162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
169STATISTIC(LoopsVectorized,
"Number of loops vectorized");
170STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
176 cl::desc(
"Enable vectorization of epilogue loops."));
180 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
185 "epilogue-vectorization-minimum-VF",
cl::Hidden,
186 cl::desc(
"Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
193 cl::desc(
"Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
199 cl::desc(
"The maximum allowed number of runtime memory checks"));
215 "prefer-predicate-over-epilogue",
218 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
233 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
255 cl::desc(
"Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
260 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
265 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
271 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
275 cl::desc(
"A flag that overrides the target's number of scalar registers."));
279 cl::desc(
"A flag that overrides the target's number of vector registers."));
283 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 cl::desc(
"A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
293 cl::desc(
"A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
306 "The cost of a loop that is considered 'small' by the interleaver."));
310 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
318 "Enable runtime interleaving until load/store ports are saturated"));
323 cl::desc(
"Max number of stores to be predicated behind an if."));
327 cl::desc(
"Count the induction variable only once when interleaving"));
331 cl::desc(
"Enable if predication of stores during vectorization."));
335 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
341 cl::desc(
"Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
346 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
352 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
361#ifdef EXPENSIVE_CHECKS
367 cl::desc(
"Verfiy VPlans after VPlan transforms."));
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
382 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
385 cl::desc(
"Run the Loop vectorization passes"));
388 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
390 "Override cost based safe divisor widening for div/rem instructions"));
393 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
395 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
400 "Enable vectorization of early exit loops with uncountable exits."));
404 cl::desc(
"Discard VFs if their register pressure is too high."));
417 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
452static std::optional<ElementCount>
454 bool CanUseConstantMax =
true) {
464 if (!CanUseConstantMax)
476class GeneratedRTChecks;
508 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
617 "A high UF for the epilogue loop is likely not beneficial.");
637 UnrollFactor, CM, Checks,
Plan),
666 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
886 initializeVScaleForTuning();
897 bool runtimeChecksRequired();
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
935 void collectValuesToIgnore();
938 void collectElementTypesForWidening();
942 void collectInLoopReductions();
963 "Profitable to scalarize relevant only for VF > 1.");
966 "cost-model should not be used for outer loops (in VPlan-native path)");
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(
I);
978 "cost-model should not be used for outer loops (in VPlan-native path)");
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(
I);
998 "cost-model should not be used for outer loops (in VPlan-native path)");
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(
I);
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1015 return VF.
isVector() && MinBWs.contains(
I) &&
1037 WideningDecisions[{
I, VF}] = {W,
Cost};
1056 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1059 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1061 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1075 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1079 return Itr->second.first;
1086 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1102 std::optional<unsigned> MaskPos,
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (
I == CallWideningDecisions.end())
1135 Value *
Op = Trunc->getOperand(0);
1136 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1140 return Legal->isInductionPhi(
Op);
1156 if (VF.
isScalar() || Uniforms.contains(VF))
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1192 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1199 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1212 return ScalarCost < SafeDivisorCost;
1251 std::pair<InstructionCost, InstructionCost>
1278 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1285 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1291 "interleaved group requires scalar epilogue\n");
1294 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1323 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1324 if (!
Legal->canFoldTailByMasking()) {
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(
true),
1332 TTI.getPreferredTailFoldingStyle(
false)};
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1356 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1359 ?
"since interleave count specified is greater than 1.\n"
1360 :
"due to non-interleaving reasons.\n"));
1405 return InLoopReductions.contains(Phi);
1410 return InLoopReductions;
1421 TTI.preferPredicatedReductionSelect();
1436 WideningDecisions.clear();
1437 CallWideningDecisions.clear();
1455 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1456 const unsigned IC)
const;
1464 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1466 Type *VectorTy)
const;
1470 bool shouldConsiderInvariant(
Value *
Op);
1476 unsigned NumPredStores = 0;
1480 std::optional<unsigned> VScaleForTuning;
1485 void initializeVScaleForTuning() {
1490 auto Max = Attr.getVScaleRangeMax();
1491 if (Max && Min == Max) {
1492 VScaleForTuning = Max;
1505 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1506 ElementCount UserVF,
1507 bool FoldTailByMasking);
1511 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1512 bool FoldTailByMasking)
const;
1517 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1518 unsigned SmallestType,
1519 unsigned WidestType,
1520 ElementCount MaxSafeVF,
1521 bool FoldTailByMasking);
1525 bool isScalableVectorizationAllowed();
1529 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1535 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1556 ElementCount VF)
const;
1560 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1565 MapVector<Instruction *, uint64_t> MinBWs;
1570 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1574 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1575 PredicatedBBsAfterVectorization;
1588 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1589 ChosenTailFoldingStyle;
1592 std::optional<bool> IsScalableVectorizationAllowed;
1598 std::optional<unsigned> MaxSafeElements;
1604 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1608 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1612 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1616 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1619 SmallPtrSet<PHINode *, 4> InLoopReductions;
1624 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1632 ScalarCostsTy &ScalarCosts,
1644 void collectLoopUniforms(ElementCount VF);
1653 void collectLoopScalars(ElementCount VF);
1657 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1658 std::pair<InstWidening, InstructionCost>>;
1660 DecisionList WideningDecisions;
1662 using CallDecisionList =
1663 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1665 CallDecisionList CallWideningDecisions;
1669 bool needsExtract(
Value *V, ElementCount VF)
const {
1673 getWideningDecision(
I, VF) == CM_Scalarize ||
1684 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1688 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range
Ops,
1689 ElementCount VF)
const {
1691 SmallPtrSet<const Value *, 4> UniqueOperands;
1692 SmallVector<Value *, 4> Res;
1695 !needsExtract(
Op, VF))
1781class GeneratedRTChecks {
1787 Value *SCEVCheckCond =
nullptr;
1794 Value *MemRuntimeCheckCond =
nullptr;
1803 bool CostTooHigh =
false;
1805 Loop *OuterLoop =
nullptr;
1816 : DT(DT), LI(LI),
TTI(
TTI),
1817 SCEVExp(*PSE.
getSE(),
"scev.check",
false),
1818 MemCheckExp(*PSE.
getSE(),
"scev.check",
false),
1826 void create(Loop *L,
const LoopAccessInfo &LAI,
1827 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC,
1828 OptimizationRemarkEmitter &ORE) {
1841 return OptimizationRemarkAnalysisAliasing(
1842 DEBUG_TYPE,
"TooManyMemoryRuntimeChecks",
L->getStartLoc(),
1844 <<
"loop not vectorized: too many memory checks needed";
1859 nullptr,
"vector.scevcheck");
1866 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1867 SCEVCleaner.cleanup();
1872 if (RtPtrChecking.Need) {
1873 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1874 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1877 auto DiffChecks = RtPtrChecking.getDiffChecks();
1879 Value *RuntimeVF =
nullptr;
1882 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1884 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1890 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1893 assert(MemRuntimeCheckCond &&
1894 "no RT checks generated although RtPtrChecking "
1895 "claimed checks are required");
1900 if (!MemCheckBlock && !SCEVCheckBlock)
1910 if (SCEVCheckBlock) {
1913 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1917 if (MemCheckBlock) {
1920 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1926 if (MemCheckBlock) {
1930 if (SCEVCheckBlock) {
1936 OuterLoop =
L->getParentLoop();
1940 if (SCEVCheckBlock || MemCheckBlock)
1952 for (Instruction &
I : *SCEVCheckBlock) {
1953 if (SCEVCheckBlock->getTerminator() == &
I)
1959 if (MemCheckBlock) {
1961 for (Instruction &
I : *MemCheckBlock) {
1962 if (MemCheckBlock->getTerminator() == &
I)
1974 ScalarEvolution *SE = MemCheckExp.
getSE();
1979 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1984 unsigned BestTripCount = 2;
1988 PSE, OuterLoop,
false))
1989 if (EstimatedTC->isFixed())
1990 BestTripCount = EstimatedTC->getFixedValue();
1995 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1996 (InstructionCost::CostType)1);
1998 if (BestTripCount > 1)
2000 <<
"We expect runtime memory checks to be hoisted "
2001 <<
"out of the outer loop. Cost reduced from "
2002 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
2004 MemCheckCost = NewMemCheckCost;
2008 RTCheckCost += MemCheckCost;
2011 if (SCEVCheckBlock || MemCheckBlock)
2012 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2020 ~GeneratedRTChecks() {
2021 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2022 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2023 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
2024 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
2026 SCEVCleaner.markResultUsed();
2028 if (MemChecksUsed) {
2029 MemCheckCleaner.markResultUsed();
2031 auto &SE = *MemCheckExp.
getSE();
2038 I.eraseFromParent();
2041 MemCheckCleaner.cleanup();
2042 SCEVCleaner.cleanup();
2044 if (!SCEVChecksUsed)
2045 SCEVCheckBlock->eraseFromParent();
2047 MemCheckBlock->eraseFromParent();
2052 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2053 using namespace llvm::PatternMatch;
2055 return {
nullptr,
nullptr};
2057 return {SCEVCheckCond, SCEVCheckBlock};
2062 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2063 using namespace llvm::PatternMatch;
2064 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2065 return {
nullptr,
nullptr};
2066 return {MemRuntimeCheckCond, MemCheckBlock};
2070 bool hasChecks()
const {
2071 return getSCEVChecks().first || getMemRuntimeChecks().first;
2114 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2120 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2150 for (
Loop *InnerL : L)
2173 ?
B.CreateSExtOrTrunc(Index, StepTy)
2174 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2175 if (CastedIndex != Index) {
2177 Index = CastedIndex;
2187 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2192 return B.CreateAdd(
X,
Y);
2198 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2199 "Types don't match!");
2206 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2207 return B.CreateMul(
X,
Y);
2210 switch (InductionKind) {
2213 "Vector indices not supported for integer inductions yet");
2215 "Index type does not match StartValue type");
2217 return B.CreateSub(StartValue, Index);
2222 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2225 "Vector indices not supported for FP inductions yet");
2228 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2229 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2230 "Original bin op should be defined for FP induction");
2232 Value *MulExp =
B.CreateFMul(Step, Index);
2233 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2244 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2247 if (
F.hasFnAttribute(Attribute::VScaleRange))
2248 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2250 return std::nullopt;
2259 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2261 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2263 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2269 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2272 std::optional<unsigned> MaxVScale =
2276 MaxVF *= *MaxVScale;
2279 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2293 return TTI.enableMaskedInterleavedAccessVectorization();
2306 PreVectorPH = CheckVPIRBB;
2316 "must have incoming values for all operands");
2317 R.addOperand(R.getOperand(NumPredecessors - 2));
2343 auto CreateStep = [&]() ->
Value * {
2350 if (!
