fallback path and create
493 // separate checking groups for all pointers.
494
495 // If we don't have the dependency partitions, construct a new
496 // checking pointer group for each pointer. This is also required
497 // for correctness, because in this case we can have checking between
498 // pointers to the same underlying object.
499 if (!UseDependencies) {
500 for (unsigned I = 0; I < Pointers.size(); ++I)
501 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
502 return;
503 }
504
505 unsigned TotalComparisons = 0;
506
508 for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
509 auto [It, _] = PositionMap.insert({Pointers[Index].PointerValue, {}});
510 It->second.push_back(Index);
511 }
512
513 // We need to keep track of what pointers we've already seen so we
514 // don't process them twice.
516
517 // Go through all equivalence classes, get the "pointer check groups"
518 // and add them to the overall solution. We use the order in which accesses
519 // appear in 'Pointers' to enforce determinism.
520 for (unsigned I = 0; I < Pointers.size(); ++I) {
521 // We've seen this pointer before, and therefore already processed
522 // its equivalence class.
523 if (Seen.count(I))
524 continue;
525
526 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
527 Pointers[I].IsWritePtr);
528
530 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
531
532 // Because DepCands is constructed by visiting accesses in the order in
533 // which they appear in alias sets (which is deterministic) and the
534 // iteration order within an equivalence class member is only dependent on
535 // the order in which unions and insertions are performed on the
536 // equivalence class, the iteration order is deterministic.
537 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
538 MI != ME; ++MI) {
539 auto PointerI = PositionMap.find(MI->getPointer());
540 assert(PointerI != PositionMap.end() &&
541 "pointer in equivalence class not found in PositionMap");
542 for (unsigned Pointer : PointerI->second) {
543 bool Merged = false;
544 // Mark this pointer as seen.
545 Seen.insert(Pointer);
546
547 // Go through all the existing sets and see if we can find one
548 // which can include this pointer.
549 for (RuntimeCheckingPtrGroup &Group : Groups) {
550 // Don't perform more than a certain amount of comparisons.
551 // This should limit the cost of grouping the pointers to something
552 // reasonable. If we do end up hitting this threshold, the algorithm
553 // will create separate groups for all remaining pointers.
554 if (TotalComparisons > MemoryCheckMergeThreshold)
555 break;
556
557 TotalComparisons++;
558
559 if (Group.addPointer(Pointer, *this)) {
560 Merged = true;
561 break;
562 }
563 }
564
565 if (!Merged)
566 // We couldn't add this pointer to any existing set or the threshold
567 // for the number of comparisons has been reached. Create a new group
568 // to hold the current pointer.
569 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
570 }
571 }
572
573 // We've computed the grouped checks for this partition.
574 // Save the results and continue with the next one.
575 llvm::copy(Groups, std::back_inserter(CheckingGroups));
576 }
577}
578
580 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
581 unsigned PtrIdx2) {
582 return (PtrToPartition[PtrIdx1] != -1 &&
583 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
584}
585
586bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
587 const PointerInfo &PointerI = Pointers[I];
588 const PointerInfo &PointerJ = Pointers[J];
589
590 // No need to check if two readonly pointers intersect.
591 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
592 return false;
593
594 // Only need to check pointers between two different dependency sets.
595 if (PointerI.DependencySetId == PointerJ.DependencySetId)
596 return false;
597
598 // Only need to check pointers in the same alias set.
599 if (PointerI.AliasSetId != PointerJ.AliasSetId)
600 return false;
601
602 return true;
603}
604
607 unsigned Depth) const {
608 unsigned N = 0;
609 for (const auto &[Check1, Check2] : Checks) {
610 const auto &First = Check1->Members, &Second = Check2->Members;
611
612 OS.indent(Depth) << "Check " << N++ << ":\n";
613
614 OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n";
615 for (unsigned K : First)
616 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
617
618 OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n";
619 for (unsigned K : Second)
620 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
621 }
622}
623
625
626 OS.indent(Depth) << "Run-time memory checks:\n";
627 printChecks(OS, Checks, Depth);
628
629 OS.indent(Depth) << "Grouped accesses:\n";
630 for (const auto &CG : CheckingGroups) {
631 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
632 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
633 << ")\n";
634 for (unsigned Member : CG.Members) {
635 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n";
636 }
637 }
638}
639
640namespace {
641
642/// Analyses memory accesses in a loop.
643///
644/// Checks whether run time pointer checks are needed and builds sets for data
645/// dependence checking.
646class AccessAnalysis {
647public:
648 /// Read or write access location.
649 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
650 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
651
652 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
655 SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
656 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
657 LoopAliasScopes(LoopAliasScopes) {
658 // We're analyzing dependences across loop iterations.
659 BAA.enableCrossIterationMode();
660 }
661
662 /// Register a load and whether it is only read from.
663 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
664 Value *Ptr = const_cast<Value *>(Loc.Ptr);
665 AST.add(adjustLoc(Loc));
666 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
667 if (IsReadOnly)
668 ReadOnlyPtr.insert(Ptr);
669 }
670
671 /// Register a store.
672 void addStore(MemoryLocation &Loc, Type *AccessTy) {
673 Value *Ptr = const_cast<Value *>(Loc.Ptr);
674 AST.add(adjustLoc(Loc));
675 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
676 }
677
678 /// Check if we can emit a run-time no-alias check for \p Access.
679 ///
680 /// Returns true if we can emit a run-time no alias check for \p Access.
681 /// If we can check this access, this also adds it to a dependence set and
682 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
683 /// we will attempt to use additional run-time checks in order to get
684 /// the bounds of the pointer.
685 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
686 MemAccessInfo Access, Type *AccessTy,
687 const DenseMap<Value *, const SCEV *> &Strides,
689 Loop *TheLoop, unsigned &RunningDepId,
690 unsigned ASId, bool ShouldCheckStride, bool Assume);
691
692 /// Check whether we can check the pointers at runtime for
693 /// non-intersection.
694 ///
695 /// Returns true if we need no check or if we do and we can generate them
696 /// (i.e. the pointers have computable bounds).
697 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
698 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
699 Value *&UncomputablePtr, bool ShouldCheckWrap = false);
700
701 /// Goes over all memory accesses, checks whether a RT check is needed
702 /// and builds sets of dependent accesses.
703 void buildDependenceSets() {
704 processMemAccesses();
705 }
706
707 /// Initial processing of memory accesses determined that we need to
708 /// perform dependency checking.
709 ///
710 /// Note that this can later be cleared if we retry memcheck analysis without
711 /// dependency checking (i.e. FoundNonConstantDistanceDependence).
712 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
713
714 /// We decided that no dependence analysis would be used. Reset the state.
715 void resetDepChecks(MemoryDepChecker &DepChecker) {
716 CheckDeps.clear();
717 DepChecker.clearDependences();
718 }
719
720 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
721
724 return UnderlyingObjects;
725 }
726
727private:
729
730 /// Adjust the MemoryLocation so that it represents accesses to this
731 /// location across all iterations, rather than a single one.
732 MemoryLocation adjustLoc(MemoryLocation Loc) const {
733 // The accessed location varies within the loop, but remains within the
734 // underlying object.
736 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
737 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
738 return Loc;
739 }
740
741 /// Drop alias scopes that are only valid within a single loop iteration.
742 MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
743 if (!ScopeList)
744 return nullptr;
745
746 // For the sake of simplicity, drop the whole scope list if any scope is
747 // iteration-local.
748 if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
749 return LoopAliasScopes.contains(cast<MDNode>(Scope));
750 }))
751 return nullptr;
752
753 return ScopeList;
754 }
755
756 /// Go over all memory access and check whether runtime pointer checks
757 /// are needed and build sets of dependency check candidates.
758 void processMemAccesses();
759
760 /// Map of all accesses. Values are the types used to access memory pointed to
761 /// by the pointer.
762 PtrAccessMap Accesses;
763
764 /// The loop being checked.
765 const Loop *TheLoop;
766
767 /// List of accesses that need a further dependence check.
768 MemAccessInfoList CheckDeps;
769
770 /// Set of pointers that are read only.
771 SmallPtrSet<Value*, 16> ReadOnlyPtr;
772
773 /// Batched alias analysis results.
774 BatchAAResults BAA;
775
776 /// An alias set tracker to partition the access set by underlying object and
777 //intrinsic property (such as TBAA metadata).
778 AliasSetTracker AST;
779
780 LoopInfo *LI;
781
782 /// Sets of potentially dependent accesses - members of one set share an
783 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
784 /// dependence check.
786
787 /// Initial processing of memory accesses determined that we may need
788 /// to add memchecks. Perform the analysis to determine the necessary checks.
789 ///
790 /// Note that, this is different from isDependencyCheckNeeded. When we retry
791 /// memcheck analysis without dependency checking
792 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
793 /// cleared while this remains set if we have potentially dependent accesses.
794 bool IsRTCheckAnalysisNeeded = false;
795
796 /// The SCEV predicate containing all the SCEV-related assumptions.
798
800
801 /// Alias scopes that are declared inside the loop, and as such not valid
802 /// across iterations.
803 SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
804};
805
806} // end anonymous namespace
807
808/// Check whether a pointer can participate in a runtime bounds check.
809/// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
810/// by adding run-time checks (overflow checks) if necessary.
812 const SCEV *PtrScev, Loop *L, bool Assume) {
813 // The bounds for loop-invariant pointer is trivial.
814 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
815 return true;
816
817 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
818
819 if (!AR && Assume)
820 AR = PSE.getAsAddRec(Ptr);
821
822 if (!AR)
823 return false;
824
825 return AR->isAffine();
826}
827
828/// Check whether a pointer address cannot wrap.
830 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy,
831 Loop *L) {
832 const SCEV *PtrScev = PSE.getSCEV(Ptr);
833 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
834 return true;
835
836 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
837 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
838 return true;
839
840 return false;
841}
842
843static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
844 function_ref<void(Value *)> AddPointer) {
846 SmallVector<Value *> WorkList;
847 WorkList.push_back(StartPtr);
848
849 while (!WorkList.empty()) {
850 Value *Ptr = WorkList.pop_back_val();
851 if (!Visited.insert(Ptr).second)
852 continue;
853 auto *PN = dyn_cast<PHINode>(Ptr);
854 // SCEV does not look through non-header PHIs inside the loop. Such phis
855 // can be analyzed by adding separate accesses for each incoming pointer
856 // value.
857 if (PN && InnermostLoop.contains(PN->getParent()) &&
858 PN->getParent() != InnermostLoop.getHeader()) {
859 for (const Use &Inc : PN->incoming_values())
860 WorkList.push_back(Inc);
861 } else
862 AddPointer(Ptr);
863 }
864}
865
866// Walk back through the IR for a pointer, looking for a select like the
867// following:
868//
869// %offset = select i1 %cmp, i64 %a, i64 %b
870// %addr = getelementptr double, double* %base, i64 %offset
871// %ld = load double, double* %addr, align 8
872//
873// We won't be able to form a single SCEVAddRecExpr from this since the
874// address for each loop iteration depends on %cmp. We could potentially
875// produce multiple valid SCEVAddRecExprs, though, and check all of them for
876// memory safety/aliasing if needed.
877//
878// If we encounter some IR we don't yet handle, or something obviously fine
879// like a constant, then we just add the SCEV for that term to the list passed
880// in by the caller. If we have a node that may potentially yield a valid
881// SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
882// ourselves before adding to the list.
883static void findForkedSCEVs(
884 ScalarEvolution *SE, const Loop *L, Value *Ptr,
886 unsigned Depth) {
887 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
888 // we've exceeded our limit on recursion, just return whatever we have
889 // regardless of whether it can be used for a forked pointer or not, along
890 // with an indication of whether it might be a poison or undef value.
