71#define DEBUG_TYPE "loop-accesses"
75 cl::desc(
"Sets the SIMD width. Zero is autoselect."),
81 cl::desc(
"Sets the vectorization interleave count. "
82 "Zero is autoselect."),
89 cl::desc(
"When performing memory disambiguation checks at runtime do not "
90 "generate more than this number of comparisons (default = 8)."),
97 cl::desc(
"Maximum number of comparisons done when trying to merge "
98 "runtime memory checks. (default = 100)"),
107 cl::desc(
"Maximum number of dependences collected by "
108 "loop-access analysis (default = 100)"),
124 cl::desc(
"Enable symbolic stride memory access versioning"));
129 "store-to-load-forwarding-conflict-detection",
cl::Hidden,
130 cl::desc(
"Enable conflict detection in loop-access analysis"),
135 cl::desc(
"Maximum recursion depth when finding forked SCEVs (default = 5)"),
140 cl::desc(
"Speculate that non-constant strides are unit in LAA"),
146 "Hoist inner loop runtime memory checks to outer loop if possible"),
151 return ::VectorizationInterleave.getNumOccurrences() > 0;
162 if (SI == PtrToStride.
end())
166 const SCEV *StrideSCEV = SI->second;
171 assert(isa<SCEVUnknown>(StrideSCEV) &&
"shouldn't be in map");
179 <<
" by: " << *Expr <<
"\n");
189 NeedsFreeze(RtCheck.Pointers[
Index].NeedsFreeze) {
209 DenseMap<std::pair<const SCEV *, Type *>,
214 {{PtrExpr, AccessTy},
223 ScStart = ScEnd = PtrExpr;
224 }
else if (
auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
227 ScStart = AR->getStart();
228 ScEnd = AR->evaluateAtIteration(Ex, *SE);
229 const SCEV *Step = AR->getStepRecurrence(*SE);
233 if (
const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
234 if (CStep->getValue()->isNegative())
255 Iter->second = {ScStart, ScEnd};
262 Type *AccessTy,
bool WritePtr,
263 unsigned DepSetId,
unsigned ASId,
268 assert(!isa<SCEVCouldNotCompute>(ScStart) &&
269 !isa<SCEVCouldNotCompute>(ScEnd) &&
270 "must be able to compute both start and end expressions");
271 Pointers.emplace_back(
Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
275bool RuntimePointerChecking::tryToCreateDiffCheck(
298 if (AccSrc.
size() != 1 || AccSink.
size() != 1)
302 if (AccSink[0] < AccSrc[0])
305 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
306 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
317 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
321 SinkAR->getLoop()->getHeader()->getDataLayout();
323 std::max(
DL.getTypeAllocSize(SrcTy),
DL.getTypeAllocSize(DstTy));
328 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
329 if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
330 Step->getAPInt().abs() != AllocSize)
338 if (Step->getValue()->isNegative())
343 if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
344 isa<SCEVCouldNotCompute>(SrcStartInt))
347 const Loop *InnerLoop = SrcAR->getLoop();
353 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
354 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
355 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
356 const Loop *StartARLoop = SrcStartAR->getLoop();
357 if (StartARLoop == SinkStartAR->getLoop() &&
362 SrcStartAR->getStepRecurrence(*SE) !=
363 SinkStartAR->getStepRecurrence(*SE)) {
364 LLVM_DEBUG(
dbgs() <<
"LAA: Not creating diff runtime check, since these "
365 "cannot be hoisted out of the outer loop\n");
371 <<
"SrcStart: " << *SrcStartInt <<
'\n'
372 <<
"SinkStartInt: " << *SinkStartInt <<
'\n');
373 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
374 Src->NeedsFreeze ||
Sink->NeedsFreeze);
387 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
395void RuntimePointerChecking::generateChecks(
398 groupChecks(DepCands, UseDependencies);
404 for (
const auto &
I : M.Members)
405 for (
const auto &J :
N.Members)
418 return Diff->isNegative() ? J :
I;
425 RtCheck.
Pointers[
Index].PointerValue->getType()->getPointerAddressSpace(),
434 "all pointers in a checking group must be in the same address space");
460void RuntimePointerChecking::groupChecks(
506 if (!UseDependencies) {
512 unsigned TotalComparisons = 0;
517 It->second.push_back(
Index);
546 auto PointerI = PositionMap.
find(
MI->getPointer());
548 "pointer in equivalence class not found in PositionMap");
549 for (
unsigned Pointer : PointerI->second) {
566 if (Group.addPointer(Pointer, *
this)) {
576 Groups.emplace_back(Pointer, *
this);
589 return (PtrToPartition[PtrIdx1] != -1 &&
590 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
611 unsigned Depth)
const {
613 for (
const auto &[Check1, Check2] : Checks) {
614 const auto &
First = Check1->Members, &Second = Check2->Members;
618 OS.
indent(
Depth + 2) <<
"Comparing group (" << Check1 <<
"):\n";
619 for (
unsigned K :
First)
622 OS.
indent(
Depth + 2) <<
"Against group (" << Check2 <<
"):\n";
623 for (
unsigned K : Second)
636 OS.
indent(
Depth + 4) <<
"(Low: " << *CG.Low <<
" High: " << *CG.High
638 for (
unsigned Member : CG.Members) {
650class AccessAnalysis {
660 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
661 LoopAliasScopes(LoopAliasScopes) {
663 BAA.enableCrossIterationMode();
669 AST.add(adjustLoc(Loc));
670 Accesses[MemAccessInfo(
Ptr,
false)].insert(AccessTy);
672 ReadOnlyPtr.insert(
Ptr);
678 AST.add(adjustLoc(Loc));
679 Accesses[MemAccessInfo(
Ptr,
true)].insert(AccessTy);
690 MemAccessInfo Access,
Type *AccessTy,
693 Loop *TheLoop,
unsigned &RunningDepId,
694 unsigned ASId,
bool ShouldCheckStride,
bool Assume);
703 Value *&UncomputablePtr,
bool ShouldCheckWrap =
false);
707 void buildDependenceSets() {
708 processMemAccesses();
716 bool isDependencyCheckNeeded()
const {
return !CheckDeps.empty(); }
724 const MemAccessInfoList &getDependenciesToCheck()
const {
return CheckDeps; }
748 return LoopAliasScopes.contains(cast<MDNode>(Scope));
757 void processMemAccesses();
761 PtrAccessMap Accesses;
767 MemAccessInfoList CheckDeps;
794 bool IsRTCheckAnalysisNeeded =
false;
812 const SCEV *PtrScev,
Loop *L,
bool Assume) {
836 int64_t Stride =
getPtrStride(PSE, AccessTy,
Ptr, L, Strides).value_or(0);
837 return Stride == 1 ||
847 while (!WorkList.
empty()) {
851 auto *PN = dyn_cast<PHINode>(
Ptr);
855 if (PN && InnermostLoop.
contains(PN->getParent()) &&
856 PN->getParent() != InnermostLoop.
getHeader()) {
857 for (
const Use &Inc : PN->incoming_values())
890 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(
Ptr) ||
891 !isa<Instruction>(
Ptr) ||
Depth == 0) {
902 auto GetBinOpExpr = [&SE](
unsigned Opcode,
const SCEV *L,
const SCEV *R) {
904 case Instruction::Add:
906 case Instruction::Sub:
914 unsigned Opcode =
I->getOpcode();
916 case Instruction::GetElementPtr: {
917 auto *
GEP = cast<GetElementPtrInst>(
I);
918 Type *SourceTy =
GEP->getSourceElementType();
921 if (
I->getNumOperands() != 2 || SourceTy->
isVectorTy()) {
931 bool NeedsFreeze =
any_of(BaseScevs, UndefPoisonCheck) ||
932 any_of(OffsetScevs, UndefPoisonCheck);
937 if (OffsetScevs.
size() == 2 && BaseScevs.
size() == 1)
939 else if (BaseScevs.
size() == 2 && OffsetScevs.
size() == 1)
942 ScevList.emplace_back(Scev, NeedsFreeze);
960 ScevList.emplace_back(SE->
getAddExpr(get<0>(BaseScevs[0]), Scaled1),
962 ScevList.emplace_back(SE->
getAddExpr(get<0>(BaseScevs[1]), Scaled2),
966 case Instruction::Select: {
973 if (ChildScevs.
size() == 2) {
974 ScevList.push_back(ChildScevs[0]);
975 ScevList.push_back(ChildScevs[1]);
980 case Instruction::PHI: {
985 if (
I->getNumOperands() == 2) {
989 if (ChildScevs.
size() == 2) {
990 ScevList.push_back(ChildScevs[0]);
991 ScevList.push_back(ChildScevs[1]);
996 case Instruction::Add:
997 case Instruction::Sub: {
1005 any_of(LScevs, UndefPoisonCheck) ||
any_of(RScevs, UndefPoisonCheck);
1010 if (LScevs.
size() == 2 && RScevs.
size() == 1)
1012 else if (RScevs.
size() == 2 && LScevs.
size() == 1)
1015 ScevList.emplace_back(Scev, NeedsFreeze);
1019 ScevList.emplace_back(
1020 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1022 ScevList.emplace_back(
1023 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1029 LLVM_DEBUG(
dbgs() <<
"ForkedPtr unhandled instruction: " << *
I <<
"\n");
1046 if (Scevs.
size() == 2 &&
1047 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1049 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1061 MemAccessInfo Access,
Type *AccessTy,
1064 Loop *TheLoop,
unsigned &RunningDepId,
1065 unsigned ASId,
bool ShouldCheckWrap,
1072 for (
const auto &
P : TranslatedPtrs) {
1073 const SCEV *PtrExpr = get<0>(
P);
1079 if (ShouldCheckWrap) {
1081 if (TranslatedPtrs.size() > 1)
1084 if (!
isNoWrap(PSE, StridesMap,
Ptr, AccessTy, TheLoop)) {
1086 if (!Assume || !isa<SCEVAddRecExpr>(Expr))
1093 if (TranslatedPtrs.size() == 1)
1098 for (
auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1102 if (isDependencyCheckNeeded()) {
1104 unsigned &LeaderId = DepSetId[Leader];
1106 LeaderId = RunningDepId++;
1110 DepId = RunningDepId++;
1112 bool IsWrite = Access.getInt();
1113 RtCheck.
insert(TheLoop,
Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1124 Value *&UncomputablePtr,
bool ShouldCheckWrap) {
1127 bool CanDoRT =
true;
1129 bool MayNeedRTCheck =
false;
1130 if (!IsRTCheckAnalysisNeeded)
return true;
1132 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1137 for (
const auto &AS : AST) {
1138 int NumReadPtrChecks = 0;
1139 int NumWritePtrChecks = 0;
1140 bool CanDoAliasSetRT =
true;
1142 auto ASPointers = AS.getPointers();
1146 unsigned RunningDepId = 1;
1154 for (
const Value *ConstPtr : ASPointers) {
1156 bool IsWrite = Accesses.count(MemAccessInfo(
Ptr,
true));
1158 ++NumWritePtrChecks;
1166 if (NumWritePtrChecks == 0 ||
1167 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1168 assert((ASPointers.size() <= 1 ||
1171 MemAccessInfo AccessWrite(
const_cast<Value *
>(
Ptr),
1173 return DepCands.
findValue(AccessWrite) == DepCands.
end();
1175 "Can only skip updating CanDoRT below, if all entries in AS "
1176 "are reads or there is at most 1 entry");
1180 for (
auto &Access : AccessInfos) {
1181 for (
const auto &AccessTy : Accesses[Access]) {
1182 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1183 DepSetId, TheLoop, RunningDepId, ASId,
1184 ShouldCheckWrap,
false)) {
1186 << *Access.getPointer() <<
'\n');
1188 CanDoAliasSetRT =
false;
1202 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.
empty();
1206 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1210 CanDoAliasSetRT =
true;
1211 for (
const auto &[Access, AccessTy] : Retries) {
1212 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1213 DepSetId, TheLoop, RunningDepId, ASId,
1214 ShouldCheckWrap,
true)) {
1215 CanDoAliasSetRT =
false;
1216 UncomputablePtr = Access.getPointer();
1222 CanDoRT &= CanDoAliasSetRT;
1223 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1232 unsigned NumPointers = RtCheck.
Pointers.size();
1233 for (
unsigned i = 0; i < NumPointers; ++i) {
1234 for (
unsigned j = i + 1;
j < NumPointers; ++
j) {
1236 if (RtCheck.
Pointers[i].DependencySetId ==
1237 RtCheck.
Pointers[j].DependencySetId)
1250 dbgs() <<
"LAA: Runtime check would require comparison between"
1251 " different address spaces\n");
1257 if (MayNeedRTCheck && CanDoRT)
1261 <<
" pointer comparisons.\n");
1268 bool CanDoRTIfNeeded = !RtCheck.
Need || CanDoRT;
1269 if (!CanDoRTIfNeeded)
1271 return CanDoRTIfNeeded;
1274void AccessAnalysis::processMemAccesses() {
1281 LLVM_DEBUG(
dbgs() <<
"LAA: Accesses(" << Accesses.size() <<
"):\n");
1283 for (
const auto &[
A,
_] : Accesses)
1284 dbgs() <<
"\t" << *
A.getPointer() <<
" ("
1285 << (
A.getInt() ?
"write"
1286 : (ReadOnlyPtr.count(
A.getPointer()) ?
"read-only"
1295 for (
const auto &AS : AST) {
1299 auto ASPointers = AS.getPointers();
1301 bool SetHasWrite =
false;
1305 UnderlyingObjToAccessMap ObjToLastAccess;
1308 PtrAccessMap DeferredAccesses;
1312 for (
int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1313 bool UseDeferred = SetIteration > 0;
1314 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1316 for (
const Value *ConstPtr : ASPointers) {
1321 for (
const auto &[AC,
_] : S) {
1322 if (AC.getPointer() !=
Ptr)
1325 bool IsWrite = AC.getInt();
1329 bool IsReadOnlyPtr = ReadOnlyPtr.count(
Ptr) && !IsWrite;
1330 if (UseDeferred && !IsReadOnlyPtr)
1334 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1335 S.count(MemAccessInfo(
Ptr,
false))) &&
1336 "Alias-set pointer not in the access set?");
1338 MemAccessInfo Access(
Ptr, IsWrite);
1346 if (!UseDeferred && IsReadOnlyPtr) {
1349 DeferredAccesses.insert({Access, {}});
1357 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1358 CheckDeps.push_back(Access);
1359 IsRTCheckAnalysisNeeded =
true;
1368 ValueVector TempObjects;
1370 UnderlyingObjects[
Ptr] = {};
1374 <<
"Underlying objects for pointer " << *
Ptr <<
"\n");
1375 for (
const Value *UnderlyingObj : UOs) {
1378 if (isa<ConstantPointerNull>(UnderlyingObj) &&
1384 UnderlyingObjToAccessMap::iterator Prev =
1385 ObjToLastAccess.find(UnderlyingObj);
1386 if (Prev != ObjToLastAccess.end())
1387 DepCands.
unionSets(Access, Prev->second);
1389 ObjToLastAccess[UnderlyingObj] = Access;
1418 const auto *
GEP = dyn_cast<GetElementPtrInst>(
Ptr);
1419 if (!
GEP || !
GEP->isInBounds())
1423 Value *NonConstIndex =
nullptr;
1425 if (!isa<ConstantInt>(
Index)) {
1428 NonConstIndex =
Index;
1436 if (
auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1437 if (OBO->hasNoSignedWrap() &&
1440 isa<ConstantInt>(OBO->getOperand(1))) {
1441 const SCEV *OpScev = PSE.
getSCEV(OBO->getOperand(0));
1443 if (
auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1444 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(
SCEV::FlagNSW);
1451std::optional<int64_t>
1455 bool Assume,
bool ShouldCheckWrap) {
1462 if (isa<ScalableVectorType>(AccessTy)) {
1463 LLVM_DEBUG(
dbgs() <<
"LAA: Bad stride - Scalable object: " << *AccessTy
1465 return std::nullopt;
1474 <<
" SCEV: " << *PtrScev <<
"\n");
1475 return std::nullopt;
1480 LLVM_DEBUG(
dbgs() <<
"LAA: Bad stride - Not striding over innermost loop "
1481 << *
Ptr <<
" SCEV: " << *AR <<
"\n");
1482 return std::nullopt;
1492 <<
" SCEV: " << *AR <<
"\n");
1493 return std::nullopt;
1497 TypeSize AllocSize =
DL.getTypeAllocSize(AccessTy);
1499 const APInt &APStepVal =
C->getAPInt();
1503 return std::nullopt;
1508 int64_t Stride = StepVal /
Size;
1509 int64_t Rem = StepVal %
Size;
1511 return std::nullopt;
1513 if (!ShouldCheckWrap)
1525 if (
auto *
GEP = dyn_cast<GetElementPtrInst>(
Ptr);
1526 GEP &&
GEP->isInBounds() && (Stride == 1 || Stride == -1))
1534 (Stride == 1 || Stride == -1))
1540 <<
"LAA: Pointer: " << *
Ptr <<
"\n"
1541 <<
"LAA: SCEV: " << *AR <<
"\n"
1542 <<
"LAA: Added an overflow assumption\n");
1546 dbgs() <<
"LAA: Bad stride - Pointer may wrap in the address space "
1547 << *
Ptr <<
" SCEV: " << *AR <<
"\n");
1548 return std::nullopt;
1556 assert(PtrA && PtrB &&
"Expected non-nullptr pointers.");
1564 return std::nullopt;
1571 return std::nullopt;
1572 unsigned IdxWidth =
DL.getIndexSizeInBits(ASA);
1574 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1575 const Value *PtrA1 =
1577 const Value *PtrB1 =
1581 if (PtrA1 == PtrB1) {
1584 ASA = cast<PointerType>(PtrA1->
getType())->getAddressSpace();
1585 ASB = cast<PointerType>(PtrB1->
getType())->getAddressSpace();
1588 return std::nullopt;
1590 IdxWidth =
DL.getIndexSizeInBits(ASA);
1591 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1600 std::optional<APInt> Diff =
1603 return std::nullopt;
1604 Val = Diff->getSExtValue();
1606 int Size =
DL.getTypeStoreSize(ElemTyA);
1607 int Dist = Val /
Size;
1611 if (!StrictCheck || Dist *
Size == Val)
1613 return std::nullopt;
1621 "Expected list of pointer operands.");
1624 Value *Ptr0 = VL[0];
1626 using DistOrdPair = std::pair<int64_t, int>;
1628 std::set<DistOrdPair,
decltype(Compare)> Offsets(Compare);
1629 Offsets.emplace(0, 0);
1630 bool IsConsecutive =
true;
1639 auto [It, IsInserted] = Offsets.emplace(
Offset,
Idx);
1643 IsConsecutive &= std::next(It) == Offsets.end();
1645 SortedIndices.
clear();
1646 if (!IsConsecutive) {
1650 SortedIndices[
Idx] = Off.second;
1664 std::optional<int> Diff =
1667 return Diff && *Diff == 1;
1673 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1674 InstMap.push_back(SI);
1682 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1683 InstMap.push_back(LI);
1711 case ForwardButPreventsForwarding:
1713 case IndirectUnsafe:
1716 case BackwardVectorizable:
1718 case BackwardVectorizableButPreventsForwarding:
1731 case ForwardButPreventsForwarding:
1736 case BackwardVectorizable:
1738 case BackwardVectorizableButPreventsForwarding:
1739 case IndirectUnsafe:
1745bool MemoryDepChecker::couldPreventStoreLoadForward(
uint64_t Distance,
1759 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1761 uint64_t MaxVFWithoutSLForwardIssues = std::min(
1765 for (
uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1769 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1770 MaxVFWithoutSLForwardIssues = (VF >> 1);
1775 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1777 dbgs() <<
"LAA: Distance " << Distance
1778 <<
" that could cause a store-load forwarding conflict\n");
1782 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1783 MaxVFWithoutSLForwardIssues !=
1785 MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1807 const SCEV &MaxBTC,
const SCEV &Dist,
1828 const uint64_t ByteStride = MaxStride * TypeByteSize;
1832 const SCEV *CastedDist = &Dist;
1833 const SCEV *CastedProduct = Product;
1840 if (DistTypeSizeBits > ProductTypeSizeBits)
1865 assert(Stride > 1 &&
"The stride must be greater than 1");
1866 assert(TypeByteSize > 0 &&
"The type size in byte must be non-zero");
1867 assert(Distance > 0 &&
"The distance must be non-zero");
1870 if (Distance % TypeByteSize)
1873 uint64_t ScaledDist = Distance / TypeByteSize;
1891 return ScaledDist % Stride;
1895 MemoryDepChecker::DepDistanceStrideAndSizeInfo>
1896MemoryDepChecker::getDependenceDistanceStrideAndSize(
1900 auto &SE = *PSE.
getSE();
1901 const auto &[APtr, AIsWrite] =
A;
1902 const auto &[BPtr, BIsWrite] =
B;
1905 if (!AIsWrite && !BIsWrite)
1912 if (APtr->getType()->getPointerAddressSpace() !=
1913 BPtr->getType()->getPointerAddressSpace())
1916 std::optional<int64_t> StrideAPtr =
1917 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides,
true,
true);
1918 std::optional<int64_t> StrideBPtr =
1919 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides,
true,
true);
1927 if (StrideAPtr && *StrideAPtr < 0) {
1935 LLVM_DEBUG(
dbgs() <<
"LAA: Src Scev: " << *Src <<
"Sink Scev: " << *Sink
1937 LLVM_DEBUG(
dbgs() <<
"LAA: Distance for " << *AInst <<
" to " << *BInst
1938 <<
": " << *Dist <<
"\n");
1946 const auto &[SrcStart, SrcEnd] =
1948 const auto &[SinkStart, SinkEnd] =
1950 if (!isa<SCEVCouldNotCompute>(SrcStart) &&
1951 !isa<SCEVCouldNotCompute>(SrcEnd) &&
1952 !isa<SCEVCouldNotCompute>(SinkStart) &&
1953 !isa<SCEVCouldNotCompute>(SinkEnd)) {
1968 if (!StrideAPtr || !StrideBPtr) {
1969 LLVM_DEBUG(
dbgs() <<
"Pointer access with non-constant stride\n");
1973 int64_t StrideAPtrInt = *StrideAPtr;
1974 int64_t StrideBPtrInt = *StrideBPtr;
1975 LLVM_DEBUG(
dbgs() <<
"LAA: Src induction step: " << StrideAPtrInt
1976 <<
" Sink induction step: " << StrideBPtrInt <<
"\n");
1979 if (StrideAPtrInt == 0 || StrideBPtrInt == 0)
1984 if ((StrideAPtrInt > 0 && StrideBPtrInt < 0) ||
1985 (StrideAPtrInt < 0 && StrideBPtrInt > 0)) {
1987 dbgs() <<
"Pointer access with strides in different directions\n");
1991 uint64_t TypeByteSize =
DL.getTypeAllocSize(ATy);
1993 DL.getTypeStoreSizeInBits(ATy) ==
DL.getTypeStoreSizeInBits(BTy);
1996 return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtrInt),
1997 std::abs(StrideBPtrInt), TypeByteSize,
1998 AIsWrite, BIsWrite);
2002MemoryDepChecker::isDependent(
const MemAccessInfo &
A,
unsigned AIdx,
2004 assert(AIdx < BIdx &&
"Must pass arguments in program order");
2009 getDependenceDistanceStrideAndSize(
A, InstMap[AIdx],
B, InstMap[BIdx]);
2010 if (std::holds_alternative<Dependence::DepType>(Res))
2011 return std::get<Dependence::DepType>(Res);
2013 auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] =
2014 std::get<DepDistanceStrideAndSizeInfo>(Res);
2015 bool HasSameSize = TypeByteSize > 0;
2017 std::optional<uint64_t> CommonStride =
2018 StrideA == StrideB ? std::make_optional(StrideA) :
std::nullopt;
2019 if (isa<SCEVCouldNotCompute>(Dist)) {
2022 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2023 LLVM_DEBUG(
dbgs() <<
"LAA: Dependence because of uncomputable distance.\n");
2029 uint64_t MaxStride = std::max(StrideA, StrideB);
2038 *Dist, MaxStride, TypeByteSize))
2045 const APInt &Val =
C->getAPInt();
2050 if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 &&
2071 LLVM_DEBUG(
dbgs() <<
"LAA: possibly zero dependence difference but "
2072 "different type sizes\n");
2076 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2091 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2095 couldPreventStoreLoadForward(
C->getAPInt().abs().getZExtValue(),
2098 dbgs() <<
"LAA: Forward but may prevent st->ld forwarding\n");
2109 if (MinDistance <= 0) {
2110 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2114 if (!isa<SCEVConstant>(Dist)) {
2123 FoundNonConstantDistanceDependence |= CommonStride.has_value();
2127 LLVM_DEBUG(
dbgs() <<
"LAA: ReadWrite-Write positive dependency with "
2128 "different type sizes\n");
2141 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2174 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize;
2175 if (MinDistanceNeeded >
static_cast<uint64_t>(MinDistance)) {
2176 if (!isa<SCEVConstant>(Dist)) {
2183 LLVM_DEBUG(
dbgs() <<
"LAA: Failure because of positive minimum distance "
2184 << MinDistance <<
'\n');
2190 if (MinDistanceNeeded > MinDepDistBytes) {
2192 << MinDistanceNeeded <<
" size in bytes\n");
2213 std::min(
static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2215 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2216 uint64_t MinDepDistBytesOld = MinDepDistBytes;
2218 isa<SCEVConstant>(Dist) &&
2219 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) {
2222 assert(MinDepDistBytes == MinDepDistBytesOld &&
2223 "An update to MinDepDistBytes requires an update to "
2224 "MaxSafeVectorWidthInBits");
2225 (void)MinDepDistBytesOld;
2231 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride);
2232 LLVM_DEBUG(
dbgs() <<
"LAA: Positive min distance " << MinDistance
2233 <<
" with max VF = " << MaxVF <<
'\n');
2235 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2236 if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) {
2243 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2250 MinDepDistBytes = -1;
2253 if (Visited.
count(CurAccess))
2269 bool AIIsWrite = AI->getInt();
2273 (AIIsWrite ? AI : std::next(AI));
2276 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2277 I1E = Accesses[*AI].
end(); I1 != I1E; ++I1)
2280 for (std::vector<unsigned>::iterator
2281 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2282 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2284 auto A = std::make_pair(&*AI, *I1);
2285 auto B = std::make_pair(&*OI, *I2);
2292 isDependent(*
A.first,
A.second, *
B.first,
B.second);
2299 if (RecordDependences) {
2301 Dependences.emplace_back(
A.second,
B.second,
Type);
2304 RecordDependences =
false;
2305 Dependences.clear();
2307 <<
"Too many dependences, stopped recording\n");
2319 LLVM_DEBUG(
dbgs() <<
"Total Dependences: " << Dependences.size() <<
"\n");
2326 auto &IndexVector = Accesses.find(Access)->second;
2330 std::back_inserter(Insts),
2331 [&](
unsigned Idx) {
return this->InstMap[
Idx]; });
2340 "ForwardButPreventsForwarding",
2342 "BackwardVectorizable",
2343 "BackwardVectorizableButPreventsForwarding"};
2353bool LoopAccessInfo::canAnalyzeLoop() {
2362 recordAnalysis(
"NotInnerMostLoop") <<
"loop is not the innermost loop";
2369 dbgs() <<
"LAA: loop control flow is not understood by analyzer\n");
2370 recordAnalysis(
"CFGNotUnderstood")
2371 <<
"loop control flow is not understood by analyzer";
2379 if (isa<SCEVCouldNotCompute>(ExitCount)) {
2380 recordAnalysis(
"CantComputeNumberOfIterations")
2381 <<
"could not determine number of loop iterations";
2382 LLVM_DEBUG(
dbgs() <<
"LAA: SCEV could not compute the loop exit count.\n");
2400 unsigned NumReads = 0;
2401 unsigned NumReadWrites = 0;
2403 bool HasComplexMemInst =
false;
2406 HasConvergentOp =
false;
2408 PtrRtChecking->Pointers.
clear();
2409 PtrRtChecking->Need =
false;
2413 const bool EnableMemAccessVersioningOfLoop =
2425 if (
auto *Call = dyn_cast<CallBase>(&
I)) {
2426 if (
Call->isConvergent())
2427 HasConvergentOp =
true;
2432 if (HasComplexMemInst && HasConvergentOp)
2436 if (HasComplexMemInst)
2440 if (
auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&
I))
2441 for (
Metadata *
Op : Decl->getScopeList()->operands())
2442 LoopAliasScopes.
insert(cast<MDNode>(
Op));
2447 auto *
Call = dyn_cast<CallInst>(&
I);
2454 if (
I.mayReadFromMemory()) {
2457 if (Call && !
Call->isNoBuiltin() &&
Call->getCalledFunction() &&
2461 auto *Ld = dyn_cast<LoadInst>(&
I);
2463 recordAnalysis(
"CantVectorizeInstruction", Ld)
2464 <<
"instruction cannot be vectorized";
2465 HasComplexMemInst =
true;
2468 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2469 recordAnalysis(
"NonSimpleLoad", Ld)
2470 <<
"read with atomic ordering or volatile read";
2472 HasComplexMemInst =
true;
2478 if (EnableMemAccessVersioningOfLoop)
2479 collectStridedAccess(Ld);
2484 if (
I.mayWriteToMemory()) {
2485 auto *St = dyn_cast<StoreInst>(&
I);
2487 recordAnalysis(
"CantVectorizeInstruction", St)
2488 <<
"instruction cannot be vectorized";
2489 HasComplexMemInst =
true;
2492 if (!St->isSimple() && !IsAnnotatedParallel) {
2493 recordAnalysis(
"NonSimpleStore", St)
2494 <<
"write with atomic ordering or volatile write";
2496 HasComplexMemInst =
true;
2502 if (EnableMemAccessVersioningOfLoop)
2503 collectStridedAccess(St);
2508 if (HasComplexMemInst)
2516 if (!Stores.
size()) {
2522 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2539 if (isInvariant(
Ptr)) {
2541 StoresToInvariantAddresses.push_back(ST);
2542 HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2549 if (Seen.
insert({Ptr, AccessTy}).second) {
2556 if (blockNeedsPredication(
ST->getParent(), TheLoop, DT))
2560 [&Accesses, AccessTy, Loc](
Value *
Ptr) {
2561 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2562 Accesses.addStore(NewLoc, AccessTy);
2567 if (IsAnnotatedParallel) {
2569 dbgs() <<
"LAA: A loop annotated parallel, ignore memory dependency "
2584 bool IsReadOnlyPtr =
false;
2586 if (Seen.
insert({Ptr, AccessTy}).second ||
2587 !
getPtrStride(*PSE,
LD->getType(),
Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2589 IsReadOnlyPtr =
true;
2595 LLVM_DEBUG(
dbgs() <<
"LAA: Found an unsafe dependency between a uniform "
2596 "load and uniform store to the same address!\n");
2597 HasLoadStoreDependenceInvolvingLoopInvariantAddress =
true;
2604 if (blockNeedsPredication(
LD->getParent(), TheLoop, DT))
2608 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](
Value *
Ptr) {
2609 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2610 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2616 if (NumReadWrites == 1 && NumReads == 0) {
2623 Accesses.buildDependenceSets();
2627 Value *UncomputablePtr =
nullptr;
2628 bool CanDoRTIfNeeded =
2629 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->
getSE(), TheLoop,
2630 SymbolicStrides, UncomputablePtr,
false);
2631 if (!CanDoRTIfNeeded) {
2632 const auto *
I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2633 recordAnalysis(
"CantIdentifyArrayBounds",
I)
2634 <<
"cannot identify array bounds";
2635 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because we can't find "
2636 <<
"the array bounds.\n");
2641 dbgs() <<
"LAA: May be able to perform a memory runtime check if needed.\n");
2643 bool DepsAreSafe =
true;
2644 if (Accesses.isDependencyCheckNeeded()) {
2646 DepsAreSafe = DepChecker->
areDepsSafe(DependentAccesses,
2647 Accesses.getDependenciesToCheck());
2653 Accesses.resetDepChecks(*DepChecker);
2655 PtrRtChecking->reset();
2656 PtrRtChecking->Need =
true;
2658 auto *SE = PSE->
getSE();
2659 UncomputablePtr =
nullptr;
2660 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2661 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr,
true);
2664 if (!CanDoRTIfNeeded) {
2665 auto *
I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2666 recordAnalysis(
"CantCheckMemDepsAtRunTime",
I)
2667 <<
"cannot check memory dependencies at runtime";
2668 LLVM_DEBUG(
dbgs() <<
"LAA: Can't vectorize with memory checks\n");
2675 if (HasConvergentOp) {
2676 recordAnalysis(
"CantInsertRuntimeCheckWithConvergent")
2677 <<
"cannot add control dependency to convergent operation";
2678 LLVM_DEBUG(
dbgs() <<
"LAA: We can't vectorize because a runtime check "
2679 "would be needed with a convergent operation\n");
2685 dbgs() <<
"LAA: No unsafe dependent memory operations in loop. We"
2686 << (PtrRtChecking->Need ?
"" :
" don't")
2687 <<
" need runtime memory checks.\n");
2691 emitUnsafeDependenceRemark();
2695void LoopAccessInfo::emitUnsafeDependenceRemark() {
2696 const auto *Deps = getDepChecker().getDependences();
2704 if (Found == Deps->end())
2708 LLVM_DEBUG(
dbgs() <<
"LAA: unsafe dependent memory operations in loop\n");
2711 bool HasForcedDistribution =
false;
2712 std::optional<const MDOperand *>
Value =
2716 assert(
Op && mdconst::hasa<ConstantInt>(*
Op) &&
"invalid metadata");
2717 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2720 const std::string
Info =
2721 HasForcedDistribution
2722 ?
"unsafe dependent memory operations in loop."
2723 :
"unsafe dependent memory operations in loop. Use "
2724 "#pragma clang loop distribute(enable) to allow loop distribution "
2725 "to attempt to isolate the offending operations into a separate "
2736 R <<
"\nBackward loop carried data dependence.";
2739 R <<
"\nForward loop carried data dependence that prevents "
2740 "store-to-load forwarding.";
2743 R <<
"\nBackward loop carried data dependence that prevents "
2744 "store-to-load forwarding.";
2747 R <<
"\nUnsafe indirect dependence.";
2750 R <<
"\nUnknown data dependence.";
2757 SourceLoc = DD->getDebugLoc();
2759 R <<
" Memory location is the same as accessed at "
2760 <<
ore::NV(
"Location", SourceLoc);
2775 assert(!Report &&
"Multiple reports generated");
2781 CodeRegion =
I->getParent();
2784 if (
I->getDebugLoc())
2785 DL =
I->getDebugLoc();
2788 Report = std::make_unique<OptimizationRemarkAnalysis>(
DEBUG_TYPE, RemarkName,
DL,
2794 auto *SE = PSE->
getSE();
2815 std::advance(GEPTI, LastOperand - 2);
2822 if (ElemSize != GEPAllocSize)
2834 auto *
GEP = dyn_cast<GetElementPtrInst>(
Ptr);
2842 for (
unsigned I = 0, E =
GEP->getNumOperands();
I != E; ++
I)
2843 if (
I != InductionOperand &&
2846 return GEP->getOperand(InductionOperand);
2852 auto *PtrTy = dyn_cast<PointerType>(
Ptr->getType());
2853 if (!PtrTy || PtrTy->isAggregateType())
2862 int64_t PtrAccessSize = 1;
2870 V =
C->getOperand();
2887 if (OrigPtr ==
Ptr) {
2888 if (
const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
2889 if (M->getOperand(0)->getSCEVType() !=
scConstant)
2892 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
2899 if (PtrAccessSize != StepVal)
2901 V = M->getOperand(1);
2911 if (isa<SCEVUnknown>(V))
2914 if (
const auto *
C = dyn_cast<SCEVIntegralCastExpr>(V))
2915 if (isa<SCEVUnknown>(
C->getOperand()))
2921void LoopAccessInfo::collectStridedAccess(
Value *MemAccess) {
2936 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that is a candidate for "
2941 LLVM_DEBUG(
dbgs() <<
" Chose not to due to -laa-speculate-unit-stride\n");
2966 const SCEV *CastedStride = StrideExpr;
2967 const SCEV *CastedBECount = MaxBTC;
2969 if (BETypeSizeBits >= StrideTypeSizeBits)
2973 const SCEV *StrideMinusBETaken = SE->
getMinusSCEV(CastedStride, CastedBECount);
2979 dbgs() <<
"LAA: Stride>=TripCount; No point in versioning as the "
2980 "Stride==1 predicate will imply that the loop executes "
2984 LLVM_DEBUG(
dbgs() <<
"LAA: Found a strided access that we can version.\n");
2988 const SCEV *StrideBase = StrideExpr;
2989 if (
const auto *
C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
2990 StrideBase =
C->getOperand();
2991 SymbolicStrides[
Ptr] = cast<SCEVUnknown>(StrideBase);
2999 PtrRtChecking(nullptr), TheLoop(L) {
3000 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3007 MaxTargetVectorWidthInBits = FixedWidth.
getFixedValue() * 2;
3013 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3015 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
3016 MaxTargetVectorWidthInBits);
3017 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
3018 if (canAnalyzeLoop())
3019 CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3027 OS <<
" with a maximum safe vector width of "
3029 if (PtrRtChecking->Need)
3030 OS <<
" with run-time checks";
3034 if (HasConvergentOp)
3042 for (
const auto &Dep : *Dependences) {
3050 PtrRtChecking->print(
OS,
Depth);
3054 <<
"Non vectorizable stores to invariant address were "
3055 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3056 HasLoadStoreDependenceInvolvingLoopInvariantAddress
3059 <<
"found in loop.\n";
3071 const auto &[It, Inserted] = LoopAccessInfoMap.insert({&L,
nullptr});
3075 std::make_unique<LoopAccessInfo>(&L, &SE,
TTI, TLI, &AA, &DT, &LI);
3085 for (
const auto &[L, LAI] : LoopAccessInfoMap) {
3086 if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3087 LAI->getPSE().getPredicate().isAlwaysTrue())
3093 LoopAccessInfoMap.erase(L);
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
static std::pair< const SCEV *, const SCEV * > getStartAndEndForAccess(const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, PredicatedScalarEvolution &PSE, DenseMap< std::pair< const SCEV *, Type * >, std::pair< const SCEV *, const SCEV * > > &PointerBounds)
Calculate Start and End points of memory access.
static cl::opt< unsigned > MaxDependences("max-dependences", cl::Hidden, cl::desc("Maximum number of dependences collected by " "loop-access analysis (default = 100)"), cl::init(100))
We collect dependences up to this threshold.
static cl::opt< bool > EnableForwardingConflictDetection("store-to-load-forwarding-conflict-detection", cl::Hidden, cl::desc("Enable conflict detection in loop-access analysis"), cl::init(true))
Enable store-to-load forwarding conflict detection.
static void findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, SmallVectorImpl< PointerIntPair< const SCEV *, 1, bool > > &ScevList, unsigned Depth)
static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, const SCEV *PtrScev, Loop *L, bool Assume)
Check whether a pointer can participate in a runtime bounds check.
static cl::opt< unsigned > MemoryCheckMergeThreshold("memory-check-merge-threshold", cl::Hidden, cl::desc("Maximum number of comparisons done when trying to merge " "runtime memory checks. (default = 100)"), cl::init(100))
The maximum iterations used to merge memory checks.
static bool isNoWrap(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &Strides, Value *Ptr, Type *AccessTy, Loop *L)
Check whether a pointer address cannot wrap.
static const SCEV * getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
Get the stride of a pointer access in a loop.
static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep)
Find the operand of the GEP that should be checked for consecutive stores.
static cl::opt< unsigned, true > VectorizationInterleave("force-vector-interleave", cl::Hidden, cl::desc("Sets the vectorization interleave count. " "Zero is autoselect."), cl::location(VectorizerParams::VectorizationInterleave))
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, const SCEV &MaxBTC, const SCEV &Dist, uint64_t MaxStride, uint64_t TypeByteSize)
Given a dependence-distance Dist between two memory accesses, that have strides in the same direction...
static cl::opt< unsigned, true > RuntimeMemoryCheckThreshold("runtime-memory-check-threshold", cl::Hidden, cl::desc("When performing memory disambiguation checks at runtime do not " "generate more than this number of comparisons (default = 8)."), cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8))
static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, function_ref< void(Value *)> AddPointer)
static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, PredicatedScalarEvolution &PSE, const Loop *L)
Return true if an AddRec pointer Ptr is unsigned non-wrapping, i.e.
static Value * stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp)
If the argument is a GEP, then returns the operand identified by getGEPInductionOperand.
static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, uint64_t TypeByteSize)
Check the dependence for two accesses with the same stride Stride.
static const SCEV * getMinFromExprs(const SCEV *I, const SCEV *J, ScalarEvolution *SE)
Compare I and J and return the minimum.
static cl::opt< unsigned > MaxForkedSCEVDepth("max-forked-scev-depth", cl::Hidden, cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), cl::init(5))
static cl::opt< bool > SpeculateUnitStride("laa-speculate-unit-stride", cl::Hidden, cl::desc("Speculate that non-constant strides are unit in LAA"), cl::init(true))
static SmallVector< PointerIntPair< const SCEV *, 1, bool > > findForkedPointer(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap, Value *Ptr, const Loop *L)
static cl::opt< bool > EnableMemAccessVersioning("enable-mem-access-versioning", cl::init(true), cl::Hidden, cl::desc("Enable symbolic stride memory access versioning"))
This enables versioning on the strides of symbolically striding memory accesses in code like the foll...
This header provides classes for managing per-loop analyses.
This file provides utility analysis objects describing memory locations.
FunctionAnalysisManager FAM
This header defines various interfaces for pass management in LLVM.
This file defines the PointerIntPair class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI, const DataLayout &DL)
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static const X86InstrFMA3Group Groups[]
A manager for alias analyses.
Class for arbitrary precision integers.
unsigned getBitWidth() const
Return the number of bits in the APInt.
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
int64_t getSExtValue() const
Get sign extended value.
This templated class represents "all analyses that operate over <a particular IR unit>" (e....
API to communicate dependencies between analyses during invalidation.
bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA)
Trigger the invalidation of some other analysis pass if not already handled and return whether it was...
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
@ ICMP_ULE
unsigned less or equal
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
EquivalenceClasses - This represents a collection of equivalence classes and supports three efficient...
iterator findValue(const ElemTy &V) const
findValue - Return an iterator to the specified value.
iterator insert(const ElemTy &Data)
insert - Insert a new value into the union/find set, ignoring the request if the value already exists...
member_iterator member_end() const
typename std::set< ECValue, ECValueComparator >::const_iterator iterator
iterator* - Provides a way to iterate over all values in the set.
member_iterator member_begin(iterator I) const
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
const ElemTy & getLeaderValue(const ElemTy &V) const
getLeaderValue - Return the leader for the specified value that is in the set.
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Type * getResultElementType() const
PointerType * getType() const
Global values are always pointers.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
An instruction for reading from memory.
Value * getPointerOperand()
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
This analysis provides dependence information for the memory accesses of a loop.
Result run(Function &F, FunctionAnalysisManager &AM)
bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
const LoopAccessInfo & getInfo(Loop &L)
Drive the analysis of memory accesses in the loop.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
bool isInvariant(Value *V) const
Returns true if value V is loop invariant.
void print(raw_ostream &OS, unsigned Depth=0) const
Print the information about the memory accesses in the loop.
static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetTransformInfo *TTI, const TargetLibraryInfo *TLI, AAResults *AA, DominatorTree *DT, LoopInfo *LI)
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
Represents a single loop in the control flow graph.
std::string getLocStr() const
Return a string containing the debug location of the loop (file name + line number if present,...
bool isAnnotatedParallel() const
Returns true if the loop is annotated parallel.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
ArrayRef< MDOperand > operands() const
Tracking metadata reference owned by Metadata.
This class implements a map that also provides access to all stored values in a deterministic order.
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
ArrayRef< unsigned > getOrderForAccess(Value *Ptr, bool IsWrite) const
Return the program order indices for the access location (Ptr, IsWrite).
bool isSafeForAnyVectorWidth() const
Return true if the number of elements that are safe to operate on simultaneously is not bounded.
bool areDepsSafe(const DepCandidates &AccessSets, const MemAccessInfoList &CheckDeps)
Check whether the dependencies between the accesses are safe.
const SmallVectorImpl< Instruction * > & getMemoryInstructions() const
The vector of memory access instructions.
const Loop * getInnermostLoop() const
uint64_t getMaxSafeVectorWidthInBits() const
Return the number of elements that are safe to operate on simultaneously, multiplied by the size of t...
bool isSafeForVectorization() const
No memory dependence was encountered that would inhibit vectorization.
const SmallVectorImpl< Dependence > * getDependences() const
Returns the memory dependences.
DenseMap< std::pair< const SCEV *, Type * >, std::pair< const SCEV *, const SCEV * > > & getPointerBounds()
SmallVector< Instruction *, 4 > getInstructionsForAccess(Value *Ptr, bool isWrite) const
Find the set of instructions that read or write via Ptr.
VectorizationSafetyStatus
Type to keep track of the status of the dependence check.
@ PossiblySafeWithRtChecks
bool shouldRetryWithRuntimeCheck() const
In same cases when the dependency check fails we can still vectorize the loop with a dynamic array ac...
void addAccess(StoreInst *SI)
Register the location (instructions are given increasing numbers) of a write access.
PointerIntPair< Value *, 1, bool > MemAccessInfo
Representation for a specific memory location.
static MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
LocationSize Size
The maximum size of the location, in address-units, or UnknownSize if the size is not known.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
const Value * Ptr
The address of the start of the location.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
void print(raw_ostream &OS, unsigned Depth) const
Print the SCEV mappings done by the Predicated Scalar Evolution.
const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
Holds information about the memory runtime legality checks to verify that a group of pointers do not ...
bool Need
This flag indicates if we need to add the runtime check.
void reset()
Reset the state of the pointer runtime information.
unsigned getNumberOfChecks() const
Returns the number of run-time checks required according to needsChecking.
void printChecks(raw_ostream &OS, const SmallVectorImpl< RuntimePointerCheck > &Checks, unsigned Depth=0) const
Print Checks.
bool needsChecking(const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const
Decide if we need to add a check between two groups of pointers, according to needsChecking.
void print(raw_ostream &OS, unsigned Depth=0) const
Print the list run-time memory checks necessary.
SmallVector< RuntimeCheckingPtrGroup, 2 > CheckingGroups
Holds a partitioning of pointers into "check groups".
void generateChecks(MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies)
Generate the checks and store it.
static bool arePointersInSamePartition(const SmallVectorImpl< int > &PtrToPartition, unsigned PtrIdx1, unsigned PtrIdx2)
Check if pointers are in the same partition.
SmallVector< PointerInfo, 2 > Pointers
Information about the pointers that may require checking.
void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy, bool WritePtr, unsigned DepSetId, unsigned ASId, PredicatedScalarEvolution &PSE, bool NeedsFreeze)
Insert a pointer and calculate the start and end SCEVs.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
const Loop * getLoop() const
This class represents a constant integer value.
This is the base class for unary integral cast operator classes.
This node represents multiplication of some number of SCEVs.
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
virtual void print(raw_ostream &OS, unsigned Depth=0) const =0
Prints a textual representation of this predicate with an indentation of Depth.
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
static LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
The main scalar evolution driver.
bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
const SCEV * getConstant(ConstantInt *V)
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
const SCEV * getCouldNotCompute()
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
StringRef getName() const
Return a constant reference to the value's name.
constexpr ScalarTy getFixedValue() const
constexpr bool isNonZero() const
An efficient, type-erasing, non-owning reference to a callable.
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
friend const_iterator end(StringRef path)
Get end iterator over path.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
std::optional< int > getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, Value *PtrB, const DataLayout &DL, ScalarEvolution &SE, bool StrictCheck=false, bool CheckType=true)
Returns the distance between the pointers PtrA and PtrB iff they are compatible and it is possible to...
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
unsigned getPointerAddressSpace(const Type *T)
std::optional< const MDOperand * > findStringMetadataForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for loop.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isPointerTy(const Type *T)
std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
bool sortPtrAccesses(ArrayRef< Value * > VL, Type *ElemTy, const DataLayout &DL, ScalarEvolution &SE, SmallVectorImpl< unsigned > &SortedIndices)
Attempt to sort the pointers in VL and return the sorted indices in SortedIndices,...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
const SCEV * replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &PtrToStride, Value *Ptr)
Return the SCEV corresponding to a pointer with the symbolic stride replaced with constant one,...
bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, ScalarEvolution &SE, bool CheckType=true)
Returns true if the memory operations A and B are consecutive.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
OutputIt copy(R &&Range, OutputIt Out)
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
gep_type_iterator gep_type_begin(const User *GEP)
void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=6)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
IR Values for the lower and upper bounds of a pointer evolution.
MDNode * Scope
The tag for alias scope specification (used with noalias).
MDNode * TBAA
The tag for type-based alias analysis.
MDNode * NoAlias
The tag specifying the noalias scope.
A special type used by analysis passes to provide an address that identifies that particular analysis...
Dependece between memory access instructions.
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
DepType Type
The type of the dependence.
bool isPossiblyBackward() const
May be a lexically backward dependence type (includes Unknown).
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
bool isForward() const
Lexically forward dependence.
bool isBackward() const
Lexically backward dependence.
void print(raw_ostream &OS, unsigned Depth, const SmallVectorImpl< Instruction * > &Instrs) const
Print the dependence.
DepType
The type of the dependence.
@ BackwardVectorizableButPreventsForwarding
@ ForwardButPreventsForwarding
static const char * DepName[]
String version of the types.
static VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
unsigned AddressSpace
Address space of the involved pointers.
bool addPointer(unsigned Index, const RuntimePointerChecking &RtCheck)
Tries to add the pointer recorded in RtCheck at index Index to this pointer checking group.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
RuntimeCheckingPtrGroup(unsigned Index, const RuntimePointerChecking &RtCheck)
Create a new pointer checking group containing a single pointer, with index Index in RtCheck.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
SmallVector< unsigned, 2 > Members
Indices of all the pointers that constitute this grouping.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.
bool IsWritePtr
Holds the information if this pointer is used for writing to memory.
unsigned DependencySetId
Holds the id of the set of pointers that could be dependent because of a shared underlying object.
unsigned AliasSetId
Holds the id of the disjoint alias set to which this pointer belongs.
static const unsigned MaxVectorWidth
Maximum SIMD width.
static unsigned VectorizationFactor
VF as overridden by the user.
static unsigned RuntimeMemoryCheckThreshold
\When performing memory disambiguation checks at runtime do not make more than this number of compari...
static bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static unsigned VectorizationInterleave
Interleave factor as overridden by the user.
static bool HoistRuntimeChecks
Function object to check whether the first component of a container supported by std::get (like std::...