VF.isScalable())
2352 return Builder.CreateBinaryIntrinsic(
2358 Value *Step = CreateStep();
2367 CheckMinIters =
Builder.getTrue();
2369 TripCountSCEV, SE.
getSCEV(Step))) {
2372 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2374 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2382 Value *MaxUIntTripCount =
2389 return CheckMinIters;
2398 VPlan *Plan =
nullptr) {
2402 auto IP = IRVPBB->
begin();
2404 R.moveBefore(*IRVPBB, IP);
2408 R.moveBefore(*IRVPBB, IRVPBB->
end());
2417 assert(VectorPH &&
"Invalid loop structure");
2419 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2420 "loops not exiting via the latch without required epilogue?");
2427 Twine(Prefix) +
"scalar.ph");
2433 const SCEV2ValueTy &ExpandedSCEVs) {
2434 const SCEV *Step =
ID.getStep();
2436 return C->getValue();
2438 return U->getValue();
2439 Value *V = ExpandedSCEVs.lookup(Step);
2440 assert(V &&
"SCEV must be expanded at this point");
2450 auto *Cmp = L->getLatchCmpInst();
2452 InstsToIgnore.
insert(Cmp);
2453 for (
const auto &KV : IL) {
2462 [&](
const User *U) { return U == IV || U == Cmp; }))
2463 InstsToIgnore.
insert(IVInst);
2475struct CSEDenseMapInfo {
2486 return DenseMapInfo<Instruction *>::getTombstoneKey();
2489 static unsigned getHashValue(
const Instruction *
I) {
2490 assert(canHandle(
I) &&
"Unknown instruction!");
2495 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2496 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2497 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2499 return LHS->isIdenticalTo(
RHS);
2511 if (!CSEDenseMapInfo::canHandle(&In))
2517 In.replaceAllUsesWith(V);
2518 In.eraseFromParent();
2531 std::optional<unsigned> VScale) {
2535 EstimatedVF *= *VScale;
2536 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2554 for (
auto &ArgOp : CI->
args())
2565 return ScalarCallCost;
2578 assert(
ID &&
"Expected intrinsic call!");
2582 FMF = FPMO->getFastMathFlags();
2588 std::back_inserter(ParamTys),
2589 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2594 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2608 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2623 Builder.SetInsertPoint(NewPhi);
2625 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2630void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2635 "This function should not be visited twice for the same VF");
2658 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2659 assert(WideningDecision != CM_Unknown &&
2660 "Widening decision should be ready at this moment");
2662 if (Ptr == Store->getValueOperand())
2663 return WideningDecision == CM_Scalarize;
2665 "Ptr is neither a value or pointer operand");
2666 return WideningDecision != CM_GatherScatter;
2671 auto IsLoopVaryingGEP = [&](
Value *
V) {
2682 if (!IsLoopVaryingGEP(Ptr))
2694 if (IsScalarUse(MemAccess, Ptr) &&
2698 PossibleNonScalarPtrs.
insert(
I);
2714 for (
auto *BB : TheLoop->
blocks())
2715 for (
auto &
I : *BB) {
2717 EvaluatePtrUse(Load,
Load->getPointerOperand());
2719 EvaluatePtrUse(Store,
Store->getPointerOperand());
2720 EvaluatePtrUse(Store,
Store->getValueOperand());
2723 for (
auto *
I : ScalarPtrs)
2724 if (!PossibleNonScalarPtrs.
count(
I)) {
2732 auto ForcedScalar = ForcedScalars.
find(VF);
2733 if (ForcedScalar != ForcedScalars.
end())
2734 for (
auto *
I : ForcedScalar->second) {
2735 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2744 while (Idx != Worklist.
size()) {
2746 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2750 auto *J = cast<Instruction>(U);
2751 return !TheLoop->contains(J) || Worklist.count(J) ||
2752 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2753 IsScalarUse(J, Src));
2756 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2762 for (
const auto &Induction :
Legal->getInductionVars()) {
2763 auto *Ind = Induction.first;
2768 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2773 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2775 return Induction.second.getKind() ==
2783 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2784 auto *I = cast<Instruction>(U);
2785 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2786 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2795 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2800 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2801 auto *I = cast<Instruction>(U);
2802 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2803 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2805 if (!ScalarIndUpdate)
2810 Worklist.
insert(IndUpdate);
2811 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2812 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2826 switch(
I->getOpcode()) {
2829 case Instruction::Call:
2833 case Instruction::Load:
2834 case Instruction::Store: {
2843 TTI.isLegalMaskedGather(VTy, Alignment))
2845 TTI.isLegalMaskedScatter(VTy, Alignment));
2847 case Instruction::UDiv:
2848 case Instruction::SDiv:
2849 case Instruction::SRem:
2850 case Instruction::URem: {
2871 if (
Legal->blockNeedsPredication(
I->getParent()))
2883 switch(
I->getOpcode()) {
2886 "instruction should have been considered by earlier checks");
2887 case Instruction::Call:
2891 "should have returned earlier for calls not needing a mask");
2893 case Instruction::Load:
2896 case Instruction::Store: {
2904 case Instruction::UDiv:
2905 case Instruction::URem:
2907 return !
Legal->isInvariant(
I->getOperand(1));
2908 case Instruction::SDiv:
2909 case Instruction::SRem:
2922 if (!
Legal->blockNeedsPredication(BB))
2929 "Header has smaller block freq than dominated BB?");
2930 return std::round((
double)HeaderFreq /
BBFreq);
2933std::pair<InstructionCost, InstructionCost>
2936 assert(
I->getOpcode() == Instruction::UDiv ||
2937 I->getOpcode() == Instruction::SDiv ||
2938 I->getOpcode() == Instruction::SRem ||
2939 I->getOpcode() == Instruction::URem);
2948 ScalarizationCost = 0;
2954 ScalarizationCost +=
2958 ScalarizationCost +=
2960 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2978 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2983 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2985 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2986 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2988 return {ScalarizationCost, SafeDivisorCost};
2995 "Decision should not be set yet.");
2997 assert(Group &&
"Must have a group.");
2998 unsigned InterleaveFactor = Group->getFactor();
3002 auto &
DL =
I->getDataLayout();
3014 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3015 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3020 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
3022 if (MemberNI != ScalarNI)
3025 if (MemberNI && ScalarNI &&
3026 ScalarTy->getPointerAddressSpace() !=
3027 MemberTy->getPointerAddressSpace())
3036 bool PredicatedAccessRequiresMasking =
3038 Legal->isMaskRequired(
I);
3039 bool LoadAccessWithGapsRequiresEpilogMasking =
3042 bool StoreAccessWithGapsRequiresMasking =
3044 if (!PredicatedAccessRequiresMasking &&
3045 !LoadAccessWithGapsRequiresEpilogMasking &&
3046 !StoreAccessWithGapsRequiresMasking)
3053 "Masked interleave-groups for predicated accesses are not enabled.");
3055 if (Group->isReverse())
3059 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3060 StoreAccessWithGapsRequiresMasking;
3068 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3080 if (!
Legal->isConsecutivePtr(ScalarTy, Ptr))
3090 auto &
DL =
I->getDataLayout();
3097void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3104 "This function should not be visited twice for the same VF");
3108 Uniforms[VF].
clear();
3116 auto IsOutOfScope = [&](
Value *V) ->
bool {
3128 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3129 if (IsOutOfScope(
I)) {
3134 if (isPredicatedInst(
I)) {
3136 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3140 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3150 for (BasicBlock *
E : Exiting) {
3154 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3155 AddToWorklistIfAllowed(Cmp);
3164 if (PrevVF.isVector()) {
3165 auto Iter = Uniforms.
find(PrevVF);
3166 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3169 if (!
Legal->isUniformMemOp(*
I, VF))
3179 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3180 InstWidening WideningDecision = getWideningDecision(
I, VF);
3181 assert(WideningDecision != CM_Unknown &&
3182 "Widening decision should be ready at this moment");
3184 if (IsUniformMemOpUse(
I))
3187 return (WideningDecision == CM_Widen ||
3188 WideningDecision == CM_Widen_Reverse ||
3189 WideningDecision == CM_Interleave);
3199 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(Ptr));
3207 SetVector<Value *> HasUniformUse;
3211 for (
auto *BB : TheLoop->
blocks())
3212 for (
auto &
I : *BB) {
3214 switch (
II->getIntrinsicID()) {
3215 case Intrinsic::sideeffect:
3216 case Intrinsic::experimental_noalias_scope_decl:
3217 case Intrinsic::assume:
3218 case Intrinsic::lifetime_start:
3219 case Intrinsic::lifetime_end:
3221 AddToWorklistIfAllowed(&
I);
3229 if (IsOutOfScope(EVI->getAggregateOperand())) {
3230 AddToWorklistIfAllowed(EVI);
3236 "Expected aggregate value to be call return value");
3249 if (IsUniformMemOpUse(&
I))
3250 AddToWorklistIfAllowed(&
I);
3252 if (IsVectorizedMemAccessUse(&
I, Ptr))
3253 HasUniformUse.
insert(Ptr);
3259 for (
auto *V : HasUniformUse) {
3260 if (IsOutOfScope(V))
3263 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3264 auto *UI = cast<Instruction>(U);
3265 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3267 if (UsersAreMemAccesses)
3268 AddToWorklistIfAllowed(
I);
3275 while (Idx != Worklist.
size()) {
3278 for (
auto *OV :
I->operand_values()) {
3280 if (IsOutOfScope(OV))
3285 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3291 auto *J = cast<Instruction>(U);
3292 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3294 AddToWorklistIfAllowed(OI);
3305 for (
const auto &Induction :
Legal->getInductionVars()) {
3306 auto *Ind = Induction.first;
3311 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3312 auto *I = cast<Instruction>(U);
3313 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3314 IsVectorizedMemAccessUse(I, Ind);
3321 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3322 auto *I = cast<Instruction>(U);
3323 return I == Ind || Worklist.count(I) ||
3324 IsVectorizedMemAccessUse(I, IndUpdate);
3326 if (!UniformIndUpdate)
3330 AddToWorklistIfAllowed(Ind);
3331 AddToWorklistIfAllowed(IndUpdate);
3340 if (
Legal->getRuntimePointerChecking()->Need) {
3342 "runtime pointer checks needed. Enable vectorization of this "
3343 "loop with '#pragma clang loop vectorize(enable)' when "
3344 "compiling with -Os/-Oz",
3345 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3349 if (!
PSE.getPredicate().isAlwaysTrue()) {
3351 "runtime SCEV checks needed. Enable vectorization of this "
3352 "loop with '#pragma clang loop vectorize(enable)' when "
3353 "compiling with -Os/-Oz",
3354 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3359 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3361 "runtime stride == 1 checks needed. Enable vectorization of "
3362 "this loop without such check by compiling with -Os/-Oz",
3363 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3370bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3371 if (IsScalableVectorizationAllowed)
3372 return *IsScalableVectorizationAllowed;
3374 IsScalableVectorizationAllowed =
false;
3378 if (Hints->isScalableVectorizationDisabled()) {
3380 "ScalableVectorizationDisabled", ORE, TheLoop);
3384 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3387 std::numeric_limits<ElementCount::ScalarTy>::max());
3396 if (!canVectorizeReductions(MaxScalableVF)) {
3398 "Scalable vectorization not supported for the reduction "
3399 "operations found in this loop.",
3400 "ScalableVFUnfeasible", ORE, TheLoop);
3406 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3411 "for all element types found in this loop.",
3412 "ScalableVFUnfeasible", ORE, TheLoop);
3418 "for safe distance analysis.",
3419 "ScalableVFUnfeasible", ORE, TheLoop);
3423 IsScalableVectorizationAllowed =
true;
3428LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3429 if (!isScalableVectorizationAllowed())
3433 std::numeric_limits<ElementCount::ScalarTy>::max());
3434 if (
Legal->isSafeForAnyVectorWidth())
3435 return MaxScalableVF;
3443 "Max legal vector width too small, scalable vectorization "
3445 "ScalableVFUnfeasible", ORE, TheLoop);
3447 return MaxScalableVF;
3450FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3451 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3453 unsigned SmallestType, WidestType;
3454 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3460 unsigned MaxSafeElementsPowerOf2 =
3462 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3463 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3464 MaxSafeElementsPowerOf2 =
3465 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3468 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3470 if (!