891 const SCEV *Scev = SE->getSCEV(Ptr);
892 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
893 !isa<Instruction>(Ptr) || Depth == 0) {
894 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
895 return;
896 }
897
898 Depth--;
899
900 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
901 return get<1>(S);
902 };
903
904 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
905 switch (Opcode) {
906 case Instruction::Add:
907 return SE->getAddExpr(L, R);
908 case Instruction::Sub:
909 return SE->getMinusSCEV(L, R);
910 default:
911 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
912 }
913 };
914
915 Instruction *I = cast<Instruction>(Ptr);
916 unsigned Opcode = I->getOpcode();
917 switch (Opcode) {
918 case Instruction::GetElementPtr: {
919 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
920 Type *SourceTy = GEP->getSourceElementType();
921 // We only handle base + single offset GEPs here for now.
922 // Not dealing with preexisting gathers yet, so no vectors.
923 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
924 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
925 break;
926 }
929 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
930 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
931
932 // See if we need to freeze our fork...
933 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
934 any_of(OffsetScevs, UndefPoisonCheck);
935
936 // Check that we only have a single fork, on either the base or the offset.
937 // Copy the SCEV across for the one without a fork in order to generate
938 // the full SCEV for both sides of the GEP.
939 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
940 BaseScevs.push_back(BaseScevs[0]);
941 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
942 OffsetScevs.push_back(OffsetScevs[0]);
943 else {
944 ScevList.emplace_back(Scev, NeedsFreeze);
945 break;
946 }
947
948 // Find the pointer type we need to extend to.
949 Type *IntPtrTy = SE->getEffectiveSCEVType(
950 SE->getSCEV(GEP->getPointerOperand())->getType());
951
952 // Find the size of the type being pointed to. We only have a single
953 // index term (guarded above) so we don't need to index into arrays or
954 // structures, just get the size of the scalar value.
955 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
956
957 // Scale up the offsets by the size of the type, then add to the bases.
958 const SCEV *Scaled1 = SE->getMulExpr(
959 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
960 const SCEV *Scaled2 = SE->getMulExpr(
961 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
962 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
963 NeedsFreeze);
964 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
965 NeedsFreeze);
966 break;
967 }
968 case Instruction::Select: {
970 // A select means we've found a forked pointer, but we currently only
971 // support a single select per pointer so if there's another behind this
972 // then we just bail out and return the generic SCEV.
973 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
974 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
975 if (ChildScevs.size() == 2) {
976 ScevList.push_back(ChildScevs[0]);
977 ScevList.push_back(ChildScevs[1]);
978 } else
979 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
980 break;
981 }
982 case Instruction::PHI: {
984 // A phi means we've found a forked pointer, but we currently only
985 // support a single phi per pointer so if there's another behind this
986 // then we just bail out and return the generic SCEV.
987 if (I->getNumOperands() == 2) {
988 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
989 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
990 }
991 if (ChildScevs.size() == 2) {
992 ScevList.push_back(ChildScevs[0]);
993 ScevList.push_back(ChildScevs[1]);
994 } else
995 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
996 break;
997 }
998 case Instruction::Add:
999 case Instruction::Sub: {
1002 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
1003 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
1004
1005 // See if we need to freeze our fork...
1006 bool NeedsFreeze =
1007 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
1008
1009 // Check that we only have a single fork, on either the left or right side.
1010 // Copy the SCEV across for the one without a fork in order to generate
1011 // the full SCEV for both sides of the BinOp.
1012 if (LScevs.size() == 2 && RScevs.size() == 1)
1013 RScevs.push_back(RScevs[0]);
1014 else if (RScevs.size() == 2 && LScevs.size() == 1)
1015 LScevs.push_back(LScevs[0]);
1016 else {
1017 ScevList.emplace_back(Scev, NeedsFreeze);
1018 break;
1019 }
1020
1021 ScevList.emplace_back(
1022 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1023 NeedsFreeze);
1024 ScevList.emplace_back(
1025 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1026 NeedsFreeze);
1027 break;
1028 }
1029 default:
1030 // Just return the current SCEV if we haven't handled the instruction yet.
1031 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1032 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1033 break;
1034 }
1035}
1036
1039 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
1040 const Loop *L) {
1041 ScalarEvolution *SE = PSE.getSE();
1042 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1044 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
1045
1046 // For now, we will only accept a forked pointer with two possible SCEVs
1047 // that are either SCEVAddRecExprs or loop invariant.
1048 if (Scevs.size() == 2 &&
1049 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1050 SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
1051 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1052 SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
1053 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
1054 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
1055 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
1056 return Scevs;
1057 }
1058
1059 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1060}
1061
1062bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
1063 MemAccessInfo Access, Type *AccessTy,
1064 const DenseMap<Value *, const SCEV *> &StridesMap,
1066 Loop *TheLoop, unsigned &RunningDepId,
1067 unsigned ASId, bool ShouldCheckWrap,
1068 bool Assume) {
1069 Value *Ptr = Access.getPointer();
1070
1072 findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
1073
1074 for (auto &P : TranslatedPtrs) {
1075 const SCEV *PtrExpr = get<0>(P);
1076 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
1077 return false;
1078
1079 // When we run after a failing dependency check we have to make sure
1080 // we don't have wrapping pointers.
1081 if (ShouldCheckWrap) {
1082 // Skip wrap checking when translating pointers.
1083 if (TranslatedPtrs.size() > 1)
1084 return false;
1085
1086 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
1087 auto *Expr = PSE.getSCEV(Ptr);
1088 if (!Assume || !isa<SCEVAddRecExpr>(Expr))
1089 return false;
1091 }
1092 }
1093 // If there's only one option for Ptr, look it up after bounds and wrap
1094 // checking, because assumptions might have been added to PSE.
1095 if (TranslatedPtrs.size() == 1)
1096 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1097 false};
1098 }
1099
1100 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1101 // The id of the dependence set.
1102 unsigned DepId;
1103
1104 if (isDependencyCheckNeeded()) {
1105 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1106 unsigned &LeaderId = DepSetId[Leader];
1107 if (!LeaderId)
1108 LeaderId = RunningDepId++;
1109 DepId = LeaderId;
1110 } else
1111 // Each access has its own dependence set.
1112 DepId = RunningDepId++;
1113
1114 bool IsWrite = Access.getInt();
1115 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1116 NeedsFreeze);
1117 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1118 }
1119
1120 return true;
1121}
1122
1123bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1124 ScalarEvolution *SE, Loop *TheLoop,
1125 const DenseMap<Value *, const SCEV *> &StridesMap,
1126 Value *&UncomputablePtr, bool ShouldCheckWrap) {
1127 // Find pointers with computable bounds. We are going to use this information
1128 // to place a runtime bound check.
1129 bool CanDoRT = true;
1130
1131 bool MayNeedRTCheck = false;
1132 if (!IsRTCheckAnalysisNeeded) return true;
1133
1134 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1135
1136 // We assign a consecutive id to access from different alias sets.
1137 // Accesses between different groups doesn't need to be checked.
1138 unsigned ASId = 0;
1139 for (auto &AS : AST) {
1140 int NumReadPtrChecks = 0;
1141 int NumWritePtrChecks = 0;
1142 bool CanDoAliasSetRT = true;
1143 ++ASId;
1144 auto ASPointers = AS.getPointers();
1145
1146 // We assign consecutive id to access from different dependence sets.
1147 // Accesses within the same set don't need a runtime check.
1148 unsigned RunningDepId = 1;
1150
1152
1153 // First, count how many write and read accesses are in the alias set. Also
1154 // collect MemAccessInfos for later.
1156 for (const Value *ConstPtr : ASPointers) {
1157 Value *Ptr = const_cast<Value *>(ConstPtr);
1158 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1159 if (IsWrite)
1160 ++NumWritePtrChecks;
1161 else
1162 ++NumReadPtrChecks;
1163 AccessInfos.emplace_back(Ptr, IsWrite);
1164 }
1165
1166 // We do not need runtime checks for this alias set, if there are no writes
1167 // or a single write and no reads.
1168 if (NumWritePtrChecks == 0 ||
1169 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1170 assert((ASPointers.size() <= 1 ||
1171 all_of(ASPointers,
1172 [this](const Value *Ptr) {
1173 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
1174 true);
1175 return DepCands.findValue(AccessWrite) == DepCands.end();
1176 })) &&
1177 "Can only skip updating CanDoRT below, if all entries in AS "
1178 "are reads or there is at most 1 entry");
1179 continue;
1180 }
1181
1182 for (auto &Access : AccessInfos) {
1183 for (const auto &AccessTy : Accesses[Access]) {
1184 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1185 DepSetId, TheLoop, RunningDepId, ASId,
1186 ShouldCheckWrap, false)) {
1187 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1188 << *Access.getPointer() << '\n');
1189 Retries.push_back({Access, AccessTy});
1190 CanDoAliasSetRT = false;
1191 }
1192 }
1193 }
1194
1195 // Note that this function computes CanDoRT and MayNeedRTCheck
1196 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1197 // we have a pointer for which we couldn't find the bounds but we don't
1198 // actually need to emit any checks so it does not matter.
1199 //
1200 // We need runtime checks for this alias set, if there are at least 2
1201 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1202 // any bound checks (because in that case the number of dependence sets is
1203 // incomplete).
1204 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1205
1206 // We need to perform run-time alias checks, but some pointers had bounds
1207 // that couldn't be checked.
1208 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1209 // Reset the CanDoSetRt flag and retry all accesses that have failed.
1210 // We know that we need these checks, so we can now be more aggressive
1211 // and add further checks if required (overflow checks).
1212 CanDoAliasSetRT = true;
1213 for (const auto &[Access, AccessTy] : Retries) {
1214 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1215 DepSetId, TheLoop, RunningDepId, ASId,
1216 ShouldCheckWrap, /*Assume=*/true)) {
1217 CanDoAliasSetRT = false;
1218 UncomputablePtr = Access.getPointer();
1219 break;
1220 }
1221 }
1222 }
1223
1224 CanDoRT &= CanDoAliasSetRT;
1225 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1226 ++ASId;
1227 }
1228
1229 // If the pointers that we would use for the bounds comparison have different
1230 // address spaces, assume the values aren't directly comparable, so we can't
1231 // use them for the runtime check. We also have to assume they could
1232 // overlap. In the future there should be metadata for whether address spaces
1233 // are disjoint.
1234 unsigned NumPointers = RtCheck.Pointers.size();
1235 for (unsigned i = 0; i < NumPointers; ++i) {
1236 for (unsigned j = i + 1; j < NumPointers; ++j) {
1237 // Only need to check pointers between two different dependency sets.
1238 if (RtCheck.Pointers[i].DependencySetId ==
1239 RtCheck.Pointers[j].DependencySetId)
1240 continue;
1241 // Only need to check pointers in the same alias set.
1242 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1243 continue;
1244
1245 Value *PtrI = RtCheck.Pointers[i].PointerValue;
1246 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1247
1248 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1249 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1250 if (ASi != ASj) {
1251 LLVM_DEBUG(
1252 dbgs() << "LAA: Runtime check would require comparison between"
1253 " different address spaces\n");
1254 return false;
1255 }
1256 }
1257 }
1258
1259 if (MayNeedRTCheck && CanDoRT)
1260 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1261
1262 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1263 << " pointer comparisons.\n");
1264
1265 // If we can do run-time checks, but there are no checks, no runtime checks
1266 // are needed. This can happen when all pointers point to the same underlying
1267 // object for example.
1268 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1269
1270 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1271 if (!CanDoRTIfNeeded)
1272 RtCheck.reset();
1273 return CanDoRTIfNeeded;
1274}
1275
1276void AccessAnalysis::processMemAccesses() {
1277 // We process the set twice: first we process read-write pointers, last we
1278 // process read-only pointers. This allows us to skip dependence tests for
1279 // read-only pointers.
1280
1281 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1282 LLVM_DEBUG(dbgs() << " AST: "; AST.dump());
1283 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
1284 LLVM_DEBUG({
1285 for (const auto &[A, _] : Accesses)
1286 dbgs() << "\t" << *A.getPointer() << " ("
1287 << (A.getInt() ? "write"
1288 : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
1289 : "read"))
1290 << ")\n";
1291 });
1292
1293 // The AliasSetTracker has nicely partitioned our pointers by metadata
1294 // compatibility and potential for underlying-object overlap. As a result, we
1295 // only need to check for potential pointer dependencies within each alias
1296 // set.
1297 for (const auto &AS : AST) {
1298 // Note that both the alias-set tracker and the alias sets themselves used
1299 // ordered collections internally and so the iteration order here is
1300 // deterministic.
1301 auto ASPointers = AS.getPointers();
1302
1303 bool SetHasWrite = false;
1304
1305 // Map of pointers to last access encountered.
1306 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1307 UnderlyingObjToAccessMap ObjToLastAccess;
1308
1309 // Set of access to check after all writes have been processed.
1310 PtrAccessMap DeferredAccesses;
1311
1312 // Iterate over each alias set twice, once to process read/write pointers,
1313 // and then to process read-only pointers.
1314 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1315 bool UseDeferred = SetIteration > 0;
1316 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1317
1318 for (const Value *ConstPtr : ASPointers) {
1319 Value *Ptr = const_cast<Value *>(ConstPtr);
1320
1321 // For a single memory access in AliasSetTracker, Accesses may contain
1322 // both read and write, and they both need to be handled for CheckDeps.
1323 for (const auto &[AC, _] : S) {
1324 if (AC.getPointer() != Ptr)
1325 continue;
1326
1327 bool IsWrite = AC.getInt();
1328
1329 // If we're using the deferred access set, then it contains only
1330 // reads.
1331 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1332 if (UseDeferred && !IsReadOnlyPtr)
1333 continue;
1334 // Otherwise, the pointer must be in the PtrAccessSet, either as a
1335 // read or a write.
1336 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1337 S.count(MemAccessInfo(Ptr, false))) &&
1338 "Alias-set pointer not in the access set?");
1339
1340 MemAccessInfo Access(Ptr, IsWrite);
1341 DepCands.insert(Access);
1342
1343 // Memorize read-only pointers for later processing and skip them in
1344 // the first round (they need to be checked after we have seen all
1345 // write pointers). Note: we also mark pointer that are not
1346 // consecutive as "read-only" pointers (so that we check
1347 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1348 if (!UseDeferred && IsReadOnlyPtr) {
1349 // We only use the pointer keys, the types vector values don't
1350 // matter.
1351 DeferredAccesses.insert({Access, {}});
1352 continue;
1353 }
1354
1355 // If this is a write - check other reads and writes for conflicts. If
1356 // this is a read only check other writes for conflicts (but only if
1357 // there is no other write to the ptr - this is an optimization to
1358 // catch "a[i] = a[i] + " without having to do a dependence check).
1359 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1360 CheckDeps.push_back(Access);
1361 IsRTCheckAnalysisNeeded = true;
1362 }
1363
1364 if (IsWrite)
1365 SetHasWrite = true;
1366
1367 // Create sets of pointers connected by a shared alias set and
1368 // underlying object.
1369 typedef SmallVector<const Value *, 16> ValueVector;
1370 ValueVector TempObjects;
1371
1372 UnderlyingObjects[Ptr] = {};
1373 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1374 ::getUnderlyingObjects(Ptr, UOs, LI);
1376 << "Underlying objects for pointer " << *Ptr << "\n");
1377 for (const Value *UnderlyingObj : UOs) {
1378 // nullptr never alias, don't join sets for pointer that have "null"
1379 // in their UnderlyingObjects list.
1380 if (isa<ConstantPointerNull>(UnderlyingObj) &&
1382 TheLoop->getHeader()->getParent(),
1383 UnderlyingObj->getType()->getPointerAddressSpace()))
1384 continue;
1385
1386 UnderlyingObjToAccessMap::iterator Prev =
1387 ObjToLastAccess.find(UnderlyingObj);
1388 if (Prev != ObjToLastAccess.end())
1389 DepCands.unionSets(Access, Prev->second);
1390
1391 ObjToLastAccess[UnderlyingObj] = Access;
1392 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
1393 }
1394 }
1395 }
1396 }
1397 }
1398}
1399
1400/// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1401/// i.e. monotonically increasing/decreasing.
1402static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1403 PredicatedScalarEvolution &PSE, const Loop *L) {
1404
1405 // FIXME: This should probably only return true for NUW.
1407 return true;
1408
1410 return true;
1411
1412 // Scalar evolution does not propagate the non-wrapping flags to values that
1413 // are derived from a non-wrapping induction variable because non-wrapping
1414 // could be flow-sensitive.
1415 //
1416 // Look through the potentially overflowing instruction to try to prove
1417 // non-wrapping for the *specific* value of Ptr.
1418
1419 // The arithmetic implied by an inbounds GEP can't overflow.
1420 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1421 if (!GEP || !GEP->isInBounds())
1422 return false;
1423
1424 // Make sure there is only one non-const index and analyze that.
1425 Value *NonConstIndex = nullptr;
1426 for (Value *Index : GEP->indices())
1427 if (!isa<ConstantInt>(Index)) {
1428 if (NonConstIndex)
1429 return false;
1430 NonConstIndex = Index;
1431 }
1432 if (!NonConstIndex)
1433 // The recurrence is on the pointer, ignore for now.
1434 return false;
1435
1436 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
1437 // AddRec using a NSW operation.
1438 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1439 if (OBO->hasNoSignedWrap() &&
1440 // Assume constant for other the operand so that the AddRec can be
1441 // easily found.
1442 isa<ConstantInt>(OBO->getOperand(1))) {
1443 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1444
1445 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1446 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1447 }
1448
1449 return false;
1450}
1451
1452/// Check whether the access through \p Ptr has a constant stride.
1454 Type *AccessTy, Value *Ptr,
1455 const Loop *Lp,
1456 const DenseMap<Value *, const SCEV *> &StridesMap,
1457 bool Assume, bool ShouldCheckWrap) {
1458 Type *Ty = Ptr->getType();
1459 assert(Ty->isPointerTy() && "Unexpected non-ptr");
1460
1461 if (isa<ScalableVectorType>(AccessTy)) {
1462 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1463 << "\n");
1464 return std::nullopt;
1465 }
1466
1467 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1468
1469 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1470 if (Assume && !AR)
1471 AR = PSE.getAsAddRec(Ptr);
1472
1473 if (!AR) {
1474 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1475 << " SCEV: " << *PtrScev << "\n");
1476 return std::nullopt;
1477 }
1478
1479 // The access function must stride over the innermost loop.
1480 if (Lp != AR->getLoop()) {
1481 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1482 << *Ptr << " SCEV: " << *AR << "\n");
1483 return std::nullopt;
1484 }
1485
1486 // Check the step is constant.
1487 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1488
1489 // Calculate the pointer stride and check if it is constant.
1490 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1491 if (!C) {
1492 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1493 << " SCEV: " << *AR << "\n");
1494 return std::nullopt;
1495 }
1496
1497 auto &DL = Lp->getHeader()->getDataLayout();
1498 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1499 int64_t Size = AllocSize.getFixedValue();
1500 const APInt &APStepVal = C->getAPInt();
1501
1502 // Huge step value - give up.
1503 if (APStepVal.getBitWidth() > 64)
1504 return std::nullopt;
1505
1506 int64_t StepVal = APStepVal.getSExtValue();
1507
1508 // Strided access.
1509 int64_t Stride = StepVal / Size;
1510 int64_t Rem = StepVal % Size;
1511 if (Rem)
1512 return std::nullopt;
1513
1514 if (!ShouldCheckWrap)
1515 return Stride;
1516
1517 // The address calculation must not wrap. Otherwise, a dependence could be
1518 // inverted.
1519 if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
1520 return Stride;
1521
1522 // An inbounds getelementptr that is a AddRec with a unit stride
1523 // cannot wrap per definition. If it did, the result would be poison
1524 // and any memory access dependent on it would be immediate UB
1525 // when executed.
1526 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1527 GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1))
1528 return Stride;
1529
1530 // If the null pointer is undefined, then a access sequence which would
1531 // otherwise access it can be assumed not to unsigned wrap. Note that this
1532 // assumes the object in memory is aligned to the natural alignment.
1533 unsigned AddrSpace = Ty->getPointerAddressSpace();
1534 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
1535 (Stride == 1 || Stride == -1))
1536 return Stride;
1537
1538 if (Assume) {
1540 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1541 << "LAA: Pointer: " << *Ptr << "\n"
1542 << "LAA: SCEV: " << *AR << "\n"
1543 << "LAA: Added an overflow assumption\n");
1544 return Stride;
1545 }
1546 LLVM_DEBUG(
1547 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1548 << *Ptr << " SCEV: " << *AR << "\n");
1549 return std::nullopt;
1550}
1551
1552std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1553 Type *ElemTyB, Value *PtrB,
1554 const DataLayout &DL,
1555 ScalarEvolution &SE, bool StrictCheck,
1556 bool CheckType) {
1557 assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1558
1559 // Make sure that A and B are different pointers.
1560 if (PtrA == PtrB)
1561 return 0;
1562
1563 // Make sure that the element types are the same if required.
1564 if (CheckType && ElemTyA != ElemTyB)
1565 return std::nullopt;
1566
1567 unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1568 unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1569
1570 // Check that the address spaces match.
1571 if (ASA != ASB)
1572 return std::nullopt;
1573 unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1574
1575 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1576 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1577 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1578
1579 int Val;
1580 if (PtrA1 == PtrB1) {
1581 // Retrieve the address space again as pointer stripping now tracks through
1582 // `addrspacecast`.
1583 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1584 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1585 // Check that the address spaces match and that the pointers are valid.
1586 if (ASA != ASB)
1587 return std::nullopt;
1588
1589 IdxWidth = DL.getIndexSizeInBits(ASA);
1590 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1591 OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1592
1593 OffsetB -= OffsetA;
1594 Val = OffsetB.getSExtValue();
1595 } else {
1596 // Otherwise compute the distance with SCEV between the base pointers.
1597 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1598 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1599 const auto *Diff =
1600 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1601 if (!Diff)
1602 return std::nullopt;
1603 Val = Diff->getAPInt().getSExtValue();
1604 }
1605 int Size = DL.getTypeStoreSize(ElemTyA);
1606 int Dist = Val / Size;
1607
1608 // Ensure that the calculated distance matches the type-based one after all
1609 // the bitcasts removal in the provided pointers.
1610 if (!StrictCheck || Dist * Size == Val)
1611 return Dist;
1612 return std::nullopt;
1613}
1614
1616 const DataLayout &DL, ScalarEvolution &SE,
1617 SmallVectorImpl<unsigned> &SortedIndices) {
1619 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1620 "Expected list of pointer operands.");
1621 // Walk over the pointers, and map each of them to an offset relative to
1622 // first pointer in the array.
1623 Value *Ptr0 = VL[0];
1624
1625 using DistOrdPair = std::pair<int64_t, int>;
1626 auto Compare = llvm::less_first();
1627 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1628 Offsets.emplace(0, 0);
1629 bool IsConsecutive = true;
1630 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) {
1631 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1632 /*StrictCheck=*/true);
1633 if (!Diff)
1634 return false;
1635
1636 // Check if the pointer with the same offset is found.
1637 int64_t Offset = *Diff;
1638 auto [It, IsInserted] = Offsets.emplace(Offset, Idx);
1639 if (!IsInserted)
1640 return false;
1641 // Consecutive order if the inserted element is the last one.
1642 IsConsecutive &= std::next(It) == Offsets.end();
1643 }
1644 SortedIndices.clear();
1645 if (!IsConsecutive) {
1646 // Fill SortedIndices array only if it is non-consecutive.
1647 SortedIndices.resize(VL.size());
1648 for (auto [Idx, Off] : enumerate(Offsets))
1649 SortedIndices[Idx] = Off.second;
1650 }
1651 return true;
1652}
1653
1654/// Returns true if the memory operations \p A and \p B are consecutive.
1656 ScalarEvolution &SE, bool CheckType) {
1659 if (!PtrA || !PtrB)
1660 return false;
1661 Type *ElemTyA = getLoadStoreType(A);
1662 Type *ElemTyB = getLoadStoreType(B);
1663 std::optional<int> Diff =
1664 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1665 /*StrictCheck=*/true, CheckType);
1666 return Diff && *Diff == 1;
1667}
1668
1670 visitPointers(SI->getPointerOperand(), *InnermostLoop,
1671 [this, SI](Value *Ptr) {
1672 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1673 InstMap.push_back(SI);
1674 ++AccessIdx;
1675 });
1676}
1677
1679 visitPointers(LI->getPointerOperand(), *InnermostLoop,
1680 [this, LI](Value *Ptr) {
1681 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1682 InstMap.push_back(LI);
1683 ++AccessIdx;
1684 });
1685}
1686
1689 switch (Type) {
1690 case NoDep:
1691 case Forward:
1694
1695 case Unknown:
1698 case Backward:
1700 case IndirectUnsafe:
1702 }
1703 llvm_unreachable("unexpected DepType!");
1704}
1705
1707 switch (Type) {
1708 case NoDep:
1709 case Forward:
1710 case ForwardButPreventsForwarding:
1711 case Unknown:
1712 case IndirectUnsafe:
1713 return false;
1714
1715 case BackwardVectorizable:
1716 case Backward:
1717 case BackwardVectorizableButPreventsForwarding:
1718 return true;
1719 }
1720 llvm_unreachable("unexpected DepType!");
1721}
1722
1724 return isBackward() || Type == Unknown;
1725}
1726
1728 switch (Type) {
1729 case Forward:
1730 case ForwardButPreventsForwarding:
1731 return true;
1732
1733 case NoDep:
1734 case Unknown:
1735 case BackwardVectorizable:
1736 case Backward:
1737 case BackwardVectorizableButPreventsForwarding:
1738 case IndirectUnsafe:
1739 return false;
1740 }
1741 llvm_unreachable("unexpected DepType!");
1742}
1743
1744bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1745 uint64_t TypeByteSize) {
1746 // If loads occur at a distance that is not a multiple of a feasible vector
1747 // factor store-load forwarding does not take place.
1748 // Positive dependences might cause troubles because vectorizing them might
1749 // prevent store-load forwarding making vectorized code run a lot slower.
1750 // a[i] = a[i-3] ^ a[i-8];
1751 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1752 // hence on your typical architecture store-load forwarding does not take
1753 // place. Vectorizing in such cases does not make sense.
1754 // Store-load forwarding distance.
1755
1756 // After this many iterations store-to-load forwarding conflicts should not
1757 // cause any slowdowns.
1758 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1759 // Maximum vector factor.
1760 uint64_t MaxVFWithoutSLForwardIssues = std::min(
1761 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
1762
1763 // Compute the smallest VF at which the store and load would be misaligned.
1764 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1765 VF *= 2) {
1766 // If the number of vector iteration between the store and the load are
1767 // small we could incur conflicts.
1768 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1769 MaxVFWithoutSLForwardIssues = (VF >> 1);
1770 break;
1771 }
1772 }
1773
1774 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1775 LLVM_DEBUG(
1776 dbgs() << "LAA: Distance " << Distance
1777 << " that could cause a store-load forwarding conflict\n");
1778 return true;
1779 }
1780
1781 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1782 MaxVFWithoutSLForwardIssues !=
1783 VectorizerParams::MaxVectorWidth * TypeByteSize)
1784 MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1785 return false;
1786}
1787
1788void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1789 if (Status < S)
1790 Status = S;
1791}
1792
1793/// Given a dependence-distance \p Dist between two
1794/// memory accesses, that have strides in the same direction whose absolute
1795/// value of the maximum stride is given in \p MaxStride, and that have the same
1796/// type size \p TypeByteSize, in a loop whose maximum backedge taken count is
1797/// \p MaxBTC, check if it is possible to prove statically that the dependence
1798/// distance is larger than the range that the accesses will travel through the
1799/// execution of the loop. If so, return true; false otherwise. This is useful
1800/// for example in loops such as the following (PR31098):
1801/// for (i = 0; i < D; ++i) {
1802/// = out[i];
1803/// out[i+D] =
1804/// }
1806 const SCEV &MaxBTC, const SCEV &Dist,
1807 uint64_t MaxStride,
1808 uint64_t TypeByteSize) {
1809
1810 // If we can prove that
1811 // (**) |Dist| > MaxBTC * Step
1812 // where Step is the absolute stride of the memory accesses in bytes,
1813 // then there is no dependence.
1814 //
1815 // Rationale:
1816 // We basically want to check if the absolute distance (|Dist/Step|)
1817 // is >= the loop iteration count (or > MaxBTC).
1818 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1819 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1820 // that the dependence distance is >= VF; This is checked elsewhere.
1821 // But in some cases we can prune dependence distances early, and
1822 // even before selecting the VF, and without a runtime test, by comparing
1823 // the distance against the loop iteration count. Since the vectorized code
1824 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1825 // also guarantees that distance >= VF.
1826 //
1827 const uint64_t ByteStride = MaxStride * TypeByteSize;
1828 const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride);
1829 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step);
1830
1831 const SCEV *CastedDist = &Dist;
1832 const SCEV *CastedProduct = Product;
1833 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1834 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1835
1836 // The dependence distance can be positive/negative, so we sign extend Dist;
1837 // The multiplication of the absolute stride in bytes and the
1838 // backedgeTakenCount is non-negative, so we zero extend Product.
1839 if (DistTypeSizeBits > ProductTypeSizeBits)
1840 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1841 else
1842 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1843
1844 // Is Dist - (MaxBTC * Step) > 0 ?
1845 // (If so, then we have proven (**) because |Dist| >= Dist)
1846 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1847 if (SE.isKnownPositive(Minus))
1848 return true;
1849
1850 // Second try: Is -Dist - (MaxBTC * Step) > 0 ?
1851 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1852 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1853 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1854 return SE.isKnownPositive(Minus);
1855}
1856
1857/// Check the dependence for two accesses with the same stride \p Stride.
1858/// \p Distance is the positive distance and \p TypeByteSize is type size in
1859/// bytes.
1860///
1861/// \returns true if they are independent.
1863 uint64_t TypeByteSize) {
1864 assert(Stride > 1 && "The stride must be greater than 1");
1865 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1866 assert(Distance > 0 && "The distance must be non-zero");
1867
1868 // Skip if the distance is not multiple of type byte size.
1869 if (Distance % TypeByteSize)
1870 return false;
1871
1872 uint64_t ScaledDist = Distance / TypeByteSize;
1873
1874 // No dependence if the scaled distance is not multiple of the stride.
1875 // E.g.
1876 // for (i = 0; i < 1024 ; i += 4)
1877 // A[i+2] = A[i] + 1;
1878 //
1879 // Two accesses in memory (scaled distance is 2, stride is 4):
1880 // | A[0] | | | | A[4] | | | |
1881 // | | | A[2] | | | | A[6] | |
1882 //
1883 // E.g.
1884 // for (i = 0; i < 1024 ; i += 3)
1885 // A[i+4] = A[i] + 1;
1886 //
1887 // Two accesses in memory (scaled distance is 4, stride is 3):
1888 // | A[0] | | | A[3] | | | A[6] | | |
1889 // | | | | | A[4] | | | A[7] | |
1890 return ScaledDist % Stride;
1891}
1892
1893/// Returns true if any of the underlying objects has a loop varying address,
1894/// i.e. may change in \p L.
1895static bool
1897 ScalarEvolution &SE, const Loop *L) {
1898 return any_of(UnderlyingObjects, [&SE, L](const Value *UO) {
1899 return !SE.isLoopInvariant(SE.getSCEV(const_cast<Value *>(UO)), L);
1900 });
1901}
1902
1904 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
1905MemoryDepChecker::getDependenceDistanceStrideAndSize(
1909 &UnderlyingObjects) {
1910 auto &DL = InnermostLoop->getHeader()->getDataLayout();
1911 auto &SE = *PSE.getSE();
1912 auto [APtr, AIsWrite] = A;
1913 auto [BPtr, BIsWrite] = B;
1914
1915 // Two reads are independent.
1916 if (!AIsWrite && !BIsWrite)
1918
1919 Type *ATy = getLoadStoreType(AInst);
1920 Type *BTy = getLoadStoreType(BInst);
1921
1922 // We cannot check pointers in different address spaces.
1923 if (APtr->getType()->getPointerAddressSpace() !=
1924 BPtr->getType()->getPointerAddressSpace())
1926
1927 int64_t StrideAPtr =
1928 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true)
1929 .value_or(0);
1930 int64_t StrideBPtr =
1931 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true)
1932 .value_or(0);
1933
1934 const SCEV *Src = PSE.getSCEV(APtr);
1935 const SCEV *Sink = PSE.getSCEV(BPtr);
1936
1937 // If the induction step is negative we have to invert source and sink of the
1938 // dependence when measuring the distance between them. We should not swap
1939 // AIsWrite with BIsWrite, as their uses expect them in program order.
1940 if (StrideAPtr < 0) {
1941 std::swap(Src, Sink);
1942 std::swap(AInst, BInst);
1943 }
1944
1945 const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1946
1947 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1948 << "(Induction step: " << StrideAPtr << ")\n");
1949 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
1950 << ": " << *Dist << "\n");
1951
1952 // Needs accesses where the addresses of the accessed underlying objects do
1953 // not change within the loop.
1954 if (isLoopVariantIndirectAddress(UnderlyingObjects.find(APtr)->second, SE,
1955 InnermostLoop) ||
1956 isLoopVariantIndirectAddress(UnderlyingObjects.find(BPtr)->second, SE,
1957 InnermostLoop))
1959
1960 // Check if we can prove that Sink only accesses memory after Src's end or
1961 // vice versa. At the moment this is limited to cases where either source or
1962 // sink are loop invariant to avoid compile-time increases. This is not
1963 // required for correctness.
1964 if (SE.isLoopInvariant(Src, InnermostLoop) ||
1965 SE.isLoopInvariant(Sink, InnermostLoop)) {
1966 const auto &[SrcStart, SrcEnd] =
1967 getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE);
1968 const auto &[SinkStart, SinkEnd] =
1969 getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE);
1970
1971 if (!isa<SCEVCouldNotCompute>(SrcStart) &&
1972 !isa<SCEVCouldNotCompute>(SrcEnd) &&
1973 !isa<SCEVCouldNotCompute>(SinkStart) &&
1974 !isa<SCEVCouldNotCompute>(SinkEnd)) {
1975 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart))
1977 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart))
1979 }
1980 }
1981
1982 // Need accesses with constant strides and the same direction. We don't want
1983 // to vectorize "A[B[i]] += ..." and similar code or pointer arithmetic that
1984 // could wrap in the address space.
1985 if (!StrideAPtr || !StrideBPtr || (StrideAPtr > 0 && StrideBPtr < 0) ||
1986 (StrideAPtr < 0 && StrideBPtr > 0)) {
1987 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1989 }
1990
1991 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1992 bool HasSameSize =
1993 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1994 if (!HasSameSize)
1995 TypeByteSize = 0;
1996 return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtr),
1997 std::abs(StrideBPtr), TypeByteSize,
1998 AIsWrite, BIsWrite);
1999}
2000
2001MemoryDepChecker::Dependence::DepType MemoryDepChecker::isDependent(
2002 const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B,
2003 unsigned BIdx,
2005 &UnderlyingObjects) {
2006 assert(AIdx < BIdx && "Must pass arguments in program order");
2007
2008 // Get the dependence distance, stride, type size and what access writes for
2009 // the dependence between A and B.
2010 auto Res = getDependenceDistanceStrideAndSize(
2011 A, InstMap[AIdx], B, InstMap[BIdx], UnderlyingObjects);
2012 if (std::holds_alternative<Dependence::DepType>(Res))
2013 return std::get<Dependence::DepType>(Res);
2014
2015 auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] =
2016 std::get<DepDistanceStrideAndSizeInfo>(Res);
2017 bool HasSameSize = TypeByteSize > 0;
2018
2019 std::optional<uint64_t> CommonStride =
2020 StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt;
2021 if (isa<SCEVCouldNotCompute>(Dist)) {
2022 // TODO: Relax requirement that there is a common stride to retry with
2023 // non-constant distance dependencies.
2024 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2025 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n");
2026 return Dependence::Unknown;
2027 }
2028
2029 ScalarEvolution &SE = *PSE.getSE();
2030 auto &DL = InnermostLoop->getHeader()->getDataLayout();
2031 uint64_t MaxStride = std::max(StrideA, StrideB);
2032
2033 // If the distance between the acecsses is larger than their maximum absolute
2034 // stride multiplied by the symbolic maximum backedge taken count (which is an
2035 // upper bound of the number of iterations), the accesses are independet, i.e.
2036 // they are far enough appart that accesses won't access the same location
2037 // across all loop ierations.
2038 if (HasSameSize && isSafeDependenceDistance(
2040 *Dist, MaxStride, TypeByteSize))
2041 return Dependence::NoDep;
2042
2043 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
2044
2045 // Attempt to prove strided accesses independent.
2046 if (C) {
2047 const APInt &Val = C->getAPInt();
2048 int64_t Distance = Val.getSExtValue();
2049
2050 // If the distance between accesses and their strides are known constants,
2051 // check whether the accesses interlace each other.
2052 if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 &&
2053 HasSameSize &&
2054 areStridedAccessesIndependent(std::abs(Distance), *CommonStride,
2055 TypeByteSize)) {
2056 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2057 return Dependence::NoDep;
2058 }
2059 } else
2060 Dist = SE.applyLoopGuards(Dist, InnermostLoop);
2061
2062 // Negative distances are not plausible dependencies.
2063 if (SE.isKnownNonPositive(Dist)) {
2064 if (SE.isKnownNonNegative(Dist)) {
2065 if (HasSameSize) {
2066 // Write to the same location with the same size.
2067 return Dependence::Forward;
2068 }
2069 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2070 "different type sizes\n");
2071 return Dependence::Unknown;
2072 }
2073
2074 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2075 // Check if the first access writes to a location that is read in a later
2076 // iteration, where the distance between them is not a multiple of a vector
2077 // factor and relatively small.
2078 //
2079 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2080 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2081 // forward dependency will allow vectorization using any width.
2082
2083 if (IsTrueDataDependence && EnableForwardingConflictDetection) {
2084 if (!C) {
2085 // TODO: FoundNonConstantDistanceDependence is used as a necessary
2086 // condition to consider retrying with runtime checks. Historically, we
2087 // did not set it when strides were different but there is no inherent
2088 // reason to.
2089 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2090 return Dependence::Unknown;
2091 }
2092 if (!HasSameSize ||
2093 couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(),
2094 TypeByteSize)) {
2095 LLVM_DEBUG(
2096 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2098 }
2099 }
2100
2101 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2102 return Dependence::Forward;
2103 }
2104
2105 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue();
2106 // Below we only handle strictly positive distances.
2107 if (MinDistance <= 0) {
2108 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2109 return Dependence::Unknown;
2110 }
2111
2112 if (!isa<SCEVConstant>(Dist)) {
2113 // Previously this case would be treated as Unknown, possibly setting
2114 // FoundNonConstantDistanceDependence to force re-trying with runtime
2115 // checks. Until the TODO below is addressed, set it here to preserve
2116 // original behavior w.r.t. re-trying with runtime checks.
2117 // TODO: FoundNonConstantDistanceDependence is used as a necessary
2118 // condition to consider retrying with runtime checks. Historically, we
2119 // did not set it when strides were different but there is no inherent
2120 // reason to.
2121 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2122 }
2123
2124 if (!HasSameSize) {
2125 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2126 "different type sizes\n");
2127 return Dependence::Unknown;
2128 }
2129
2130 if (!CommonStride)
2131 return Dependence::Unknown;
2132
2133 // Bail out early if passed-in parameters make vectorization not feasible.
2134 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2136 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2138 // The minimum number of iterations for a vectorized/unrolled version.
2139 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2140
2141 // It's not vectorizable if the distance is smaller than the minimum distance
2142 // needed for a vectroized/unrolled version. Vectorizing one iteration in
2143 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2144 // TypeByteSize (No need to plus the last gap distance).
2145 //
2146 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2147 // foo(int *A) {
2148 // int *B = (int *)((char *)A + 14);
2149 // for (i = 0 ; i < 1024 ; i += 2)
2150 // B[i] = A[i] + 1;
2151 // }
2152 //
2153 // Two accesses in memory (stride is 2):
2154 // | A[0] | | A[2] | | A[4] | | A[6] | |
2155 // | B[0] | | B[2] | | B[4] |
2156 //
2157 // MinDistance needs for vectorizing iterations except the last iteration:
2158 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2159 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2160 //
2161 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2162 // 12, which is less than distance.
2163 //
2164 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2165 // the minimum distance needed is 28, which is greater than distance. It is
2166 // not safe to do vectorization.
2167
2168 // We know that Dist is positive, but it may not be constant. Use the signed
2169 // minimum for computations below, as this ensures we compute the closest
2170 // possible dependence distance.
2171 uint64_t MinDistanceNeeded =
2172 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize;
2173 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) {
2174 if (!isa<SCEVConstant>(Dist)) {
2175 // For non-constant distances, we checked the lower bound of the
2176 // dependence distance and the distance may be larger at runtime (and safe
2177 // for vectorization). Classify it as Unknown, so we re-try with runtime
2178 // checks.
2179 return Dependence::Unknown;
2180 }
2181 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2182 << MinDistance << '\n');
2183 return Dependence::Backward;
2184 }
2185
2186 // Unsafe if the minimum distance needed is greater than smallest dependence
2187 // distance distance.
2188 if (MinDistanceNeeded > MinDepDistBytes) {
2189 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2190 << MinDistanceNeeded << " size in bytes\n");
2191 return Dependence::Backward;
2192 }
2193
2194 // Positive distance bigger than max vectorization factor.
2195 // FIXME: Should use max factor instead of max distance in bytes, which could
2196 // not handle different types.
2197 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2198 // void foo (int *A, char *B) {
2199 // for (unsigned i = 0; i < 1024; i++) {
2200 // A[i+2] = A[i] + 1;
2201 // B[i+2] = B[i] + 1;
2202 // }
2203 // }
2204 //
2205 // This case is currently unsafe according to the max safe distance. If we
2206 // analyze the two accesses on array B, the max safe dependence distance
2207 // is 2. Then we analyze the accesses on array A, the minimum distance needed
2208 // is 8, which is less than 2 and forbidden vectorization, But actually
2209 // both A and B could be vectorized by 2 iterations.
2210 MinDepDistBytes =
2211 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2212
2213 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2214 uint64_t MinDepDistBytesOld = MinDepDistBytes;
2215 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2216 isa<SCEVConstant>(Dist) &&
2217 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) {
2218 // Sanity check that we didn't update MinDepDistBytes when calling
2219 // couldPreventStoreLoadForward
2220 assert(MinDepDistBytes == MinDepDistBytesOld &&
2221 "An update to MinDepDistBytes requires an update to "
2222 "MaxSafeVectorWidthInBits");
2223 (void)MinDepDistBytesOld;
2225 }
2226
2227 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2228 // since there is a backwards dependency.
2229 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride);
2230 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2231 << " with max VF = " << MaxVF << '\n');
2232
2233 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2234 if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) {
2235 // For non-constant distances, we checked the lower bound of the dependence
2236 // distance and the distance may be larger at runtime (and safe for
2237 // vectorization). Classify it as Unknown, so we re-try with runtime checks.
2238 return Dependence::Unknown;
2239 }
2240
2241 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2243}
2244
2246 DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
2248 &UnderlyingObjects) {
2249
2250 MinDepDistBytes = -1;
2252 for (MemAccessInfo CurAccess : CheckDeps) {
2253 if (Visited.count(CurAccess))
2254 continue;
2255
2256 // Get the relevant memory access set.
2258 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2259
2260 // Check accesses within this set.
2262 AccessSets.member_begin(I);
2264 AccessSets.member_end();
2265
2266 // Check every access pair.
2267 while (AI != AE) {
2268 Visited.insert(*AI);
2269 bool AIIsWrite = AI->getInt();
2270 // Check loads only against next equivalent class, but stores also against
2271 // other stores in the same equivalence class - to the same address.
2273 (AIIsWrite ? AI : std::next(AI));
2274 while (OI != AE) {
2275 // Check every accessing instruction pair in program order.
2276 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2277 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2278 // Scan all accesses of another equivalence class, but only the next
2279 // accesses of the same equivalent class.
2280 for (std::vector<unsigned>::iterator
2281 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2282 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2283 I2 != I2E; ++I2) {
2284 auto A = std::make_pair(&*AI, *I1);
2285 auto B = std::make_pair(&*OI, *I2);
2286
2287 assert(*I1 != *I2);
2288 if (*I1 > *I2)
2289 std::swap(A, B);
2290
2291 Dependence::DepType Type = isDependent(*A.first, A.second, *B.first,
2292 B.second, UnderlyingObjects);
2294
2295 // Gather dependences unless we accumulated MaxDependences
2296 // dependences. In that case return as soon as we find the first
2297 // unsafe dependence. This puts a limit on this quadratic
2298 // algorithm.
2299 if (RecordDependences) {
2300 if (Type != Dependence::NoDep)
2301 Dependences.push_back(Dependence(A.second, B.second, Type));
2302
2303 if (Dependences.size() >= MaxDependences) {
2304 RecordDependences = false;
2305 Dependences.clear();
2307 << "Too many dependences, stopped recording\n");
2308 }
2309 }
2310 if (!RecordDependences && !isSafeForVectorization())
2311 return false;
2312 }
2313 ++OI;
2314 }
2315 ++AI;
2316 }
2317 }
2318
2319 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2320 return isSafeForVectorization();
2321}
2322
2325 MemAccessInfo Access(Ptr, IsWrite);
2326 auto &IndexVector = Accesses.find(Access)->second;
2327
2329 transform(IndexVector,
2330 std::back_inserter(Insts),
2331 [&](unsigned Idx) { return this->InstMap[Idx]; });
2332 return Insts;
2333}
2334
2336 "NoDep",
2337 "Unknown",
2338 "IndirectUnsafe",
2339 "Forward",
2340 "ForwardButPreventsForwarding",
2341 "Backward",
2342 "BackwardVectorizable",
2343 "BackwardVectorizableButPreventsForwarding"};
2344
2346 raw_ostream &OS, unsigned Depth,
2347 const SmallVectorImpl<Instruction *> &Instrs) const {
2348 OS.indent(Depth) << DepName[Type] << ":\n";
2349 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2350 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2351}
2352
2353bool LoopAccessInfo::canAnalyzeLoop() {
2354 // We need to have a loop header.
2355 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2356 << TheLoop->getHeader()->getParent()->getName() << "' from "
2357 << TheLoop->getLocStr() << "\n");
2358
2359 // We can only analyze innermost loops.
2360 if (!TheLoop->isInnermost()) {
2361 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2362 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2363 return false;
2364 }
2365
2366 // We must have a single backedge.
2367 if (TheLoop->getNumBackEdges() != 1) {
2368 LLVM_DEBUG(
2369 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2370 recordAnalysis("CFGNotUnderstood")
2371 << "loop control flow is not understood by analyzer";
2372 return false;
2373 }
2374
2375 // ScalarEvolution needs to be able to find the symbolic max backedge taken
2376 // count, which is an upper bound on the number of loop iterations. The loop
2377 // may execute fewer iterations, if it exits via an uncountable exit.
2378 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount();
2379 if (isa<SCEVCouldNotCompute>(ExitCount)) {
2380 recordAnalysis("CantComputeNumberOfIterations")
2381 << "could not determine number of loop iterations";
2382 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2383 return false;
2384 }
2385
2386 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2387 << TheLoop->getHeader()->getName() << "\n");
2388 return true;
2389}
2390
2391bool LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
2392 const TargetLibraryInfo *TLI,
2393 DominatorTree *DT) {
2394 // Holds the Load and Store instructions.
2397 SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2398
2399 // Holds all the different accesses in the loop.
2400 unsigned NumReads = 0;
2401 unsigned NumReadWrites = 0;
2402
2403 bool HasComplexMemInst = false;
2404
2405 // A runtime check is only legal to insert if there are no convergent calls.
2406 HasConvergentOp = false;
2407
2408 PtrRtChecking->Pointers.clear();
2409 PtrRtChecking->Need = false;
2410
2411 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2412
2413 const bool EnableMemAccessVersioningOfLoop =
2415 !TheLoop->getHeader()->getParent()->hasOptSize();
2416
2417 // Traverse blocks in fixed RPOT order, regardless of their storage in the
2418 // loop info, as it may be arbitrary.
2419 LoopBlocksRPO RPOT(TheLoop);
2420 RPOT.perform(LI);
2421 for (BasicBlock *BB : RPOT) {
2422 // Scan the BB and collect legal loads and stores. Also detect any
2423 // convergent instructions.
2424 for (Instruction &I : *BB) {
2425 if (auto *Call = dyn_cast<CallBase>(&I)) {
2426 if (Call->isConvergent())
2427 HasConvergentOp = true;
2428 }
2429
2430 // With both a non-vectorizable memory instruction and a convergent
2431 // operation, found in this loop, no reason to continue the search.
2432 if (HasComplexMemInst && HasConvergentOp)
2433 return false;
2434
2435 // Avoid hitting recordAnalysis multiple times.
2436 if (HasComplexMemInst)
2437 continue;
2438
2439 // Record alias scopes defined inside the loop.
2440 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2441 for (Metadata *Op : Decl->getScopeList()->operands())
2442 LoopAliasScopes.insert(cast<MDNode>(Op));
2443
2444 // Many math library functions read the rounding mode. We will only
2445 // vectorize a loop if it contains known function calls that don't set
2446 // the flag. Therefore, it is safe to ignore this read from memory.
2447 auto *Call = dyn_cast<CallInst>(&I);
2448 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2449 continue;
2450
2451 // If this is a load, save it. If this instruction can read from memory
2452 // but is not a load, then we quit. Notice that we don't handle function
2453 // calls that read or write.
2454 if (I.mayReadFromMemory()) {
2455 // If the function has an explicit vectorized counterpart, we can safely
2456 // assume that it can be vectorized.
2457 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2458 !VFDatabase::getMappings(*Call).empty())
2459 continue;
2460
2461 auto *Ld = dyn_cast<LoadInst>(&I);
2462 if (!Ld) {
2463 recordAnalysis("CantVectorizeInstruction", Ld)
2464 << "instruction cannot be vectorized";
2465 HasComplexMemInst = true;
2466 continue;
2467 }
2468 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2469 recordAnalysis("NonSimpleLoad", Ld)
2470 << "read with atomic ordering or volatile read";
2471 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2472 HasComplexMemInst = true;
2473 continue;
2474 }
2475 NumLoads++;
2476 Loads.push_back(Ld);
2477 DepChecker->addAccess(Ld);
2478 if (EnableMemAccessVersioningOfLoop)
2479 collectStridedAccess(Ld);
2480 continue;
2481 }
2482
2483 // Save 'store' instructions. Abort if other instructions write to memory.
2484 if (I.mayWriteToMemory()) {
2485 auto *St = dyn_cast<StoreInst>(&I);
2486 if (!St) {
2487 recordAnalysis("CantVectorizeInstruction", St)
2488 << "instruction cannot be vectorized";
2489 HasComplexMemInst = true;
2490 continue;
2491 }
2492 if (!St->isSimple() && !IsAnnotatedParallel) {
2493 recordAnalysis("NonSimpleStore", St)
2494 << "write with atomic ordering or volatile write";
2495 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2496 HasComplexMemInst = true;
2497 continue;
2498 }
2499 NumStores++;
2500 Stores.push_back(St);
2501 DepChecker->addAccess(St);
2502 if (EnableMemAccessVersioningOfLoop)
2503 collectStridedAccess(St);
2504 }
2505 } // Next instr.
2506 } // Next block.
2507
2508 if (HasComplexMemInst)
2509 return false;
2510
2511 // Now we have two lists that hold the loads and the stores.
2512 // Next, we find the pointers that they use.
2513
2514 // Check if we see any stores. If there are no stores, then we don't
2515 // care if the pointers are *restrict*.
2516 if (!Stores.size()) {
2517 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2518 return true;
2519 }
2520
2521 MemoryDepChecker::DepCandidates DependentAccesses;
2522 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2523 LoopAliasScopes);
2524
2525 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2526 // multiple times on the same object. If the ptr is accessed twice, once
2527 // for read and once for write, it will only appear once (on the write
2528 // list). This is okay, since we are going to check for conflicts between
2529 // writes and between reads and writes, but not between reads and reads.
2531
2532 // Record uniform store addresses to identify if we have multiple stores
2533 // to the same address.
2534 SmallPtrSet<Value *, 16> UniformStores;
2535
2536 for (StoreInst *ST : Stores) {
2537 Value *Ptr = ST->getPointerOperand();
2538
2539 if (isInvariant(Ptr)) {
2540 // Record store instructions to loop invariant addresses
2541 StoresToInvariantAddresses.push_back(ST);
2542 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2543 !UniformStores.insert(Ptr).second;
2544 }
2545
2546 // If we did *not* see this pointer before, insert it to the read-write
2547 // list. At this phase it is only a 'write' list.
2548 Type *AccessTy = getLoadStoreType(ST);
2549 if (Seen.insert({Ptr, AccessTy}).second) {
2550 ++NumReadWrites;
2551
2553 // The TBAA metadata could have a control dependency on the predication
2554 // condition, so we cannot rely on it when determining whether or not we
2555 // need runtime pointer checks.
2556 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2557 Loc.AATags.TBAA = nullptr;
2558
2559 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2560 [&Accesses, AccessTy, Loc](Value *Ptr) {
2561 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2562 Accesses.addStore(NewLoc, AccessTy);
2563 });
2564 }
2565 }
2566
2567 if (IsAnnotatedParallel) {
2568 LLVM_DEBUG(
2569 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2570 << "checks.\n");
2571 return true;
2572 }
2573
2574 for (LoadInst *LD : Loads) {
2575 Value *Ptr = LD->getPointerOperand();
2576 // If we did *not* see this pointer before, insert it to the
2577 // read list. If we *did* see it before, then it is already in
2578 // the read-write list. This allows us to vectorize expressions
2579 // such as A[i] += x; Because the address of A[i] is a read-write
2580 // pointer. This only works if the index of A[i] is consecutive.
2581 // If the address of i is unknown (for example A[B[i]]) then we may
2582 // read a few words, modify, and write a few words, and some of the
2583 // words may be written to the same address.
2584 bool IsReadOnlyPtr = false;
2585 Type *AccessTy = getLoadStoreType(LD);
2586 if (Seen.insert({Ptr, AccessTy}).second ||
2587 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2588 ++NumReads;
2589 IsReadOnlyPtr = true;
2590 }
2591
2592 // See if there is an unsafe dependency between a load to a uniform address and
2593 // store to the same uniform address.
2594 if (UniformStores.count(Ptr)) {
2595 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2596 "load and uniform store to the same address!\n");
2597 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true;
2598 }
2599
2601 // The TBAA metadata could have a control dependency on the predication
2602 // condition, so we cannot rely on it when determining whether or not we
2603 // need runtime pointer checks.
2604 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2605 Loc.AATags.TBAA = nullptr;
2606
2607 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2608 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2609 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2610 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2611 });
2612 }
2613
2614 // If we write (or read-write) to a single destination and there are no
2615 // other reads in this loop then is it safe to vectorize.
2616 if (NumReadWrites == 1 && NumReads == 0) {
2617 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2618 return true;
2619 }
2620
2621 // Build dependence sets and check whether we need a runtime pointer bounds
2622 // check.
2623 Accesses.buildDependenceSets();
2624
2625 // Find pointers with computable bounds. We are going to use this information
2626 // to place a runtime bound check.
2627 Value *UncomputablePtr = nullptr;
2628 bool CanDoRTIfNeeded =
2629 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2630 SymbolicStrides, UncomputablePtr, false);
2631 if (!CanDoRTIfNeeded) {
2632 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2633 recordAnalysis("CantIdentifyArrayBounds", I)
2634 << "cannot identify array bounds";
2635 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2636 << "the array bounds.\n");
2637 return false;
2638 }
2639
2640 LLVM_DEBUG(
2641 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2642
2643 bool DepsAreSafe = true;
2644 if (Accesses.isDependencyCheckNeeded()) {
2645 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2646 DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses,
2647 Accesses.getDependenciesToCheck(),
2648 Accesses.getUnderlyingObjects());
2649
2650 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) {
2651 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2652
2653 // Clear the dependency checks. We assume they are not needed.
2654 Accesses.resetDepChecks(*DepChecker);
2655
2656 PtrRtChecking->reset();
2657 PtrRtChecking->Need = true;
2658
2659 auto *SE = PSE->getSE();
2660 UncomputablePtr = nullptr;
2661 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2662 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2663
2664 // Check that we found the bounds for the pointer.
2665 if (!CanDoRTIfNeeded) {
2666 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2667 recordAnalysis("CantCheckMemDepsAtRunTime", I)
2668 << "cannot check memory dependencies at runtime";
2669 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2670 return false;
2671 }
2672 DepsAreSafe = true;
2673 }
2674 }
2675
2676 if (HasConvergentOp) {
2677 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2678 << "cannot add control dependency to convergent operation";
2679 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2680 "would be needed with a convergent operation\n");
2681 return false;
2682 }
2683
2684 if (DepsAreSafe) {
2685 LLVM_DEBUG(
2686 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2687 << (PtrRtChecking->Need ? "" : " don't")
2688 << " need runtime memory checks.\n");
2689 return true;
2690 }
2691
2692 emitUnsafeDependenceRemark();
2693 return false;
2694}
2695
2696void LoopAccessInfo::emitUnsafeDependenceRemark() {
2697 const auto *Deps = getDepChecker().getDependences();
2698 if (!Deps)
2699 return;
2700 const auto *Found =
2701 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2704 });
2705 if (Found == Deps->end())
2706 return;
2707 MemoryDepChecker::Dependence Dep = *Found;
2708
2709 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2710
2711 // Emit remark for first unsafe dependence
2712 bool HasForcedDistribution = false;
2713 std::optional<const MDOperand *> Value =
2714 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2715 if (Value) {
2716 const MDOperand *Op = *Value;
2717 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2718 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2719 }
2720
2721 const std::string Info =
2722 HasForcedDistribution
2723 ? "unsafe dependent memory operations in loop."
2724 : "unsafe dependent memory operations in loop. Use "
2725 "#pragma clang loop distribute(enable) to allow loop distribution "
2726 "to attempt to isolate the offending operations into a separate "
2727 "loop";
2729 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info;
2730
2731 switch (Dep.Type) {
2735 llvm_unreachable("Unexpected dependence");
2737 R << "\nBackward loop carried data dependence.";
2738 break;
2740 R << "\nForward loop carried data dependence that prevents "
2741 "store-to-load forwarding.";
2742 break;
2744 R << "\nBackward loop carried data dependence that prevents "
2745 "store-to-load forwarding.";
2746 break;
2748 R << "\nUnsafe indirect dependence.";
2749 break;
2751 R << "\nUnknown data dependence.";
2752 break;
2753 }
2754
2755 if (Instruction *I = Dep.getSource(getDepChecker())) {
2756 DebugLoc SourceLoc = I->getDebugLoc();
2757 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2758 SourceLoc = DD->getDebugLoc();
2759 if (SourceLoc)
2760 R << " Memory location is the same as accessed at "
2761 << ore::NV("Location", SourceLoc);
2762 }
2763}
2764
2766 DominatorTree *DT) {
2767 assert(TheLoop->contains(BB) && "Unknown block used");
2768
2769 // Blocks that do not dominate the latch need predication.
2770 BasicBlock* Latch = TheLoop->getLoopLatch();
2771 return !DT->dominates(BB, Latch);
2772}
2773
2774OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2775 Instruction *I) {
2776 assert(!Report && "Multiple reports generated");
2777
2778 Value *CodeRegion = TheLoop->getHeader();
2779 DebugLoc DL = TheLoop->getStartLoc();
2780
2781 if (I) {
2782 CodeRegion = I->getParent();
2783 // If there is no debug location attached to the instruction, revert back to
2784 // using the loop's.
2785 if (I->getDebugLoc())
2786 DL = I->getDebugLoc();
2787 }
2788
2789 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2790 CodeRegion);
2791 return *Report;
2792}
2793
2795 auto *SE = PSE->getSE();
2796 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2797 // trivially loop-invariant FP values to be considered invariant.
2798 if (!SE->isSCEVable(V->getType()))
2799 return false;
2800 const SCEV *S = SE->getSCEV(V);
2801 return SE->isLoopInvariant(S, TheLoop);
2802}
2803
2804/// Find the operand of the GEP that should be checked for consecutive
2805/// stores. This ignores trailing indices that have no effect on the final
2806/// pointer.
2807static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
2808 const DataLayout &DL = Gep->getDataLayout();
2809 unsigned LastOperand = Gep->getNumOperands() - 1;
2810 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
2811
2812 // Walk backwards and try to peel off zeros.
2813 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
2814 // Find the type we're currently indexing into.
2815 gep_type_iterator GEPTI = gep_type_begin(Gep);
2816 std::advance(GEPTI, LastOperand - 2);
2817
2818 // If it's a type with the same allocation size as the result of the GEP we
2819 // can peel off the zero index.
2820 TypeSize ElemSize = GEPTI.isStruct()
2821 ? DL.getTypeAllocSize(GEPTI.getIndexedType())
2823 if (ElemSize != GEPAllocSize)
2824 break;
2825 --LastOperand;
2826 }
2827
2828 return LastOperand;
2829}
2830
2831/// If the argument is a GEP, then returns the operand identified by
2832/// getGEPInductionOperand. However, if there is some other non-loop-invariant
2833/// operand, it returns that instead.
2835 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2836 if (!GEP)
2837 return Ptr;
2838
2839 unsigned InductionOperand = getGEPInductionOperand(GEP);
2840
2841 // Check that all of the gep indices are uniform except for our induction
2842 // operand.
2843 for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I)
2844 if (I != InductionOperand &&
2845 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp))
2846 return Ptr;
2847 return GEP->getOperand(InductionOperand);
2848}
2849
2850/// Get the stride of a pointer access in a loop. Looks for symbolic
2851/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2853 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2854 if (!PtrTy || PtrTy->isAggregateType())
2855 return nullptr;
2856
2857 // Try to remove a gep instruction to make the pointer (actually index at this
2858 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2859 // pointer, otherwise, we are analyzing the index.
2860 Value *OrigPtr = Ptr;
2861
2862 // The size of the pointer access.
2863 int64_t PtrAccessSize = 1;
2864
2865 Ptr = stripGetElementPtr(Ptr, SE, Lp);
2866 const SCEV *V = SE->getSCEV(Ptr);
2867
2868 if (Ptr != OrigPtr)
2869 // Strip off casts.
2870 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
2871 V = C->getOperand();
2872
2873 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
2874 if (!S)
2875 return nullptr;
2876
2877 // If the pointer is invariant then there is no stride and it makes no
2878 // sense to add it here.
2879 if (Lp != S->getLoop())
2880 return nullptr;
2881
2882 V = S->getStepRecurrence(*SE);
2883 if (!V)
2884 return nullptr;
2885
2886 // Strip off the size of access multiplication if we are still analyzing the
2887 // pointer.
2888 if (OrigPtr == Ptr) {
2889 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
2890 if (M->getOperand(0)->getSCEVType() != scConstant)
2891 return nullptr;
2892
2893 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
2894
2895 // Huge step value - give up.
2896 if (APStepVal.getBitWidth() > 64)
2897 return nullptr;
2898
2899 int64_t StepVal = APStepVal.getSExtValue();
2900 if (PtrAccessSize != StepVal)
2901 return nullptr;
2902 V = M->getOperand(1);
2903 }
2904 }
2905
2906 // Note that the restriction after this loop invariant check are only
2907 // profitability restrictions.
2908 if (!SE->isLoopInvariant(V, Lp))
2909 return nullptr;
2910
2911 // Look for the loop invariant symbolic value.
2912 if (isa<SCEVUnknown>(V))
2913 return V;
2914
2915 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2916 if (isa<SCEVUnknown>(C->getOperand()))
2917 return V;
2918
2919 return nullptr;
2920}
2921
2922void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2923 Value *Ptr = getLoadStorePointerOperand(MemAccess);
2924 if (!Ptr)
2925 return;
2926
2927 // Note: getStrideFromPointer is a *profitability* heuristic. We
2928 // could broaden the scope of values returned here - to anything
2929 // which happens to be loop invariant and contributes to the
2930 // computation of an interesting IV - but we chose not to as we
2931 // don't have a cost model here, and broadening the scope exposes
2932 // far too many unprofitable cases.
2933 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2934 if (!StrideExpr)
2935 return;
2936
2937 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2938 "versioning:");
2939 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
2940
2941 if (!SpeculateUnitStride) {
2942 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n");
2943 return;
2944 }
2945
2946 // Avoid adding the "Stride == 1" predicate when we know that
2947 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2948 // or zero iteration loop, as Trip-Count <= Stride == 1.
2949 //
2950 // TODO: We are currently not making a very informed decision on when it is
2951 // beneficial to apply stride versioning. It might make more sense that the
2952 // users of this analysis (such as the vectorizer) will trigger it, based on
2953 // their specific cost considerations; For example, in cases where stride
2954 // versioning does not help resolving memory accesses/dependences, the
2955 // vectorizer should evaluate the cost of the runtime test, and the benefit
2956 // of various possible stride specializations, considering the alternatives
2957 // of using gather/scatters (if available).
2958
2959 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
2960
2961 // Match the types so we can compare the stride and the MaxBTC.
2962 // The Stride can be positive/negative, so we sign extend Stride;
2963 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
2964 const DataLayout &DL = TheLoop->getHeader()->getDataLayout();
2965 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2966 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType());
2967 const SCEV *CastedStride = StrideExpr;
2968 const SCEV *CastedBECount = MaxBTC;
2969 ScalarEvolution *SE = PSE->getSE();
2970 if (BETypeSizeBits >= StrideTypeSizeBits)
2971 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType());
2972 else
2973 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType());
2974 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2975 // Since TripCount == BackEdgeTakenCount + 1, checking:
2976 // "Stride >= TripCount" is equivalent to checking:
2977 // Stride - MaxBTC> 0
2978 if (SE->isKnownPositive(StrideMinusBETaken)) {
2979 LLVM_DEBUG(
2980 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2981 "Stride==1 predicate will imply that the loop executes "
2982 "at most once.\n");
2983 return;
2984 }
2985 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2986
2987 // Strip back off the integer cast, and check that our result is a
2988 // SCEVUnknown as we expect.
2989 const SCEV *StrideBase = StrideExpr;
2990 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
2991 StrideBase = C->getOperand();
2992 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
2993}
2994
2996 const TargetTransformInfo *TTI,
2997 const TargetLibraryInfo *TLI, AAResults *AA,
2998 DominatorTree *DT, LoopInfo *LI)
2999 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
3000 PtrRtChecking(nullptr), TheLoop(L) {
3001 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3002 if (TTI) {
3003 TypeSize FixedWidth =
3005 if (FixedWidth.isNonZero()) {
3006 // Scale the vector width by 2 as rough estimate to also consider
3007 // interleaving.
3008 MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2;
3009 }
3010
3011 TypeSize ScalableWidth =
3013 if (ScalableWidth.isNonZero())
3014 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3015 }
3016 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
3017 MaxTargetVectorWidthInBits);
3018 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
3019 if (canAnalyzeLoop())
3020 CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3021}
3022
3024 if (CanVecMem) {
3025 OS.indent(Depth) << "Memory dependences are safe";
3026 const MemoryDepChecker &DC = getDepChecker();
3027 if (!DC.isSafeForAnyVectorWidth())
3028 OS << " with a maximum safe vector width of "
3029 << DC.getMaxSafeVectorWidthInBits() << " bits";
3030 if (PtrRtChecking->Need)
3031 OS << " with run-time checks";
3032 OS << "\n";
3033 }
3034
3035 if (HasConvergentOp)
3036 OS.indent(Depth) << "Has convergent operation in loop\n";
3037
3038 if (Report)
3039 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
3040
3041 if (auto *Dependences = DepChecker->getDependences()) {
3042 OS.indent(Depth) << "Dependences:\n";
3043 for (const auto &Dep : *Dependences) {
3044 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
3045 OS << "\n";
3046 }
3047 } else
3048 OS.indent(Depth) << "Too many dependences, not recorded\n";
3049
3050 // List the pair of accesses need run-time checks to prove independence.
3051 PtrRtChecking->print(OS, Depth);
3052 OS << "\n";
3053
3054 OS.indent(Depth)
3055 << "Non vectorizable stores to invariant address were "
3056 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3057 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3058 ? ""
3059 : "not ")
3060 << "found in loop.\n";
3061
3062 OS.indent(Depth) << "SCEV assumptions:\n";
3063 PSE->getPredicate().print(OS, Depth);
3064
3065 OS << "\n";
3066
3067 OS.indent(Depth) << "Expressions re-written:\n";
3068 PSE->print(OS, Depth);
3069}
3070
3072 auto [It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr});
3073
3074 if (Inserted)
3075 It->second =
3076 std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI);
3077
3078 return *It->second;
3079}
3080
3082 Function &F, const PreservedAnalyses &PA,
3084 // Check whether our analysis is preserved.
3085 auto PAC = PA.getChecker<LoopAccessAnalysis>();
3086 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3087 // If not, give up now.
3088 return true;
3089
3090 // Check whether the analyses we depend on became invalid for any reason.
3091 // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3092 // invalid.
3093 return Inv.invalidate<AAManager>(F, PA) ||
3095 Inv.invalidate<LoopAnalysis>(F, PA) ||
3097}
3098
3102 auto &AA = FAM.getResult<AAManager>(F);
3103 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3104 auto &LI = FAM.getResult<LoopAnalysis>(F);
3106 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
3107 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI);
3108}
3109
3110AnalysisKey LoopAccessAnalysis::Key;
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements a class to represent arbitrary precision integral constant values and operations...
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
#define DEBUG_TYPE
Hexagon Common GEP
#define _
IRTranslator LLVM IR MI
static cl::opt< unsigned > MaxDependences("max-dependences", cl::Hidden, cl::desc("Maximum number of dependences collected by " "loop-access analysis (default = 100)"), cl::init(100))
We collect dependences up to this threshold.
static cl::opt< bool > EnableForwardingConflictDetection("store-to-load-forwarding-conflict-detection", cl::Hidden, cl::desc("Enable conflict detection in loop-access analysis"), cl::init(true))
Enable store-to-load forwarding conflict detection.
static void findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, SmallVectorImpl< PointerIntPair< const SCEV *, 1, bool > > &ScevList, unsigned Depth)
static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, const SCEV *PtrScev, Loop *L, bool Assume)
Check whether a pointer can participate in a runtime bounds check.
static cl::opt< unsigned > MemoryCheckMergeThreshold("memory-check-merge-threshold", cl::Hidden, cl::desc("Maximum number of comparisons done when trying to merge " "runtime memory checks. (default = 100)"), cl::init(100))
The maximum iterations used to merge memory checks.
static bool isNoWrap(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &Strides, Value *Ptr, Type *AccessTy, Loop *L)
Check whether a pointer address cannot wrap.
static const SCEV * getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
Get the stride of a pointer access in a loop.
static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep)
Find the operand of the GEP that should be checked for consecutive stores.
static cl::opt< unsigned, true > VectorizationInterleave("force-vector-interleave", cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect."), cl::location(VectorizerParams::VectorizationInterleave))
static bool isLoopVariantIndirectAddress(ArrayRef< const Value * > UnderlyingObjects, ScalarEvolution &SE, const Loop *L)
Returns true if any of the underlying objects has a loop varying address, i.e.
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, const SCEV &MaxBTC, const SCEV &Dist, uint64_t MaxStride, uint64_t TypeByteSize)
Given a dependence-distance Dist between two memory accesses, that have strides in the same direction...
static cl::opt< unsigned, true > RuntimeMemoryCheckThreshold("runtime-memory-check-threshold", cl::Hidden, cl::desc("When performing memory disambiguation checks at runtime do not " "generate more than this number of comparisons (default = 8)."), cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8))
static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, function_ref< void(Value *)> AddPointer)
static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, PredicatedScalarEvolution &PSE, const Loop *L)
Return true if an AddRec pointer Ptr is unsigned non-wrapping, i.e.
static std::pair< const SCEV *, const SCEV * > getStartAndEndForAccess(const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, PredicatedScalarEvolution &PSE)
Calculate Start and End points of memory access.
static Value * stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
If the argument is a GEP, then returns the operand identified by getGEPInductionOperand.
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, uint64_t TypeByteSize)
Check the dependence for two accesses with the same stride Stride.
static const SCEV * getMinFromExprs(const SCEV *I, const SCEV *J, ScalarEvolution *SE)
Compare I and J and return the minimum.
static cl::opt< unsigned > MaxForkedSCEVDepth("max-forked-scev-depth", cl::Hidden, cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), cl::init(5))
static cl::opt< bool > SpeculateUnitStride("laa-speculate-unit-stride", cl::Hidden, cl::desc("Speculate that non-constant strides are unit in LAA"), cl::init(true))
static SmallVector< PointerIntPair< const SCEV *, 1, bool > > findForkedPointer(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap, Value *Ptr, const Loop *L)
static cl::opt< bool > EnableMemAccessVersioning("enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symbolic stride memory access versioning"))
This enables versioning on the strides of symbolically striding memory accesses in code like the foll...
This header provides classes for managing per-loop analyses.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file provides utility analysis objects describing memory locations.
uint64_t High
#define P(N)
FunctionAnalysisManager FAM
This header defines various interfaces for pass management in LLVM.
This file defines the PointerIntPair class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI, const DataLayout &DL)
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
This pass exposes codegen information to IR-level passes.
static const X86InstrFMA3Group Groups[]
A manager for alias analyses.
Class for arbitrary precision integers.
Definition: APInt.h:77
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1447
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition: APInt.cpp:1010
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1521
This templated class represents "all analyses that operate over <a particular IR unit>" (e....
Definition: Analysis.h:49
API to communicate dependencies between analyses during invalidation.
Definition: PassManager.h:292
bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA)
Trigger the invalidation of some other analysis pass if not already handled and return whether it was...
Definition: PassManager.h:310
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:405
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:209
const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
Definition: BasicBlock.cpp:294
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:783
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
A debug info location.
Definition: DebugLoc.h:33
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
iterator end()
Definition: DenseMap.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
EquivalenceClasses - This represents a collection of equivalence classes and supports three efficient...
iterator findValue(const ElemTy &V) const
findValue - Return an iterator to the specified value.
iterator insert(const ElemTy &Data)
insert - Insert a new value into the union/find set, ignoring the request if the value already exists...
member_iterator member_end() const
typename std::set< ECValue, ECValueComparator >::const_iterator iterator
iterator* - Provides a way to iterate over all values in the set.
member_iterator member_begin(iterator I) const
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
const ElemTy & getLeaderValue(const ElemTy &V) const
getLeaderValue - Return the leader for the specified value that is in the set.
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:698
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:914
Type * getResultElementType() const
Definition: Instructions.h:975
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:294
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Definition: Instruction.cpp:74
Class to represent integer types.
Definition: DerivedTypes.h:40
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:278
An instruction for reading from memory.
Definition: Instructions.h:173
Value * getPointerOperand()
Definition: Instructions.h:252
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
This analysis provides dependence information for the memory accesses of a loop.
Result run(Function &F, FunctionAnalysisManager &AM)
bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
const LoopAccessInfo & getInfo(Loop &L)
Drive the analysis of memory accesses in the loop.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
bool isInvariant(Value *V) const
Returns true if value V is loop invariant.
void print(raw_ostream &OS, unsigned Depth=0) const
Print the information about the memory accesses in the loop.
static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetTransformInfo *TTI, const TargetLibraryInfo *TLI, AAResults *AA, DominatorTree *DT, LoopInfo *LI)
Analysis pass that exposes the LoopInfo for a function.
Definition: LoopInfo.h:571
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
Definition: LoopIterator.h:172
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
std::string getLocStr() const
Return a string containing the debug location of the loop (file name + line number if present,...
Definition: LoopInfo.cpp:667
bool isAnnotatedParallel() const
Returns true if the loop is annotated parallel.
Definition: LoopInfo.cpp:565
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition: LoopInfo.cpp:632
Metadata node.
Definition: Metadata.h:1067
ArrayRef< MDOperand > operands() const
Definition: Metadata.h:1426
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:889
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
ArrayRef< unsigned > getOrderForAccess(Value *Ptr, bool IsWrite) const
Return the program order indices for the access location (Ptr, IsWrite).
bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps, const DenseMap< Value *, SmallVector< const Value *, 16 > > &UnderlyingObjects)
Check whether the dependencies between the accesses are safe.
bool isSafeForAnyVectorWidth() const
Return true if the number of elements that are safe to operate on simultaneously is not bounded.
const SmallVectorImpl< Instruction * > & getMemoryInstructions() const
The vector of memory access instructions.
const Loop * getInnermostLoop() const
uint64_t getMaxSafeVectorWidthInBits() const
Return the number of elements that are safe to operate on simultaneously, multiplied by the size of t...
bool isSafeForVectorization() const
No memory dependence was encountered that would inhibit vectorization.
const SmallVectorImpl< Dependence > * getDependences() const
Returns the memory dependences.
SmallVector< Instruction *, 4 > getInstructionsForAccess(Value *Ptr, bool isWrite) const
Find the set of instructions that read or write via Ptr.
VectorizationSafetyStatus
Type to keep track of the status of the dependence check.
bool shouldRetryWithRuntimeCheck() const
In same cases when the dependency check fails we can still vectorize the loop with a dynamic array ac...
void addAccess(StoreInst *SI)
Register the location (instructions are given increasing numbers) of a write access.
PointerIntPair< Value *, 1, bool > MemAccessInfo
Representation for a specific memory location.
static MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
const Value * Ptr
The address of the start of the location.
Root of the metadata hierarchy.
Definition: Metadata.h:62
Diagnostic information for optimization analysis remarks.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
void print(raw_ostream &OS, unsigned Depth) const
Print the SCEV mappings done by the Predicated Scalar Evolution.
const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Definition: Analysis.h:264
Holds information about the memory runtime legality checks to verify that a group of pointers do not ...
bool Need
This flag indicates if we need to add the runtime check.
void reset()
Reset the state of the pointer runtime information.
unsigned getNumberOfChecks() const
Returns the number of run-time checks required according to needsChecking.
void printChecks(raw_ostream &OS, const SmallVectorImpl< RuntimePointerCheck > &Checks, unsigned Depth=0) const
Print Checks.
bool needsChecking(const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const
Decide if we need to add a check between two groups of pointers, according to needsChecking.
void print(raw_ostream &OS, unsigned Depth=0) const
Print the list run-time memory checks necessary.
SmallVector< RuntimeCheckingPtrGroup, 2 > CheckingGroups
Holds a partitioning of pointers into "check groups".
void generateChecks(MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies)
Generate the checks and store it.
static bool arePointersInSamePartition(const SmallVectorImpl< int > &PtrToPartition, unsigned PtrIdx1, unsigned PtrIdx2)
Check if pointers are in the same partition.
SmallVector< PointerInfo, 2 > Pointers
Information about the pointers that may require checking.
void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, bool WritePtr, unsigned DepSetId, unsigned ASId, PredicatedScalarEvolution &PSE, bool NeedsFreeze)
Insert a pointer and calculate the start and end SCEVs.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
This class represents a constant integer value.
This is the base class for unary integral cast operator classes.
This node represents multiplication of some number of SCEVs.
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
virtual void print(raw_ostream &OS, unsigned Depth=0) const =0
Prints a textual representation of this predicate with an indentation of Depth.
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
const SCEV * getConstant(ConstantInt *V)
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
const SCEV * getCouldNotCompute()
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:323
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:412
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:344
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:479
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
Definition: SmallSet.h:166
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:179
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:950
void resize(size_type N)
Definition: SmallVector.h:651
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:289
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
TypeSize getRegisterBitWidth(RegisterKind K) const
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:265
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:255
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:169
unsigned getNumOperands() const
Definition: User.h:191
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition: VectorUtils.h:71
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
Definition: Value.h:736
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:199
constexpr bool isNonZero() const
Definition: TypeSize.h:158
An efficient, type-erasing, non-owning reference to a callable.
TypeSize getSequentialElementStride(const DataLayout &DL) const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
friend const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:236
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:612
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
LocationClass< Ty > location(Ty &L)
Definition: CommandLine.h:463
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
std::optional< int > getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, Value *PtrB, const DataLayout &DL, ScalarEvolution &SE, bool StrictCheck=false, bool CheckType=true)
Returns the distance between the pointers PtrA and PtrB iff they are compatible and it is possible to...
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
@ Offset
Definition: DWP.cpp:480
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are are tuples (A,...
Definition: STLExtras.h:2400
unsigned getPointerAddressSpace(const Type *T)
Definition: SPIRVUtils.h:126
std::optional< const MDOperand * > findStringMetadataForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for loop.
Definition: LoopInfo.cpp:1065
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
AddressSpace
Definition: NVPTXBaseInfo.h:21
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
Definition: STLExtras.h:1928
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Definition: Function.cpp:2073
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool isPointerTy(const Type *T)
Definition: SPIRVUtils.h:120
std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
bool sortPtrAccesses(ArrayRef< Value * > VL, Type *ElemTy, const DataLayout &DL, ScalarEvolution &SE, SmallVectorImpl< unsigned > &SortedIndices)
Attempt to sort the pointers in VL and return the sorted indices in SortedIndices,...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, LoopInfo *LI=nullptr, unsigned MaxLookup=6)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1824
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1749
gep_type_iterator gep_type_begin(const User *GEP)
Type * getLoadStoreType(Value *I)
A helper function that returns the type of a load or store instruction.
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
MDNode * Scope
The tag for alias scope specification (used with noalias).
Definition: Metadata.h:783
MDNode * TBAA
The tag for type-based alias analysis.
Definition: Metadata.h:777
MDNode * NoAlias
The tag specifying the noalias scope.
Definition: Metadata.h:786
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:28
Dependece between memory access instructions.
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
DepType Type
The type of the dependence.
bool isPossiblyBackward() const
May be a lexically backward dependence type (includes Unknown).
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
bool isForward() const
Lexically forward dependence.
bool isBackward() const
Lexically backward dependence.
void print(raw_ostream &OS, unsigned Depth, const SmallVectorImpl< Instruction * > &Instrs) const
Print the dependence.
DepType
The type of the dependence.
static const char * DepName[]
String version of the types.
static VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
unsigned AddressSpace
Address space of the involved pointers.
bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck)
Tries to add the pointer recorded in RtCheck at index Index to this pointer checking group.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
SmallVector< unsigned, 2 > Members
Indices of all the pointers that constitute this grouping.
RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck)
Create a new pointer checking group containing a single pointer, with index Index in RtCheck.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.
bool IsWritePtr
Holds the information if this pointer is used for writing to memory.
unsigned DependencySetId
Holds the id of the set of pointers that could be dependent because of a shared underlying object.
unsigned AliasSetId
Holds the id of the disjoint alias set to which this pointer belongs.
static const unsigned MaxVectorWidth
Maximum SIMD width.
static unsigned VectorizationFactor
VF as overridden by the user.
static unsigned RuntimeMemoryCheckThreshold
\When performing memory disambiguation checks at runtime do not make more than this number of compari...
static bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static unsigned VectorizationInterleave
Interleave factor as overridden by the user.
Function object to check whether the first component of a container supported by std::get (like std::...
Definition: STLExtras.h:1450