162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
169STATISTIC(LoopsVectorized,
"Number of loops vectorized");
170STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
176 cl::desc(
"Enable vectorization of epilogue loops."));
180 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
185 "epilogue-vectorization-minimum-VF",
cl::Hidden,
186 cl::desc(
"Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
193 cl::desc(
"Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
199 cl::desc(
"The maximum allowed number of runtime memory checks"));
215 "prefer-predicate-over-epilogue",
218 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
233 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
255 cl::desc(
"Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
260 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
265 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
271 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
275 cl::desc(
"A flag that overrides the target's number of scalar registers."));
279 cl::desc(
"A flag that overrides the target's number of vector registers."));
283 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 cl::desc(
"A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
293 cl::desc(
"A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
306 "The cost of a loop that is considered 'small' by the interleaver."));
310 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
318 "Enable runtime interleaving until load/store ports are saturated"));
323 cl::desc(
"Max number of stores to be predicated behind an if."));
327 cl::desc(
"Count the induction variable only once when interleaving"));
331 cl::desc(
"Enable if predication of stores during vectorization."));
335 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
341 cl::desc(
"Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
346 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
352 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
361#ifdef EXPENSIVE_CHECKS
367 cl::desc(
"Verfiy VPlans after VPlan transforms."));
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
382 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
385 cl::desc(
"Run the Loop vectorization passes"));
388 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
390 "Override cost based safe divisor widening for div/rem instructions"));
393 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
395 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
400 "Enable vectorization of early exit loops with uncountable exits."));
404 cl::desc(
"Discard VFs if their register pressure is too high."));
417 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
452static std::optional<ElementCount>
454 bool CanUseConstantMax =
true) {
464 if (!CanUseConstantMax)
476class GeneratedRTChecks;
508 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
617 "A high UF for the epilogue loop is likely not beneficial.");
637 UnrollFactor, CM, Checks,
Plan),
666 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
886 initializeVScaleForTuning();
897 bool runtimeChecksRequired();
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
935 void collectValuesToIgnore();
938 void collectElementTypesForWidening();
942 void collectInLoopReductions();
963 "Profitable to scalarize relevant only for VF > 1.");
966 "cost-model should not be used for outer loops (in VPlan-native path)");
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(
I);
978 "cost-model should not be used for outer loops (in VPlan-native path)");
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(
I);
998 "cost-model should not be used for outer loops (in VPlan-native path)");
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(
I);
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1015 return VF.
isVector() && MinBWs.contains(
I) &&
1037 WideningDecisions[{
I, VF}] = {W,
Cost};
1056 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1059 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1061 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1075 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1079 return Itr->second.first;
1086 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1102 std::optional<unsigned> MaskPos,
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (
I == CallWideningDecisions.end())
1135 Value *
Op = Trunc->getOperand(0);
1136 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1140 return Legal->isInductionPhi(
Op);
1156 if (VF.
isScalar() || Uniforms.contains(VF))
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1192 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1199 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1212 return ScalarCost < SafeDivisorCost;
1251 std::pair<InstructionCost, InstructionCost>
1278 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1285 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1291 "interleaved group requires scalar epilogue\n");
1294 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1323 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1324 if (!
Legal->canFoldTailByMasking()) {
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(
true),
1332 TTI.getPreferredTailFoldingStyle(
false)};
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1356 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1359 ?
"since interleave count specified is greater than 1.\n"
1360 :
"due to non-interleaving reasons.\n"));
1405 return InLoopReductions.contains(Phi);
1410 return InLoopReductions;
1421 TTI.preferPredicatedReductionSelect();
1436 WideningDecisions.clear();
1437 CallWideningDecisions.clear();
1455 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1456 const unsigned IC)
const;
1464 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1466 Type *VectorTy)
const;
1470 bool shouldConsiderInvariant(
Value *
Op);
1476 unsigned NumPredStores = 0;
1480 std::optional<unsigned> VScaleForTuning;
1485 void initializeVScaleForTuning() {
1490 auto Max = Attr.getVScaleRangeMax();
1491 if (Max && Min == Max) {
1492 VScaleForTuning = Max;
1505 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1506 ElementCount UserVF,
1507 bool FoldTailByMasking);
1511 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1512 bool FoldTailByMasking)
const;
1517 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1518 unsigned SmallestType,
1519 unsigned WidestType,
1520 ElementCount MaxSafeVF,
1521 bool FoldTailByMasking);
1525 bool isScalableVectorizationAllowed();
1529 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1535 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1556 ElementCount VF)
const;
1560 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1565 MapVector<Instruction *, uint64_t> MinBWs;
1570 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1574 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1575 PredicatedBBsAfterVectorization;
1588 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1589 ChosenTailFoldingStyle;
1592 std::optional<bool> IsScalableVectorizationAllowed;
1598 std::optional<unsigned> MaxSafeElements;
1604 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1608 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1612 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1616 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1619 SmallPtrSet<PHINode *, 4> InLoopReductions;
1624 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1632 ScalarCostsTy &ScalarCosts,
1644 void collectLoopUniforms(ElementCount VF);
1653 void collectLoopScalars(ElementCount VF);
1657 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1658 std::pair<InstWidening, InstructionCost>>;
1660 DecisionList WideningDecisions;
1662 using CallDecisionList =
1663 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1665 CallDecisionList CallWideningDecisions;
1669 bool needsExtract(
Value *V, ElementCount VF)
const {
1673 getWideningDecision(
I, VF) == CM_Scalarize ||
1684 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1689 ElementCount VF)
const {
1691 SmallPtrSet<const Value *, 4> UniqueOperands;
1695 !needsExtract(
Op, VF))
1781class GeneratedRTChecks {
1787 Value *SCEVCheckCond =
nullptr;
1794 Value *MemRuntimeCheckCond =
nullptr;
1803 bool CostTooHigh =
false;
1805 Loop *OuterLoop =
nullptr;
1816 : DT(DT), LI(LI),
TTI(
TTI),
1817 SCEVExp(*PSE.
getSE(),
"scev.check",
false),
1818 MemCheckExp(*PSE.
getSE(),
"scev.check",
false),
1826 void create(Loop *L,
const LoopAccessInfo &LAI,
1827 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC,
1828 OptimizationRemarkEmitter &ORE) {
1841 return OptimizationRemarkAnalysisAliasing(
1842 DEBUG_TYPE,
"TooManyMemoryRuntimeChecks",
L->getStartLoc(),
1844 <<
"loop not vectorized: too many memory checks needed";
1859 nullptr,
"vector.scevcheck");
1866 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1867 SCEVCleaner.cleanup();
1872 if (RtPtrChecking.Need) {
1873 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1874 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1877 auto DiffChecks = RtPtrChecking.getDiffChecks();
1879 Value *RuntimeVF =
nullptr;
1882 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1884 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1890 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1893 assert(MemRuntimeCheckCond &&
1894 "no RT checks generated although RtPtrChecking "
1895 "claimed checks are required");
1900 if (!MemCheckBlock && !SCEVCheckBlock)
1910 if (SCEVCheckBlock) {
1913 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1917 if (MemCheckBlock) {
1920 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1926 if (MemCheckBlock) {
1930 if (SCEVCheckBlock) {
1936 OuterLoop =
L->getParentLoop();
1940 if (SCEVCheckBlock || MemCheckBlock)
1952 for (Instruction &
I : *SCEVCheckBlock) {
1953 if (SCEVCheckBlock->getTerminator() == &
I)
1959 if (MemCheckBlock) {
1961 for (Instruction &
I : *MemCheckBlock) {
1962 if (MemCheckBlock->getTerminator() == &
I)
1974 ScalarEvolution *SE = MemCheckExp.
getSE();
1979 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1984 unsigned BestTripCount = 2;
1988 PSE, OuterLoop,
false))
1989 if (EstimatedTC->isFixed())
1990 BestTripCount = EstimatedTC->getFixedValue();
1995 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1996 (InstructionCost::CostType)1);
1998 if (BestTripCount > 1)
2000 <<
"We expect runtime memory checks to be hoisted "
2001 <<
"out of the outer loop. Cost reduced from "
2002 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
2004 MemCheckCost = NewMemCheckCost;
2008 RTCheckCost += MemCheckCost;
2011 if (SCEVCheckBlock || MemCheckBlock)
2012 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2020 ~GeneratedRTChecks() {
2021 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2022 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2023 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
2024 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
2026 SCEVCleaner.markResultUsed();
2028 if (MemChecksUsed) {
2029 MemCheckCleaner.markResultUsed();
2031 auto &SE = *MemCheckExp.
getSE();
2038 I.eraseFromParent();
2041 MemCheckCleaner.cleanup();
2042 SCEVCleaner.cleanup();
2044 if (!SCEVChecksUsed)
2045 SCEVCheckBlock->eraseFromParent();
2047 MemCheckBlock->eraseFromParent();
2052 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2053 using namespace llvm::PatternMatch;
2055 return {
nullptr,
nullptr};
2057 return {SCEVCheckCond, SCEVCheckBlock};
2062 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2063 using namespace llvm::PatternMatch;
2064 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2065 return {
nullptr,
nullptr};
2066 return {MemRuntimeCheckCond, MemCheckBlock};
2070 bool hasChecks()
const {
2071 return getSCEVChecks().first || getMemRuntimeChecks().first;
2114 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2120 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2150 for (
Loop *InnerL : L)
2173 ?
B.CreateSExtOrTrunc(Index, StepTy)
2174 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2175 if (CastedIndex != Index) {
2177 Index = CastedIndex;
2187 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2192 return B.CreateAdd(
X,
Y);
2198 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2199 "Types don't match!");
2206 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2207 return B.CreateMul(
X,
Y);
2210 switch (InductionKind) {
2213 "Vector indices not supported for integer inductions yet");
2215 "Index type does not match StartValue type");
2217 return B.CreateSub(StartValue, Index);
2222 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2225 "Vector indices not supported for FP inductions yet");
2228 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2229 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2230 "Original bin op should be defined for FP induction");
2232 Value *MulExp =
B.CreateFMul(Step, Index);
2233 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2244 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2247 if (
F.hasFnAttribute(Attribute::VScaleRange))
2248 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2250 return std::nullopt;
2259 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2261 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2263 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2269 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2272 std::optional<unsigned> MaxVScale =
2276 MaxVF *= *MaxVScale;
2279 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2293 return TTI.enableMaskedInterleavedAccessVectorization();
2306 PreVectorPH = CheckVPIRBB;
2316 "must have incoming values for all operands");
2317 R.addOperand(R.getOperand(NumPredecessors - 2));
2343 auto CreateStep = [&]() ->
Value * {
2350 if (!