Legal->isSafeForAnyVectorWidth())
3471 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3473 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3475 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3480 auto MaxSafeUserVF =
3481 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3483 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3486 return FixedScalableVFPair(
3492 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3498 <<
" is unsafe, clamping to max safe VF="
3499 << MaxSafeFixedVF <<
".\n");
3501 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3504 <<
"User-specified vectorization factor "
3505 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3506 <<
" is unsafe, clamping to maximum safe vectorization factor "
3507 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3509 return MaxSafeFixedVF;
3514 <<
" is ignored because scalable vectors are not "
3517 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3520 <<
"User-specified vectorization factor "
3521 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3522 <<
" is ignored because the target does not support scalable "
3523 "vectors. The compiler will pick a more suitable value.";
3527 <<
" is unsafe. Ignoring scalable UserVF.\n");
3529 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3532 <<
"User-specified vectorization factor "
3533 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3534 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3535 "more suitable value.";
3540 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3541 <<
" / " << WidestType <<
" bits.\n");
3546 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3547 MaxSafeFixedVF, FoldTailByMasking))
3551 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3552 MaxSafeScalableVF, FoldTailByMasking))
3553 if (MaxVF.isScalable()) {
3554 Result.ScalableVF = MaxVF;
3555 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3564 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3568 "Not inserting runtime ptr check for divergent target",
3569 "runtime pointer checks needed. Not enabled for divergent target",
3570 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3576 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3579 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3582 "loop trip count is one, irrelevant for vectorization",
3593 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3597 "Trip count computation wrapped",
3598 "backedge-taken count is -1, loop trip count wrapped to 0",
3603 switch (ScalarEpilogueStatus) {
3605 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3610 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3611 <<
"LV: Not allowing scalar epilogue, creating predicated "
3612 <<
"vector loop.\n");
3619 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3621 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3637 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3638 "No decisions should have been taken at this point");
3648 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3652 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3653 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3654 *MaxPowerOf2RuntimeVF,
3657 MaxPowerOf2RuntimeVF = std::nullopt;
3660 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3664 !
Legal->hasUncountableEarlyExit())
3666 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3671 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3673 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3674 "Invalid loop count");
3676 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3683 if (MaxPowerOf2RuntimeVF > 0u) {
3685 "MaxFixedVF must be a power of 2");
3686 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3688 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3694 if (ExpectedTC && ExpectedTC->isFixed() &&
3695 ExpectedTC->getFixedValue() <=
3696 TTI.getMinTripCountTailFoldingThreshold()) {
3697 if (MaxPowerOf2RuntimeVF > 0u) {
3703 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3704 "remain for any chosen VF.\n");
3711 "The trip count is below the minial threshold value.",
3712 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3727 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3728 "try to generate VP Intrinsics with scalable vector "
3733 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3743 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3744 "scalar epilogue instead.\n");
3750 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3756 "unable to calculate the loop count due to complex control flow",
3762 "Cannot optimize for size and vectorize at the same time.",
3763 "cannot optimize for size and vectorize at the same time. "
3764 "Enable vectorization of this loop with '#pragma clang loop "
3765 "vectorize(enable)' when compiling with -Os/-Oz",
3777 if (
TTI.shouldConsiderVectorizationRegPressure())
3793 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3795 Legal->hasVectorCallVariants())));
3798ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3799 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3801 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3802 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3803 auto Min = Attr.getVScaleRangeMin();
3810 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3813 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3821 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3822 "exceeding the constant trip count: "
3823 << ClampedUpperTripCount <<
"\n");
3825 FoldTailByMasking ? VF.
isScalable() :
false);
3830ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3831 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3832 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3833 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3839 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3841 "Scalable flags must match");
3849 ComputeScalableMaxVF);
3850 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3852 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3854 if (!MaxVectorElementCount) {
3856 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3857 <<
" vector registers.\n");
3861 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3862 MaxTripCount, FoldTailByMasking);
3865 if (MaxVF != MaxVectorElementCount)
3873 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3875 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3877 if (useMaxBandwidth(RegKind)) {
3880 ComputeScalableMaxVF);
3881 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3883 if (ElementCount MinVF =
3885 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3887 <<
") with target's minimum: " << MinVF <<
'\n');
3892 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3894 if (MaxVectorElementCount != MaxVF) {
3898 invalidateCostModelingDecisions();
3906 const unsigned MaxTripCount,
3908 bool IsEpilogue)
const {
3914 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3915 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3916 if (
A.Width.isScalable())
3917 EstimatedWidthA *= *VScale;
3918 if (
B.Width.isScalable())
3919 EstimatedWidthB *= *VScale;
3926 return CostA < CostB ||
3927 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3933 A.Width.isScalable() && !
B.Width.isScalable();
3944 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3946 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3958 return VectorCost * (MaxTripCount / VF) +
3959 ScalarCost * (MaxTripCount % VF);
3960 return VectorCost *
divideCeil(MaxTripCount, VF);
3963 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3964 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3965 return CmpFn(RTCostA, RTCostB);
3971 bool IsEpilogue)
const {
3973 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3979 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3981 for (
const auto &Plan : VPlans) {
3990 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
3992 precomputeCosts(*Plan, VF, CostCtx);
3995 for (
auto &R : *VPBB) {
3996 if (!R.cost(VF, CostCtx).isValid())
4002 if (InvalidCosts.
empty())
4010 for (
auto &Pair : InvalidCosts)
4015 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4016 unsigned NA = Numbering[
A.first];
4017 unsigned NB = Numbering[
B.first];
4032 Subset =
Tail.take_front(1);
4039 [](
const auto *R) {
return Instruction::PHI; })
4040 .Case<VPWidenStoreRecipe>(
4041 [](
const auto *R) {
return Instruction::Store; })
4042 .Case<VPWidenLoadRecipe>(
4043 [](
const auto *R) {
return Instruction::Load; })
4044 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4045 [](
const auto *R) {
return Instruction::Call; })
4048 [](
const auto *R) {
return R->getOpcode(); })
4050 return R->getStoredValues().empty() ? Instruction::Load
4051 : Instruction::Store;
4053 .Case<VPReductionRecipe>([](
const auto *R) {
4062 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4063 std::string OutString;
4065 assert(!Subset.empty() &&
"Unexpected empty range");
4066 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4067 for (
const auto &Pair : Subset)
4068 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4070 if (Opcode == Instruction::Call) {
4073 Name =
Int->getIntrinsicName();
4077 WidenCall ? WidenCall->getCalledScalarFunction()
4079 ->getLiveInIRValue());
4082 OS <<
" call to " << Name;
4087 Tail =
Tail.drop_front(Subset.size());
4091 Subset =
Tail.take_front(Subset.size() + 1);
4092 }
while (!
Tail.empty());
4114 switch (R.getVPDefID()) {
4115 case VPDef::VPDerivedIVSC:
4116 case VPDef::VPScalarIVStepsSC:
4117 case VPDef::VPReplicateSC:
4118 case VPDef::VPInstructionSC:
4119 case VPDef::VPCanonicalIVPHISC:
4120 case VPDef::VPVectorPointerSC:
4121 case VPDef::VPVectorEndPointerSC:
4122 case VPDef::VPExpandSCEVSC:
4123 case VPDef::VPEVLBasedIVPHISC:
4124 case VPDef::VPPredInstPHISC:
4125 case VPDef::VPBranchOnMaskSC:
4127 case VPDef::VPReductionSC:
4128 case VPDef::VPActiveLaneMaskPHISC:
4129 case VPDef::VPWidenCallSC:
4130 case VPDef::VPWidenCanonicalIVSC:
4131 case VPDef::VPWidenCastSC:
4132 case VPDef::VPWidenGEPSC:
4133 case VPDef::VPWidenIntrinsicSC:
4134 case VPDef::VPWidenSC:
4135 case VPDef::VPBlendSC:
4136 case VPDef::VPFirstOrderRecurrencePHISC:
4137 case VPDef::VPHistogramSC:
4138 case VPDef::VPWidenPHISC:
4139 case VPDef::VPWidenIntOrFpInductionSC:
4140 case VPDef::VPWidenPointerInductionSC:
4141 case VPDef::VPReductionPHISC:
4142 case VPDef::VPInterleaveEVLSC:
4143 case VPDef::VPInterleaveSC:
4144 case VPDef::VPWidenLoadEVLSC:
4145 case VPDef::VPWidenLoadSC:
4146 case VPDef::VPWidenStoreEVLSC:
4147 case VPDef::VPWidenStoreSC:
4153 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4154 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4170 if (R.getNumDefinedValues() == 0 &&
4179 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4181 if (!Visited.
insert({ScalarTy}).second)
4195 [](
auto *VPRB) { return VPRB->isReplicator(); });
4201 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4202 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4205 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4206 "Expected Scalar VF to be a candidate");
4213 if (ForceVectorization &&
4214 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4218 ChosenFactor.
Cost = InstructionCost::getMax();
4221 for (
auto &
P : VPlans) {
4223 P->vectorFactors().end());
4226 if (
any_of(VFs, [
this](ElementCount VF) {
4227 return CM.shouldConsiderRegPressureForVF(VF);
4231 for (
unsigned I = 0;
I < VFs.size();
I++) {
4232 ElementCount VF = VFs[
I];
4240 if (CM.shouldConsiderRegPressureForVF(VF) &&
4248 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind, CM.PSE,
4250 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4251 assert(VectorRegion &&
"Expected to have a vector region!");
4254 for (VPRecipeBase &R : *VPBB) {
4258 switch (VPI->getOpcode()) {
4261 case Instruction::Select: {
4264 switch (WR->getOpcode()) {
4265 case Instruction::UDiv:
4266 case Instruction::SDiv:
4267 case Instruction::URem:
4268 case Instruction::SRem:
4274 C += VPI->cost(VF, CostCtx);
4278 unsigned Multiplier =
4280 C += VPI->cost(VF * Multiplier, CostCtx);
4284 C += VPI->cost(VF, CostCtx);
4296 <<
" costs: " << (Candidate.Cost / Width));
4299 << CM.getVScaleForTuning().value_or(1) <<
")");
4305 <<
"LV: Not considering vector loop of width " << VF
4306 <<
" because it will not generate any vector instructions.\n");
4313 <<
"LV: Not considering vector loop of width " << VF
4314 <<
" because it would cause replicated blocks to be generated,"
4315 <<
" which isn't allowed when optimizing for size.\n");
4319 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4320 ChosenFactor = Candidate;
4326 "There are conditional stores.",
4327 "store that is conditionally executed prevents vectorization",
4328 "ConditionalStore", ORE, OrigLoop);
4329 ChosenFactor = ScalarCost;
4333 !isMoreProfitable(ChosenFactor, ScalarCost,
4334 !CM.foldTailByMasking()))
dbgs()
4335 <<
"LV: Vectorization seems to be not beneficial, "
4336 <<
"but was forced by a user.\n");
4337 return ChosenFactor;
4341bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4342 ElementCount VF)
const {
4347 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4348 if (!Legal->isReductionVariable(&Phi))
4349 return Legal->isFixedOrderRecurrence(&Phi);
4351 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4352 return RecurrenceDescriptor::isFindLastRecurrenceKind(Kind) ||
4353 RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(Kind);
4359 for (
const auto &Entry :
Legal->getInductionVars()) {
4362 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4363 for (User *U :
PostInc->users())
4367 for (User *U :
Entry.first->users())
4376 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4390 if (!
TTI.preferEpilogueVectorization())
4395 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4400 :
TTI.getEpilogueVectorizationMinVF();
4408 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4412 if (!CM.isScalarEpilogueAllowed()) {
4413 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4414 "epilogue is allowed.\n");
4420 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4421 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4422 "is not a supported candidate.\n");
4427 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4430 return {ForcedEC, 0, 0};
4432 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4437 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4439 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4443 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4444 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4455 Type *TCType = Legal->getWidestInductionType();
4456 const SCEV *RemainingIterations =
nullptr;
4457 unsigned MaxTripCount = 0;
4461 const SCEV *KnownMinTC;
4463 bool ScalableRemIter =
false;
4467 ScalableRemIter = ScalableTC;
4468 RemainingIterations =
4470 }
else if (ScalableTC) {
4473 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4477 RemainingIterations =
4481 if (RemainingIterations->
isZero())
4491 << MaxTripCount <<
"\n");
4494 auto SkipVF = [&](
const SCEV *VF,
const SCEV *RemIter) ->
bool {
4497 for (
auto &NextVF : ProfitableVFs) {
4504 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4506 (NextVF.Width.isScalable() &&
4508 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4517 if (!ScalableRemIter) {
4521 if (NextVF.Width.isScalable())
4528 if (Result.Width.isScalar() ||
4529 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4536 << Result.Width <<
"\n");
4540std::pair<unsigned, unsigned>
4542 unsigned MinWidth = -1U;
4543 unsigned MaxWidth = 8;
4549 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4553 MinWidth = std::min(
4557 MaxWidth = std::max(MaxWidth,
4562 MinWidth = std::min<unsigned>(
4563 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4564 MaxWidth = std::max<unsigned>(
4565 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4568 return {MinWidth, MaxWidth};
4576 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4590 if (!
Legal->isReductionVariable(PN))
4593 Legal->getRecurrenceDescriptor(PN);
4603 T = ST->getValueOperand()->getType();
4606 "Expected the load/store/recurrence type to be sized");
4634 if (!CM.isScalarEpilogueAllowed() &&
4635 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4640 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4641 "Unroll factor forced to be 1.\n");
4646 if (!Legal->isSafeForAnyVectorWidth())
4655 const bool HasReductions =
4662 return RecurrenceDescriptor::isFindLastRecurrenceKind(
4663 RdxDesc.getRecurrenceKind());
4669 if (LoopCost == 0) {
4671 LoopCost = CM.expectedCost(VF);
4673 LoopCost = cost(Plan, VF);
4674 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4685 for (
auto &Pair : R.MaxLocalUsers) {
4686 Pair.second = std::max(Pair.second, 1U);
4700 unsigned IC = UINT_MAX;
4702 for (
const auto &Pair : R.MaxLocalUsers) {
4703 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4706 << TTI.getRegisterClassName(Pair.first)
4707 <<
" register class\n");
4715 unsigned MaxLocalUsers = Pair.second;
4716 unsigned LoopInvariantRegs = 0;
4717 if (R.LoopInvariantRegs.contains(Pair.first))
4718 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4720 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4724 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4725 std::max(1U, (MaxLocalUsers - 1)));
4728 IC = std::min(IC, TmpIC);
4732 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4748 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4750 unsigned AvailableTC =
4756 if (CM.requiresScalarEpilogue(VF.
isVector()))
4759 unsigned InterleaveCountLB =
bit_floor(std::max(
4760 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4774 unsigned InterleaveCountUB =
bit_floor(std::max(
4775 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4776 MaxInterleaveCount = InterleaveCountLB;
4778 if (InterleaveCountUB != InterleaveCountLB) {
4779 unsigned TailTripCountUB =
4780 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4781 unsigned TailTripCountLB =
4782 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4785 if (TailTripCountUB == TailTripCountLB)
4786 MaxInterleaveCount = InterleaveCountUB;
4794 MaxInterleaveCount = InterleaveCountLB;
4798 assert(MaxInterleaveCount > 0 &&
4799 "Maximum interleave count must be greater than 0");
4803 if (IC > MaxInterleaveCount)
4804 IC = MaxInterleaveCount;
4807 IC = std::max(1u, IC);
4809 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4813 if (VF.
isVector() && HasReductions) {
4814 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4822 bool ScalarInterleavingRequiresPredication =
4824 return Legal->blockNeedsPredication(BB);
4826 bool ScalarInterleavingRequiresRuntimePointerCheck =
4827 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4832 <<
"LV: IC is " << IC <<
'\n'
4833 <<
"LV: VF is " << VF <<
'\n');
4834 const bool AggressivelyInterleaveReductions =
4835 TTI.enableAggressiveInterleaving(HasReductions);
4836 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4837 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4846 unsigned NumStores = 0;
4847 unsigned NumLoads = 0;
4861 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4862 NumStores += StoreOps;
4864 NumLoads += InterleaveR->getNumDefinedValues();
4879 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4880 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4886 bool HasSelectCmpReductions =
4890 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4891 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4892 RedR->getRecurrenceKind()) ||
4893 RecurrenceDescriptor::isFindIVRecurrenceKind(
4894 RedR->getRecurrenceKind()));
4896 if (HasSelectCmpReductions) {
4897 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4906 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4907 bool HasOrderedReductions =
4910 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4912 return RedR && RedR->isOrdered();
4914 if (HasOrderedReductions) {
4916 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4921 SmallIC = std::min(SmallIC,
F);
4922 StoresIC = std::min(StoresIC,
F);
4923 LoadsIC = std::min(LoadsIC,
F);
4927 std::max(StoresIC, LoadsIC) > SmallIC) {
4929 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4930 return std::max(StoresIC, LoadsIC);
4935 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4939 return std::max(IC / 2, SmallIC);
4942 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4948 if (AggressivelyInterleaveReductions) {
4957bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4967 assert((isPredicatedInst(
I)) &&
4968 "Expecting a scalar emulated instruction");
4981 if (InstsToScalarize.contains(VF) ||
4982 PredicatedBBsAfterVectorization.contains(VF))
4988 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4998 ScalarCostsTy ScalarCosts;
5005 !useEmulatedMaskMemRefHack(&
I, VF) &&
5006 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
5007 for (
const auto &[
I, IC] : ScalarCosts)
5008 ScalarCostsVF.
insert({
I, IC});
5011 for (
const auto &[
I,
Cost] : ScalarCosts) {
5013 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5016 CallWideningDecisions[{CI, VF}].Cost =
Cost;
5020 PredicatedBBsAfterVectorization[VF].insert(BB);
5022 if (Pred->getSingleSuccessor() == BB)
5023 PredicatedBBsAfterVectorization[VF].insert(Pred);
5031 assert(!isUniformAfterVectorization(PredInst, VF) &&
5032 "Instruction marked uniform-after-vectorization will be predicated");
5050 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5051 isScalarAfterVectorization(
I, VF))
5056 if (isScalarWithPredication(
I, VF))
5069 for (
Use &U :
I->operands())
5071 if (isUniformAfterVectorization(J, VF))
5082 while (!Worklist.
empty()) {
5086 if (ScalarCosts.contains(
I))
5106 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5109 ScalarCost +=
TTI.getScalarizationOverhead(
5122 for (Use &U :
I->operands())
5125 "Instruction has non-scalar type");
5126 if (CanBeScalarized(J))
5128 else if (needsExtract(J, VF)) {
5140 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5144 Discount += VectorCost - ScalarCost;
5145 ScalarCosts[
I] = ScalarCost;
5161 ValuesToIgnoreForVF);
5168 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5191 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5192 << VF <<
" For instruction: " <<
I <<
'\n');
5221 const Loop *TheLoop) {
5233LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5236 "Scalarization cost of instruction implies vectorization.");
5238 return InstructionCost::getInvalid();
5241 auto *SE = PSE.
getSE();
5272 if (isPredicatedInst(
I)) {
5277 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5283 if (useEmulatedMaskMemRefHack(
I, VF))
5293LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5299 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy, Ptr);
5301 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5302 "Stride should be 1 or -1 for consecutive memory access");
5305 if (
Legal->isMaskRequired(
I)) {
5306 unsigned IID =
I->getOpcode() == Instruction::Load
5307 ? Intrinsic::masked_load
5308 : Intrinsic::masked_store;
5310 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS),
CostKind);
5317 bool Reverse = ConsecutiveStride < 0;
5325LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5343 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5351 if (!IsLoopInvariantStoreValue)
5358LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5366 if (!
Legal->isUniform(Ptr, VF))
5369 unsigned IID =
I->getOpcode() == Instruction::Load
5370 ? Intrinsic::masked_gather
5371 : Intrinsic::masked_scatter;
5374 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5375 Legal->isMaskRequired(
I), Alignment,
I),
5380LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5382 const auto *Group = getInterleavedAccessGroup(
I);
5383 assert(Group &&
"Fail to get an interleaved access group.");
5390 unsigned InterleaveFactor = Group->getFactor();
5391 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5394 SmallVector<unsigned, 4> Indices;
5395 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
5396 if (Group->getMember(IF))
5400 bool UseMaskForGaps =
5401 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5404 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5408 if (Group->isReverse()) {
5411 "Reverse masked interleaved access not supported.");
5412 Cost += Group->getNumMembers() *
5419std::optional<InstructionCost>
5426 return std::nullopt;
5444 return std::nullopt;
5455 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5457 return std::nullopt;
5463 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5472 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5475 BaseCost =
TTI.getArithmeticReductionCost(
5483 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5500 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5506 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5518 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5521 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5523 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5531 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5532 return I == RetI ? RedCost : 0;
5534 !
TheLoop->isLoopInvariant(RedOp)) {
5543 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5545 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5546 return I == RetI ? RedCost : 0;
5547 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5551 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5570 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5576 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5577 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5578 ExtraExtCost =
TTI.getCastInstrCost(
5585 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5586 return I == RetI ? RedCost : 0;
5590 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5596 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5597 return I == RetI ? RedCost : 0;
5601 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5605LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5616 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5617 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5620 return getWideningCost(
I, VF);
5624LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5625 ElementCount VF)
const {
5630 return InstructionCost::getInvalid();
5658 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5663 for (
auto *V : filterExtractingOperands(
Ops, VF))
5686 if (
Legal->isUniformMemOp(
I, VF)) {
5687 auto IsLegalToScalarize = [&]() {
5707 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5719 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5725 if (GatherScatterCost < ScalarizationCost)
5735 int ConsecutiveStride =
Legal->isConsecutivePtr(
5737 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5738 "Expected consecutive stride.");
5747 unsigned NumAccesses = 1;
5750 assert(Group &&
"Fail to get an interleaved access group.");
5756 NumAccesses = Group->getNumMembers();
5758 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5763 ? getGatherScatterCost(&
I, VF) * NumAccesses
5767 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5773 if (InterleaveCost <= GatherScatterCost &&
5774 InterleaveCost < ScalarizationCost) {
5776 Cost = InterleaveCost;
5777 }
else if (GatherScatterCost < ScalarizationCost) {
5779 Cost = GatherScatterCost;
5782 Cost = ScalarizationCost;
5789 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5790 if (
auto *
I = Group->getMember(Idx)) {
5792 getMemInstScalarizationCost(
I, VF));
5808 if (
TTI.prefersVectorizedAddressing())
5817 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5825 while (!Worklist.
empty()) {
5827 for (
auto &
Op :
I->operands())
5830 AddrDefs.
insert(InstOp).second)
5834 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5838 for (
User *U :
LI->users()) {
5848 for (
auto *
I : AddrDefs) {
5869 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5870 if (
Instruction *Member = Group->getMember(Idx)) {
5874 getMemoryInstructionCost(Member,
5876 : getMemInstScalarizationCost(Member, VF);
5889 ForcedScalars[VF].insert(
I);
5896 "Trying to set a vectorization decision for a scalar VF");
5898 auto ForcedScalar = ForcedScalars.find(VF);
5913 for (
auto &ArgOp : CI->
args())
5922 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5932 "Unexpected valid cost for scalarizing scalable vectors");
5939 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5940 ForcedScalar->second.contains(CI)) ||
5948 bool MaskRequired =
Legal->isMaskRequired(CI);
5951 for (
Type *ScalarTy : ScalarTys)
5960 std::nullopt, *RedCost);
5971 if (Info.Shape.VF != VF)
5975 if (MaskRequired && !Info.isMasked())
5979 bool ParamsOk =
true;
5981 switch (Param.ParamKind) {
5987 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
6024 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
6057 return !OpI || !
TheLoop->contains(OpI) ||
6061 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
6073 return InstsToScalarize[VF][
I];
6076 auto ForcedScalar = ForcedScalars.find(VF);
6077 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
6078 auto InstSet = ForcedScalar->second;
6079 if (InstSet.count(
I))
6084 Type *RetTy =
I->getType();
6087 auto *SE =
PSE.getSE();
6091 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6096 auto Scalarized = InstsToScalarize.find(VF);
6097 assert(Scalarized != InstsToScalarize.end() &&
6098 "VF not yet analyzed for scalarization profitability");
6099 return !Scalarized->second.count(
I) &&
6101 auto *UI = cast<Instruction>(U);
6102 return !Scalarized->second.count(UI);
6111 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6112 I->getOpcode() == Instruction::PHI ||
6113 (
I->getOpcode() == Instruction::BitCast &&
6114 I->getType()->isPointerTy()) ||
6115 HasSingleCopyAfterVectorization(
I, VF));
6121 !
TTI.getNumberOfParts(VectorTy))
6125 switch (
I->getOpcode()) {
6126 case Instruction::GetElementPtr:
6132 case Instruction::Br: {
6139 bool ScalarPredicatedBB =
false;
6142 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6143 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6145 ScalarPredicatedBB =
true;
6147 if (ScalarPredicatedBB) {
6155 TTI.getScalarizationOverhead(
6163 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6171 case Instruction::Switch: {
6173 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6175 return Switch->getNumCases() *
6176 TTI.getCmpSelInstrCost(
6178 toVectorTy(Switch->getCondition()->getType(), VF),
6182 case Instruction::PHI: {
6199 Type *ResultTy = Phi->getType();
6205 auto *Phi = dyn_cast<PHINode>(U);
6206 if (Phi && Phi->getParent() == TheLoop->getHeader())
6211 auto &ReductionVars =
Legal->getReductionVars();
6212 auto Iter = ReductionVars.find(HeaderUser);
6213 if (Iter != ReductionVars.end() &&
6215 Iter->second.getRecurrenceKind()))
6218 return (Phi->getNumIncomingValues() - 1) *
6219 TTI.getCmpSelInstrCost(
6220 Instruction::Select,
toVectorTy(ResultTy, VF),
6230 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6231 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6235 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6237 case Instruction::UDiv:
6238 case Instruction::SDiv:
6239 case Instruction::URem:
6240 case Instruction::SRem:
6244 ScalarCost : SafeDivisorCost;
6248 case Instruction::Add:
6249 case Instruction::Sub: {
6250 auto Info =
Legal->getHistogramInfo(
I);
6257 if (!RHS || RHS->getZExtValue() != 1)
6259 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6263 Type *ScalarTy =
I->getType();
6267 {PtrTy, ScalarTy, MaskTy});
6270 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6271 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6275 case Instruction::FAdd:
6276 case Instruction::FSub:
6277 case Instruction::Mul:
6278 case Instruction::FMul:
6279 case Instruction::FDiv:
6280 case Instruction::FRem:
6281 case Instruction::Shl:
6282 case Instruction::LShr:
6283 case Instruction::AShr:
6284 case Instruction::And:
6285 case Instruction::Or:
6286 case Instruction::Xor: {
6290 if (
I->getOpcode() == Instruction::Mul &&
6291 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6292 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6293 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6294 PSE.getSCEV(
I->getOperand(1))->isOne())))
6303 Value *Op2 =
I->getOperand(1);
6309 auto Op2Info =
TTI.getOperandInfo(Op2);
6315 return TTI.getArithmeticInstrCost(
6317 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6318 Op2Info, Operands,
I,
TLI);
6320 case Instruction::FNeg: {
6321 return TTI.getArithmeticInstrCost(
6323 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6324 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6325 I->getOperand(0),
I);
6327 case Instruction::Select: {
6332 const Value *Op0, *Op1;
6343 return TTI.getArithmeticInstrCost(
6345 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6348 Type *CondTy =
SI->getCondition()->getType();
6354 Pred = Cmp->getPredicate();
6355 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6356 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6357 {TTI::OK_AnyValue, TTI::OP_None},
I);
6359 case Instruction::ICmp:
6360 case Instruction::FCmp: {
6361 Type *ValTy =
I->getOperand(0)->getType();
6367 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6368 "if both the operand and the compare are marked for "
6369 "truncation, they must have the same bitwidth");
6374 return TTI.getCmpSelInstrCost(
6377 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6379 case Instruction::Store:
6380 case Instruction::Load: {
6385 "CM decision should be taken at this point");
6392 return getMemoryInstructionCost(
I, VF);
6394 case Instruction::BitCast:
6395 if (
I->getType()->isPointerTy())
6398 case Instruction::ZExt:
6399 case Instruction::SExt:
6400 case Instruction::FPToUI:
6401 case Instruction::FPToSI:
6402 case Instruction::FPExt:
6403 case Instruction::PtrToInt:
6404 case Instruction::IntToPtr:
6405 case Instruction::SIToFP:
6406 case Instruction::UIToFP:
6407 case Instruction::Trunc:
6408 case Instruction::FPTrunc: {
6412 "Expected a load or a store!");
6438 unsigned Opcode =
I->getOpcode();
6441 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6444 CCH = ComputeCCH(Store);
6447 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6448 Opcode == Instruction::FPExt) {
6450 CCH = ComputeCCH(Load);
6458 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6459 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6466 Type *SrcScalarTy =
I->getOperand(0)->getType();
6478 (
I->getOpcode() == Instruction::ZExt ||
6479 I->getOpcode() == Instruction::SExt))
6483 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6485 case Instruction::Call:
6487 case Instruction::ExtractValue:
6489 case Instruction::Alloca:
6494 return TTI.getArithmeticInstrCost(Instruction::Mul, RetTy,
CostKind);
6497 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6512 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6513 return RequiresScalarEpilogue &&
6527 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6528 return VecValuesToIgnore.contains(U) ||
6529 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6538 if (Group->getInsertPos() == &
I)
6541 DeadInterleavePointerOps.
push_back(PointerOp);
6547 if (Br->isConditional())
6554 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6557 Instruction *UI = cast<Instruction>(U);
6558 return !VecValuesToIgnore.contains(U) &&
6559 (!isAccessInterleaved(UI) ||
6560 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6580 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6592 if ((ThenEmpty && ElseEmpty) ||
6594 ElseBB->
phis().empty()) ||
6596 ThenBB->
phis().empty())) {
6608 return !VecValuesToIgnore.contains(U) &&
6609 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6617 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6626 for (
const auto &Reduction :
Legal->getReductionVars()) {
6633 for (
const auto &Induction :
Legal->getInductionVars()) {
6641 if (!InLoopReductions.empty())
6644 for (
const auto &Reduction :
Legal->getReductionVars()) {
6645 PHINode *Phi = Reduction.first;
6666 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6674 bool InLoop = !ReductionOperations.
empty();
6677 InLoopReductions.insert(Phi);
6680 for (
auto *
I : ReductionOperations) {
6681 InLoopReductionImmediateChains[
I] = LastChain;
6685 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6686 <<
" reduction for phi: " << *Phi <<
"\n");
6699 unsigned WidestType;
6703 TTI.enableScalableVectorization()
6708 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6719 if (!OrigLoop->isInnermost()) {
6729 <<
"overriding computed VF.\n");
6732 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6734 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6735 <<
"not supported by the target.\n");
6737 "Scalable vectorization requested but not supported by the target",
6738 "the scalable user-specified vectorization width for outer-loop "
6739 "vectorization cannot be used because the target does not support "
6740 "scalable vectors.",
6741 "ScalableVFUnfeasible", ORE, OrigLoop);
6746 "VF needs to be a power of two");
6748 <<
"VF " << VF <<
" to build VPlans.\n");
6758 return {VF, 0 , 0 };
6762 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6763 "VPlan-native path.\n");
6768 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6769 CM.collectValuesToIgnore();
6770 CM.collectElementTypesForWidening();
6777 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6781 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6782 "which requires masked-interleaved support.\n");
6783 if (CM.InterleaveInfo.invalidateGroups())
6787 CM.invalidateCostModelingDecisions();
6790 if (CM.foldTailByMasking())
6791 Legal->prepareToFoldTailByMasking();
6798 "UserVF ignored because it may be larger than the maximal safe VF",
6799 "InvalidUserVF", ORE, OrigLoop);
6802 "VF needs to be a power of two");
6805 CM.collectInLoopReductions();
6806 if (CM.selectUserVectorizationFactor(UserVF)) {
6808 buildVPlansWithVPRecipes(UserVF, UserVF);
6813 "InvalidCost", ORE, OrigLoop);
6826 CM.collectInLoopReductions();
6827 for (
const auto &VF : VFCandidates) {
6829 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6848 return CM.isUniformAfterVectorization(
I, VF);
6852 return CM.ValuesToIgnore.contains(UI) ||
6853 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6858 return CM.getPredBlockCostDivisor(
CostKind, BB);
6877 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6879 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6881 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6882 for (
Value *
Op : IVInsts[
I]->operands()) {
6884 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6890 for (User *U :
IV->users()) {
6903 if (TC == VF && !CM.foldTailByMasking())
6907 for (Instruction *IVInst : IVInsts) {
6912 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6913 <<
": induction instruction " << *IVInst <<
"\n";
6915 Cost += InductionCost;
6925 CM.TheLoop->getExitingBlocks(Exiting);
6926 SetVector<Instruction *> ExitInstrs;
6928 for (BasicBlock *EB : Exiting) {
6933 ExitInstrs.
insert(CondI);
6937 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6939 if (!OrigLoop->contains(CondI) ||
6944 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6945 <<
": exit condition instruction " << *CondI <<
"\n";
6951 any_of(OpI->users(), [&ExitInstrs](User *U) {
6952 return !ExitInstrs.contains(cast<Instruction>(U));
6964 for (BasicBlock *BB : OrigLoop->blocks()) {
6968 if (BB == OrigLoop->getLoopLatch())
6970 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6977 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6983 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6984 <<
": forced scalar " << *ForcedScalar <<
"\n";
6988 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6993 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6994 <<
": profitable to scalarize " << *Scalarized <<
"\n";
7003 ElementCount VF)
const {
7004 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, PSE, OrigLoop);
7012 <<
" (Estimated cost per lane: ");
7014 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
7037 return &WidenMem->getIngredient();
7046 if (!VPI || VPI->getOpcode() != Instruction::Select)
7050 switch (WR->getOpcode()) {
7051 case Instruction::UDiv:
7052 case Instruction::SDiv:
7053 case Instruction::URem:
7054 case Instruction::SRem:
7067 auto *IG =
IR->getInterleaveGroup();
7068 unsigned NumMembers = IG->getNumMembers();
7069 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7087 if (VPR->isPartialReduction())
7099 if (WidenMemR->isReverse()) {
7105 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7109 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7124 if (RepR->isSingleScalar() &&
7126 RepR->getUnderlyingInstr(), VF))
7129 if (
Instruction *UI = GetInstructionForCost(&R)) {
7134 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7146 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7148 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7151 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7152 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7154 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7164 VPlan &FirstPlan = *VPlans[0];
7170 ?
"Reciprocal Throughput\n"
7172 ?
"Instruction Latency\n"
7175 ?
"Code Size and Latency\n"
7180 "More than a single plan/VF w/o any plan having scalar VF");
7184 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7189 if (ForceVectorization) {
7196 for (
auto &
P : VPlans) {
7198 P->vectorFactors().end());
7202 return CM.shouldConsiderRegPressureForVF(VF);
7206 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7213 <<
"LV: Not considering vector loop of width " << VF
7214 <<
" because it will not generate any vector instructions.\n");
7220 <<
"LV: Not considering vector loop of width " << VF
7221 <<
" because it would cause replicated blocks to be generated,"
7222 <<
" which isn't allowed when optimizing for size.\n");
7229 if (CM.shouldConsiderRegPressureForVF(VF) &&
7231 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7232 << VF <<
" because it uses too many registers\n");
7236 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7237 BestFactor = CurrentFactor;
7240 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7241 ProfitableVFs.push_back(CurrentFactor);
7257 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind, CM.PSE,
7259 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7266 bool UsesEVLGatherScatter =
7270 return any_of(*VPBB, [](VPRecipeBase &R) {
7271 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7272 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7276 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7277 !
Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7279 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7281 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7282 " VPlan cost model and legacy cost model disagreed");
7283 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7284 "when vectorizing, the scalar cost must be computed.");
7287 LLVM_DEBUG(
dbgs() <<
"LV: Selecting VF: " << BestFactor.Width <<
".\n");
7293template <
typename PredT>
7297 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
7315 "RdxResult must be ComputeFindIVResult");
7333 if (!EpiRedResult ||
7341 EpiRedResult->getOperand(EpiRedResult->getNumOperands() - 1);
7344 if (!EpiRedHeaderPhi) {
7353 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7354 Value *MainResumeValue;
7358 "unexpected start recipe");
7359 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7361 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7363 [[maybe_unused]]
Value *StartV =
7364 EpiRedResult->getOperand(1)->getLiveInIRValue();
7367 "AnyOf expected to start with ICMP_NE");
7368 assert(Cmp->getOperand(1) == StartV &&
7369 "AnyOf expected to start by comparing main resume value to original "
7371 MainResumeValue = Cmp->getOperand(0);
7374 Value *SentinelV = EpiRedResult->getOperand(1)->getLiveInIRValue();
7376 Value *Cmp, *OrigResumeV, *CmpOp;
7377 [[maybe_unused]]
bool IsExpectedPattern =
7378 match(MainResumeValue,
7384 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7385 MainResumeValue = OrigResumeV;
7400 "Trying to execute plan with unsupported VF");
7402 "Trying to execute plan with unsupported UF");
7404 ++LoopsEarlyExitVectorized;
7412 bool HasBranchWeights =
7414 if (HasBranchWeights) {
7415 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7417 BestVPlan, BestVF, VScale);
7422 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7435 OrigLoop->getStartLoc(),
7436 OrigLoop->getHeader())
7437 <<
"Created vector loop never executes due to insufficient trip "
7461 BestVPlan, VectorPH, CM.foldTailByMasking(),
7462 CM.requiresScalarEpilogue(BestVF.
isVector()));
7474 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7475 "count during epilogue vectorization");
7480 OrigLoop->getParentLoop(),
7481 Legal->getWidestInductionType());
7483#ifdef EXPENSIVE_CHECKS
7484 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7495 "final VPlan is invalid");
7502 if (!Exit->hasPredecessors())
7524 MDNode *LID = OrigLoop->getLoopID();
7525 unsigned OrigLoopInvocationWeight = 0;
7526 std::optional<unsigned> OrigAverageTripCount =
7538 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7540 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7542 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7543 OrigLoopInvocationWeight,
7545 DisableRuntimeUnroll);
7553 return ExpandedSCEVs;
7568 EPI.EpilogueIterationCountCheck =
7570 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7580 EPI.MainLoopIterationCountCheck =
7589 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7590 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7591 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7592 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7593 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7599 dbgs() <<
"intermediate fn:\n"
7600 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7606 assert(Bypass &&
"Expected valid bypass basic block.");
7610 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7611 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7615 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7641 return TCCheckBlock;
7654 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7662 R.moveBefore(*NewEntry, NewEntry->
end());
7666 Plan.setEntry(NewEntry);
7669 return OriginalScalarPH;
7674 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7675 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7676 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7682 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7689 VPI->
getOpcode() == Instruction::Store) &&
7690 "Must be called with either a load or store");
7697 "CM decision should be taken at this point.");
7710 if (
Legal->isMaskRequired(
I))
7735 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7741 GEP ?
GEP->getNoWrapFlags()
7745 Builder.insert(VectorPtr);
7749 if (VPI->
getOpcode() == Instruction::Load) {
7751 auto *LoadR =
new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive,
Reverse,
7752 *VPI,
Load->getDebugLoc());
7754 Builder.insert(LoadR);
7756 LoadR->getDebugLoc());
7765 Store->getDebugLoc());
7766 return new VPWidenStoreRecipe(*Store, Ptr, StoredVal, Mask, Consecutive,
7771VPRecipeBuilder::tryToOptimizeInductionTruncate(
VPInstruction *VPI,
7781 auto IsOptimizableIVTruncate =
7782 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7783 return [=](ElementCount VF) ->
bool {
7784 return CM.isOptimizableIVTruncate(K, VF);
7789 IsOptimizableIVTruncate(
I),
Range))
7796 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7804 return new VPWidenIntOrFpInductionRecipe(
7805 Phi, Start, Step, &Plan.getVF(), IndDesc,
I, Flags, VPI->
getDebugLoc());
7812 [
this, CI](ElementCount VF) {
7813 return CM.isScalarWithPredication(CI, VF);
7821 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7822 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7823 ID == Intrinsic::pseudoprobe ||
7824 ID == Intrinsic::experimental_noalias_scope_decl))
7831 bool ShouldUseVectorIntrinsic =
7833 [&](ElementCount VF) ->
bool {
7834 return CM.getCallWideningDecision(CI, VF).Kind ==
7838 if (ShouldUseVectorIntrinsic)
7839 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(), *VPI, *VPI,
7843 std::optional<unsigned> MaskPos;
7847 [&](ElementCount VF) ->
bool {
7862 LoopVectorizationCostModel::CallWideningDecision Decision =
7863 CM.getCallWideningDecision(CI, VF);
7873 if (ShouldUseVectorCall) {
7874 if (MaskPos.has_value()) {
7882 VPValue *
Mask = Legal->isMaskRequired(CI)
7886 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7890 return new VPWidenCallRecipe(CI, Variant,
Ops, *VPI, *VPI,
7899 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7902 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7903 return CM.isScalarAfterVectorization(
I, VF) ||
7904 CM.isProfitableToScalarize(
I, VF) ||
7905 CM.isScalarWithPredication(
I, VF);
7916 case Instruction::SDiv:
7917 case Instruction::UDiv:
7918 case Instruction::SRem:
7919 case Instruction::URem: {
7922 if (CM.isPredicatedInst(
I)) {
7925 VPValue *One = Plan.getConstantInt(
I->getType(), 1u);
7933 case Instruction::Add:
7934 case Instruction::And:
7935 case Instruction::AShr:
7936 case Instruction::FAdd:
7937 case Instruction::FCmp:
7938 case Instruction::FDiv:
7939 case Instruction::FMul:
7940 case Instruction::FNeg:
7941 case Instruction::FRem:
7942 case Instruction::FSub:
7943 case Instruction::ICmp:
7944 case Instruction::LShr:
7945 case Instruction::Mul:
7946 case Instruction::Or:
7947 case Instruction::Select:
7948 case Instruction::Shl:
7949 case Instruction::Sub:
7950 case Instruction::Xor:
7951 case Instruction::Freeze:
7952 return new VPWidenRecipe(*
I, VPI->
operands(), *VPI, *VPI,
7954 case Instruction::ExtractValue: {
7957 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7958 unsigned Idx = EVI->getIndices()[0];
7959 NewOps.push_back(Plan.getConstantInt(32, Idx));
7960 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7968 unsigned Opcode =
HI->Update->getOpcode();
7969 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7970 "Histogram update operation must be an Add or Sub");
7980 if (Legal->isMaskRequired(
HI->Store))
7983 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
7990 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7993 bool IsPredicated = CM.isPredicatedInst(
I);
8001 case Intrinsic::assume:
8002 case Intrinsic::lifetime_start:
8003 case Intrinsic::lifetime_end:
8025 VPValue *BlockInMask =
nullptr;
8026 if (!IsPredicated) {
8030 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8041 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8043 "Should not predicate a uniform recipe");
8059 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8060 if (
Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8061 getScaledReductions(Phi, RdxExitInstr,
Range, ChainsByPhi[Phi]);
8070 for (
const auto &[
_, Chains] : ChainsByPhi)
8071 for (
const auto &[PartialRdx,
_] : Chains)
8072 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8074 auto ExtendIsOnlyUsedByPartialReductions =
8076 return all_of(Extend->users(), [&](
const User *U) {
8077 return PartialReductionOps.contains(U);
8083 for (
const auto &[
_, Chains] : ChainsByPhi) {
8084 for (
const auto &[Chain, Scale] : Chains) {
8085 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8087 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8088 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8096 for (
const auto &[Phi, Chains] : ChainsByPhi) {
8097 for (
const auto &[Chain, Scale] : Chains) {
8098 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8099 this](
const User *U) {
8101 if (
isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8102 return UI == RdxPhi;
8103 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8104 !OrigLoop->contains(UI->getParent());
8109 if (!
all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8110 for (
const auto &[Chain,
_] : Chains)
8111 ScaledReductionMap.erase(Chain.Reduction);
8118bool VPRecipeBuilder::getScaledReductions(
8120 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8128 Value *
Op = Update->getOperand(0);
8129 Value *PhiOp = Update->getOperand(1);
8139 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8143 Op = Cast->getOperand(0);
8150 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8151 PHI = Chains.rbegin()->first.Reduction;
8153 Op = Update->getOperand(0);
8154 PhiOp = Update->getOperand(1);
8167 std::optional<unsigned> BinOpc;
8168 Type *ExtOpTypes[2] = {
nullptr};
8171 auto CollectExtInfo = [
this, OuterExtKind, &Exts, &ExtOpTypes,
8172 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
8177 ExtOpTypes[
I] = ExtOpTypes[0];
8178 ExtKinds[
I] = ExtKinds[0];
8187 if (!CM.TheLoop->contains(Exts[
I]))
8194 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[
I])
8209 if (!CollectExtInfo(
Ops))
8212 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8216 if (!CollectExtInfo(
Ops))
8219 ExtendUser = Update;
8220 BinOpc = std::nullopt;
8224 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8226 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8233 [&](ElementCount VF) {
8235 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8236 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8241 Chains.emplace_back(Chain, TargetScaleFactor);
8251 assert(!R->isPhi() &&
"phis must be handled earlier");
8257 if (VPI->
getOpcode() == Instruction::Trunc &&
8258 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8266 if (VPI->
getOpcode() == Instruction::Call)
8267 return tryToWidenCall(VPI,
Range);
8270 if (VPI->
getOpcode() == Instruction::Store)
8272 return tryToWidenHistogram(*HistInfo, VPI);
8274 if (VPI->
getOpcode() == Instruction::Load ||
8276 return tryToWidenMemory(VPI,
Range);
8281 if (!shouldWiden(Instr,
Range))
8284 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8292 CastR->getResultType(), CI, *VPI, *VPI,
8296 return tryToWiden(VPI);
8301 unsigned ScaleFactor) {
8302 assert(Reduction->getNumOperands() == 2 &&
8303 "Unexpected number of operands for partial reduction");
8305 VPValue *BinOp = Reduction->getOperand(0);
8314 RedPhiR->setVFScaleFactor(ScaleFactor);
8318 "all accumulators in chain must have same scale factor");
8320 auto *ReductionI = Reduction->getUnderlyingInstr();
8321 if (Reduction->getOpcode() == Instruction::Sub) {
8323 Ops.push_back(Plan.getConstantInt(ReductionI->getType(), 0));
8324 Ops.push_back(BinOp);
8331 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8339void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8348 OrigLoop, LI, DT, PSE.
getSE());
8353 LVer.prepareNoAliasMetadata();
8359 OrigLoop, *LI,
Legal->getWidestInductionType(),
8364 *VPlan0, PSE, *OrigLoop,
Legal->getInductionVars(),
8365 Legal->getReductionVars(),
Legal->getFixedOrderRecurrences(),
8368 auto MaxVFTimes2 = MaxVF * 2;
8370 VFRange SubRange = {VF, MaxVFTimes2};
8371 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8372 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8377 *Plan, CM.getMinimalBitwidths());
8380 if (CM.foldTailWithEVL()) {
8382 *Plan, CM.getMaxSafeElements());
8386 VPlans.push_back(std::move(Plan));
8392VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8395 using namespace llvm::VPlanPatternMatch;
8396 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8403 bool RequiresScalarEpilogueCheck =
8405 [
this](ElementCount VF) {
8406 return !CM.requiresScalarEpilogue(VF.
isVector());
8411 CM.foldTailByMasking());
8419 bool IVUpdateMayOverflow =
false;
8420 for (ElementCount VF :
Range)
8428 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8434 m_VPInstruction<Instruction::Add>(
8436 "Did not find the canonical IV increment");
8449 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8450 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8452 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8457 "Unsupported interleave factor for scalable vectors");
8462 InterleaveGroups.
insert(IG);
8469 *Plan, CM.foldTailByMasking());
8475 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, Builder,
8478 if (!CM.foldTailWithEVL())
8479 RecipeBuilder.collectScaledReductions(
Range);
8484 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8487 auto *MiddleVPBB = Plan->getMiddleBlock();
8491 DenseMap<VPValue *, VPValue *> Old2New;
8494 DenseSet<BasicBlock *> BlocksNeedingPredication;
8495 for (BasicBlock *BB : OrigLoop->blocks())
8496 if (CM.blockNeedsPredicationForAnyReason(BB))
8497 BlocksNeedingPredication.
insert(BB);
8500 *Plan, BlockMaskCache, BlocksNeedingPredication,
Range.Start);
8506 make_range(VPBB->getFirstNonPhi(), VPBB->end()))) {
8518 Builder.setInsertPoint(VPI);
8525 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8527 if (Legal->isInvariantStoreOfReduction(SI)) {
8528 auto *Recipe =
new VPReplicateRecipe(
8529 SI,
R.operands(),
true ,
nullptr , *VPI,
8531 Recipe->insertBefore(*MiddleVPBB, MBIP);
8533 R.eraseFromParent();
8537 VPRecipeBase *Recipe =
8538 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI,
Range);
8543 RecipeBuilder.setRecipe(Instr, Recipe);
8549 Builder.insert(Recipe);
8556 "Unexpected multidef recipe");
8557 R.eraseFromParent();
8566 RecipeBuilder.updateBlockMaskCache(Old2New);
8567 for (VPValue *Old : Old2New.
keys())
8568 Old->getDefiningRecipe()->eraseFromParent();
8572 "entry block must be set to a VPRegionBlock having a non-empty entry "
8578 DenseMap<VPValue *, VPValue *> IVEndValues;
8586 addReductionResultComputation(Plan, RecipeBuilder,
Range.Start);
8608 if (!CM.foldTailWithEVL()) {
8609 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
8615 for (ElementCount VF :
Range)
8617 Plan->setName(
"Initial VPlan");
8623 InterleaveGroups, RecipeBuilder,
8624 CM.isScalarEpilogueAllowed());
8628 Legal->getLAI()->getSymbolicStrides());
8630 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8631 return Legal->blockNeedsPredication(BB);
8634 BlockNeedsPredication);
8646 bool WithoutRuntimeCheck =
8649 WithoutRuntimeCheck);
8662 assert(!OrigLoop->isInnermost());
8666 OrigLoop, *LI, Legal->getWidestInductionType(),
8670 *Plan, PSE, *OrigLoop, Legal->getInductionVars(),
8671 MapVector<PHINode *, RecurrenceDescriptor>(),
8672 SmallPtrSet<const PHINode *, 1>(), SmallPtrSet<PHINode *, 1>(),
8681 for (ElementCount VF :
Range)
8691 DenseMap<VPValue *, VPValue *> IVEndValues;
8698void LoopVectorizationPlanner::addReductionResultComputation(
8700 using namespace VPlanPatternMatch;
8701 VPTypeAnalysis TypeInfo(*Plan);
8702 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8703 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8706 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8708 for (VPRecipeBase &R :
8709 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8714 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8716 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8726 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8727 (!RR || !RR->isPartialReduction())) {
8729 std::optional<FastMathFlags> FMFs =
8734 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8735 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8744 if (CM.usePredicatedReductionSelect())
8755 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8761 VPInstruction *FinalReductionResult;
8762 VPBuilder::InsertPointGuard Guard(Builder);
8763 Builder.setInsertPoint(MiddleVPBB, IP);
8775 VPIRFlags
Flags(MinMaxKind,
false,
false,
8777 FinalReductionResult =
8782 FinalReductionResult =
8784 {PhiR,
Start, NewExitingVPV}, ExitDL);
8786 FastMathFlags FMFs =
8792 FinalReductionResult =
8794 {NewExitingVPV},
Flags, ExitDL);
8801 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8803 "Unexpected truncated min-max recurrence!");
8805 VPWidenCastRecipe *Trunc;
8807 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8808 VPWidenCastRecipe *Extnd;
8810 VPBuilder::InsertPointGuard Guard(Builder);
8811 Builder.setInsertPoint(
8812 NewExitingVPV->getDefiningRecipe()->getParent(),
8813 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8815 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8816 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8824 FinalReductionResult =
8825 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8830 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8832 if (FinalReductionResult == U || Parent->getParent())
8834 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8851 return match(U, m_Select(m_VPValue(), m_VPValue(), m_VPValue()));
8856 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8858 Builder.setInsertPoint(
Select);
8862 if (
Select->getOperand(1) == PhiR)
8863 Cmp = Builder.createNot(Cmp);
8864 VPValue *
Or = Builder.createOr(PhiR, Cmp);
8865 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
8886 VPBuilder PHBuilder(Plan->getVectorPreheader());
8887 VPValue *Iden = Plan->getOrAddLiveIn(
8890 unsigned ScaleFactor =
8893 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8894 VPValue *StartV = PHBuilder.createNaryOp(
8902 for (VPRecipeBase *R : ToDelete)
8903 R->eraseFromParent();
8908void LoopVectorizationPlanner::attachRuntimeChecks(
8909 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
8910 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8911 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8912 assert((!CM.OptForSize ||
8914 "Cannot SCEV check stride or overflow when optimizing for size");
8918 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8919 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8923 "Runtime checks are not supported for outer loops yet");
8925 if (CM.OptForSize) {
8928 "Cannot emit memory checks when optimizing for size, unless forced "
8931 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
8932 OrigLoop->getStartLoc(),
8933 OrigLoop->getHeader())
8934 <<
"Code-size may be reduced by not forcing "
8935 "vectorization, or by source-code modifications "
8936 "eliminating the need for runtime checks "
8937 "(e.g., adding 'restrict').";
8951 bool IsIndvarOverflowCheckNeededForVF =
8952 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
8954 CM.getTailFoldingStyle() !=
8961 Plan, VF, UF, MinProfitableTripCount,
8962 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
8963 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
8964 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(), PSE);
8968 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
8973 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
8981 State.set(
this, DerivedIV,
VPLane(0));
8994 if (
F->hasOptSize() ||
9020 if (
TTI->preferPredicateOverEpilogue(&TFI))
9039 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9043 Function *
F = L->getHeader()->getParent();
9049 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
9050 GetBFI,
F, &Hints, IAI, OptForSize);
9054 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9074 GeneratedRTChecks Checks(PSE, DT, LI,
TTI, CM.
CostKind);
9078 << L->getHeader()->getParent()->getName() <<
"\"\n");
9100 if (S->getValueOperand()->getType()->isFloatTy())
9110 while (!Worklist.
empty()) {
9112 if (!L->contains(
I))
9114 if (!Visited.
insert(
I).second)
9124 I->getDebugLoc(), L->getHeader())
9125 <<
"floating point conversion changes vector width. "
9126 <<
"Mixed floating point precision requires an up/down "
9127 <<
"cast that will negatively impact performance.";
9130 for (
Use &
Op :
I->operands())
9146 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9152 << PredVPBB->getName() <<
":\n");
9153 Cost += PredVPBB->cost(VF, CostCtx);
9173 std::optional<unsigned> VScale) {
9191 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9252 uint64_t MinTC = std::max(MinTC1, MinTC2);
9254 MinTC =
alignTo(MinTC, IntVF);
9258 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9265 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9266 "trip count < minimum profitable VF ("
9277 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9279 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9300 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9319 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9320 bool UpdateResumePhis) {
9330 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9332 if (UpdateResumePhis)
9338 AddFreezeForFindLastIVReductions(MainPlan,
true);
9339 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9346 auto ResumePhiIter =
9348 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9351 VPPhi *ResumePhi =
nullptr;
9352 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9357 {},
"vec.epilog.resume.val");
9360 if (MainScalarPH->
begin() == MainScalarPH->
end())
9362 else if (&*MainScalarPH->
begin() != ResumePhi)
9377 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9382 Header->
setName(
"vec.epilog.vector.body");
9393 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9398 "Must only have a single non-zero incoming value");
9409 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9410 "all incoming values must be 0");
9416 return isa<VPScalarIVStepsRecipe>(U) ||
9417 isa<VPDerivedIVRecipe>(U) ||
9418 cast<VPRecipeBase>(U)->isScalarCast() ||
9419 cast<VPInstruction>(U)->getOpcode() ==
9422 "the canonical IV should only be used by its increment or "
9423 "ScalarIVSteps when resetting the start value");
9424 VPBuilder Builder(Header, Header->getFirstNonPhi());
9426 IV->replaceAllUsesWith(
Add);
9427 Add->setOperand(0,
IV);
9435 Value *ResumeV =
nullptr;
9448 findRecipe(ReductionPhi->getBackedgeValue(), IsReductionResult));
9451 ReductionPhi->getBackedgeValue()) ||
9453 is_contained(RdxResult->operands(), ReductionPhi->getBackedgeValue()
9454 ->getDefiningRecipe()
9455 ->getOperand(0))) ||
9457 "expected to find reduction result via backedge");
9460 ->getIncomingValueForBlock(L->getLoopPreheader());
9461 RecurKind RK = ReductionPhi->getRecurrenceKind();
9469 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9474 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9485 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9488 Value *
Sentinel = RdxResult->getOperand(1)->getLiveInIRValue();
9489 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9497 "unexpected start value");
9510 assert(ResumeV &&
"Must have a resume value");
9524 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9541 ExpandR->eraseFromParent();
9545 unsigned MainLoopStep =
9547 unsigned EpilogueLoopStep =
9552 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9563 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9568 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9569 if (OrigPhi != OldInduction) {
9570 auto *BinOp =
II.getInductionBinOp();
9576 EndValueFromAdditionalBypass =
9578 II.getStartValue(), Step,
II.getKind(), BinOp);
9579 EndValueFromAdditionalBypass->
setName(
"ind.end");
9581 return EndValueFromAdditionalBypass;
9587 const SCEV2ValueTy &ExpandedSCEVs,
9588 Value *MainVectorTripCount) {
9593 if (Phi.getBasicBlockIndex(Pred) != -1)
9595 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9599 if (ScalarPH->hasPredecessors()) {
9602 for (
const auto &[R, IRPhi] :
9603 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9612 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9614 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9617 Inc->setIncomingValueForBlock(BypassBlock, V);
9640 "expected this to be saved from the previous pass.");
9643 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9646 VecEpilogueIterationCountCheck},
9648 VecEpiloguePreHeader}});
9653 VecEpilogueIterationCountCheck, ScalarPH);
9656 VecEpilogueIterationCountCheck},
9660 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9661 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9662 if (SCEVCheckBlock) {
9664 VecEpilogueIterationCountCheck, ScalarPH);
9666 VecEpilogueIterationCountCheck},
9669 if (MemCheckBlock) {
9671 VecEpilogueIterationCountCheck, ScalarPH);
9684 for (
PHINode *Phi : PhisInBlock) {
9686 Phi->replaceIncomingBlockWith(
9688 VecEpilogueIterationCountCheck);
9695 return EPI.EpilogueIterationCountCheck == IncB;
9700 Phi->removeIncomingValue(SCEVCheckBlock);
9702 Phi->removeIncomingValue(MemCheckBlock);
9706 for (
auto *
I : InstsToMove)
9718 "VPlan-native path is not enabled. Only process inner loops.");
9721 << L->getHeader()->getParent()->getName() <<
"' from "
9722 << L->getLocStr() <<
"\n");
9727 dbgs() <<
"LV: Loop hints:"
9738 Function *
F = L->getHeader()->getParent();
9758 L->getHeader(),
PSI,
9765 &Requirements, &Hints,
DB,
AC,
9768 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9775 "early exit is not enabled",
9776 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9782 "faulting load is not supported",
9783 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9792 if (!L->isInnermost())
9797 assert(L->isInnermost() &&
"Inner loop expected.");
9800 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9814 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9816 "requiring a scalar epilogue is unsupported",
9817 "UncountableEarlyExitUnsupported",
ORE, L);
9830 if (ExpectedTC && ExpectedTC->isFixed() &&
9832 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9833 <<
"This loop is worth vectorizing only if no scalar "
9834 <<
"iteration overheads are incurred.");
9836 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9852 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9854 "Can't vectorize when the NoImplicitFloat attribute is used",
9855 "loop not vectorized due to NoImplicitFloat attribute",
9856 "NoImplicitFloat",
ORE, L);
9866 TTI->isFPVectorizationPotentiallyUnsafe()) {
9868 "Potentially unsafe FP op prevents vectorization",
9869 "loop not vectorized due to unsafe FP support.",
9870 "UnsafeFP",
ORE, L);
9875 bool AllowOrderedReductions;
9880 AllowOrderedReductions =
TTI->enableOrderedReductions();
9885 ExactFPMathInst->getDebugLoc(),
9886 ExactFPMathInst->getParent())
9887 <<
"loop not vectorized: cannot prove it is safe to reorder "
9888 "floating-point operations";
9890 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9891 "reorder floating-point operations\n");
9897 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9898 GetBFI,
F, &Hints, IAI, OptForSize);
9900 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9910 LVP.
plan(UserVF, UserIC);
9922 unsigned SelectedIC = std::max(IC, UserIC);
9932 if (Checks.getSCEVChecks().first &&
9933 match(Checks.getSCEVChecks().first,
m_One()))
9935 if (Checks.getMemRuntimeChecks().first &&
9936 match(Checks.getMemRuntimeChecks().first,
m_One()))
9941 bool ForceVectorization =
9945 if (!ForceVectorization &&
9951 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
9953 <<
"loop not vectorized: cannot prove it is safe to reorder "
9954 "memory operations";
9963 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9964 bool VectorizeLoop =
true, InterleaveLoop =
true;
9966 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
9968 "VectorizationNotBeneficial",
9969 "the cost-model indicates that vectorization is not beneficial"};
9970 VectorizeLoop =
false;
9975 "UserIC should only be ignored due to unsafe dependencies");
9976 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
9977 IntDiagMsg = {
"InterleavingUnsafe",
9978 "Ignoring user-specified interleave count due to possibly "
9979 "unsafe dependencies in the loop."};
9980 InterleaveLoop =
false;
9984 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
9985 "interleaving should be avoided up front\n");
9986 IntDiagMsg = {
"InterleavingAvoided",
9987 "Ignoring UserIC, because interleaving was avoided up front"};
9988 InterleaveLoop =
false;
9989 }
else if (IC == 1 && UserIC <= 1) {
9993 "InterleavingNotBeneficial",
9994 "the cost-model indicates that interleaving is not beneficial"};
9995 InterleaveLoop =
false;
9997 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
9998 IntDiagMsg.second +=
9999 " and is explicitly disabled or interleave count is set to 1";
10001 }
else if (IC > 1 && UserIC == 1) {
10003 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10005 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10006 "the cost-model indicates that interleaving is beneficial "
10007 "but is explicitly disabled or interleave count is set to 1"};
10008 InterleaveLoop =
false;
10014 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10015 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10016 <<
"to histogram operations.\n");
10018 "HistogramPreventsScalarInterleaving",
10019 "Unable to interleave without vectorization due to constraints on "
10020 "the order of histogram operations"};
10021 InterleaveLoop =
false;
10025 IC = UserIC > 0 ? UserIC : IC;
10029 return RecurrenceDescriptor::isFindLastRecurrenceKind(
10030 RdxDesc.getRecurrenceKind());
10032 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving due to FindLast reduction.\n");
10033 IntDiagMsg = {
"FindLastPreventsScalarInterleaving",
10034 "Unable to interleave due to FindLast reduction."};
10035 InterleaveLoop =
false;
10041 if (!VectorizeLoop && !InterleaveLoop) {
10045 L->getStartLoc(), L->getHeader())
10046 << VecDiagMsg.second;
10050 L->getStartLoc(), L->getHeader())
10051 << IntDiagMsg.second;
10056 if (!VectorizeLoop && InterleaveLoop) {
10060 L->getStartLoc(), L->getHeader())
10061 << VecDiagMsg.second;
10063 }
else if (VectorizeLoop && !InterleaveLoop) {
10065 <<
") in " << L->getLocStr() <<
'\n');
10068 L->getStartLoc(), L->getHeader())
10069 << IntDiagMsg.second;
10071 }
else if (VectorizeLoop && InterleaveLoop) {
10073 <<
") in " << L->getLocStr() <<
'\n');
10079 using namespace ore;
10084 <<
"interleaved loop (interleaved count: "
10085 << NV(
"InterleaveCount", IC) <<
")";
10102 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10114 Checks, *BestMainPlan);
10116 *BestMainPlan, MainILV,
DT,
false);
10122 Checks, BestEpiPlan);
10124 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10128 Checks, InstsToMove);
10129 ++LoopsEpilogueVectorized;
10131 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM, Checks,
10145 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10146 "DT not preserved correctly");
10161 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10165 bool Changed =
false, CFGChanged =
false;
10172 for (
const auto &L : *
LI)
10184 LoopsAnalyzed += Worklist.
size();
10187 while (!Worklist.
empty()) {
10233 if (!Result.MadeAnyChange)
10247 if (Result.MadeCFGChange) {
10263 OS, MapClassName2PassName);
10266 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10267 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static VPRecipeBase * findRecipe(VPValue *Start, PredT Pred)
Search Start's users for a recipe satisfying Pred, looking through recipes with definitions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
static bool isFindLastRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
VPIRValue * getStartValue() const
Returns the start value of the canonical induction.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPIRValue * getStartValue() const
VPValue * getStepValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isOrdered() const
Returns true, if the phi is part of an ordered reduction.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
VPSymbolicValue & getVectorTripCount()
The vector trip count.
VPIRValue * getOrAddLiveIn(Value *V)
Gets the live-in VPIRValue for V or adds a new live-in (if none exists yet) for V.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
auto match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
AllRecipe_match< Instruction::Select, Op0_t, Op1_t, Op2_t > m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
auto make_second_range(ContainerTy &&c)
Given a container of pairs, return a range over the second elements.
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
This reduction is unordered with the partial result scaled down by some factor.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks