29#include "llvm/IR/IntrinsicsAMDGPU.h"
36#define DEBUG_TYPE "amdgpu-lower-kernel-arguments"
80 if (Arg.hasNoAliasAttr() && !Arg.use_empty())
83 if (NoAliasArgs.
empty())
91 for (
unsigned I = 0u;
I < NoAliasArgs.
size(); ++
I) {
94 NewScopes.
insert({Arg, NewScope});
99 Inst != InstEnd; ++Inst) {
107 if (
Call->doesNotAccessMemory())
111 if (!Arg->getType()->isPointerTy())
126 for (
const Value *Val : PtrArgs) {
132 bool RequiresNoCaptureBefore =
false;
133 bool UsesUnknownObject =
false;
134 bool UsesAliasingPtr =
false;
136 for (
const Value *Val : ObjSet) {
141 if (!Arg->hasAttribute(Attribute::NoAlias))
142 UsesAliasingPtr =
true;
144 UsesAliasingPtr =
true;
147 RequiresNoCaptureBefore =
true;
149 UsesUnknownObject =
true;
152 if (UsesUnknownObject)
156 for (
const Argument *Arg : NoAliasArgs) {
160 if (!RequiresNoCaptureBefore ||
171 Inst->setMetadata(LLVMContext::MD_noalias, NewMD);
175 if (!UsesAliasingPtr)
176 for (
const Argument *Arg : NoAliasArgs) {
177 if (ObjSet.
count(Arg))
178 Scopes.push_back(NewScopes[Arg]);
182 if (!Scopes.empty()) {
186 Inst->setMetadata(LLVMContext::MD_alias_scope, NewMD);
203 const Align KernArgBaseAlign(16);
204 const uint64_t BaseOffset = ST.getExplicitKernelArgOffset();
208 const uint64_t TotalKernArgSize = ST.getKernArgSegmentSize(
F, MaxAlign);
209 if (TotalKernArgSize == 0)
213 Builder.CreateIntrinsic(Intrinsic::amdgcn_kernarg_segment_ptr, {},
214 nullptr,
F.getName() +
".kernarg.segment");
215 KernArgSegment->
addRetAttr(Attribute::NonNull);
224 const bool IsByRef = Arg.hasByRefAttr();
225 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
226 MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt;
227 Align ABITypeAlign =
DL.getValueOrABITypeAlignment(ParamAlign, ArgTy);
230 uint64_t AllocSize =
DL.getTypeAllocSize(ArgTy);
232 uint64_t EltOffset =
alignTo(ExplicitArgOffset, ABITypeAlign) + BaseOffset;
233 ExplicitArgOffset =
alignTo(ExplicitArgOffset, ABITypeAlign) + AllocSize;
236 if (Arg.use_empty() || Arg.hasInRegAttr())
242 Value *ArgOffsetPtr = Builder.CreateConstInBoundsGEP1_64(
243 Builder.getInt8Ty(), KernArgSegment, EltOffset,
244 Arg.getName() +
".byval.kernarg.offset");
246 Value *CastOffsetPtr =
247 Builder.CreateAddrSpaceCast(ArgOffsetPtr, Arg.
getType());
259 !ST.hasUsableDSOffset())
264 bool IsV3 = VT && VT->getNumElements() == 3;
269 int64_t AlignDownOffset =
alignDown(EltOffset, 4);
270 int64_t OffsetDiff = EltOffset - AlignDownOffset;
272 KernArgBaseAlign, DoShiftOpt ? AlignDownOffset : EltOffset);
284 ArgPtr = Builder.CreateConstInBoundsGEP1_64(
285 Builder.getInt8Ty(), KernArgSegment, AlignDownOffset,
286 Arg.getName() +
".kernarg.offset.align.down");
289 ArgPtr = Builder.CreateConstInBoundsGEP1_64(
290 Builder.getInt8Ty(), KernArgSegment, EltOffset,
291 Arg.getName() +
".kernarg.offset");
292 AdjustedArgTy = ArgTy;
295 if (IsV3 &&
Size >= 32) {
298 AdjustedArgTy = V4Ty;
302 Builder.CreateAlignedLoad(AdjustedArgTy, ArgPtr, AdjustedAlign);
303 Load->setMetadata(LLVMContext::MD_invariant_load,
MDNode::get(Ctx, {}));
307 if (Arg.hasAttribute(Attribute::NoUndef))
308 Load->setMetadata(LLVMContext::MD_noundef,
MDNode::get(Ctx, {}));
310 if (Arg.hasAttribute(Attribute::Range)) {
312 Arg.getAttribute(Attribute::Range).getValueAsConstantRange();
313 Load->setMetadata(LLVMContext::MD_range,
318 if (Arg.hasNonNullAttr())
319 Load->setMetadata(LLVMContext::MD_nonnull,
MDNode::get(Ctx, {}));
321 uint64_t DerefBytes = Arg.getDereferenceableBytes();
322 if (DerefBytes != 0) {
324 LLVMContext::MD_dereferenceable,
327 ConstantInt::get(Builder.getInt64Ty(), DerefBytes))));
330 uint64_t DerefOrNullBytes = Arg.getDereferenceableOrNullBytes();
331 if (DerefOrNullBytes != 0) {
333 LLVMContext::MD_dereferenceable_or_null,
336 DerefOrNullBytes))));
339 if (
MaybeAlign ParamAlign = Arg.getParamAlign()) {
341 LLVMContext::MD_align,
343 Builder.getInt64Ty(), ParamAlign->value()))));
348 Value *ExtractBits = OffsetDiff == 0 ?
349 Load : Builder.CreateLShr(Load, OffsetDiff * 8);
352 Value *Trunc = Builder.CreateTrunc(ExtractBits, ArgIntTy);
353 Value *NewVal = Builder.CreateBitCast(Trunc, ArgTy,
354 Arg.getName() +
".load");
358 Arg.getName() +
".load");
361 Load->setName(Arg.getName() +
".load");
362 Arg.replaceAllUsesWith(Load);
372bool AMDGPULowerKernelArguments::runOnFunction(
Function &
F) {
373 auto &TPC = getAnalysis<TargetPassConfig>();
374 const TargetMachine &TM = TPC.getTM<TargetMachine>();
375 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
380 "AMDGPU Lower Kernel Arguments",
false,
false)
384char AMDGPULowerKernelArguments::
ID = 0;
387 return new AMDGPULowerKernelArguments();
static void addAliasScopeMetadata(Function &F, const DataLayout &DL, DominatorTree &DT)
static BasicBlock::iterator getInsertPt(BasicBlock &BB)
static bool lowerKernelArguments(Function &F, const TargetMachine &TM, DominatorTree &DT)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static cl::opt< bool > NoAliases("csky-no-aliases", cl::desc("Disable the emission of assembler pseudo instructions"), cl::init(false), cl::Hidden)
static bool runOnFunction(Function &F, bool PostInlining)
AMD GCN specific subclass of TargetSubtarget.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This is the interface for a metadata-based scoped no-alias analysis.
Target-Independent Code Generator Pass Configuration Options pass.
PreservedAnalyses run(Function &, FunctionAnalysisManager &)
an instruction to allocate memory on the stack
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesAll()
Set by analyses that do not transform their input at all.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
static LLVM_ABI Attribute getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes)
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
InstListType::iterator iterator
Instruction iterators...
Represents analyses that only rely on functions' control flow.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
This class represents a function call, abstracting a target machine's calling convention.
This class represents a range of values.
A parsed version of the target data layout string in and methods for querying it.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Analysis pass which computes a DominatorTree.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
FunctionPass class - This class is used to implement most global optimizations.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Class to represent integer types.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
MDNode * createAnonymousAliasScope(MDNode *Domain, StringRef Name=StringRef())
Return metadata appropriate for an alias scope root node.
LLVM_ABI ConstantAsMetadata * createConstant(Constant *C)
Return the given constant as metadata.
LLVM_ABI MDNode * createRange(const APInt &Lo, const APInt &Hi)
Return metadata describing the range [Lo, Hi).
MDNode * createAnonymousAliasScopeDomain(StringRef Name=StringRef())
Return metadata appropriate for an alias scope domain node.
static LLVM_ABI MDNode * concatenate(MDNode *A, MDNode *B)
Methods for metadata merging.
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
static LLVM_ABI std::optional< MemoryLocation > getOrNone(const Instruction *Inst)
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
void insert_range(Range &&R)
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Primary interface to the complete machine description for the target machine.
const STC & getSubtarget(const Function &F) const
This method returns a pointer to the specified type of TargetSubtargetInfo.
Target-Independent Code Generator Pass Configuration Options.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isAggregateType() const
Return true if the type is an aggregate type.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AMDGPU_KERNEL
Used for AMDGPU code object kernels.
This is an optimization pass for GlobalISel generic memory operations.
InstIterator< SymbolTableList< BasicBlock >, Function::iterator, BasicBlock::iterator, Instruction > inst_iterator
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
inst_iterator inst_begin(Function *F)
LLVM_ABI bool PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, const Instruction *I, const DominatorTree *DT, bool IncludeI=false, unsigned MaxUsesToExplore=0, const LoopInfo *LI=nullptr)
PointerMayBeCapturedBefore - Return true if this pointer value may be captured by the enclosing funct...
FunctionPass * createAMDGPULowerKernelArgumentsPass()
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
inst_iterator inst_end(Function *F)
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI bool isEscapeSource(const Value *V)
Returns true if the pointer is one which would have been considered an escape by isNotCapturedBefore.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool capturesAnything(CaptureComponents CC)
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
This struct is a compact representation of a valid (non-zero power of two) alignment.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.