VF.isScalable())
2352 return Builder.CreateBinaryIntrinsic(
2358 Value *Step = CreateStep();
2367 CheckMinIters =
Builder.getTrue();
2369 TripCountSCEV, SE.
getSCEV(Step))) {
2372 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2374 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2382 Value *MaxUIntTripCount =
2389 return CheckMinIters;
2398 VPlan *Plan =
nullptr) {
2402 auto IP = IRVPBB->
begin();
2404 R.moveBefore(*IRVPBB, IP);
2408 R.moveBefore(*IRVPBB, IRVPBB->
end());
2417 assert(VectorPH &&
"Invalid loop structure");
2419 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2420 "loops not exiting via the latch without required epilogue?");
2427 Twine(Prefix) +
"scalar.ph");
2433 const SCEV2ValueTy &ExpandedSCEVs) {
2434 const SCEV *Step =
ID.getStep();
2436 return C->getValue();
2438 return U->getValue();
2439 Value *V = ExpandedSCEVs.lookup(Step);
2440 assert(V &&
"SCEV must be expanded at this point");
2450 auto *Cmp = L->getLatchCmpInst();
2452 InstsToIgnore.
insert(Cmp);
2453 for (
const auto &KV : IL) {
2462 [&](
const User *U) { return U == IV || U == Cmp; }))
2463 InstsToIgnore.
insert(IVInst);
2475struct CSEDenseMapInfo {
2486 return DenseMapInfo<Instruction *>::getTombstoneKey();
2489 static unsigned getHashValue(
const Instruction *
I) {
2490 assert(canHandle(
I) &&
"Unknown instruction!");
2495 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2496 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2497 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2499 return LHS->isIdenticalTo(
RHS);
2511 if (!CSEDenseMapInfo::canHandle(&In))
2517 In.replaceAllUsesWith(V);
2518 In.eraseFromParent();
2531 std::optional<unsigned> VScale) {
2535 EstimatedVF *= *VScale;
2536 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2554 for (
auto &ArgOp : CI->
args())
2565 return ScalarCallCost;
2578 assert(
ID &&
"Expected intrinsic call!");
2582 FMF = FPMO->getFastMathFlags();
2588 std::back_inserter(ParamTys),
2589 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2594 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2608 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2623 Builder.SetInsertPoint(NewPhi);
2625 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2630void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2635 "This function should not be visited twice for the same VF");
2658 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2659 assert(WideningDecision != CM_Unknown &&
2660 "Widening decision should be ready at this moment");
2662 if (Ptr == Store->getValueOperand())
2663 return WideningDecision == CM_Scalarize;
2665 "Ptr is neither a value or pointer operand");
2666 return WideningDecision != CM_GatherScatter;
2671 auto IsLoopVaryingGEP = [&](
Value *
V) {
2682 if (!IsLoopVaryingGEP(Ptr))
2694 if (IsScalarUse(MemAccess, Ptr) &&
2698 PossibleNonScalarPtrs.
insert(
I);
2714 for (
auto *BB : TheLoop->
blocks())
2715 for (
auto &
I : *BB) {
2717 EvaluatePtrUse(Load,
Load->getPointerOperand());
2719 EvaluatePtrUse(Store,
Store->getPointerOperand());
2720 EvaluatePtrUse(Store,
Store->getValueOperand());
2723 for (
auto *
I : ScalarPtrs)
2724 if (!PossibleNonScalarPtrs.
count(
I)) {
2732 auto ForcedScalar = ForcedScalars.
find(VF);
2733 if (ForcedScalar != ForcedScalars.
end())
2734 for (
auto *
I : ForcedScalar->second) {
2735 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2744 while (Idx != Worklist.
size()) {
2746 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2750 auto *J = cast<Instruction>(U);
2751 return !TheLoop->contains(J) || Worklist.count(J) ||
2752 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2753 IsScalarUse(J, Src));
2756 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2762 for (
const auto &Induction :
Legal->getInductionVars()) {
2763 auto *Ind = Induction.first;
2768 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2773 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2775 return Induction.second.getKind() ==
2783 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2784 auto *I = cast<Instruction>(U);
2785 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2786 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2795 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2800 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2801 auto *I = cast<Instruction>(U);
2802 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2803 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2805 if (!ScalarIndUpdate)
2810 Worklist.
insert(IndUpdate);
2811 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2812 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2826 switch(
I->getOpcode()) {
2829 case Instruction::Call:
2833 case Instruction::Load:
2834 case Instruction::Store: {
2843 TTI.isLegalMaskedGather(VTy, Alignment))
2845 TTI.isLegalMaskedScatter(VTy, Alignment));
2847 case Instruction::UDiv:
2848 case Instruction::SDiv:
2849 case Instruction::SRem:
2850 case Instruction::URem: {
2871 if (
Legal->blockNeedsPredication(
I->getParent()))
2883 switch(
I->getOpcode()) {
2886 "instruction should have been considered by earlier checks");
2887 case Instruction::Call:
2891 "should have returned earlier for calls not needing a mask");
2893 case Instruction::Load:
2896 case Instruction::Store: {
2904 case Instruction::UDiv:
2905 case Instruction::SDiv:
2906 case Instruction::SRem:
2907 case Instruction::URem:
2909 return !
Legal->isInvariant(
I->getOperand(1));
2919 if (!
Legal->blockNeedsPredication(BB))
2926 "Header has smaller block freq than dominated BB?");
2927 return std::round((
double)HeaderFreq /
BBFreq);
2930std::pair<InstructionCost, InstructionCost>
2933 assert(
I->getOpcode() == Instruction::UDiv ||
2934 I->getOpcode() == Instruction::SDiv ||
2935 I->getOpcode() == Instruction::SRem ||
2936 I->getOpcode() == Instruction::URem);
2945 ScalarizationCost = 0;
2951 ScalarizationCost +=
2955 ScalarizationCost +=
2957 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2975 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2980 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2982 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2983 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2985 return {ScalarizationCost, SafeDivisorCost};
2992 "Decision should not be set yet.");
2994 assert(Group &&
"Must have a group.");
2995 unsigned InterleaveFactor = Group->getFactor();
2999 auto &
DL =
I->getDataLayout();
3011 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3012 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3017 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
3019 if (MemberNI != ScalarNI)
3022 if (MemberNI && ScalarNI &&
3023 ScalarTy->getPointerAddressSpace() !=
3024 MemberTy->getPointerAddressSpace())
3033 bool PredicatedAccessRequiresMasking =
3035 Legal->isMaskRequired(
I);
3036 bool LoadAccessWithGapsRequiresEpilogMasking =
3039 bool StoreAccessWithGapsRequiresMasking =
3041 if (!PredicatedAccessRequiresMasking &&
3042 !LoadAccessWithGapsRequiresEpilogMasking &&
3043 !StoreAccessWithGapsRequiresMasking)
3050 "Masked interleave-groups for predicated accesses are not enabled.");
3052 if (Group->isReverse())
3056 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3057 StoreAccessWithGapsRequiresMasking;
3065 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3077 if (!
Legal->isConsecutivePtr(ScalarTy, Ptr))
3087 auto &
DL =
I->getDataLayout();
3094void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3101 "This function should not be visited twice for the same VF");
3105 Uniforms[VF].
clear();
3113 auto IsOutOfScope = [&](
Value *V) ->
bool {
3125 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3126 if (IsOutOfScope(
I)) {
3131 if (isPredicatedInst(
I)) {
3133 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3137 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3147 for (BasicBlock *
E : Exiting) {
3151 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3152 AddToWorklistIfAllowed(Cmp);
3161 if (PrevVF.isVector()) {
3162 auto Iter = Uniforms.
find(PrevVF);
3163 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3166 if (!
Legal->isUniformMemOp(*
I, VF))
3176 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3177 InstWidening WideningDecision = getWideningDecision(
I, VF);
3178 assert(WideningDecision != CM_Unknown &&
3179 "Widening decision should be ready at this moment");
3181 if (IsUniformMemOpUse(
I))
3184 return (WideningDecision == CM_Widen ||
3185 WideningDecision == CM_Widen_Reverse ||
3186 WideningDecision == CM_Interleave);
3196 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(Ptr));
3204 SetVector<Value *> HasUniformUse;
3208 for (
auto *BB : TheLoop->
blocks())
3209 for (
auto &
I : *BB) {
3211 switch (
II->getIntrinsicID()) {
3212 case Intrinsic::sideeffect:
3213 case Intrinsic::experimental_noalias_scope_decl:
3214 case Intrinsic::assume:
3215 case Intrinsic::lifetime_start:
3216 case Intrinsic::lifetime_end:
3218 AddToWorklistIfAllowed(&
I);
3226 if (IsOutOfScope(EVI->getAggregateOperand())) {
3227 AddToWorklistIfAllowed(EVI);
3233 "Expected aggregate value to be call return value");
3246 if (IsUniformMemOpUse(&
I))
3247 AddToWorklistIfAllowed(&
I);
3249 if (IsVectorizedMemAccessUse(&
I, Ptr))
3250 HasUniformUse.
insert(Ptr);
3256 for (
auto *V : HasUniformUse) {
3257 if (IsOutOfScope(V))
3260 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3261 auto *UI = cast<Instruction>(U);
3262 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3264 if (UsersAreMemAccesses)
3265 AddToWorklistIfAllowed(
I);
3272 while (Idx != Worklist.
size()) {
3275 for (
auto *OV :
I->operand_values()) {
3277 if (IsOutOfScope(OV))
3282 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3288 auto *J = cast<Instruction>(U);
3289 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3291 AddToWorklistIfAllowed(OI);
3302 for (
const auto &Induction :
Legal->getInductionVars()) {
3303 auto *Ind = Induction.first;
3308 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3309 auto *I = cast<Instruction>(U);
3310 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3311 IsVectorizedMemAccessUse(I, Ind);
3318 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3319 auto *I = cast<Instruction>(U);
3320 return I == Ind || Worklist.count(I) ||
3321 IsVectorizedMemAccessUse(I, IndUpdate);
3323 if (!UniformIndUpdate)
3327 AddToWorklistIfAllowed(Ind);
3328 AddToWorklistIfAllowed(IndUpdate);
3337 if (
Legal->getRuntimePointerChecking()->Need) {
3339 "runtime pointer checks needed. Enable vectorization of this "
3340 "loop with '#pragma clang loop vectorize(enable)' when "
3341 "compiling with -Os/-Oz",
3342 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3346 if (!
PSE.getPredicate().isAlwaysTrue()) {
3348 "runtime SCEV checks needed. Enable vectorization of this "
3349 "loop with '#pragma clang loop vectorize(enable)' when "
3350 "compiling with -Os/-Oz",
3351 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3356 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3358 "runtime stride == 1 checks needed. Enable vectorization of "
3359 "this loop without such check by compiling with -Os/-Oz",
3360 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3367bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3368 if (IsScalableVectorizationAllowed)
3369 return *IsScalableVectorizationAllowed;
3371 IsScalableVectorizationAllowed =
false;
3375 if (Hints->isScalableVectorizationDisabled()) {
3377 "ScalableVectorizationDisabled", ORE, TheLoop);
3381 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3384 std::numeric_limits<ElementCount::ScalarTy>::max());
3393 if (!canVectorizeReductions(MaxScalableVF)) {
3395 "Scalable vectorization not supported for the reduction "
3396 "operations found in this loop.",
3397 "ScalableVFUnfeasible", ORE, TheLoop);
3403 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3408 "for all element types found in this loop.",
3409 "ScalableVFUnfeasible", ORE, TheLoop);
3415 "for safe distance analysis.",
3416 "ScalableVFUnfeasible", ORE, TheLoop);
3420 IsScalableVectorizationAllowed =
true;
3425LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3426 if (!isScalableVectorizationAllowed())
3430 std::numeric_limits<ElementCount::ScalarTy>::max());
3431 if (
Legal->isSafeForAnyVectorWidth())
3432 return MaxScalableVF;
3440 "Max legal vector width too small, scalable vectorization "
3442 "ScalableVFUnfeasible", ORE, TheLoop);
3444 return MaxScalableVF;
3447FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3448 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3450 unsigned SmallestType, WidestType;
3451 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3457 unsigned MaxSafeElementsPowerOf2 =
3459 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3460 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3461 MaxSafeElementsPowerOf2 =
3462 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3465 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3467 if (!
Legal->isSafeForAnyVectorWidth())
3468 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3470 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3472 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3477 auto MaxSafeUserVF =
3478 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3480 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3483 return FixedScalableVFPair(
3489 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3495 <<
" is unsafe, clamping to max safe VF="
3496 << MaxSafeFixedVF <<
".\n");
3498 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3501 <<
"User-specified vectorization factor "
3502 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3503 <<
" is unsafe, clamping to maximum safe vectorization factor "
3504 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3506 return MaxSafeFixedVF;
3511 <<
" is ignored because scalable vectors are not "
3514 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3517 <<
"User-specified vectorization factor "
3518 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3519 <<
" is ignored because the target does not support scalable "
3520 "vectors. The compiler will pick a more suitable value.";
3524 <<
" is unsafe. Ignoring scalable UserVF.\n");
3526 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3529 <<
"User-specified vectorization factor "
3530 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3531 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3532 "more suitable value.";
3537 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3538 <<
" / " << WidestType <<
" bits.\n");
3543 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3544 MaxSafeFixedVF, FoldTailByMasking))
3548 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3549 MaxSafeScalableVF, FoldTailByMasking))
3550 if (MaxVF.isScalable()) {
3551 Result.ScalableVF = MaxVF;
3552 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3561 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3565 "Not inserting runtime ptr check for divergent target",
3566 "runtime pointer checks needed. Not enabled for divergent target",
3567 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3573 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3576 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3579 "loop trip count is one, irrelevant for vectorization",
3590 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3594 "Trip count computation wrapped",
3595 "backedge-taken count is -1, loop trip count wrapped to 0",
3600 switch (ScalarEpilogueStatus) {
3602 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3607 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3608 <<
"LV: Not allowing scalar epilogue, creating predicated "
3609 <<
"vector loop.\n");
3616 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3618 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3634 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3635 "No decisions should have been taken at this point");
3645 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3649 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3650 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3651 *MaxPowerOf2RuntimeVF,
3654 MaxPowerOf2RuntimeVF = std::nullopt;
3657 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3661 !
Legal->hasUncountableEarlyExit())
3663 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3668 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3670 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3671 "Invalid loop count");
3673 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3680 if (MaxPowerOf2RuntimeVF > 0u) {
3682 "MaxFixedVF must be a power of 2");
3683 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3685 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3691 if (ExpectedTC && ExpectedTC->isFixed() &&
3692 ExpectedTC->getFixedValue() <=
3693 TTI.getMinTripCountTailFoldingThreshold()) {
3694 if (MaxPowerOf2RuntimeVF > 0u) {
3700 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3701 "remain for any chosen VF.\n");
3708 "The trip count is below the minial threshold value.",
3709 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3724 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3725 "try to generate VP Intrinsics with scalable vector "
3730 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3740 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3741 "scalar epilogue instead.\n");
3747 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3753 "unable to calculate the loop count due to complex control flow",
3759 "Cannot optimize for size and vectorize at the same time.",
3760 "cannot optimize for size and vectorize at the same time. "
3761 "Enable vectorization of this loop with '#pragma clang loop "
3762 "vectorize(enable)' when compiling with -Os/-Oz",
3774 if (
TTI.shouldConsiderVectorizationRegPressure())
3790 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3792 Legal->hasVectorCallVariants())));
3795ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3796 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3798 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3799 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3800 auto Min = Attr.getVScaleRangeMin();
3807 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3810 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3818 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3819 "exceeding the constant trip count: "
3820 << ClampedUpperTripCount <<
"\n");
3822 FoldTailByMasking ? VF.
isScalable() :
false);
3827ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3828 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3829 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3830 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3836 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3838 "Scalable flags must match");
3846 ComputeScalableMaxVF);
3847 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3849 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3851 if (!MaxVectorElementCount) {
3853 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3854 <<
" vector registers.\n");
3858 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3859 MaxTripCount, FoldTailByMasking);
3862 if (MaxVF != MaxVectorElementCount)
3870 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3872 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3874 if (useMaxBandwidth(RegKind)) {
3877 ComputeScalableMaxVF);
3878 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3880 if (ElementCount MinVF =
3882 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3884 <<
") with target's minimum: " << MinVF <<
'\n');
3889 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3891 if (MaxVectorElementCount != MaxVF) {
3895 invalidateCostModelingDecisions();
3903 const unsigned MaxTripCount,
3905 bool IsEpilogue)
const {
3911 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3912 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3913 if (
A.Width.isScalable())
3914 EstimatedWidthA *= *VScale;
3915 if (
B.Width.isScalable())
3916 EstimatedWidthB *= *VScale;
3923 return CostA < CostB ||
3924 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3930 A.Width.isScalable() && !
B.Width.isScalable();
3941 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3943 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3955 return VectorCost * (MaxTripCount / VF) +
3956 ScalarCost * (MaxTripCount % VF);
3957 return VectorCost *
divideCeil(MaxTripCount, VF);
3960 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3961 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3962 return CmpFn(RTCostA, RTCostB);
3968 bool IsEpilogue)
const {
3970 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3976 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3978 for (
const auto &Plan : VPlans) {
3987 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
3989 precomputeCosts(*Plan, VF, CostCtx);
3992 for (
auto &R : *VPBB) {
3993 if (!R.cost(VF, CostCtx).isValid())
3999 if (InvalidCosts.
empty())
4007 for (
auto &Pair : InvalidCosts)
4012 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4013 unsigned NA = Numbering[
A.first];
4014 unsigned NB = Numbering[
B.first];
4029 Subset =
Tail.take_front(1);
4036 [](
const auto *R) {
return Instruction::PHI; })
4037 .Case<VPWidenSelectRecipe>(
4038 [](
const auto *R) {
return Instruction::Select; })
4039 .Case<VPWidenStoreRecipe>(
4040 [](
const auto *R) {
return Instruction::Store; })
4041 .Case<VPWidenLoadRecipe>(
4042 [](
const auto *R) {
return Instruction::Load; })
4043 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4044 [](
const auto *R) {
return Instruction::Call; })
4047 [](
const auto *R) {
return R->getOpcode(); })
4049 return R->getStoredValues().empty() ? Instruction::Load
4050 : Instruction::Store;
4052 .Case<VPReductionRecipe>([](
const auto *R) {
4061 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4062 std::string OutString;
4064 assert(!Subset.empty() &&
"Unexpected empty range");
4065 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4066 for (
const auto &Pair : Subset)
4067 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4069 if (Opcode == Instruction::Call) {
4072 Name =
Int->getIntrinsicName();
4076 WidenCall ? WidenCall->getCalledScalarFunction()
4078 ->getLiveInIRValue());
4081 OS <<
" call to " << Name;
4086 Tail =
Tail.drop_front(Subset.size());
4090 Subset =
Tail.take_front(Subset.size() + 1);
4091 }
while (!
Tail.empty());
4113 switch (R.getVPDefID()) {
4114 case VPDef::VPDerivedIVSC:
4115 case VPDef::VPScalarIVStepsSC:
4116 case VPDef::VPReplicateSC:
4117 case VPDef::VPInstructionSC:
4118 case VPDef::VPCanonicalIVPHISC:
4119 case VPDef::VPVectorPointerSC:
4120 case VPDef::VPVectorEndPointerSC:
4121 case VPDef::VPExpandSCEVSC:
4122 case VPDef::VPEVLBasedIVPHISC:
4123 case VPDef::VPPredInstPHISC:
4124 case VPDef::VPBranchOnMaskSC:
4126 case VPDef::VPReductionSC:
4127 case VPDef::VPActiveLaneMaskPHISC:
4128 case VPDef::VPWidenCallSC:
4129 case VPDef::VPWidenCanonicalIVSC:
4130 case VPDef::VPWidenCastSC:
4131 case VPDef::VPWidenGEPSC:
4132 case VPDef::VPWidenIntrinsicSC:
4133 case VPDef::VPWidenSC:
4134 case VPDef::VPWidenSelectSC:
4135 case VPDef::VPBlendSC:
4136 case VPDef::VPFirstOrderRecurrencePHISC:
4137 case VPDef::VPHistogramSC:
4138 case VPDef::VPWidenPHISC:
4139 case VPDef::VPWidenIntOrFpInductionSC:
4140 case VPDef::VPWidenPointerInductionSC:
4141 case VPDef::VPReductionPHISC:
4142 case VPDef::VPInterleaveEVLSC:
4143 case VPDef::VPInterleaveSC:
4144 case VPDef::VPWidenLoadEVLSC:
4145 case VPDef::VPWidenLoadSC:
4146 case VPDef::VPWidenStoreEVLSC:
4147 case VPDef::VPWidenStoreSC:
4153 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4154 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4170 if (R.getNumDefinedValues() == 0 &&
4179 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4181 if (!Visited.
insert({ScalarTy}).second)
4195 [](
auto *VPRB) { return VPRB->isReplicator(); });
4201 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4202 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4205 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4206 "Expected Scalar VF to be a candidate");
4213 if (ForceVectorization &&
4214 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4218 ChosenFactor.
Cost = InstructionCost::getMax();
4221 for (
auto &
P : VPlans) {
4223 P->vectorFactors().end());
4226 if (
any_of(VFs, [
this](ElementCount VF) {
4227 return CM.shouldConsiderRegPressureForVF(VF);
4231 for (
unsigned I = 0;
I < VFs.size();
I++) {
4232 ElementCount VF = VFs[
I];
4240 if (CM.shouldConsiderRegPressureForVF(VF) &&
4248 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind, CM.PSE,
4250 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4251 assert(VectorRegion &&
"Expected to have a vector region!");
4254 for (VPRecipeBase &R : *VPBB) {
4258 switch (VPI->getOpcode()) {
4261 case Instruction::Select: {
4264 switch (WR->getOpcode()) {
4265 case Instruction::UDiv:
4266 case Instruction::SDiv:
4267 case Instruction::URem:
4268 case Instruction::SRem:
4274 C += VPI->cost(VF, CostCtx);
4278 unsigned Multiplier =
4281 C += VPI->cost(VF * Multiplier, CostCtx);
4285 C += VPI->cost(VF, CostCtx);
4297 <<
" costs: " << (Candidate.Cost / Width));
4300 << CM.getVScaleForTuning().value_or(1) <<
")");
4306 <<
"LV: Not considering vector loop of width " << VF
4307 <<
" because it will not generate any vector instructions.\n");
4314 <<
"LV: Not considering vector loop of width " << VF
4315 <<
" because it would cause replicated blocks to be generated,"
4316 <<
" which isn't allowed when optimizing for size.\n");
4320 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4321 ChosenFactor = Candidate;
4327 "There are conditional stores.",
4328 "store that is conditionally executed prevents vectorization",
4329 "ConditionalStore", ORE, OrigLoop);
4330 ChosenFactor = ScalarCost;
4334 !isMoreProfitable(ChosenFactor, ScalarCost,
4335 !CM.foldTailByMasking()))
dbgs()
4336 <<
"LV: Vectorization seems to be not beneficial, "
4337 <<
"but was forced by a user.\n");
4338 return ChosenFactor;
4342bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4343 ElementCount VF)
const {
4346 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4347 if (!Legal->isReductionVariable(&Phi))
4348 return Legal->isFixedOrderRecurrence(&Phi);
4349 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4350 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4356 for (
const auto &Entry :
Legal->getInductionVars()) {
4359 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4360 for (User *U :
PostInc->users())
4364 for (User *U :
Entry.first->users())
4373 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4387 if (!
TTI.preferEpilogueVectorization())
4392 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4397 :
TTI.getEpilogueVectorizationMinVF();
4405 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4409 if (!CM.isScalarEpilogueAllowed()) {
4410 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4411 "epilogue is allowed.\n");
4417 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4418 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4419 "is not a supported candidate.\n");
4424 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4427 return {ForcedEC, 0, 0};
4429 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4434 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4436 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4440 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4441 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4452 Type *TCType = Legal->getWidestInductionType();
4453 const SCEV *RemainingIterations =
nullptr;
4454 unsigned MaxTripCount = 0;
4458 const SCEV *KnownMinTC;
4460 bool ScalableRemIter =
false;
4464 ScalableRemIter = ScalableTC;
4465 RemainingIterations =
4467 }
else if (ScalableTC) {
4470 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4474 RemainingIterations =
4478 if (RemainingIterations->
isZero())
4488 << MaxTripCount <<
"\n");
4491 auto SkipVF = [&](
const SCEV *VF,
const SCEV *RemIter) ->
bool {
4494 for (
auto &NextVF : ProfitableVFs) {
4501 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4503 (NextVF.Width.isScalable() &&
4505 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4514 if (!ScalableRemIter) {
4518 if (NextVF.Width.isScalable())
4525 if (Result.Width.isScalar() ||
4526 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4533 << Result.Width <<
"\n");
4537std::pair<unsigned, unsigned>
4539 unsigned MinWidth = -1U;
4540 unsigned MaxWidth = 8;
4546 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4550 MinWidth = std::min(
4554 MaxWidth = std::max(MaxWidth,
4559 MinWidth = std::min<unsigned>(
4560 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4561 MaxWidth = std::max<unsigned>(
4562 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4565 return {MinWidth, MaxWidth};
4573 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4587 if (!
Legal->isReductionVariable(PN))
4590 Legal->getRecurrenceDescriptor(PN);
4600 T = ST->getValueOperand()->getType();
4603 "Expected the load/store/recurrence type to be sized");
4631 if (!CM.isScalarEpilogueAllowed() &&
4632 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4637 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4638 "Unroll factor forced to be 1.\n");
4643 if (!Legal->isSafeForAnyVectorWidth())
4652 const bool HasReductions =
4658 if (LoopCost == 0) {
4660 LoopCost = CM.expectedCost(VF);
4662 LoopCost = cost(Plan, VF);
4663 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4674 for (
auto &Pair : R.MaxLocalUsers) {
4675 Pair.second = std::max(Pair.second, 1U);
4689 unsigned IC = UINT_MAX;
4691 for (
const auto &Pair : R.MaxLocalUsers) {
4692 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4695 << TTI.getRegisterClassName(Pair.first)
4696 <<
" register class\n");
4704 unsigned MaxLocalUsers = Pair.second;
4705 unsigned LoopInvariantRegs = 0;
4706 if (R.LoopInvariantRegs.contains(Pair.first))
4707 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4709 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4713 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4714 std::max(1U, (MaxLocalUsers - 1)));
4717 IC = std::min(IC, TmpIC);
4721 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4737 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4739 unsigned AvailableTC =
4745 if (CM.requiresScalarEpilogue(VF.
isVector()))
4748 unsigned InterleaveCountLB =
bit_floor(std::max(
4749 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4763 unsigned InterleaveCountUB =
bit_floor(std::max(
4764 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4765 MaxInterleaveCount = InterleaveCountLB;
4767 if (InterleaveCountUB != InterleaveCountLB) {
4768 unsigned TailTripCountUB =
4769 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4770 unsigned TailTripCountLB =
4771 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4774 if (TailTripCountUB == TailTripCountLB)
4775 MaxInterleaveCount = InterleaveCountUB;
4783 MaxInterleaveCount = InterleaveCountLB;
4787 assert(MaxInterleaveCount > 0 &&
4788 "Maximum interleave count must be greater than 0");
4792 if (IC > MaxInterleaveCount)
4793 IC = MaxInterleaveCount;
4796 IC = std::max(1u, IC);
4798 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4802 if (VF.
isVector() && HasReductions) {
4803 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4811 bool ScalarInterleavingRequiresPredication =
4813 return Legal->blockNeedsPredication(BB);
4815 bool ScalarInterleavingRequiresRuntimePointerCheck =
4816 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4821 <<
"LV: IC is " << IC <<
'\n'
4822 <<
"LV: VF is " << VF <<
'\n');
4823 const bool AggressivelyInterleaveReductions =
4824 TTI.enableAggressiveInterleaving(HasReductions);
4825 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4826 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4835 unsigned NumStores = 0;
4836 unsigned NumLoads = 0;
4850 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4851 NumStores += StoreOps;
4853 NumLoads += InterleaveR->getNumDefinedValues();
4868 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4869 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4875 bool HasSelectCmpReductions =
4879 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4880 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4881 RedR->getRecurrenceKind()) ||
4882 RecurrenceDescriptor::isFindIVRecurrenceKind(
4883 RedR->getRecurrenceKind()));
4885 if (HasSelectCmpReductions) {
4886 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4895 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4896 bool HasOrderedReductions =
4899 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4901 return RedR && RedR->isOrdered();
4903 if (HasOrderedReductions) {
4905 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4910 SmallIC = std::min(SmallIC,
F);
4911 StoresIC = std::min(StoresIC,
F);
4912 LoadsIC = std::min(LoadsIC,
F);
4916 std::max(StoresIC, LoadsIC) > SmallIC) {
4918 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4919 return std::max(StoresIC, LoadsIC);
4924 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4928 return std::max(IC / 2, SmallIC);
4931 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4937 if (AggressivelyInterleaveReductions) {
4946bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4956 assert((isPredicatedInst(
I)) &&
4957 "Expecting a scalar emulated instruction");
4970 if (InstsToScalarize.contains(VF) ||
4971 PredicatedBBsAfterVectorization.contains(VF))
4977 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4987 ScalarCostsTy ScalarCosts;
4994 !useEmulatedMaskMemRefHack(&
I, VF) &&
4995 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4996 for (
const auto &[
I, IC] : ScalarCosts)
4997 ScalarCostsVF.
insert({
I, IC});
5000 for (
const auto &[
I,
Cost] : ScalarCosts) {
5002 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5005 CallWideningDecisions[{CI, VF}].Cost =
Cost;
5009 PredicatedBBsAfterVectorization[VF].insert(BB);
5011 if (Pred->getSingleSuccessor() == BB)
5012 PredicatedBBsAfterVectorization[VF].insert(Pred);
5020 assert(!isUniformAfterVectorization(PredInst, VF) &&
5021 "Instruction marked uniform-after-vectorization will be predicated");
5039 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5040 isScalarAfterVectorization(
I, VF))
5045 if (isScalarWithPredication(
I, VF))
5058 for (
Use &U :
I->operands())
5060 if (isUniformAfterVectorization(J, VF))
5071 while (!Worklist.
empty()) {
5075 if (ScalarCosts.contains(
I))
5095 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5098 ScalarCost +=
TTI.getScalarizationOverhead(
5111 for (Use &U :
I->operands())
5114 "Instruction has non-scalar type");
5115 if (CanBeScalarized(J))
5117 else if (needsExtract(J, VF)) {
5129 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5133 Discount += VectorCost - ScalarCost;
5134 ScalarCosts[
I] = ScalarCost;
5150 ValuesToIgnoreForVF);
5157 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5180 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5181 << VF <<
" For instruction: " <<
I <<
'\n');
5210 const Loop *TheLoop) {
5222LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5225 "Scalarization cost of instruction implies vectorization.");
5227 return InstructionCost::getInvalid();
5230 auto *SE = PSE.
getSE();
5261 if (isPredicatedInst(
I)) {
5266 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5272 if (useEmulatedMaskMemRefHack(
I, VF))
5282LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5288 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy, Ptr);
5290 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5291 "Stride should be 1 or -1 for consecutive memory access");
5294 if (
Legal->isMaskRequired(
I)) {
5295 unsigned IID =
I->getOpcode() == Instruction::Load
5296 ? Intrinsic::masked_load
5297 : Intrinsic::masked_store;
5299 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS),
CostKind);
5306 bool Reverse = ConsecutiveStride < 0;
5314LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5332 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5340 if (!IsLoopInvariantStoreValue)
5347LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5355 if (!
Legal->isUniform(Ptr, VF))
5358 unsigned IID =
I->getOpcode() == Instruction::Load
5359 ? Intrinsic::masked_gather
5360 : Intrinsic::masked_scatter;
5363 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5364 Legal->isMaskRequired(
I), Alignment,
I),
5369LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5371 const auto *Group = getInterleavedAccessGroup(
I);
5372 assert(Group &&
"Fail to get an interleaved access group.");
5379 unsigned InterleaveFactor = Group->getFactor();
5380 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5383 SmallVector<unsigned, 4> Indices;
5384 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
5385 if (Group->getMember(IF))
5389 bool UseMaskForGaps =
5390 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5393 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5397 if (Group->isReverse()) {
5400 "Reverse masked interleaved access not supported.");
5401 Cost += Group->getNumMembers() *
5408std::optional<InstructionCost>
5415 return std::nullopt;
5433 return std::nullopt;
5444 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5446 return std::nullopt;
5452 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5461 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5464 BaseCost =
TTI.getArithmeticReductionCost(
5472 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5489 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5495 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5507 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5510 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5512 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5520 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5521 return I == RetI ? RedCost : 0;
5523 !
TheLoop->isLoopInvariant(RedOp)) {
5532 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5534 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5535 return I == RetI ? RedCost : 0;
5536 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5540 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5559 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5565 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5566 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5567 ExtraExtCost =
TTI.getCastInstrCost(
5574 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5575 return I == RetI ? RedCost : 0;
5579 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5585 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5586 return I == RetI ? RedCost : 0;
5590 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5594LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5605 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5606 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5609 return getWideningCost(
I, VF);
5613LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5614 ElementCount VF)
const {
5619 return InstructionCost::getInvalid();
5647 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5652 for (
auto *V : filterExtractingOperands(
Ops, VF))
5675 if (
Legal->isUniformMemOp(
I, VF)) {
5676 auto IsLegalToScalarize = [&]() {
5696 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5708 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5714 if (GatherScatterCost < ScalarizationCost)
5724 int ConsecutiveStride =
Legal->isConsecutivePtr(
5726 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5727 "Expected consecutive stride.");
5736 unsigned NumAccesses = 1;
5739 assert(Group &&
"Fail to get an interleaved access group.");
5745 NumAccesses = Group->getNumMembers();
5747 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5752 ? getGatherScatterCost(&
I, VF) * NumAccesses
5756 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5762 if (InterleaveCost <= GatherScatterCost &&
5763 InterleaveCost < ScalarizationCost) {
5765 Cost = InterleaveCost;
5766 }
else if (GatherScatterCost < ScalarizationCost) {
5768 Cost = GatherScatterCost;
5771 Cost = ScalarizationCost;
5778 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5779 if (
auto *
I = Group->getMember(Idx)) {
5781 getMemInstScalarizationCost(
I, VF));
5797 if (
TTI.prefersVectorizedAddressing())
5806 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5814 while (!Worklist.
empty()) {
5816 for (
auto &
Op :
I->operands())
5819 AddrDefs.
insert(InstOp).second)
5823 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5827 for (
User *U :
LI->users()) {
5837 for (
auto *
I : AddrDefs) {
5858 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5859 if (
Instruction *Member = Group->getMember(Idx)) {
5863 getMemoryInstructionCost(Member,
5865 : getMemInstScalarizationCost(Member, VF);
5878 ForcedScalars[VF].insert(
I);
5885 "Trying to set a vectorization decision for a scalar VF");
5887 auto ForcedScalar = ForcedScalars.find(VF);
5902 for (
auto &ArgOp : CI->
args())
5911 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5921 "Unexpected valid cost for scalarizing scalable vectors");
5928 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5929 ForcedScalar->second.contains(CI)) ||
5937 bool MaskRequired =
Legal->isMaskRequired(CI);
5940 for (
Type *ScalarTy : ScalarTys)
5949 std::nullopt, *RedCost);
5960 if (Info.Shape.VF != VF)
5964 if (MaskRequired && !Info.isMasked())
5968 bool ParamsOk =
true;
5970 switch (Param.ParamKind) {
5976 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
6013 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
6024 if (VectorCost <=
Cost) {
6046 return !OpI || !
TheLoop->contains(OpI) ||
6050 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
6062 return InstsToScalarize[VF][
I];
6065 auto ForcedScalar = ForcedScalars.find(VF);
6066 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
6067 auto InstSet = ForcedScalar->second;
6068 if (InstSet.count(
I))
6073 Type *RetTy =
I->getType();
6076 auto *SE =
PSE.getSE();
6080 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6085 auto Scalarized = InstsToScalarize.find(VF);
6086 assert(Scalarized != InstsToScalarize.end() &&
6087 "VF not yet analyzed for scalarization profitability");
6088 return !Scalarized->second.count(
I) &&
6090 auto *UI = cast<Instruction>(U);
6091 return !Scalarized->second.count(UI);
6100 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6101 I->getOpcode() == Instruction::PHI ||
6102 (
I->getOpcode() == Instruction::BitCast &&
6103 I->getType()->isPointerTy()) ||
6104 HasSingleCopyAfterVectorization(
I, VF));
6110 !
TTI.getNumberOfParts(VectorTy))
6114 switch (
I->getOpcode()) {
6115 case Instruction::GetElementPtr:
6121 case Instruction::Br: {
6128 bool ScalarPredicatedBB =
false;
6131 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6132 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6134 ScalarPredicatedBB =
true;
6136 if (ScalarPredicatedBB) {
6144 TTI.getScalarizationOverhead(
6152 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6160 case Instruction::Switch: {
6162 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6164 return Switch->getNumCases() *
6165 TTI.getCmpSelInstrCost(
6167 toVectorTy(Switch->getCondition()->getType(), VF),
6171 case Instruction::PHI: {
6188 Type *ResultTy = Phi->getType();
6194 auto *Phi = dyn_cast<PHINode>(U);
6195 if (Phi && Phi->getParent() == TheLoop->getHeader())
6200 auto &ReductionVars =
Legal->getReductionVars();
6201 auto Iter = ReductionVars.find(HeaderUser);
6202 if (Iter != ReductionVars.end() &&
6204 Iter->second.getRecurrenceKind()))
6207 return (Phi->getNumIncomingValues() - 1) *
6208 TTI.getCmpSelInstrCost(
6209 Instruction::Select,
toVectorTy(ResultTy, VF),
6219 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6220 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6224 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6226 case Instruction::UDiv:
6227 case Instruction::SDiv:
6228 case Instruction::URem:
6229 case Instruction::SRem:
6233 ScalarCost : SafeDivisorCost;
6237 case Instruction::Add:
6238 case Instruction::Sub: {
6239 auto Info =
Legal->getHistogramInfo(
I);
6246 if (!RHS || RHS->getZExtValue() != 1)
6248 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6252 Type *ScalarTy =
I->getType();
6256 {PtrTy, ScalarTy, MaskTy});
6259 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6260 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6264 case Instruction::FAdd:
6265 case Instruction::FSub:
6266 case Instruction::Mul:
6267 case Instruction::FMul:
6268 case Instruction::FDiv:
6269 case Instruction::FRem:
6270 case Instruction::Shl:
6271 case Instruction::LShr:
6272 case Instruction::AShr:
6273 case Instruction::And:
6274 case Instruction::Or:
6275 case Instruction::Xor: {
6279 if (
I->getOpcode() == Instruction::Mul &&
6280 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6281 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6282 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6283 PSE.getSCEV(
I->getOperand(1))->isOne())))
6292 Value *Op2 =
I->getOperand(1);
6298 auto Op2Info =
TTI.getOperandInfo(Op2);
6304 return TTI.getArithmeticInstrCost(
6306 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6307 Op2Info, Operands,
I,
TLI);
6309 case Instruction::FNeg: {
6310 return TTI.getArithmeticInstrCost(
6312 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6313 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6314 I->getOperand(0),
I);
6316 case Instruction::Select: {
6321 const Value *Op0, *Op1;
6332 return TTI.getArithmeticInstrCost(
6334 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6337 Type *CondTy =
SI->getCondition()->getType();
6343 Pred = Cmp->getPredicate();
6344 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6345 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6346 {TTI::OK_AnyValue, TTI::OP_None},
I);
6348 case Instruction::ICmp:
6349 case Instruction::FCmp: {
6350 Type *ValTy =
I->getOperand(0)->getType();
6356 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6357 "if both the operand and the compare are marked for "
6358 "truncation, they must have the same bitwidth");
6363 return TTI.getCmpSelInstrCost(
6366 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6368 case Instruction::Store:
6369 case Instruction::Load: {
6374 "CM decision should be taken at this point");
6381 return getMemoryInstructionCost(
I, VF);
6383 case Instruction::BitCast:
6384 if (
I->getType()->isPointerTy())
6387 case Instruction::ZExt:
6388 case Instruction::SExt:
6389 case Instruction::FPToUI:
6390 case Instruction::FPToSI:
6391 case Instruction::FPExt:
6392 case Instruction::PtrToInt:
6393 case Instruction::IntToPtr:
6394 case Instruction::SIToFP:
6395 case Instruction::UIToFP:
6396 case Instruction::Trunc:
6397 case Instruction::FPTrunc: {
6401 "Expected a load or a store!");
6427 unsigned Opcode =
I->getOpcode();
6430 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6433 CCH = ComputeCCH(Store);
6436 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6437 Opcode == Instruction::FPExt) {
6439 CCH = ComputeCCH(Load);
6447 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6448 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6455 Type *SrcScalarTy =
I->getOperand(0)->getType();
6467 (
I->getOpcode() == Instruction::ZExt ||
6468 I->getOpcode() == Instruction::SExt))
6472 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6474 case Instruction::Call:
6476 case Instruction::ExtractValue:
6478 case Instruction::Alloca:
6486 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6501 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6502 return RequiresScalarEpilogue &&
6516 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6517 return VecValuesToIgnore.contains(U) ||
6518 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6527 if (Group->getInsertPos() == &
I)
6530 DeadInterleavePointerOps.
push_back(PointerOp);
6536 if (Br->isConditional())
6543 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6546 Instruction *UI = cast<Instruction>(U);
6547 return !VecValuesToIgnore.contains(U) &&
6548 (!isAccessInterleaved(UI) ||
6549 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6569 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6581 if ((ThenEmpty && ElseEmpty) ||
6583 ElseBB->
phis().empty()) ||
6585 ThenBB->
phis().empty())) {
6597 return !VecValuesToIgnore.contains(U) &&
6598 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6606 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6615 for (
const auto &Reduction :
Legal->getReductionVars()) {
6622 for (
const auto &Induction :
Legal->getInductionVars()) {
6630 if (!InLoopReductions.empty())
6633 for (
const auto &Reduction :
Legal->getReductionVars()) {
6634 PHINode *Phi = Reduction.first;
6655 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6663 bool InLoop = !ReductionOperations.
empty();
6666 InLoopReductions.insert(Phi);
6669 for (
auto *
I : ReductionOperations) {
6670 InLoopReductionImmediateChains[
I] = LastChain;
6674 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6675 <<
" reduction for phi: " << *Phi <<
"\n");
6688 unsigned WidestType;
6692 TTI.enableScalableVectorization()
6697 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6708 if (!OrigLoop->isInnermost()) {
6718 <<
"overriding computed VF.\n");
6721 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6723 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6724 <<
"not supported by the target.\n");
6726 "Scalable vectorization requested but not supported by the target",
6727 "the scalable user-specified vectorization width for outer-loop "
6728 "vectorization cannot be used because the target does not support "
6729 "scalable vectors.",
6730 "ScalableVFUnfeasible", ORE, OrigLoop);
6735 "VF needs to be a power of two");
6737 <<
"VF " << VF <<
" to build VPlans.\n");
6747 return {VF, 0 , 0 };
6751 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6752 "VPlan-native path.\n");
6757 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6758 CM.collectValuesToIgnore();
6759 CM.collectElementTypesForWidening();
6766 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6770 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6771 "which requires masked-interleaved support.\n");
6772 if (CM.InterleaveInfo.invalidateGroups())
6776 CM.invalidateCostModelingDecisions();
6779 if (CM.foldTailByMasking())
6780 Legal->prepareToFoldTailByMasking();
6787 "UserVF ignored because it may be larger than the maximal safe VF",
6788 "InvalidUserVF", ORE, OrigLoop);
6791 "VF needs to be a power of two");
6794 CM.collectInLoopReductions();
6795 if (CM.selectUserVectorizationFactor(UserVF)) {
6797 buildVPlansWithVPRecipes(UserVF, UserVF);
6802 "InvalidCost", ORE, OrigLoop);
6815 CM.collectInLoopReductions();
6816 for (
const auto &VF : VFCandidates) {
6818 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6837 return CM.isUniformAfterVectorization(
I, VF);
6841 return CM.ValuesToIgnore.contains(UI) ||
6842 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6847 return CM.getPredBlockCostDivisor(
CostKind, BB);
6866 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6868 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6870 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6871 for (
Value *
Op : IVInsts[
I]->operands()) {
6873 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6879 for (User *U :
IV->users()) {
6892 if (TC == VF && !CM.foldTailByMasking())
6896 for (Instruction *IVInst : IVInsts) {
6901 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6902 <<
": induction instruction " << *IVInst <<
"\n";
6904 Cost += InductionCost;
6914 CM.TheLoop->getExitingBlocks(Exiting);
6915 SetVector<Instruction *> ExitInstrs;
6917 for (BasicBlock *EB : Exiting) {
6922 ExitInstrs.
insert(CondI);
6926 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6928 if (!OrigLoop->contains(CondI) ||
6933 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6934 <<
": exit condition instruction " << *CondI <<
"\n";
6940 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6941 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6942 !ExitInstrs.contains(cast<Instruction>(U));
6954 for (BasicBlock *BB : OrigLoop->blocks()) {
6958 if (BB == OrigLoop->getLoopLatch())
6960 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6967 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6973 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6974 <<
": forced scalar " << *ForcedScalar <<
"\n";
6978 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6983 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6984 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6993 ElementCount VF)
const {
6994 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, PSE, OrigLoop);
7002 <<
" (Estimated cost per lane: ");
7004 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
7027 return &WidenMem->getIngredient();
7036 if (!VPI || VPI->getOpcode() != Instruction::Select)
7040 switch (WR->getOpcode()) {
7041 case Instruction::UDiv:
7042 case Instruction::SDiv:
7043 case Instruction::URem:
7044 case Instruction::SRem:
7057 auto *IG =
IR->getInterleaveGroup();
7058 unsigned NumMembers = IG->getNumMembers();
7059 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7077 if (VPR->isPartialReduction())
7089 if (WidenMemR->isReverse()) {
7095 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7099 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7114 if (RepR->isSingleScalar() &&
7116 RepR->getUnderlyingInstr(), VF))
7119 if (
Instruction *UI = GetInstructionForCost(&R)) {
7124 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7136 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7138 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7141 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7142 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7144 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7154 VPlan &FirstPlan = *VPlans[0];
7160 ?
"Reciprocal Throughput\n"
7162 ?
"Instruction Latency\n"
7165 ?
"Code Size and Latency\n"
7170 "More than a single plan/VF w/o any plan having scalar VF");
7174 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7179 if (ForceVectorization) {
7186 for (
auto &
P : VPlans) {
7188 P->vectorFactors().end());
7192 return CM.shouldConsiderRegPressureForVF(VF);
7196 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7203 <<
"LV: Not considering vector loop of width " << VF
7204 <<
" because it will not generate any vector instructions.\n");
7210 <<
"LV: Not considering vector loop of width " << VF
7211 <<
" because it would cause replicated blocks to be generated,"
7212 <<
" which isn't allowed when optimizing for size.\n");
7219 if (CM.shouldConsiderRegPressureForVF(VF) &&
7221 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7222 << VF <<
" because it uses too many registers\n");
7226 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7227 BestFactor = CurrentFactor;
7230 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7231 ProfitableVFs.push_back(CurrentFactor);
7247 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind, CM.PSE,
7249 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7256 bool UsesEVLGatherScatter =
7260 return any_of(*VPBB, [](VPRecipeBase &R) {
7261 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7262 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7266 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7267 !
Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7269 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7271 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7272 " VPlan cost model and legacy cost model disagreed");
7273 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7274 "when vectorizing, the scalar cost must be computed.");
7277 LLVM_DEBUG(
dbgs() <<
"LV: Selecting VF: " << BestFactor.Width <<
".\n");
7284 "RdxResult must be ComputeFindIVResult");
7302 if (!EpiRedResult ||
7308 auto *EpiRedHeaderPhi =
7310 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7311 Value *MainResumeValue;
7315 "unexpected start recipe");
7316 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7318 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7320 [[maybe_unused]]
Value *StartV =
7321 EpiRedResult->getOperand(1)->getLiveInIRValue();
7324 "AnyOf expected to start with ICMP_NE");
7325 assert(Cmp->getOperand(1) == StartV &&
7326 "AnyOf expected to start by comparing main resume value to original "
7328 MainResumeValue = Cmp->getOperand(0);
7331 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7333 Value *Cmp, *OrigResumeV, *CmpOp;
7334 [[maybe_unused]]
bool IsExpectedPattern =
7335 match(MainResumeValue,
7341 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7342 MainResumeValue = OrigResumeV;
7357 "Trying to execute plan with unsupported VF");
7359 "Trying to execute plan with unsupported UF");
7361 ++LoopsEarlyExitVectorized;
7369 bool HasBranchWeights =
7371 if (HasBranchWeights) {
7372 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7374 BestVPlan, BestVF, VScale);
7379 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7392 OrigLoop->getStartLoc(),
7393 OrigLoop->getHeader())
7394 <<
"Created vector loop never executes due to insufficient trip "
7415 BestVPlan, VectorPH, CM.foldTailByMasking(),
7416 CM.requiresScalarEpilogue(BestVF.
isVector()));
7428 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7429 "count during epilogue vectorization");
7433 OrigLoop->getParentLoop(),
7434 Legal->getWidestInductionType());
7436#ifdef EXPENSIVE_CHECKS
7437 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7448 "final VPlan is invalid");
7455 if (!Exit->hasPredecessors())
7477 MDNode *LID = OrigLoop->getLoopID();
7478 unsigned OrigLoopInvocationWeight = 0;
7479 std::optional<unsigned> OrigAverageTripCount =
7491 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7493 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7495 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7496 OrigLoopInvocationWeight,
7498 DisableRuntimeUnroll);
7506 return ExpandedSCEVs;
7521 EPI.EpilogueIterationCountCheck =
7523 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7533 EPI.MainLoopIterationCountCheck =
7542 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7543 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7544 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7545 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7546 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7552 dbgs() <<
"intermediate fn:\n"
7553 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7559 assert(Bypass &&
"Expected valid bypass basic block.");
7563 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7564 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7568 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7594 return TCCheckBlock;
7607 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7615 R.moveBefore(*NewEntry, NewEntry->
end());
7619 Plan.setEntry(NewEntry);
7622 return OriginalScalarPH;
7627 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7628 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7629 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7635 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7642 VPI->
getOpcode() == Instruction::Store) &&
7643 "Must be called with either a load or store");
7650 "CM decision should be taken at this point.");
7663 if (
Legal->isMaskRequired(
I))
7688 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7694 GEP ?
GEP->getNoWrapFlags()
7698 Builder.insert(VectorPtr);
7702 if (VPI->
getOpcode() == Instruction::Load) {
7704 auto *LoadR =
new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive,
Reverse,
7705 *VPI,
Load->getDebugLoc());
7707 Builder.insert(LoadR);
7709 LoadR->getDebugLoc());
7718 Store->getDebugLoc());
7719 return new VPWidenStoreRecipe(*Store, Ptr, StoredVal, Mask, Consecutive,
7724VPRecipeBuilder::tryToOptimizeInductionTruncate(
VPInstruction *VPI,
7734 auto IsOptimizableIVTruncate =
7735 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7736 return [=](ElementCount VF) ->
bool {
7737 return CM.isOptimizableIVTruncate(K, VF);
7742 IsOptimizableIVTruncate(
I),
Range))
7749 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7757 return new VPWidenIntOrFpInductionRecipe(
7758 Phi, Start, Step, &Plan.getVF(), IndDesc,
I, Flags, VPI->
getDebugLoc());
7765 [
this, CI](ElementCount VF) {
7766 return CM.isScalarWithPredication(CI, VF);
7774 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7775 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7776 ID == Intrinsic::pseudoprobe ||
7777 ID == Intrinsic::experimental_noalias_scope_decl))
7784 bool ShouldUseVectorIntrinsic =
7786 [&](ElementCount VF) ->
bool {
7787 return CM.getCallWideningDecision(CI, VF).Kind ==
7791 if (ShouldUseVectorIntrinsic)
7792 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(), *VPI, *VPI,
7796 std::optional<unsigned> MaskPos;
7800 [&](ElementCount VF) ->
bool {
7815 LoopVectorizationCostModel::CallWideningDecision Decision =
7816 CM.getCallWideningDecision(CI, VF);
7826 if (ShouldUseVectorCall) {
7827 if (MaskPos.has_value()) {
7835 VPValue *
Mask = Legal->isMaskRequired(CI)
7839 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7843 return new VPWidenCallRecipe(CI, Variant,
Ops, *VPI, *VPI,
7852 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7855 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7856 return CM.isScalarAfterVectorization(
I, VF) ||
7857 CM.isProfitableToScalarize(
I, VF) ||
7858 CM.isScalarWithPredication(
I, VF);
7869 case Instruction::SDiv:
7870 case Instruction::UDiv:
7871 case Instruction::SRem:
7872 case Instruction::URem: {
7875 if (CM.isPredicatedInst(
I)) {
7878 VPValue *One = Plan.getConstantInt(
I->getType(), 1u);
7886 case Instruction::Add:
7887 case Instruction::And:
7888 case Instruction::AShr:
7889 case Instruction::FAdd:
7890 case Instruction::FCmp:
7891 case Instruction::FDiv:
7892 case Instruction::FMul:
7893 case Instruction::FNeg:
7894 case Instruction::FRem:
7895 case Instruction::FSub:
7896 case Instruction::ICmp:
7897 case Instruction::LShr:
7898 case Instruction::Mul:
7899 case Instruction::Or:
7900 case Instruction::Select:
7901 case Instruction::Shl:
7902 case Instruction::Sub:
7903 case Instruction::Xor:
7904 case Instruction::Freeze:
7905 return new VPWidenRecipe(*
I, VPI->
operands(), *VPI, *VPI,
7907 case Instruction::ExtractValue: {
7910 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7911 unsigned Idx = EVI->getIndices()[0];
7912 NewOps.push_back(Plan.getConstantInt(32, Idx));
7913 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7921 unsigned Opcode =
HI->Update->getOpcode();
7922 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7923 "Histogram update operation must be an Add or Sub");
7933 if (Legal->isMaskRequired(
HI->Store))
7936 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
7943 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7946 bool IsPredicated = CM.isPredicatedInst(
I);
7954 case Intrinsic::assume:
7955 case Intrinsic::lifetime_start:
7956 case Intrinsic::lifetime_end:
7978 VPValue *BlockInMask =
nullptr;
7979 if (!IsPredicated) {
7983 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7994 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7996 "Should not predicate a uniform recipe");
8012 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8013 if (
Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8014 getScaledReductions(Phi, RdxExitInstr,
Range, ChainsByPhi[Phi]);
8023 for (
const auto &[
_, Chains] : ChainsByPhi)
8024 for (
const auto &[PartialRdx,
_] : Chains)
8025 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8027 auto ExtendIsOnlyUsedByPartialReductions =
8029 return all_of(Extend->users(), [&](
const User *U) {
8030 return PartialReductionOps.contains(U);
8036 for (
const auto &[
_, Chains] : ChainsByPhi) {
8037 for (
const auto &[Chain, Scale] : Chains) {
8038 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8040 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8041 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8049 for (
const auto &[Phi, Chains] : ChainsByPhi) {
8050 for (
const auto &[Chain, Scale] : Chains) {
8051 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8052 this](
const User *U) {
8054 if (
isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8055 return UI == RdxPhi;
8056 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8057 !OrigLoop->contains(UI->getParent());
8062 if (!
all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8063 for (
const auto &[Chain,
_] : Chains)
8064 ScaledReductionMap.erase(Chain.Reduction);
8071bool VPRecipeBuilder::getScaledReductions(
8073 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8081 Value *
Op = Update->getOperand(0);
8082 Value *PhiOp = Update->getOperand(1);
8092 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8096 Op = Cast->getOperand(0);
8103 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8104 PHI = Chains.rbegin()->first.Reduction;
8106 Op = Update->getOperand(0);
8107 PhiOp = Update->getOperand(1);
8120 std::optional<unsigned> BinOpc;
8121 Type *ExtOpTypes[2] = {
nullptr};
8124 auto CollectExtInfo = [
this, OuterExtKind, &Exts, &ExtOpTypes,
8125 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
8130 ExtOpTypes[
I] = ExtOpTypes[0];
8131 ExtKinds[
I] = ExtKinds[0];
8140 if (!CM.TheLoop->contains(Exts[
I]))
8147 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[
I])
8162 if (!CollectExtInfo(
Ops))
8165 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8169 if (!CollectExtInfo(
Ops))
8172 ExtendUser = Update;
8173 BinOpc = std::nullopt;
8177 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8179 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8186 [&](ElementCount VF) {
8188 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8189 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8194 Chains.emplace_back(Chain, TargetScaleFactor);
8204 assert(!R->isPhi() &&
"phis must be handled earlier");
8210 if (VPI->
getOpcode() == Instruction::Trunc &&
8211 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8219 if (VPI->
getOpcode() == Instruction::Call)
8220 return tryToWidenCall(VPI,
Range);
8223 if (VPI->
getOpcode() == Instruction::Store)
8225 return tryToWidenHistogram(*HistInfo, VPI);
8227 if (VPI->
getOpcode() == Instruction::Load ||
8229 return tryToWidenMemory(VPI,
Range);
8234 if (!shouldWiden(Instr,
Range))
8237 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8241 if (VPI->
getOpcode() == Instruction::Select)
8249 CastR->getResultType(), CI, *VPI, *VPI,
8253 return tryToWiden(VPI);
8258 unsigned ScaleFactor) {
8259 assert(Reduction->getNumOperands() == 2 &&
8260 "Unexpected number of operands for partial reduction");
8262 VPValue *BinOp = Reduction->getOperand(0);
8271 RedPhiR->setVFScaleFactor(ScaleFactor);
8275 "all accumulators in chain must have same scale factor");
8277 auto *ReductionI = Reduction->getUnderlyingInstr();
8278 if (Reduction->getOpcode() == Instruction::Sub) {
8280 Ops.push_back(Plan.getConstantInt(ReductionI->getType(), 0));
8281 Ops.push_back(BinOp);
8288 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8296void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8305 OrigLoop, LI, DT, PSE.
getSE());
8310 LVer.prepareNoAliasMetadata();
8316 OrigLoop, *LI,
Legal->getWidestInductionType(),
8321 *VPlan0, PSE, *OrigLoop,
Legal->getInductionVars(),
8322 Legal->getReductionVars(),
Legal->getFixedOrderRecurrences(),
8325 auto MaxVFTimes2 = MaxVF * 2;
8327 VFRange SubRange = {VF, MaxVFTimes2};
8328 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8329 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8334 *Plan, CM.getMinimalBitwidths());
8337 if (CM.foldTailWithEVL())
8339 *Plan, CM.getMaxSafeElements());
8341 VPlans.push_back(std::move(Plan));
8347VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8350 using namespace llvm::VPlanPatternMatch;
8351 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8358 bool RequiresScalarEpilogueCheck =
8360 [
this](ElementCount VF) {
8361 return !CM.requiresScalarEpilogue(VF.
isVector());
8366 CM.foldTailByMasking());
8374 bool IVUpdateMayOverflow =
false;
8375 for (ElementCount VF :
Range)
8383 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8389 m_VPInstruction<Instruction::Add>(
8391 "Did not find the canonical IV increment");
8404 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8405 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8407 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8412 "Unsupported interleave factor for scalable vectors");
8417 InterleaveGroups.
insert(IG);
8424 *Plan, CM.foldTailByMasking());
8430 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, Builder,
8433 if (!CM.foldTailWithEVL())
8434 RecipeBuilder.collectScaledReductions(
Range);
8439 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8442 auto *MiddleVPBB = Plan->getMiddleBlock();
8446 DenseMap<VPValue *, VPValue *> Old2New;
8462 Builder.setInsertPoint(VPI);
8469 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8471 if (Legal->isInvariantStoreOfReduction(SI)) {
8472 auto *Recipe =
new VPReplicateRecipe(
8473 SI,
R.operands(),
true ,
nullptr , *VPI,
8475 Recipe->insertBefore(*MiddleVPBB, MBIP);
8477 R.eraseFromParent();
8481 VPRecipeBase *Recipe =
8482 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI,
Range);
8487 RecipeBuilder.setRecipe(Instr, Recipe);
8493 Builder.insert(Recipe);
8500 "Unexpected multidef recipe");
8501 R.eraseFromParent();
8510 RecipeBuilder.updateBlockMaskCache(Old2New);
8511 for (VPValue *Old : Old2New.
keys())
8512 Old->getDefiningRecipe()->eraseFromParent();
8516 "entry block must be set to a VPRegionBlock having a non-empty entry "
8522 DenseMap<VPValue *, VPValue *> IVEndValues;
8531 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8548 if (!CM.foldTailWithEVL()) {
8549 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
8555 for (ElementCount VF :
Range)
8557 Plan->setName(
"Initial VPlan");
8563 InterleaveGroups, RecipeBuilder,
8564 CM.isScalarEpilogueAllowed());
8568 Legal->getLAI()->getSymbolicStrides());
8570 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8571 return Legal->blockNeedsPredication(BB);
8574 BlockNeedsPredication);
8586 bool WithoutRuntimeCheck =
8589 WithoutRuntimeCheck);
8602 assert(!OrigLoop->isInnermost());
8606 OrigLoop, *LI, Legal->getWidestInductionType(),
8615 for (ElementCount VF :
Range)
8620 [
this](PHINode *
P) {
8621 return Legal->getIntOrFpInductionDescriptor(
P);
8630 DenseMap<VPValue *, VPValue *> IVEndValues;
8650void LoopVectorizationPlanner::adjustRecipesForReductions(
8652 using namespace VPlanPatternMatch;
8653 VPTypeAnalysis TypeInfo(*Plan);
8654 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8656 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8659 for (VPRecipeBase &R : Header->phis()) {
8661 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8668 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8670 bool IsFPRecurrence =
8672 FastMathFlags FMFs =
8676 SetVector<VPSingleDefRecipe *> Worklist;
8678 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8679 VPSingleDefRecipe *Cur = Worklist[
I];
8680 for (VPUser *U : Cur->
users()) {
8682 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8683 assert((UserRecipe->getParent() == MiddleVPBB ||
8684 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8685 "U must be either in the loop region, the middle block or the "
8686 "scalar preheader.");
8689 Worklist.
insert(UserRecipe);
8700 VPSingleDefRecipe *PreviousLink = PhiR;
8701 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8703 assert(Blend->getNumIncomingValues() == 2 &&
8704 "Blend must have 2 incoming values");
8705 if (Blend->getIncomingValue(0) == PhiR) {
8706 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8708 assert(Blend->getIncomingValue(1) == PhiR &&
8709 "PhiR must be an operand of the blend");
8710 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8715 if (IsFPRecurrence) {
8716 FastMathFlags CurFMF =
8720 ->getFastMathFlags();
8724 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8727 unsigned IndexOfFirstOperand;
8731 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8735 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8738 CurrentLink->getOperand(2) == PreviousLink &&
8739 "expected a call where the previous link is the added operand");
8745 VPInstruction *FMulRecipe =
new VPInstruction(
8747 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8749 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8753 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8754 auto *
Zero = Plan->getConstantInt(PhiTy, 0);
8755 auto *
Sub =
new VPInstruction(Instruction::Sub,
8756 {
Zero, CurrentLink->getOperand(1)}, {},
8758 Sub->setUnderlyingValue(CurrentLinkI);
8759 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8766 "must be a select recipe");
8767 IndexOfFirstOperand = 1;
8770 "Expected to replace a VPWidenSC");
8771 IndexOfFirstOperand = 0;
8776 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8777 ? IndexOfFirstOperand + 1
8778 : IndexOfFirstOperand;
8779 VecOp = CurrentLink->getOperand(VecOpId);
8780 assert(VecOp != PreviousLink &&
8781 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8782 (VecOpId - IndexOfFirstOperand)) ==
8784 "PreviousLink must be the operand other than VecOp");
8787 VPValue *CondOp =
nullptr;
8788 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8793 new VPReductionRecipe(Kind, FMFs, CurrentLinkI, PreviousLink, VecOp,
8800 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8804 CurrentLink->replaceAllUsesWith(RedRecipe);
8806 PreviousLink = RedRecipe;
8810 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8812 for (VPRecipeBase &R :
8813 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8818 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8820 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8830 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8831 (!RR || !RR->isPartialReduction())) {
8833 std::optional<FastMathFlags> FMFs =
8838 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8839 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8848 if (CM.usePredicatedReductionSelect())
8859 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8865 VPInstruction *FinalReductionResult;
8866 VPBuilder::InsertPointGuard Guard(Builder);
8867 Builder.setInsertPoint(MiddleVPBB, IP);
8872 FinalReductionResult =
8877 FinalReductionResult =
8879 {PhiR,
Start, NewExitingVPV}, ExitDL);
8885 FinalReductionResult =
8887 {PhiR, NewExitingVPV},
Flags, ExitDL);
8894 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8896 "Unexpected truncated min-max recurrence!");
8898 VPWidenCastRecipe *Trunc;
8900 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8901 VPWidenCastRecipe *Extnd;
8903 VPBuilder::InsertPointGuard Guard(Builder);
8904 Builder.setInsertPoint(
8905 NewExitingVPV->getDefiningRecipe()->getParent(),
8906 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8908 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8909 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8917 FinalReductionResult =
8918 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8923 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8925 if (FinalReductionResult == U || Parent->getParent())
8927 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8944 return isa<VPWidenSelectRecipe>(U) ||
8945 (isa<VPReplicateRecipe>(U) &&
8946 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8947 Instruction::Select);
8952 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8954 Builder.setInsertPoint(
Select);
8958 if (
Select->getOperand(1) == PhiR)
8959 Cmp = Builder.createNot(Cmp);
8960 VPValue *
Or = Builder.createOr(PhiR, Cmp);
8961 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
8981 VPBuilder PHBuilder(Plan->getVectorPreheader());
8982 VPValue *Iden = Plan->getOrAddLiveIn(
8985 unsigned ScaleFactor =
8988 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8989 VPValue *StartV = PHBuilder.createNaryOp(
8997 for (VPRecipeBase *R : ToDelete)
8998 R->eraseFromParent();
9003void LoopVectorizationPlanner::attachRuntimeChecks(
9004 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9005 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9006 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9007 assert((!CM.OptForSize ||
9009 "Cannot SCEV check stride or overflow when optimizing for size");
9013 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9014 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9018 "Runtime checks are not supported for outer loops yet");
9020 if (CM.OptForSize) {
9023 "Cannot emit memory checks when optimizing for size, unless forced "
9026 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9027 OrigLoop->getStartLoc(),
9028 OrigLoop->getHeader())
9029 <<
"Code-size may be reduced by not forcing "
9030 "vectorization, or by source-code modifications "
9031 "eliminating the need for runtime checks "
9032 "(e.g., adding 'restrict').";
9046 bool IsIndvarOverflowCheckNeededForVF =
9047 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9049 CM.getTailFoldingStyle() !=
9056 Plan, VF, UF, MinProfitableTripCount,
9057 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9058 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9059 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(), PSE);
9063 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9068 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9076 State.set(
this, DerivedIV,
VPLane(0));
9089 if (
F->hasOptSize() ||
9115 if (
TTI->preferPredicateOverEpilogue(&TFI))
9134 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9138 Function *
F = L->getHeader()->getParent();
9144 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
9145 GetBFI,
F, &Hints, IAI, OptForSize);
9149 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9169 GeneratedRTChecks Checks(PSE, DT, LI,
TTI, CM.
CostKind);
9173 << L->getHeader()->getParent()->getName() <<
"\"\n");
9195 if (S->getValueOperand()->getType()->isFloatTy())
9205 while (!Worklist.
empty()) {
9207 if (!L->contains(
I))
9209 if (!Visited.
insert(
I).second)
9219 I->getDebugLoc(), L->getHeader())
9220 <<
"floating point conversion changes vector width. "
9221 <<
"Mixed floating point precision requires an up/down "
9222 <<
"cast that will negatively impact performance.";
9225 for (
Use &
Op :
I->operands())
9241 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9247 << PredVPBB->getName() <<
":\n");
9248 Cost += PredVPBB->cost(VF, CostCtx);
9268 std::optional<unsigned> VScale) {
9286 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9347 uint64_t MinTC = std::max(MinTC1, MinTC2);
9349 MinTC =
alignTo(MinTC, IntVF);
9353 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9360 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9361 "trip count < minimum profitable VF ("
9372 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9374 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9395 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9414 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9415 bool UpdateResumePhis) {
9425 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9427 if (UpdateResumePhis)
9433 AddFreezeForFindLastIVReductions(MainPlan,
true);
9434 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9441 auto ResumePhiIter =
9443 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9446 VPPhi *ResumePhi =
nullptr;
9447 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9452 {},
"vec.epilog.resume.val");
9455 if (MainScalarPH->
begin() == MainScalarPH->
end())
9457 else if (&*MainScalarPH->
begin() != ResumePhi)
9472 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9477 Header->
setName(
"vec.epilog.vector.body");
9488 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9493 "Must only have a single non-zero incoming value");
9504 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9505 "all incoming values must be 0");
9511 return isa<VPScalarIVStepsRecipe>(U) ||
9512 isa<VPDerivedIVRecipe>(U) ||
9513 cast<VPRecipeBase>(U)->isScalarCast() ||
9514 cast<VPInstruction>(U)->getOpcode() ==
9517 "the canonical IV should only be used by its increment or "
9518 "ScalarIVSteps when resetting the start value");
9519 VPBuilder Builder(Header, Header->getFirstNonPhi());
9521 IV->replaceAllUsesWith(
Add);
9522 Add->setOperand(0,
IV);
9530 Value *ResumeV =
nullptr;
9535 auto *VPI = dyn_cast<VPInstruction>(U);
9537 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9538 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9539 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9542 ->getIncomingValueForBlock(L->getLoopPreheader());
9543 RecurKind RK = ReductionPhi->getRecurrenceKind();
9551 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9556 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9567 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9570 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9571 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9579 "unexpected start value");
9592 assert(ResumeV &&
"Must have a resume value");
9606 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9623 ExpandR->eraseFromParent();
9627 unsigned MainLoopStep =
9629 unsigned EpilogueLoopStep =
9634 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9645 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9650 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9651 if (OrigPhi != OldInduction) {
9652 auto *BinOp =
II.getInductionBinOp();
9658 EndValueFromAdditionalBypass =
9660 II.getStartValue(), Step,
II.getKind(), BinOp);
9661 EndValueFromAdditionalBypass->
setName(
"ind.end");
9663 return EndValueFromAdditionalBypass;
9669 const SCEV2ValueTy &ExpandedSCEVs,
9670 Value *MainVectorTripCount) {
9675 if (Phi.getBasicBlockIndex(Pred) != -1)
9677 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9681 if (ScalarPH->hasPredecessors()) {
9684 for (
const auto &[R, IRPhi] :
9685 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9694 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9696 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9699 Inc->setIncomingValueForBlock(BypassBlock, V);
9722 "expected this to be saved from the previous pass.");
9725 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9728 VecEpilogueIterationCountCheck},
9730 VecEpiloguePreHeader}});
9735 VecEpilogueIterationCountCheck, ScalarPH);
9738 VecEpilogueIterationCountCheck},
9742 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9743 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9744 if (SCEVCheckBlock) {
9746 VecEpilogueIterationCountCheck, ScalarPH);
9748 VecEpilogueIterationCountCheck},
9751 if (MemCheckBlock) {
9753 VecEpilogueIterationCountCheck, ScalarPH);
9766 for (
PHINode *Phi : PhisInBlock) {
9768 Phi->replaceIncomingBlockWith(
9770 VecEpilogueIterationCountCheck);
9777 return EPI.EpilogueIterationCountCheck == IncB;
9782 Phi->removeIncomingValue(SCEVCheckBlock);
9784 Phi->removeIncomingValue(MemCheckBlock);
9788 for (
auto *
I : InstsToMove)
9800 "VPlan-native path is not enabled. Only process inner loops.");
9803 << L->getHeader()->getParent()->getName() <<
"' from "
9804 << L->getLocStr() <<
"\n");
9809 dbgs() <<
"LV: Loop hints:"
9820 Function *
F = L->getHeader()->getParent();
9840 L->getHeader(),
PSI,
9847 &Requirements, &Hints,
DB,
AC,
9850 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9857 "early exit is not enabled",
9858 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9864 "faulting load is not supported",
9865 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9874 if (!L->isInnermost())
9879 assert(L->isInnermost() &&
"Inner loop expected.");
9882 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9896 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9898 "requiring a scalar epilogue is unsupported",
9899 "UncountableEarlyExitUnsupported",
ORE, L);
9912 if (ExpectedTC && ExpectedTC->isFixed() &&
9914 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9915 <<
"This loop is worth vectorizing only if no scalar "
9916 <<
"iteration overheads are incurred.");
9918 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9934 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9936 "Can't vectorize when the NoImplicitFloat attribute is used",
9937 "loop not vectorized due to NoImplicitFloat attribute",
9938 "NoImplicitFloat",
ORE, L);
9948 TTI->isFPVectorizationPotentiallyUnsafe()) {
9950 "Potentially unsafe FP op prevents vectorization",
9951 "loop not vectorized due to unsafe FP support.",
9952 "UnsafeFP",
ORE, L);
9957 bool AllowOrderedReductions;
9962 AllowOrderedReductions =
TTI->enableOrderedReductions();
9967 ExactFPMathInst->getDebugLoc(),
9968 ExactFPMathInst->getParent())
9969 <<
"loop not vectorized: cannot prove it is safe to reorder "
9970 "floating-point operations";
9972 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9973 "reorder floating-point operations\n");
9979 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9980 GetBFI,
F, &Hints, IAI, OptForSize);
9982 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9992 LVP.
plan(UserVF, UserIC);
10004 unsigned SelectedIC = std::max(IC, UserIC);
10014 if (Checks.getSCEVChecks().first &&
10015 match(Checks.getSCEVChecks().first,
m_One()))
10017 if (Checks.getMemRuntimeChecks().first &&
10018 match(Checks.getMemRuntimeChecks().first,
m_One()))
10023 bool ForceVectorization =
10027 if (!ForceVectorization &&
10033 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10035 <<
"loop not vectorized: cannot prove it is safe to reorder "
10036 "memory operations";
10045 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10046 bool VectorizeLoop =
true, InterleaveLoop =
true;
10048 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10050 "VectorizationNotBeneficial",
10051 "the cost-model indicates that vectorization is not beneficial"};
10052 VectorizeLoop =
false;
10057 "UserIC should only be ignored due to unsafe dependencies");
10058 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
10059 IntDiagMsg = {
"InterleavingUnsafe",
10060 "Ignoring user-specified interleave count due to possibly "
10061 "unsafe dependencies in the loop."};
10062 InterleaveLoop =
false;
10066 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10067 "interleaving should be avoided up front\n");
10068 IntDiagMsg = {
"InterleavingAvoided",
10069 "Ignoring UserIC, because interleaving was avoided up front"};
10070 InterleaveLoop =
false;
10071 }
else if (IC == 1 && UserIC <= 1) {
10075 "InterleavingNotBeneficial",
10076 "the cost-model indicates that interleaving is not beneficial"};
10077 InterleaveLoop =
false;
10079 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10080 IntDiagMsg.second +=
10081 " and is explicitly disabled or interleave count is set to 1";
10083 }
else if (IC > 1 && UserIC == 1) {
10085 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10087 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10088 "the cost-model indicates that interleaving is beneficial "
10089 "but is explicitly disabled or interleave count is set to 1"};
10090 InterleaveLoop =
false;
10096 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10097 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10098 <<
"to histogram operations.\n");
10100 "HistogramPreventsScalarInterleaving",
10101 "Unable to interleave without vectorization due to constraints on "
10102 "the order of histogram operations"};
10103 InterleaveLoop =
false;
10107 IC = UserIC > 0 ? UserIC : IC;
10111 if (!VectorizeLoop && !InterleaveLoop) {
10115 L->getStartLoc(), L->getHeader())
10116 << VecDiagMsg.second;
10120 L->getStartLoc(), L->getHeader())
10121 << IntDiagMsg.second;
10126 if (!VectorizeLoop && InterleaveLoop) {
10130 L->getStartLoc(), L->getHeader())
10131 << VecDiagMsg.second;
10133 }
else if (VectorizeLoop && !InterleaveLoop) {
10135 <<
") in " << L->getLocStr() <<
'\n');
10138 L->getStartLoc(), L->getHeader())
10139 << IntDiagMsg.second;
10141 }
else if (VectorizeLoop && InterleaveLoop) {
10143 <<
") in " << L->getLocStr() <<
'\n');
10149 using namespace ore;
10154 <<
"interleaved loop (interleaved count: "
10155 << NV(
"InterleaveCount", IC) <<
")";
10172 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10184 Checks, *BestMainPlan);
10186 *BestMainPlan, MainILV,
DT,
false);
10192 Checks, BestEpiPlan);
10194 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10198 Checks, InstsToMove);
10199 ++LoopsEpilogueVectorized;
10201 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM, Checks,
10215 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10216 "DT not preserved correctly");
10231 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10235 bool Changed =
false, CFGChanged =
false;
10242 for (
const auto &L : *
LI)
10254 LoopsAnalyzed += Worklist.
size();
10257 while (!Worklist.
empty()) {
10303 if (!Result.MadeAnyChange)
10317 if (Result.MadeCFGChange) {
10333 OS, MapClassName2PassName);
10336 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10337 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags getFast()
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
ReductionStyle getReductionStyle(bool InLoop, bool Ordered, unsigned ScaleFactor)
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
std::variant< RdxOrdered, RdxInLoop, RdxUnordered > ReductionStyle
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
This reduction is unordered with the partial result scaled down by some factor.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks