LLVM 22.0.0git
LoopVectorize.cpp
Go to the documentation of this file.
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10// and generates target-independent LLVM-IR.
11// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12// of instructions in order to estimate the profitability of vectorization.
13//
14// The loop vectorizer combines consecutive loop iterations into a single
15// 'wide' iteration. After this transformation the index is incremented
16// by the SIMD vector width, and not by one.
17//
18// This pass has three parts:
19// 1. The main loop pass that drives the different parts.
20// 2. LoopVectorizationLegality - A unit that checks for the legality
21// of the vectorization.
22// 3. InnerLoopVectorizer - A unit that performs the actual
23// widening of instructions.
24// 4. LoopVectorizationCostModel - A unit that checks for the profitability
25// of vectorization. It decides on the optimal vector width, which
26// can be one, if vectorization is not profitable.
27//
28// There is a development effort going on to migrate loop vectorizer to the
29// VPlan infrastructure and to introduce outer loop vectorization support (see
30// docs/VectorizationPlan.rst and
31// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32// purpose, we temporarily introduced the VPlan-native vectorization path: an
33// alternative vectorization path that is natively implemented on top of the
34// VPlan infrastructure. See EnableVPlanNativePath for enabling.
35//
36//===----------------------------------------------------------------------===//
37//
38// The reduction-variable vectorization is based on the paper:
39// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40//
41// Variable uniformity checks are inspired by:
42// Karrenberg, R. and Hack, S. Whole Function Vectorization.
43//
44// The interleaved access vectorization is based on the paper:
45// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
46// Data for SIMD
47//
48// Other ideas/concepts are from:
49// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50//
51// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
52// Vectorizing Compilers.
53//
54//===----------------------------------------------------------------------===//
55
58#include "VPRecipeBuilder.h"
59#include "VPlan.h"
60#include "VPlanAnalysis.h"
61#include "VPlanCFG.h"
62#include "VPlanHelpers.h"
63#include "VPlanPatternMatch.h"
64#include "VPlanTransforms.h"
65#include "VPlanUtils.h"
66#include "VPlanVerifier.h"
67#include "llvm/ADT/APInt.h"
68#include "llvm/ADT/ArrayRef.h"
69#include "llvm/ADT/DenseMap.h"
71#include "llvm/ADT/Hashing.h"
72#include "llvm/ADT/MapVector.h"
73#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/Statistic.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/Twine.h"
79#include "llvm/ADT/TypeSwitch.h"
84#include "llvm/Analysis/CFG.h"
101#include "llvm/IR/Attributes.h"
102#include "llvm/IR/BasicBlock.h"
103#include "llvm/IR/CFG.h"
104#include "llvm/IR/Constant.h"
105#include "llvm/IR/Constants.h"
106#include "llvm/IR/DataLayout.h"
107#include "llvm/IR/DebugInfo.h"
108#include "llvm/IR/DebugLoc.h"
109#include "llvm/IR/DerivedTypes.h"
111#include "llvm/IR/Dominators.h"
112#include "llvm/IR/Function.h"
113#include "llvm/IR/IRBuilder.h"
114#include "llvm/IR/InstrTypes.h"
115#include "llvm/IR/Instruction.h"
116#include "llvm/IR/Instructions.h"
118#include "llvm/IR/Intrinsics.h"
119#include "llvm/IR/MDBuilder.h"
120#include "llvm/IR/Metadata.h"
121#include "llvm/IR/Module.h"
122#include "llvm/IR/Operator.h"
123#include "llvm/IR/PatternMatch.h"
125#include "llvm/IR/Type.h"
126#include "llvm/IR/Use.h"
127#include "llvm/IR/User.h"
128#include "llvm/IR/Value.h"
129#include "llvm/IR/Verifier.h"
130#include "llvm/Support/Casting.h"
132#include "llvm/Support/Debug.h"
147#include <algorithm>
148#include <cassert>
149#include <cmath>
150#include <cstdint>
151#include <functional>
152#include <iterator>
153#include <limits>
154#include <memory>
155#include <string>
156#include <tuple>
157#include <utility>
158
159using namespace llvm;
160using namespace SCEVPatternMatch;
161
162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
164
165#ifndef NDEBUG
166const char VerboseDebug[] = DEBUG_TYPE "-verbose";
167#endif
168
169STATISTIC(LoopsVectorized, "Number of loops vectorized");
170STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized, "Number of early exit loops vectorized");
173
175 "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
176 cl::desc("Enable vectorization of epilogue loops."));
177
179 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
180 cl::desc("When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
182 "loops."));
183
185 "epilogue-vectorization-minimum-VF", cl::Hidden,
186 cl::desc("Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
188
189/// Loops with a known constant trip count below this number are vectorized only
190/// if no scalar iteration overheads are incurred.
192 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
193 cl::desc("Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
195 "are incurred."));
196
198 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
199 cl::desc("The maximum allowed number of runtime memory checks"));
200
201// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
202// that predication is preferred, and this lists all options. I.e., the
203// vectorizer will try to fold the tail-loop (epilogue) into the vector body
204// and predicate the instructions accordingly. If tail-folding fails, there are
205// different fallback strategies depending on these values:
212} // namespace PreferPredicateTy
213
215 "prefer-predicate-over-epilogue",
218 cl::desc("Tail-folding and predication preferences over creating a scalar "
219 "epilogue loop."),
221 "scalar-epilogue",
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
226 "folding fails."),
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
231
233 "force-tail-folding-style", cl::desc("Force the tail folding style"),
236 clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
252
254 "enable-wide-lane-mask", cl::init(false), cl::Hidden,
255 cl::desc("Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
257
259 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
260 cl::desc("Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
262
264 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
265 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
266
267/// An interleave-group may need masking if it resides in a block that needs
268/// predication, or in order to mask away gaps.
270 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
271 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
272
274 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
275 cl::desc("A flag that overrides the target's number of scalar registers."));
276
278 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
279 cl::desc("A flag that overrides the target's number of vector registers."));
280
282 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
283 cl::desc("A flag that overrides the target's max interleave factor for "
284 "scalar loops."));
285
287 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
288 cl::desc("A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
290
292 "force-target-instruction-cost", cl::init(0), cl::Hidden,
293 cl::desc("A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
296
298 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
299 cl::desc(
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
302
304 "small-loop-cost", cl::init(20), cl::Hidden,
305 cl::desc(
306 "The cost of a loop that is considered 'small' by the interleaver."));
307
309 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
310 cl::desc("Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
313
314// Runtime interleave loops for load/store throughput.
316 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
317 cl::desc(
318 "Enable runtime interleaving until load/store ports are saturated"));
319
320/// The number of stores in a loop that are allowed to need predication.
322 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
323 cl::desc("Max number of stores to be predicated behind an if."));
324
326 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
327 cl::desc("Count the induction variable only once when interleaving"));
328
330 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
331 cl::desc("Enable if predication of stores during vectorization."));
332
334 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
335 cl::desc("The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
337
338static cl::opt<bool>
339 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
341 cl::desc("Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
343
345 "force-ordered-reductions", cl::init(false), cl::Hidden,
346 cl::desc("Enable the vectorisation of loops with in-order (strict) "
347 "FP reductions"));
348
350 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
351 cl::desc(
352 "Prefer predicating a reduction operation over an after loop select."));
353
355 "enable-vplan-native-path", cl::Hidden,
356 cl::desc("Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
358
360 llvm::VerifyEachVPlan("vplan-verify-each",
361#ifdef EXPENSIVE_CHECKS
362 cl::init(true),
363#else
364 cl::init(false),
365#endif
367 cl::desc("Verfiy VPlans after VPlan transforms."));
368
369// This flag enables the stress testing of the VPlan H-CFG construction in the
370// VPlan-native vectorization path. It must be used in conjuction with
371// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
372// verification of the H-CFGs built.
374 "vplan-build-stress-test", cl::init(false), cl::Hidden,
375 cl::desc(
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
379
381 "interleave-loops", cl::init(true), cl::Hidden,
382 cl::desc("Enable loop interleaving in Loop vectorization passes"));
384 "vectorize-loops", cl::init(true), cl::Hidden,
385 cl::desc("Run the Loop vectorization passes"));
386
388 "force-widen-divrem-via-safe-divisor", cl::Hidden,
389 cl::desc(
390 "Override cost based safe divisor widening for div/rem instructions"));
391
393 "vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true),
395 cl::desc("Try wider VFs if they enable the use of vector variants"));
396
398 "enable-early-exit-vectorization", cl::init(true), cl::Hidden,
399 cl::desc(
400 "Enable vectorization of early exit loops with uncountable exits."));
401
403 "vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden,
404 cl::desc("Discard VFs if their register pressure is too high."));
405
406// Likelyhood of bypassing the vectorized loop because there are zero trips left
407// after prolog. See `emitIterationCountCheck`.
408static constexpr uint32_t MinItersBypassWeights[] = {1, 127};
409
410/// A helper function that returns true if the given type is irregular. The
411/// type is irregular if its allocated size doesn't equal the store size of an
412/// element of the corresponding vector type.
413static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
414 // Determine if an array of N elements of type Ty is "bitcast compatible"
415 // with a <N x Ty> vector.
416 // This is only true if there is no padding between the array elements.
417 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
418}
419
420/// A version of ScalarEvolution::getSmallConstantTripCount that returns an
421/// ElementCount to include loops whose trip count is a function of vscale.
423 const Loop *L) {
424 if (unsigned ExpectedTC = SE->getSmallConstantTripCount(L))
425 return ElementCount::getFixed(ExpectedTC);
426
427 const SCEV *BTC = SE->getBackedgeTakenCount(L);
429 return ElementCount::getFixed(0);
430
431 const SCEV *ExitCount = SE->getTripCountFromExitCount(BTC, BTC->getType(), L);
432 if (isa<SCEVVScale>(ExitCount))
434
435 const APInt *Scale;
436 if (match(ExitCount, m_scev_Mul(m_scev_APInt(Scale), m_SCEVVScale())))
437 if (cast<SCEVMulExpr>(ExitCount)->hasNoUnsignedWrap())
438 if (Scale->getActiveBits() <= 32)
440
441 return ElementCount::getFixed(0);
442}
443
444/// Returns "best known" trip count, which is either a valid positive trip count
445/// or std::nullopt when an estimate cannot be made (including when the trip
446/// count would overflow), for the specified loop \p L as defined by the
447/// following procedure:
448/// 1) Returns exact trip count if it is known.
449/// 2) Returns expected trip count according to profile data if any.
450/// 3) Returns upper bound estimate if known, and if \p CanUseConstantMax.
451/// 4) Returns std::nullopt if all of the above failed.
452static std::optional<ElementCount>
454 bool CanUseConstantMax = true) {
455 // Check if exact trip count is known.
456 if (auto ExpectedTC = getSmallConstantTripCount(PSE.getSE(), L))
457 return ExpectedTC;
458
459 // Check if there is an expected trip count available from profile data.
461 if (auto EstimatedTC = getLoopEstimatedTripCount(L))
462 return ElementCount::getFixed(*EstimatedTC);
463
464 if (!CanUseConstantMax)
465 return std::nullopt;
466
467 // Check if upper bound estimate is known.
468 if (unsigned ExpectedTC = PSE.getSmallConstantMaxTripCount())
469 return ElementCount::getFixed(ExpectedTC);
470
471 return std::nullopt;
472}
473
474namespace {
475// Forward declare GeneratedRTChecks.
476class GeneratedRTChecks;
477
478using SCEV2ValueTy = DenseMap<const SCEV *, Value *>;
479} // namespace
480
481namespace llvm {
482
484
485/// InnerLoopVectorizer vectorizes loops which contain only one basic
486/// block to a specified vectorization factor (VF).
487/// This class performs the widening of scalars into vectors, or multiple
488/// scalars. This class also implements the following features:
489/// * It inserts an epilogue loop for handling loops that don't have iteration
490/// counts that are known to be a multiple of the vectorization factor.
491/// * It handles the code generation for reduction variables.
492/// * Scalarization (implementation using scalars) of un-vectorizable
493/// instructions.
494/// InnerLoopVectorizer does not perform any vectorization-legality
495/// checks, and relies on the caller to check for the different legality
496/// aspects. The InnerLoopVectorizer relies on the
497/// LoopVectorizationLegality class to provide information about the induction
498/// and reduction variables that were found to a given vectorization factor.
500public:
504 ElementCount VecWidth, unsigned UnrollFactor,
506 GeneratedRTChecks &RTChecks, VPlan &Plan)
507 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TTI(TTI), AC(AC),
508 VF(VecWidth), UF(UnrollFactor), Builder(PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
512
513 virtual ~InnerLoopVectorizer() = default;
514
515 /// Creates a basic block for the scalar preheader. Both
516 /// EpilogueVectorizerMainLoop and EpilogueVectorizerEpilogueLoop overwrite
517 /// the method to create additional blocks and checks needed for epilogue
518 /// vectorization.
520
521 /// Fix the vectorized code, taking care of header phi's, and more.
523
524 /// Fix the non-induction PHIs in \p Plan.
526
527 /// Returns the original loop trip count.
528 Value *getTripCount() const { return TripCount; }
529
530 /// Used to set the trip count after ILV's construction and after the
531 /// preheader block has been executed. Note that this always holds the trip
532 /// count of the original loop for both main loop and epilogue vectorization.
533 void setTripCount(Value *TC) { TripCount = TC; }
534
535protected:
537
538 /// Create and return a new IR basic block for the scalar preheader whose name
539 /// is prefixed with \p Prefix.
541
542 /// Allow subclasses to override and print debug traces before/after vplan
543 /// execution, when trace information is requested.
544 virtual void printDebugTracesAtStart() {}
545 virtual void printDebugTracesAtEnd() {}
546
547 /// The original loop.
549
550 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
551 /// dynamic knowledge to simplify SCEV expressions and converts them to a
552 /// more usable form.
554
555 /// Loop Info.
557
558 /// Dominator Tree.
560
561 /// Target Transform Info.
563
564 /// Assumption Cache.
566
567 /// The vectorization SIMD factor to use. Each vector will have this many
568 /// vector elements.
570
571 /// The vectorization unroll factor to use. Each scalar is vectorized to this
572 /// many different vector instructions.
573 unsigned UF;
574
575 /// The builder that we use
577
578 // --- Vectorization state ---
579
580 /// Trip count of the original loop.
581 Value *TripCount = nullptr;
582
583 /// The profitablity analysis.
585
586 /// Structure to hold information about generated runtime checks, responsible
587 /// for cleaning the checks, if vectorization turns out unprofitable.
588 GeneratedRTChecks &RTChecks;
589
591
592 /// The vector preheader block of \p Plan, used as target for check blocks
593 /// introduced during skeleton creation.
595};
596
597/// Encapsulate information regarding vectorization of a loop and its epilogue.
598/// This information is meant to be updated and used across two stages of
599/// epilogue vectorization.
602 unsigned MainLoopUF = 0;
604 unsigned EpilogueUF = 0;
607 Value *TripCount = nullptr;
610
612 ElementCount EVF, unsigned EUF,
614 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF),
616 assert(EUF == 1 &&
617 "A high UF for the epilogue loop is likely not beneficial.");
618 }
619};
620
621/// An extension of the inner loop vectorizer that creates a skeleton for a
622/// vectorized loop that has its epilogue (residual) also vectorized.
623/// The idea is to run the vplan on a given loop twice, firstly to setup the
624/// skeleton and vectorize the main loop, and secondly to complete the skeleton
625/// from the first step and vectorize the epilogue. This is achieved by
626/// deriving two concrete strategy classes from this base class and invoking
627/// them in succession from the loop vectorizer planner.
629public:
639
640 /// Holds and updates state information required to vectorize the main loop
641 /// and its epilogue in two separate passes. This setup helps us avoid
642 /// regenerating and recomputing runtime safety checks. It also helps us to
643 /// shorten the iteration-count-check path length for the cases where the
644 /// iteration count of the loop is so small that the main vector loop is
645 /// completely skipped.
647
648protected:
650};
651
652/// A specialized derived class of inner loop vectorizer that performs
653/// vectorization of *main* loops in the process of vectorizing loops and their
654/// epilogues.
656public:
667 /// Implements the interface for creating a vectorized skeleton using the
668 /// *main loop* strategy (i.e., the first pass of VPlan execution).
670
671protected:
672 /// Introduces a new VPIRBasicBlock for \p CheckIRBB to Plan between the
673 /// vector preheader and its predecessor, also connecting the new block to the
674 /// scalar preheader.
675 void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB);
676
677 // Create a check to see if the main vector loop should be executed
679 unsigned UF) const;
680
681 /// Emits an iteration count bypass check once for the main loop (when \p
682 /// ForEpilogue is false) and once for the epilogue loop (when \p
683 /// ForEpilogue is true).
685 bool ForEpilogue);
686 void printDebugTracesAtStart() override;
687 void printDebugTracesAtEnd() override;
688};
689
690// A specialized derived class of inner loop vectorizer that performs
691// vectorization of *epilogue* loops in the process of vectorizing loops and
692// their epilogues.
694public:
701 GeneratedRTChecks &Checks, VPlan &Plan)
703 Checks, Plan, EPI.EpilogueVF,
704 EPI.EpilogueVF, EPI.EpilogueUF) {}
705 /// Implements the interface for creating a vectorized skeleton using the
706 /// *epilogue loop* strategy (i.e., the second pass of VPlan execution).
708
709protected:
710 void printDebugTracesAtStart() override;
711 void printDebugTracesAtEnd() override;
712};
713} // end namespace llvm
714
715/// Look for a meaningful debug location on the instruction or its operands.
717 if (!I)
718 return DebugLoc::getUnknown();
719
721 if (I->getDebugLoc() != Empty)
722 return I->getDebugLoc();
723
724 for (Use &Op : I->operands()) {
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
728 }
729
730 return I->getDebugLoc();
731}
732
733/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
734/// is passed, the message relates to that particular instruction.
735#ifndef NDEBUG
736static void debugVectorizationMessage(const StringRef Prefix,
737 const StringRef DebugMsg,
738 Instruction *I) {
739 dbgs() << "LV: " << Prefix << DebugMsg;
740 if (I != nullptr)
741 dbgs() << " " << *I;
742 else
743 dbgs() << '.';
744 dbgs() << '\n';
745}
746#endif
747
748/// Create an analysis remark that explains why vectorization failed
749///
750/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
751/// RemarkName is the identifier for the remark. If \p I is passed it is an
752/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
753/// the location of the remark. If \p DL is passed, use it as debug location for
754/// the remark. \return the remark object that can be streamed to.
755static OptimizationRemarkAnalysis
756createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
757 Instruction *I, DebugLoc DL = {}) {
758 BasicBlock *CodeRegion = I ? I->getParent() : TheLoop->getHeader();
759 // If debug location is attached to the instruction, use it. Otherwise if DL
760 // was not provided, use the loop's.
761 if (I && I->getDebugLoc())
762 DL = I->getDebugLoc();
763 else if (!DL)
764 DL = TheLoop->getStartLoc();
765
766 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
767}
768
769namespace llvm {
770
771/// Return a value for Step multiplied by VF.
773 int64_t Step) {
774 assert(Ty->isIntegerTy() && "Expected an integer step");
775 ElementCount VFxStep = VF.multiplyCoefficientBy(Step);
776 assert(isPowerOf2_64(VF.getKnownMinValue()) && "must pass power-of-2 VF");
777 if (VF.isScalable() && isPowerOf2_64(Step)) {
778 return B.CreateShl(
779 B.CreateVScale(Ty),
780 ConstantInt::get(Ty, Log2_64(VFxStep.getKnownMinValue())), "", true);
781 }
782 return B.CreateElementCount(Ty, VFxStep);
783}
784
785/// Return the runtime value for VF.
787 return B.CreateElementCount(Ty, VF);
788}
789
791 const StringRef OREMsg, const StringRef ORETag,
792 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
793 Instruction *I) {
794 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
795 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
796 ORE->emit(
797 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
798 << "loop not vectorized: " << OREMsg);
799}
800
801/// Reports an informative message: print \p Msg for debugging purposes as well
802/// as an optimization remark. Uses either \p I as location of the remark, or
803/// otherwise \p TheLoop. If \p DL is passed, use it as debug location for the
804/// remark. If \p DL is passed, use it as debug location for the remark.
805static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
807 Loop *TheLoop, Instruction *I = nullptr,
808 DebugLoc DL = {}) {
810 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
811 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop,
812 I, DL)
813 << Msg);
814}
815
816/// Report successful vectorization of the loop. In case an outer loop is
817/// vectorized, prepend "outer" to the vectorization remark.
819 VectorizationFactor VF, unsigned IC) {
821 "Vectorizing: ", TheLoop->isInnermost() ? "innermost loop" : "outer loop",
822 nullptr));
823 StringRef LoopType = TheLoop->isInnermost() ? "" : "outer ";
824 ORE->emit([&]() {
825 return OptimizationRemark(LV_NAME, "Vectorized", TheLoop->getStartLoc(),
826 TheLoop->getHeader())
827 << "vectorized " << LoopType << "loop (vectorization width: "
828 << ore::NV("VectorizationFactor", VF.Width)
829 << ", interleaved count: " << ore::NV("InterleaveCount", IC) << ")";
830 });
831}
832
833} // end namespace llvm
834
835namespace llvm {
836
837// Loop vectorization cost-model hints how the scalar epilogue loop should be
838// lowered.
840
841 // The default: allowing scalar epilogues.
843
844 // Vectorization with OptForSize: don't allow epilogues.
846
847 // A special case of vectorisation with OptForSize: loops with a very small
848 // trip count are considered for vectorization under OptForSize, thereby
849 // making sure the cost of their loop body is dominant, free of runtime
850 // guards and scalar iteration overheads.
852
853 // Loop hint predicate indicating an epilogue is undesired.
855
856 // Directive indicating we must either tail fold or not vectorize
858};
859
860/// LoopVectorizationCostModel - estimates the expected speedups due to
861/// vectorization.
862/// In many cases vectorization is not profitable. This can happen because of
863/// a number of reasons. In this class we mainly attempt to predict the
864/// expected speedup/slowdowns due to the supported instruction set. We use the
865/// TargetTransformInfo to query the different backends for the cost of
866/// different operations.
869
870public:
878 std::function<BlockFrequencyInfo &()> GetBFI,
879 const Function *F, const LoopVectorizeHints *Hints,
881 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
882 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), GetBFI(GetBFI),
885 if (TTI.supportsScalableVectors() || ForceTargetSupportsScalableVectors)
886 initializeVScaleForTuning();
888 }
889
890 /// \return An upper bound for the vectorization factors (both fixed and
891 /// scalable). If the factors are 0, vectorization and interleaving should be
892 /// avoided up front.
893 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
894
895 /// \return True if runtime checks are required for vectorization, and false
896 /// otherwise.
897 bool runtimeChecksRequired();
898
899 /// Setup cost-based decisions for user vectorization factor.
900 /// \return true if the UserVF is a feasible VF to be chosen.
903 return expectedCost(UserVF).isValid();
904 }
905
906 /// \return True if maximizing vector bandwidth is enabled by the target or
907 /// user options, for the given register kind.
908 bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind);
909
910 /// \return True if register pressure should be considered for the given VF.
911 bool shouldConsiderRegPressureForVF(ElementCount VF);
912
913 /// \return The size (in bits) of the smallest and widest types in the code
914 /// that needs to be vectorized. We ignore values that remain scalar such as
915 /// 64 bit loop indices.
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
917
918 /// Memory access instruction may be vectorized in more than one way.
919 /// Form of instruction after vectorization depends on cost.
920 /// This function takes cost-based decisions for Load/Store instructions
921 /// and collects them in a map. This decisions map is used for building
922 /// the lists of loop-uniform and loop-scalar instructions.
923 /// The calculated cost is saved with widening decision in order to
924 /// avoid redundant calculations.
925 void setCostBasedWideningDecision(ElementCount VF);
926
927 /// A call may be vectorized in different ways depending on whether we have
928 /// vectorized variants available and whether the target supports masking.
929 /// This function analyzes all calls in the function at the supplied VF,
930 /// makes a decision based on the costs of available options, and stores that
931 /// decision in a map for use in planning and plan execution.
932 void setVectorizedCallDecision(ElementCount VF);
933
934 /// Collect values we want to ignore in the cost model.
935 void collectValuesToIgnore();
936
937 /// Collect all element types in the loop for which widening is needed.
938 void collectElementTypesForWidening();
939
940 /// Split reductions into those that happen in the loop, and those that happen
941 /// outside. In loop reductions are collected into InLoopReductions.
942 void collectInLoopReductions();
943
944 /// Returns true if we should use strict in-order reductions for the given
945 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
946 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
947 /// of FP operations.
948 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
949 return !Hints->allowReordering() && RdxDesc.isOrdered();
950 }
951
952 /// \returns The smallest bitwidth each instruction can be represented with.
953 /// The vector equivalents of these instructions should be truncated to this
954 /// type.
956 return MinBWs;
957 }
958
959 /// \returns True if it is more profitable to scalarize instruction \p I for
960 /// vectorization factor \p VF.
962 assert(VF.isVector() &&
963 "Profitable to scalarize relevant only for VF > 1.");
964 assert(
965 TheLoop->isInnermost() &&
966 "cost-model should not be used for outer loops (in VPlan-native path)");
967
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(I);
972 }
973
974 /// Returns true if \p I is known to be uniform after vectorization.
976 assert(
977 TheLoop->isInnermost() &&
978 "cost-model should not be used for outer loops (in VPlan-native path)");
979 // Pseudo probe needs to be duplicated for each unrolled iteration and
980 // vector lane so that profiled loop trip count can be accurately
981 // accumulated instead of being under counted.
983 return false;
984
985 if (VF.isScalar())
986 return true;
987
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(I);
992 }
993
994 /// Returns true if \p I is known to be scalar after vectorization.
996 assert(
997 TheLoop->isInnermost() &&
998 "cost-model should not be used for outer loops (in VPlan-native path)");
999 if (VF.isScalar())
1000 return true;
1001
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(I);
1006 }
1007
1008 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1009 /// for vectorization factor \p VF.
1011 // Truncs must truncate at most to their destination type.
1012 if (isa_and_nonnull<TruncInst>(I) && MinBWs.contains(I) &&
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(I))
1014 return false;
1015 return VF.isVector() && MinBWs.contains(I) &&
1016 !isProfitableToScalarize(I, VF) &&
1018 }
1019
1020 /// Decision that was taken during cost calculation for memory instruction.
1023 CM_Widen, // For consecutive accesses with stride +1.
1024 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1030 };
1031
1032 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1033 /// instruction \p I and vector width \p VF.
1036 assert(VF.isVector() && "Expected VF >=2");
1037 WideningDecisions[{I, VF}] = {W, Cost};
1038 }
1039
1040 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1041 /// interleaving group \p Grp and vector width \p VF.
1045 assert(VF.isVector() && "Expected VF >=2");
1046 /// Broadcast this decicion to all instructions inside the group.
1047 /// When interleaving, the cost will only be assigned one instruction, the
1048 /// insert position. For other cases, add the appropriate fraction of the
1049 /// total cost to each instruction. This ensures accurate costs are used,
1050 /// even if the insert position instruction is not used.
1051 InstructionCost InsertPosCost = Cost;
1052 InstructionCost OtherMemberCost = 0;
1053 if (W != CM_Interleave)
1054 OtherMemberCost = InsertPosCost = Cost / Grp->getNumMembers();
1055 ;
1056 for (unsigned Idx = 0; Idx < Grp->getFactor(); ++Idx) {
1057 if (auto *I = Grp->getMember(Idx)) {
1058 if (Grp->getInsertPos() == I)
1059 WideningDecisions[{I, VF}] = {W, InsertPosCost};
1060 else
1061 WideningDecisions[{I, VF}] = {W, OtherMemberCost};
1062 }
1063 }
1064 }
1065
1066 /// Return the cost model decision for the given instruction \p I and vector
1067 /// width \p VF. Return CM_Unknown if this instruction did not pass
1068 /// through the cost modeling.
1070 assert(VF.isVector() && "Expected VF to be a vector VF");
1071 assert(
1072 TheLoop->isInnermost() &&
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1074
1075 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1078 return CM_Unknown;
1079 return Itr->second.first;
1080 }
1081
1082 /// Return the vectorization cost for the given instruction \p I and vector
1083 /// width \p VF.
1085 assert(VF.isVector() && "Expected VF >=2");
1086 std::pair<Instruction *, ElementCount> InstOnVF(I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1090 }
1091
1099
1101 Function *Variant, Intrinsic::ID IID,
1102 std::optional<unsigned> MaskPos,
1104 assert(!VF.isScalar() && "Expected vector VF");
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos, Cost};
1106 }
1107
1109 ElementCount VF) const {
1110 assert(!VF.isScalar() && "Expected vector VF");
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (I == CallWideningDecisions.end())
1113 return {CM_Unknown, nullptr, Intrinsic::not_intrinsic, std::nullopt, 0};
1114 return I->second;
1115 }
1116
1117 /// Return True if instruction \p I is an optimizable truncate whose operand
1118 /// is an induction variable. Such a truncate will be removed by adding a new
1119 /// induction variable with the destination type.
1121 // If the instruction is not a truncate, return false.
1122 auto *Trunc = dyn_cast<TruncInst>(I);
1123 if (!Trunc)
1124 return false;
1125
1126 // Get the source and destination types of the truncate.
1127 Type *SrcTy = toVectorTy(Trunc->getSrcTy(), VF);
1128 Type *DestTy = toVectorTy(Trunc->getDestTy(), VF);
1129
1130 // If the truncate is free for the given types, return false. Replacing a
1131 // free truncate with an induction variable would add an induction variable
1132 // update instruction to each iteration of the loop. We exclude from this
1133 // check the primary induction variable since it will need an update
1134 // instruction regardless.
1135 Value *Op = Trunc->getOperand(0);
1136 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1137 return false;
1138
1139 // If the truncated value is not an induction variable, return false.
1140 return Legal->isInductionPhi(Op);
1141 }
1142
1143 /// Collects the instructions to scalarize for each predicated instruction in
1144 /// the loop.
1145 void collectInstsToScalarize(ElementCount VF);
1146
1147 /// Collect values that will not be widened, including Uniforms, Scalars, and
1148 /// Instructions to Scalarize for the given \p VF.
1149 /// The sets depend on CM decision for Load/Store instructions
1150 /// that may be vectorized as interleave, gather-scatter or scalarized.
1151 /// Also make a decision on what to do about call instructions in the loop
1152 /// at that VF -- scalarize, call a known vector routine, or call a
1153 /// vector intrinsic.
1155 // Do the analysis once.
1156 if (VF.isScalar() || Uniforms.contains(VF))
1157 return;
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1163 }
1164
1165 /// Returns true if the target machine supports masked store operation
1166 /// for the given \p DataType and kind of access to \p Ptr.
1167 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment,
1168 unsigned AddressSpace) const {
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1170 TTI.isLegalMaskedStore(DataType, Alignment, AddressSpace);
1171 }
1172
1173 /// Returns true if the target machine supports masked load operation
1174 /// for the given \p DataType and kind of access to \p Ptr.
1175 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment,
1176 unsigned AddressSpace) const {
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1178 TTI.isLegalMaskedLoad(DataType, Alignment, AddressSpace);
1179 }
1180
1181 /// Returns true if the target machine can represent \p V as a masked gather
1182 /// or scatter operation.
1184 bool LI = isa<LoadInst>(V);
1185 bool SI = isa<StoreInst>(V);
1186 if (!LI && !SI)
1187 return false;
1188 auto *Ty = getLoadStoreType(V);
1190 if (VF.isVector())
1191 Ty = VectorType::get(Ty, VF);
1192 return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1193 (SI && TTI.isLegalMaskedScatter(Ty, Align));
1194 }
1195
1196 /// Returns true if the target machine supports all of the reduction
1197 /// variables found for the given VF.
1199 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1202 }));
1203 }
1204
1205 /// Given costs for both strategies, return true if the scalar predication
1206 /// lowering should be used for div/rem. This incorporates an override
1207 /// option so it is not simply a cost comparison.
1209 InstructionCost SafeDivisorCost) const {
1210 switch (ForceSafeDivisor) {
1211 case cl::BOU_UNSET:
1212 return ScalarCost < SafeDivisorCost;
1213 case cl::BOU_TRUE:
1214 return false;
1215 case cl::BOU_FALSE:
1216 return true;
1217 }
1218 llvm_unreachable("impossible case value");
1219 }
1220
1221 /// Returns true if \p I is an instruction which requires predication and
1222 /// for which our chosen predication strategy is scalarization (i.e. we
1223 /// don't have an alternate strategy such as masking available).
1224 /// \p VF is the vectorization factor that will be used to vectorize \p I.
1225 bool isScalarWithPredication(Instruction *I, ElementCount VF);
1226
1227 /// Returns true if \p I is an instruction that needs to be predicated
1228 /// at runtime. The result is independent of the predication mechanism.
1229 /// Superset of instructions that return true for isScalarWithPredication.
1230 bool isPredicatedInst(Instruction *I) const;
1231
1232 /// A helper function that returns how much we should divide the cost of a
1233 /// predicated block by. Typically this is the reciprocal of the block
1234 /// probability, i.e. if we return X we are assuming the predicated block will
1235 /// execute once for every X iterations of the loop header so the block should
1236 /// only contribute 1/X of its cost to the total cost calculation, but when
1237 /// optimizing for code size it will just be 1 as code size costs don't depend
1238 /// on execution probabilities.
1239 ///
1240 /// Note that if a block wasn't originally predicated but was predicated due
1241 /// to tail folding, the divisor will still be 1 because it will execute for
1242 /// every iteration of the loop header.
1243 inline uint64_t
1244 getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind,
1245 const BasicBlock *BB);
1246
1247 /// Return the costs for our two available strategies for lowering a
1248 /// div/rem operation which requires speculating at least one lane.
1249 /// First result is for scalarization (will be invalid for scalable
1250 /// vectors); second is for the safe-divisor strategy.
1251 std::pair<InstructionCost, InstructionCost>
1252 getDivRemSpeculationCost(Instruction *I, ElementCount VF);
1253
1254 /// Returns true if \p I is a memory instruction with consecutive memory
1255 /// access that can be widened.
1256 bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF);
1257
1258 /// Returns true if \p I is a memory instruction in an interleaved-group
1259 /// of memory accesses that can be vectorized with wide vector loads/stores
1260 /// and shuffles.
1261 bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const;
1262
1263 /// Check if \p Instr belongs to any interleaved access group.
1265 return InterleaveInfo.isInterleaved(Instr);
1266 }
1267
1268 /// Get the interleaved access group that \p Instr belongs to.
1271 return InterleaveInfo.getInterleaveGroup(Instr);
1272 }
1273
1274 /// Returns true if we're required to use a scalar epilogue for at least
1275 /// the final iteration of the original loop.
1276 bool requiresScalarEpilogue(bool IsVectorizing) const {
1277 if (!isScalarEpilogueAllowed()) {
1278 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1279 return false;
1280 }
1281 // If we might exit from anywhere but the latch and early exit vectorization
1282 // is disabled, we must run the exiting iteration in scalar form.
1283 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
1284 !(EnableEarlyExitVectorization && Legal->hasUncountableEarlyExit())) {
1285 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1287 return true;
1288 }
1289 if (IsVectorizing && InterleaveInfo.requiresScalarEpilogue()) {
1290 LLVM_DEBUG(dbgs() << "LV: Loop requires scalar epilogue: "
1291 "interleaved group requires scalar epilogue\n");
1292 return true;
1293 }
1294 LLVM_DEBUG(dbgs() << "LV: Loop does not require scalar epilogue\n");
1295 return false;
1296 }
1297
1298 /// Returns true if a scalar epilogue is not allowed due to optsize or a
1299 /// loop hint annotation.
1301 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1302 }
1303
1304 /// Returns true if tail-folding is preferred over a scalar epilogue.
1306 return ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate ||
1307 ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate;
1308 }
1309
1310 /// Returns the TailFoldingStyle that is best for the current loop.
1311 TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow = true) const {
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1316 }
1317
1318 /// Selects and saves TailFoldingStyle for 2 options - if IV update may
1319 /// overflow or not.
1320 /// \param IsScalableVF true if scalable vector factors enabled.
1321 /// \param UserIC User specific interleave count.
1322 void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC) {
1323 assert(!ChosenTailFoldingStyle && "Tail folding must not be selected yet.");
1324 if (!Legal->canFoldTailByMasking()) {
1325 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1326 return;
1327 }
1328
1329 // Default to TTI preference, but allow command line override.
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/true),
1332 TTI.getPreferredTailFoldingStyle(/*IVUpdateMayOverflow=*/false)};
1333 if (ForceTailFoldingStyle.getNumOccurrences())
1334 ChosenTailFoldingStyle = {ForceTailFoldingStyle.getValue(),
1335 ForceTailFoldingStyle.getValue()};
1336
1337 if (ChosenTailFoldingStyle->first != TailFoldingStyle::DataWithEVL &&
1338 ChosenTailFoldingStyle->second != TailFoldingStyle::DataWithEVL)
1339 return;
1340 // Override EVL styles if needed.
1341 // FIXME: Investigate opportunity for fixed vector factor.
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1343 TTI.hasActiveVectorLength() && !EnableVPlanNativePath;
1344 if (EVLIsLegal)
1345 return;
1346 // If for some reason EVL mode is unsupported, fallback to a scalar epilogue
1347 // if it's allowed, or DataWithoutLaneMask otherwise.
1348 if (ScalarEpilogueStatus == CM_ScalarEpilogueAllowed ||
1349 ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate)
1350 ChosenTailFoldingStyle = {TailFoldingStyle::None, TailFoldingStyle::None};
1351 else
1352 ChosenTailFoldingStyle = {TailFoldingStyle::DataWithoutLaneMask,
1354
1355 LLVM_DEBUG(
1356 dbgs() << "LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1358 << (UserIC > 1
1359 ? "since interleave count specified is greater than 1.\n"
1360 : "due to non-interleaving reasons.\n"));
1361 }
1362
1363 /// Returns true if all loop blocks should be masked to fold tail loop.
1364 bool foldTailByMasking() const {
1365 // TODO: check if it is possible to check for None style independent of
1366 // IVUpdateMayOverflow flag in getTailFoldingStyle.
1368 }
1369
1370 /// Returns true if the use of wide lane masks is requested and the loop is
1371 /// using tail-folding with a lane mask for control flow.
1380
1381 /// Return maximum safe number of elements to be processed per vector
1382 /// iteration, which do not prevent store-load forwarding and are safe with
1383 /// regard to the memory dependencies. Required for EVL-based VPlans to
1384 /// correctly calculate AVL (application vector length) as min(remaining AVL,
1385 /// MaxSafeElements).
1386 /// TODO: need to consider adjusting cost model to use this value as a
1387 /// vectorization factor for EVL-based vectorization.
1388 std::optional<unsigned> getMaxSafeElements() const { return MaxSafeElements; }
1389
1390 /// Returns true if the instructions in this block requires predication
1391 /// for any reason, e.g. because tail folding now requires a predicate
1392 /// or because the block in the original loop was predicated.
1394 return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1395 }
1396
1397 /// Returns true if VP intrinsics with explicit vector length support should
1398 /// be generated in the tail folded loop.
1402
1403 /// Returns true if the Phi is part of an inloop reduction.
1404 bool isInLoopReduction(PHINode *Phi) const {
1405 return InLoopReductions.contains(Phi);
1406 }
1407
1408 /// Returns the set of in-loop reduction PHIs.
1410 return InLoopReductions;
1411 }
1412
1413 /// Returns true if the predicated reduction select should be used to set the
1414 /// incoming value for the reduction phi.
1416 // Force to use predicated reduction select since the EVL of the
1417 // second-to-last iteration might not be VF*UF.
1418 if (foldTailWithEVL())
1419 return true;
1421 TTI.preferPredicatedReductionSelect();
1422 }
1423
1424 /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1425 /// with factor VF. Return the cost of the instruction, including
1426 /// scalarization overhead if it's needed.
1427 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1428
1429 /// Estimate cost of a call instruction CI if it were vectorized with factor
1430 /// VF. Return the cost of the instruction, including scalarization overhead
1431 /// if it's needed.
1432 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const;
1433
1434 /// Invalidates decisions already taken by the cost model.
1436 WideningDecisions.clear();
1437 CallWideningDecisions.clear();
1438 Uniforms.clear();
1439 Scalars.clear();
1440 }
1441
1442 /// Returns the expected execution cost. The unit of the cost does
1443 /// not matter because we use the 'cost' units to compare different
1444 /// vector widths. The cost that is returned is *not* normalized by
1445 /// the factor width.
1446 InstructionCost expectedCost(ElementCount VF);
1447
1448 bool hasPredStores() const { return NumPredStores > 0; }
1449
1450 /// Returns true if epilogue vectorization is considered profitable, and
1451 /// false otherwise.
1452 /// \p VF is the vectorization factor chosen for the original loop.
1453 /// \p Multiplier is an aditional scaling factor applied to VF before
1454 /// comparing to EpilogueVectorizationMinVF.
1455 bool isEpilogueVectorizationProfitable(const ElementCount VF,
1456 const unsigned IC) const;
1457
1458 /// Returns the execution time cost of an instruction for a given vector
1459 /// width. Vector width of one means scalar.
1460 InstructionCost getInstructionCost(Instruction *I, ElementCount VF);
1461
1462 /// Return the cost of instructions in an inloop reduction pattern, if I is
1463 /// part of that pattern.
1464 std::optional<InstructionCost> getReductionPatternCost(Instruction *I,
1465 ElementCount VF,
1466 Type *VectorTy) const;
1467
1468 /// Returns true if \p Op should be considered invariant and if it is
1469 /// trivially hoistable.
1470 bool shouldConsiderInvariant(Value *Op);
1471
1472 /// Return the value of vscale used for tuning the cost model.
1473 std::optional<unsigned> getVScaleForTuning() const { return VScaleForTuning; }
1474
1475private:
1476 unsigned NumPredStores = 0;
1477
1478 /// Used to store the value of vscale used for tuning the cost model. It is
1479 /// initialized during object construction.
1480 std::optional<unsigned> VScaleForTuning;
1481
1482 /// Initializes the value of vscale used for tuning the cost model. If
1483 /// vscale_range.min == vscale_range.max then return vscale_range.max, else
1484 /// return the value returned by the corresponding TTI method.
1485 void initializeVScaleForTuning() {
1486 const Function *Fn = TheLoop->getHeader()->getParent();
1487 if (Fn->hasFnAttribute(Attribute::VScaleRange)) {
1488 auto Attr = Fn->getFnAttribute(Attribute::VScaleRange);
1489 auto Min = Attr.getVScaleRangeMin();
1490 auto Max = Attr.getVScaleRangeMax();
1491 if (Max && Min == Max) {
1492 VScaleForTuning = Max;
1493 return;
1494 }
1495 }
1496
1497 VScaleForTuning = TTI.getVScaleForTuning();
1498 }
1499
1500 /// \return An upper bound for the vectorization factors for both
1501 /// fixed and scalable vectorization, where the minimum-known number of
1502 /// elements is a power-of-2 larger than zero. If scalable vectorization is
1503 /// disabled or unsupported, then the scalable part will be equal to
1504 /// ElementCount::getScalable(0).
1505 FixedScalableVFPair computeFeasibleMaxVF(unsigned MaxTripCount,
1506 ElementCount UserVF,
1507 bool FoldTailByMasking);
1508
1509 /// If \p VF > MaxTripcount, clamps it to the next lower VF that is <=
1510 /// MaxTripCount.
1511 ElementCount clampVFByMaxTripCount(ElementCount VF, unsigned MaxTripCount,
1512 bool FoldTailByMasking) const;
1513
1514 /// \return the maximized element count based on the targets vector
1515 /// registers and the loop trip-count, but limited to a maximum safe VF.
1516 /// This is a helper function of computeFeasibleMaxVF.
1517 ElementCount getMaximizedVFForTarget(unsigned MaxTripCount,
1518 unsigned SmallestType,
1519 unsigned WidestType,
1520 ElementCount MaxSafeVF,
1521 bool FoldTailByMasking);
1522
1523 /// Checks if scalable vectorization is supported and enabled. Caches the
1524 /// result to avoid repeated debug dumps for repeated queries.
1525 bool isScalableVectorizationAllowed();
1526
1527 /// \return the maximum legal scalable VF, based on the safe max number
1528 /// of elements.
1529 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1530
1531 /// Calculate vectorization cost of memory instruction \p I.
1532 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1533
1534 /// The cost computation for scalarized memory instruction.
1535 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1536
1537 /// The cost computation for interleaving group of memory instructions.
1538 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1539
1540 /// The cost computation for Gather/Scatter instruction.
1541 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1542
1543 /// The cost computation for widening instruction \p I with consecutive
1544 /// memory access.
1545 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1546
1547 /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1548 /// Load: scalar load + broadcast.
1549 /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1550 /// element)
1551 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1552
1553 /// Estimate the overhead of scalarizing an instruction. This is a
1554 /// convenience wrapper for the type-based getScalarizationOverhead API.
1556 ElementCount VF) const;
1557
1558 /// Returns true if an artificially high cost for emulated masked memrefs
1559 /// should be used.
1560 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1561
1562 /// Map of scalar integer values to the smallest bitwidth they can be legally
1563 /// represented as. The vector equivalents of these values should be truncated
1564 /// to this type.
1565 MapVector<Instruction *, uint64_t> MinBWs;
1566
1567 /// A type representing the costs for instructions if they were to be
1568 /// scalarized rather than vectorized. The entries are Instruction-Cost
1569 /// pairs.
1570 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1571
1572 /// A set containing all BasicBlocks that are known to present after
1573 /// vectorization as a predicated block.
1574 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1575 PredicatedBBsAfterVectorization;
1576
1577 /// Records whether it is allowed to have the original scalar loop execute at
1578 /// least once. This may be needed as a fallback loop in case runtime
1579 /// aliasing/dependence checks fail, or to handle the tail/remainder
1580 /// iterations when the trip count is unknown or doesn't divide by the VF,
1581 /// or as a peel-loop to handle gaps in interleave-groups.
1582 /// Under optsize and when the trip count is very small we don't allow any
1583 /// iterations to execute in the scalar loop.
1584 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1585
1586 /// Control finally chosen tail folding style. The first element is used if
1587 /// the IV update may overflow, the second element - if it does not.
1588 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1589 ChosenTailFoldingStyle;
1590
1591 /// true if scalable vectorization is supported and enabled.
1592 std::optional<bool> IsScalableVectorizationAllowed;
1593
1594 /// Maximum safe number of elements to be processed per vector iteration,
1595 /// which do not prevent store-load forwarding and are safe with regard to the
1596 /// memory dependencies. Required for EVL-based veectorization, where this
1597 /// value is used as the upper bound of the safe AVL.
1598 std::optional<unsigned> MaxSafeElements;
1599
1600 /// A map holding scalar costs for different vectorization factors. The
1601 /// presence of a cost for an instruction in the mapping indicates that the
1602 /// instruction will be scalarized when vectorizing with the associated
1603 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1604 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1605
1606 /// Holds the instructions known to be uniform after vectorization.
1607 /// The data is collected per VF.
1608 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1609
1610 /// Holds the instructions known to be scalar after vectorization.
1611 /// The data is collected per VF.
1612 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1613
1614 /// Holds the instructions (address computations) that are forced to be
1615 /// scalarized.
1616 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1617
1618 /// PHINodes of the reductions that should be expanded in-loop.
1619 SmallPtrSet<PHINode *, 4> InLoopReductions;
1620
1621 /// A Map of inloop reduction operations and their immediate chain operand.
1622 /// FIXME: This can be removed once reductions can be costed correctly in
1623 /// VPlan. This was added to allow quick lookup of the inloop operations.
1624 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1625
1626 /// Returns the expected difference in cost from scalarizing the expression
1627 /// feeding a predicated instruction \p PredInst. The instructions to
1628 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1629 /// non-negative return value implies the expression will be scalarized.
1630 /// Currently, only single-use chains are considered for scalarization.
1631 InstructionCost computePredInstDiscount(Instruction *PredInst,
1632 ScalarCostsTy &ScalarCosts,
1633 ElementCount VF);
1634
1635 /// Collect the instructions that are uniform after vectorization. An
1636 /// instruction is uniform if we represent it with a single scalar value in
1637 /// the vectorized loop corresponding to each vector iteration. Examples of
1638 /// uniform instructions include pointer operands of consecutive or
1639 /// interleaved memory accesses. Note that although uniformity implies an
1640 /// instruction will be scalar, the reverse is not true. In general, a
1641 /// scalarized instruction will be represented by VF scalar values in the
1642 /// vectorized loop, each corresponding to an iteration of the original
1643 /// scalar loop.
1644 void collectLoopUniforms(ElementCount VF);
1645
1646 /// Collect the instructions that are scalar after vectorization. An
1647 /// instruction is scalar if it is known to be uniform or will be scalarized
1648 /// during vectorization. collectLoopScalars should only add non-uniform nodes
1649 /// to the list if they are used by a load/store instruction that is marked as
1650 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1651 /// VF values in the vectorized loop, each corresponding to an iteration of
1652 /// the original scalar loop.
1653 void collectLoopScalars(ElementCount VF);
1654
1655 /// Keeps cost model vectorization decision and cost for instructions.
1656 /// Right now it is used for memory instructions only.
1657 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1658 std::pair<InstWidening, InstructionCost>>;
1659
1660 DecisionList WideningDecisions;
1661
1662 using CallDecisionList =
1663 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1664
1665 CallDecisionList CallWideningDecisions;
1666
1667 /// Returns true if \p V is expected to be vectorized and it needs to be
1668 /// extracted.
1669 bool needsExtract(Value *V, ElementCount VF) const {
1671 if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1672 TheLoop->isLoopInvariant(I) ||
1673 getWideningDecision(I, VF) == CM_Scalarize ||
1674 (isa<CallInst>(I) &&
1675 getCallWideningDecision(cast<CallInst>(I), VF).Kind == CM_Scalarize))
1676 return false;
1677
1678 // Assume we can vectorize V (and hence we need extraction) if the
1679 // scalars are not computed yet. This can happen, because it is called
1680 // via getScalarizationOverhead from setCostBasedWideningDecision, before
1681 // the scalars are collected. That should be a safe assumption in most
1682 // cases, because we check if the operands have vectorizable types
1683 // beforehand in LoopVectorizationLegality.
1684 return !Scalars.contains(VF) || !isScalarAfterVectorization(I, VF);
1685 };
1686
1687 /// Returns a range containing only operands needing to be extracted.
1688 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1689 ElementCount VF) const {
1690
1691 SmallPtrSet<const Value *, 4> UniqueOperands;
1693 for (Value *Op : Ops) {
1694 if (isa<Constant>(Op) || !UniqueOperands.insert(Op).second ||
1695 !needsExtract(Op, VF))
1696 continue;
1697 Res.push_back(Op);
1698 }
1699 return Res;
1700 }
1701
1702public:
1703 /// The loop that we evaluate.
1705
1706 /// Predicated scalar evolution analysis.
1708
1709 /// Loop Info analysis.
1711
1712 /// Vectorization legality.
1714
1715 /// Vector target information.
1717
1718 /// Target Library Info.
1720
1721 /// Demanded bits analysis.
1723
1724 /// Assumption cache.
1726
1727 /// Interface to emit optimization remarks.
1729
1730 /// A function to lazily fetch BlockFrequencyInfo. This avoids computing it
1731 /// unless necessary, e.g. when the loop isn't legal to vectorize or when
1732 /// there is no predication.
1733 std::function<BlockFrequencyInfo &()> GetBFI;
1734 /// The BlockFrequencyInfo returned from GetBFI.
1736 /// Returns the BlockFrequencyInfo for the function if cached, otherwise
1737 /// fetches it via GetBFI. Avoids an indirect call to the std::function.
1739 if (!BFI)
1740 BFI = &GetBFI();
1741 return *BFI;
1742 }
1743
1745
1746 /// Loop Vectorize Hint.
1748
1749 /// The interleave access information contains groups of interleaved accesses
1750 /// with the same stride and close to each other.
1752
1753 /// Values to ignore in the cost model.
1755
1756 /// Values to ignore in the cost model when VF > 1.
1758
1759 /// All element types found in the loop.
1761
1762 /// The kind of cost that we are calculating
1764
1765 /// Whether this loop should be optimized for size based on function attribute
1766 /// or profile information.
1768
1769 /// The highest VF possible for this loop, without using MaxBandwidth.
1771};
1772} // end namespace llvm
1773
1774namespace {
1775/// Helper struct to manage generating runtime checks for vectorization.
1776///
1777/// The runtime checks are created up-front in temporary blocks to allow better
1778/// estimating the cost and un-linked from the existing IR. After deciding to
1779/// vectorize, the checks are moved back. If deciding not to vectorize, the
1780/// temporary blocks are completely removed.
1781class GeneratedRTChecks {
1782 /// Basic block which contains the generated SCEV checks, if any.
1783 BasicBlock *SCEVCheckBlock = nullptr;
1784
1785 /// The value representing the result of the generated SCEV checks. If it is
1786 /// nullptr no SCEV checks have been generated.
1787 Value *SCEVCheckCond = nullptr;
1788
1789 /// Basic block which contains the generated memory runtime checks, if any.
1790 BasicBlock *MemCheckBlock = nullptr;
1791
1792 /// The value representing the result of the generated memory runtime checks.
1793 /// If it is nullptr no memory runtime checks have been generated.
1794 Value *MemRuntimeCheckCond = nullptr;
1795
1796 DominatorTree *DT;
1797 LoopInfo *LI;
1799
1800 SCEVExpander SCEVExp;
1801 SCEVExpander MemCheckExp;
1802
1803 bool CostTooHigh = false;
1804
1805 Loop *OuterLoop = nullptr;
1806
1808
1809 /// The kind of cost that we are calculating
1811
1812public:
1813 GeneratedRTChecks(PredicatedScalarEvolution &PSE, DominatorTree *DT,
1816 : DT(DT), LI(LI), TTI(TTI),
1817 SCEVExp(*PSE.getSE(), "scev.check", /*PreserveLCSSA=*/false),
1818 MemCheckExp(*PSE.getSE(), "scev.check", /*PreserveLCSSA=*/false),
1819 PSE(PSE), CostKind(CostKind) {}
1820
1821 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1822 /// accurately estimate the cost of the runtime checks. The blocks are
1823 /// un-linked from the IR and are added back during vector code generation. If
1824 /// there is no vector code generation, the check blocks are removed
1825 /// completely.
1826 void create(Loop *L, const LoopAccessInfo &LAI,
1827 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC,
1828 OptimizationRemarkEmitter &ORE) {
1829
1830 // Hard cutoff to limit compile-time increase in case a very large number of
1831 // runtime checks needs to be generated.
1832 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1833 // profile info.
1834 CostTooHigh =
1836 if (CostTooHigh) {
1837 // Mark runtime checks as never succeeding when they exceed the threshold.
1838 MemRuntimeCheckCond = ConstantInt::getTrue(L->getHeader()->getContext());
1839 SCEVCheckCond = ConstantInt::getTrue(L->getHeader()->getContext());
1840 ORE.emit([&]() {
1841 return OptimizationRemarkAnalysisAliasing(
1842 DEBUG_TYPE, "TooManyMemoryRuntimeChecks", L->getStartLoc(),
1843 L->getHeader())
1844 << "loop not vectorized: too many memory checks needed";
1845 });
1846 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
1847 return;
1848 }
1849
1850 BasicBlock *LoopHeader = L->getHeader();
1851 BasicBlock *Preheader = L->getLoopPreheader();
1852
1853 // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1854 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1855 // may be used by SCEVExpander. The blocks will be un-linked from their
1856 // predecessors and removed from LI & DT at the end of the function.
1857 if (!UnionPred.isAlwaysTrue()) {
1858 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1859 nullptr, "vector.scevcheck");
1860
1861 SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1862 &UnionPred, SCEVCheckBlock->getTerminator());
1863 if (isa<Constant>(SCEVCheckCond)) {
1864 // Clean up directly after expanding the predicate to a constant, to
1865 // avoid further expansions re-using anything left over from SCEVExp.
1866 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1867 SCEVCleaner.cleanup();
1868 }
1869 }
1870
1871 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1872 if (RtPtrChecking.Need) {
1873 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1874 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1875 "vector.memcheck");
1876
1877 auto DiffChecks = RtPtrChecking.getDiffChecks();
1878 if (DiffChecks) {
1879 Value *RuntimeVF = nullptr;
1880 MemRuntimeCheckCond = addDiffRuntimeChecks(
1881 MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp,
1882 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1883 if (!RuntimeVF)
1884 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1885 return RuntimeVF;
1886 },
1887 IC);
1888 } else {
1889 MemRuntimeCheckCond = addRuntimeChecks(
1890 MemCheckBlock->getTerminator(), L, RtPtrChecking.getChecks(),
1892 }
1893 assert(MemRuntimeCheckCond &&
1894 "no RT checks generated although RtPtrChecking "
1895 "claimed checks are required");
1896 }
1897
1898 SCEVExp.eraseDeadInstructions(SCEVCheckCond);
1899
1900 if (!MemCheckBlock && !SCEVCheckBlock)
1901 return;
1902
1903 // Unhook the temporary block with the checks, update various places
1904 // accordingly.
1905 if (SCEVCheckBlock)
1906 SCEVCheckBlock->replaceAllUsesWith(Preheader);
1907 if (MemCheckBlock)
1908 MemCheckBlock->replaceAllUsesWith(Preheader);
1909
1910 if (SCEVCheckBlock) {
1911 SCEVCheckBlock->getTerminator()->moveBefore(
1912 Preheader->getTerminator()->getIterator());
1913 auto *UI = new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1914 UI->setDebugLoc(DebugLoc::getTemporary());
1915 Preheader->getTerminator()->eraseFromParent();
1916 }
1917 if (MemCheckBlock) {
1918 MemCheckBlock->getTerminator()->moveBefore(
1919 Preheader->getTerminator()->getIterator());
1920 auto *UI = new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1921 UI->setDebugLoc(DebugLoc::getTemporary());
1922 Preheader->getTerminator()->eraseFromParent();
1923 }
1924
1925 DT->changeImmediateDominator(LoopHeader, Preheader);
1926 if (MemCheckBlock) {
1927 DT->eraseNode(MemCheckBlock);
1928 LI->removeBlock(MemCheckBlock);
1929 }
1930 if (SCEVCheckBlock) {
1931 DT->eraseNode(SCEVCheckBlock);
1932 LI->removeBlock(SCEVCheckBlock);
1933 }
1934
1935 // Outer loop is used as part of the later cost calculations.
1936 OuterLoop = L->getParentLoop();
1937 }
1938
1940 if (SCEVCheckBlock || MemCheckBlock)
1941 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1942
1943 if (CostTooHigh) {
1945 Cost.setInvalid();
1946 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n");
1947 return Cost;
1948 }
1949
1950 InstructionCost RTCheckCost = 0;
1951 if (SCEVCheckBlock)
1952 for (Instruction &I : *SCEVCheckBlock) {
1953 if (SCEVCheckBlock->getTerminator() == &I)
1954 continue;
1956 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1957 RTCheckCost += C;
1958 }
1959 if (MemCheckBlock) {
1960 InstructionCost MemCheckCost = 0;
1961 for (Instruction &I : *MemCheckBlock) {
1962 if (MemCheckBlock->getTerminator() == &I)
1963 continue;
1965 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n");
1966 MemCheckCost += C;
1967 }
1968
1969 // If the runtime memory checks are being created inside an outer loop
1970 // we should find out if these checks are outer loop invariant. If so,
1971 // the checks will likely be hoisted out and so the effective cost will
1972 // reduce according to the outer loop trip count.
1973 if (OuterLoop) {
1974 ScalarEvolution *SE = MemCheckExp.getSE();
1975 // TODO: If profitable, we could refine this further by analysing every
1976 // individual memory check, since there could be a mixture of loop
1977 // variant and invariant checks that mean the final condition is
1978 // variant.
1979 const SCEV *Cond = SE->getSCEV(MemRuntimeCheckCond);
1980 if (SE->isLoopInvariant(Cond, OuterLoop)) {
1981 // It seems reasonable to assume that we can reduce the effective
1982 // cost of the checks even when we know nothing about the trip
1983 // count. Assume that the outer loop executes at least twice.
1984 unsigned BestTripCount = 2;
1985
1986 // Get the best known TC estimate.
1987 if (auto EstimatedTC = getSmallBestKnownTC(
1988 PSE, OuterLoop, /* CanUseConstantMax = */ false))
1989 if (EstimatedTC->isFixed())
1990 BestTripCount = EstimatedTC->getFixedValue();
1991
1992 InstructionCost NewMemCheckCost = MemCheckCost / BestTripCount;
1993
1994 // Let's ensure the cost is always at least 1.
1995 NewMemCheckCost = std::max(NewMemCheckCost.getValue(),
1996 (InstructionCost::CostType)1);
1997
1998 if (BestTripCount > 1)
2000 << "We expect runtime memory checks to be hoisted "
2001 << "out of the outer loop. Cost reduced from "
2002 << MemCheckCost << " to " << NewMemCheckCost << '\n');
2003
2004 MemCheckCost = NewMemCheckCost;
2005 }
2006 }
2007
2008 RTCheckCost += MemCheckCost;
2009 }
2010
2011 if (SCEVCheckBlock || MemCheckBlock)
2012 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
2013 << "\n");
2014
2015 return RTCheckCost;
2016 }
2017
2018 /// Remove the created SCEV & memory runtime check blocks & instructions, if
2019 /// unused.
2020 ~GeneratedRTChecks() {
2021 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2022 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2023 bool SCEVChecksUsed = !SCEVCheckBlock || !pred_empty(SCEVCheckBlock);
2024 bool MemChecksUsed = !MemCheckBlock || !pred_empty(MemCheckBlock);
2025 if (SCEVChecksUsed)
2026 SCEVCleaner.markResultUsed();
2027
2028 if (MemChecksUsed) {
2029 MemCheckCleaner.markResultUsed();
2030 } else {
2031 auto &SE = *MemCheckExp.getSE();
2032 // Memory runtime check generation creates compares that use expanded
2033 // values. Remove them before running the SCEVExpanderCleaners.
2034 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2035 if (MemCheckExp.isInsertedInstruction(&I))
2036 continue;
2037 SE.forgetValue(&I);
2038 I.eraseFromParent();
2039 }
2040 }
2041 MemCheckCleaner.cleanup();
2042 SCEVCleaner.cleanup();
2043
2044 if (!SCEVChecksUsed)
2045 SCEVCheckBlock->eraseFromParent();
2046 if (!MemChecksUsed)
2047 MemCheckBlock->eraseFromParent();
2048 }
2049
2050 /// Retrieves the SCEVCheckCond and SCEVCheckBlock that were generated as IR
2051 /// outside VPlan.
2052 std::pair<Value *, BasicBlock *> getSCEVChecks() const {
2053 using namespace llvm::PatternMatch;
2054 if (!SCEVCheckCond || match(SCEVCheckCond, m_ZeroInt()))
2055 return {nullptr, nullptr};
2056
2057 return {SCEVCheckCond, SCEVCheckBlock};
2058 }
2059
2060 /// Retrieves the MemCheckCond and MemCheckBlock that were generated as IR
2061 /// outside VPlan.
2062 std::pair<Value *, BasicBlock *> getMemRuntimeChecks() const {
2063 using namespace llvm::PatternMatch;
2064 if (MemRuntimeCheckCond && match(MemRuntimeCheckCond, m_ZeroInt()))
2065 return {nullptr, nullptr};
2066 return {MemRuntimeCheckCond, MemCheckBlock};
2067 }
2068
2069 /// Return true if any runtime checks have been added
2070 bool hasChecks() const {
2071 return getSCEVChecks().first || getMemRuntimeChecks().first;
2072 }
2073};
2074} // namespace
2075
2081
2086
2087// Return true if \p OuterLp is an outer loop annotated with hints for explicit
2088// vectorization. The loop needs to be annotated with #pragma omp simd
2089// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2090// vector length information is not provided, vectorization is not considered
2091// explicit. Interleave hints are not allowed either. These limitations will be
2092// relaxed in the future.
2093// Please, note that we are currently forced to abuse the pragma 'clang
2094// vectorize' semantics. This pragma provides *auto-vectorization hints*
2095// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2096// provides *explicit vectorization hints* (LV can bypass legal checks and
2097// assume that vectorization is legal). However, both hints are implemented
2098// using the same metadata (llvm.loop.vectorize, processed by
2099// LoopVectorizeHints). This will be fixed in the future when the native IR
2100// representation for pragma 'omp simd' is introduced.
2101static bool isExplicitVecOuterLoop(Loop *OuterLp,
2103 assert(!OuterLp->isInnermost() && "This is not an outer loop");
2104 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2105
2106 // Only outer loops with an explicit vectorization hint are supported.
2107 // Unannotated outer loops are ignored.
2109 return false;
2110
2111 Function *Fn = OuterLp->getHeader()->getParent();
2112 if (!Hints.allowVectorization(Fn, OuterLp,
2113 true /*VectorizeOnlyWhenForced*/)) {
2114 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2115 return false;
2116 }
2117
2118 if (Hints.getInterleave() > 1) {
2119 // TODO: Interleave support is future work.
2120 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2121 "outer loops.\n");
2122 Hints.emitRemarkWithHints();
2123 return false;
2124 }
2125
2126 return true;
2127}
2128
2132 // Collect inner loops and outer loops without irreducible control flow. For
2133 // now, only collect outer loops that have explicit vectorization hints. If we
2134 // are stress testing the VPlan H-CFG construction, we collect the outermost
2135 // loop of every loop nest.
2136 if (L.isInnermost() || VPlanBuildStressTest ||
2138 LoopBlocksRPO RPOT(&L);
2139 RPOT.perform(LI);
2141 V.push_back(&L);
2142 // TODO: Collect inner loops inside marked outer loops in case
2143 // vectorization fails for the outer loop. Do not invoke
2144 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2145 // already known to be reducible. We can use an inherited attribute for
2146 // that.
2147 return;
2148 }
2149 }
2150 for (Loop *InnerL : L)
2151 collectSupportedLoops(*InnerL, LI, ORE, V);
2152}
2153
2154//===----------------------------------------------------------------------===//
2155// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2156// LoopVectorizationCostModel and LoopVectorizationPlanner.
2157//===----------------------------------------------------------------------===//
2158
2159/// Compute the transformed value of Index at offset StartValue using step
2160/// StepValue.
2161/// For integer induction, returns StartValue + Index * StepValue.
2162/// For pointer induction, returns StartValue[Index * StepValue].
2163/// FIXME: The newly created binary instructions should contain nsw/nuw
2164/// flags, which can be found from the original scalar operations.
2165static Value *
2167 Value *Step,
2169 const BinaryOperator *InductionBinOp) {
2170 using namespace llvm::PatternMatch;
2171 Type *StepTy = Step->getType();
2172 Value *CastedIndex = StepTy->isIntegerTy()
2173 ? B.CreateSExtOrTrunc(Index, StepTy)
2174 : B.CreateCast(Instruction::SIToFP, Index, StepTy);
2175 if (CastedIndex != Index) {
2176 CastedIndex->setName(CastedIndex->getName() + ".cast");
2177 Index = CastedIndex;
2178 }
2179
2180 // Note: the IR at this point is broken. We cannot use SE to create any new
2181 // SCEV and then expand it, hoping that SCEV's simplification will give us
2182 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2183 // lead to various SCEV crashes. So all we can do is to use builder and rely
2184 // on InstCombine for future simplifications. Here we handle some trivial
2185 // cases only.
2186 auto CreateAdd = [&B](Value *X, Value *Y) {
2187 assert(X->getType() == Y->getType() && "Types don't match!");
2188 if (match(X, m_ZeroInt()))
2189 return Y;
2190 if (match(Y, m_ZeroInt()))
2191 return X;
2192 return B.CreateAdd(X, Y);
2193 };
2194
2195 // We allow X to be a vector type, in which case Y will potentially be
2196 // splatted into a vector with the same element count.
2197 auto CreateMul = [&B](Value *X, Value *Y) {
2198 assert(X->getType()->getScalarType() == Y->getType() &&
2199 "Types don't match!");
2200 if (match(X, m_One()))
2201 return Y;
2202 if (match(Y, m_One()))
2203 return X;
2204 VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2205 if (XVTy && !isa<VectorType>(Y->getType()))
2206 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2207 return B.CreateMul(X, Y);
2208 };
2209
2210 switch (InductionKind) {
2212 assert(!isa<VectorType>(Index->getType()) &&
2213 "Vector indices not supported for integer inductions yet");
2214 assert(Index->getType() == StartValue->getType() &&
2215 "Index type does not match StartValue type");
2216 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2217 return B.CreateSub(StartValue, Index);
2218 auto *Offset = CreateMul(Index, Step);
2219 return CreateAdd(StartValue, Offset);
2220 }
2222 return B.CreatePtrAdd(StartValue, CreateMul(Index, Step));
2224 assert(!isa<VectorType>(Index->getType()) &&
2225 "Vector indices not supported for FP inductions yet");
2226 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2227 assert(InductionBinOp &&
2228 (InductionBinOp->getOpcode() == Instruction::FAdd ||
2229 InductionBinOp->getOpcode() == Instruction::FSub) &&
2230 "Original bin op should be defined for FP induction");
2231
2232 Value *MulExp = B.CreateFMul(Step, Index);
2233 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2234 "induction");
2235 }
2237 return nullptr;
2238 }
2239 llvm_unreachable("invalid enum");
2240}
2241
2242static std::optional<unsigned> getMaxVScale(const Function &F,
2243 const TargetTransformInfo &TTI) {
2244 if (std::optional<unsigned> MaxVScale = TTI.getMaxVScale())
2245 return MaxVScale;
2246
2247 if (F.hasFnAttribute(Attribute::VScaleRange))
2248 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2249
2250 return std::nullopt;
2251}
2252
2253/// For the given VF and UF and maximum trip count computed for the loop, return
2254/// whether the induction variable might overflow in the vectorized loop. If not,
2255/// then we know a runtime overflow check always evaluates to false and can be
2256/// removed.
2258 const LoopVectorizationCostModel *Cost,
2259 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2260 // Always be conservative if we don't know the exact unroll factor.
2261 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2262
2263 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2264 APInt MaxUIntTripCount = IdxTy->getMask();
2265
2266 // We know the runtime overflow check is known false iff the (max) trip-count
2267 // is known and (max) trip-count + (VF * UF) does not overflow in the type of
2268 // the vector loop induction variable.
2269 if (unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2270 uint64_t MaxVF = VF.getKnownMinValue();
2271 if (VF.isScalable()) {
2272 std::optional<unsigned> MaxVScale =
2273 getMaxVScale(*Cost->TheFunction, Cost->TTI);
2274 if (!MaxVScale)
2275 return false;
2276 MaxVF *= *MaxVScale;
2277 }
2278
2279 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2280 }
2281
2282 return false;
2283}
2284
2285// Return whether we allow using masked interleave-groups (for dealing with
2286// strided loads/stores that reside in predicated blocks, or for dealing
2287// with gaps).
2289 // If an override option has been passed in for interleaved accesses, use it.
2290 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2292
2293 return TTI.enableMaskedInterleavedAccessVectorization();
2294}
2295
2297 BasicBlock *CheckIRBB) {
2298 // Note: The block with the minimum trip-count check is already connected
2299 // during earlier VPlan construction.
2300 VPBlockBase *ScalarPH = Plan.getScalarPreheader();
2301 VPBlockBase *PreVectorPH = VectorPHVPBB->getSinglePredecessor();
2302 assert(PreVectorPH->getNumSuccessors() == 2 && "Expected 2 successors");
2303 assert(PreVectorPH->getSuccessors()[0] == ScalarPH && "Unexpected successor");
2304 VPIRBasicBlock *CheckVPIRBB = Plan.createVPIRBasicBlock(CheckIRBB);
2305 VPBlockUtils::insertOnEdge(PreVectorPH, VectorPHVPBB, CheckVPIRBB);
2306 PreVectorPH = CheckVPIRBB;
2307 VPBlockUtils::connectBlocks(PreVectorPH, ScalarPH);
2308 PreVectorPH->swapSuccessors();
2309
2310 // We just connected a new block to the scalar preheader. Update all
2311 // VPPhis by adding an incoming value for it, replicating the last value.
2312 unsigned NumPredecessors = ScalarPH->getNumPredecessors();
2313 for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
2314 assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
2315 assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
2316 "must have incoming values for all operands");
2317 R.addOperand(R.getOperand(NumPredecessors - 2));
2318 }
2319}
2320
2322 BasicBlock *VectorPH, ElementCount VF, unsigned UF) const {
2323 // Generate code to check if the loop's trip count is less than VF * UF, or
2324 // equal to it in case a scalar epilogue is required; this implies that the
2325 // vector trip count is zero. This check also covers the case where adding one
2326 // to the backedge-taken count overflowed leading to an incorrect trip count
2327 // of zero. In this case we will also jump to the scalar loop.
2328 auto P = Cost->requiresScalarEpilogue(VF.isVector()) ? ICmpInst::ICMP_ULE
2330
2331 // Reuse existing vector loop preheader for TC checks.
2332 // Note that new preheader block is generated for vector loop.
2333 BasicBlock *const TCCheckBlock = VectorPH;
2335 TCCheckBlock->getContext(),
2336 InstSimplifyFolder(TCCheckBlock->getDataLayout()));
2337 Builder.SetInsertPoint(TCCheckBlock->getTerminator());
2338
2339 // If tail is to be folded, vector loop takes care of all iterations.
2341 Type *CountTy = Count->getType();
2342 Value *CheckMinIters = Builder.getFalse();
2343 auto CreateStep = [&]() -> Value * {
2344 // Create step with max(MinProTripCount, UF * VF).
2345 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2346 return createStepForVF(Builder, CountTy, VF, UF);
2347
2348 Value *MinProfTC =
2349 Builder.CreateElementCount(CountTy, MinProfitableTripCount);
2350 if (!VF.isScalable())
2351 return MinProfTC;
2352 return Builder.CreateBinaryIntrinsic(
2353 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2354 };
2355
2356 TailFoldingStyle Style = Cost->getTailFoldingStyle();
2357 if (Style == TailFoldingStyle::None) {
2358 Value *Step = CreateStep();
2359 ScalarEvolution &SE = *PSE.getSE();
2360 // TODO: Emit unconditional branch to vector preheader instead of
2361 // conditional branch with known condition.
2362 const SCEV *TripCountSCEV = SE.applyLoopGuards(SE.getSCEV(Count), OrigLoop);
2363 // Check if the trip count is < the step.
2364 if (SE.isKnownPredicate(P, TripCountSCEV, SE.getSCEV(Step))) {
2365 // TODO: Ensure step is at most the trip count when determining max VF and
2366 // UF, w/o tail folding.
2367 CheckMinIters = Builder.getTrue();
2369 TripCountSCEV, SE.getSCEV(Step))) {
2370 // Generate the minimum iteration check only if we cannot prove the
2371 // check is known to be true, or known to be false.
2372 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2373 } // else step known to be < trip count, use CheckMinIters preset to false.
2374 } else if (VF.isScalable() && !TTI->isVScaleKnownToBeAPowerOfTwo() &&
2377 // vscale is not necessarily a power-of-2, which means we cannot guarantee
2378 // an overflow to zero when updating induction variables and so an
2379 // additional overflow check is required before entering the vector loop.
2380
2381 // Get the maximum unsigned value for the type.
2382 Value *MaxUIntTripCount =
2383 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2384 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2385
2386 // Don't execute the vector loop if (UMax - n) < (VF * UF).
2387 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2388 }
2389 return CheckMinIters;
2390}
2391
2392/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
2393/// VPBB are moved to the end of the newly created VPIRBasicBlock. All
2394/// predecessors and successors of VPBB, if any, are rewired to the new
2395/// VPIRBasicBlock. If \p VPBB may be unreachable, \p Plan must be passed.
2397 BasicBlock *IRBB,
2398 VPlan *Plan = nullptr) {
2399 if (!Plan)
2400 Plan = VPBB->getPlan();
2401 VPIRBasicBlock *IRVPBB = Plan->createVPIRBasicBlock(IRBB);
2402 auto IP = IRVPBB->begin();
2403 for (auto &R : make_early_inc_range(VPBB->phis()))
2404 R.moveBefore(*IRVPBB, IP);
2405
2406 for (auto &R :
2408 R.moveBefore(*IRVPBB, IRVPBB->end());
2409
2410 VPBlockUtils::reassociateBlocks(VPBB, IRVPBB);
2411 // VPBB is now dead and will be cleaned up when the plan gets destroyed.
2412 return IRVPBB;
2413}
2414
2416 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2417 assert(VectorPH && "Invalid loop structure");
2418 assert((OrigLoop->getUniqueLatchExitBlock() ||
2419 Cost->requiresScalarEpilogue(VF.isVector())) &&
2420 "loops not exiting via the latch without required epilogue?");
2421
2422 // NOTE: The Plan's scalar preheader VPBB isn't replaced with a VPIRBasicBlock
2423 // wrapping the newly created scalar preheader here at the moment, because the
2424 // Plan's scalar preheader may be unreachable at this point. Instead it is
2425 // replaced in executePlan.
2426 return SplitBlock(VectorPH, VectorPH->getTerminator(), DT, LI, nullptr,
2427 Twine(Prefix) + "scalar.ph");
2428}
2429
2430/// Return the expanded step for \p ID using \p ExpandedSCEVs to look up SCEV
2431/// expansion results.
2433 const SCEV2ValueTy &ExpandedSCEVs) {
2434 const SCEV *Step = ID.getStep();
2435 if (auto *C = dyn_cast<SCEVConstant>(Step))
2436 return C->getValue();
2437 if (auto *U = dyn_cast<SCEVUnknown>(Step))
2438 return U->getValue();
2439 Value *V = ExpandedSCEVs.lookup(Step);
2440 assert(V && "SCEV must be expanded at this point");
2441 return V;
2442}
2443
2444/// Knowing that loop \p L executes a single vector iteration, add instructions
2445/// that will get simplified and thus should not have any cost to \p
2446/// InstsToIgnore.
2449 SmallPtrSetImpl<Instruction *> &InstsToIgnore) {
2450 auto *Cmp = L->getLatchCmpInst();
2451 if (Cmp)
2452 InstsToIgnore.insert(Cmp);
2453 for (const auto &KV : IL) {
2454 // Extract the key by hand so that it can be used in the lambda below. Note
2455 // that captured structured bindings are a C++20 extension.
2456 const PHINode *IV = KV.first;
2457
2458 // Get next iteration value of the induction variable.
2459 Instruction *IVInst =
2460 cast<Instruction>(IV->getIncomingValueForBlock(L->getLoopLatch()));
2461 if (all_of(IVInst->users(),
2462 [&](const User *U) { return U == IV || U == Cmp; }))
2463 InstsToIgnore.insert(IVInst);
2464 }
2465}
2466
2468 // Create a new IR basic block for the scalar preheader.
2469 BasicBlock *ScalarPH = createScalarPreheader("");
2470 return ScalarPH->getSinglePredecessor();
2471}
2472
2473namespace {
2474
2475struct CSEDenseMapInfo {
2476 static bool canHandle(const Instruction *I) {
2479 }
2480
2481 static inline Instruction *getEmptyKey() {
2483 }
2484
2485 static inline Instruction *getTombstoneKey() {
2486 return DenseMapInfo<Instruction *>::getTombstoneKey();
2487 }
2488
2489 static unsigned getHashValue(const Instruction *I) {
2490 assert(canHandle(I) && "Unknown instruction!");
2491 return hash_combine(I->getOpcode(),
2492 hash_combine_range(I->operand_values()));
2493 }
2494
2495 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
2496 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2497 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2498 return LHS == RHS;
2499 return LHS->isIdenticalTo(RHS);
2500 }
2501};
2502
2503} // end anonymous namespace
2504
2505/// FIXME: This legacy common-subexpression-elimination routine is scheduled for
2506/// removal, in favor of the VPlan-based one.
2507static void legacyCSE(BasicBlock *BB) {
2508 // Perform simple cse.
2510 for (Instruction &In : llvm::make_early_inc_range(*BB)) {
2511 if (!CSEDenseMapInfo::canHandle(&In))
2512 continue;
2513
2514 // Check if we can replace this instruction with any of the
2515 // visited instructions.
2516 if (Instruction *V = CSEMap.lookup(&In)) {
2517 In.replaceAllUsesWith(V);
2518 In.eraseFromParent();
2519 continue;
2520 }
2521
2522 CSEMap[&In] = &In;
2523 }
2524}
2525
2526/// This function attempts to return a value that represents the ElementCount
2527/// at runtime. For fixed-width VFs we know this precisely at compile
2528/// time, but for scalable VFs we calculate it based on an estimate of the
2529/// vscale value.
2531 std::optional<unsigned> VScale) {
2532 unsigned EstimatedVF = VF.getKnownMinValue();
2533 if (VF.isScalable())
2534 if (VScale)
2535 EstimatedVF *= *VScale;
2536 assert(EstimatedVF >= 1 && "Estimated VF shouldn't be less than 1");
2537 return EstimatedVF;
2538}
2539
2542 ElementCount VF) const {
2543 // We only need to calculate a cost if the VF is scalar; for actual vectors
2544 // we should already have a pre-calculated cost at each VF.
2545 if (!VF.isScalar())
2546 return getCallWideningDecision(CI, VF).Cost;
2547
2548 Type *RetTy = CI->getType();
2550 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy))
2551 return *RedCost;
2552
2554 for (auto &ArgOp : CI->args())
2555 Tys.push_back(ArgOp->getType());
2556
2557 InstructionCost ScalarCallCost =
2558 TTI.getCallInstrCost(CI->getCalledFunction(), RetTy, Tys, CostKind);
2559
2560 // If this is an intrinsic we may have a lower cost for it.
2563 return std::min(ScalarCallCost, IntrinsicCost);
2564 }
2565 return ScalarCallCost;
2566}
2567
2569 if (VF.isScalar() || !canVectorizeTy(Ty))
2570 return Ty;
2571 return toVectorizedTy(Ty, VF);
2572}
2573
2576 ElementCount VF) const {
2578 assert(ID && "Expected intrinsic call!");
2579 Type *RetTy = maybeVectorizeType(CI->getType(), VF);
2580 FastMathFlags FMF;
2581 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2582 FMF = FPMO->getFastMathFlags();
2583
2586 SmallVector<Type *> ParamTys;
2587 std::transform(FTy->param_begin(), FTy->param_end(),
2588 std::back_inserter(ParamTys),
2589 [&](Type *Ty) { return maybeVectorizeType(Ty, VF); });
2590
2591 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
2594 return TTI.getIntrinsicInstrCost(CostAttrs, CostKind);
2595}
2596
2598 // Fix widened non-induction PHIs by setting up the PHI operands.
2599 fixNonInductionPHIs(State);
2600
2601 // Don't apply optimizations below when no (vector) loop remains, as they all
2602 // require one at the moment.
2603 VPBasicBlock *HeaderVPBB =
2604 vputils::getFirstLoopHeader(*State.Plan, State.VPDT);
2605 if (!HeaderVPBB)
2606 return;
2607
2608 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2609
2610 // Remove redundant induction instructions.
2611 legacyCSE(HeaderBB);
2612}
2613
2615 auto Iter = vp_depth_first_shallow(Plan.getEntry());
2617 for (VPRecipeBase &P : VPBB->phis()) {
2619 if (!VPPhi)
2620 continue;
2621 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi));
2622 // Make sure the builder has a valid insert point.
2623 Builder.SetInsertPoint(NewPhi);
2624 for (const auto &[Inc, VPBB] : VPPhi->incoming_values_and_blocks())
2625 NewPhi->addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2626 }
2627 }
2628}
2629
2630void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
2631 // We should not collect Scalars more than once per VF. Right now, this
2632 // function is called from collectUniformsAndScalars(), which already does
2633 // this check. Collecting Scalars for VF=1 does not make any sense.
2634 assert(VF.isVector() && !Scalars.contains(VF) &&
2635 "This function should not be visited twice for the same VF");
2636
2637 // This avoids any chances of creating a REPLICATE recipe during planning
2638 // since that would result in generation of scalarized code during execution,
2639 // which is not supported for scalable vectors.
2640 if (VF.isScalable()) {
2641 Scalars[VF].insert_range(Uniforms[VF]);
2642 return;
2643 }
2644
2646
2647 // These sets are used to seed the analysis with pointers used by memory
2648 // accesses that will remain scalar.
2650 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
2651 auto *Latch = TheLoop->getLoopLatch();
2652
2653 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
2654 // The pointer operands of loads and stores will be scalar as long as the
2655 // memory access is not a gather or scatter operation. The value operand of a
2656 // store will remain scalar if the store is scalarized.
2657 auto IsScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
2658 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2659 assert(WideningDecision != CM_Unknown &&
2660 "Widening decision should be ready at this moment");
2661 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
2662 if (Ptr == Store->getValueOperand())
2663 return WideningDecision == CM_Scalarize;
2664 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
2665 "Ptr is neither a value or pointer operand");
2666 return WideningDecision != CM_GatherScatter;
2667 };
2668
2669 // A helper that returns true if the given value is a getelementptr
2670 // instruction contained in the loop.
2671 auto IsLoopVaryingGEP = [&](Value *V) {
2672 return isa<GetElementPtrInst>(V) && !TheLoop->isLoopInvariant(V);
2673 };
2674
2675 // A helper that evaluates a memory access's use of a pointer. If the use will
2676 // be a scalar use and the pointer is only used by memory accesses, we place
2677 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
2678 // PossibleNonScalarPtrs.
2679 auto EvaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
2680 // We only care about bitcast and getelementptr instructions contained in
2681 // the loop.
2682 if (!IsLoopVaryingGEP(Ptr))
2683 return;
2684
2685 // If the pointer has already been identified as scalar (e.g., if it was
2686 // also identified as uniform), there's nothing to do.
2687 auto *I = cast<Instruction>(Ptr);
2688 if (Worklist.count(I))
2689 return;
2690
2691 // If the use of the pointer will be a scalar use, and all users of the
2692 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
2693 // place the pointer in PossibleNonScalarPtrs.
2694 if (IsScalarUse(MemAccess, Ptr) &&
2696 ScalarPtrs.insert(I);
2697 else
2698 PossibleNonScalarPtrs.insert(I);
2699 };
2700
2701 // We seed the scalars analysis with three classes of instructions: (1)
2702 // instructions marked uniform-after-vectorization and (2) bitcast,
2703 // getelementptr and (pointer) phi instructions used by memory accesses
2704 // requiring a scalar use.
2705 //
2706 // (1) Add to the worklist all instructions that have been identified as
2707 // uniform-after-vectorization.
2708 Worklist.insert_range(Uniforms[VF]);
2709
2710 // (2) Add to the worklist all bitcast and getelementptr instructions used by
2711 // memory accesses requiring a scalar use. The pointer operands of loads and
2712 // stores will be scalar unless the operation is a gather or scatter.
2713 // The value operand of a store will remain scalar if the store is scalarized.
2714 for (auto *BB : TheLoop->blocks())
2715 for (auto &I : *BB) {
2716 if (auto *Load = dyn_cast<LoadInst>(&I)) {
2717 EvaluatePtrUse(Load, Load->getPointerOperand());
2718 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
2719 EvaluatePtrUse(Store, Store->getPointerOperand());
2720 EvaluatePtrUse(Store, Store->getValueOperand());
2721 }
2722 }
2723 for (auto *I : ScalarPtrs)
2724 if (!PossibleNonScalarPtrs.count(I)) {
2725 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
2726 Worklist.insert(I);
2727 }
2728
2729 // Insert the forced scalars.
2730 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
2731 // induction variable when the PHI user is scalarized.
2732 auto ForcedScalar = ForcedScalars.find(VF);
2733 if (ForcedScalar != ForcedScalars.end())
2734 for (auto *I : ForcedScalar->second) {
2735 LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n");
2736 Worklist.insert(I);
2737 }
2738
2739 // Expand the worklist by looking through any bitcasts and getelementptr
2740 // instructions we've already identified as scalar. This is similar to the
2741 // expansion step in collectLoopUniforms(); however, here we're only
2742 // expanding to include additional bitcasts and getelementptr instructions.
2743 unsigned Idx = 0;
2744 while (Idx != Worklist.size()) {
2745 Instruction *Dst = Worklist[Idx++];
2746 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2747 continue;
2748 auto *Src = cast<Instruction>(Dst->getOperand(0));
2749 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
2750 auto *J = cast<Instruction>(U);
2751 return !TheLoop->contains(J) || Worklist.count(J) ||
2752 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2753 IsScalarUse(J, Src));
2754 })) {
2755 Worklist.insert(Src);
2756 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
2757 }
2758 }
2759
2760 // An induction variable will remain scalar if all users of the induction
2761 // variable and induction variable update remain scalar.
2762 for (const auto &Induction : Legal->getInductionVars()) {
2763 auto *Ind = Induction.first;
2764 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
2765
2766 // If tail-folding is applied, the primary induction variable will be used
2767 // to feed a vector compare.
2768 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
2769 continue;
2770
2771 // Returns true if \p Indvar is a pointer induction that is used directly by
2772 // load/store instruction \p I.
2773 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
2774 Instruction *I) {
2775 return Induction.second.getKind() ==
2778 Indvar == getLoadStorePointerOperand(I) && IsScalarUse(I, Indvar);
2779 };
2780
2781 // Determine if all users of the induction variable are scalar after
2782 // vectorization.
2783 bool ScalarInd = all_of(Ind->users(), [&](User *U) -> bool {
2784 auto *I = cast<Instruction>(U);
2785 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2786 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2787 });
2788 if (!ScalarInd)
2789 continue;
2790
2791 // If the induction variable update is a fixed-order recurrence, neither the
2792 // induction variable or its update should be marked scalar after
2793 // vectorization.
2794 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
2795 if (IndUpdatePhi && Legal->isFixedOrderRecurrence(IndUpdatePhi))
2796 continue;
2797
2798 // Determine if all users of the induction variable update instruction are
2799 // scalar after vectorization.
2800 bool ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
2801 auto *I = cast<Instruction>(U);
2802 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2803 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2804 });
2805 if (!ScalarIndUpdate)
2806 continue;
2807
2808 // The induction variable and its update instruction will remain scalar.
2809 Worklist.insert(Ind);
2810 Worklist.insert(IndUpdate);
2811 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
2812 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
2813 << "\n");
2814 }
2815
2816 Scalars[VF].insert_range(Worklist);
2817}
2818
2820 ElementCount VF) {
2821 if (!isPredicatedInst(I))
2822 return false;
2823
2824 // Do we have a non-scalar lowering for this predicated
2825 // instruction? No - it is scalar with predication.
2826 switch(I->getOpcode()) {
2827 default:
2828 return true;
2829 case Instruction::Call:
2830 if (VF.isScalar())
2831 return true;
2833 case Instruction::Load:
2834 case Instruction::Store: {
2835 auto *Ptr = getLoadStorePointerOperand(I);
2836 auto *Ty = getLoadStoreType(I);
2837 unsigned AS = getLoadStoreAddressSpace(I);
2838 Type *VTy = Ty;
2839 if (VF.isVector())
2840 VTy = VectorType::get(Ty, VF);
2841 const Align Alignment = getLoadStoreAlignment(I);
2842 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment, AS) ||
2843 TTI.isLegalMaskedGather(VTy, Alignment))
2844 : !(isLegalMaskedStore(Ty, Ptr, Alignment, AS) ||
2845 TTI.isLegalMaskedScatter(VTy, Alignment));
2846 }
2847 case Instruction::UDiv:
2848 case Instruction::SDiv:
2849 case Instruction::SRem:
2850 case Instruction::URem: {
2851 // We have the option to use the safe-divisor idiom to avoid predication.
2852 // The cost based decision here will always select safe-divisor for
2853 // scalable vectors as scalarization isn't legal.
2854 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
2855 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost);
2856 }
2857 }
2858}
2859
2860// TODO: Fold into LoopVectorizationLegality::isMaskRequired.
2862 // TODO: We can use the loop-preheader as context point here and get
2863 // context sensitive reasoning for isSafeToSpeculativelyExecute.
2865 (isa<LoadInst, StoreInst, CallInst>(I) && !Legal->isMaskRequired(I)) ||
2867 return false;
2868
2869 // If the instruction was executed conditionally in the original scalar loop,
2870 // predication is needed with a mask whose lanes are all possibly inactive.
2871 if (Legal->blockNeedsPredication(I->getParent()))
2872 return true;
2873
2874 // If we're not folding the tail by masking, predication is unnecessary.
2875 if (!foldTailByMasking())
2876 return false;
2877
2878 // All that remain are instructions with side-effects originally executed in
2879 // the loop unconditionally, but now execute under a tail-fold mask (only)
2880 // having at least one active lane (the first). If the side-effects of the
2881 // instruction are invariant, executing it w/o (the tail-folding) mask is safe
2882 // - it will cause the same side-effects as when masked.
2883 switch(I->getOpcode()) {
2884 default:
2886 "instruction should have been considered by earlier checks");
2887 case Instruction::Call:
2888 // Side-effects of a Call are assumed to be non-invariant, needing a
2889 // (fold-tail) mask.
2890 assert(Legal->isMaskRequired(I) &&
2891 "should have returned earlier for calls not needing a mask");
2892 return true;
2893 case Instruction::Load:
2894 // If the address is loop invariant no predication is needed.
2895 return !Legal->isInvariant(getLoadStorePointerOperand(I));
2896 case Instruction::Store: {
2897 // For stores, we need to prove both speculation safety (which follows from
2898 // the same argument as loads), but also must prove the value being stored
2899 // is correct. The easiest form of the later is to require that all values
2900 // stored are the same.
2901 return !(Legal->isInvariant(getLoadStorePointerOperand(I)) &&
2902 TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()));
2903 }
2904 case Instruction::UDiv:
2905 case Instruction::SDiv:
2906 case Instruction::SRem:
2907 case Instruction::URem:
2908 // If the divisor is loop-invariant no predication is needed.
2909 return !Legal->isInvariant(I->getOperand(1));
2910 }
2911}
2912
2916 return 1;
2917 // If the block wasn't originally predicated then return early to avoid
2918 // computing BlockFrequencyInfo unnecessarily.
2919 if (!Legal->blockNeedsPredication(BB))
2920 return 1;
2921
2922 uint64_t HeaderFreq =
2923 getBFI().getBlockFreq(TheLoop->getHeader()).getFrequency();
2924 uint64_t BBFreq = getBFI().getBlockFreq(BB).getFrequency();
2925 assert(HeaderFreq >= BBFreq &&
2926 "Header has smaller block freq than dominated BB?");
2927 return std::round((double)HeaderFreq / BBFreq);
2928}
2929
2930std::pair<InstructionCost, InstructionCost>
2932 ElementCount VF) {
2933 assert(I->getOpcode() == Instruction::UDiv ||
2934 I->getOpcode() == Instruction::SDiv ||
2935 I->getOpcode() == Instruction::SRem ||
2936 I->getOpcode() == Instruction::URem);
2938
2939 // Scalarization isn't legal for scalable vector types
2940 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
2941 if (!VF.isScalable()) {
2942 // Get the scalarization cost and scale this amount by the probability of
2943 // executing the predicated block. If the instruction is not predicated,
2944 // we fall through to the next case.
2945 ScalarizationCost = 0;
2946
2947 // These instructions have a non-void type, so account for the phi nodes
2948 // that we will create. This cost is likely to be zero. The phi node
2949 // cost, if any, should be scaled by the block probability because it
2950 // models a copy at the end of each predicated block.
2951 ScalarizationCost +=
2952 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
2953
2954 // The cost of the non-predicated instruction.
2955 ScalarizationCost +=
2956 VF.getFixedValue() *
2957 TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind);
2958
2959 // The cost of insertelement and extractelement instructions needed for
2960 // scalarization.
2961 ScalarizationCost += getScalarizationOverhead(I, VF);
2962
2963 // Scale the cost by the probability of executing the predicated blocks.
2964 // This assumes the predicated block for each vector lane is equally
2965 // likely.
2966 ScalarizationCost =
2967 ScalarizationCost / getPredBlockCostDivisor(CostKind, I->getParent());
2968 }
2969
2970 InstructionCost SafeDivisorCost = 0;
2971 auto *VecTy = toVectorTy(I->getType(), VF);
2972 // The cost of the select guard to ensure all lanes are well defined
2973 // after we speculate above any internal control flow.
2974 SafeDivisorCost +=
2975 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2976 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
2978
2979 SmallVector<const Value *, 4> Operands(I->operand_values());
2980 SafeDivisorCost += TTI.getArithmeticInstrCost(
2981 I->getOpcode(), VecTy, CostKind,
2982 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2983 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2984 Operands, I);
2985 return {ScalarizationCost, SafeDivisorCost};
2986}
2987
2989 Instruction *I, ElementCount VF) const {
2990 assert(isAccessInterleaved(I) && "Expecting interleaved access.");
2992 "Decision should not be set yet.");
2993 auto *Group = getInterleavedAccessGroup(I);
2994 assert(Group && "Must have a group.");
2995 unsigned InterleaveFactor = Group->getFactor();
2996
2997 // If the instruction's allocated size doesn't equal its type size, it
2998 // requires padding and will be scalarized.
2999 auto &DL = I->getDataLayout();
3000 auto *ScalarTy = getLoadStoreType(I);
3001 if (hasIrregularType(ScalarTy, DL))
3002 return false;
3003
3004 // For scalable vectors, the interleave factors must be <= 8 since we require
3005 // the (de)interleaveN intrinsics instead of shufflevectors.
3006 if (VF.isScalable() && InterleaveFactor > 8)
3007 return false;
3008
3009 // If the group involves a non-integral pointer, we may not be able to
3010 // losslessly cast all values to a common type.
3011 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
3012 for (unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3013 Instruction *Member = Group->getMember(Idx);
3014 if (!Member)
3015 continue;
3016 auto *MemberTy = getLoadStoreType(Member);
3017 bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
3018 // Don't coerce non-integral pointers to integers or vice versa.
3019 if (MemberNI != ScalarNI)
3020 // TODO: Consider adding special nullptr value case here
3021 return false;
3022 if (MemberNI && ScalarNI &&
3023 ScalarTy->getPointerAddressSpace() !=
3024 MemberTy->getPointerAddressSpace())
3025 return false;
3026 }
3027
3028 // Check if masking is required.
3029 // A Group may need masking for one of two reasons: it resides in a block that
3030 // needs predication, or it was decided to use masking to deal with gaps
3031 // (either a gap at the end of a load-access that may result in a speculative
3032 // load, or any gaps in a store-access).
3033 bool PredicatedAccessRequiresMasking =
3034 blockNeedsPredicationForAnyReason(I->getParent()) &&
3035 Legal->isMaskRequired(I);
3036 bool LoadAccessWithGapsRequiresEpilogMasking =
3037 isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
3039 bool StoreAccessWithGapsRequiresMasking =
3040 isa<StoreInst>(I) && !Group->isFull();
3041 if (!PredicatedAccessRequiresMasking &&
3042 !LoadAccessWithGapsRequiresEpilogMasking &&
3043 !StoreAccessWithGapsRequiresMasking)
3044 return true;
3045
3046 // If masked interleaving is required, we expect that the user/target had
3047 // enabled it, because otherwise it either wouldn't have been created or
3048 // it should have been invalidated by the CostModel.
3050 "Masked interleave-groups for predicated accesses are not enabled.");
3051
3052 if (Group->isReverse())
3053 return false;
3054
3055 // TODO: Support interleaved access that requires a gap mask for scalable VFs.
3056 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3057 StoreAccessWithGapsRequiresMasking;
3058 if (VF.isScalable() && NeedsMaskForGaps)
3059 return false;
3060
3061 auto *Ty = getLoadStoreType(I);
3062 const Align Alignment = getLoadStoreAlignment(I);
3063 unsigned AS = getLoadStoreAddressSpace(I);
3064 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment, AS)
3065 : TTI.isLegalMaskedStore(Ty, Alignment, AS);
3066}
3067
3069 Instruction *I, ElementCount VF) {
3070 // Get and ensure we have a valid memory instruction.
3071 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
3072
3073 auto *Ptr = getLoadStorePointerOperand(I);
3074 auto *ScalarTy = getLoadStoreType(I);
3075
3076 // In order to be widened, the pointer should be consecutive, first of all.
3077 if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
3078 return false;
3079
3080 // If the instruction is a store located in a predicated block, it will be
3081 // scalarized.
3082 if (isScalarWithPredication(I, VF))
3083 return false;
3084
3085 // If the instruction's allocated size doesn't equal it's type size, it
3086 // requires padding and will be scalarized.
3087 auto &DL = I->getDataLayout();
3088 if (hasIrregularType(ScalarTy, DL))
3089 return false;
3090
3091 return true;
3092}
3093
3094void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
3095 // We should not collect Uniforms more than once per VF. Right now,
3096 // this function is called from collectUniformsAndScalars(), which
3097 // already does this check. Collecting Uniforms for VF=1 does not make any
3098 // sense.
3099
3100 assert(VF.isVector() && !Uniforms.contains(VF) &&
3101 "This function should not be visited twice for the same VF");
3102
3103 // Visit the list of Uniforms. If we find no uniform value, we won't
3104 // analyze again. Uniforms.count(VF) will return 1.
3105 Uniforms[VF].clear();
3106
3107 // Now we know that the loop is vectorizable!
3108 // Collect instructions inside the loop that will remain uniform after
3109 // vectorization.
3110
3111 // Global values, params and instructions outside of current loop are out of
3112 // scope.
3113 auto IsOutOfScope = [&](Value *V) -> bool {
3115 return (!I || !TheLoop->contains(I));
3116 };
3117
3118 // Worklist containing uniform instructions demanding lane 0.
3119 SetVector<Instruction *> Worklist;
3120
3121 // Add uniform instructions demanding lane 0 to the worklist. Instructions
3122 // that require predication must not be considered uniform after
3123 // vectorization, because that would create an erroneous replicating region
3124 // where only a single instance out of VF should be formed.
3125 auto AddToWorklistIfAllowed = [&](Instruction *I) -> void {
3126 if (IsOutOfScope(I)) {
3127 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
3128 << *I << "\n");
3129 return;
3130 }
3131 if (isPredicatedInst(I)) {
3132 LLVM_DEBUG(
3133 dbgs() << "LV: Found not uniform due to requiring predication: " << *I
3134 << "\n");
3135 return;
3136 }
3137 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
3138 Worklist.insert(I);
3139 };
3140
3141 // Start with the conditional branches exiting the loop. If the branch
3142 // condition is an instruction contained in the loop that is only used by the
3143 // branch, it is uniform. Note conditions from uncountable early exits are not
3144 // uniform.
3146 TheLoop->getExitingBlocks(Exiting);
3147 for (BasicBlock *E : Exiting) {
3148 if (Legal->hasUncountableEarlyExit() && TheLoop->getLoopLatch() != E)
3149 continue;
3150 auto *Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3151 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
3152 AddToWorklistIfAllowed(Cmp);
3153 }
3154
3155 auto PrevVF = VF.divideCoefficientBy(2);
3156 // Return true if all lanes perform the same memory operation, and we can
3157 // thus choose to execute only one.
3158 auto IsUniformMemOpUse = [&](Instruction *I) {
3159 // If the value was already known to not be uniform for the previous
3160 // (smaller VF), it cannot be uniform for the larger VF.
3161 if (PrevVF.isVector()) {
3162 auto Iter = Uniforms.find(PrevVF);
3163 if (Iter != Uniforms.end() && !Iter->second.contains(I))
3164 return false;
3165 }
3166 if (!Legal->isUniformMemOp(*I, VF))
3167 return false;
3168 if (isa<LoadInst>(I))
3169 // Loading the same address always produces the same result - at least
3170 // assuming aliasing and ordering which have already been checked.
3171 return true;
3172 // Storing the same value on every iteration.
3173 return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand());
3174 };
3175
3176 auto IsUniformDecision = [&](Instruction *I, ElementCount VF) {
3177 InstWidening WideningDecision = getWideningDecision(I, VF);
3178 assert(WideningDecision != CM_Unknown &&
3179 "Widening decision should be ready at this moment");
3180
3181 if (IsUniformMemOpUse(I))
3182 return true;
3183
3184 return (WideningDecision == CM_Widen ||
3185 WideningDecision == CM_Widen_Reverse ||
3186 WideningDecision == CM_Interleave);
3187 };
3188
3189 // Returns true if Ptr is the pointer operand of a memory access instruction
3190 // I, I is known to not require scalarization, and the pointer is not also
3191 // stored.
3192 auto IsVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
3193 if (isa<StoreInst>(I) && I->getOperand(0) == Ptr)
3194 return false;
3195 return getLoadStorePointerOperand(I) == Ptr &&
3196 (IsUniformDecision(I, VF) || Legal->isInvariant(Ptr));
3197 };
3198
3199 // Holds a list of values which are known to have at least one uniform use.
3200 // Note that there may be other uses which aren't uniform. A "uniform use"
3201 // here is something which only demands lane 0 of the unrolled iterations;
3202 // it does not imply that all lanes produce the same value (e.g. this is not
3203 // the usual meaning of uniform)
3204 SetVector<Value *> HasUniformUse;
3205
3206 // Scan the loop for instructions which are either a) known to have only
3207 // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
3208 for (auto *BB : TheLoop->blocks())
3209 for (auto &I : *BB) {
3210 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3211 switch (II->getIntrinsicID()) {
3212 case Intrinsic::sideeffect:
3213 case Intrinsic::experimental_noalias_scope_decl:
3214 case Intrinsic::assume:
3215 case Intrinsic::lifetime_start:
3216 case Intrinsic::lifetime_end:
3217 if (TheLoop->hasLoopInvariantOperands(&I))
3218 AddToWorklistIfAllowed(&I);
3219 break;
3220 default:
3221 break;
3222 }
3223 }
3224
3225 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
3226 if (IsOutOfScope(EVI->getAggregateOperand())) {
3227 AddToWorklistIfAllowed(EVI);
3228 continue;
3229 }
3230 // Only ExtractValue instructions where the aggregate value comes from a
3231 // call are allowed to be non-uniform.
3232 assert(isa<CallInst>(EVI->getAggregateOperand()) &&
3233 "Expected aggregate value to be call return value");
3234 }
3235
3236 // If there's no pointer operand, there's nothing to do.
3237 auto *Ptr = getLoadStorePointerOperand(&I);
3238 if (!Ptr)
3239 continue;
3240
3241 // If the pointer can be proven to be uniform, always add it to the
3242 // worklist.
3243 if (isa<Instruction>(Ptr) && Legal->isUniform(Ptr, VF))
3244 AddToWorklistIfAllowed(cast<Instruction>(Ptr));
3245
3246 if (IsUniformMemOpUse(&I))
3247 AddToWorklistIfAllowed(&I);
3248
3249 if (IsVectorizedMemAccessUse(&I, Ptr))
3250 HasUniformUse.insert(Ptr);
3251 }
3252
3253 // Add to the worklist any operands which have *only* uniform (e.g. lane 0
3254 // demanding) users. Since loops are assumed to be in LCSSA form, this
3255 // disallows uses outside the loop as well.
3256 for (auto *V : HasUniformUse) {
3257 if (IsOutOfScope(V))
3258 continue;
3259 auto *I = cast<Instruction>(V);
3260 bool UsersAreMemAccesses = all_of(I->users(), [&](User *U) -> bool {
3261 auto *UI = cast<Instruction>(U);
3262 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3263 });
3264 if (UsersAreMemAccesses)
3265 AddToWorklistIfAllowed(I);
3266 }
3267
3268 // Expand Worklist in topological order: whenever a new instruction
3269 // is added , its users should be already inside Worklist. It ensures
3270 // a uniform instruction will only be used by uniform instructions.
3271 unsigned Idx = 0;
3272 while (Idx != Worklist.size()) {
3273 Instruction *I = Worklist[Idx++];
3274
3275 for (auto *OV : I->operand_values()) {
3276 // isOutOfScope operands cannot be uniform instructions.
3277 if (IsOutOfScope(OV))
3278 continue;
3279 // First order recurrence Phi's should typically be considered
3280 // non-uniform.
3281 auto *OP = dyn_cast<PHINode>(OV);
3282 if (OP && Legal->isFixedOrderRecurrence(OP))
3283 continue;
3284 // If all the users of the operand are uniform, then add the
3285 // operand into the uniform worklist.
3286 auto *OI = cast<Instruction>(OV);
3287 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
3288 auto *J = cast<Instruction>(U);
3289 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3290 }))
3291 AddToWorklistIfAllowed(OI);
3292 }
3293 }
3294
3295 // For an instruction to be added into Worklist above, all its users inside
3296 // the loop should also be in Worklist. However, this condition cannot be
3297 // true for phi nodes that form a cyclic dependence. We must process phi
3298 // nodes separately. An induction variable will remain uniform if all users
3299 // of the induction variable and induction variable update remain uniform.
3300 // The code below handles both pointer and non-pointer induction variables.
3301 BasicBlock *Latch = TheLoop->getLoopLatch();
3302 for (const auto &Induction : Legal->getInductionVars()) {
3303 auto *Ind = Induction.first;
3304 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3305
3306 // Determine if all users of the induction variable are uniform after
3307 // vectorization.
3308 bool UniformInd = all_of(Ind->users(), [&](User *U) -> bool {
3309 auto *I = cast<Instruction>(U);
3310 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3311 IsVectorizedMemAccessUse(I, Ind);
3312 });
3313 if (!UniformInd)
3314 continue;
3315
3316 // Determine if all users of the induction variable update instruction are
3317 // uniform after vectorization.
3318 bool UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool {
3319 auto *I = cast<Instruction>(U);
3320 return I == Ind || Worklist.count(I) ||
3321 IsVectorizedMemAccessUse(I, IndUpdate);
3322 });
3323 if (!UniformIndUpdate)
3324 continue;
3325
3326 // The induction variable and its update instruction will remain uniform.
3327 AddToWorklistIfAllowed(Ind);
3328 AddToWorklistIfAllowed(IndUpdate);
3329 }
3330
3331 Uniforms[VF].insert_range(Worklist);
3332}
3333
3335 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
3336
3337 if (Legal->getRuntimePointerChecking()->Need) {
3338 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
3339 "runtime pointer checks needed. Enable vectorization of this "
3340 "loop with '#pragma clang loop vectorize(enable)' when "
3341 "compiling with -Os/-Oz",
3342 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3343 return true;
3344 }
3345
3346 if (!PSE.getPredicate().isAlwaysTrue()) {
3347 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
3348 "runtime SCEV checks needed. Enable vectorization of this "
3349 "loop with '#pragma clang loop vectorize(enable)' when "
3350 "compiling with -Os/-Oz",
3351 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3352 return true;
3353 }
3354
3355 // FIXME: Avoid specializing for stride==1 instead of bailing out.
3356 if (!Legal->getLAI()->getSymbolicStrides().empty()) {
3357 reportVectorizationFailure("Runtime stride check for small trip count",
3358 "runtime stride == 1 checks needed. Enable vectorization of "
3359 "this loop without such check by compiling with -Os/-Oz",
3360 "CantVersionLoopWithOptForSize", ORE, TheLoop);
3361 return true;
3362 }
3363
3364 return false;
3365}
3366
3367bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3368 if (IsScalableVectorizationAllowed)
3369 return *IsScalableVectorizationAllowed;
3370
3371 IsScalableVectorizationAllowed = false;
3372 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
3373 return false;
3374
3375 if (Hints->isScalableVectorizationDisabled()) {
3376 reportVectorizationInfo("Scalable vectorization is explicitly disabled",
3377 "ScalableVectorizationDisabled", ORE, TheLoop);
3378 return false;
3379 }
3380
3381 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
3382
3383 auto MaxScalableVF = ElementCount::getScalable(
3384 std::numeric_limits<ElementCount::ScalarTy>::max());
3385
3386 // Test that the loop-vectorizer can legalize all operations for this MaxVF.
3387 // FIXME: While for scalable vectors this is currently sufficient, this should
3388 // be replaced by a more detailed mechanism that filters out specific VFs,
3389 // instead of invalidating vectorization for a whole set of VFs based on the
3390 // MaxVF.
3391
3392 // Disable scalable vectorization if the loop contains unsupported reductions.
3393 if (!canVectorizeReductions(MaxScalableVF)) {
3395 "Scalable vectorization not supported for the reduction "
3396 "operations found in this loop.",
3397 "ScalableVFUnfeasible", ORE, TheLoop);
3398 return false;
3399 }
3400
3401 // Disable scalable vectorization if the loop contains any instructions
3402 // with element types not supported for scalable vectors.
3403 if (any_of(ElementTypesInLoop, [&](Type *Ty) {
3404 return !Ty->isVoidTy() &&
3406 })) {
3407 reportVectorizationInfo("Scalable vectorization is not supported "
3408 "for all element types found in this loop.",
3409 "ScalableVFUnfeasible", ORE, TheLoop);
3410 return false;
3411 }
3412
3413 if (!Legal->isSafeForAnyVectorWidth() && !getMaxVScale(*TheFunction, TTI)) {
3414 reportVectorizationInfo("The target does not provide maximum vscale value "
3415 "for safe distance analysis.",
3416 "ScalableVFUnfeasible", ORE, TheLoop);
3417 return false;
3418 }
3419
3420 IsScalableVectorizationAllowed = true;
3421 return true;
3422}
3423
3424ElementCount
3425LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
3426 if (!isScalableVectorizationAllowed())
3427 return ElementCount::getScalable(0);
3428
3429 auto MaxScalableVF = ElementCount::getScalable(
3430 std::numeric_limits<ElementCount::ScalarTy>::max());
3431 if (Legal->isSafeForAnyVectorWidth())
3432 return MaxScalableVF;
3433
3434 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3435 // Limit MaxScalableVF by the maximum safe dependence distance.
3436 MaxScalableVF = ElementCount::getScalable(MaxSafeElements / *MaxVScale);
3437
3438 if (!MaxScalableVF)
3440 "Max legal vector width too small, scalable vectorization "
3441 "unfeasible.",
3442 "ScalableVFUnfeasible", ORE, TheLoop);
3443
3444 return MaxScalableVF;
3445}
3446
3447FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3448 unsigned MaxTripCount, ElementCount UserVF, bool FoldTailByMasking) {
3449 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
3450 unsigned SmallestType, WidestType;
3451 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3452
3453 // Get the maximum safe dependence distance in bits computed by LAA.
3454 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
3455 // the memory accesses that is most restrictive (involved in the smallest
3456 // dependence distance).
3457 unsigned MaxSafeElementsPowerOf2 =
3458 bit_floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
3459 if (!Legal->isSafeForAnyStoreLoadForwardDistances()) {
3460 unsigned SLDist = Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3461 MaxSafeElementsPowerOf2 =
3462 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3463 }
3464 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElementsPowerOf2);
3465 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3466
3467 if (!Legal->isSafeForAnyVectorWidth())
3468 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3469
3470 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
3471 << ".\n");
3472 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
3473 << ".\n");
3474
3475 // First analyze the UserVF, fall back if the UserVF should be ignored.
3476 if (UserVF) {
3477 auto MaxSafeUserVF =
3478 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3479
3480 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3481 // If `VF=vscale x N` is safe, then so is `VF=N`
3482 if (UserVF.isScalable())
3483 return FixedScalableVFPair(
3484 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
3485
3486 return UserVF;
3487 }
3488
3489 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3490
3491 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
3492 // is better to ignore the hint and let the compiler choose a suitable VF.
3493 if (!UserVF.isScalable()) {
3494 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3495 << " is unsafe, clamping to max safe VF="
3496 << MaxSafeFixedVF << ".\n");
3497 ORE->emit([&]() {
3498 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3499 TheLoop->getStartLoc(),
3500 TheLoop->getHeader())
3501 << "User-specified vectorization factor "
3502 << ore::NV("UserVectorizationFactor", UserVF)
3503 << " is unsafe, clamping to maximum safe vectorization factor "
3504 << ore::NV("VectorizationFactor", MaxSafeFixedVF);
3505 });
3506 return MaxSafeFixedVF;
3507 }
3508
3510 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3511 << " is ignored because scalable vectors are not "
3512 "available.\n");
3513 ORE->emit([&]() {
3514 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3515 TheLoop->getStartLoc(),
3516 TheLoop->getHeader())
3517 << "User-specified vectorization factor "
3518 << ore::NV("UserVectorizationFactor", UserVF)
3519 << " is ignored because the target does not support scalable "
3520 "vectors. The compiler will pick a more suitable value.";
3521 });
3522 } else {
3523 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
3524 << " is unsafe. Ignoring scalable UserVF.\n");
3525 ORE->emit([&]() {
3526 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
3527 TheLoop->getStartLoc(),
3528 TheLoop->getHeader())
3529 << "User-specified vectorization factor "
3530 << ore::NV("UserVectorizationFactor", UserVF)
3531 << " is unsafe. Ignoring the hint to let the compiler pick a "
3532 "more suitable value.";
3533 });
3534 }
3535 }
3536
3537 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
3538 << " / " << WidestType << " bits.\n");
3539
3540 FixedScalableVFPair Result(ElementCount::getFixed(1),
3542 if (auto MaxVF =
3543 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3544 MaxSafeFixedVF, FoldTailByMasking))
3545 Result.FixedVF = MaxVF;
3546
3547 if (auto MaxVF =
3548 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3549 MaxSafeScalableVF, FoldTailByMasking))
3550 if (MaxVF.isScalable()) {
3551 Result.ScalableVF = MaxVF;
3552 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
3553 << "\n");
3554 }
3555
3556 return Result;
3557}
3558
3559FixedScalableVFPair
3561 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
3562 // TODO: It may be useful to do since it's still likely to be dynamically
3563 // uniform if the target can skip.
3565 "Not inserting runtime ptr check for divergent target",
3566 "runtime pointer checks needed. Not enabled for divergent target",
3567 "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
3569 }
3570
3571 ScalarEvolution *SE = PSE.getSE();
3573 unsigned MaxTC = PSE.getSmallConstantMaxTripCount();
3574 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
3575 if (TC != ElementCount::getFixed(MaxTC))
3576 LLVM_DEBUG(dbgs() << "LV: Found maximum trip count: " << MaxTC << '\n');
3577 if (TC.isScalar()) {
3578 reportVectorizationFailure("Single iteration (non) loop",
3579 "loop trip count is one, irrelevant for vectorization",
3580 "SingleIterationLoop", ORE, TheLoop);
3582 }
3583
3584 // If BTC matches the widest induction type and is -1 then the trip count
3585 // computation will wrap to 0 and the vector trip count will be 0. Do not try
3586 // to vectorize.
3587 const SCEV *BTC = SE->getBackedgeTakenCount(TheLoop);
3588 if (!isa<SCEVCouldNotCompute>(BTC) &&
3589 BTC->getType()->getScalarSizeInBits() >=
3590 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3592 SE->getMinusOne(BTC->getType()))) {
3594 "Trip count computation wrapped",
3595 "backedge-taken count is -1, loop trip count wrapped to 0",
3596 "TripCountWrapped", ORE, TheLoop);
3598 }
3599
3600 switch (ScalarEpilogueStatus) {
3602 return computeFeasibleMaxVF(MaxTC, UserVF, false);
3604 [[fallthrough]];
3606 LLVM_DEBUG(
3607 dbgs() << "LV: vector predicate hint/switch found.\n"
3608 << "LV: Not allowing scalar epilogue, creating predicated "
3609 << "vector loop.\n");
3610 break;
3612 // fallthrough as a special case of OptForSize
3614 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
3615 LLVM_DEBUG(
3616 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3617 else
3618 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
3619 << "count.\n");
3620
3621 // Bail if runtime checks are required, which are not good when optimising
3622 // for size.
3625
3626 break;
3627 }
3628
3629 // Now try the tail folding
3630
3631 // Invalidate interleave groups that require an epilogue if we can't mask
3632 // the interleave-group.
3634 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3635 "No decisions should have been taken at this point");
3636 // Note: There is no need to invalidate any cost modeling decisions here, as
3637 // none were taken so far.
3638 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
3639 }
3640
3641 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(MaxTC, UserVF, true);
3642
3643 // Avoid tail folding if the trip count is known to be a multiple of any VF
3644 // we choose.
3645 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3646 MaxFactors.FixedVF.getFixedValue();
3647 if (MaxFactors.ScalableVF) {
3648 std::optional<unsigned> MaxVScale = getMaxVScale(*TheFunction, TTI);
3649 if (MaxVScale && TTI.isVScaleKnownToBeAPowerOfTwo()) {
3650 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3651 *MaxPowerOf2RuntimeVF,
3652 *MaxVScale * MaxFactors.ScalableVF.getKnownMinValue());
3653 } else
3654 MaxPowerOf2RuntimeVF = std::nullopt; // Stick with tail-folding for now.
3655 }
3656
3657 auto NoScalarEpilogueNeeded = [this, &UserIC](unsigned MaxVF) {
3658 // Return false if the loop is neither a single-latch-exit loop nor an
3659 // early-exit loop as tail-folding is not supported in that case.
3660 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch() &&
3661 !Legal->hasUncountableEarlyExit())
3662 return false;
3663 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3664 ScalarEvolution *SE = PSE.getSE();
3665 // Calling getSymbolicMaxBackedgeTakenCount enables support for loops
3666 // with uncountable exits. For countable loops, the symbolic maximum must
3667 // remain identical to the known back-edge taken count.
3668 const SCEV *BackedgeTakenCount = PSE.getSymbolicMaxBackedgeTakenCount();
3669 assert((Legal->hasUncountableEarlyExit() ||
3670 BackedgeTakenCount == PSE.getBackedgeTakenCount()) &&
3671 "Invalid loop count");
3672 const SCEV *ExitCount = SE->getAddExpr(
3673 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3674 const SCEV *Rem = SE->getURemExpr(
3675 SE->applyLoopGuards(ExitCount, TheLoop),
3676 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
3677 return Rem->isZero();
3678 };
3679
3680 if (MaxPowerOf2RuntimeVF > 0u) {
3681 assert((UserVF.isNonZero() || isPowerOf2_32(*MaxPowerOf2RuntimeVF)) &&
3682 "MaxFixedVF must be a power of 2");
3683 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3684 // Accept MaxFixedVF if we do not have a tail.
3685 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
3686 return MaxFactors;
3687 }
3688 }
3689
3690 auto ExpectedTC = getSmallBestKnownTC(PSE, TheLoop);
3691 if (ExpectedTC && ExpectedTC->isFixed() &&
3692 ExpectedTC->getFixedValue() <=
3693 TTI.getMinTripCountTailFoldingThreshold()) {
3694 if (MaxPowerOf2RuntimeVF > 0u) {
3695 // If we have a low-trip-count, and the fixed-width VF is known to divide
3696 // the trip count but the scalable factor does not, use the fixed-width
3697 // factor in preference to allow the generation of a non-predicated loop.
3698 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedLowTripLoop &&
3699 NoScalarEpilogueNeeded(MaxFactors.FixedVF.getFixedValue())) {
3700 LLVM_DEBUG(dbgs() << "LV: Picking a fixed-width so that no tail will "
3701 "remain for any chosen VF.\n");
3702 MaxFactors.ScalableVF = ElementCount::getScalable(0);
3703 return MaxFactors;
3704 }
3705 }
3706
3708 "The trip count is below the minial threshold value.",
3709 "loop trip count is too low, avoiding vectorization", "LowTripCount",
3710 ORE, TheLoop);
3712 }
3713
3714 // If we don't know the precise trip count, or if the trip count that we
3715 // found modulo the vectorization factor is not zero, try to fold the tail
3716 // by masking.
3717 // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
3718 bool ContainsScalableVF = MaxFactors.ScalableVF.isNonZero();
3719 setTailFoldingStyles(ContainsScalableVF, UserIC);
3720 if (foldTailByMasking()) {
3721 if (foldTailWithEVL()) {
3722 LLVM_DEBUG(
3723 dbgs()
3724 << "LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3725 "try to generate VP Intrinsics with scalable vector "
3726 "factors only.\n");
3727 // Tail folded loop using VP intrinsics restricts the VF to be scalable
3728 // for now.
3729 // TODO: extend it for fixed vectors, if required.
3730 assert(ContainsScalableVF && "Expected scalable vector factor.");
3731
3732 MaxFactors.FixedVF = ElementCount::getFixed(1);
3733 }
3734 return MaxFactors;
3735 }
3736
3737 // If there was a tail-folding hint/switch, but we can't fold the tail by
3738 // masking, fallback to a vectorization with a scalar epilogue.
3739 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
3740 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
3741 "scalar epilogue instead.\n");
3742 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
3743 return MaxFactors;
3744 }
3745
3746 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
3747 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
3749 }
3750
3751 if (TC.isZero()) {
3753 "unable to calculate the loop count due to complex control flow",
3754 "UnknownLoopCountComplexCFG", ORE, TheLoop);
3756 }
3757
3759 "Cannot optimize for size and vectorize at the same time.",
3760 "cannot optimize for size and vectorize at the same time. "
3761 "Enable vectorization of this loop with '#pragma clang loop "
3762 "vectorize(enable)' when compiling with -Os/-Oz",
3763 "NoTailLoopWithOptForSize", ORE, TheLoop);
3765}
3766
3768 ElementCount VF) {
3769 if (ConsiderRegPressure.getNumOccurrences())
3770 return ConsiderRegPressure;
3771
3772 // TODO: We should eventually consider register pressure for all targets. The
3773 // TTI hook is temporary whilst target-specific issues are being fixed.
3774 if (TTI.shouldConsiderVectorizationRegPressure())
3775 return true;
3776
3777 if (!useMaxBandwidth(VF.isScalable()
3780 return false;
3781 // Only calculate register pressure for VFs enabled by MaxBandwidth.
3783 VF, VF.isScalable() ? MaxPermissibleVFWithoutMaxBW.ScalableVF
3785}
3786
3789 return MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
3790 (TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3792 Legal->hasVectorCallVariants())));
3793}
3794
3795ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3796 ElementCount VF, unsigned MaxTripCount, bool FoldTailByMasking) const {
3797 unsigned EstimatedVF = VF.getKnownMinValue();
3798 if (VF.isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3799 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3800 auto Min = Attr.getVScaleRangeMin();
3801 EstimatedVF *= Min;
3802 }
3803
3804 // When a scalar epilogue is required, at least one iteration of the scalar
3805 // loop has to execute. Adjust MaxTripCount accordingly to avoid picking a
3806 // max VF that results in a dead vector loop.
3807 if (MaxTripCount > 0 && requiresScalarEpilogue(true))
3808 MaxTripCount -= 1;
3809
3810 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3811 (!FoldTailByMasking || isPowerOf2_32(MaxTripCount))) {
3812 // If upper bound loop trip count (TC) is known at compile time there is no
3813 // point in choosing VF greater than TC (as done in the loop below). Select
3814 // maximum power of two which doesn't exceed TC. If VF is
3815 // scalable, we only fall back on a fixed VF when the TC is less than or
3816 // equal to the known number of lanes.
3817 auto ClampedUpperTripCount = llvm::bit_floor(MaxTripCount);
3818 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
3819 "exceeding the constant trip count: "
3820 << ClampedUpperTripCount << "\n");
3821 return ElementCount::get(ClampedUpperTripCount,
3822 FoldTailByMasking ? VF.isScalable() : false);
3823 }
3824 return VF;
3825}
3826
3827ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3828 unsigned MaxTripCount, unsigned SmallestType, unsigned WidestType,
3829 ElementCount MaxSafeVF, bool FoldTailByMasking) {
3830 bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
3831 const TypeSize WidestRegister = TTI.getRegisterBitWidth(
3832 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3834
3835 // Convenience function to return the minimum of two ElementCounts.
3836 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
3837 assert((LHS.isScalable() == RHS.isScalable()) &&
3838 "Scalable flags must match");
3839 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
3840 };
3841
3842 // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
3843 // Note that both WidestRegister and WidestType may not be a powers of 2.
3844 auto MaxVectorElementCount = ElementCount::get(
3845 llvm::bit_floor(WidestRegister.getKnownMinValue() / WidestType),
3846 ComputeScalableMaxVF);
3847 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3848 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
3849 << (MaxVectorElementCount * WidestType) << " bits.\n");
3850
3851 if (!MaxVectorElementCount) {
3852 LLVM_DEBUG(dbgs() << "LV: The target has no "
3853 << (ComputeScalableMaxVF ? "scalable" : "fixed")
3854 << " vector registers.\n");
3855 return ElementCount::getFixed(1);
3856 }
3857
3858 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3859 MaxTripCount, FoldTailByMasking);
3860 // If the MaxVF was already clamped, there's no point in trying to pick a
3861 // larger one.
3862 if (MaxVF != MaxVectorElementCount)
3863 return MaxVF;
3864
3866 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
3868
3869 if (MaxVF.isScalable())
3870 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3871 else
3872 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3873
3874 if (useMaxBandwidth(RegKind)) {
3875 auto MaxVectorElementCountMaxBW = ElementCount::get(
3876 llvm::bit_floor(WidestRegister.getKnownMinValue() / SmallestType),
3877 ComputeScalableMaxVF);
3878 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3879
3880 if (ElementCount MinVF =
3881 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
3882 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3883 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
3884 << ") with target's minimum: " << MinVF << '\n');
3885 MaxVF = MinVF;
3886 }
3887 }
3888
3889 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3890
3891 if (MaxVectorElementCount != MaxVF) {
3892 // Invalidate any widening decisions we might have made, in case the loop
3893 // requires prediction (decided later), but we have already made some
3894 // load/store widening decisions.
3895 invalidateCostModelingDecisions();
3896 }
3897 }
3898 return MaxVF;
3899}
3900
3901bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3902 const VectorizationFactor &B,
3903 const unsigned MaxTripCount,
3904 bool HasTail,
3905 bool IsEpilogue) const {
3906 InstructionCost CostA = A.Cost;
3907 InstructionCost CostB = B.Cost;
3908
3909 // Improve estimate for the vector width if it is scalable.
3910 unsigned EstimatedWidthA = A.Width.getKnownMinValue();
3911 unsigned EstimatedWidthB = B.Width.getKnownMinValue();
3912 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3913 if (A.Width.isScalable())
3914 EstimatedWidthA *= *VScale;
3915 if (B.Width.isScalable())
3916 EstimatedWidthB *= *VScale;
3917 }
3918
3919 // When optimizing for size choose whichever is smallest, which will be the
3920 // one with the smallest cost for the whole loop. On a tie pick the larger
3921 // vector width, on the assumption that throughput will be greater.
3922 if (CM.CostKind == TTI::TCK_CodeSize)
3923 return CostA < CostB ||
3924 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3925
3926 // Assume vscale may be larger than 1 (or the value being tuned for),
3927 // so that scalable vectorization is slightly favorable over fixed-width
3928 // vectorization.
3929 bool PreferScalable = !TTI.preferFixedOverScalableIfEqualCost(IsEpilogue) &&
3930 A.Width.isScalable() && !B.Width.isScalable();
3931
3932 auto CmpFn = [PreferScalable](const InstructionCost &LHS,
3933 const InstructionCost &RHS) {
3934 return PreferScalable ? LHS <= RHS : LHS < RHS;
3935 };
3936
3937 // To avoid the need for FP division:
3938 // (CostA / EstimatedWidthA) < (CostB / EstimatedWidthB)
3939 // <=> (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA)
3940 if (!MaxTripCount)
3941 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3942
3943 auto GetCostForTC = [MaxTripCount, HasTail](unsigned VF,
3944 InstructionCost VectorCost,
3945 InstructionCost ScalarCost) {
3946 // If the trip count is a known (possibly small) constant, the trip count
3947 // will be rounded up to an integer number of iterations under
3948 // FoldTailByMasking. The total cost in that case will be
3949 // VecCost*ceil(TripCount/VF). When not folding the tail, the total
3950 // cost will be VecCost*floor(TC/VF) + ScalarCost*(TC%VF). There will be
3951 // some extra overheads, but for the purpose of comparing the costs of
3952 // different VFs we can use this to compare the total loop-body cost
3953 // expected after vectorization.
3954 if (HasTail)
3955 return VectorCost * (MaxTripCount / VF) +
3956 ScalarCost * (MaxTripCount % VF);
3957 return VectorCost * divideCeil(MaxTripCount, VF);
3958 };
3959
3960 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA, A.ScalarCost);
3961 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB, B.ScalarCost);
3962 return CmpFn(RTCostA, RTCostB);
3963}
3964
3965bool LoopVectorizationPlanner::isMoreProfitable(const VectorizationFactor &A,
3966 const VectorizationFactor &B,
3967 bool HasTail,
3968 bool IsEpilogue) const {
3969 const unsigned MaxTripCount = PSE.getSmallConstantMaxTripCount();
3970 return LoopVectorizationPlanner::isMoreProfitable(A, B, MaxTripCount, HasTail,
3971 IsEpilogue);
3972}
3973
3976 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3977 SmallVector<RecipeVFPair> InvalidCosts;
3978 for (const auto &Plan : VPlans) {
3979 for (ElementCount VF : Plan->vectorFactors()) {
3980 // The VPlan-based cost model is designed for computing vector cost.
3981 // Querying VPlan-based cost model with a scarlar VF will cause some
3982 // errors because we expect the VF is vector for most of the widen
3983 // recipes.
3984 if (VF.isScalar())
3985 continue;
3986
3987 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
3988 OrigLoop);
3989 precomputeCosts(*Plan, VF, CostCtx);
3990 auto Iter = vp_depth_first_deep(Plan->getVectorLoopRegion()->getEntry());
3992 for (auto &R : *VPBB) {
3993 if (!R.cost(VF, CostCtx).isValid())
3994 InvalidCosts.emplace_back(&R, VF);
3995 }
3996 }
3997 }
3998 }
3999 if (InvalidCosts.empty())
4000 return;
4001
4002 // Emit a report of VFs with invalid costs in the loop.
4003
4004 // Group the remarks per recipe, keeping the recipe order from InvalidCosts.
4006 unsigned I = 0;
4007 for (auto &Pair : InvalidCosts)
4008 if (Numbering.try_emplace(Pair.first, I).second)
4009 ++I;
4010
4011 // Sort the list, first on recipe(number) then on VF.
4012 sort(InvalidCosts, [&Numbering](RecipeVFPair &A, RecipeVFPair &B) {
4013 unsigned NA = Numbering[A.first];
4014 unsigned NB = Numbering[B.first];
4015 if (NA != NB)
4016 return NA < NB;
4017 return ElementCount::isKnownLT(A.second, B.second);
4018 });
4019
4020 // For a list of ordered recipe-VF pairs:
4021 // [(load, VF1), (load, VF2), (store, VF1)]
4022 // group the recipes together to emit separate remarks for:
4023 // load (VF1, VF2)
4024 // store (VF1)
4025 auto Tail = ArrayRef<RecipeVFPair>(InvalidCosts);
4026 auto Subset = ArrayRef<RecipeVFPair>();
4027 do {
4028 if (Subset.empty())
4029 Subset = Tail.take_front(1);
4030
4031 VPRecipeBase *R = Subset.front().first;
4032
4033 unsigned Opcode =
4036 [](const auto *R) { return Instruction::PHI; })
4037 .Case<VPWidenSelectRecipe>(
4038 [](const auto *R) { return Instruction::Select; })
4039 .Case<VPWidenStoreRecipe>(
4040 [](const auto *R) { return Instruction::Store; })
4041 .Case<VPWidenLoadRecipe>(
4042 [](const auto *R) { return Instruction::Load; })
4043 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4044 [](const auto *R) { return Instruction::Call; })
4047 [](const auto *R) { return R->getOpcode(); })
4048 .Case<VPInterleaveRecipe>([](const VPInterleaveRecipe *R) {
4049 return R->getStoredValues().empty() ? Instruction::Load
4050 : Instruction::Store;
4051 })
4052 .Case<VPReductionRecipe>([](const auto *R) {
4053 return RecurrenceDescriptor::getOpcode(R->getRecurrenceKind());
4054 });
4055
4056 // If the next recipe is different, or if there are no other pairs,
4057 // emit a remark for the collated subset. e.g.
4058 // [(load, VF1), (load, VF2))]
4059 // to emit:
4060 // remark: invalid costs for 'load' at VF=(VF1, VF2)
4061 if (Subset == Tail || Tail[Subset.size()].first != R) {
4062 std::string OutString;
4063 raw_string_ostream OS(OutString);
4064 assert(!Subset.empty() && "Unexpected empty range");
4065 OS << "Recipe with invalid costs prevented vectorization at VF=(";
4066 for (const auto &Pair : Subset)
4067 OS << (Pair.second == Subset.front().second ? "" : ", ") << Pair.second;
4068 OS << "):";
4069 if (Opcode == Instruction::Call) {
4070 StringRef Name = "";
4071 if (auto *Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4072 Name = Int->getIntrinsicName();
4073 } else {
4074 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4075 Function *CalledFn =
4076 WidenCall ? WidenCall->getCalledScalarFunction()
4077 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4078 ->getLiveInIRValue());
4079 Name = CalledFn->getName();
4080 }
4081 OS << " call to " << Name;
4082 } else
4083 OS << " " << Instruction::getOpcodeName(Opcode);
4084 reportVectorizationInfo(OutString, "InvalidCost", ORE, OrigLoop, nullptr,
4085 R->getDebugLoc());
4086 Tail = Tail.drop_front(Subset.size());
4087 Subset = {};
4088 } else
4089 // Grow the subset by one element
4090 Subset = Tail.take_front(Subset.size() + 1);
4091 } while (!Tail.empty());
4092}
4093
4094/// Check if any recipe of \p Plan will generate a vector value, which will be
4095/// assigned a vector register.
4097 const TargetTransformInfo &TTI) {
4098 assert(VF.isVector() && "Checking a scalar VF?");
4099 VPTypeAnalysis TypeInfo(Plan);
4100 DenseSet<VPRecipeBase *> EphemeralRecipes;
4101 collectEphemeralRecipesForVPlan(Plan, EphemeralRecipes);
4102 // Set of already visited types.
4103 DenseSet<Type *> Visited;
4106 for (VPRecipeBase &R : *VPBB) {
4107 if (EphemeralRecipes.contains(&R))
4108 continue;
4109 // Continue early if the recipe is considered to not produce a vector
4110 // result. Note that this includes VPInstruction where some opcodes may
4111 // produce a vector, to preserve existing behavior as VPInstructions model
4112 // aspects not directly mapped to existing IR instructions.
4113 switch (R.getVPDefID()) {
4114 case VPDef::VPDerivedIVSC:
4115 case VPDef::VPScalarIVStepsSC:
4116 case VPDef::VPReplicateSC:
4117 case VPDef::VPInstructionSC:
4118 case VPDef::VPCanonicalIVPHISC:
4119 case VPDef::VPVectorPointerSC:
4120 case VPDef::VPVectorEndPointerSC:
4121 case VPDef::VPExpandSCEVSC:
4122 case VPDef::VPEVLBasedIVPHISC:
4123 case VPDef::VPPredInstPHISC:
4124 case VPDef::VPBranchOnMaskSC:
4125 continue;
4126 case VPDef::VPReductionSC:
4127 case VPDef::VPActiveLaneMaskPHISC:
4128 case VPDef::VPWidenCallSC:
4129 case VPDef::VPWidenCanonicalIVSC:
4130 case VPDef::VPWidenCastSC:
4131 case VPDef::VPWidenGEPSC:
4132 case VPDef::VPWidenIntrinsicSC:
4133 case VPDef::VPWidenSC:
4134 case VPDef::VPWidenSelectSC:
4135 case VPDef::VPBlendSC:
4136 case VPDef::VPFirstOrderRecurrencePHISC:
4137 case VPDef::VPHistogramSC:
4138 case VPDef::VPWidenPHISC:
4139 case VPDef::VPWidenIntOrFpInductionSC:
4140 case VPDef::VPWidenPointerInductionSC:
4141 case VPDef::VPReductionPHISC:
4142 case VPDef::VPInterleaveEVLSC:
4143 case VPDef::VPInterleaveSC:
4144 case VPDef::VPWidenLoadEVLSC:
4145 case VPDef::VPWidenLoadSC:
4146 case VPDef::VPWidenStoreEVLSC:
4147 case VPDef::VPWidenStoreSC:
4148 break;
4149 default:
4150 llvm_unreachable("unhandled recipe");
4151 }
4152
4153 auto WillGenerateTargetVectors = [&TTI, VF](Type *VectorTy) {
4154 unsigned NumLegalParts = TTI.getNumberOfParts(VectorTy);
4155 if (!NumLegalParts)
4156 return false;
4157 if (VF.isScalable()) {
4158 // <vscale x 1 x iN> is assumed to be profitable over iN because
4159 // scalable registers are a distinct register class from scalar
4160 // ones. If we ever find a target which wants to lower scalable
4161 // vectors back to scalars, we'll need to update this code to
4162 // explicitly ask TTI about the register class uses for each part.
4163 return NumLegalParts <= VF.getKnownMinValue();
4164 }
4165 // Two or more elements that share a register - are vectorized.
4166 return NumLegalParts < VF.getFixedValue();
4167 };
4168
4169 // If no def nor is a store, e.g., branches, continue - no value to check.
4170 if (R.getNumDefinedValues() == 0 &&
4172 continue;
4173 // For multi-def recipes, currently only interleaved loads, suffice to
4174 // check first def only.
4175 // For stores check their stored value; for interleaved stores suffice
4176 // the check first stored value only. In all cases this is the second
4177 // operand.
4178 VPValue *ToCheck =
4179 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4180 Type *ScalarTy = TypeInfo.inferScalarType(ToCheck);
4181 if (!Visited.insert({ScalarTy}).second)
4182 continue;
4183 Type *WideTy = toVectorizedTy(ScalarTy, VF);
4184 if (any_of(getContainedTypes(WideTy), WillGenerateTargetVectors))
4185 return true;
4186 }
4187 }
4188
4189 return false;
4190}
4191
4192static bool hasReplicatorRegion(VPlan &Plan) {
4194 Plan.getVectorLoopRegion()->getEntry())),
4195 [](auto *VPRB) { return VPRB->isReplicator(); });
4196}
4197
4198#ifndef NDEBUG
4199VectorizationFactor LoopVectorizationPlanner::selectVectorizationFactor() {
4200 InstructionCost ExpectedCost = CM.expectedCost(ElementCount::getFixed(1));
4201 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
4202 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
4203 assert(
4204 any_of(VPlans,
4205 [](std::unique_ptr<VPlan> &P) { return P->hasScalarVFOnly(); }) &&
4206 "Expected Scalar VF to be a candidate");
4207
4208 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
4209 ExpectedCost);
4210 VectorizationFactor ChosenFactor = ScalarCost;
4211
4212 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
4213 if (ForceVectorization &&
4214 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4215 // Ignore scalar width, because the user explicitly wants vectorization.
4216 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
4217 // evaluation.
4218 ChosenFactor.Cost = InstructionCost::getMax();
4219 }
4220
4221 for (auto &P : VPlans) {
4222 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
4223 P->vectorFactors().end());
4224
4226 if (any_of(VFs, [this](ElementCount VF) {
4227 return CM.shouldConsiderRegPressureForVF(VF);
4228 }))
4229 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
4230
4231 for (unsigned I = 0; I < VFs.size(); I++) {
4232 ElementCount VF = VFs[I];
4233 // The cost for scalar VF=1 is already calculated, so ignore it.
4234 if (VF.isScalar())
4235 continue;
4236
4237 /// If the register pressure needs to be considered for VF,
4238 /// don't consider the VF as valid if it exceeds the number
4239 /// of registers for the target.
4240 if (CM.shouldConsiderRegPressureForVF(VF) &&
4241 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs))
4242 continue;
4243
4244 InstructionCost C = CM.expectedCost(VF);
4245
4246 // Add on other costs that are modelled in VPlan, but not in the legacy
4247 // cost model.
4248 VPCostContext CostCtx(CM.TTI, *CM.TLI, *P, CM, CM.CostKind, CM.PSE,
4249 OrigLoop);
4250 VPRegionBlock *VectorRegion = P->getVectorLoopRegion();
4251 assert(VectorRegion && "Expected to have a vector region!");
4252 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4253 vp_depth_first_shallow(VectorRegion->getEntry()))) {
4254 for (VPRecipeBase &R : *VPBB) {
4255 auto *VPI = dyn_cast<VPInstruction>(&R);
4256 if (!VPI)
4257 continue;
4258 switch (VPI->getOpcode()) {
4259 // Selects are only modelled in the legacy cost model for safe
4260 // divisors.
4261 case Instruction::Select: {
4262 if (auto *WR =
4263 dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
4264 switch (WR->getOpcode()) {
4265 case Instruction::UDiv:
4266 case Instruction::SDiv:
4267 case Instruction::URem:
4268 case Instruction::SRem:
4269 continue;
4270 default:
4271 break;
4272 }
4273 }
4274 C += VPI->cost(VF, CostCtx);
4275 break;
4276 }
4278 unsigned Multiplier =
4279 cast<ConstantInt>(VPI->getOperand(2)->getLiveInIRValue())
4280 ->getZExtValue();
4281 C += VPI->cost(VF * Multiplier, CostCtx);
4282 break;
4283 }
4285 C += VPI->cost(VF, CostCtx);
4286 break;
4287 default:
4288 break;
4289 }
4290 }
4291 }
4292
4293 VectorizationFactor Candidate(VF, C, ScalarCost.ScalarCost);
4294 unsigned Width =
4295 estimateElementCount(Candidate.Width, CM.getVScaleForTuning());
4296 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << VF
4297 << " costs: " << (Candidate.Cost / Width));
4298 if (VF.isScalable())
4299 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
4300 << CM.getVScaleForTuning().value_or(1) << ")");
4301 LLVM_DEBUG(dbgs() << ".\n");
4302
4303 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
4304 LLVM_DEBUG(
4305 dbgs()
4306 << "LV: Not considering vector loop of width " << VF
4307 << " because it will not generate any vector instructions.\n");
4308 continue;
4309 }
4310
4311 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
4312 LLVM_DEBUG(
4313 dbgs()
4314 << "LV: Not considering vector loop of width " << VF
4315 << " because it would cause replicated blocks to be generated,"
4316 << " which isn't allowed when optimizing for size.\n");
4317 continue;
4318 }
4319
4320 if (isMoreProfitable(Candidate, ChosenFactor, P->hasScalarTail()))
4321 ChosenFactor = Candidate;
4322 }
4323 }
4324
4325 if (!EnableCondStoresVectorization && CM.hasPredStores()) {
4327 "There are conditional stores.",
4328 "store that is conditionally executed prevents vectorization",
4329 "ConditionalStore", ORE, OrigLoop);
4330 ChosenFactor = ScalarCost;
4331 }
4332
4333 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
4334 !isMoreProfitable(ChosenFactor, ScalarCost,
4335 !CM.foldTailByMasking())) dbgs()
4336 << "LV: Vectorization seems to be not beneficial, "
4337 << "but was forced by a user.\n");
4338 return ChosenFactor;
4339}
4340#endif
4341
4342bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4343 ElementCount VF) const {
4344 // Cross iteration phis such as fixed-order recurrences and FMaxNum/FMinNum
4345 // reductions need special handling and are currently unsupported.
4346 if (any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4347 if (!Legal->isReductionVariable(&Phi))
4348 return Legal->isFixedOrderRecurrence(&Phi);
4349 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4350 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4351 }))
4352 return false;
4353
4354 // Phis with uses outside of the loop require special handling and are
4355 // currently unsupported.
4356 for (const auto &Entry : Legal->getInductionVars()) {
4357 // Look for uses of the value of the induction at the last iteration.
4358 Value *PostInc =
4359 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4360 for (User *U : PostInc->users())
4361 if (!OrigLoop->contains(cast<Instruction>(U)))
4362 return false;
4363 // Look for uses of penultimate value of the induction.
4364 for (User *U : Entry.first->users())
4365 if (!OrigLoop->contains(cast<Instruction>(U)))
4366 return false;
4367 }
4368
4369 // Epilogue vectorization code has not been auditted to ensure it handles
4370 // non-latch exits properly. It may be fine, but it needs auditted and
4371 // tested.
4372 // TODO: Add support for loops with an early exit.
4373 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4374 return false;
4375
4376 return true;
4377}
4378
4380 const ElementCount VF, const unsigned IC) const {
4381 // FIXME: We need a much better cost-model to take different parameters such
4382 // as register pressure, code size increase and cost of extra branches into
4383 // account. For now we apply a very crude heuristic and only consider loops
4384 // with vectorization factors larger than a certain value.
4385
4386 // Allow the target to opt out entirely.
4387 if (!TTI.preferEpilogueVectorization())
4388 return false;
4389
4390 // We also consider epilogue vectorization unprofitable for targets that don't
4391 // consider interleaving beneficial (eg. MVE).
4392 if (TTI.getMaxInterleaveFactor(VF) <= 1)
4393 return false;
4394
4395 unsigned MinVFThreshold = EpilogueVectorizationMinVF.getNumOccurrences() > 0
4397 : TTI.getEpilogueVectorizationMinVF();
4398 return estimateElementCount(VF * IC, VScaleForTuning) >= MinVFThreshold;
4399}
4400
4402 const ElementCount MainLoopVF, unsigned IC) {
4405 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n");
4406 return Result;
4407 }
4408
4409 if (!CM.isScalarEpilogueAllowed()) {
4410 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because no "
4411 "epilogue is allowed.\n");
4412 return Result;
4413 }
4414
4415 // Not really a cost consideration, but check for unsupported cases here to
4416 // simplify the logic.
4417 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4418 LLVM_DEBUG(dbgs() << "LEV: Unable to vectorize epilogue because the loop "
4419 "is not a supported candidate.\n");
4420 return Result;
4421 }
4422
4424 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n");
4426 if (hasPlanWithVF(ForcedEC))
4427 return {ForcedEC, 0, 0};
4428
4429 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization forced factor is not "
4430 "viable.\n");
4431 return Result;
4432 }
4433
4434 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4435 LLVM_DEBUG(
4436 dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n");
4437 return Result;
4438 }
4439
4440 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4441 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
4442 "this loop\n");
4443 return Result;
4444 }
4445
4446 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
4447 // the main loop handles 8 lanes per iteration. We could still benefit from
4448 // vectorizing the epilogue loop with VF=4.
4449 ElementCount EstimatedRuntimeVF = ElementCount::getFixed(
4450 estimateElementCount(MainLoopVF, CM.getVScaleForTuning()));
4451
4452 Type *TCType = Legal->getWidestInductionType();
4453 const SCEV *RemainingIterations = nullptr;
4454 unsigned MaxTripCount = 0;
4456 getPlanFor(MainLoopVF).getTripCount(), PSE);
4457 assert(!isa<SCEVCouldNotCompute>(TC) && "Trip count SCEV must be computable");
4458 const SCEV *KnownMinTC;
4459 bool ScalableTC = match(TC, m_scev_c_Mul(m_SCEV(KnownMinTC), m_SCEVVScale()));
4460 bool ScalableRemIter = false;
4461 ScalarEvolution &SE = *PSE.getSE();
4462 // Use versions of TC and VF in which both are either scalable or fixed.
4463 if (ScalableTC == MainLoopVF.isScalable()) {
4464 ScalableRemIter = ScalableTC;
4465 RemainingIterations =
4466 SE.getURemExpr(TC, SE.getElementCount(TCType, MainLoopVF * IC));
4467 } else if (ScalableTC) {
4468 const SCEV *EstimatedTC = SE.getMulExpr(
4469 KnownMinTC,
4470 SE.getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4471 RemainingIterations = SE.getURemExpr(
4472 EstimatedTC, SE.getElementCount(TCType, MainLoopVF * IC));
4473 } else
4474 RemainingIterations =
4475 SE.getURemExpr(TC, SE.getElementCount(TCType, EstimatedRuntimeVF * IC));
4476
4477 // No iterations left to process in the epilogue.
4478 if (RemainingIterations->isZero())
4479 return Result;
4480
4481 if (MainLoopVF.isFixed()) {
4482 MaxTripCount = MainLoopVF.getFixedValue() * IC - 1;
4483 if (SE.isKnownPredicate(CmpInst::ICMP_ULT, RemainingIterations,
4484 SE.getConstant(TCType, MaxTripCount))) {
4485 MaxTripCount = SE.getUnsignedRangeMax(RemainingIterations).getZExtValue();
4486 }
4487 LLVM_DEBUG(dbgs() << "LEV: Maximum Trip Count for Epilogue: "
4488 << MaxTripCount << "\n");
4489 }
4490
4491 auto SkipVF = [&](const SCEV *VF, const SCEV *RemIter) -> bool {
4492 return SE.isKnownPredicate(CmpInst::ICMP_UGT, VF, RemIter);
4493 };
4494 for (auto &NextVF : ProfitableVFs) {
4495 // Skip candidate VFs without a corresponding VPlan.
4496 if (!hasPlanWithVF(NextVF.Width))
4497 continue;
4498
4499 // Skip candidate VFs with widths >= the (estimated) runtime VF (scalable
4500 // vectors) or > the VF of the main loop (fixed vectors).
4501 if ((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
4502 ElementCount::isKnownGE(NextVF.Width, EstimatedRuntimeVF)) ||
4503 (NextVF.Width.isScalable() &&
4504 ElementCount::isKnownGE(NextVF.Width, MainLoopVF)) ||
4505 (!NextVF.Width.isScalable() && !MainLoopVF.isScalable() &&
4506 ElementCount::isKnownGT(NextVF.Width, MainLoopVF)))
4507 continue;
4508
4509 // If NextVF is greater than the number of remaining iterations, the
4510 // epilogue loop would be dead. Skip such factors.
4511 // TODO: We should also consider comparing against a scalable
4512 // RemainingIterations when SCEV be able to evaluate non-canonical
4513 // vscale-based expressions.
4514 if (!ScalableRemIter) {
4515 // Handle the case where NextVF and RemainingIterations are in different
4516 // numerical spaces.
4517 ElementCount EC = NextVF.Width;
4518 if (NextVF.Width.isScalable())
4520 estimateElementCount(NextVF.Width, CM.getVScaleForTuning()));
4521 if (SkipVF(SE.getElementCount(TCType, EC), RemainingIterations))
4522 continue;
4523 }
4524
4525 if (Result.Width.isScalar() ||
4526 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4527 /*IsEpilogue*/ true))
4528 Result = NextVF;
4529 }
4530
4531 if (Result != VectorizationFactor::Disabled())
4532 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
4533 << Result.Width << "\n");
4534 return Result;
4535}
4536
4537std::pair<unsigned, unsigned>
4539 unsigned MinWidth = -1U;
4540 unsigned MaxWidth = 8;
4541 const DataLayout &DL = TheFunction->getDataLayout();
4542 // For in-loop reductions, no element types are added to ElementTypesInLoop
4543 // if there are no loads/stores in the loop. In this case, check through the
4544 // reduction variables to determine the maximum width.
4545 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
4546 for (const auto &PhiDescriptorPair : Legal->getReductionVars()) {
4547 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
4548 // When finding the min width used by the recurrence we need to account
4549 // for casts on the input operands of the recurrence.
4550 MinWidth = std::min(
4551 MinWidth,
4552 std::min(RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
4554 MaxWidth = std::max(MaxWidth,
4556 }
4557 } else {
4558 for (Type *T : ElementTypesInLoop) {
4559 MinWidth = std::min<unsigned>(
4560 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4561 MaxWidth = std::max<unsigned>(
4562 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue());
4563 }
4564 }
4565 return {MinWidth, MaxWidth};
4566}
4567
4569 ElementTypesInLoop.clear();
4570 // For each block.
4571 for (BasicBlock *BB : TheLoop->blocks()) {
4572 // For each instruction in the loop.
4573 for (Instruction &I : BB->instructionsWithoutDebug()) {
4574 Type *T = I.getType();
4575
4576 // Skip ignored values.
4577 if (ValuesToIgnore.count(&I))
4578 continue;
4579
4580 // Only examine Loads, Stores and PHINodes.
4581 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
4582 continue;
4583
4584 // Examine PHI nodes that are reduction variables. Update the type to
4585 // account for the recurrence type.
4586 if (auto *PN = dyn_cast<PHINode>(&I)) {
4587 if (!Legal->isReductionVariable(PN))
4588 continue;
4589 const RecurrenceDescriptor &RdxDesc =
4590 Legal->getRecurrenceDescriptor(PN);
4592 TTI.preferInLoopReduction(RdxDesc.getRecurrenceKind(),
4593 RdxDesc.getRecurrenceType()))
4594 continue;
4595 T = RdxDesc.getRecurrenceType();
4596 }
4597
4598 // Examine the stored values.
4599 if (auto *ST = dyn_cast<StoreInst>(&I))
4600 T = ST->getValueOperand()->getType();
4601
4602 assert(T->isSized() &&
4603 "Expected the load/store/recurrence type to be sized");
4604
4605 ElementTypesInLoop.insert(T);
4606 }
4607 }
4608}
4609
4610unsigned
4612 InstructionCost LoopCost) {
4613 // -- The interleave heuristics --
4614 // We interleave the loop in order to expose ILP and reduce the loop overhead.
4615 // There are many micro-architectural considerations that we can't predict
4616 // at this level. For example, frontend pressure (on decode or fetch) due to
4617 // code size, or the number and capabilities of the execution ports.
4618 //
4619 // We use the following heuristics to select the interleave count:
4620 // 1. If the code has reductions, then we interleave to break the cross
4621 // iteration dependency.
4622 // 2. If the loop is really small, then we interleave to reduce the loop
4623 // overhead.
4624 // 3. We don't interleave if we think that we will spill registers to memory
4625 // due to the increased register pressure.
4626
4627 // Only interleave tail-folded loops if wide lane masks are requested, as the
4628 // overhead of multiple instructions to calculate the predicate is likely
4629 // not beneficial. If a scalar epilogue is not allowed for any other reason,
4630 // do not interleave.
4631 if (!CM.isScalarEpilogueAllowed() &&
4632 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4633 return 1;
4634
4637 LLVM_DEBUG(dbgs() << "LV: Preference for VP intrinsics indicated. "
4638 "Unroll factor forced to be 1.\n");
4639 return 1;
4640 }
4641
4642 // We used the distance for the interleave count.
4643 if (!Legal->isSafeForAnyVectorWidth())
4644 return 1;
4645
4646 // We don't attempt to perform interleaving for loops with uncountable early
4647 // exits because the VPInstruction::AnyOf code cannot currently handle
4648 // multiple parts.
4649 if (Plan.hasEarlyExit())
4650 return 1;
4651
4652 const bool HasReductions =
4655
4656 // If we did not calculate the cost for VF (because the user selected the VF)
4657 // then we calculate the cost of VF here.
4658 if (LoopCost == 0) {
4659 if (VF.isScalar())
4660 LoopCost = CM.expectedCost(VF);
4661 else
4662 LoopCost = cost(Plan, VF);
4663 assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost");
4664
4665 // Loop body is free and there is no need for interleaving.
4666 if (LoopCost == 0)
4667 return 1;
4668 }
4669
4670 VPRegisterUsage R =
4671 calculateRegisterUsageForPlan(Plan, {VF}, TTI, CM.ValuesToIgnore)[0];
4672 // We divide by these constants so assume that we have at least one
4673 // instruction that uses at least one register.
4674 for (auto &Pair : R.MaxLocalUsers) {
4675 Pair.second = std::max(Pair.second, 1U);
4676 }
4677
4678 // We calculate the interleave count using the following formula.
4679 // Subtract the number of loop invariants from the number of available
4680 // registers. These registers are used by all of the interleaved instances.
4681 // Next, divide the remaining registers by the number of registers that is
4682 // required by the loop, in order to estimate how many parallel instances
4683 // fit without causing spills. All of this is rounded down if necessary to be
4684 // a power of two. We want power of two interleave count to simplify any
4685 // addressing operations or alignment considerations.
4686 // We also want power of two interleave counts to ensure that the induction
4687 // variable of the vector loop wraps to zero, when tail is folded by masking;
4688 // this currently happens when OptForSize, in which case IC is set to 1 above.
4689 unsigned IC = UINT_MAX;
4690
4691 for (const auto &Pair : R.MaxLocalUsers) {
4692 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4693 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
4694 << " registers of "
4695 << TTI.getRegisterClassName(Pair.first)
4696 << " register class\n");
4697 if (VF.isScalar()) {
4698 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
4699 TargetNumRegisters = ForceTargetNumScalarRegs;
4700 } else {
4701 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
4702 TargetNumRegisters = ForceTargetNumVectorRegs;
4703 }
4704 unsigned MaxLocalUsers = Pair.second;
4705 unsigned LoopInvariantRegs = 0;
4706 if (R.LoopInvariantRegs.contains(Pair.first))
4707 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4708
4709 unsigned TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4710 MaxLocalUsers);
4711 // Don't count the induction variable as interleaved.
4713 TmpIC = llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4714 std::max(1U, (MaxLocalUsers - 1)));
4715 }
4716
4717 IC = std::min(IC, TmpIC);
4718 }
4719
4720 // Clamp the interleave ranges to reasonable counts.
4721 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4722
4723 // Check if the user has overridden the max.
4724 if (VF.isScalar()) {
4725 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
4726 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
4727 } else {
4728 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
4729 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
4730 }
4731
4732 // Try to get the exact trip count, or an estimate based on profiling data or
4733 // ConstantMax from PSE, failing that.
4734 auto BestKnownTC = getSmallBestKnownTC(PSE, OrigLoop);
4735
4736 // For fixed length VFs treat a scalable trip count as unknown.
4737 if (BestKnownTC && (BestKnownTC->isFixed() || VF.isScalable())) {
4738 // Re-evaluate trip counts and VFs to be in the same numerical space.
4739 unsigned AvailableTC =
4740 estimateElementCount(*BestKnownTC, CM.getVScaleForTuning());
4741 unsigned EstimatedVF = estimateElementCount(VF, CM.getVScaleForTuning());
4742
4743 // At least one iteration must be scalar when this constraint holds. So the
4744 // maximum available iterations for interleaving is one less.
4745 if (CM.requiresScalarEpilogue(VF.isVector()))
4746 --AvailableTC;
4747
4748 unsigned InterleaveCountLB = bit_floor(std::max(
4749 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4750
4751 if (getSmallConstantTripCount(PSE.getSE(), OrigLoop).isNonZero()) {
4752 // If the best known trip count is exact, we select between two
4753 // prospective ICs, where
4754 //
4755 // 1) the aggressive IC is capped by the trip count divided by VF
4756 // 2) the conservative IC is capped by the trip count divided by (VF * 2)
4757 //
4758 // The final IC is selected in a way that the epilogue loop trip count is
4759 // minimized while maximizing the IC itself, so that we either run the
4760 // vector loop at least once if it generates a small epilogue loop, or
4761 // else we run the vector loop at least twice.
4762
4763 unsigned InterleaveCountUB = bit_floor(std::max(
4764 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4765 MaxInterleaveCount = InterleaveCountLB;
4766
4767 if (InterleaveCountUB != InterleaveCountLB) {
4768 unsigned TailTripCountUB =
4769 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4770 unsigned TailTripCountLB =
4771 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4772 // If both produce same scalar tail, maximize the IC to do the same work
4773 // in fewer vector loop iterations
4774 if (TailTripCountUB == TailTripCountLB)
4775 MaxInterleaveCount = InterleaveCountUB;
4776 }
4777 } else {
4778 // If trip count is an estimated compile time constant, limit the
4779 // IC to be capped by the trip count divided by VF * 2, such that the
4780 // vector loop runs at least twice to make interleaving seem profitable
4781 // when there is an epilogue loop present. Since exact Trip count is not
4782 // known we choose to be conservative in our IC estimate.
4783 MaxInterleaveCount = InterleaveCountLB;
4784 }
4785 }
4786
4787 assert(MaxInterleaveCount > 0 &&
4788 "Maximum interleave count must be greater than 0");
4789
4790 // Clamp the calculated IC to be between the 1 and the max interleave count
4791 // that the target and trip count allows.
4792 if (IC > MaxInterleaveCount)
4793 IC = MaxInterleaveCount;
4794 else
4795 // Make sure IC is greater than 0.
4796 IC = std::max(1u, IC);
4797
4798 assert(IC > 0 && "Interleave count must be greater than 0.");
4799
4800 // Interleave if we vectorized this loop and there is a reduction that could
4801 // benefit from interleaving.
4802 if (VF.isVector() && HasReductions) {
4803 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
4804 return IC;
4805 }
4806
4807 // For any scalar loop that either requires runtime checks or predication we
4808 // are better off leaving this to the unroller. Note that if we've already
4809 // vectorized the loop we will have done the runtime check and so interleaving
4810 // won't require further checks.
4811 bool ScalarInterleavingRequiresPredication =
4812 (VF.isScalar() && any_of(OrigLoop->blocks(), [this](BasicBlock *BB) {
4813 return Legal->blockNeedsPredication(BB);
4814 }));
4815 bool ScalarInterleavingRequiresRuntimePointerCheck =
4816 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
4817
4818 // We want to interleave small loops in order to reduce the loop overhead and
4819 // potentially expose ILP opportunities.
4820 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
4821 << "LV: IC is " << IC << '\n'
4822 << "LV: VF is " << VF << '\n');
4823 const bool AggressivelyInterleaveReductions =
4824 TTI.enableAggressiveInterleaving(HasReductions);
4825 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4826 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
4827 // We assume that the cost overhead is 1 and we use the cost model
4828 // to estimate the cost of the loop and interleave until the cost of the
4829 // loop overhead is about 5% of the cost of the loop.
4830 unsigned SmallIC = std::min(IC, (unsigned)llvm::bit_floor<uint64_t>(
4831 SmallLoopCost / LoopCost.getValue()));
4832
4833 // Interleave until store/load ports (estimated by max interleave count) are
4834 // saturated.
4835 unsigned NumStores = 0;
4836 unsigned NumLoads = 0;
4839 for (VPRecipeBase &R : *VPBB) {
4841 NumLoads++;
4842 continue;
4843 }
4845 NumStores++;
4846 continue;
4847 }
4848
4849 if (auto *InterleaveR = dyn_cast<VPInterleaveRecipe>(&R)) {
4850 if (unsigned StoreOps = InterleaveR->getNumStoreOperands())
4851 NumStores += StoreOps;
4852 else
4853 NumLoads += InterleaveR->getNumDefinedValues();
4854 continue;
4855 }
4856 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
4857 NumLoads += isa<LoadInst>(RepR->getUnderlyingInstr());
4858 NumStores += isa<StoreInst>(RepR->getUnderlyingInstr());
4859 continue;
4860 }
4861 if (isa<VPHistogramRecipe>(&R)) {
4862 NumLoads++;
4863 NumStores++;
4864 continue;
4865 }
4866 }
4867 }
4868 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4869 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4870
4871 // There is little point in interleaving for reductions containing selects
4872 // and compares when VF=1 since it may just create more overhead than it's
4873 // worth for loops with small trip counts. This is because we still have to
4874 // do the final reduction after the loop.
4875 bool HasSelectCmpReductions =
4876 HasReductions &&
4878 [](VPRecipeBase &R) {
4879 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4880 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4881 RedR->getRecurrenceKind()) ||
4882 RecurrenceDescriptor::isFindIVRecurrenceKind(
4883 RedR->getRecurrenceKind()));
4884 });
4885 if (HasSelectCmpReductions) {
4886 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
4887 return 1;
4888 }
4889
4890 // If we have a scalar reduction (vector reductions are already dealt with
4891 // by this point), we can increase the critical path length if the loop
4892 // we're interleaving is inside another loop. For tree-wise reductions
4893 // set the limit to 2, and for ordered reductions it's best to disable
4894 // interleaving entirely.
4895 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4896 bool HasOrderedReductions =
4898 [](VPRecipeBase &R) {
4899 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4900
4901 return RedR && RedR->isOrdered();
4902 });
4903 if (HasOrderedReductions) {
4904 LLVM_DEBUG(
4905 dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
4906 return 1;
4907 }
4908
4909 unsigned F = MaxNestedScalarReductionIC;
4910 SmallIC = std::min(SmallIC, F);
4911 StoresIC = std::min(StoresIC, F);
4912 LoadsIC = std::min(LoadsIC, F);
4913 }
4914
4916 std::max(StoresIC, LoadsIC) > SmallIC) {
4917 LLVM_DEBUG(
4918 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
4919 return std::max(StoresIC, LoadsIC);
4920 }
4921
4922 // If there are scalar reductions and TTI has enabled aggressive
4923 // interleaving for reductions, we will interleave to expose ILP.
4924 if (VF.isScalar() && AggressivelyInterleaveReductions) {
4925 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4926 // Interleave no less than SmallIC but not as aggressive as the normal IC
4927 // to satisfy the rare situation when resources are too limited.
4928 return std::max(IC / 2, SmallIC);
4929 }
4930
4931 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
4932 return SmallIC;
4933 }
4934
4935 // Interleave if this is a large loop (small loops are already dealt with by
4936 // this point) that could benefit from interleaving.
4937 if (AggressivelyInterleaveReductions) {
4938 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
4939 return IC;
4940 }
4941
4942 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
4943 return 1;
4944}
4945
4946bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
4947 ElementCount VF) {
4948 // TODO: Cost model for emulated masked load/store is completely
4949 // broken. This hack guides the cost model to use an artificially
4950 // high enough value to practically disable vectorization with such
4951 // operations, except where previously deployed legality hack allowed
4952 // using very low cost values. This is to avoid regressions coming simply
4953 // from moving "masked load/store" check from legality to cost model.
4954 // Masked Load/Gather emulation was previously never allowed.
4955 // Limited number of Masked Store/Scatter emulation was allowed.
4956 assert((isPredicatedInst(I)) &&
4957 "Expecting a scalar emulated instruction");
4958 return isa<LoadInst>(I) ||
4959 (isa<StoreInst>(I) &&
4960 NumPredStores > NumberOfStoresToPredicate);
4961}
4962
4964 assert(VF.isVector() && "Expected VF >= 2");
4965
4966 // If we've already collected the instructions to scalarize or the predicated
4967 // BBs after vectorization, there's nothing to do. Collection may already have
4968 // occurred if we have a user-selected VF and are now computing the expected
4969 // cost for interleaving.
4970 if (InstsToScalarize.contains(VF) ||
4971 PredicatedBBsAfterVectorization.contains(VF))
4972 return;
4973
4974 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
4975 // not profitable to scalarize any instructions, the presence of VF in the
4976 // map will indicate that we've analyzed it already.
4977 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4978
4979 // Find all the instructions that are scalar with predication in the loop and
4980 // determine if it would be better to not if-convert the blocks they are in.
4981 // If so, we also record the instructions to scalarize.
4982 for (BasicBlock *BB : TheLoop->blocks()) {
4984 continue;
4985 for (Instruction &I : *BB)
4986 if (isScalarWithPredication(&I, VF)) {
4987 ScalarCostsTy ScalarCosts;
4988 // Do not apply discount logic for:
4989 // 1. Scalars after vectorization, as there will only be a single copy
4990 // of the instruction.
4991 // 2. Scalable VF, as that would lead to invalid scalarization costs.
4992 // 3. Emulated masked memrefs, if a hacked cost is needed.
4993 if (!isScalarAfterVectorization(&I, VF) && !VF.isScalable() &&
4994 !useEmulatedMaskMemRefHack(&I, VF) &&
4995 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) {
4996 for (const auto &[I, IC] : ScalarCosts)
4997 ScalarCostsVF.insert({I, IC});
4998 // Check if we decided to scalarize a call. If so, update the widening
4999 // decision of the call to CM_Scalarize with the computed scalar cost.
5000 for (const auto &[I, Cost] : ScalarCosts) {
5001 auto *CI = dyn_cast<CallInst>(I);
5002 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5003 continue;
5004 CallWideningDecisions[{CI, VF}].Kind = CM_Scalarize;
5005 CallWideningDecisions[{CI, VF}].Cost = Cost;
5006 }
5007 }
5008 // Remember that BB will remain after vectorization.
5009 PredicatedBBsAfterVectorization[VF].insert(BB);
5010 for (auto *Pred : predecessors(BB)) {
5011 if (Pred->getSingleSuccessor() == BB)
5012 PredicatedBBsAfterVectorization[VF].insert(Pred);
5013 }
5014 }
5015 }
5016}
5017
5018InstructionCost LoopVectorizationCostModel::computePredInstDiscount(
5019 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
5020 assert(!isUniformAfterVectorization(PredInst, VF) &&
5021 "Instruction marked uniform-after-vectorization will be predicated");
5022
5023 // Initialize the discount to zero, meaning that the scalar version and the
5024 // vector version cost the same.
5025 InstructionCost Discount = 0;
5026
5027 // Holds instructions to analyze. The instructions we visit are mapped in
5028 // ScalarCosts. Those instructions are the ones that would be scalarized if
5029 // we find that the scalar version costs less.
5031
5032 // Returns true if the given instruction can be scalarized.
5033 auto CanBeScalarized = [&](Instruction *I) -> bool {
5034 // We only attempt to scalarize instructions forming a single-use chain
5035 // from the original predicated block that would otherwise be vectorized.
5036 // Although not strictly necessary, we give up on instructions we know will
5037 // already be scalar to avoid traversing chains that are unlikely to be
5038 // beneficial.
5039 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5040 isScalarAfterVectorization(I, VF))
5041 return false;
5042
5043 // If the instruction is scalar with predication, it will be analyzed
5044 // separately. We ignore it within the context of PredInst.
5045 if (isScalarWithPredication(I, VF))
5046 return false;
5047
5048 // If any of the instruction's operands are uniform after vectorization,
5049 // the instruction cannot be scalarized. This prevents, for example, a
5050 // masked load from being scalarized.
5051 //
5052 // We assume we will only emit a value for lane zero of an instruction
5053 // marked uniform after vectorization, rather than VF identical values.
5054 // Thus, if we scalarize an instruction that uses a uniform, we would
5055 // create uses of values corresponding to the lanes we aren't emitting code
5056 // for. This behavior can be changed by allowing getScalarValue to clone
5057 // the lane zero values for uniforms rather than asserting.
5058 for (Use &U : I->operands())
5059 if (auto *J = dyn_cast<Instruction>(U.get()))
5060 if (isUniformAfterVectorization(J, VF))
5061 return false;
5062
5063 // Otherwise, we can scalarize the instruction.
5064 return true;
5065 };
5066
5067 // Compute the expected cost discount from scalarizing the entire expression
5068 // feeding the predicated instruction. We currently only consider expressions
5069 // that are single-use instruction chains.
5070 Worklist.push_back(PredInst);
5071 while (!Worklist.empty()) {
5072 Instruction *I = Worklist.pop_back_val();
5073
5074 // If we've already analyzed the instruction, there's nothing to do.
5075 if (ScalarCosts.contains(I))
5076 continue;
5077
5078 // Cannot scalarize fixed-order recurrence phis at the moment.
5079 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5080 continue;
5081
5082 // Compute the cost of the vector instruction. Note that this cost already
5083 // includes the scalarization overhead of the predicated instruction.
5084 InstructionCost VectorCost = getInstructionCost(I, VF);
5085
5086 // Compute the cost of the scalarized instruction. This cost is the cost of
5087 // the instruction as if it wasn't if-converted and instead remained in the
5088 // predicated block. We will scale this cost by block probability after
5089 // computing the scalarization overhead.
5090 InstructionCost ScalarCost =
5091 VF.getFixedValue() * getInstructionCost(I, ElementCount::getFixed(1));
5092
5093 // Compute the scalarization overhead of needed insertelement instructions
5094 // and phi nodes.
5095 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
5096 Type *WideTy = toVectorizedTy(I->getType(), VF);
5097 for (Type *VectorTy : getContainedTypes(WideTy)) {
5098 ScalarCost += TTI.getScalarizationOverhead(
5100 /*Insert=*/true,
5101 /*Extract=*/false, CostKind);
5102 }
5103 ScalarCost +=
5104 VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind);
5105 }
5106
5107 // Compute the scalarization overhead of needed extractelement
5108 // instructions. For each of the instruction's operands, if the operand can
5109 // be scalarized, add it to the worklist; otherwise, account for the
5110 // overhead.
5111 for (Use &U : I->operands())
5112 if (auto *J = dyn_cast<Instruction>(U.get())) {
5113 assert(canVectorizeTy(J->getType()) &&
5114 "Instruction has non-scalar type");
5115 if (CanBeScalarized(J))
5116 Worklist.push_back(J);
5117 else if (needsExtract(J, VF)) {
5118 Type *WideTy = toVectorizedTy(J->getType(), VF);
5119 for (Type *VectorTy : getContainedTypes(WideTy)) {
5120 ScalarCost += TTI.getScalarizationOverhead(
5121 cast<VectorType>(VectorTy),
5122 APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false,
5123 /*Extract*/ true, CostKind);
5124 }
5125 }
5126 }
5127
5128 // Scale the total scalar cost by block probability.
5129 ScalarCost /= getPredBlockCostDivisor(CostKind, I->getParent());
5130
5131 // Compute the discount. A non-negative discount means the vector version
5132 // of the instruction costs more, and scalarizing would be beneficial.
5133 Discount += VectorCost - ScalarCost;
5134 ScalarCosts[I] = ScalarCost;
5135 }
5136
5137 return Discount;
5138}
5139
5142
5143 // If the vector loop gets executed exactly once with the given VF, ignore the
5144 // costs of comparison and induction instructions, as they'll get simplified
5145 // away.
5146 SmallPtrSet<Instruction *, 2> ValuesToIgnoreForVF;
5147 auto TC = getSmallConstantTripCount(PSE.getSE(), TheLoop);
5148 if (TC == VF && !foldTailByMasking())
5150 ValuesToIgnoreForVF);
5151
5152 // For each block.
5153 for (BasicBlock *BB : TheLoop->blocks()) {
5154 InstructionCost BlockCost;
5155
5156 // For each instruction in the old loop.
5157 for (Instruction &I : BB->instructionsWithoutDebug()) {
5158 // Skip ignored values.
5159 if (ValuesToIgnore.count(&I) || ValuesToIgnoreForVF.count(&I) ||
5160 (VF.isVector() && VecValuesToIgnore.count(&I)))
5161 continue;
5162
5164
5165 // Check if we should override the cost.
5166 if (C.isValid() && ForceTargetInstructionCost.getNumOccurrences() > 0) {
5167 // For interleave groups, use ForceTargetInstructionCost once for the
5168 // whole group.
5169 if (VF.isVector() && getWideningDecision(&I, VF) == CM_Interleave) {
5170 if (getInterleavedAccessGroup(&I)->getInsertPos() == &I)
5172 else
5173 C = InstructionCost(0);
5174 } else {
5176 }
5177 }
5178
5179 BlockCost += C;
5180 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF "
5181 << VF << " For instruction: " << I << '\n');
5182 }
5183
5184 // If we are vectorizing a predicated block, it will have been
5185 // if-converted. This means that the block's instructions (aside from
5186 // stores and instructions that may divide by zero) will now be
5187 // unconditionally executed. For the scalar case, we may not always execute
5188 // the predicated block, if it is an if-else block. Thus, scale the block's
5189 // cost by the probability of executing it.
5190 // getPredBlockCostDivisor will return 1 for blocks that are only predicated
5191 // by the header mask when folding the tail.
5192 if (VF.isScalar())
5193 BlockCost /= getPredBlockCostDivisor(CostKind, BB);
5194
5195 Cost += BlockCost;
5196 }
5197
5198 return Cost;
5199}
5200
5201/// Gets Address Access SCEV after verifying that the access pattern
5202/// is loop invariant except the induction variable dependence.
5203///
5204/// This SCEV can be sent to the Target in order to estimate the address
5205/// calculation cost.
5207 Value *Ptr,
5210 const Loop *TheLoop) {
5211
5212 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5213 if (!Gep)
5214 return nullptr;
5215
5216 const SCEV *Addr = PSE.getSCEV(Ptr);
5217 return vputils::isAddressSCEVForCost(Addr, *PSE.getSE(), TheLoop) ? Addr
5218 : nullptr;
5219}
5220
5222LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5223 ElementCount VF) {
5224 assert(VF.isVector() &&
5225 "Scalarization cost of instruction implies vectorization.");
5226 if (VF.isScalable())
5227 return InstructionCost::getInvalid();
5228
5229 Type *ValTy = getLoadStoreType(I);
5230 auto *SE = PSE.getSE();
5231
5232 unsigned AS = getLoadStoreAddressSpace(I);
5234 Type *PtrTy = toVectorTy(Ptr->getType(), VF);
5235 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
5236 // that it is being called from this specific place.
5237
5238 // Figure out whether the access is strided and get the stride value
5239 // if it's known in compile time
5240 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5241
5242 // Get the cost of the scalar memory instruction and address computation.
5244 PtrTy, SE, PtrSCEV, CostKind);
5245
5246 // Don't pass *I here, since it is scalar but will actually be part of a
5247 // vectorized loop where the user of it is a vectorized instruction.
5248 const Align Alignment = getLoadStoreAlignment(I);
5249 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5250 Cost += VF.getFixedValue() *
5251 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
5252 AS, CostKind, OpInfo);
5253
5254 // Get the overhead of the extractelement and insertelement instructions
5255 // we might create due to scalarization.
5257
5258 // If we have a predicated load/store, it will need extra i1 extracts and
5259 // conditional branches, but may not be executed for each vector lane. Scale
5260 // the cost by the probability of executing the predicated block.
5261 if (isPredicatedInst(I)) {
5262 Cost /= getPredBlockCostDivisor(CostKind, I->getParent());
5263
5264 // Add the cost of an i1 extract and a branch
5265 auto *VecI1Ty =
5266 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
5268 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
5269 /*Insert=*/false, /*Extract=*/true, CostKind);
5270 Cost += TTI.getCFInstrCost(Instruction::Br, CostKind);
5271
5272 if (useEmulatedMaskMemRefHack(I, VF))
5273 // Artificially setting to a high enough value to practically disable
5274 // vectorization with such operations.
5275 Cost = 3000000;
5276 }
5277
5278 return Cost;
5279}
5280
5282LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5283 ElementCount VF) {
5284 Type *ValTy = getLoadStoreType(I);
5285 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5287 unsigned AS = getLoadStoreAddressSpace(I);
5288 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
5289
5290 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5291 "Stride should be 1 or -1 for consecutive memory access");
5292 const Align Alignment = getLoadStoreAlignment(I);
5294 if (Legal->isMaskRequired(I)) {
5295 unsigned IID = I->getOpcode() == Instruction::Load
5296 ? Intrinsic::masked_load
5297 : Intrinsic::masked_store;
5299 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS), CostKind);
5300 } else {
5301 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5302 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5303 CostKind, OpInfo, I);
5304 }
5305
5306 bool Reverse = ConsecutiveStride < 0;
5307 if (Reverse)
5309 VectorTy, {}, CostKind, 0);
5310 return Cost;
5311}
5312
5314LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5315 ElementCount VF) {
5316 assert(Legal->isUniformMemOp(*I, VF));
5317
5318 Type *ValTy = getLoadStoreType(I);
5320 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5321 const Align Alignment = getLoadStoreAlignment(I);
5322 unsigned AS = getLoadStoreAddressSpace(I);
5323 if (isa<LoadInst>(I)) {
5324 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5325 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5326 CostKind) +
5328 VectorTy, {}, CostKind);
5329 }
5330 StoreInst *SI = cast<StoreInst>(I);
5331
5332 bool IsLoopInvariantStoreValue = Legal->isInvariant(SI->getValueOperand());
5333 // TODO: We have existing tests that request the cost of extracting element
5334 // VF.getKnownMinValue() - 1 from a scalable vector. This does not represent
5335 // the actual generated code, which involves extracting the last element of
5336 // a scalable vector where the lane to extract is unknown at compile time.
5338 TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5339 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, CostKind);
5340 if (!IsLoopInvariantStoreValue)
5341 Cost += TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
5342 VectorTy, CostKind, 0);
5343 return Cost;
5344}
5345
5347LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5348 ElementCount VF) {
5349 Type *ValTy = getLoadStoreType(I);
5350 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5351 const Align Alignment = getLoadStoreAlignment(I);
5353 Type *PtrTy = Ptr->getType();
5354
5355 if (!Legal->isUniform(Ptr, VF))
5356 PtrTy = toVectorTy(PtrTy, VF);
5357
5358 unsigned IID = I->getOpcode() == Instruction::Load
5359 ? Intrinsic::masked_gather
5360 : Intrinsic::masked_scatter;
5361 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5363 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5364 Legal->isMaskRequired(I), Alignment, I),
5365 CostKind);
5366}
5367
5369LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5370 ElementCount VF) {
5371 const auto *Group = getInterleavedAccessGroup(I);
5372 assert(Group && "Fail to get an interleaved access group.");
5373
5374 Instruction *InsertPos = Group->getInsertPos();
5375 Type *ValTy = getLoadStoreType(InsertPos);
5376 auto *VectorTy = cast<VectorType>(toVectorTy(ValTy, VF));
5377 unsigned AS = getLoadStoreAddressSpace(InsertPos);
5378
5379 unsigned InterleaveFactor = Group->getFactor();
5380 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5381
5382 // Holds the indices of existing members in the interleaved group.
5383 SmallVector<unsigned, 4> Indices;
5384 for (unsigned IF = 0; IF < InterleaveFactor; IF++)
5385 if (Group->getMember(IF))
5386 Indices.push_back(IF);
5387
5388 // Calculate the cost of the whole interleaved group.
5389 bool UseMaskForGaps =
5390 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5391 (isa<StoreInst>(I) && !Group->isFull());
5393 InsertPos->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5394 Group->getAlign(), AS, CostKind, Legal->isMaskRequired(I),
5395 UseMaskForGaps);
5396
5397 if (Group->isReverse()) {
5398 // TODO: Add support for reversed masked interleaved access.
5399 assert(!Legal->isMaskRequired(I) &&
5400 "Reverse masked interleaved access not supported.");
5401 Cost += Group->getNumMembers() *
5403 VectorTy, {}, CostKind, 0);
5404 }
5405 return Cost;
5406}
5407
5408std::optional<InstructionCost>
5410 ElementCount VF,
5411 Type *Ty) const {
5412 using namespace llvm::PatternMatch;
5413 // Early exit for no inloop reductions
5414 if (InLoopReductions.empty() || VF.isScalar() || !isa<VectorType>(Ty))
5415 return std::nullopt;
5416 auto *VectorTy = cast<VectorType>(Ty);
5417
5418 // We are looking for a pattern of, and finding the minimal acceptable cost:
5419 // reduce(mul(ext(A), ext(B))) or
5420 // reduce(mul(A, B)) or
5421 // reduce(ext(A)) or
5422 // reduce(A).
5423 // The basic idea is that we walk down the tree to do that, finding the root
5424 // reduction instruction in InLoopReductionImmediateChains. From there we find
5425 // the pattern of mul/ext and test the cost of the entire pattern vs the cost
5426 // of the components. If the reduction cost is lower then we return it for the
5427 // reduction instruction and 0 for the other instructions in the pattern. If
5428 // it is not we return an invalid cost specifying the orignal cost method
5429 // should be used.
5430 Instruction *RetI = I;
5431 if (match(RetI, m_ZExtOrSExt(m_Value()))) {
5432 if (!RetI->hasOneUser())
5433 return std::nullopt;
5434 RetI = RetI->user_back();
5435 }
5436
5437 if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) &&
5438 RetI->user_back()->getOpcode() == Instruction::Add) {
5439 RetI = RetI->user_back();
5440 }
5441
5442 // Test if the found instruction is a reduction, and if not return an invalid
5443 // cost specifying the parent to use the original cost modelling.
5444 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5445 if (!LastChain)
5446 return std::nullopt;
5447
5448 // Find the reduction this chain is a part of and calculate the basic cost of
5449 // the reduction on its own.
5450 Instruction *ReductionPhi = LastChain;
5451 while (!isa<PHINode>(ReductionPhi))
5452 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5453
5454 const RecurrenceDescriptor &RdxDesc =
5455 Legal->getRecurrenceDescriptor(cast<PHINode>(ReductionPhi));
5456
5457 InstructionCost BaseCost;
5458 RecurKind RK = RdxDesc.getRecurrenceKind();
5461 BaseCost = TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5462 RdxDesc.getFastMathFlags(), CostKind);
5463 } else {
5464 BaseCost = TTI.getArithmeticReductionCost(
5465 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
5466 }
5467
5468 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
5469 // normal fmul instruction to the cost of the fadd reduction.
5470 if (RK == RecurKind::FMulAdd)
5471 BaseCost +=
5472 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
5473
5474 // If we're using ordered reductions then we can just return the base cost
5475 // here, since getArithmeticReductionCost calculates the full ordered
5476 // reduction cost when FP reassociation is not allowed.
5477 if (useOrderedReductions(RdxDesc))
5478 return BaseCost;
5479
5480 // Get the operand that was not the reduction chain and match it to one of the
5481 // patterns, returning the better cost if it is found.
5482 Instruction *RedOp = RetI->getOperand(1) == LastChain
5485
5486 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
5487
5488 Instruction *Op0, *Op1;
5489 if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5490 match(RedOp,
5492 match(Op0, m_ZExtOrSExt(m_Value())) &&
5493 Op0->getOpcode() == Op1->getOpcode() &&
5494 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
5495 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
5496 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
5497
5498 // Matched reduce.add(ext(mul(ext(A), ext(B)))
5499 // Note that the extend opcodes need to all match, or if A==B they will have
5500 // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
5501 // which is equally fine.
5502 bool IsUnsigned = isa<ZExtInst>(Op0);
5503 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
5504 auto *MulType = VectorType::get(Op0->getType(), VectorTy);
5505
5506 InstructionCost ExtCost =
5507 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
5509 InstructionCost MulCost =
5510 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
5511 InstructionCost Ext2Cost =
5512 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
5514
5515 InstructionCost RedCost = TTI.getMulAccReductionCost(
5516 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5517 CostKind);
5518
5519 if (RedCost.isValid() &&
5520 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5521 return I == RetI ? RedCost : 0;
5522 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
5523 !TheLoop->isLoopInvariant(RedOp)) {
5524 // Matched reduce(ext(A))
5525 bool IsUnsigned = isa<ZExtInst>(RedOp);
5526 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
5527 InstructionCost RedCost = TTI.getExtendedReductionCost(
5528 RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
5529 RdxDesc.getFastMathFlags(), CostKind);
5530
5531 InstructionCost ExtCost =
5532 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
5534 if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
5535 return I == RetI ? RedCost : 0;
5536 } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add &&
5537 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
5538 if (match(Op0, m_ZExtOrSExt(m_Value())) &&
5539 Op0->getOpcode() == Op1->getOpcode() &&
5540 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
5541 bool IsUnsigned = isa<ZExtInst>(Op0);
5542 Type *Op0Ty = Op0->getOperand(0)->getType();
5543 Type *Op1Ty = Op1->getOperand(0)->getType();
5544 Type *LargestOpTy =
5545 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
5546 : Op0Ty;
5547 auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
5548
5549 // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of
5550 // different sizes. We take the largest type as the ext to reduce, and add
5551 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
5552 InstructionCost ExtCost0 = TTI.getCastInstrCost(
5553 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
5555 InstructionCost ExtCost1 = TTI.getCastInstrCost(
5556 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
5558 InstructionCost MulCost =
5559 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5560
5561 InstructionCost RedCost = TTI.getMulAccReductionCost(
5562 IsUnsigned, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), ExtType,
5563 CostKind);
5564 InstructionCost ExtraExtCost = 0;
5565 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5566 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5567 ExtraExtCost = TTI.getCastInstrCost(
5568 ExtraExtOp->getOpcode(), ExtType,
5569 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
5571 }
5572
5573 if (RedCost.isValid() &&
5574 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5575 return I == RetI ? RedCost : 0;
5576 } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
5577 // Matched reduce.add(mul())
5578 InstructionCost MulCost =
5579 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
5580
5581 InstructionCost RedCost = TTI.getMulAccReductionCost(
5582 true, RdxDesc.getOpcode(), RdxDesc.getRecurrenceType(), VectorTy,
5583 CostKind);
5584
5585 if (RedCost.isValid() && RedCost < MulCost + BaseCost)
5586 return I == RetI ? RedCost : 0;
5587 }
5588 }
5589
5590 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5591}
5592
5594LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5595 ElementCount VF) {
5596 // Calculate scalar cost only. Vectorization cost should be ready at this
5597 // moment.
5598 if (VF.isScalar()) {
5599 Type *ValTy = getLoadStoreType(I);
5601 const Align Alignment = getLoadStoreAlignment(I);
5602 unsigned AS = getLoadStoreAddressSpace(I);
5603
5604 TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0));
5605 return TTI.getAddressComputationCost(PtrTy, nullptr, nullptr, CostKind) +
5606 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, CostKind,
5607 OpInfo, I);
5608 }
5609 return getWideningCost(I, VF);
5610}
5611
5613LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
5614 ElementCount VF) const {
5615
5616 // There is no mechanism yet to create a scalable scalarization loop,
5617 // so this is currently Invalid.
5618 if (VF.isScalable())
5619 return InstructionCost::getInvalid();
5620
5621 if (VF.isScalar())
5622 return 0;
5623
5625 Type *RetTy = toVectorizedTy(I->getType(), VF);
5626 if (!RetTy->isVoidTy() &&
5628
5629 for (Type *VectorTy : getContainedTypes(RetTy)) {
5632 /*Insert=*/true,
5633 /*Extract=*/false, CostKind);
5634 }
5635 }
5636
5637 // Some targets keep addresses scalar.
5639 return Cost;
5640
5641 // Some targets support efficient element stores.
5643 return Cost;
5644
5645 // Collect operands to consider.
5646 CallInst *CI = dyn_cast<CallInst>(I);
5647 Instruction::op_range Ops = CI ? CI->args() : I->operands();
5648
5649 // Skip operands that do not require extraction/scalarization and do not incur
5650 // any overhead.
5652 for (auto *V : filterExtractingOperands(Ops, VF))
5653 Tys.push_back(maybeVectorizeType(V->getType(), VF));
5655}
5656
5658 if (VF.isScalar())
5659 return;
5660 NumPredStores = 0;
5661 for (BasicBlock *BB : TheLoop->blocks()) {
5662 // For each instruction in the old loop.
5663 for (Instruction &I : *BB) {
5665 if (!Ptr)
5666 continue;
5667
5668 // TODO: We should generate better code and update the cost model for
5669 // predicated uniform stores. Today they are treated as any other
5670 // predicated store (see added test cases in
5671 // invariant-store-vectorization.ll).
5673 NumPredStores++;
5674
5675 if (Legal->isUniformMemOp(I, VF)) {
5676 auto IsLegalToScalarize = [&]() {
5677 if (!VF.isScalable())
5678 // Scalarization of fixed length vectors "just works".
5679 return true;
5680
5681 // We have dedicated lowering for unpredicated uniform loads and
5682 // stores. Note that even with tail folding we know that at least
5683 // one lane is active (i.e. generalized predication is not possible
5684 // here), and the logic below depends on this fact.
5685 if (!foldTailByMasking())
5686 return true;
5687
5688 // For scalable vectors, a uniform memop load is always
5689 // uniform-by-parts and we know how to scalarize that.
5690 if (isa<LoadInst>(I))
5691 return true;
5692
5693 // A uniform store isn't neccessarily uniform-by-part
5694 // and we can't assume scalarization.
5695 auto &SI = cast<StoreInst>(I);
5696 return TheLoop->isLoopInvariant(SI.getValueOperand());
5697 };
5698
5699 const InstructionCost GatherScatterCost =
5701 getGatherScatterCost(&I, VF) : InstructionCost::getInvalid();
5702
5703 // Load: Scalar load + broadcast
5704 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
5705 // FIXME: This cost is a significant under-estimate for tail folded
5706 // memory ops.
5707 const InstructionCost ScalarizationCost =
5708 IsLegalToScalarize() ? getUniformMemOpCost(&I, VF)
5710
5711 // Choose better solution for the current VF, Note that Invalid
5712 // costs compare as maximumal large. If both are invalid, we get
5713 // scalable invalid which signals a failure and a vectorization abort.
5714 if (GatherScatterCost < ScalarizationCost)
5715 setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost);
5716 else
5717 setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost);
5718 continue;
5719 }
5720
5721 // We assume that widening is the best solution when possible.
5722 if (memoryInstructionCanBeWidened(&I, VF)) {
5723 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
5724 int ConsecutiveStride = Legal->isConsecutivePtr(
5726 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5727 "Expected consecutive stride.");
5728 InstWidening Decision =
5729 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5730 setWideningDecision(&I, VF, Decision, Cost);
5731 continue;
5732 }
5733
5734 // Choose between Interleaving, Gather/Scatter or Scalarization.
5736 unsigned NumAccesses = 1;
5737 if (isAccessInterleaved(&I)) {
5738 const auto *Group = getInterleavedAccessGroup(&I);
5739 assert(Group && "Fail to get an interleaved access group.");
5740
5741 // Make one decision for the whole group.
5742 if (getWideningDecision(&I, VF) != CM_Unknown)
5743 continue;
5744
5745 NumAccesses = Group->getNumMembers();
5747 InterleaveCost = getInterleaveGroupCost(&I, VF);
5748 }
5749
5750 InstructionCost GatherScatterCost =
5752 ? getGatherScatterCost(&I, VF) * NumAccesses
5754
5755 InstructionCost ScalarizationCost =
5756 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5757
5758 // Choose better solution for the current VF,
5759 // write down this decision and use it during vectorization.
5761 InstWidening Decision;
5762 if (InterleaveCost <= GatherScatterCost &&
5763 InterleaveCost < ScalarizationCost) {
5764 Decision = CM_Interleave;
5765 Cost = InterleaveCost;
5766 } else if (GatherScatterCost < ScalarizationCost) {
5767 Decision = CM_GatherScatter;
5768 Cost = GatherScatterCost;
5769 } else {
5770 Decision = CM_Scalarize;
5771 Cost = ScalarizationCost;
5772 }
5773 // If the instructions belongs to an interleave group, the whole group
5774 // receives the same decision. The whole group receives the cost, but
5775 // the cost will actually be assigned to one instruction.
5776 if (const auto *Group = getInterleavedAccessGroup(&I)) {
5777 if (Decision == CM_Scalarize) {
5778 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5779 if (auto *I = Group->getMember(Idx)) {
5780 setWideningDecision(I, VF, Decision,
5781 getMemInstScalarizationCost(I, VF));
5782 }
5783 }
5784 } else {
5785 setWideningDecision(Group, VF, Decision, Cost);
5786 }
5787 } else
5788 setWideningDecision(&I, VF, Decision, Cost);
5789 }
5790 }
5791
5792 // Make sure that any load of address and any other address computation
5793 // remains scalar unless there is gather/scatter support. This avoids
5794 // inevitable extracts into address registers, and also has the benefit of
5795 // activating LSR more, since that pass can't optimize vectorized
5796 // addresses.
5797 if (TTI.prefersVectorizedAddressing())
5798 return;
5799
5800 // Start with all scalar pointer uses.
5802 for (BasicBlock *BB : TheLoop->blocks())
5803 for (Instruction &I : *BB) {
5804 Instruction *PtrDef =
5806 if (PtrDef && TheLoop->contains(PtrDef) &&
5808 AddrDefs.insert(PtrDef);
5809 }
5810
5811 // Add all instructions used to generate the addresses.
5813 append_range(Worklist, AddrDefs);
5814 while (!Worklist.empty()) {
5815 Instruction *I = Worklist.pop_back_val();
5816 for (auto &Op : I->operands())
5817 if (auto *InstOp = dyn_cast<Instruction>(Op))
5818 if (TheLoop->contains(InstOp) && !isa<PHINode>(InstOp) &&
5819 AddrDefs.insert(InstOp).second)
5820 Worklist.push_back(InstOp);
5821 }
5822
5823 auto UpdateMemOpUserCost = [this, VF](LoadInst *LI) {
5824 // If there are direct memory op users of the newly scalarized load,
5825 // their cost may have changed because there's no scalarization
5826 // overhead for the operand. Update it.
5827 for (User *U : LI->users()) {
5829 continue;
5831 continue;
5834 getMemInstScalarizationCost(cast<Instruction>(U), VF));
5835 }
5836 };
5837 for (auto *I : AddrDefs) {
5838 if (isa<LoadInst>(I)) {
5839 // Setting the desired widening decision should ideally be handled in
5840 // by cost functions, but since this involves the task of finding out
5841 // if the loaded register is involved in an address computation, it is
5842 // instead changed here when we know this is the case.
5843 InstWidening Decision = getWideningDecision(I, VF);
5844 if (Decision == CM_Widen || Decision == CM_Widen_Reverse ||
5845 (!isPredicatedInst(I) && !Legal->isUniformMemOp(*I, VF) &&
5846 Decision == CM_Scalarize)) {
5847 // Scalarize a widened load of address or update the cost of a scalar
5848 // load of an address.
5850 I, VF, CM_Scalarize,
5851 (VF.getKnownMinValue() *
5852 getMemoryInstructionCost(I, ElementCount::getFixed(1))));
5853 UpdateMemOpUserCost(cast<LoadInst>(I));
5854 } else if (const auto *Group = getInterleavedAccessGroup(I)) {
5855 // Scalarize all members of this interleaved group when any member
5856 // is used as an address. The address-used load skips scalarization
5857 // overhead, other members include it.
5858 for (unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5859 if (Instruction *Member = Group->getMember(Idx)) {
5861 AddrDefs.contains(Member)
5862 ? (VF.getKnownMinValue() *
5863 getMemoryInstructionCost(Member,
5865 : getMemInstScalarizationCost(Member, VF);
5867 UpdateMemOpUserCost(cast<LoadInst>(Member));
5868 }
5869 }
5870 }
5871 } else {
5872 // Cannot scalarize fixed-order recurrence phis at the moment.
5873 if (isa<PHINode>(I) && Legal->isFixedOrderRecurrence(cast<PHINode>(I)))
5874 continue;
5875
5876 // Make sure I gets scalarized and a cost estimate without
5877 // scalarization overhead.
5878 ForcedScalars[VF].insert(I);
5879 }
5880 }
5881}
5882
5884 assert(!VF.isScalar() &&
5885 "Trying to set a vectorization decision for a scalar VF");
5886
5887 auto ForcedScalar = ForcedScalars.find(VF);
5888 for (BasicBlock *BB : TheLoop->blocks()) {
5889 // For each instruction in the old loop.
5890 for (Instruction &I : *BB) {
5892
5893 if (!CI)
5894 continue;
5895
5899 Function *ScalarFunc = CI->getCalledFunction();
5900 Type *ScalarRetTy = CI->getType();
5901 SmallVector<Type *, 4> Tys, ScalarTys;
5902 for (auto &ArgOp : CI->args())
5903 ScalarTys.push_back(ArgOp->getType());
5904
5905 // Estimate cost of scalarized vector call. The source operands are
5906 // assumed to be vectors, so we need to extract individual elements from
5907 // there, execute VF scalar calls, and then gather the result into the
5908 // vector return value.
5909 if (VF.isFixed()) {
5910 InstructionCost ScalarCallCost =
5911 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys, CostKind);
5912
5913 // Compute costs of unpacking argument values for the scalar calls and
5914 // packing the return values to a vector.
5915 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
5916 ScalarCost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
5917 } else {
5918 // There is no point attempting to calculate the scalar cost for a
5919 // scalable VF as we know it will be Invalid.
5921 "Unexpected valid cost for scalarizing scalable vectors");
5922 ScalarCost = InstructionCost::getInvalid();
5923 }
5924
5925 // Honor ForcedScalars and UniformAfterVectorization decisions.
5926 // TODO: For calls, it might still be more profitable to widen. Use
5927 // VPlan-based cost model to compare different options.
5928 if (VF.isVector() && ((ForcedScalar != ForcedScalars.end() &&
5929 ForcedScalar->second.contains(CI)) ||
5930 isUniformAfterVectorization(CI, VF))) {
5931 setCallWideningDecision(CI, VF, CM_Scalarize, nullptr,
5932 Intrinsic::not_intrinsic, std::nullopt,
5933 ScalarCost);
5934 continue;
5935 }
5936
5937 bool MaskRequired = Legal->isMaskRequired(CI);
5938 // Compute corresponding vector type for return value and arguments.
5939 Type *RetTy = toVectorizedTy(ScalarRetTy, VF);
5940 for (Type *ScalarTy : ScalarTys)
5941 Tys.push_back(toVectorizedTy(ScalarTy, VF));
5942
5943 // An in-loop reduction using an fmuladd intrinsic is a special case;
5944 // we don't want the normal cost for that intrinsic.
5946 if (auto RedCost = getReductionPatternCost(CI, VF, RetTy)) {
5949 std::nullopt, *RedCost);
5950 continue;
5951 }
5952
5953 // Find the cost of vectorizing the call, if we can find a suitable
5954 // vector variant of the function.
5955 VFInfo FuncInfo;
5956 Function *VecFunc = nullptr;
5957 // Search through any available variants for one we can use at this VF.
5958 for (VFInfo &Info : VFDatabase::getMappings(*CI)) {
5959 // Must match requested VF.
5960 if (Info.Shape.VF != VF)
5961 continue;
5962
5963 // Must take a mask argument if one is required
5964 if (MaskRequired && !Info.isMasked())
5965 continue;
5966
5967 // Check that all parameter kinds are supported
5968 bool ParamsOk = true;
5969 for (VFParameter Param : Info.Shape.Parameters) {
5970 switch (Param.ParamKind) {
5972 break;
5974 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5975 // Make sure the scalar parameter in the loop is invariant.
5976 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(ScalarParam),
5977 TheLoop))
5978 ParamsOk = false;
5979 break;
5980 }
5982 Value *ScalarParam = CI->getArgOperand(Param.ParamPos);
5983 // Find the stride for the scalar parameter in this loop and see if
5984 // it matches the stride for the variant.
5985 // TODO: do we need to figure out the cost of an extract to get the
5986 // first lane? Or do we hope that it will be folded away?
5987 ScalarEvolution *SE = PSE.getSE();
5988 if (!match(SE->getSCEV(ScalarParam),
5990 m_SCEV(), m_scev_SpecificSInt(Param.LinearStepOrPos),
5992 ParamsOk = false;
5993 break;
5994 }
5996 break;
5997 default:
5998 ParamsOk = false;
5999 break;
6000 }
6001 }
6002
6003 if (!ParamsOk)
6004 continue;
6005
6006 // Found a suitable candidate, stop here.
6007 VecFunc = CI->getModule()->getFunction(Info.VectorName);
6008 FuncInfo = Info;
6009 break;
6010 }
6011
6012 if (TLI && VecFunc && !CI->isNoBuiltin())
6013 VectorCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind);
6014
6015 // Find the cost of an intrinsic; some targets may have instructions that
6016 // perform the operation without needing an actual call.
6018 if (IID != Intrinsic::not_intrinsic)
6020
6021 InstructionCost Cost = ScalarCost;
6022 InstWidening Decision = CM_Scalarize;
6023
6024 if (VectorCost <= Cost) {
6025 Cost = VectorCost;
6026 Decision = CM_VectorCall;
6027 }
6028
6029 if (IntrinsicCost <= Cost) {
6031 Decision = CM_IntrinsicCall;
6032 }
6033
6034 setCallWideningDecision(CI, VF, Decision, VecFunc, IID,
6036 }
6037 }
6038}
6039
6041 if (!Legal->isInvariant(Op))
6042 return false;
6043 // Consider Op invariant, if it or its operands aren't predicated
6044 // instruction in the loop. In that case, it is not trivially hoistable.
6045 auto *OpI = dyn_cast<Instruction>(Op);
6046 return !OpI || !TheLoop->contains(OpI) ||
6047 (!isPredicatedInst(OpI) &&
6048 (!isa<PHINode>(OpI) || OpI->getParent() != TheLoop->getHeader()) &&
6049 all_of(OpI->operands(),
6050 [this](Value *Op) { return shouldConsiderInvariant(Op); }));
6051}
6052
6055 ElementCount VF) {
6056 // If we know that this instruction will remain uniform, check the cost of
6057 // the scalar version.
6059 VF = ElementCount::getFixed(1);
6060
6061 if (VF.isVector() && isProfitableToScalarize(I, VF))
6062 return InstsToScalarize[VF][I];
6063
6064 // Forced scalars do not have any scalarization overhead.
6065 auto ForcedScalar = ForcedScalars.find(VF);
6066 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6067 auto InstSet = ForcedScalar->second;
6068 if (InstSet.count(I))
6070 VF.getKnownMinValue();
6071 }
6072
6073 Type *RetTy = I->getType();
6075 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6076 auto *SE = PSE.getSE();
6077
6078 Type *VectorTy;
6079 if (isScalarAfterVectorization(I, VF)) {
6080 [[maybe_unused]] auto HasSingleCopyAfterVectorization =
6081 [this](Instruction *I, ElementCount VF) -> bool {
6082 if (VF.isScalar())
6083 return true;
6084
6085 auto Scalarized = InstsToScalarize.find(VF);
6086 assert(Scalarized != InstsToScalarize.end() &&
6087 "VF not yet analyzed for scalarization profitability");
6088 return !Scalarized->second.count(I) &&
6089 llvm::all_of(I->users(), [&](User *U) {
6090 auto *UI = cast<Instruction>(U);
6091 return !Scalarized->second.count(UI);
6092 });
6093 };
6094
6095 // With the exception of GEPs and PHIs, after scalarization there should
6096 // only be one copy of the instruction generated in the loop. This is
6097 // because the VF is either 1, or any instructions that need scalarizing
6098 // have already been dealt with by the time we get here. As a result,
6099 // it means we don't have to multiply the instruction cost by VF.
6100 assert(I->getOpcode() == Instruction::GetElementPtr ||
6101 I->getOpcode() == Instruction::PHI ||
6102 (I->getOpcode() == Instruction::BitCast &&
6103 I->getType()->isPointerTy()) ||
6104 HasSingleCopyAfterVectorization(I, VF));
6105 VectorTy = RetTy;
6106 } else
6107 VectorTy = toVectorizedTy(RetTy, VF);
6108
6109 if (VF.isVector() && VectorTy->isVectorTy() &&
6110 !TTI.getNumberOfParts(VectorTy))
6112
6113 // TODO: We need to estimate the cost of intrinsic calls.
6114 switch (I->getOpcode()) {
6115 case Instruction::GetElementPtr:
6116 // We mark this instruction as zero-cost because the cost of GEPs in
6117 // vectorized code depends on whether the corresponding memory instruction
6118 // is scalarized or not. Therefore, we handle GEPs with the memory
6119 // instruction cost.
6120 return 0;
6121 case Instruction::Br: {
6122 // In cases of scalarized and predicated instructions, there will be VF
6123 // predicated blocks in the vectorized loop. Each branch around these
6124 // blocks requires also an extract of its vector compare i1 element.
6125 // Note that the conditional branch from the loop latch will be replaced by
6126 // a single branch controlling the loop, so there is no extra overhead from
6127 // scalarization.
6128 bool ScalarPredicatedBB = false;
6130 if (VF.isVector() && BI->isConditional() &&
6131 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
6132 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))) &&
6133 BI->getParent() != TheLoop->getLoopLatch())
6134 ScalarPredicatedBB = true;
6135
6136 if (ScalarPredicatedBB) {
6137 // Not possible to scalarize scalable vector with predicated instructions.
6138 if (VF.isScalable())
6140 // Return cost for branches around scalarized and predicated blocks.
6141 auto *VecI1Ty =
6143 return (
6144 TTI.getScalarizationOverhead(
6145 VecI1Ty, APInt::getAllOnes(VF.getFixedValue()),
6146 /*Insert*/ false, /*Extract*/ true, CostKind) +
6147 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6148 }
6149
6150 if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6151 // The back-edge branch will remain, as will all scalar branches.
6152 return TTI.getCFInstrCost(Instruction::Br, CostKind);
6153
6154 // This branch will be eliminated by if-conversion.
6155 return 0;
6156 // Note: We currently assume zero cost for an unconditional branch inside
6157 // a predicated block since it will become a fall-through, although we
6158 // may decide in the future to call TTI for all branches.
6159 }
6160 case Instruction::Switch: {
6161 if (VF.isScalar())
6162 return TTI.getCFInstrCost(Instruction::Switch, CostKind);
6163 auto *Switch = cast<SwitchInst>(I);
6164 return Switch->getNumCases() *
6165 TTI.getCmpSelInstrCost(
6166 Instruction::ICmp,
6167 toVectorTy(Switch->getCondition()->getType(), VF),
6168 toVectorTy(Type::getInt1Ty(I->getContext()), VF),
6170 }
6171 case Instruction::PHI: {
6172 auto *Phi = cast<PHINode>(I);
6173
6174 // First-order recurrences are replaced by vector shuffles inside the loop.
6175 if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) {
6177 std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1);
6178 return TTI.getShuffleCost(TargetTransformInfo::SK_Splice,
6179 cast<VectorType>(VectorTy),
6180 cast<VectorType>(VectorTy), Mask, CostKind,
6181 VF.getKnownMinValue() - 1);
6182 }
6183
6184 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6185 // converted into select instructions. We require N - 1 selects per phi
6186 // node, where N is the number of incoming values.
6187 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) {
6188 Type *ResultTy = Phi->getType();
6189
6190 // All instructions in an Any-of reduction chain are narrowed to bool.
6191 // Check if that is the case for this phi node.
6192 auto *HeaderUser = cast_if_present<PHINode>(
6193 find_singleton<User>(Phi->users(), [this](User *U, bool) -> User * {
6194 auto *Phi = dyn_cast<PHINode>(U);
6195 if (Phi && Phi->getParent() == TheLoop->getHeader())
6196 return Phi;
6197 return nullptr;
6198 }));
6199 if (HeaderUser) {
6200 auto &ReductionVars = Legal->getReductionVars();
6201 auto Iter = ReductionVars.find(HeaderUser);
6202 if (Iter != ReductionVars.end() &&
6204 Iter->second.getRecurrenceKind()))
6205 ResultTy = Type::getInt1Ty(Phi->getContext());
6206 }
6207 return (Phi->getNumIncomingValues() - 1) *
6208 TTI.getCmpSelInstrCost(
6209 Instruction::Select, toVectorTy(ResultTy, VF),
6210 toVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6212 }
6213
6214 // When tail folding with EVL, if the phi is part of an out of loop
6215 // reduction then it will be transformed into a wide vp_merge.
6216 if (VF.isVector() && foldTailWithEVL() &&
6217 Legal->getReductionVars().contains(Phi) && !isInLoopReduction(Phi)) {
6219 Intrinsic::vp_merge, toVectorTy(Phi->getType(), VF),
6220 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6221 return TTI.getIntrinsicInstrCost(ICA, CostKind);
6222 }
6223
6224 return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6225 }
6226 case Instruction::UDiv:
6227 case Instruction::SDiv:
6228 case Instruction::URem:
6229 case Instruction::SRem:
6230 if (VF.isVector() && isPredicatedInst(I)) {
6231 const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF);
6232 return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ?
6233 ScalarCost : SafeDivisorCost;
6234 }
6235 // We've proven all lanes safe to speculate, fall through.
6236 [[fallthrough]];
6237 case Instruction::Add:
6238 case Instruction::Sub: {
6239 auto Info = Legal->getHistogramInfo(I);
6240 if (Info && VF.isVector()) {
6241 const HistogramInfo *HGram = Info.value();
6242 // Assume that a non-constant update value (or a constant != 1) requires
6243 // a multiply, and add that into the cost.
6245 ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
6246 if (!RHS || RHS->getZExtValue() != 1)
6247 MulCost =
6248 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6249
6250 // Find the cost of the histogram operation itself.
6251 Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
6252 Type *ScalarTy = I->getType();
6253 Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
6254 IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
6255 Type::getVoidTy(I->getContext()),
6256 {PtrTy, ScalarTy, MaskTy});
6257
6258 // Add the costs together with the add/sub operation.
6259 return TTI.getIntrinsicInstrCost(ICA, CostKind) + MulCost +
6260 TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, CostKind);
6261 }
6262 [[fallthrough]];
6263 }
6264 case Instruction::FAdd:
6265 case Instruction::FSub:
6266 case Instruction::Mul:
6267 case Instruction::FMul:
6268 case Instruction::FDiv:
6269 case Instruction::FRem:
6270 case Instruction::Shl:
6271 case Instruction::LShr:
6272 case Instruction::AShr:
6273 case Instruction::And:
6274 case Instruction::Or:
6275 case Instruction::Xor: {
6276 // If we're speculating on the stride being 1, the multiplication may
6277 // fold away. We can generalize this for all operations using the notion
6278 // of neutral elements. (TODO)
6279 if (I->getOpcode() == Instruction::Mul &&
6280 ((TheLoop->isLoopInvariant(I->getOperand(0)) &&
6281 PSE.getSCEV(I->getOperand(0))->isOne()) ||
6282 (TheLoop->isLoopInvariant(I->getOperand(1)) &&
6283 PSE.getSCEV(I->getOperand(1))->isOne())))
6284 return 0;
6285
6286 // Detect reduction patterns
6287 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6288 return *RedCost;
6289
6290 // Certain instructions can be cheaper to vectorize if they have a constant
6291 // second vector operand. One example of this are shifts on x86.
6292 Value *Op2 = I->getOperand(1);
6293 if (!isa<Constant>(Op2) && TheLoop->isLoopInvariant(Op2) &&
6294 PSE.getSE()->isSCEVable(Op2->getType()) &&
6295 isa<SCEVConstant>(PSE.getSCEV(Op2))) {
6296 Op2 = cast<SCEVConstant>(PSE.getSCEV(Op2))->getValue();
6297 }
6298 auto Op2Info = TTI.getOperandInfo(Op2);
6299 if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue &&
6302
6303 SmallVector<const Value *, 4> Operands(I->operand_values());
6304 return TTI.getArithmeticInstrCost(
6305 I->getOpcode(), VectorTy, CostKind,
6306 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6307 Op2Info, Operands, I, TLI);
6308 }
6309 case Instruction::FNeg: {
6310 return TTI.getArithmeticInstrCost(
6311 I->getOpcode(), VectorTy, CostKind,
6312 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6313 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6314 I->getOperand(0), I);
6315 }
6316 case Instruction::Select: {
6318 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6319 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6320
6321 const Value *Op0, *Op1;
6322 using namespace llvm::PatternMatch;
6323 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
6324 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
6325 // select x, y, false --> x & y
6326 // select x, true, y --> x | y
6327 const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0);
6328 const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1);
6329 assert(Op0->getType()->getScalarSizeInBits() == 1 &&
6330 Op1->getType()->getScalarSizeInBits() == 1);
6331
6332 return TTI.getArithmeticInstrCost(
6333 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And,
6334 VectorTy, CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1}, I);
6335 }
6336
6337 Type *CondTy = SI->getCondition()->getType();
6338 if (!ScalarCond)
6339 CondTy = VectorType::get(CondTy, VF);
6340
6342 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6343 Pred = Cmp->getPredicate();
6344 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
6345 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6346 {TTI::OK_AnyValue, TTI::OP_None}, I);
6347 }
6348 case Instruction::ICmp:
6349 case Instruction::FCmp: {
6350 Type *ValTy = I->getOperand(0)->getType();
6351
6353 [[maybe_unused]] Instruction *Op0AsInstruction =
6354 dyn_cast<Instruction>(I->getOperand(0));
6355 assert((!canTruncateToMinimalBitwidth(Op0AsInstruction, VF) ||
6356 MinBWs[I] == MinBWs[Op0AsInstruction]) &&
6357 "if both the operand and the compare are marked for "
6358 "truncation, they must have the same bitwidth");
6359 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[I]);
6360 }
6361
6362 VectorTy = toVectorTy(ValTy, VF);
6363 return TTI.getCmpSelInstrCost(
6364 I->getOpcode(), VectorTy, CmpInst::makeCmpResultType(VectorTy),
6365 cast<CmpInst>(I)->getPredicate(), CostKind,
6366 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, I);
6367 }
6368 case Instruction::Store:
6369 case Instruction::Load: {
6370 ElementCount Width = VF;
6371 if (Width.isVector()) {
6372 InstWidening Decision = getWideningDecision(I, Width);
6373 assert(Decision != CM_Unknown &&
6374 "CM decision should be taken at this point");
6377 if (Decision == CM_Scalarize)
6378 Width = ElementCount::getFixed(1);
6379 }
6380 VectorTy = toVectorTy(getLoadStoreType(I), Width);
6381 return getMemoryInstructionCost(I, VF);
6382 }
6383 case Instruction::BitCast:
6384 if (I->getType()->isPointerTy())
6385 return 0;
6386 [[fallthrough]];
6387 case Instruction::ZExt:
6388 case Instruction::SExt:
6389 case Instruction::FPToUI:
6390 case Instruction::FPToSI:
6391 case Instruction::FPExt:
6392 case Instruction::PtrToInt:
6393 case Instruction::IntToPtr:
6394 case Instruction::SIToFP:
6395 case Instruction::UIToFP:
6396 case Instruction::Trunc:
6397 case Instruction::FPTrunc: {
6398 // Computes the CastContextHint from a Load/Store instruction.
6399 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
6401 "Expected a load or a store!");
6402
6403 if (VF.isScalar() || !TheLoop->contains(I))
6405
6406 switch (getWideningDecision(I, VF)) {
6418 llvm_unreachable("Instr did not go through cost modelling?");
6421 llvm_unreachable_internal("Instr has invalid widening decision");
6422 }
6423
6424 llvm_unreachable("Unhandled case!");
6425 };
6426
6427 unsigned Opcode = I->getOpcode();
6429 // For Trunc, the context is the only user, which must be a StoreInst.
6430 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6431 if (I->hasOneUse())
6432 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
6433 CCH = ComputeCCH(Store);
6434 }
6435 // For Z/Sext, the context is the operand, which must be a LoadInst.
6436 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6437 Opcode == Instruction::FPExt) {
6438 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
6439 CCH = ComputeCCH(Load);
6440 }
6441
6442 // We optimize the truncation of induction variables having constant
6443 // integer steps. The cost of these truncations is the same as the scalar
6444 // operation.
6445 if (isOptimizableIVTruncate(I, VF)) {
6446 auto *Trunc = cast<TruncInst>(I);
6447 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6448 Trunc->getSrcTy(), CCH, CostKind, Trunc);
6449 }
6450
6451 // Detect reduction patterns
6452 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy))
6453 return *RedCost;
6454
6455 Type *SrcScalarTy = I->getOperand(0)->getType();
6456 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6457 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6458 SrcScalarTy =
6459 IntegerType::get(SrcScalarTy->getContext(), MinBWs[Op0AsInstruction]);
6460 Type *SrcVecTy =
6461 VectorTy->isVectorTy() ? toVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6462
6464 // If the result type is <= the source type, there will be no extend
6465 // after truncating the users to the minimal required bitwidth.
6466 if (VectorTy->getScalarSizeInBits() <= SrcVecTy->getScalarSizeInBits() &&
6467 (I->getOpcode() == Instruction::ZExt ||
6468 I->getOpcode() == Instruction::SExt))
6469 return 0;
6470 }
6471
6472 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
6473 }
6474 case Instruction::Call:
6475 return getVectorCallCost(cast<CallInst>(I), VF);
6476 case Instruction::ExtractValue:
6477 return TTI.getInstructionCost(I, CostKind);
6478 case Instruction::Alloca:
6479 // We cannot easily widen alloca to a scalable alloca, as
6480 // the result would need to be a vector of pointers.
6481 if (VF.isScalable())
6483 [[fallthrough]];
6484 default:
6485 // This opcode is unknown. Assume that it is the same as 'mul'.
6486 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6487 } // end of switch.
6488}
6489
6491 // Ignore ephemeral values.
6493
6494 SmallVector<Value *, 4> DeadInterleavePointerOps;
6496
6497 // If a scalar epilogue is required, users outside the loop won't use
6498 // live-outs from the vector loop but from the scalar epilogue. Ignore them if
6499 // that is the case.
6500 bool RequiresScalarEpilogue = requiresScalarEpilogue(true);
6501 auto IsLiveOutDead = [this, RequiresScalarEpilogue](User *U) {
6502 return RequiresScalarEpilogue &&
6503 !TheLoop->contains(cast<Instruction>(U)->getParent());
6504 };
6505
6507 DFS.perform(LI);
6508 for (BasicBlock *BB : reverse(make_range(DFS.beginRPO(), DFS.endRPO())))
6509 for (Instruction &I : reverse(*BB)) {
6510 if (VecValuesToIgnore.contains(&I) || ValuesToIgnore.contains(&I))
6511 continue;
6512
6513 // Add instructions that would be trivially dead and are only used by
6514 // values already ignored to DeadOps to seed worklist.
6516 all_of(I.users(), [this, IsLiveOutDead](User *U) {
6517 return VecValuesToIgnore.contains(U) ||
6518 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6519 }))
6520 DeadOps.push_back(&I);
6521
6522 // For interleave groups, we only create a pointer for the start of the
6523 // interleave group. Queue up addresses of group members except the insert
6524 // position for further processing.
6525 if (isAccessInterleaved(&I)) {
6526 auto *Group = getInterleavedAccessGroup(&I);
6527 if (Group->getInsertPos() == &I)
6528 continue;
6529 Value *PointerOp = getLoadStorePointerOperand(&I);
6530 DeadInterleavePointerOps.push_back(PointerOp);
6531 }
6532
6533 // Queue branches for analysis. They are dead, if their successors only
6534 // contain dead instructions.
6535 if (auto *Br = dyn_cast<BranchInst>(&I)) {
6536 if (Br->isConditional())
6537 DeadOps.push_back(&I);
6538 }
6539 }
6540
6541 // Mark ops feeding interleave group members as free, if they are only used
6542 // by other dead computations.
6543 for (unsigned I = 0; I != DeadInterleavePointerOps.size(); ++I) {
6544 auto *Op = dyn_cast<Instruction>(DeadInterleavePointerOps[I]);
6545 if (!Op || !TheLoop->contains(Op) || any_of(Op->users(), [this](User *U) {
6546 Instruction *UI = cast<Instruction>(U);
6547 return !VecValuesToIgnore.contains(U) &&
6548 (!isAccessInterleaved(UI) ||
6549 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6550 }))
6551 continue;
6552 VecValuesToIgnore.insert(Op);
6553 append_range(DeadInterleavePointerOps, Op->operands());
6554 }
6555
6556 // Mark ops that would be trivially dead and are only used by ignored
6557 // instructions as free.
6558 BasicBlock *Header = TheLoop->getHeader();
6559
6560 // Returns true if the block contains only dead instructions. Such blocks will
6561 // be removed by VPlan-to-VPlan transforms and won't be considered by the
6562 // VPlan-based cost model, so skip them in the legacy cost-model as well.
6563 auto IsEmptyBlock = [this](BasicBlock *BB) {
6564 return all_of(*BB, [this](Instruction &I) {
6565 return ValuesToIgnore.contains(&I) || VecValuesToIgnore.contains(&I) ||
6566 (isa<BranchInst>(&I) && !cast<BranchInst>(&I)->isConditional());
6567 });
6568 };
6569 for (unsigned I = 0; I != DeadOps.size(); ++I) {
6570 auto *Op = dyn_cast<Instruction>(DeadOps[I]);
6571
6572 // Check if the branch should be considered dead.
6573 if (auto *Br = dyn_cast_or_null<BranchInst>(Op)) {
6574 BasicBlock *ThenBB = Br->getSuccessor(0);
6575 BasicBlock *ElseBB = Br->getSuccessor(1);
6576 // Don't considers branches leaving the loop for simplification.
6577 if (!TheLoop->contains(ThenBB) || !TheLoop->contains(ElseBB))
6578 continue;
6579 bool ThenEmpty = IsEmptyBlock(ThenBB);
6580 bool ElseEmpty = IsEmptyBlock(ElseBB);
6581 if ((ThenEmpty && ElseEmpty) ||
6582 (ThenEmpty && ThenBB->getSingleSuccessor() == ElseBB &&
6583 ElseBB->phis().empty()) ||
6584 (ElseEmpty && ElseBB->getSingleSuccessor() == ThenBB &&
6585 ThenBB->phis().empty())) {
6586 VecValuesToIgnore.insert(Br);
6587 DeadOps.push_back(Br->getCondition());
6588 }
6589 continue;
6590 }
6591
6592 // Skip any op that shouldn't be considered dead.
6593 if (!Op || !TheLoop->contains(Op) ||
6594 (isa<PHINode>(Op) && Op->getParent() == Header) ||
6596 any_of(Op->users(), [this, IsLiveOutDead](User *U) {
6597 return !VecValuesToIgnore.contains(U) &&
6598 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6599 }))
6600 continue;
6601
6602 // If all of Op's users are in ValuesToIgnore, add it to ValuesToIgnore
6603 // which applies for both scalar and vector versions. Otherwise it is only
6604 // dead in vector versions, so only add it to VecValuesToIgnore.
6605 if (all_of(Op->users(),
6606 [this](User *U) { return ValuesToIgnore.contains(U); }))
6607 ValuesToIgnore.insert(Op);
6608
6609 VecValuesToIgnore.insert(Op);
6610 append_range(DeadOps, Op->operands());
6611 }
6612
6613 // Ignore type-promoting instructions we identified during reduction
6614 // detection.
6615 for (const auto &Reduction : Legal->getReductionVars()) {
6616 const RecurrenceDescriptor &RedDes = Reduction.second;
6617 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6618 VecValuesToIgnore.insert_range(Casts);
6619 }
6620 // Ignore type-casting instructions we identified during induction
6621 // detection.
6622 for (const auto &Induction : Legal->getInductionVars()) {
6623 const InductionDescriptor &IndDes = Induction.second;
6624 VecValuesToIgnore.insert_range(IndDes.getCastInsts());
6625 }
6626}
6627
6629 // Avoid duplicating work finding in-loop reductions.
6630 if (!InLoopReductions.empty())
6631 return;
6632
6633 for (const auto &Reduction : Legal->getReductionVars()) {
6634 PHINode *Phi = Reduction.first;
6635 const RecurrenceDescriptor &RdxDesc = Reduction.second;
6636
6637 // Multi-use reductions (e.g., used in FindLastIV patterns) are handled
6638 // separately and should not be considered for in-loop reductions.
6639 if (RdxDesc.hasUsesOutsideReductionChain())
6640 continue;
6641
6642 // We don't collect reductions that are type promoted (yet).
6643 if (RdxDesc.getRecurrenceType() != Phi->getType())
6644 continue;
6645
6646 // In-loop AnyOf and FindIV reductions are not yet supported.
6647 RecurKind Kind = RdxDesc.getRecurrenceKind();
6650 continue;
6651
6652 // If the target would prefer this reduction to happen "in-loop", then we
6653 // want to record it as such.
6654 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
6655 !TTI.preferInLoopReduction(Kind, Phi->getType()))
6656 continue;
6657
6658 // Check that we can correctly put the reductions into the loop, by
6659 // finding the chain of operations that leads from the phi to the loop
6660 // exit value.
6661 SmallVector<Instruction *, 4> ReductionOperations =
6662 RdxDesc.getReductionOpChain(Phi, TheLoop);
6663 bool InLoop = !ReductionOperations.empty();
6664
6665 if (InLoop) {
6666 InLoopReductions.insert(Phi);
6667 // Add the elements to InLoopReductionImmediateChains for cost modelling.
6668 Instruction *LastChain = Phi;
6669 for (auto *I : ReductionOperations) {
6670 InLoopReductionImmediateChains[I] = LastChain;
6671 LastChain = I;
6672 }
6673 }
6674 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
6675 << " reduction for phi: " << *Phi << "\n");
6676 }
6677}
6678
6679// This function will select a scalable VF if the target supports scalable
6680// vectors and a fixed one otherwise.
6681// TODO: we could return a pair of values that specify the max VF and
6682// min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6683// `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6684// doesn't have a cost model that can choose which plan to execute if
6685// more than one is generated.
6688 unsigned WidestType;
6689 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6690
6692 TTI.enableScalableVectorization()
6695
6696 TypeSize RegSize = TTI.getRegisterBitWidth(RegKind);
6697 unsigned N = RegSize.getKnownMinValue() / WidestType;
6698 return ElementCount::get(N, RegSize.isScalable());
6699}
6700
6703 ElementCount VF = UserVF;
6704 // Outer loop handling: They may require CFG and instruction level
6705 // transformations before even evaluating whether vectorization is profitable.
6706 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6707 // the vectorization pipeline.
6708 if (!OrigLoop->isInnermost()) {
6709 // If the user doesn't provide a vectorization factor, determine a
6710 // reasonable one.
6711 if (UserVF.isZero()) {
6712 VF = determineVPlanVF(TTI, CM);
6713 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6714
6715 // Make sure we have a VF > 1 for stress testing.
6716 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
6717 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6718 << "overriding computed VF.\n");
6719 VF = ElementCount::getFixed(4);
6720 }
6721 } else if (UserVF.isScalable() && !TTI.supportsScalableVectors() &&
6723 LLVM_DEBUG(dbgs() << "LV: Not vectorizing. Scalable VF requested, but "
6724 << "not supported by the target.\n");
6726 "Scalable vectorization requested but not supported by the target",
6727 "the scalable user-specified vectorization width for outer-loop "
6728 "vectorization cannot be used because the target does not support "
6729 "scalable vectors.",
6730 "ScalableVFUnfeasible", ORE, OrigLoop);
6732 }
6733 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6735 "VF needs to be a power of two");
6736 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
6737 << "VF " << VF << " to build VPlans.\n");
6738 buildVPlans(VF, VF);
6739
6740 if (VPlans.empty())
6742
6743 // For VPlan build stress testing, we bail out after VPlan construction.
6746
6747 return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
6748 }
6749
6750 LLVM_DEBUG(
6751 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6752 "VPlan-native path.\n");
6754}
6755
6756void LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
6757 assert(OrigLoop->isInnermost() && "Inner loop expected.");
6758 CM.collectValuesToIgnore();
6759 CM.collectElementTypesForWidening();
6760
6761 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
6762 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
6763 return;
6764
6765 // Invalidate interleave groups if all blocks of loop will be predicated.
6766 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6768 LLVM_DEBUG(
6769 dbgs()
6770 << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6771 "which requires masked-interleaved support.\n");
6772 if (CM.InterleaveInfo.invalidateGroups())
6773 // Invalidating interleave groups also requires invalidating all decisions
6774 // based on them, which includes widening decisions and uniform and scalar
6775 // values.
6776 CM.invalidateCostModelingDecisions();
6777 }
6778
6779 if (CM.foldTailByMasking())
6780 Legal->prepareToFoldTailByMasking();
6781
6782 ElementCount MaxUserVF =
6783 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
6784 if (UserVF) {
6785 if (!ElementCount::isKnownLE(UserVF, MaxUserVF)) {
6787 "UserVF ignored because it may be larger than the maximal safe VF",
6788 "InvalidUserVF", ORE, OrigLoop);
6789 } else {
6791 "VF needs to be a power of two");
6792 // Collect the instructions (and their associated costs) that will be more
6793 // profitable to scalarize.
6794 CM.collectInLoopReductions();
6795 if (CM.selectUserVectorizationFactor(UserVF)) {
6796 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6797 buildVPlansWithVPRecipes(UserVF, UserVF);
6799 return;
6800 }
6801 reportVectorizationInfo("UserVF ignored because of invalid costs.",
6802 "InvalidCost", ORE, OrigLoop);
6803 }
6804 }
6805
6806 // Collect the Vectorization Factor Candidates.
6807 SmallVector<ElementCount> VFCandidates;
6808 for (auto VF = ElementCount::getFixed(1);
6809 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
6810 VFCandidates.push_back(VF);
6811 for (auto VF = ElementCount::getScalable(1);
6812 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
6813 VFCandidates.push_back(VF);
6814
6815 CM.collectInLoopReductions();
6816 for (const auto &VF : VFCandidates) {
6817 // Collect Uniform and Scalar instructions after vectorization with VF.
6818 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6819 }
6820
6821 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
6822 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
6823
6825}
6826
6828 ElementCount VF) const {
6829 InstructionCost Cost = CM.getInstructionCost(UI, VF);
6830 if (Cost.isValid() && ForceTargetInstructionCost.getNumOccurrences())
6832 return Cost;
6833}
6834
6836 ElementCount VF) const {
6837 return CM.isUniformAfterVectorization(I, VF);
6838}
6839
6840bool VPCostContext::skipCostComputation(Instruction *UI, bool IsVector) const {
6841 return CM.ValuesToIgnore.contains(UI) ||
6842 (IsVector && CM.VecValuesToIgnore.contains(UI)) ||
6843 SkipCostComputation.contains(UI);
6844}
6845
6847 return CM.getPredBlockCostDivisor(CostKind, BB);
6848}
6849
6851LoopVectorizationPlanner::precomputeCosts(VPlan &Plan, ElementCount VF,
6852 VPCostContext &CostCtx) const {
6854 // Cost modeling for inductions is inaccurate in the legacy cost model
6855 // compared to the recipes that are generated. To match here initially during
6856 // VPlan cost model bring up directly use the induction costs from the legacy
6857 // cost model. Note that we do this as pre-processing; the VPlan may not have
6858 // any recipes associated with the original induction increment instruction
6859 // and may replace truncates with VPWidenIntOrFpInductionRecipe. We precompute
6860 // the cost of induction phis and increments (both that are represented by
6861 // recipes and those that are not), to avoid distinguishing between them here,
6862 // and skip all recipes that represent induction phis and increments (the
6863 // former case) later on, if they exist, to avoid counting them twice.
6864 // Similarly we pre-compute the cost of any optimized truncates.
6865 // TODO: Switch to more accurate costing based on VPlan.
6866 for (const auto &[IV, IndDesc] : Legal->getInductionVars()) {
6868 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6869 SmallVector<Instruction *> IVInsts = {IVInc};
6870 for (unsigned I = 0; I != IVInsts.size(); I++) {
6871 for (Value *Op : IVInsts[I]->operands()) {
6872 auto *OpI = dyn_cast<Instruction>(Op);
6873 if (Op == IV || !OpI || !OrigLoop->contains(OpI) || !Op->hasOneUse())
6874 continue;
6875 IVInsts.push_back(OpI);
6876 }
6877 }
6878 IVInsts.push_back(IV);
6879 for (User *U : IV->users()) {
6880 auto *CI = cast<Instruction>(U);
6881 if (!CostCtx.CM.isOptimizableIVTruncate(CI, VF))
6882 continue;
6883 IVInsts.push_back(CI);
6884 }
6885
6886 // If the vector loop gets executed exactly once with the given VF, ignore
6887 // the costs of comparison and induction instructions, as they'll get
6888 // simplified away.
6889 // TODO: Remove this code after stepping away from the legacy cost model and
6890 // adding code to simplify VPlans before calculating their costs.
6891 auto TC = getSmallConstantTripCount(PSE.getSE(), OrigLoop);
6892 if (TC == VF && !CM.foldTailByMasking())
6893 addFullyUnrolledInstructionsToIgnore(OrigLoop, Legal->getInductionVars(),
6894 CostCtx.SkipCostComputation);
6895
6896 for (Instruction *IVInst : IVInsts) {
6897 if (CostCtx.skipCostComputation(IVInst, VF.isVector()))
6898 continue;
6899 InstructionCost InductionCost = CostCtx.getLegacyCost(IVInst, VF);
6900 LLVM_DEBUG({
6901 dbgs() << "Cost of " << InductionCost << " for VF " << VF
6902 << ": induction instruction " << *IVInst << "\n";
6903 });
6904 Cost += InductionCost;
6905 CostCtx.SkipCostComputation.insert(IVInst);
6906 }
6907 }
6908
6909 /// Compute the cost of all exiting conditions of the loop using the legacy
6910 /// cost model. This is to match the legacy behavior, which adds the cost of
6911 /// all exit conditions. Note that this over-estimates the cost, as there will
6912 /// be a single condition to control the vector loop.
6914 CM.TheLoop->getExitingBlocks(Exiting);
6915 SetVector<Instruction *> ExitInstrs;
6916 // Collect all exit conditions.
6917 for (BasicBlock *EB : Exiting) {
6918 auto *Term = dyn_cast<BranchInst>(EB->getTerminator());
6919 if (!Term || CostCtx.skipCostComputation(Term, VF.isVector()))
6920 continue;
6921 if (auto *CondI = dyn_cast<Instruction>(Term->getOperand(0))) {
6922 ExitInstrs.insert(CondI);
6923 }
6924 }
6925 // Compute the cost of all instructions only feeding the exit conditions.
6926 for (unsigned I = 0; I != ExitInstrs.size(); ++I) {
6927 Instruction *CondI = ExitInstrs[I];
6928 if (!OrigLoop->contains(CondI) ||
6929 !CostCtx.SkipCostComputation.insert(CondI).second)
6930 continue;
6931 InstructionCost CondICost = CostCtx.getLegacyCost(CondI, VF);
6932 LLVM_DEBUG({
6933 dbgs() << "Cost of " << CondICost << " for VF " << VF
6934 << ": exit condition instruction " << *CondI << "\n";
6935 });
6936 Cost += CondICost;
6937 for (Value *Op : CondI->operands()) {
6938 auto *OpI = dyn_cast<Instruction>(Op);
6939 if (!OpI || CostCtx.skipCostComputation(OpI, VF.isVector()) ||
6940 any_of(OpI->users(), [&ExitInstrs, this](User *U) {
6941 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6942 !ExitInstrs.contains(cast<Instruction>(U));
6943 }))
6944 continue;
6945 ExitInstrs.insert(OpI);
6946 }
6947 }
6948
6949 // Pre-compute the costs for branches except for the backedge, as the number
6950 // of replicate regions in a VPlan may not directly match the number of
6951 // branches, which would lead to different decisions.
6952 // TODO: Compute cost of branches for each replicate region in the VPlan,
6953 // which is more accurate than the legacy cost model.
6954 for (BasicBlock *BB : OrigLoop->blocks()) {
6955 if (CostCtx.skipCostComputation(BB->getTerminator(), VF.isVector()))
6956 continue;
6957 CostCtx.SkipCostComputation.insert(BB->getTerminator());
6958 if (BB == OrigLoop->getLoopLatch())
6959 continue;
6960 auto BranchCost = CostCtx.getLegacyCost(BB->getTerminator(), VF);
6961 Cost += BranchCost;
6962 }
6963
6964 // Pre-compute costs for instructions that are forced-scalar or profitable to
6965 // scalarize. Their costs will be computed separately in the legacy cost
6966 // model.
6967 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6968 if (CostCtx.skipCostComputation(ForcedScalar, VF.isVector()))
6969 continue;
6970 CostCtx.SkipCostComputation.insert(ForcedScalar);
6971 InstructionCost ForcedCost = CostCtx.getLegacyCost(ForcedScalar, VF);
6972 LLVM_DEBUG({
6973 dbgs() << "Cost of " << ForcedCost << " for VF " << VF
6974 << ": forced scalar " << *ForcedScalar << "\n";
6975 });
6976 Cost += ForcedCost;
6977 }
6978 for (const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6979 if (CostCtx.skipCostComputation(Scalarized, VF.isVector()))
6980 continue;
6981 CostCtx.SkipCostComputation.insert(Scalarized);
6982 LLVM_DEBUG({
6983 dbgs() << "Cost of " << ScalarCost << " for VF " << VF
6984 << ": profitable to scalarize " << *Scalarized << "\n";
6985 });
6986 Cost += ScalarCost;
6987 }
6988
6989 return Cost;
6990}
6991
6992InstructionCost LoopVectorizationPlanner::cost(VPlan &Plan,
6993 ElementCount VF) const {
6994 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, PSE, OrigLoop);
6995 InstructionCost Cost = precomputeCosts(Plan, VF, CostCtx);
6996
6997 // Now compute and add the VPlan-based cost.
6998 Cost += Plan.cost(VF, CostCtx);
6999#ifndef NDEBUG
7000 unsigned EstimatedWidth = estimateElementCount(VF, CM.getVScaleForTuning());
7001 LLVM_DEBUG(dbgs() << "Cost for VF " << VF << ": " << Cost
7002 << " (Estimated cost per lane: ");
7003 if (Cost.isValid()) {
7004 double CostPerLane = double(Cost.getValue()) / EstimatedWidth;
7005 LLVM_DEBUG(dbgs() << format("%.1f", CostPerLane));
7006 } else /* No point dividing an invalid cost - it will still be invalid */
7007 LLVM_DEBUG(dbgs() << "Invalid");
7008 LLVM_DEBUG(dbgs() << ")\n");
7009#endif
7010 return Cost;
7011}
7012
7013#ifndef NDEBUG
7014/// Return true if the original loop \ TheLoop contains any instructions that do
7015/// not have corresponding recipes in \p Plan and are not marked to be ignored
7016/// in \p CostCtx. This means the VPlan contains simplification that the legacy
7017/// cost-model did not account for.
7019 VPCostContext &CostCtx,
7020 Loop *TheLoop,
7021 ElementCount VF) {
7022 // First collect all instructions for the recipes in Plan.
7023 auto GetInstructionForCost = [](const VPRecipeBase *R) -> Instruction * {
7024 if (auto *S = dyn_cast<VPSingleDefRecipe>(R))
7025 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7026 if (auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7027 return &WidenMem->getIngredient();
7028 return nullptr;
7029 };
7030
7031 // Check if a select for a safe divisor was hoisted to the pre-header. If so,
7032 // the select doesn't need to be considered for the vector loop cost; go with
7033 // the more accurate VPlan-based cost model.
7034 for (VPRecipeBase &R : *Plan.getVectorPreheader()) {
7035 auto *VPI = dyn_cast<VPInstruction>(&R);
7036 if (!VPI || VPI->getOpcode() != Instruction::Select)
7037 continue;
7038
7039 if (auto *WR = dyn_cast_or_null<VPWidenRecipe>(VPI->getSingleUser())) {
7040 switch (WR->getOpcode()) {
7041 case Instruction::UDiv:
7042 case Instruction::SDiv:
7043 case Instruction::URem:
7044 case Instruction::SRem:
7045 return true;
7046 default:
7047 break;
7048 }
7049 }
7050 }
7051
7052 DenseSet<Instruction *> SeenInstrs;
7053 auto Iter = vp_depth_first_deep(Plan.getVectorLoopRegion()->getEntry());
7055 for (VPRecipeBase &R : *VPBB) {
7056 if (auto *IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7057 auto *IG = IR->getInterleaveGroup();
7058 unsigned NumMembers = IG->getNumMembers();
7059 for (unsigned I = 0; I != NumMembers; ++I) {
7060 if (Instruction *M = IG->getMember(I))
7061 SeenInstrs.insert(M);
7062 }
7063 continue;
7064 }
7065 // Unused FOR splices are removed by VPlan transforms, so the VPlan-based
7066 // cost model won't cost it whilst the legacy will.
7067 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) {
7068 using namespace VPlanPatternMatch;
7069 if (none_of(FOR->users(),
7070 match_fn(m_VPInstruction<
7072 return true;
7073 }
7074 // The VPlan-based cost model is more accurate for partial reductions and
7075 // comparing against the legacy cost isn't desirable.
7076 if (auto *VPR = dyn_cast<VPReductionRecipe>(&R))
7077 if (VPR->isPartialReduction())
7078 return true;
7079
7080 // The VPlan-based cost model can analyze if recipes are scalar
7081 // recursively, but the legacy cost model cannot.
7082 if (auto *WidenMemR = dyn_cast<VPWidenMemoryRecipe>(&R)) {
7083 auto *AddrI = dyn_cast<Instruction>(
7084 getLoadStorePointerOperand(&WidenMemR->getIngredient()));
7085 if (AddrI && vputils::isSingleScalar(WidenMemR->getAddr()) !=
7086 CostCtx.isLegacyUniformAfterVectorization(AddrI, VF))
7087 return true;
7088
7089 if (WidenMemR->isReverse()) {
7090 // If the stored value of a reverse store is invariant, LICM will
7091 // hoist the reverse operation to the preheader. In this case, the
7092 // result of the VPlan-based cost model will diverge from that of
7093 // the legacy model.
7094 if (auto *StoreR = dyn_cast<VPWidenStoreRecipe>(WidenMemR))
7095 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7096 return true;
7097
7098 if (auto *StoreR = dyn_cast<VPWidenStoreEVLRecipe>(WidenMemR))
7099 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7100 return true;
7101 }
7102 }
7103
7104 // The legacy cost model costs non-header phis with a scalar VF as a phi,
7105 // but scalar unrolled VPlans will have VPBlendRecipes which emit selects.
7106 if (isa<VPBlendRecipe>(&R) &&
7107 vputils::onlyFirstLaneUsed(R.getVPSingleValue()))
7108 return true;
7109
7110 /// If a VPlan transform folded a recipe to one producing a single-scalar,
7111 /// but the original instruction wasn't uniform-after-vectorization in the
7112 /// legacy cost model, the legacy cost overestimates the actual cost.
7113 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
7114 if (RepR->isSingleScalar() &&
7116 RepR->getUnderlyingInstr(), VF))
7117 return true;
7118 }
7119 if (Instruction *UI = GetInstructionForCost(&R)) {
7120 // If we adjusted the predicate of the recipe, the cost in the legacy
7121 // cost model may be different.
7122 using namespace VPlanPatternMatch;
7123 CmpPredicate Pred;
7124 if (match(&R, m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7125 cast<VPRecipeWithIRFlags>(R).getPredicate() !=
7126 cast<CmpInst>(UI)->getPredicate())
7127 return true;
7128 SeenInstrs.insert(UI);
7129 }
7130 }
7131 }
7132
7133 // Return true if the loop contains any instructions that are not also part of
7134 // the VPlan or are skipped for VPlan-based cost computations. This indicates
7135 // that the VPlan contains extra simplifications.
7136 return any_of(TheLoop->blocks(), [&SeenInstrs, &CostCtx,
7137 TheLoop](BasicBlock *BB) {
7138 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7139 // Skip induction phis when checking for simplifications, as they may not
7140 // be lowered directly be lowered to a corresponding PHI recipe.
7141 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7142 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7143 return false;
7144 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7145 });
7146 });
7147}
7148#endif
7149
7151 if (VPlans.empty())
7153 // If there is a single VPlan with a single VF, return it directly.
7154 VPlan &FirstPlan = *VPlans[0];
7155 if (VPlans.size() == 1 && size(FirstPlan.vectorFactors()) == 1)
7156 return {*FirstPlan.vectorFactors().begin(), 0, 0};
7157
7158 LLVM_DEBUG(dbgs() << "LV: Computing best VF using cost kind: "
7159 << (CM.CostKind == TTI::TCK_RecipThroughput
7160 ? "Reciprocal Throughput\n"
7161 : CM.CostKind == TTI::TCK_Latency
7162 ? "Instruction Latency\n"
7163 : CM.CostKind == TTI::TCK_CodeSize ? "Code Size\n"
7164 : CM.CostKind == TTI::TCK_SizeAndLatency
7165 ? "Code Size and Latency\n"
7166 : "Unknown\n"));
7167
7169 assert(hasPlanWithVF(ScalarVF) &&
7170 "More than a single plan/VF w/o any plan having scalar VF");
7171
7172 // TODO: Compute scalar cost using VPlan-based cost model.
7173 InstructionCost ScalarCost = CM.expectedCost(ScalarVF);
7174 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ScalarCost << ".\n");
7175 VectorizationFactor ScalarFactor(ScalarVF, ScalarCost, ScalarCost);
7176 VectorizationFactor BestFactor = ScalarFactor;
7177
7178 bool ForceVectorization = Hints.getForce() == LoopVectorizeHints::FK_Enabled;
7179 if (ForceVectorization) {
7180 // Ignore scalar width, because the user explicitly wants vectorization.
7181 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
7182 // evaluation.
7183 BestFactor.Cost = InstructionCost::getMax();
7184 }
7185
7186 for (auto &P : VPlans) {
7187 ArrayRef<ElementCount> VFs(P->vectorFactors().begin(),
7188 P->vectorFactors().end());
7189
7191 if (any_of(VFs, [this](ElementCount VF) {
7192 return CM.shouldConsiderRegPressureForVF(VF);
7193 }))
7194 RUs = calculateRegisterUsageForPlan(*P, VFs, TTI, CM.ValuesToIgnore);
7195
7196 for (unsigned I = 0; I < VFs.size(); I++) {
7197 ElementCount VF = VFs[I];
7198 if (VF.isScalar())
7199 continue;
7200 if (!ForceVectorization && !willGenerateVectors(*P, VF, TTI)) {
7201 LLVM_DEBUG(
7202 dbgs()
7203 << "LV: Not considering vector loop of width " << VF
7204 << " because it will not generate any vector instructions.\n");
7205 continue;
7206 }
7207 if (CM.OptForSize && !ForceVectorization && hasReplicatorRegion(*P)) {
7208 LLVM_DEBUG(
7209 dbgs()
7210 << "LV: Not considering vector loop of width " << VF
7211 << " because it would cause replicated blocks to be generated,"
7212 << " which isn't allowed when optimizing for size.\n");
7213 continue;
7214 }
7215
7216 InstructionCost Cost = cost(*P, VF);
7217 VectorizationFactor CurrentFactor(VF, Cost, ScalarCost);
7218
7219 if (CM.shouldConsiderRegPressureForVF(VF) &&
7220 RUs[I].exceedsMaxNumRegs(TTI, ForceTargetNumVectorRegs)) {
7221 LLVM_DEBUG(dbgs() << "LV(REG): Not considering vector loop of width "
7222 << VF << " because it uses too many registers\n");
7223 continue;
7224 }
7225
7226 if (isMoreProfitable(CurrentFactor, BestFactor, P->hasScalarTail()))
7227 BestFactor = CurrentFactor;
7228
7229 // If profitable add it to ProfitableVF list.
7230 if (isMoreProfitable(CurrentFactor, ScalarFactor, P->hasScalarTail()))
7231 ProfitableVFs.push_back(CurrentFactor);
7232 }
7233 }
7234
7235#ifndef NDEBUG
7236 // Select the optimal vectorization factor according to the legacy cost-model.
7237 // This is now only used to verify the decisions by the new VPlan-based
7238 // cost-model and will be retired once the VPlan-based cost-model is
7239 // stabilized.
7240 VectorizationFactor LegacyVF = selectVectorizationFactor();
7241 VPlan &BestPlan = getPlanFor(BestFactor.Width);
7242
7243 // Pre-compute the cost and use it to check if BestPlan contains any
7244 // simplifications not accounted for in the legacy cost model. If that's the
7245 // case, don't trigger the assertion, as the extra simplifications may cause a
7246 // different VF to be picked by the VPlan-based cost model.
7247 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind, CM.PSE,
7248 OrigLoop);
7249 precomputeCosts(BestPlan, BestFactor.Width, CostCtx);
7250 // Verify that the VPlan-based and legacy cost models agree, except for
7251 // * VPlans with early exits,
7252 // * VPlans with additional VPlan simplifications,
7253 // * EVL-based VPlans with gather/scatters (the VPlan-based cost model uses
7254 // vp_scatter/vp_gather).
7255 // The legacy cost model doesn't properly model costs for such loops.
7256 bool UsesEVLGatherScatter =
7258 BestPlan.getVectorLoopRegion()->getEntry())),
7259 [](VPBasicBlock *VPBB) {
7260 return any_of(*VPBB, [](VPRecipeBase &R) {
7261 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7262 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7263 });
7264 });
7265 assert(
7266 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7267 !Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7269 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7271 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7272 " VPlan cost model and legacy cost model disagreed");
7273 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7274 "when vectorizing, the scalar cost must be computed.");
7275#endif
7276
7277 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << BestFactor.Width << ".\n");
7278 return BestFactor;
7279}
7280
7282 using namespace VPlanPatternMatch;
7284 "RdxResult must be ComputeFindIVResult");
7285 VPValue *StartVPV = RdxResult->getOperand(1);
7286 match(StartVPV, m_Freeze(m_VPValue(StartVPV)));
7287 return StartVPV->getLiveInIRValue();
7288}
7289
7290// If \p EpiResumePhiR is resume VPPhi for a reduction when vectorizing the
7291// epilog loop, fix the reduction's scalar PHI node by adding the incoming value
7292// from the main vector loop.
7294 VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock) {
7295 // Get the VPInstruction computing the reduction result in the middle block.
7296 // The first operand may not be from the middle block if it is not connected
7297 // to the scalar preheader. In that case, there's nothing to fix.
7298 VPValue *Incoming = EpiResumePhiR->getOperand(0);
7301 auto *EpiRedResult = dyn_cast<VPInstruction>(Incoming);
7302 if (!EpiRedResult ||
7303 (EpiRedResult->getOpcode() != VPInstruction::ComputeAnyOfResult &&
7304 EpiRedResult->getOpcode() != VPInstruction::ComputeReductionResult &&
7305 EpiRedResult->getOpcode() != VPInstruction::ComputeFindIVResult))
7306 return;
7307
7308 auto *EpiRedHeaderPhi =
7309 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7310 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7311 Value *MainResumeValue;
7312 if (auto *VPI = dyn_cast<VPInstruction>(EpiRedHeaderPhi->getStartValue())) {
7313 assert((VPI->getOpcode() == VPInstruction::Broadcast ||
7314 VPI->getOpcode() == VPInstruction::ReductionStartVector) &&
7315 "unexpected start recipe");
7316 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7317 } else
7318 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7320 [[maybe_unused]] Value *StartV =
7321 EpiRedResult->getOperand(1)->getLiveInIRValue();
7322 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7323 assert(Cmp->getPredicate() == CmpInst::ICMP_NE &&
7324 "AnyOf expected to start with ICMP_NE");
7325 assert(Cmp->getOperand(1) == StartV &&
7326 "AnyOf expected to start by comparing main resume value to original "
7327 "start value");
7328 MainResumeValue = Cmp->getOperand(0);
7330 Value *StartV = getStartValueFromReductionResult(EpiRedResult);
7331 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7332 using namespace llvm::PatternMatch;
7333 Value *Cmp, *OrigResumeV, *CmpOp;
7334 [[maybe_unused]] bool IsExpectedPattern =
7335 match(MainResumeValue,
7336 m_Select(m_OneUse(m_Value(Cmp)), m_Specific(SentinelV),
7337 m_Value(OrigResumeV))) &&
7339 m_Value(CmpOp))) &&
7340 ((CmpOp == StartV && isGuaranteedNotToBeUndefOrPoison(CmpOp))));
7341 assert(IsExpectedPattern && "Unexpected reduction resume pattern");
7342 MainResumeValue = OrigResumeV;
7343 }
7344 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7345
7346 // When fixing reductions in the epilogue loop we should already have
7347 // created a bc.merge.rdx Phi after the main vector body. Ensure that we carry
7348 // over the incoming values correctly.
7349 EpiResumePhi.setIncomingValueForBlock(
7350 BypassBlock, MainResumePhi->getIncomingValueForBlock(BypassBlock));
7351}
7352
7354 ElementCount BestVF, unsigned BestUF, VPlan &BestVPlan,
7355 InnerLoopVectorizer &ILV, DominatorTree *DT, bool VectorizingEpilogue) {
7356 assert(BestVPlan.hasVF(BestVF) &&
7357 "Trying to execute plan with unsupported VF");
7358 assert(BestVPlan.hasUF(BestUF) &&
7359 "Trying to execute plan with unsupported UF");
7360 if (BestVPlan.hasEarlyExit())
7361 ++LoopsEarlyExitVectorized;
7362 // TODO: Move to VPlan transform stage once the transition to the VPlan-based
7363 // cost model is complete for better cost estimates.
7366 BestVPlan);
7369 bool HasBranchWeights =
7370 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator());
7371 if (HasBranchWeights) {
7372 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7374 BestVPlan, BestVF, VScale);
7375 }
7376
7377 // Checks are the same for all VPlans, added to BestVPlan only for
7378 // compactness.
7379 attachRuntimeChecks(BestVPlan, ILV.RTChecks, HasBranchWeights);
7380
7381 // Retrieving VectorPH now when it's easier while VPlan still has Regions.
7382 VPBasicBlock *VectorPH = cast<VPBasicBlock>(BestVPlan.getVectorPreheader());
7383
7384 VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE);
7387 if (BestVPlan.getEntry()->getSingleSuccessor() ==
7388 BestVPlan.getScalarPreheader()) {
7389 // TODO: The vector loop would be dead, should not even try to vectorize.
7390 ORE->emit([&]() {
7391 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationDead",
7392 OrigLoop->getStartLoc(),
7393 OrigLoop->getHeader())
7394 << "Created vector loop never executes due to insufficient trip "
7395 "count.";
7396 });
7398 }
7399
7401 BestVPlan, BestVF,
7402 TTI.getRegisterBitWidth(BestVF.isScalable()
7406
7408 // Regions are dissolved after optimizing for VF and UF, which completely
7409 // removes unneeded loop regions first.
7411 // Canonicalize EVL loops after regions are dissolved.
7415 BestVPlan, VectorPH, CM.foldTailByMasking(),
7416 CM.requiresScalarEpilogue(BestVF.isVector()));
7417 VPlanTransforms::materializeVFAndVFxUF(BestVPlan, VectorPH, BestVF);
7418 VPlanTransforms::cse(BestVPlan);
7420
7421 // 0. Generate SCEV-dependent code in the entry, including TripCount, before
7422 // making any changes to the CFG.
7423 DenseMap<const SCEV *, Value *> ExpandedSCEVs =
7424 VPlanTransforms::expandSCEVs(BestVPlan, *PSE.getSE());
7425 if (!ILV.getTripCount())
7426 ILV.setTripCount(BestVPlan.getTripCount()->getLiveInIRValue());
7427 else
7428 assert(VectorizingEpilogue && "should only re-use the existing trip "
7429 "count during epilogue vectorization");
7430
7431 // Perform the actual loop transformation.
7432 VPTransformState State(&TTI, BestVF, LI, DT, ILV.AC, ILV.Builder, &BestVPlan,
7433 OrigLoop->getParentLoop(),
7434 Legal->getWidestInductionType());
7435
7436#ifdef EXPENSIVE_CHECKS
7437 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7438#endif
7439
7440 // 1. Set up the skeleton for vectorization, including vector pre-header and
7441 // middle block. The vector loop is created during VPlan execution.
7442 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7444 State.CFG.PrevBB->getSingleSuccessor(), &BestVPlan);
7446
7447 assert(verifyVPlanIsValid(BestVPlan, true /*VerifyLate*/) &&
7448 "final VPlan is invalid");
7449
7450 // After vectorization, the exit blocks of the original loop will have
7451 // additional predecessors. Invalidate SCEVs for the exit phis in case SE
7452 // looked through single-entry phis.
7453 ScalarEvolution &SE = *PSE.getSE();
7454 for (VPIRBasicBlock *Exit : BestVPlan.getExitBlocks()) {
7455 if (!Exit->hasPredecessors())
7456 continue;
7457 for (VPRecipeBase &PhiR : Exit->phis())
7459 &cast<VPIRPhi>(PhiR).getIRPhi());
7460 }
7461 // Forget the original loop and block dispositions.
7462 SE.forgetLoop(OrigLoop);
7464
7466
7467 //===------------------------------------------------===//
7468 //
7469 // Notice: any optimization or new instruction that go
7470 // into the code below should also be implemented in
7471 // the cost-model.
7472 //
7473 //===------------------------------------------------===//
7474
7475 // Retrieve loop information before executing the plan, which may remove the
7476 // original loop, if it becomes unreachable.
7477 MDNode *LID = OrigLoop->getLoopID();
7478 unsigned OrigLoopInvocationWeight = 0;
7479 std::optional<unsigned> OrigAverageTripCount =
7480 getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
7481
7482 BestVPlan.execute(&State);
7483
7484 // 2.6. Maintain Loop Hints
7485 // Keep all loop hints from the original loop on the vector loop (we'll
7486 // replace the vectorizer-specific hints below).
7487 VPBasicBlock *HeaderVPBB = vputils::getFirstLoopHeader(BestVPlan, State.VPDT);
7488 // Add metadata to disable runtime unrolling a scalar loop when there
7489 // are no runtime checks about strides and memory. A scalar loop that is
7490 // rarely used is not worth unrolling.
7491 bool DisableRuntimeUnroll = !ILV.RTChecks.hasChecks() && !BestVF.isScalar();
7493 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7494 : nullptr,
7495 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7496 OrigLoopInvocationWeight,
7497 estimateElementCount(BestVF * BestUF, CM.getVScaleForTuning()),
7498 DisableRuntimeUnroll);
7499
7500 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7501 // predication, updating analyses.
7502 ILV.fixVectorizedLoop(State);
7503
7505
7506 return ExpandedSCEVs;
7507}
7508
7509//===--------------------------------------------------------------------===//
7510// EpilogueVectorizerMainLoop
7511//===--------------------------------------------------------------------===//
7512
7513/// This function is partially responsible for generating the control flow
7514/// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7516 BasicBlock *ScalarPH = createScalarPreheader("");
7517 BasicBlock *VectorPH = ScalarPH->getSinglePredecessor();
7518
7519 // Generate the code to check the minimum iteration count of the vector
7520 // epilogue (see below).
7521 EPI.EpilogueIterationCountCheck =
7522 emitIterationCountCheck(VectorPH, ScalarPH, true);
7523 EPI.EpilogueIterationCountCheck->setName("iter.check");
7524
7525 VectorPH = cast<BranchInst>(EPI.EpilogueIterationCountCheck->getTerminator())
7526 ->getSuccessor(1);
7527 // Generate the iteration count check for the main loop, *after* the check
7528 // for the epilogue loop, so that the path-length is shorter for the case
7529 // that goes directly through the vector epilogue. The longer-path length for
7530 // the main loop is compensated for, by the gain from vectorizing the larger
7531 // trip count. Note: the branch will get updated later on when we vectorize
7532 // the epilogue.
7533 EPI.MainLoopIterationCountCheck =
7534 emitIterationCountCheck(VectorPH, ScalarPH, false);
7535
7536 return cast<BranchInst>(EPI.MainLoopIterationCountCheck->getTerminator())
7537 ->getSuccessor(1);
7538}
7539
7541 LLVM_DEBUG({
7542 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7543 << "Main Loop VF:" << EPI.MainLoopVF
7544 << ", Main Loop UF:" << EPI.MainLoopUF
7545 << ", Epilogue Loop VF:" << EPI.EpilogueVF
7546 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7547 });
7548}
7549
7552 dbgs() << "intermediate fn:\n"
7553 << *OrigLoop->getHeader()->getParent() << "\n";
7554 });
7555}
7556
7558 BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue) {
7559 assert(Bypass && "Expected valid bypass basic block.");
7562 Value *CheckMinIters = createIterationCountCheck(
7563 VectorPH, ForEpilogue ? EPI.EpilogueVF : EPI.MainLoopVF,
7564 ForEpilogue ? EPI.EpilogueUF : EPI.MainLoopUF);
7565
7566 BasicBlock *const TCCheckBlock = VectorPH;
7567 if (!ForEpilogue)
7568 TCCheckBlock->setName("vector.main.loop.iter.check");
7569
7570 // Create new preheader for vector loop.
7571 VectorPH = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7572 static_cast<DominatorTree *>(nullptr), LI, nullptr,
7573 "vector.ph");
7574 if (ForEpilogue) {
7575 // Save the trip count so we don't have to regenerate it in the
7576 // vec.epilog.iter.check. This is safe to do because the trip count
7577 // generated here dominates the vector epilog iter check.
7578 EPI.TripCount = Count;
7579 } else {
7581 }
7582
7583 BranchInst &BI = *BranchInst::Create(Bypass, VectorPH, CheckMinIters);
7584 if (hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator()))
7585 setBranchWeights(BI, MinItersBypassWeights, /*IsExpected=*/false);
7586 ReplaceInstWithInst(TCCheckBlock->getTerminator(), &BI);
7587
7588 // When vectorizing the main loop, its trip-count check is placed in a new
7589 // block, whereas the overall trip-count check is placed in the VPlan entry
7590 // block. When vectorizing the epilogue loop, its trip-count check is placed
7591 // in the VPlan entry block.
7592 if (!ForEpilogue)
7593 introduceCheckBlockInVPlan(TCCheckBlock);
7594 return TCCheckBlock;
7595}
7596
7597//===--------------------------------------------------------------------===//
7598// EpilogueVectorizerEpilogueLoop
7599//===--------------------------------------------------------------------===//
7600
7601/// This function creates a new scalar preheader, using the previous one as
7602/// entry block to the epilogue VPlan. The minimum iteration check is being
7603/// represented in VPlan.
7605 BasicBlock *NewScalarPH = createScalarPreheader("vec.epilog.");
7606 BasicBlock *OriginalScalarPH = NewScalarPH->getSinglePredecessor();
7607 OriginalScalarPH->setName("vec.epilog.iter.check");
7608 VPIRBasicBlock *NewEntry = Plan.createVPIRBasicBlock(OriginalScalarPH);
7609 VPBasicBlock *OldEntry = Plan.getEntry();
7610 for (auto &R : make_early_inc_range(*OldEntry)) {
7611 // Skip moving VPIRInstructions (including VPIRPhis), which are unmovable by
7612 // defining.
7613 if (isa<VPIRInstruction>(&R))
7614 continue;
7615 R.moveBefore(*NewEntry, NewEntry->end());
7616 }
7617
7618 VPBlockUtils::reassociateBlocks(OldEntry, NewEntry);
7619 Plan.setEntry(NewEntry);
7620 // OldEntry is now dead and will be cleaned up when the plan gets destroyed.
7621
7622 return OriginalScalarPH;
7623}
7624
7626 LLVM_DEBUG({
7627 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7628 << "Epilogue Loop VF:" << EPI.EpilogueVF
7629 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7630 });
7631}
7632
7635 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7636 });
7637}
7638
7639VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(VPInstruction *VPI,
7640 VFRange &Range) {
7641 assert((VPI->getOpcode() == Instruction::Load ||
7642 VPI->getOpcode() == Instruction::Store) &&
7643 "Must be called with either a load or store");
7645
7646 auto WillWiden = [&](ElementCount VF) -> bool {
7648 CM.getWideningDecision(I, VF);
7650 "CM decision should be taken at this point.");
7652 return true;
7653 if (CM.isScalarAfterVectorization(I, VF) ||
7654 CM.isProfitableToScalarize(I, VF))
7655 return false;
7657 };
7658
7660 return nullptr;
7661
7662 VPValue *Mask = nullptr;
7663 if (Legal->isMaskRequired(I))
7664 Mask = getBlockInMask(Builder.getInsertBlock());
7665
7666 // Determine if the pointer operand of the access is either consecutive or
7667 // reverse consecutive.
7669 CM.getWideningDecision(I, Range.Start);
7671 bool Consecutive =
7673
7674 VPValue *Ptr = VPI->getOpcode() == Instruction::Load ? VPI->getOperand(0)
7675 : VPI->getOperand(1);
7676 if (Consecutive) {
7679 VPSingleDefRecipe *VectorPtr;
7680 if (Reverse) {
7681 // When folding the tail, we may compute an address that we don't in the
7682 // original scalar loop: drop the GEP no-wrap flags in this case.
7683 // Otherwise preserve existing flags without no-unsigned-wrap, as we will
7684 // emit negative indices.
7685 GEPNoWrapFlags Flags =
7686 CM.foldTailByMasking() || !GEP
7688 : GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7689 VectorPtr = new VPVectorEndPointerRecipe(
7690 Ptr, &Plan.getVF(), getLoadStoreType(I),
7691 /*Stride*/ -1, Flags, VPI->getDebugLoc());
7692 } else {
7693 VectorPtr = new VPVectorPointerRecipe(Ptr, getLoadStoreType(I),
7694 GEP ? GEP->getNoWrapFlags()
7696 VPI->getDebugLoc());
7697 }
7698 Builder.insert(VectorPtr);
7699 Ptr = VectorPtr;
7700 }
7701
7702 if (VPI->getOpcode() == Instruction::Load) {
7703 auto *Load = cast<LoadInst>(I);
7704 auto *LoadR = new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive, Reverse,
7705 *VPI, Load->getDebugLoc());
7706 if (Reverse) {
7707 Builder.insert(LoadR);
7708 return new VPInstruction(VPInstruction::Reverse, LoadR, {}, {},
7709 LoadR->getDebugLoc());
7710 }
7711 return LoadR;
7712 }
7713
7714 StoreInst *Store = cast<StoreInst>(I);
7715 VPValue *StoredVal = VPI->getOperand(0);
7716 if (Reverse)
7717 StoredVal = Builder.createNaryOp(VPInstruction::Reverse, StoredVal,
7718 Store->getDebugLoc());
7719 return new VPWidenStoreRecipe(*Store, Ptr, StoredVal, Mask, Consecutive,
7720 Reverse, *VPI, Store->getDebugLoc());
7721}
7722
7724VPRecipeBuilder::tryToOptimizeInductionTruncate(VPInstruction *VPI,
7725 VFRange &Range) {
7726 auto *I = cast<TruncInst>(VPI->getUnderlyingInstr());
7727 // Optimize the special case where the source is a constant integer
7728 // induction variable. Notice that we can only optimize the 'trunc' case
7729 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7730 // (c) other casts depend on pointer size.
7731
7732 // Determine whether \p K is a truncation based on an induction variable that
7733 // can be optimized.
7734 auto IsOptimizableIVTruncate =
7735 [&](Instruction *K) -> std::function<bool(ElementCount)> {
7736 return [=](ElementCount VF) -> bool {
7737 return CM.isOptimizableIVTruncate(K, VF);
7738 };
7739 };
7740
7742 IsOptimizableIVTruncate(I), Range))
7743 return nullptr;
7744
7746 VPI->getOperand(0)->getDefiningRecipe());
7747 PHINode *Phi = WidenIV->getPHINode();
7748 VPValue *Start = WidenIV->getStartValue();
7749 const InductionDescriptor &IndDesc = WidenIV->getInductionDescriptor();
7750
7751 // It is always safe to copy over the NoWrap and FastMath flags. In
7752 // particular, when folding tail by masking, the masked-off lanes are never
7753 // used, so it is safe.
7754 VPIRFlags Flags = vputils::getFlagsFromIndDesc(IndDesc);
7755 VPValue *Step =
7757 return new VPWidenIntOrFpInductionRecipe(
7758 Phi, Start, Step, &Plan.getVF(), IndDesc, I, Flags, VPI->getDebugLoc());
7759}
7760
7761VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(VPInstruction *VPI,
7762 VFRange &Range) {
7763 CallInst *CI = cast<CallInst>(VPI->getUnderlyingInstr());
7765 [this, CI](ElementCount VF) {
7766 return CM.isScalarWithPredication(CI, VF);
7767 },
7768 Range);
7769
7770 if (IsPredicated)
7771 return nullptr;
7772
7774 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7775 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
7776 ID == Intrinsic::pseudoprobe ||
7777 ID == Intrinsic::experimental_noalias_scope_decl))
7778 return nullptr;
7779
7781 VPI->op_begin() + CI->arg_size());
7782
7783 // Is it beneficial to perform intrinsic call compared to lib call?
7784 bool ShouldUseVectorIntrinsic =
7786 [&](ElementCount VF) -> bool {
7787 return CM.getCallWideningDecision(CI, VF).Kind ==
7789 },
7790 Range);
7791 if (ShouldUseVectorIntrinsic)
7792 return new VPWidenIntrinsicRecipe(*CI, ID, Ops, CI->getType(), *VPI, *VPI,
7793 VPI->getDebugLoc());
7794
7795 Function *Variant = nullptr;
7796 std::optional<unsigned> MaskPos;
7797 // Is better to call a vectorized version of the function than to to scalarize
7798 // the call?
7799 auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange(
7800 [&](ElementCount VF) -> bool {
7801 // The following case may be scalarized depending on the VF.
7802 // The flag shows whether we can use a usual Call for vectorized
7803 // version of the instruction.
7804
7805 // If we've found a variant at a previous VF, then stop looking. A
7806 // vectorized variant of a function expects input in a certain shape
7807 // -- basically the number of input registers, the number of lanes
7808 // per register, and whether there's a mask required.
7809 // We store a pointer to the variant in the VPWidenCallRecipe, so
7810 // once we have an appropriate variant it's only valid for that VF.
7811 // This will force a different vplan to be generated for each VF that
7812 // finds a valid variant.
7813 if (Variant)
7814 return false;
7815 LoopVectorizationCostModel::CallWideningDecision Decision =
7816 CM.getCallWideningDecision(CI, VF);
7818 Variant = Decision.Variant;
7819 MaskPos = Decision.MaskPos;
7820 return true;
7821 }
7822
7823 return false;
7824 },
7825 Range);
7826 if (ShouldUseVectorCall) {
7827 if (MaskPos.has_value()) {
7828 // We have 2 cases that would require a mask:
7829 // 1) The block needs to be predicated, either due to a conditional
7830 // in the scalar loop or use of an active lane mask with
7831 // tail-folding, and we use the appropriate mask for the block.
7832 // 2) No mask is required for the block, but the only available
7833 // vector variant at this VF requires a mask, so we synthesize an
7834 // all-true mask.
7835 VPValue *Mask = Legal->isMaskRequired(CI)
7836 ? getBlockInMask(Builder.getInsertBlock())
7837 : Plan.getTrue();
7838
7839 Ops.insert(Ops.begin() + *MaskPos, Mask);
7840 }
7841
7842 Ops.push_back(VPI->getOperand(VPI->getNumOperands() - 1));
7843 return new VPWidenCallRecipe(CI, Variant, Ops, *VPI, *VPI,
7844 VPI->getDebugLoc());
7845 }
7846
7847 return nullptr;
7848}
7849
7850bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
7852 !isa<StoreInst>(I) && "Instruction should have been handled earlier");
7853 // Instruction should be widened, unless it is scalar after vectorization,
7854 // scalarization is profitable or it is predicated.
7855 auto WillScalarize = [this, I](ElementCount VF) -> bool {
7856 return CM.isScalarAfterVectorization(I, VF) ||
7857 CM.isProfitableToScalarize(I, VF) ||
7858 CM.isScalarWithPredication(I, VF);
7859 };
7861 Range);
7862}
7863
7864VPWidenRecipe *VPRecipeBuilder::tryToWiden(VPInstruction *VPI) {
7865 auto *I = VPI->getUnderlyingInstr();
7866 switch (VPI->getOpcode()) {
7867 default:
7868 return nullptr;
7869 case Instruction::SDiv:
7870 case Instruction::UDiv:
7871 case Instruction::SRem:
7872 case Instruction::URem: {
7873 // If not provably safe, use a select to form a safe divisor before widening the
7874 // div/rem operation itself. Otherwise fall through to general handling below.
7875 if (CM.isPredicatedInst(I)) {
7877 VPValue *Mask = getBlockInMask(Builder.getInsertBlock());
7878 VPValue *One = Plan.getConstantInt(I->getType(), 1u);
7879 auto *SafeRHS =
7880 Builder.createSelect(Mask, Ops[1], One, VPI->getDebugLoc());
7881 Ops[1] = SafeRHS;
7882 return new VPWidenRecipe(*I, Ops, *VPI, *VPI, VPI->getDebugLoc());
7883 }
7884 [[fallthrough]];
7885 }
7886 case Instruction::Add:
7887 case Instruction::And:
7888 case Instruction::AShr:
7889 case Instruction::FAdd:
7890 case Instruction::FCmp:
7891 case Instruction::FDiv:
7892 case Instruction::FMul:
7893 case Instruction::FNeg:
7894 case Instruction::FRem:
7895 case Instruction::FSub:
7896 case Instruction::ICmp:
7897 case Instruction::LShr:
7898 case Instruction::Mul:
7899 case Instruction::Or:
7900 case Instruction::Select:
7901 case Instruction::Shl:
7902 case Instruction::Sub:
7903 case Instruction::Xor:
7904 case Instruction::Freeze:
7905 return new VPWidenRecipe(*I, VPI->operands(), *VPI, *VPI,
7906 VPI->getDebugLoc());
7907 case Instruction::ExtractValue: {
7908 SmallVector<VPValue *> NewOps(VPI->operands());
7909 auto *EVI = cast<ExtractValueInst>(I);
7910 assert(EVI->getNumIndices() == 1 && "Expected one extractvalue index");
7911 unsigned Idx = EVI->getIndices()[0];
7912 NewOps.push_back(Plan.getConstantInt(32, Idx));
7913 return new VPWidenRecipe(*I, NewOps, *VPI, *VPI, VPI->getDebugLoc());
7914 }
7915 };
7916}
7917
7918VPHistogramRecipe *VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
7919 VPInstruction *VPI) {
7920 // FIXME: Support other operations.
7921 unsigned Opcode = HI->Update->getOpcode();
7922 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7923 "Histogram update operation must be an Add or Sub");
7924
7926 // Bucket address.
7927 HGramOps.push_back(VPI->getOperand(1));
7928 // Increment value.
7929 HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
7930
7931 // In case of predicated execution (due to tail-folding, or conditional
7932 // execution, or both), pass the relevant mask.
7933 if (Legal->isMaskRequired(HI->Store))
7934 HGramOps.push_back(getBlockInMask(Builder.getInsertBlock()));
7935
7936 return new VPHistogramRecipe(Opcode, HGramOps, VPI->getDebugLoc());
7937}
7938
7940 VFRange &Range) {
7941 auto *I = VPI->getUnderlyingInstr();
7943 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
7944 Range);
7945
7946 bool IsPredicated = CM.isPredicatedInst(I);
7947
7948 // Even if the instruction is not marked as uniform, there are certain
7949 // intrinsic calls that can be effectively treated as such, so we check for
7950 // them here. Conservatively, we only do this for scalable vectors, since
7951 // for fixed-width VFs we can always fall back on full scalarization.
7952 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
7953 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
7954 case Intrinsic::assume:
7955 case Intrinsic::lifetime_start:
7956 case Intrinsic::lifetime_end:
7957 // For scalable vectors if one of the operands is variant then we still
7958 // want to mark as uniform, which will generate one instruction for just
7959 // the first lane of the vector. We can't scalarize the call in the same
7960 // way as for fixed-width vectors because we don't know how many lanes
7961 // there are.
7962 //
7963 // The reasons for doing it this way for scalable vectors are:
7964 // 1. For the assume intrinsic generating the instruction for the first
7965 // lane is still be better than not generating any at all. For
7966 // example, the input may be a splat across all lanes.
7967 // 2. For the lifetime start/end intrinsics the pointer operand only
7968 // does anything useful when the input comes from a stack object,
7969 // which suggests it should always be uniform. For non-stack objects
7970 // the effect is to poison the object, which still allows us to
7971 // remove the call.
7972 IsUniform = true;
7973 break;
7974 default:
7975 break;
7976 }
7977 }
7978 VPValue *BlockInMask = nullptr;
7979 if (!IsPredicated) {
7980 // Finalize the recipe for Instr, first if it is not predicated.
7981 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7982 } else {
7983 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7984 // Instructions marked for predication are replicated and a mask operand is
7985 // added initially. Masked replicate recipes will later be placed under an
7986 // if-then construct to prevent side-effects. Generate recipes to compute
7987 // the block mask for this region.
7988 BlockInMask = getBlockInMask(Builder.getInsertBlock());
7989 }
7990
7991 // Note that there is some custom logic to mark some intrinsics as uniform
7992 // manually above for scalable vectors, which this assert needs to account for
7993 // as well.
7994 assert((Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7995 (Range.Start.isScalable() && isa<IntrinsicInst>(I))) &&
7996 "Should not predicate a uniform recipe");
7997 auto *Recipe =
7998 new VPReplicateRecipe(I, VPI->operands(), IsUniform, BlockInMask, *VPI,
7999 *VPI, VPI->getDebugLoc());
8000 return Recipe;
8001}
8002
8003/// Find all possible partial reductions in the loop and track all of those that
8004/// are valid so recipes can be formed later.
8006 // Find all possible partial reductions, grouping chains by their PHI. This
8007 // grouping allows invalidating the whole chain, if any link is not a valid
8008 // partial reduction.
8011 ChainsByPhi;
8012 for (const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8013 if (Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8014 getScaledReductions(Phi, RdxExitInstr, Range, ChainsByPhi[Phi]);
8015 }
8016
8017 // A partial reduction is invalid if any of its extends are used by
8018 // something that isn't another partial reduction. This is because the
8019 // extends are intended to be lowered along with the reduction itself.
8020
8021 // Build up a set of partial reduction ops for efficient use checking.
8022 SmallPtrSet<User *, 4> PartialReductionOps;
8023 for (const auto &[_, Chains] : ChainsByPhi)
8024 for (const auto &[PartialRdx, _] : Chains)
8025 PartialReductionOps.insert(PartialRdx.ExtendUser);
8026
8027 auto ExtendIsOnlyUsedByPartialReductions =
8028 [&PartialReductionOps](Instruction *Extend) {
8029 return all_of(Extend->users(), [&](const User *U) {
8030 return PartialReductionOps.contains(U);
8031 });
8032 };
8033
8034 // Check if each use of a chain's two extends is a partial reduction
8035 // and only add those that don't have non-partial reduction users.
8036 for (const auto &[_, Chains] : ChainsByPhi) {
8037 for (const auto &[Chain, Scale] : Chains) {
8038 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8039 (!Chain.ExtendB ||
8040 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8041 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8042 }
8043 }
8044
8045 // Check that all partial reductions in a chain are only used by other
8046 // partial reductions with the same scale factor. Otherwise we end up creating
8047 // users of scaled reductions where the types of the other operands don't
8048 // match.
8049 for (const auto &[Phi, Chains] : ChainsByPhi) {
8050 for (const auto &[Chain, Scale] : Chains) {
8051 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8052 this](const User *U) {
8053 auto *UI = cast<Instruction>(U);
8054 if (isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8055 return UI == RdxPhi;
8056 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8057 !OrigLoop->contains(UI->getParent());
8058 };
8059
8060 // If any partial reduction entry for the phi is invalid, invalidate the
8061 // whole chain.
8062 if (!all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8063 for (const auto &[Chain, _] : Chains)
8064 ScaledReductionMap.erase(Chain.Reduction);
8065 break;
8066 }
8067 }
8068 }
8069}
8070
8071bool VPRecipeBuilder::getScaledReductions(
8072 Instruction *PHI, Instruction *RdxExitInstr, VFRange &Range,
8073 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8074 if (!CM.TheLoop->contains(RdxExitInstr))
8075 return false;
8076
8077 auto *Update = dyn_cast<BinaryOperator>(RdxExitInstr);
8078 if (!Update)
8079 return false;
8080
8081 Value *Op = Update->getOperand(0);
8082 Value *PhiOp = Update->getOperand(1);
8083 if (Op == PHI)
8084 std::swap(Op, PhiOp);
8085
8086 using namespace llvm::PatternMatch;
8087 // If Op is an extend, then it's still a valid partial reduction if the
8088 // extended mul fulfills the other requirements.
8089 // For example, reduce.add(ext(mul(ext(A), ext(B)))) is still a valid partial
8090 // reduction since the inner extends will be widened. We already have oneUse
8091 // checks on the inner extends so widening them is safe.
8092 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8093 if (match(Op, m_ZExtOrSExt(m_Mul(m_Value(), m_Value())))) {
8094 auto *Cast = cast<CastInst>(Op);
8095 OuterExtKind = TTI::getPartialReductionExtendKind(Cast->getOpcode());
8096 Op = Cast->getOperand(0);
8097 }
8098
8099 // Try and get a scaled reduction from the first non-phi operand.
8100 // If one is found, we use the discovered reduction instruction in
8101 // place of the accumulator for costing.
8102 if (auto *OpInst = dyn_cast<Instruction>(Op)) {
8103 if (getScaledReductions(PHI, OpInst, Range, Chains)) {
8104 PHI = Chains.rbegin()->first.Reduction;
8105
8106 Op = Update->getOperand(0);
8107 PhiOp = Update->getOperand(1);
8108 if (Op == PHI)
8109 std::swap(Op, PhiOp);
8110 }
8111 }
8112 if (PhiOp != PHI)
8113 return false;
8114
8115 // If the update is a binary operator, check both of its operands to see if
8116 // they are extends. Otherwise, see if the update comes directly from an
8117 // extend.
8118 Instruction *Exts[2] = {nullptr};
8119 BinaryOperator *ExtendUser = dyn_cast<BinaryOperator>(Op);
8120 std::optional<unsigned> BinOpc;
8121 Type *ExtOpTypes[2] = {nullptr};
8123
8124 auto CollectExtInfo = [this, OuterExtKind, &Exts, &ExtOpTypes,
8125 &ExtKinds](SmallVectorImpl<Value *> &Ops) -> bool {
8126 for (const auto &[I, OpI] : enumerate(Ops)) {
8127 const APInt *C;
8128 if (I > 0 && match(OpI, m_APInt(C)) &&
8129 canConstantBeExtended(C, ExtOpTypes[0], ExtKinds[0])) {
8130 ExtOpTypes[I] = ExtOpTypes[0];
8131 ExtKinds[I] = ExtKinds[0];
8132 continue;
8133 }
8134 Value *ExtOp;
8135 if (!match(OpI, m_ZExtOrSExt(m_Value(ExtOp))))
8136 return false;
8137 Exts[I] = cast<Instruction>(OpI);
8138
8139 // TODO: We should be able to support live-ins.
8140 if (!CM.TheLoop->contains(Exts[I]))
8141 return false;
8142
8143 ExtOpTypes[I] = ExtOp->getType();
8144 ExtKinds[I] = TTI::getPartialReductionExtendKind(Exts[I]);
8145 // The outer extend kind must be the same as the inner extends, so that
8146 // they can be folded together.
8147 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[I])
8148 return false;
8149 }
8150 return true;
8151 };
8152
8153 if (ExtendUser) {
8154 if (!ExtendUser->hasOneUse())
8155 return false;
8156
8157 // Use the side-effect of match to replace BinOp only if the pattern is
8158 // matched, we don't care at this point whether it actually matched.
8159 match(ExtendUser, m_Neg(m_BinOp(ExtendUser)));
8160
8161 SmallVector<Value *> Ops(ExtendUser->operands());
8162 if (!CollectExtInfo(Ops))
8163 return false;
8164
8165 BinOpc = std::make_optional(ExtendUser->getOpcode());
8166 } else if (match(Update, m_Add(m_Value(), m_Value()))) {
8167 // We already know the operands for Update are Op and PhiOp.
8169 if (!CollectExtInfo(Ops))
8170 return false;
8171
8172 ExtendUser = Update;
8173 BinOpc = std::nullopt;
8174 } else
8175 return false;
8176
8177 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8178
8179 TypeSize PHISize = PHI->getType()->getPrimitiveSizeInBits();
8180 TypeSize ASize = ExtOpTypes[0]->getPrimitiveSizeInBits();
8181 if (!PHISize.hasKnownScalarFactor(ASize))
8182 return false;
8183 unsigned TargetScaleFactor = PHISize.getKnownScalarFactor(ASize);
8184
8186 [&](ElementCount VF) {
8187 InstructionCost Cost = TTI->getPartialReductionCost(
8188 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8189 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8190 CM.CostKind);
8191 return Cost.isValid();
8192 },
8193 Range)) {
8194 Chains.emplace_back(Chain, TargetScaleFactor);
8195 return true;
8196 }
8197
8198 return false;
8199}
8200
8203 VFRange &Range) {
8204 assert(!R->isPhi() && "phis must be handled earlier");
8205 // First, check for specific widening recipes that deal with optimizing
8206 // truncates, calls and memory operations.
8207
8208 VPRecipeBase *Recipe;
8209 auto *VPI = cast<VPInstruction>(R);
8210 if (VPI->getOpcode() == Instruction::Trunc &&
8211 (Recipe = tryToOptimizeInductionTruncate(VPI, Range)))
8212 return Recipe;
8213
8214 // All widen recipes below deal only with VF > 1.
8216 [&](ElementCount VF) { return VF.isScalar(); }, Range))
8217 return nullptr;
8218
8219 if (VPI->getOpcode() == Instruction::Call)
8220 return tryToWidenCall(VPI, Range);
8221
8222 Instruction *Instr = R->getUnderlyingInstr();
8223 if (VPI->getOpcode() == Instruction::Store)
8224 if (auto HistInfo = Legal->getHistogramInfo(cast<StoreInst>(Instr)))
8225 return tryToWidenHistogram(*HistInfo, VPI);
8226
8227 if (VPI->getOpcode() == Instruction::Load ||
8228 VPI->getOpcode() == Instruction::Store)
8229 return tryToWidenMemory(VPI, Range);
8230
8231 if (std::optional<unsigned> ScaleFactor = getScalingForReduction(Instr))
8232 return tryToCreatePartialReduction(VPI, ScaleFactor.value());
8233
8234 if (!shouldWiden(Instr, Range))
8235 return nullptr;
8236
8237 if (VPI->getOpcode() == Instruction::GetElementPtr)
8238 return new VPWidenGEPRecipe(cast<GetElementPtrInst>(Instr), R->operands(),
8239 *VPI, VPI->getDebugLoc());
8240
8241 if (VPI->getOpcode() == Instruction::Select)
8242 return new VPWidenSelectRecipe(cast<SelectInst>(Instr), R->operands(), *VPI,
8243 *VPI, VPI->getDebugLoc());
8244
8245 if (Instruction::isCast(VPI->getOpcode())) {
8246 auto *CI = cast<CastInst>(Instr);
8247 auto *CastR = cast<VPInstructionWithType>(VPI);
8248 return new VPWidenCastRecipe(CI->getOpcode(), VPI->getOperand(0),
8249 CastR->getResultType(), CI, *VPI, *VPI,
8250 VPI->getDebugLoc());
8251 }
8252
8253 return tryToWiden(VPI);
8254}
8255
8258 unsigned ScaleFactor) {
8259 assert(Reduction->getNumOperands() == 2 &&
8260 "Unexpected number of operands for partial reduction");
8261
8262 VPValue *BinOp = Reduction->getOperand(0);
8263 VPValue *Accumulator = Reduction->getOperand(1);
8264 VPRecipeBase *BinOpRecipe = BinOp->getDefiningRecipe();
8265 if (isa<VPReductionPHIRecipe>(BinOpRecipe) ||
8266 (isa<VPReductionRecipe>(BinOpRecipe) &&
8267 cast<VPReductionRecipe>(BinOpRecipe)->isPartialReduction()))
8268 std::swap(BinOp, Accumulator);
8269
8270 if (auto *RedPhiR = dyn_cast<VPReductionPHIRecipe>(Accumulator))
8271 RedPhiR->setVFScaleFactor(ScaleFactor);
8272
8273 assert(ScaleFactor ==
8274 vputils::getVFScaleFactor(Accumulator->getDefiningRecipe()) &&
8275 "all accumulators in chain must have same scale factor");
8276
8277 auto *ReductionI = Reduction->getUnderlyingInstr();
8278 if (Reduction->getOpcode() == Instruction::Sub) {
8280 Ops.push_back(Plan.getConstantInt(ReductionI->getType(), 0));
8281 Ops.push_back(BinOp);
8282 BinOp = new VPWidenRecipe(*ReductionI, Ops, VPIRFlags(*ReductionI),
8283 VPIRMetadata(), ReductionI->getDebugLoc());
8284 Builder.insert(BinOp->getDefiningRecipe());
8285 }
8286
8287 VPValue *Cond = nullptr;
8288 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8289 Cond = getBlockInMask(Builder.getInsertBlock());
8290
8291 return new VPReductionRecipe(
8292 RecurKind::Add, FastMathFlags(), ReductionI, Accumulator, BinOp, Cond,
8293 RdxUnordered{/*VFScaleFactor=*/ScaleFactor}, ReductionI->getDebugLoc());
8294}
8295
8296void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8297 ElementCount MaxVF) {
8298 if (ElementCount::isKnownGT(MinVF, MaxVF))
8299 return;
8300
8301 assert(OrigLoop->isInnermost() && "Inner loop expected.");
8302
8303 const LoopAccessInfo *LAI = Legal->getLAI();
8305 OrigLoop, LI, DT, PSE.getSE());
8306 if (!LAI->getRuntimePointerChecking()->getChecks().empty() &&
8308 // Only use noalias metadata when using memory checks guaranteeing no
8309 // overlap across all iterations.
8310 LVer.prepareNoAliasMetadata();
8311 }
8312
8313 // Create initial base VPlan0, to serve as common starting point for all
8314 // candidates built later for specific VF ranges.
8315 auto VPlan0 = VPlanTransforms::buildVPlan0(
8316 OrigLoop, *LI, Legal->getWidestInductionType(),
8317 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE, &LVer);
8318
8319 // Create recipes for header phis.
8321 *VPlan0, PSE, *OrigLoop, Legal->getInductionVars(),
8322 Legal->getReductionVars(), Legal->getFixedOrderRecurrences(),
8323 CM.getInLoopReductions(), Hints.allowReordering());
8324
8325 auto MaxVFTimes2 = MaxVF * 2;
8326 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
8327 VFRange SubRange = {VF, MaxVFTimes2};
8328 if (auto Plan = tryToBuildVPlanWithVPRecipes(
8329 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8330 // Now optimize the initial VPlan.
8331 VPlanTransforms::hoistPredicatedLoads(*Plan, PSE, OrigLoop);
8332 VPlanTransforms::sinkPredicatedStores(*Plan, PSE, OrigLoop);
8334 *Plan, CM.getMinimalBitwidths());
8336 // TODO: try to put it close to addActiveLaneMask().
8337 if (CM.foldTailWithEVL())
8339 *Plan, CM.getMaxSafeElements());
8340 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8341 VPlans.push_back(std::move(Plan));
8342 }
8343 VF = SubRange.End;
8344 }
8345}
8346
8347VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8348 VPlanPtr Plan, VFRange &Range, LoopVersioning *LVer) {
8349
8350 using namespace llvm::VPlanPatternMatch;
8351 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8352
8353 // ---------------------------------------------------------------------------
8354 // Build initial VPlan: Scan the body of the loop in a topological order to
8355 // visit each basic block after having visited its predecessor basic blocks.
8356 // ---------------------------------------------------------------------------
8357
8358 bool RequiresScalarEpilogueCheck =
8360 [this](ElementCount VF) {
8361 return !CM.requiresScalarEpilogue(VF.isVector());
8362 },
8363 Range);
8364 VPlanTransforms::handleEarlyExits(*Plan, Legal->hasUncountableEarlyExit());
8365 VPlanTransforms::addMiddleCheck(*Plan, RequiresScalarEpilogueCheck,
8366 CM.foldTailByMasking());
8367
8369
8370 // Don't use getDecisionAndClampRange here, because we don't know the UF
8371 // so this function is better to be conservative, rather than to split
8372 // it up into different VPlans.
8373 // TODO: Consider using getDecisionAndClampRange here to split up VPlans.
8374 bool IVUpdateMayOverflow = false;
8375 for (ElementCount VF : Range)
8376 IVUpdateMayOverflow |= !isIndvarOverflowCheckKnownFalse(&CM, VF);
8377
8378 TailFoldingStyle Style = CM.getTailFoldingStyle(IVUpdateMayOverflow);
8379 // Use NUW for the induction increment if we proved that it won't overflow in
8380 // the vector loop or when not folding the tail. In the later case, we know
8381 // that the canonical induction increment will not overflow as the vector trip
8382 // count is >= increment and a multiple of the increment.
8383 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8384 bool HasNUW = !IVUpdateMayOverflow || Style == TailFoldingStyle::None;
8385 if (!HasNUW) {
8386 auto *IVInc =
8387 LoopRegion->getExitingBasicBlock()->getTerminator()->getOperand(0);
8388 assert(match(IVInc,
8389 m_VPInstruction<Instruction::Add>(
8390 m_Specific(LoopRegion->getCanonicalIV()), m_VPValue())) &&
8391 "Did not find the canonical IV increment");
8392 cast<VPRecipeWithIRFlags>(IVInc)->dropPoisonGeneratingFlags();
8393 }
8394
8395 // ---------------------------------------------------------------------------
8396 // Pre-construction: record ingredients whose recipes we'll need to further
8397 // process after constructing the initial VPlan.
8398 // ---------------------------------------------------------------------------
8399
8400 // For each interleave group which is relevant for this (possibly trimmed)
8401 // Range, add it to the set of groups to be later applied to the VPlan and add
8402 // placeholders for its members' Recipes which we'll be replacing with a
8403 // single VPInterleaveRecipe.
8404 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8405 auto ApplyIG = [IG, this](ElementCount VF) -> bool {
8406 bool Result = (VF.isVector() && // Query is illegal for VF == 1
8407 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8409 // For scalable vectors, the interleave factors must be <= 8 since we
8410 // require the (de)interleaveN intrinsics instead of shufflevectors.
8411 assert((!Result || !VF.isScalable() || IG->getFactor() <= 8) &&
8412 "Unsupported interleave factor for scalable vectors");
8413 return Result;
8414 };
8415 if (!getDecisionAndClampRange(ApplyIG, Range))
8416 continue;
8417 InterleaveGroups.insert(IG);
8418 }
8419
8420 // ---------------------------------------------------------------------------
8421 // Predicate and linearize the top-level loop region.
8422 // ---------------------------------------------------------------------------
8423 auto BlockMaskCache = VPlanTransforms::introduceMasksAndLinearize(
8424 *Plan, CM.foldTailByMasking());
8425
8426 // ---------------------------------------------------------------------------
8427 // Construct wide recipes and apply predication for original scalar
8428 // VPInstructions in the loop.
8429 // ---------------------------------------------------------------------------
8430 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, Builder,
8431 BlockMaskCache);
8432 // TODO: Handle partial reductions with EVL tail folding.
8433 if (!CM.foldTailWithEVL())
8434 RecipeBuilder.collectScaledReductions(Range);
8435
8436 // Scan the body of the loop in a topological order to visit each basic block
8437 // after having visited its predecessor basic blocks.
8438 VPBasicBlock *HeaderVPBB = LoopRegion->getEntryBasicBlock();
8439 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8440 HeaderVPBB);
8441
8442 auto *MiddleVPBB = Plan->getMiddleBlock();
8443 VPBasicBlock::iterator MBIP = MiddleVPBB->getFirstNonPhi();
8444 // Mapping from VPValues in the initial plan to their widened VPValues. Needed
8445 // temporarily to update created block masks.
8446 DenseMap<VPValue *, VPValue *> Old2New;
8447
8448 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
8449 // Convert input VPInstructions to widened recipes.
8450 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
8451 auto *VPI = dyn_cast<VPInstruction>(&R);
8452 // Skip recipes that do not need transforming, including
8453 // non-VPInstructions (such as ...) and VPInstructions without underlying
8454 // values. The latter are added above for masking.
8455 if (!VPI || !VPI->getUnderlyingValue())
8456 continue;
8457
8458 // TODO: Gradually replace uses of underlying instruction by analyses on
8459 // VPlan. Migrate code relying on the underlying instruction from VPlan0
8460 // to construct recipes below to not use the underlying instruction.
8462 Builder.setInsertPoint(VPI);
8463
8464 // The stores with invariant address inside the loop will be deleted, and
8465 // in the exit block, a uniform store recipe will be created for the final
8466 // invariant store of the reduction.
8467 StoreInst *SI;
8468 if ((SI = dyn_cast<StoreInst>(Instr)) &&
8469 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) {
8470 // Only create recipe for the final invariant store of the reduction.
8471 if (Legal->isInvariantStoreOfReduction(SI)) {
8472 auto *Recipe = new VPReplicateRecipe(
8473 SI, R.operands(), true /* IsUniform */, nullptr /*Mask*/, *VPI,
8474 *VPI, VPI->getDebugLoc());
8475 Recipe->insertBefore(*MiddleVPBB, MBIP);
8476 }
8477 R.eraseFromParent();
8478 continue;
8479 }
8480
8481 VPRecipeBase *Recipe =
8482 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI, Range);
8483 if (!Recipe)
8484 Recipe =
8485 RecipeBuilder.handleReplication(cast<VPInstruction>(VPI), Range);
8486
8487 RecipeBuilder.setRecipe(Instr, Recipe);
8488 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && isa<TruncInst>(Instr)) {
8489 // Optimized a truncate to VPWidenIntOrFpInductionRecipe. It needs to be
8490 // moved to the phi section in the header.
8491 Recipe->insertBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8492 } else {
8493 Builder.insert(Recipe);
8494 }
8495 if (Recipe->getNumDefinedValues() == 1) {
8496 VPI->replaceAllUsesWith(Recipe->getVPSingleValue());
8497 Old2New[VPI] = Recipe->getVPSingleValue();
8498 } else {
8499 assert(Recipe->getNumDefinedValues() == 0 &&
8500 "Unexpected multidef recipe");
8501 R.eraseFromParent();
8502 }
8503 }
8504 }
8505
8506 // replaceAllUsesWith above may invalidate the block masks. Update them here.
8507 // TODO: Include the masks as operands in the predicated VPlan directly
8508 // to remove the need to keep a map of masks beyond the predication
8509 // transform.
8510 RecipeBuilder.updateBlockMaskCache(Old2New);
8511 for (VPValue *Old : Old2New.keys())
8512 Old->getDefiningRecipe()->eraseFromParent();
8513
8514 assert(isa<VPRegionBlock>(LoopRegion) &&
8515 !LoopRegion->getEntryBasicBlock()->empty() &&
8516 "entry block must be set to a VPRegionBlock having a non-empty entry "
8517 "VPBasicBlock");
8518
8519 // TODO: We can't call runPass on these transforms yet, due to verifier
8520 // failures.
8522 DenseMap<VPValue *, VPValue *> IVEndValues;
8523 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8524
8525 // ---------------------------------------------------------------------------
8526 // Transform initial VPlan: Apply previously taken decisions, in order, to
8527 // bring the VPlan to its final state.
8528 // ---------------------------------------------------------------------------
8529
8530 // Adjust the recipes for any inloop reductions.
8531 adjustRecipesForReductions(Plan, RecipeBuilder, Range.Start);
8532
8533 // Apply mandatory transformation to handle reductions with multiple in-loop
8534 // uses if possible, bail out otherwise.
8536 *Plan))
8537 return nullptr;
8538 // Apply mandatory transformation to handle FP maxnum/minnum reduction with
8539 // NaNs if possible, bail out otherwise.
8541 *Plan))
8542 return nullptr;
8543
8544 // Transform recipes to abstract recipes if it is legal and beneficial and
8545 // clamp the range for better cost estimation.
8546 // TODO: Enable following transform when the EVL-version of extended-reduction
8547 // and mulacc-reduction are implemented.
8548 if (!CM.foldTailWithEVL()) {
8549 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
8550 OrigLoop);
8552 CostCtx, Range);
8553 }
8554
8555 for (ElementCount VF : Range)
8556 Plan->addVF(VF);
8557 Plan->setName("Initial VPlan");
8558
8559 // Interleave memory: for each Interleave Group we marked earlier as relevant
8560 // for this VPlan, replace the Recipes widening its memory instructions with a
8561 // single VPInterleaveRecipe at its insertion point.
8563 InterleaveGroups, RecipeBuilder,
8564 CM.isScalarEpilogueAllowed());
8565
8566 // Replace VPValues for known constant strides.
8568 Legal->getLAI()->getSymbolicStrides());
8569
8570 auto BlockNeedsPredication = [this](BasicBlock *BB) {
8571 return Legal->blockNeedsPredication(BB);
8572 };
8574 BlockNeedsPredication);
8575
8576 // Sink users of fixed-order recurrence past the recipe defining the previous
8577 // value and introduce FirstOrderRecurrenceSplice VPInstructions.
8579 *Plan, Builder))
8580 return nullptr;
8581
8582 if (useActiveLaneMask(Style)) {
8583 // TODO: Move checks to VPlanTransforms::addActiveLaneMask once
8584 // TailFoldingStyle is visible there.
8585 bool ForControlFlow = useActiveLaneMaskForControlFlow(Style);
8586 bool WithoutRuntimeCheck =
8588 VPlanTransforms::addActiveLaneMask(*Plan, ForControlFlow,
8589 WithoutRuntimeCheck);
8590 }
8591 VPlanTransforms::optimizeInductionExitUsers(*Plan, IVEndValues, PSE);
8592
8593 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8594 return Plan;
8595}
8596
8597VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &Range) {
8598 // Outer loop handling: They may require CFG and instruction level
8599 // transformations before even evaluating whether vectorization is profitable.
8600 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8601 // the vectorization pipeline.
8602 assert(!OrigLoop->isInnermost());
8603 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8604
8605 auto Plan = VPlanTransforms::buildVPlan0(
8606 OrigLoop, *LI, Legal->getWidestInductionType(),
8607 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()), PSE);
8609 /*HasUncountableExit*/ false);
8610 VPlanTransforms::addMiddleCheck(*Plan, /*RequiresScalarEpilogue*/ true,
8611 /*TailFolded*/ false);
8612
8614
8615 for (ElementCount VF : Range)
8616 Plan->addVF(VF);
8617
8619 *Plan,
8620 [this](PHINode *P) {
8621 return Legal->getIntOrFpInductionDescriptor(P);
8622 },
8623 *TLI))
8624 return nullptr;
8625
8626 // TODO: IVEndValues are not used yet in the native path, to optimize exit
8627 // values.
8628 // TODO: We can't call runPass on the transform yet, due to verifier
8629 // failures.
8630 DenseMap<VPValue *, VPValue *> IVEndValues;
8631 VPlanTransforms::updateScalarResumePhis(*Plan, IVEndValues);
8632
8633 assert(verifyVPlanIsValid(*Plan) && "VPlan is invalid");
8634 return Plan;
8635}
8636
8637// Adjust the recipes for reductions. For in-loop reductions the chain of
8638// instructions leading from the loop exit instr to the phi need to be converted
8639// to reductions, with one operand being vector and the other being the scalar
8640// reduction chain. For other reductions, a select is introduced between the phi
8641// and users outside the vector region when folding the tail.
8642//
8643// A ComputeReductionResult recipe is added to the middle block, also for
8644// in-loop reductions which compute their result in-loop, because generating
8645// the subsequent bc.merge.rdx phi is driven by ComputeReductionResult recipes.
8646//
8647// Adjust AnyOf reductions; replace the reduction phi for the selected value
8648// with a boolean reduction phi node to check if the condition is true in any
8649// iteration. The final value is selected by the final ComputeReductionResult.
8650void LoopVectorizationPlanner::adjustRecipesForReductions(
8651 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8652 using namespace VPlanPatternMatch;
8653 VPTypeAnalysis TypeInfo(*Plan);
8654 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8655 VPBasicBlock *Header = VectorLoopRegion->getEntryBasicBlock();
8656 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8658
8659 for (VPRecipeBase &R : Header->phis()) {
8660 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8661 if (!PhiR || !PhiR->isInLoop() || (MinVF.isScalar() && !PhiR->isOrdered()))
8662 continue;
8663
8664 RecurKind Kind = PhiR->getRecurrenceKind();
8665 assert(
8668 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8669
8670 bool IsFPRecurrence =
8672 FastMathFlags FMFs =
8673 IsFPRecurrence ? FastMathFlags::getFast() : FastMathFlags();
8674
8675 // Collect the chain of "link" recipes for the reduction starting at PhiR.
8676 SetVector<VPSingleDefRecipe *> Worklist;
8677 Worklist.insert(PhiR);
8678 for (unsigned I = 0; I != Worklist.size(); ++I) {
8679 VPSingleDefRecipe *Cur = Worklist[I];
8680 for (VPUser *U : Cur->users()) {
8681 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
8682 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8683 assert((UserRecipe->getParent() == MiddleVPBB ||
8684 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8685 "U must be either in the loop region, the middle block or the "
8686 "scalar preheader.");
8687 continue;
8688 }
8689 Worklist.insert(UserRecipe);
8690 }
8691 }
8692
8693 // Visit operation "Links" along the reduction chain top-down starting from
8694 // the phi until LoopExitValue. We keep track of the previous item
8695 // (PreviousLink) to tell which of the two operands of a Link will remain
8696 // scalar and which will be reduced. For minmax by select(cmp), Link will be
8697 // the select instructions. Blend recipes of in-loop reduction phi's will
8698 // get folded to their non-phi operand, as the reduction recipe handles the
8699 // condition directly.
8700 VPSingleDefRecipe *PreviousLink = PhiR; // Aka Worklist[0].
8701 for (VPSingleDefRecipe *CurrentLink : drop_begin(Worklist)) {
8702 if (auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink)) {
8703 assert(Blend->getNumIncomingValues() == 2 &&
8704 "Blend must have 2 incoming values");
8705 if (Blend->getIncomingValue(0) == PhiR) {
8706 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8707 } else {
8708 assert(Blend->getIncomingValue(1) == PhiR &&
8709 "PhiR must be an operand of the blend");
8710 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8711 }
8712 continue;
8713 }
8714
8715 if (IsFPRecurrence) {
8716 FastMathFlags CurFMF =
8717 cast<VPRecipeWithIRFlags>(CurrentLink)->getFastMathFlags();
8718 if (match(CurrentLink, m_Select(m_VPValue(), m_VPValue(), m_VPValue())))
8719 CurFMF |= cast<VPRecipeWithIRFlags>(CurrentLink->getOperand(0))
8720 ->getFastMathFlags();
8721 FMFs &= CurFMF;
8722 }
8723
8724 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8725
8726 // Index of the first operand which holds a non-mask vector operand.
8727 unsigned IndexOfFirstOperand;
8728 // Recognize a call to the llvm.fmuladd intrinsic.
8729 bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
8730 VPValue *VecOp;
8731 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8732 if (IsFMulAdd) {
8733 assert(
8735 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8736 assert(((MinVF.isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
8737 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
8738 CurrentLink->getOperand(2) == PreviousLink &&
8739 "expected a call where the previous link is the added operand");
8740
8741 // If the instruction is a call to the llvm.fmuladd intrinsic then we
8742 // need to create an fmul recipe (multiplying the first two operands of
8743 // the fmuladd together) to use as the vector operand for the fadd
8744 // reduction.
8745 VPInstruction *FMulRecipe = new VPInstruction(
8746 Instruction::FMul,
8747 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8748 CurrentLinkI->getFastMathFlags());
8749 LinkVPBB->insert(FMulRecipe, CurrentLink->getIterator());
8750 VecOp = FMulRecipe;
8751 } else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8752 match(CurrentLink, m_Sub(m_VPValue(), m_VPValue()))) {
8753 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8754 auto *Zero = Plan->getConstantInt(PhiTy, 0);
8755 auto *Sub = new VPInstruction(Instruction::Sub,
8756 {Zero, CurrentLink->getOperand(1)}, {},
8757 {}, CurrentLinkI->getDebugLoc());
8758 Sub->setUnderlyingValue(CurrentLinkI);
8759 LinkVPBB->insert(Sub, CurrentLink->getIterator());
8760 VecOp = Sub;
8761 } else {
8763 if (match(CurrentLink, m_Cmp(m_VPValue(), m_VPValue())))
8764 continue;
8765 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
8766 "must be a select recipe");
8767 IndexOfFirstOperand = 1;
8768 } else {
8769 assert((MinVF.isScalar() || isa<VPWidenRecipe>(CurrentLink)) &&
8770 "Expected to replace a VPWidenSC");
8771 IndexOfFirstOperand = 0;
8772 }
8773 // Note that for non-commutable operands (cmp-selects), the semantics of
8774 // the cmp-select are captured in the recurrence kind.
8775 unsigned VecOpId =
8776 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8777 ? IndexOfFirstOperand + 1
8778 : IndexOfFirstOperand;
8779 VecOp = CurrentLink->getOperand(VecOpId);
8780 assert(VecOp != PreviousLink &&
8781 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8782 (VecOpId - IndexOfFirstOperand)) ==
8783 PreviousLink &&
8784 "PreviousLink must be the operand other than VecOp");
8785 }
8786
8787 VPValue *CondOp = nullptr;
8788 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->getParent()))
8789 CondOp = RecipeBuilder.getBlockInMask(CurrentLink->getParent());
8790
8791 ReductionStyle Style = getReductionStyle(true, PhiR->isOrdered(), 1);
8792 auto *RedRecipe =
8793 new VPReductionRecipe(Kind, FMFs, CurrentLinkI, PreviousLink, VecOp,
8794 CondOp, Style, CurrentLinkI->getDebugLoc());
8795 // Append the recipe to the end of the VPBasicBlock because we need to
8796 // ensure that it comes after all of it's inputs, including CondOp.
8797 // Delete CurrentLink as it will be invalid if its operand is replaced
8798 // with a reduction defined at the bottom of the block in the next link.
8799 if (LinkVPBB->getNumSuccessors() == 0)
8800 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->end())));
8801 else
8802 LinkVPBB->appendRecipe(RedRecipe);
8803
8804 CurrentLink->replaceAllUsesWith(RedRecipe);
8805 ToDelete.push_back(CurrentLink);
8806 PreviousLink = RedRecipe;
8807 }
8808 }
8809 VPBasicBlock *LatchVPBB = VectorLoopRegion->getExitingBasicBlock();
8810 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->end())));
8811 VPBasicBlock::iterator IP = MiddleVPBB->getFirstNonPhi();
8812 for (VPRecipeBase &R :
8813 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8814 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
8815 if (!PhiR)
8816 continue;
8817
8818 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8820 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8821 // If tail is folded by masking, introduce selects between the phi
8822 // and the users outside the vector region of each reduction, at the
8823 // beginning of the dedicated latch block.
8824 auto *OrigExitingVPV = PhiR->getBackedgeValue();
8825 auto *NewExitingVPV = PhiR->getBackedgeValue();
8826 // Don't output selects for partial reductions because they have an output
8827 // with fewer lanes than the VF. So the operands of the select would have
8828 // different numbers of lanes. Partial reductions mask the input instead.
8829 auto *RR = dyn_cast<VPReductionRecipe>(OrigExitingVPV->getDefiningRecipe());
8830 if (!PhiR->isInLoop() && CM.foldTailByMasking() &&
8831 (!RR || !RR->isPartialReduction())) {
8832 VPValue *Cond = RecipeBuilder.getBlockInMask(PhiR->getParent());
8833 std::optional<FastMathFlags> FMFs =
8834 PhiTy->isFloatingPointTy()
8835 ? std::make_optional(RdxDesc.getFastMathFlags())
8836 : std::nullopt;
8837 NewExitingVPV =
8838 Builder.createSelect(Cond, OrigExitingVPV, PhiR, {}, "", FMFs);
8839 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U, unsigned) {
8840 return isa<VPInstruction>(&U) &&
8841 (cast<VPInstruction>(&U)->getOpcode() ==
8843 cast<VPInstruction>(&U)->getOpcode() ==
8845 cast<VPInstruction>(&U)->getOpcode() ==
8847 });
8848 if (CM.usePredicatedReductionSelect())
8849 PhiR->setOperand(1, NewExitingVPV);
8850 }
8851
8852 // We want code in the middle block to appear to execute on the location of
8853 // the scalar loop's latch terminator because: (a) it is all compiler
8854 // generated, (b) these instructions are always executed after evaluating
8855 // the latch conditional branch, and (c) other passes may add new
8856 // predecessors which terminate on this line. This is the easiest way to
8857 // ensure we don't accidentally cause an extra step back into the loop while
8858 // debugging.
8859 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8860
8861 // TODO: At the moment ComputeReductionResult also drives creation of the
8862 // bc.merge.rdx phi nodes, hence it needs to be created unconditionally here
8863 // even for in-loop reductions, until the reduction resume value handling is
8864 // also modeled in VPlan.
8865 VPInstruction *FinalReductionResult;
8866 VPBuilder::InsertPointGuard Guard(Builder);
8867 Builder.setInsertPoint(MiddleVPBB, IP);
8868 RecurKind RecurrenceKind = PhiR->getRecurrenceKind();
8870 VPValue *Start = PhiR->getStartValue();
8871 VPValue *Sentinel = Plan->getOrAddLiveIn(RdxDesc.getSentinelValue());
8872 FinalReductionResult =
8873 Builder.createNaryOp(VPInstruction::ComputeFindIVResult,
8874 {PhiR, Start, Sentinel, NewExitingVPV}, ExitDL);
8875 } else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8876 VPValue *Start = PhiR->getStartValue();
8877 FinalReductionResult =
8878 Builder.createNaryOp(VPInstruction::ComputeAnyOfResult,
8879 {PhiR, Start, NewExitingVPV}, ExitDL);
8880 } else {
8881 VPIRFlags Flags =
8883 ? VPIRFlags(RdxDesc.getFastMathFlags())
8884 : VPIRFlags();
8885 FinalReductionResult =
8886 Builder.createNaryOp(VPInstruction::ComputeReductionResult,
8887 {PhiR, NewExitingVPV}, Flags, ExitDL);
8888 }
8889 // If the vector reduction can be performed in a smaller type, we truncate
8890 // then extend the loop exit value to enable InstCombine to evaluate the
8891 // entire expression in the smaller type.
8892 if (MinVF.isVector() && PhiTy != RdxDesc.getRecurrenceType() &&
8894 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
8896 "Unexpected truncated min-max recurrence!");
8897 Type *RdxTy = RdxDesc.getRecurrenceType();
8898 VPWidenCastRecipe *Trunc;
8899 Instruction::CastOps ExtendOpc =
8900 RdxDesc.isSigned() ? Instruction::SExt : Instruction::ZExt;
8901 VPWidenCastRecipe *Extnd;
8902 {
8903 VPBuilder::InsertPointGuard Guard(Builder);
8904 Builder.setInsertPoint(
8905 NewExitingVPV->getDefiningRecipe()->getParent(),
8906 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8907 Trunc =
8908 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8909 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8910 }
8911 if (PhiR->getOperand(1) == NewExitingVPV)
8912 PhiR->setOperand(1, Extnd->getVPSingleValue());
8913
8914 // Update ComputeReductionResult with the truncated exiting value and
8915 // extend its result.
8916 FinalReductionResult->setOperand(1, Trunc);
8917 FinalReductionResult =
8918 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8919 }
8920
8921 // Update all users outside the vector region. Also replace redundant
8922 // extracts.
8923 for (auto *U : to_vector(OrigExitingVPV->users())) {
8924 auto *Parent = cast<VPRecipeBase>(U)->getParent();
8925 if (FinalReductionResult == U || Parent->getParent())
8926 continue;
8927 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8928
8929 // Look through ExtractLastPart.
8931 U = cast<VPInstruction>(U)->getSingleUser();
8932
8935 cast<VPInstruction>(U)->replaceAllUsesWith(FinalReductionResult);
8936 }
8937
8938 // Adjust AnyOf reductions; replace the reduction phi for the selected value
8939 // with a boolean reduction phi node to check if the condition is true in
8940 // any iteration. The final value is selected by the final
8941 // ComputeReductionResult.
8942 if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RecurrenceKind)) {
8943 auto *Select = cast<VPRecipeBase>(*find_if(PhiR->users(), [](VPUser *U) {
8944 return isa<VPWidenSelectRecipe>(U) ||
8945 (isa<VPReplicateRecipe>(U) &&
8946 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8947 Instruction::Select);
8948 }));
8949 VPValue *Cmp = Select->getOperand(0);
8950 // If the compare is checking the reduction PHI node, adjust it to check
8951 // the start value.
8952 if (VPRecipeBase *CmpR = Cmp->getDefiningRecipe())
8953 CmpR->replaceUsesOfWith(PhiR, PhiR->getStartValue());
8954 Builder.setInsertPoint(Select);
8955
8956 // If the true value of the select is the reduction phi, the new value is
8957 // selected if the negated condition is true in any iteration.
8958 if (Select->getOperand(1) == PhiR)
8959 Cmp = Builder.createNot(Cmp);
8960 VPValue *Or = Builder.createOr(PhiR, Cmp);
8961 Select->getVPSingleValue()->replaceAllUsesWith(Or);
8962 // Delete Select now that it has invalid types.
8963 ToDelete.push_back(Select);
8964
8965 // Convert the reduction phi to operate on bools.
8966 PhiR->setOperand(0, Plan->getFalse());
8967 continue;
8968 }
8969
8971 RdxDesc.getRecurrenceKind())) {
8972 // Adjust the start value for FindFirstIV/FindLastIV recurrences to use
8973 // the sentinel value after generating the ResumePhi recipe, which uses
8974 // the original start value.
8975 PhiR->setOperand(0, Plan->getOrAddLiveIn(RdxDesc.getSentinelValue()));
8976 }
8977 RecurKind RK = RdxDesc.getRecurrenceKind();
8981 VPBuilder PHBuilder(Plan->getVectorPreheader());
8982 VPValue *Iden = Plan->getOrAddLiveIn(
8983 getRecurrenceIdentity(RK, PhiTy, RdxDesc.getFastMathFlags()));
8984 // If the PHI is used by a partial reduction, set the scale factor.
8985 unsigned ScaleFactor =
8986 RecipeBuilder.getScalingForReduction(RdxDesc.getLoopExitInstr())
8987 .value_or(1);
8988 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8989 VPValue *StartV = PHBuilder.createNaryOp(
8991 {PhiR->getStartValue(), Iden, ScaleFactorVPV},
8992 PhiTy->isFloatingPointTy() ? RdxDesc.getFastMathFlags()
8993 : FastMathFlags());
8994 PhiR->setOperand(0, StartV);
8995 }
8996 }
8997 for (VPRecipeBase *R : ToDelete)
8998 R->eraseFromParent();
8999
9001}
9002
9003void LoopVectorizationPlanner::attachRuntimeChecks(
9004 VPlan &Plan, GeneratedRTChecks &RTChecks, bool HasBranchWeights) const {
9005 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9006 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9007 assert((!CM.OptForSize ||
9008 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled) &&
9009 "Cannot SCEV check stride or overflow when optimizing for size");
9010 VPlanTransforms::attachCheckBlock(Plan, SCEVCheckCond, SCEVCheckBlock,
9011 HasBranchWeights);
9012 }
9013 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9014 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9015 // VPlan-native path does not do any analysis for runtime checks
9016 // currently.
9017 assert((!EnableVPlanNativePath || OrigLoop->isInnermost()) &&
9018 "Runtime checks are not supported for outer loops yet");
9019
9020 if (CM.OptForSize) {
9021 assert(
9022 CM.Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
9023 "Cannot emit memory checks when optimizing for size, unless forced "
9024 "to vectorize.");
9025 ORE->emit([&]() {
9026 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
9027 OrigLoop->getStartLoc(),
9028 OrigLoop->getHeader())
9029 << "Code-size may be reduced by not forcing "
9030 "vectorization, or by source-code modifications "
9031 "eliminating the need for runtime checks "
9032 "(e.g., adding 'restrict').";
9033 });
9034 }
9035 VPlanTransforms::attachCheckBlock(Plan, MemCheckCond, MemCheckBlock,
9036 HasBranchWeights);
9037 }
9038}
9039
9041 VPlan &Plan, ElementCount VF, unsigned UF,
9042 ElementCount MinProfitableTripCount) const {
9043 // vscale is not necessarily a power-of-2, which means we cannot guarantee
9044 // an overflow to zero when updating induction variables and so an
9045 // additional overflow check is required before entering the vector loop.
9046 bool IsIndvarOverflowCheckNeededForVF =
9047 VF.isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9048 !isIndvarOverflowCheckKnownFalse(&CM, VF, UF) &&
9049 CM.getTailFoldingStyle() !=
9051 const uint32_t *BranchWeigths =
9052 hasBranchWeightMD(*OrigLoop->getLoopLatch()->getTerminator())
9054 : nullptr;
9056 Plan, VF, UF, MinProfitableTripCount,
9057 CM.requiresScalarEpilogue(VF.isVector()), CM.foldTailByMasking(),
9058 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9059 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(), PSE);
9060}
9061
9063 assert(!State.Lane && "VPDerivedIVRecipe being replicated.");
9064
9065 // Fast-math-flags propagate from the original induction instruction.
9066 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9067 if (FPBinOp)
9068 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9069
9070 Value *Step = State.get(getStepValue(), VPLane(0));
9071 Value *Index = State.get(getOperand(1), VPLane(0));
9072 Value *DerivedIV = emitTransformedIndex(
9073 State.Builder, Index, getStartValue()->getLiveInIRValue(), Step, Kind,
9075 DerivedIV->setName(Name);
9076 State.set(this, DerivedIV, VPLane(0));
9077}
9078
9079// Determine how to lower the scalar epilogue, which depends on 1) optimising
9080// for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9081// predication, and 4) a TTI hook that analyses whether the loop is suitable
9082// for predication.
9084 Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize,
9087 // 1) OptSize takes precedence over all other options, i.e. if this is set,
9088 // don't look at hints or options, and don't request a scalar epilogue.
9089 if (F->hasOptSize() ||
9090 (OptForSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9092
9093 // 2) If set, obey the directives
9094 if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9102 };
9103 }
9104
9105 // 3) If set, obey the hints
9106 switch (Hints.getPredicate()) {
9111 };
9112
9113 // 4) if the TTI hook indicates this is profitable, request predication.
9114 TailFoldingInfo TFI(TLI, &LVL, IAI);
9115 if (TTI->preferPredicateOverEpilogue(&TFI))
9117
9119}
9120
9121// Process the loop in the VPlan-native vectorization path. This path builds
9122// VPlan upfront in the vectorization pipeline, which allows to apply
9123// VPlan-to-VPlan transformations from the very beginning without modifying the
9124// input LLVM IR.
9130 std::function<BlockFrequencyInfo &()> GetBFI, bool OptForSize,
9131 LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements) {
9132
9134 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9135 return false;
9136 }
9137 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9138 Function *F = L->getHeader()->getParent();
9139 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9140
9142 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, *LVL, &IAI);
9143
9144 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE,
9145 GetBFI, F, &Hints, IAI, OptForSize);
9146 // Use the planner for outer loop vectorization.
9147 // TODO: CM is not used at this point inside the planner. Turn CM into an
9148 // optional argument if we don't need it in the future.
9149 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, LVL, CM, IAI, PSE, Hints,
9150 ORE);
9151
9152 // Get user vectorization factor.
9153 ElementCount UserVF = Hints.getWidth();
9154
9156
9157 // Plan how to best vectorize, return the best VF and its cost.
9158 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9159
9160 // If we are stress testing VPlan builds, do not attempt to generate vector
9161 // code. Masked vector code generation support will follow soon.
9162 // Also, do not attempt to vectorize if no vector code will be produced.
9164 return false;
9165
9166 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
9167
9168 {
9169 GeneratedRTChecks Checks(PSE, DT, LI, TTI, CM.CostKind);
9170 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, /*UF=*/1, &CM,
9171 Checks, BestPlan);
9172 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9173 << L->getHeader()->getParent()->getName() << "\"\n");
9174 LVP.addMinimumIterationCheck(BestPlan, VF.Width, /*UF=*/1,
9176
9177 LVP.executePlan(VF.Width, /*UF=*/1, BestPlan, LB, DT, false);
9178 }
9179
9180 reportVectorization(ORE, L, VF, 1);
9181
9182 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9183 return true;
9184}
9185
9186// Emit a remark if there are stores to floats that required a floating point
9187// extension. If the vectorized loop was generated with floating point there
9188// will be a performance penalty from the conversion overhead and the change in
9189// the vector width.
9192 for (BasicBlock *BB : L->getBlocks()) {
9193 for (Instruction &Inst : *BB) {
9194 if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9195 if (S->getValueOperand()->getType()->isFloatTy())
9196 Worklist.push_back(S);
9197 }
9198 }
9199 }
9200
9201 // Traverse the floating point stores upwards searching, for floating point
9202 // conversions.
9205 while (!Worklist.empty()) {
9206 auto *I = Worklist.pop_back_val();
9207 if (!L->contains(I))
9208 continue;
9209 if (!Visited.insert(I).second)
9210 continue;
9211
9212 // Emit a remark if the floating point store required a floating
9213 // point conversion.
9214 // TODO: More work could be done to identify the root cause such as a
9215 // constant or a function return type and point the user to it.
9216 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9217 ORE->emit([&]() {
9218 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9219 I->getDebugLoc(), L->getHeader())
9220 << "floating point conversion changes vector width. "
9221 << "Mixed floating point precision requires an up/down "
9222 << "cast that will negatively impact performance.";
9223 });
9224
9225 for (Use &Op : I->operands())
9226 if (auto *OpI = dyn_cast<Instruction>(Op))
9227 Worklist.push_back(OpI);
9228 }
9229}
9230
9231/// For loops with uncountable early exits, find the cost of doing work when
9232/// exiting the loop early, such as calculating the final exit values of
9233/// variables used outside the loop.
9234/// TODO: This is currently overly pessimistic because the loop may not take
9235/// the early exit, but better to keep this conservative for now. In future,
9236/// it might be possible to relax this by using branch probabilities.
9238 VPlan &Plan, ElementCount VF) {
9239 InstructionCost Cost = 0;
9240 for (auto *ExitVPBB : Plan.getExitBlocks()) {
9241 for (auto *PredVPBB : ExitVPBB->getPredecessors()) {
9242 // If the predecessor is not the middle.block, then it must be the
9243 // vector.early.exit block, which may contain work to calculate the exit
9244 // values of variables used outside the loop.
9245 if (PredVPBB != Plan.getMiddleBlock()) {
9246 LLVM_DEBUG(dbgs() << "Calculating cost of work in exit block "
9247 << PredVPBB->getName() << ":\n");
9248 Cost += PredVPBB->cost(VF, CostCtx);
9249 }
9250 }
9251 }
9252 return Cost;
9253}
9254
9255/// This function determines whether or not it's still profitable to vectorize
9256/// the loop given the extra work we have to do outside of the loop:
9257/// 1. Perform the runtime checks before entering the loop to ensure it's safe
9258/// to vectorize.
9259/// 2. In the case of loops with uncountable early exits, we may have to do
9260/// extra work when exiting the loop early, such as calculating the final
9261/// exit values of variables used outside the loop.
9262/// 3. The middle block.
9263static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks,
9264 VectorizationFactor &VF, Loop *L,
9266 VPCostContext &CostCtx, VPlan &Plan,
9268 std::optional<unsigned> VScale) {
9269 InstructionCost TotalCost = Checks.getCost();
9270 if (!TotalCost.isValid())
9271 return false;
9272
9273 // Add on the cost of any work required in the vector early exit block, if
9274 // one exists.
9275 TotalCost += calculateEarlyExitCost(CostCtx, Plan, VF.Width);
9276
9277 TotalCost += Plan.getMiddleBlock()->cost(VF.Width, CostCtx);
9278
9279 // When interleaving only scalar and vector cost will be equal, which in turn
9280 // would lead to a divide by 0. Fall back to hard threshold.
9281 if (VF.Width.isScalar()) {
9282 // TODO: Should we rename VectorizeMemoryCheckThreshold?
9283 if (TotalCost > VectorizeMemoryCheckThreshold) {
9284 LLVM_DEBUG(
9285 dbgs()
9286 << "LV: Interleaving only is not profitable due to runtime checks\n");
9287 return false;
9288 }
9289 return true;
9290 }
9291
9292 // The scalar cost should only be 0 when vectorizing with a user specified
9293 // VF/IC. In those cases, runtime checks should always be generated.
9294 uint64_t ScalarC = VF.ScalarCost.getValue();
9295 if (ScalarC == 0)
9296 return true;
9297
9298 // First, compute the minimum iteration count required so that the vector
9299 // loop outperforms the scalar loop.
9300 // The total cost of the scalar loop is
9301 // ScalarC * TC
9302 // where
9303 // * TC is the actual trip count of the loop.
9304 // * ScalarC is the cost of a single scalar iteration.
9305 //
9306 // The total cost of the vector loop is
9307 // RtC + VecC * (TC / VF) + EpiC
9308 // where
9309 // * RtC is the sum of the costs cost of
9310 // - the generated runtime checks
9311 // - performing any additional work in the vector.early.exit block for
9312 // loops with uncountable early exits.
9313 // - the middle block, if ExpectedTC <= VF.Width.
9314 // * VecC is the cost of a single vector iteration.
9315 // * TC is the actual trip count of the loop
9316 // * VF is the vectorization factor
9317 // * EpiCost is the cost of the generated epilogue, including the cost
9318 // of the remaining scalar operations.
9319 //
9320 // Vectorization is profitable once the total vector cost is less than the
9321 // total scalar cost:
9322 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC
9323 //
9324 // Now we can compute the minimum required trip count TC as
9325 // VF * (RtC + EpiC) / (ScalarC * VF - VecC) < TC
9326 //
9327 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9328 // the computations are performed on doubles, not integers and the result
9329 // is rounded up, hence we get an upper estimate of the TC.
9330 unsigned IntVF = estimateElementCount(VF.Width, VScale);
9331 uint64_t RtC = TotalCost.getValue();
9332 uint64_t Div = ScalarC * IntVF - VF.Cost.getValue();
9333 uint64_t MinTC1 = Div == 0 ? 0 : divideCeil(RtC * IntVF, Div);
9334
9335 // Second, compute a minimum iteration count so that the cost of the
9336 // runtime checks is only a fraction of the total scalar loop cost. This
9337 // adds a loop-dependent bound on the overhead incurred if the runtime
9338 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
9339 // * TC. To bound the runtime check to be a fraction 1/X of the scalar
9340 // cost, compute
9341 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC
9342 uint64_t MinTC2 = divideCeil(RtC * 10, ScalarC);
9343
9344 // Now pick the larger minimum. If it is not a multiple of VF and a scalar
9345 // epilogue is allowed, choose the next closest multiple of VF. This should
9346 // partly compensate for ignoring the epilogue cost.
9347 uint64_t MinTC = std::max(MinTC1, MinTC2);
9348 if (SEL == CM_ScalarEpilogueAllowed)
9349 MinTC = alignTo(MinTC, IntVF);
9351
9352 LLVM_DEBUG(
9353 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
9354 << VF.MinProfitableTripCount << "\n");
9355
9356 // Skip vectorization if the expected trip count is less than the minimum
9357 // required trip count.
9358 if (auto ExpectedTC = getSmallBestKnownTC(PSE, L)) {
9359 if (ElementCount::isKnownLT(*ExpectedTC, VF.MinProfitableTripCount)) {
9360 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
9361 "trip count < minimum profitable VF ("
9362 << *ExpectedTC << " < " << VF.MinProfitableTripCount
9363 << ")\n");
9364
9365 return false;
9366 }
9367 }
9368 return true;
9369}
9370
9372 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9374 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9376
9377/// Prepare \p MainPlan for vectorizing the main vector loop during epilogue
9378/// vectorization. Remove ResumePhis from \p MainPlan for inductions that
9379/// don't have a corresponding wide induction in \p EpiPlan.
9380static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan) {
9381 // Collect PHI nodes of widened phis in the VPlan for the epilogue. Those
9382 // will need their resume-values computed in the main vector loop. Others
9383 // can be removed from the main VPlan.
9384 SmallPtrSet<PHINode *, 2> EpiWidenedPhis;
9385 for (VPRecipeBase &R :
9388 continue;
9389 EpiWidenedPhis.insert(
9390 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
9391 }
9392 for (VPRecipeBase &R :
9393 make_early_inc_range(MainPlan.getScalarHeader()->phis())) {
9394 auto *VPIRInst = cast<VPIRPhi>(&R);
9395 if (EpiWidenedPhis.contains(&VPIRInst->getIRPhi()))
9396 continue;
9397 // There is no corresponding wide induction in the epilogue plan that would
9398 // need a resume value. Remove the VPIRInst wrapping the scalar header phi
9399 // together with the corresponding ResumePhi. The resume values for the
9400 // scalar loop will be created during execution of EpiPlan.
9401 VPRecipeBase *ResumePhi = VPIRInst->getOperand(0)->getDefiningRecipe();
9402 VPIRInst->eraseFromParent();
9403 ResumePhi->eraseFromParent();
9404 }
9406
9407 using namespace VPlanPatternMatch;
9408 // When vectorizing the epilogue, FindFirstIV & FindLastIV reductions can
9409 // introduce multiple uses of undef/poison. If the reduction start value may
9410 // be undef or poison it needs to be frozen and the frozen start has to be
9411 // used when computing the reduction result. We also need to use the frozen
9412 // value in the resume phi generated by the main vector loop, as this is also
9413 // used to compute the reduction result after the epilogue vector loop.
9414 auto AddFreezeForFindLastIVReductions = [](VPlan &Plan,
9415 bool UpdateResumePhis) {
9416 VPBuilder Builder(Plan.getEntry());
9417 for (VPRecipeBase &R : *Plan.getMiddleBlock()) {
9418 auto *VPI = dyn_cast<VPInstruction>(&R);
9419 if (!VPI || VPI->getOpcode() != VPInstruction::ComputeFindIVResult)
9420 continue;
9421 VPValue *OrigStart = VPI->getOperand(1);
9423 continue;
9424 VPInstruction *Freeze =
9425 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {}, "fr");
9426 VPI->setOperand(1, Freeze);
9427 if (UpdateResumePhis)
9428 OrigStart->replaceUsesWithIf(Freeze, [Freeze](VPUser &U, unsigned) {
9429 return Freeze != &U && isa<VPPhi>(&U);
9430 });
9431 }
9432 };
9433 AddFreezeForFindLastIVReductions(MainPlan, true);
9434 AddFreezeForFindLastIVReductions(EpiPlan, false);
9435
9436 VPBasicBlock *MainScalarPH = MainPlan.getScalarPreheader();
9437 VPValue *VectorTC = &MainPlan.getVectorTripCount();
9438 // If there is a suitable resume value for the canonical induction in the
9439 // scalar (which will become vector) epilogue loop, use it and move it to the
9440 // beginning of the scalar preheader. Otherwise create it below.
9441 auto ResumePhiIter =
9442 find_if(MainScalarPH->phis(), [VectorTC](VPRecipeBase &R) {
9443 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9444 m_ZeroInt()));
9445 });
9446 VPPhi *ResumePhi = nullptr;
9447 if (ResumePhiIter == MainScalarPH->phis().end()) {
9448 VPBuilder ScalarPHBuilder(MainScalarPH, MainScalarPH->begin());
9449 ResumePhi = ScalarPHBuilder.createScalarPhi(
9450 {VectorTC,
9452 {}, "vec.epilog.resume.val");
9453 } else {
9454 ResumePhi = cast<VPPhi>(&*ResumePhiIter);
9455 if (MainScalarPH->begin() == MainScalarPH->end())
9456 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->end());
9457 else if (&*MainScalarPH->begin() != ResumePhi)
9458 ResumePhi->moveBefore(*MainScalarPH, MainScalarPH->begin());
9459 }
9460 // Add a user to to make sure the resume phi won't get removed.
9461 VPBuilder(MainScalarPH)
9463}
9464
9465/// Prepare \p Plan for vectorizing the epilogue loop. That is, re-use expanded
9466/// SCEVs from \p ExpandedSCEVs and set resume values for header recipes. Some
9467/// reductions require creating new instructions to compute the resume values.
9468/// They are collected in a vector and returned. They must be moved to the
9469/// preheader of the vector epilogue loop, after created by the execution of \p
9470/// Plan.
9472 VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs,
9474 ScalarEvolution &SE) {
9475 VPRegionBlock *VectorLoop = Plan.getVectorLoopRegion();
9476 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
9477 Header->setName("vec.epilog.vector.body");
9478
9479 VPCanonicalIVPHIRecipe *IV = VectorLoop->getCanonicalIV();
9480 // When vectorizing the epilogue loop, the canonical induction needs to be
9481 // adjusted by the value after the main vector loop. Find the resume value
9482 // created during execution of the main VPlan. It must be the first phi in the
9483 // loop preheader. Use the value to increment the canonical IV, and update all
9484 // users in the loop region to use the adjusted value.
9485 // FIXME: Improve modeling for canonical IV start values in the epilogue
9486 // loop.
9487 using namespace llvm::PatternMatch;
9488 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9489 for (Value *Inc : EPResumeVal->incoming_values()) {
9490 if (match(Inc, m_SpecificInt(0)))
9491 continue;
9492 assert(!EPI.VectorTripCount &&
9493 "Must only have a single non-zero incoming value");
9494 EPI.VectorTripCount = Inc;
9495 }
9496 // If we didn't find a non-zero vector trip count, all incoming values
9497 // must be zero, which also means the vector trip count is zero. Pick the
9498 // first zero as vector trip count.
9499 // TODO: We should not choose VF * UF so the main vector loop is known to
9500 // be dead.
9501 if (!EPI.VectorTripCount) {
9502 assert(EPResumeVal->getNumIncomingValues() > 0 &&
9503 all_of(EPResumeVal->incoming_values(),
9504 [](Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9505 "all incoming values must be 0");
9506 EPI.VectorTripCount = EPResumeVal->getOperand(0);
9507 }
9508 VPValue *VPV = Plan.getOrAddLiveIn(EPResumeVal);
9509 assert(all_of(IV->users(),
9510 [](const VPUser *U) {
9511 return isa<VPScalarIVStepsRecipe>(U) ||
9512 isa<VPDerivedIVRecipe>(U) ||
9513 cast<VPRecipeBase>(U)->isScalarCast() ||
9514 cast<VPInstruction>(U)->getOpcode() ==
9515 Instruction::Add;
9516 }) &&
9517 "the canonical IV should only be used by its increment or "
9518 "ScalarIVSteps when resetting the start value");
9519 VPBuilder Builder(Header, Header->getFirstNonPhi());
9520 VPInstruction *Add = Builder.createNaryOp(Instruction::Add, {IV, VPV});
9521 IV->replaceAllUsesWith(Add);
9522 Add->setOperand(0, IV);
9523
9525 SmallVector<Instruction *> InstsToMove;
9526 // Ensure that the start values for all header phi recipes are updated before
9527 // vectorizing the epilogue loop. Skip the canonical IV, which has been
9528 // handled above.
9529 for (VPRecipeBase &R : drop_begin(Header->phis())) {
9530 Value *ResumeV = nullptr;
9531 // TODO: Move setting of resume values to prepareToExecute.
9532 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
9533 auto *RdxResult =
9534 cast<VPInstruction>(*find_if(ReductionPhi->users(), [](VPUser *U) {
9535 auto *VPI = dyn_cast<VPInstruction>(U);
9536 return VPI &&
9537 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9538 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9539 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9540 }));
9541 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
9542 ->getIncomingValueForBlock(L->getLoopPreheader());
9543 RecurKind RK = ReductionPhi->getRecurrenceKind();
9545 Value *StartV = RdxResult->getOperand(1)->getLiveInIRValue();
9546 // VPReductionPHIRecipes for AnyOf reductions expect a boolean as
9547 // start value; compare the final value from the main vector loop
9548 // to the start value.
9549 BasicBlock *PBB = cast<Instruction>(ResumeV)->getParent();
9550 IRBuilder<> Builder(PBB, PBB->getFirstNonPHIIt());
9551 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9552 if (auto *I = dyn_cast<Instruction>(ResumeV))
9553 InstsToMove.push_back(I);
9555 Value *StartV = getStartValueFromReductionResult(RdxResult);
9556 ToFrozen[StartV] = cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9558
9559 // VPReductionPHIRecipe for FindFirstIV/FindLastIV reductions requires
9560 // an adjustment to the resume value. The resume value is adjusted to
9561 // the sentinel value when the final value from the main vector loop
9562 // equals the start value. This ensures correctness when the start value
9563 // might not be less than the minimum value of a monotonically
9564 // increasing induction variable.
9565 BasicBlock *ResumeBB = cast<Instruction>(ResumeV)->getParent();
9566 IRBuilder<> Builder(ResumeBB, ResumeBB->getFirstNonPHIIt());
9567 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9568 if (auto *I = dyn_cast<Instruction>(Cmp))
9569 InstsToMove.push_back(I);
9570 Value *Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9571 ResumeV = Builder.CreateSelect(Cmp, Sentinel, ResumeV);
9572 if (auto *I = dyn_cast<Instruction>(ResumeV))
9573 InstsToMove.push_back(I);
9574 } else {
9575 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9576 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9577 if (auto *VPI = dyn_cast<VPInstruction>(PhiR->getStartValue())) {
9579 "unexpected start value");
9580 VPI->setOperand(0, StartVal);
9581 continue;
9582 }
9583 }
9584 } else {
9585 // Retrieve the induction resume values for wide inductions from
9586 // their original phi nodes in the scalar loop.
9587 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
9588 // Hook up to the PHINode generated by a ResumePhi recipe of main
9589 // loop VPlan, which feeds the scalar loop.
9590 ResumeV = IndPhi->getIncomingValueForBlock(L->getLoopPreheader());
9591 }
9592 assert(ResumeV && "Must have a resume value");
9593 VPValue *StartVal = Plan.getOrAddLiveIn(ResumeV);
9594 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
9595 }
9596
9597 // For some VPValues in the epilogue plan we must re-use the generated IR
9598 // values from the main plan. Replace them with live-in VPValues.
9599 // TODO: This is a workaround needed for epilogue vectorization and it
9600 // should be removed once induction resume value creation is done
9601 // directly in VPlan.
9602 for (auto &R : make_early_inc_range(*Plan.getEntry())) {
9603 // Re-use frozen values from the main plan for Freeze VPInstructions in the
9604 // epilogue plan. This ensures all users use the same frozen value.
9605 auto *VPI = dyn_cast<VPInstruction>(&R);
9606 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9608 ToFrozen.lookup(VPI->getOperand(0)->getLiveInIRValue())));
9609 continue;
9610 }
9611
9612 // Re-use the trip count and steps expanded for the main loop, as
9613 // skeleton creation needs it as a value that dominates both the scalar
9614 // and vector epilogue loops
9615 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
9616 if (!ExpandR)
9617 continue;
9618 VPValue *ExpandedVal =
9619 Plan.getOrAddLiveIn(ExpandedSCEVs.lookup(ExpandR->getSCEV()));
9620 ExpandR->replaceAllUsesWith(ExpandedVal);
9621 if (Plan.getTripCount() == ExpandR)
9622 Plan.resetTripCount(ExpandedVal);
9623 ExpandR->eraseFromParent();
9624 }
9625
9626 auto VScale = CM.getVScaleForTuning();
9627 unsigned MainLoopStep =
9628 estimateElementCount(EPI.MainLoopVF * EPI.MainLoopUF, VScale);
9629 unsigned EpilogueLoopStep =
9630 estimateElementCount(EPI.EpilogueVF * EPI.EpilogueUF, VScale);
9632 Plan, EPI.TripCount, EPI.VectorTripCount,
9634 EPI.EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9635
9636 return InstsToMove;
9637}
9638
9639// Generate bypass values from the additional bypass block. Note that when the
9640// vectorized epilogue is skipped due to iteration count check, then the
9641// resume value for the induction variable comes from the trip count of the
9642// main vector loop, passed as the second argument.
9644 PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder,
9645 const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount,
9646 Instruction *OldInduction) {
9647 Value *Step = getExpandedStep(II, ExpandedSCEVs);
9648 // For the primary induction the additional bypass end value is known.
9649 // Otherwise it is computed.
9650 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9651 if (OrigPhi != OldInduction) {
9652 auto *BinOp = II.getInductionBinOp();
9653 // Fast-math-flags propagate from the original induction instruction.
9655 BypassBuilder.setFastMathFlags(BinOp->getFastMathFlags());
9656
9657 // Compute the end value for the additional bypass.
9658 EndValueFromAdditionalBypass =
9659 emitTransformedIndex(BypassBuilder, MainVectorTripCount,
9660 II.getStartValue(), Step, II.getKind(), BinOp);
9661 EndValueFromAdditionalBypass->setName("ind.end");
9662 }
9663 return EndValueFromAdditionalBypass;
9664}
9665
9667 VPlan &BestEpiPlan,
9669 const SCEV2ValueTy &ExpandedSCEVs,
9670 Value *MainVectorTripCount) {
9671 // Fix reduction resume values from the additional bypass block.
9672 BasicBlock *PH = L->getLoopPreheader();
9673 for (auto *Pred : predecessors(PH)) {
9674 for (PHINode &Phi : PH->phis()) {
9675 if (Phi.getBasicBlockIndex(Pred) != -1)
9676 continue;
9677 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9678 }
9679 }
9680 auto *ScalarPH = cast<VPIRBasicBlock>(BestEpiPlan.getScalarPreheader());
9681 if (ScalarPH->hasPredecessors()) {
9682 // If ScalarPH has predecessors, we may need to update its reduction
9683 // resume values.
9684 for (const auto &[R, IRPhi] :
9685 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9687 BypassBlock);
9688 }
9689 }
9690
9691 // Fix induction resume values from the additional bypass block.
9692 IRBuilder<> BypassBuilder(BypassBlock, BypassBlock->getFirstInsertionPt());
9693 for (const auto &[IVPhi, II] : LVL.getInductionVars()) {
9694 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9696 IVPhi, II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9697 LVL.getPrimaryInduction());
9698 // TODO: Directly add as extra operand to the VPResumePHI recipe.
9699 Inc->setIncomingValueForBlock(BypassBlock, V);
9700 }
9701}
9702
9703/// Connect the epilogue vector loop generated for \p EpiPlan to the main vector
9704// loop, after both plans have executed, updating branches from the iteration
9705// and runtime checks of the main loop, as well as updating various phis. \p
9706// InstsToMove contains instructions that need to be moved to the preheader of
9707// the epilogue vector loop.
9709 VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI,
9711 DenseMap<const SCEV *, Value *> &ExpandedSCEVs, GeneratedRTChecks &Checks,
9712 ArrayRef<Instruction *> InstsToMove) {
9713 BasicBlock *VecEpilogueIterationCountCheck =
9714 cast<VPIRBasicBlock>(EpiPlan.getEntry())->getIRBasicBlock();
9715
9716 BasicBlock *VecEpiloguePreHeader =
9717 cast<BranchInst>(VecEpilogueIterationCountCheck->getTerminator())
9718 ->getSuccessor(1);
9719 // Adjust the control flow taking the state info from the main loop
9720 // vectorization into account.
9722 "expected this to be saved from the previous pass.");
9723 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
9725 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9726
9728 VecEpilogueIterationCountCheck},
9730 VecEpiloguePreHeader}});
9731
9732 BasicBlock *ScalarPH =
9733 cast<VPIRBasicBlock>(EpiPlan.getScalarPreheader())->getIRBasicBlock();
9735 VecEpilogueIterationCountCheck, ScalarPH);
9736 DTU.applyUpdates(
9738 VecEpilogueIterationCountCheck},
9740
9741 // Adjust the terminators of runtime check blocks and phis using them.
9742 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9743 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9744 if (SCEVCheckBlock) {
9745 SCEVCheckBlock->getTerminator()->replaceUsesOfWith(
9746 VecEpilogueIterationCountCheck, ScalarPH);
9747 DTU.applyUpdates({{DominatorTree::Delete, SCEVCheckBlock,
9748 VecEpilogueIterationCountCheck},
9749 {DominatorTree::Insert, SCEVCheckBlock, ScalarPH}});
9750 }
9751 if (MemCheckBlock) {
9752 MemCheckBlock->getTerminator()->replaceUsesOfWith(
9753 VecEpilogueIterationCountCheck, ScalarPH);
9754 DTU.applyUpdates(
9755 {{DominatorTree::Delete, MemCheckBlock, VecEpilogueIterationCountCheck},
9756 {DominatorTree::Insert, MemCheckBlock, ScalarPH}});
9757 }
9758
9759 // The vec.epilog.iter.check block may contain Phi nodes from inductions
9760 // or reductions which merge control-flow from the latch block and the
9761 // middle block. Update the incoming values here and move the Phi into the
9762 // preheader.
9763 SmallVector<PHINode *, 4> PhisInBlock(
9764 llvm::make_pointer_range(VecEpilogueIterationCountCheck->phis()));
9765
9766 for (PHINode *Phi : PhisInBlock) {
9767 Phi->moveBefore(VecEpiloguePreHeader->getFirstNonPHIIt());
9768 Phi->replaceIncomingBlockWith(
9769 VecEpilogueIterationCountCheck->getSinglePredecessor(),
9770 VecEpilogueIterationCountCheck);
9771
9772 // If the phi doesn't have an incoming value from the
9773 // EpilogueIterationCountCheck, we are done. Otherwise remove the
9774 // incoming value and also those from other check blocks. This is needed
9775 // for reduction phis only.
9776 if (none_of(Phi->blocks(), [&](BasicBlock *IncB) {
9777 return EPI.EpilogueIterationCountCheck == IncB;
9778 }))
9779 continue;
9780 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
9781 if (SCEVCheckBlock)
9782 Phi->removeIncomingValue(SCEVCheckBlock);
9783 if (MemCheckBlock)
9784 Phi->removeIncomingValue(MemCheckBlock);
9785 }
9786
9787 auto IP = VecEpiloguePreHeader->getFirstNonPHIIt();
9788 for (auto *I : InstsToMove)
9789 I->moveBefore(IP);
9790
9791 // VecEpilogueIterationCountCheck conditionally skips over the epilogue loop
9792 // after executing the main loop. We need to update the resume values of
9793 // inductions and reductions during epilogue vectorization.
9794 fixScalarResumeValuesFromBypass(VecEpilogueIterationCountCheck, L, EpiPlan,
9795 LVL, ExpandedSCEVs, EPI.VectorTripCount);
9796}
9797
9799 assert((EnableVPlanNativePath || L->isInnermost()) &&
9800 "VPlan-native path is not enabled. Only process inner loops.");
9801
9802 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
9803 << L->getHeader()->getParent()->getName() << "' from "
9804 << L->getLocStr() << "\n");
9805
9806 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
9807
9808 LLVM_DEBUG(
9809 dbgs() << "LV: Loop hints:"
9810 << " force="
9812 ? "disabled"
9814 ? "enabled"
9815 : "?"))
9816 << " width=" << Hints.getWidth()
9817 << " interleave=" << Hints.getInterleave() << "\n");
9818
9819 // Function containing loop
9820 Function *F = L->getHeader()->getParent();
9821
9822 // Looking at the diagnostic output is the only way to determine if a loop
9823 // was vectorized (other than looking at the IR or machine code), so it
9824 // is important to generate an optimization remark for each loop. Most of
9825 // these messages are generated as OptimizationRemarkAnalysis. Remarks
9826 // generated as OptimizationRemark and OptimizationRemarkMissed are
9827 // less verbose reporting vectorized loops and unvectorized loops that may
9828 // benefit from vectorization, respectively.
9829
9830 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
9831 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
9832 return false;
9833 }
9834
9835 PredicatedScalarEvolution PSE(*SE, *L);
9836
9837 // Query this against the original loop and save it here because the profile
9838 // of the original loop header may change as the transformation happens.
9839 bool OptForSize = llvm::shouldOptimizeForSize(
9840 L->getHeader(), PSI,
9841 PSI && PSI->hasProfileSummary() ? &GetBFI() : nullptr,
9843
9844 // Check if it is legal to vectorize the loop.
9845 LoopVectorizationRequirements Requirements;
9846 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE,
9847 &Requirements, &Hints, DB, AC,
9848 /*AllowRuntimeSCEVChecks=*/!OptForSize, AA);
9850 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
9851 Hints.emitRemarkWithHints();
9852 return false;
9853 }
9854
9856 reportVectorizationFailure("Auto-vectorization of loops with uncountable "
9857 "early exit is not enabled",
9858 "UncountableEarlyExitLoopsDisabled", ORE, L);
9859 return false;
9860 }
9861
9862 if (!LVL.getPotentiallyFaultingLoads().empty()) {
9863 reportVectorizationFailure("Auto-vectorization of loops with potentially "
9864 "faulting load is not supported",
9865 "PotentiallyFaultingLoadsNotSupported", ORE, L);
9866 return false;
9867 }
9868
9869 // Entrance to the VPlan-native vectorization path. Outer loops are processed
9870 // here. They may require CFG and instruction level transformations before
9871 // even evaluating whether vectorization is profitable. Since we cannot modify
9872 // the incoming IR, we need to build VPlan upfront in the vectorization
9873 // pipeline.
9874 if (!L->isInnermost())
9875 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
9876 ORE, GetBFI, OptForSize, Hints,
9877 Requirements);
9878
9879 assert(L->isInnermost() && "Inner loop expected.");
9880
9881 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
9882 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
9883
9884 // If an override option has been passed in for interleaved accesses, use it.
9885 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
9886 UseInterleaved = EnableInterleavedMemAccesses;
9887
9888 // Analyze interleaved memory accesses.
9889 if (UseInterleaved)
9891
9892 if (LVL.hasUncountableEarlyExit()) {
9893 BasicBlock *LoopLatch = L->getLoopLatch();
9894 if (IAI.requiresScalarEpilogue() ||
9896 [LoopLatch](BasicBlock *BB) { return BB != LoopLatch; })) {
9897 reportVectorizationFailure("Auto-vectorization of early exit loops "
9898 "requiring a scalar epilogue is unsupported",
9899 "UncountableEarlyExitUnsupported", ORE, L);
9900 return false;
9901 }
9902 }
9903
9904 // Check the function attributes and profiles to find out if this function
9905 // should be optimized for size.
9907 getScalarEpilogueLowering(F, L, Hints, OptForSize, TTI, TLI, LVL, &IAI);
9908
9909 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
9910 // count by optimizing for size, to minimize overheads.
9911 auto ExpectedTC = getSmallBestKnownTC(PSE, L);
9912 if (ExpectedTC && ExpectedTC->isFixed() &&
9913 ExpectedTC->getFixedValue() < TinyTripCountVectorThreshold) {
9914 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
9915 << "This loop is worth vectorizing only if no scalar "
9916 << "iteration overheads are incurred.");
9918 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
9919 else {
9920 LLVM_DEBUG(dbgs() << "\n");
9921 // Predicate tail-folded loops are efficient even when the loop
9922 // iteration count is low. However, setting the epilogue policy to
9923 // `CM_ScalarEpilogueNotAllowedLowTripLoop` prevents vectorizing loops
9924 // with runtime checks. It's more effective to let
9925 // `isOutsideLoopWorkProfitable` determine if vectorization is
9926 // beneficial for the loop.
9929 }
9930 }
9931
9932 // Check the function attributes to see if implicit floats or vectors are
9933 // allowed.
9934 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9936 "Can't vectorize when the NoImplicitFloat attribute is used",
9937 "loop not vectorized due to NoImplicitFloat attribute",
9938 "NoImplicitFloat", ORE, L);
9939 Hints.emitRemarkWithHints();
9940 return false;
9941 }
9942
9943 // Check if the target supports potentially unsafe FP vectorization.
9944 // FIXME: Add a check for the type of safety issue (denormal, signaling)
9945 // for the target we're vectorizing for, to make sure none of the
9946 // additional fp-math flags can help.
9947 if (Hints.isPotentiallyUnsafe() &&
9948 TTI->isFPVectorizationPotentiallyUnsafe()) {
9950 "Potentially unsafe FP op prevents vectorization",
9951 "loop not vectorized due to unsafe FP support.",
9952 "UnsafeFP", ORE, L);
9953 Hints.emitRemarkWithHints();
9954 return false;
9955 }
9956
9957 bool AllowOrderedReductions;
9958 // If the flag is set, use that instead and override the TTI behaviour.
9959 if (ForceOrderedReductions.getNumOccurrences() > 0)
9960 AllowOrderedReductions = ForceOrderedReductions;
9961 else
9962 AllowOrderedReductions = TTI->enableOrderedReductions();
9963 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
9964 ORE->emit([&]() {
9965 auto *ExactFPMathInst = Requirements.getExactFPInst();
9966 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
9967 ExactFPMathInst->getDebugLoc(),
9968 ExactFPMathInst->getParent())
9969 << "loop not vectorized: cannot prove it is safe to reorder "
9970 "floating-point operations";
9971 });
9972 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
9973 "reorder floating-point operations\n");
9974 Hints.emitRemarkWithHints();
9975 return false;
9976 }
9977
9978 // Use the cost model.
9979 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
9980 GetBFI, F, &Hints, IAI, OptForSize);
9981 // Use the planner for vectorization.
9982 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *TTI, &LVL, CM, IAI, PSE, Hints,
9983 ORE);
9984
9985 // Get user vectorization factor and interleave count.
9986 ElementCount UserVF = Hints.getWidth();
9987 unsigned UserIC = Hints.getInterleave();
9988 if (UserIC > 1 && !LVL.isSafeForAnyVectorWidth())
9989 UserIC = 1;
9990
9991 // Plan how to best vectorize.
9992 LVP.plan(UserVF, UserIC);
9994 unsigned IC = 1;
9995
9996 if (ORE->allowExtraAnalysis(LV_NAME))
9998
9999 GeneratedRTChecks Checks(PSE, DT, LI, TTI, CM.CostKind);
10000 if (LVP.hasPlanWithVF(VF.Width)) {
10001 // Select the interleave count.
10002 IC = LVP.selectInterleaveCount(LVP.getPlanFor(VF.Width), VF.Width, VF.Cost);
10003
10004 unsigned SelectedIC = std::max(IC, UserIC);
10005 // Optimistically generate runtime checks if they are needed. Drop them if
10006 // they turn out to not be profitable.
10007 if (VF.Width.isVector() || SelectedIC > 1) {
10008 Checks.create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC,
10009 *ORE);
10010
10011 // Bail out early if either the SCEV or memory runtime checks are known to
10012 // fail. In that case, the vector loop would never execute.
10013 using namespace llvm::PatternMatch;
10014 if (Checks.getSCEVChecks().first &&
10015 match(Checks.getSCEVChecks().first, m_One()))
10016 return false;
10017 if (Checks.getMemRuntimeChecks().first &&
10018 match(Checks.getMemRuntimeChecks().first, m_One()))
10019 return false;
10020 }
10021
10022 // Check if it is profitable to vectorize with runtime checks.
10023 bool ForceVectorization =
10025 VPCostContext CostCtx(CM.TTI, *CM.TLI, LVP.getPlanFor(VF.Width), CM,
10026 CM.CostKind, CM.PSE, L);
10027 if (!ForceVectorization &&
10028 !isOutsideLoopWorkProfitable(Checks, VF, L, PSE, CostCtx,
10029 LVP.getPlanFor(VF.Width), SEL,
10030 CM.getVScaleForTuning())) {
10031 ORE->emit([&]() {
10033 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10034 L->getHeader())
10035 << "loop not vectorized: cannot prove it is safe to reorder "
10036 "memory operations";
10037 });
10038 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10039 Hints.emitRemarkWithHints();
10040 return false;
10041 }
10042 }
10043
10044 // Identify the diagnostic messages that should be produced.
10045 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10046 bool VectorizeLoop = true, InterleaveLoop = true;
10047 if (VF.Width.isScalar()) {
10048 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10049 VecDiagMsg = {
10050 "VectorizationNotBeneficial",
10051 "the cost-model indicates that vectorization is not beneficial"};
10052 VectorizeLoop = false;
10053 }
10054
10055 if (UserIC == 1 && Hints.getInterleave() > 1) {
10057 "UserIC should only be ignored due to unsafe dependencies");
10058 LLVM_DEBUG(dbgs() << "LV: Ignoring user-specified interleave count.\n");
10059 IntDiagMsg = {"InterleavingUnsafe",
10060 "Ignoring user-specified interleave count due to possibly "
10061 "unsafe dependencies in the loop."};
10062 InterleaveLoop = false;
10063 } else if (!LVP.hasPlanWithVF(VF.Width) && UserIC > 1) {
10064 // Tell the user interleaving was avoided up-front, despite being explicitly
10065 // requested.
10066 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10067 "interleaving should be avoided up front\n");
10068 IntDiagMsg = {"InterleavingAvoided",
10069 "Ignoring UserIC, because interleaving was avoided up front"};
10070 InterleaveLoop = false;
10071 } else if (IC == 1 && UserIC <= 1) {
10072 // Tell the user interleaving is not beneficial.
10073 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10074 IntDiagMsg = {
10075 "InterleavingNotBeneficial",
10076 "the cost-model indicates that interleaving is not beneficial"};
10077 InterleaveLoop = false;
10078 if (UserIC == 1) {
10079 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10080 IntDiagMsg.second +=
10081 " and is explicitly disabled or interleave count is set to 1";
10082 }
10083 } else if (IC > 1 && UserIC == 1) {
10084 // Tell the user interleaving is beneficial, but it explicitly disabled.
10085 LLVM_DEBUG(dbgs() << "LV: Interleaving is beneficial but is explicitly "
10086 "disabled.\n");
10087 IntDiagMsg = {"InterleavingBeneficialButDisabled",
10088 "the cost-model indicates that interleaving is beneficial "
10089 "but is explicitly disabled or interleave count is set to 1"};
10090 InterleaveLoop = false;
10091 }
10092
10093 // If there is a histogram in the loop, do not just interleave without
10094 // vectorizing. The order of operations will be incorrect without the
10095 // histogram intrinsics, which are only used for recipes with VF > 1.
10096 if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
10097 LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
10098 << "to histogram operations.\n");
10099 IntDiagMsg = {
10100 "HistogramPreventsScalarInterleaving",
10101 "Unable to interleave without vectorization due to constraints on "
10102 "the order of histogram operations"};
10103 InterleaveLoop = false;
10104 }
10105
10106 // Override IC if user provided an interleave count.
10107 IC = UserIC > 0 ? UserIC : IC;
10108
10109 // Emit diagnostic messages, if any.
10110 const char *VAPassName = Hints.vectorizeAnalysisPassName();
10111 if (!VectorizeLoop && !InterleaveLoop) {
10112 // Do not vectorize or interleaving the loop.
10113 ORE->emit([&]() {
10114 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10115 L->getStartLoc(), L->getHeader())
10116 << VecDiagMsg.second;
10117 });
10118 ORE->emit([&]() {
10119 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10120 L->getStartLoc(), L->getHeader())
10121 << IntDiagMsg.second;
10122 });
10123 return false;
10124 }
10125
10126 if (!VectorizeLoop && InterleaveLoop) {
10127 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10128 ORE->emit([&]() {
10129 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10130 L->getStartLoc(), L->getHeader())
10131 << VecDiagMsg.second;
10132 });
10133 } else if (VectorizeLoop && !InterleaveLoop) {
10134 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10135 << ") in " << L->getLocStr() << '\n');
10136 ORE->emit([&]() {
10137 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10138 L->getStartLoc(), L->getHeader())
10139 << IntDiagMsg.second;
10140 });
10141 } else if (VectorizeLoop && InterleaveLoop) {
10142 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10143 << ") in " << L->getLocStr() << '\n');
10144 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10145 }
10146
10147 // Report the vectorization decision.
10148 if (VF.Width.isScalar()) {
10149 using namespace ore;
10150 assert(IC > 1);
10151 ORE->emit([&]() {
10152 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10153 L->getHeader())
10154 << "interleaved loop (interleaved count: "
10155 << NV("InterleaveCount", IC) << ")";
10156 });
10157 } else {
10158 // Report the vectorization decision.
10159 reportVectorization(ORE, L, VF, IC);
10160 }
10161 if (ORE->allowExtraAnalysis(LV_NAME))
10163
10164 // If we decided that it is *legal* to interleave or vectorize the loop, then
10165 // do it.
10166
10167 VPlan &BestPlan = LVP.getPlanFor(VF.Width);
10168 // Consider vectorizing the epilogue too if it's profitable.
10169 VectorizationFactor EpilogueVF =
10171 if (EpilogueVF.Width.isVector()) {
10172 std::unique_ptr<VPlan> BestMainPlan(BestPlan.duplicate());
10173
10174 // The first pass vectorizes the main loop and creates a scalar epilogue
10175 // to be vectorized by executing the plan (potentially with a different
10176 // factor) again shortly afterwards.
10177 VPlan &BestEpiPlan = LVP.getPlanFor(EpilogueVF.Width);
10178 BestEpiPlan.getMiddleBlock()->setName("vec.epilog.middle.block");
10179 BestEpiPlan.getVectorPreheader()->setName("vec.epilog.ph");
10180 preparePlanForMainVectorLoop(*BestMainPlan, BestEpiPlan);
10181 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1,
10182 BestEpiPlan);
10183 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10184 Checks, *BestMainPlan);
10185 auto ExpandedSCEVs = LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF,
10186 *BestMainPlan, MainILV, DT, false);
10187 ++LoopsVectorized;
10188
10189 // Second pass vectorizes the epilogue and adjusts the control flow
10190 // edges from the first pass.
10191 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TTI, AC, EPI, &CM,
10192 Checks, BestEpiPlan);
10194 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.getSE());
10195 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, DT,
10196 true);
10197 connectEpilogueVectorLoop(BestEpiPlan, L, EPI, DT, LVL, ExpandedSCEVs,
10198 Checks, InstsToMove);
10199 ++LoopsEpilogueVectorized;
10200 } else {
10201 InnerLoopVectorizer LB(L, PSE, LI, DT, TTI, AC, VF.Width, IC, &CM, Checks,
10202 BestPlan);
10203 // TODO: Move to general VPlan pipeline once epilogue loops are also
10204 // supported.
10207 IC, PSE);
10208 LVP.addMinimumIterationCheck(BestPlan, VF.Width, IC,
10210
10211 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10212 ++LoopsVectorized;
10213 }
10214
10215 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
10216 "DT not preserved correctly");
10217 assert(!verifyFunction(*F, &dbgs()));
10218
10219 return true;
10220}
10221
10223
10224 // Don't attempt if
10225 // 1. the target claims to have no vector registers, and
10226 // 2. interleaving won't help ILP.
10227 //
10228 // The second condition is necessary because, even if the target has no
10229 // vector registers, loop vectorization may still enable scalar
10230 // interleaving.
10231 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10232 TTI->getMaxInterleaveFactor(ElementCount::getFixed(1)) < 2)
10233 return LoopVectorizeResult(false, false);
10234
10235 bool Changed = false, CFGChanged = false;
10236
10237 // The vectorizer requires loops to be in simplified form.
10238 // Since simplification may add new inner loops, it has to run before the
10239 // legality and profitability checks. This means running the loop vectorizer
10240 // will simplify all loops, regardless of whether anything end up being
10241 // vectorized.
10242 for (const auto &L : *LI)
10243 Changed |= CFGChanged |=
10244 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10245
10246 // Build up a worklist of inner-loops to vectorize. This is necessary as
10247 // the act of vectorizing or partially unrolling a loop creates new loops
10248 // and can invalidate iterators across the loops.
10249 SmallVector<Loop *, 8> Worklist;
10250
10251 for (Loop *L : *LI)
10252 collectSupportedLoops(*L, LI, ORE, Worklist);
10253
10254 LoopsAnalyzed += Worklist.size();
10255
10256 // Now walk the identified inner loops.
10257 while (!Worklist.empty()) {
10258 Loop *L = Worklist.pop_back_val();
10259
10260 // For the inner loops we actually process, form LCSSA to simplify the
10261 // transform.
10262 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10263
10264 Changed |= CFGChanged |= processLoop(L);
10265
10266 if (Changed) {
10267 LAIs->clear();
10268
10269#ifndef NDEBUG
10270 if (VerifySCEV)
10271 SE->verify();
10272#endif
10273 }
10274 }
10275
10276 // Process each loop nest in the function.
10277 return LoopVectorizeResult(Changed, CFGChanged);
10278}
10279
10282 LI = &AM.getResult<LoopAnalysis>(F);
10283 // There are no loops in the function. Return before computing other
10284 // expensive analyses.
10285 if (LI->empty())
10286 return PreservedAnalyses::all();
10295 AA = &AM.getResult<AAManager>(F);
10296
10297 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10298 PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10299 GetBFI = [&AM, &F]() -> BlockFrequencyInfo & {
10301 };
10302 LoopVectorizeResult Result = runImpl(F);
10303 if (!Result.MadeAnyChange)
10304 return PreservedAnalyses::all();
10306
10307 if (isAssignmentTrackingEnabled(*F.getParent())) {
10308 for (auto &BB : F)
10310 }
10311
10312 PA.preserve<LoopAnalysis>();
10316
10317 if (Result.MadeCFGChange) {
10318 // Making CFG changes likely means a loop got vectorized. Indicate that
10319 // extra simplification passes should be run.
10320 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10321 // be run if runtime checks have been added.
10324 } else {
10326 }
10327 return PA;
10328}
10329
10331 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10332 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10333 OS, MapClassName2PassName);
10334
10335 OS << '<';
10336 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10337 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10338 OS << '>';
10339}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
@ PostInc
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
Definition CostModel.cpp:74
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
#define DEBUG_TYPE
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
Definition Legalizer.cpp:80
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
#define LV_NAME
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
This file implements a map that provides insertion order iteration.
This file contains the declarations for metadata subclasses.
#define T
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
#define P(N)
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
Definition Debug.h:72
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This pass exposes codegen information to IR-level passes.
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition blake3_impl.h:83
A manager for alias analyses.
Class for arbitrary precision integers.
Definition APInt.h:78
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:235
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1541
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1513
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
BinaryOps getOpcode() const
Definition InstrTypes.h:374
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition InstrTypes.h:982
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:701
@ ICMP_NE
not equal
Definition InstrTypes.h:698
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:702
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition InstrTypes.h:789
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
A debug info location.
Definition DebugLoc.h:123
static DebugLoc getTemporary()
Definition DebugLoc.h:160
static DebugLoc getUnknown()
Definition DebugLoc.h:161
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition DenseMap.h:205
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition DenseMap.h:256
iterator end()
Definition DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition DenseMap.h:169
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Definition DenseMap.h:294
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
Analysis pass which computes a DominatorTree.
Definition Dominators.h:283
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
constexpr bool isVector() const
One or more elements.
Definition TypeSize.h:324
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
static FastMathFlags getFast()
Definition FMF.h:50
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition Function.cpp:765
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
Definition IRBuilder.h:114
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Definition IRBuilder.h:345
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition IRBuilder.h:2788
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
LoopInfo * LI
Loop Info.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
bool isCast() const
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition Type.cpp:342
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
Definition LoopInfo.h:569
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition VPlan.cpp:1575
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
Definition VPlan.cpp:1626
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition VPlan.cpp:1559
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition VPlan.cpp:1540
void printPlans(raw_ostream &O)
Definition VPlan.cpp:1704
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
Definition LoopInfo.cpp:67
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
Metadata node.
Definition Metadata.h:1078
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition MapVector.h:124
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
Diagnostic information for optimization analysis remarks related to pointer aliasing.
Diagnostic information for optimization analysis remarks related to floating-point non-commutativity.
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
PreservedAnalyses & preserve()
Mark an analysis as preserved.
Definition Analysis.h:132
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:103
void insert_range(Range &&R)
Definition SetVector.h:176
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
Definition SetVector.h:262
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool supportsScalableVectors() const
@ TCC_Free
Expected to fold away in lowering.
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition TypeSwitch.h:88
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition TypeSwitch.h:97
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_range operands()
Definition User.h:292
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition User.cpp:24
Value * getOperand(unsigned i) const
Definition User.h:232
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition VPlan.h:3982
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition VPlan.h:4057
RecipeListTy::iterator iterator
Instruction iterators...
Definition VPlan.h:4009
iterator end()
Definition VPlan.h:4019
iterator begin()
Recipe iterator methods.
Definition VPlan.h:4017
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition VPlan.h:4070
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition VPlan.cpp:763
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition VPlan.cpp:216
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition VPlan.cpp:623
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition VPlan.h:4048
bool empty() const
Definition VPlan.h:4028
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition VPlan.h:81
const VPBasicBlock * getExitingBasicBlock() const
Definition VPlan.cpp:186
void setName(const Twine &newName)
Definition VPlan.h:166
size_t getNumSuccessors() const
Definition VPlan.h:219
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition VPlan.h:322
size_t getNumPredecessors() const
Definition VPlan.h:220
VPlan * getPlan()
Definition VPlan.cpp:161
const VPBasicBlock * getEntryBasicBlock() const
Definition VPlan.cpp:166
VPBlockBase * getSingleSuccessor() const
Definition VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition VPlan.h:198
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
Definition VPlanUtils.h:222
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition VPlanUtils.h:243
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition VPlanUtils.h:173
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition VPlanUtils.h:200
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
Definition VPlan.h:3565
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition VPlanValue.h:426
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition VPlanValue.h:399
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
Definition VPlan.h:3782
VPValue * getStartValue() const
Definition VPlan.h:3781
A pure virtual base class for all recipes modeling header phis, including phis for first order recurr...
Definition VPlan.h:2056
virtual VPValue * getBackedgeValue()
Returns the incoming value from the loop backedge.
Definition VPlan.h:2099
VPValue * getStartValue()
Returns the start value of the phi, if one is set.
Definition VPlan.h:2088
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
Definition VPlan.h:1761
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition VPlan.h:4135
Class to record and manage LLVM IR flags.
Definition VPlan.h:609
Helper to manage IR metadata for recipes.
Definition VPlan.h:982
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1036
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
Definition VPlan.h:1076
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
Definition VPlan.h:1134
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
Definition VPlan.h:1125
unsigned getOpcode() const
Definition VPlan.h:1186
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition VPlan.h:2704
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
Definition VPlan.h:1366
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
VPBasicBlock * getParent()
Definition VPlan.h:408
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition VPlan.h:479
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
Definition VPlan.h:2500
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
Definition VPlan.h:2494
A recipe to represent inloop, ordered or partial reduction operations.
Definition VPlan.h:2797
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition VPlan.h:4170
const VPBlockBase * getEntry() const
Definition VPlan.h:4206
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
Definition VPlan.h:4268
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2953
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:531
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition VPlan.h:595
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:202
operand_range operands()
Definition VPlanValue.h:270
void setOperand(unsigned I, VPValue *New)
Definition VPlanValue.h:246
unsigned getNumOperands() const
Definition VPlanValue.h:240
operand_iterator op_begin()
Definition VPlanValue.h:266
VPValue * getOperand(unsigned N) const
Definition VPlanValue.h:241
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:46
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition VPlan.cpp:131
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition VPlanValue.h:181
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition VPlanValue.h:83
void replaceAllUsesWith(VPValue *New)
Definition VPlan.cpp:1376
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition VPlan.cpp:1380
user_range users()
Definition VPlanValue.h:132
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1915
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1556
A recipe for handling GEP instructions.
Definition VPlan.h:1852
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition VPlan.h:2199
A recipe for widened phis.
Definition VPlan.h:2333
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1516
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition VPlan.h:4300
bool hasVF(ElementCount VF) const
Definition VPlan.h:4501
VPBasicBlock * getEntry()
Definition VPlan.h:4389
VPValue & getVectorTripCount()
The vector trip count.
Definition VPlan.h:4480
VPValue & getVF()
Returns the VF of the vector loop region.
Definition VPlan.h:4483
VPValue * getTripCount() const
The trip count of the original loop.
Definition VPlan.h:4451
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
Definition VPlan.h:4508
bool hasUF(unsigned UF) const
Definition VPlan.h:4519
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition VPlan.h:4441
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition VPlan.cpp:1010
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
Definition VPlan.h:4649
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition VPlan.cpp:992
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
Definition VPlan.h:4465
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition VPlan.h:4414
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition VPlan.h:4543
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
Definition VPlan.h:4432
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition VPlan.cpp:904
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition VPlan.h:4437
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition VPlan.h:4394
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition VPlan.cpp:1152
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition Value.cpp:166
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isNonZero() const
Definition TypeSize.h:155
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
Definition TypeSize.h:277
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition TypeSize.h:256
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
Definition TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr bool isZero() const
Definition TypeSize.h:153
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:252
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition ilist_node.h:34
self_iterator getIterator()
Definition ilist_node.h:123
IteratorT end() const
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
A raw_ostream that writes to an std::string.
Changed
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
Definition DwarfDebug.h:189
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
Definition VPlanUtils.h:93
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:829
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
Definition Casting.h:683
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
InstructionCost Cost
ReductionStyle getReductionStyle(bool InLoop, bool Ordered, unsigned ScaleFactor)
Definition VPlan.h:2423
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2530
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition LCSSA.cpp:449
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2184
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:284
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition VPlanCFG.h:216
LLVM_ABI bool VerifySCEV
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
Definition Casting.h:676
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition VPlanCFG.h:243
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:337
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
Definition CFG.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1751
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition Local.cpp:421
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
Definition VPlan.cpp:1717
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
Definition STLExtras.h:1835
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:394
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
ScalarEpilogueLowering
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition iterator.h:363
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
std::variant< RdxOrdered, RdxInLoop, RdxUnordered > ReductionStyle
Definition VPlan.h:2421
bool pred_empty(const BasicBlock *BB)
Definition CFG.h:119
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:592
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
Definition VPlan.h:77
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:466
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
TargetLibraryInfo * TLI
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
ProfileSummaryInfo * PSI
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
ScalarEvolution * SE
AssumptionCache * AC
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition PassManager.h:69
This reduction is unordered with the partial result scaled down by some factor.
Definition VPlan.h:2418
A marker analysis to determine if extra passes should be run after loop vectorization.
static LLVM_ABI AnalysisKey Key
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
ElementCount End
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
A recipe for widening select instructions.
Definition VPlan.h:1805
static void materializeBroadcasts(VPlan &Plan)
Add explicit broadcasts for live-ins and VPValues defined in Plan's entry block if they are used as v...
static void materializePacksAndUnpacks(VPlan &Plan)
Add explicit Build[Struct]Vector recipes to Pack multiple scalar values into vectors and Unpack recip...
static bool handleMultiUseReductions(VPlan &Plan)
Try to legalize reductions with multiple in-loop uses.
static LLVM_ABI_FOR_TEST std::unique_ptr< VPlan > buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy, DebugLoc IVDL, PredicatedScalarEvolution &PSE, LoopVersioning *LVer=nullptr)
Create a base VPlan0, serving as the common starting point for all later candidates.
static void optimizeInductionExitUsers(VPlan &Plan, DenseMap< VPValue *, VPValue * > &EndValues, PredicatedScalarEvolution &PSE)
If there's a single exit block, optimize its phi recipes that use exiting IV values by feeding them p...
static void materializeBackedgeTakenCount(VPlan &Plan, VPBasicBlock *VectorPH)
Materialize the backedge-taken count to be computed explicitly using VPInstructions.
static LLVM_ABI_FOR_TEST void handleEarlyExits(VPlan &Plan, bool HasUncountableExit)
Update Plan to account for all early exits.
static void canonicalizeEVLLoops(VPlan &Plan)
Transform EVL loops to use variable-length stepping after region dissolution.
static void dropPoisonGeneratingRecipes(VPlan &Plan, const std::function< bool(BasicBlock *)> &BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue, bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop, const uint32_t *MinItersBypassWeights, DebugLoc DL, PredicatedScalarEvolution &PSE)
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, const bool &ScalarEpilogueAllowed)
static bool runPass(bool(*Transform)(VPlan &, ArgsTy...), VPlan &Plan, typename std::remove_reference< ArgsTy >::type &...Args)
Helper to run a VPlan transform Transform on VPlan, forwarding extra arguments to the transform.
static void addBranchWeightToMiddleTerminator(VPlan &Plan, ElementCount VF, std::optional< unsigned > VScaleForTuning)
Add branch weight metadata, if the Plan's middle block is terminated by a BranchOnCond recipe.
static void narrowInterleaveGroups(VPlan &Plan, ElementCount VF, TypeSize VectorRegWidth)
Try to convert a plan with interleave groups with VF elements to a plan with the interleave groups re...
static void unrollByUF(VPlan &Plan, unsigned UF)
Explicitly unroll Plan by UF.
static DenseMap< const SCEV *, Value * > expandSCEVs(VPlan &Plan, ScalarEvolution &SE)
Expand VPExpandSCEVRecipes in Plan's entry block.
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void hoistPredicatedLoads(VPlan &Plan, PredicatedScalarEvolution &PSE, const Loop *L)
Hoist predicated loads from the same address to the loop entry block, if they are guaranteed to execu...
static void convertToAbstractRecipes(VPlan &Plan, VPCostContext &Ctx, VFRange &Range)
This function converts initial recipes to the abstract recipes and clamps Range based on cost model f...
static void materializeConstantVectorTripCount(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
static LLVM_ABI_FOR_TEST bool tryToConvertVPInstructionsToVPRecipes(VPlan &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, VFRange &Range)
Handle users in the exit block for first order reductions in the original exit block.
static void createHeaderPhiRecipes(VPlan &Plan, PredicatedScalarEvolution &PSE, Loop &OrigLoop, const MapVector< PHINode *, InductionDescriptor > &Inductions, const MapVector< PHINode *, RecurrenceDescriptor > &Reductions, const SmallPtrSetImpl< const PHINode * > &FixedOrderRecurrences, const SmallPtrSetImpl< PHINode * > &InLoopReductions, bool AllowReordering)
Replace VPPhi recipes in Plan's header with corresponding VPHeaderPHIRecipe subclasses for inductions...
static DenseMap< VPBasicBlock *, VPValue * > introduceMasksAndLinearize(VPlan &Plan, bool FoldTail)
Predicate and linearize the control-flow in the only loop region of Plan.
static void addExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void replaceSymbolicStrides(VPlan &Plan, PredicatedScalarEvolution &PSE, const DenseMap< Value *, const SCEV * > &StridesMap)
Replace symbolic strides from StridesMap in Plan with constants when possible.
static bool handleMaxMinNumReductions(VPlan &Plan)
Check if Plan contains any FMaxNum or FMinNum reductions.
static void removeBranchOnConst(VPlan &Plan)
Remove BranchOnCond recipes with true or false conditions together with removing dead edges to their ...
static LLVM_ABI_FOR_TEST void createLoopRegions(VPlan &Plan)
Replace loops in Plan's flat CFG with VPRegionBlocks, turning Plan's flat CFG into a hierarchical CFG...
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void attachCheckBlock(VPlan &Plan, Value *Cond, BasicBlock *CheckBlock, bool AddBranchWeights)
Wrap runtime check block CheckBlock in a VPIRBB and Cond in a VPValue and connect the block to Plan,...
static void materializeVectorTripCount(VPlan &Plan, VPBasicBlock *VectorPHVPBB, bool TailByMasking, bool RequiresScalarEpilogue)
Materialize vector trip count computations to a set of VPInstructions.
static void simplifyRecipes(VPlan &Plan)
Perform instcombine-like simplifications on recipes in Plan.
static void sinkPredicatedStores(VPlan &Plan, PredicatedScalarEvolution &PSE, const Loop *L)
Sink predicated stores to the same address with complementary predicates (P and NOT P) to an uncondit...
static void replicateByVF(VPlan &Plan, ElementCount VF)
Replace each replicating VPReplicateRecipe and VPInstruction outside of any replicate region in Plan ...
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static void cse(VPlan &Plan)
Perform common-subexpression-elimination on Plan.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static LLVM_ABI_FOR_TEST void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void dissolveLoopRegions(VPlan &Plan)
Replace loop regions with explicit CFG.
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.
static void materializeVFAndVFxUF(VPlan &Plan, VPBasicBlock *VectorPH, ElementCount VF)
Materialize VF and VFxUF to be computed explicitly using VPInstructions.
static void addMinimumVectorEpilogueIterationCheck(VPlan &Plan, Value *TripCount, Value *VectorTripCount, bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF, unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE)
Add a check to Plan to see if the epilogue vector loop should be executed.
static void updateScalarResumePhis(VPlan &Plan, DenseMap< VPValue *, VPValue * > &IVEndValues)
Update the resume phis in the scalar preheader after creating wide recipes for first-order recurrence...
static LLVM_ABI_FOR_TEST void addMiddleCheck(VPlan &Plan, bool RequiresScalarEpilogueCheck, bool TailFolded)
If a check is needed to guard executing the scalar epilogue loop, it will be added to the middle bloc...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks