161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
255 "will be determined by the smallest type in loop."));
259 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
265 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
269 cl::desc(
"A flag that overrides the target's number of scalar registers."));
273 cl::desc(
"A flag that overrides the target's number of vector registers."));
277 cl::desc(
"A flag that overrides the target's max interleave factor for "
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
283 "vectorized loops."));
287 cl::desc(
"A flag that overrides the target's expected cost for "
288 "an instruction to a single constant value. Mostly "
289 "useful for getting consistent testing."));
294 "Pretend that scalable vectors are supported, even if the target does "
295 "not support them. This flag should only be used for testing."));
300 "The cost of a loop that is considered 'small' by the interleaver."));
304 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
305 "heuristics minimizing code growth in cold regions and being more "
306 "aggressive in hot regions."));
312 "Enable runtime interleaving until load/store ports are saturated"));
317 cl::desc(
"Max number of stores to be predicated behind an if."));
321 cl::desc(
"Count the induction variable only once when interleaving"));
325 cl::desc(
"Enable if predication of stores during vectorization."));
329 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
330 "reduction in a nested loop."));
335 cl::desc(
"Prefer in-loop vector reductions, "
336 "overriding the targets preference."));
340 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
346 "Prefer predicating a reduction operation over an after loop select."));
350 cl::desc(
"Enable VPlan-native vectorization path with "
351 "support for outer loop vectorization."));
355#ifdef EXPENSIVE_CHECKS
361 cl::desc(
"Verfiy VPlans after VPlan transforms."));
370 "Build VPlan for every supported loop nest in the function and bail "
371 "out right after the build (stress test the VPlan H-CFG construction "
372 "in the VPlan-native vectorization path)."));
376 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
379 cl::desc(
"Run the Loop vectorization passes"));
382 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
384 "Override cost based safe divisor widening for div/rem instructions"));
387 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
389 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
394 "Enable vectorization of early exit loops with uncountable exits."));
398 cl::desc(
"Discard VFs if their register pressure is too high."));
411 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
446static std::optional<ElementCount>
448 bool CanUseConstantMax =
true) {
458 if (!CanUseConstantMax)
470class GeneratedRTChecks;
503 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
506 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
616 "A high UF for the epilogue loop is likely not beneficial.");
667 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
885 initializeVScaleForTuning();
900 bool runtimeChecksRequired();
919 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
938 void collectValuesToIgnore();
941 void collectElementTypesForWidening();
945 void collectInLoopReductions();
966 "Profitable to scalarize relevant only for VF > 1.");
969 "cost-model should not be used for outer loops (in VPlan-native path)");
971 auto Scalars = InstsToScalarize.find(VF);
972 assert(Scalars != InstsToScalarize.end() &&
973 "VF not yet analyzed for scalarization profitability");
974 return Scalars->second.contains(
I);
981 "cost-model should not be used for outer loops (in VPlan-native path)");
991 auto UniformsPerVF = Uniforms.find(VF);
992 assert(UniformsPerVF != Uniforms.end() &&
993 "VF not yet analyzed for uniformity");
994 return UniformsPerVF->second.count(
I);
1001 "cost-model should not be used for outer loops (in VPlan-native path)");
1005 auto ScalarsPerVF = Scalars.find(VF);
1006 assert(ScalarsPerVF != Scalars.end() &&
1007 "Scalar values are not calculated for VF");
1008 return ScalarsPerVF->second.count(
I);
1016 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1018 return VF.
isVector() && MinBWs.contains(
I) &&
1040 WideningDecisions[{
I, VF}] = {W,
Cost};
1059 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1062 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1064 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1076 "cost-model should not be used for outer loops (in VPlan-native path)");
1078 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1079 auto Itr = WideningDecisions.find(InstOnVF);
1080 if (Itr == WideningDecisions.end())
1082 return Itr->second.first;
1089 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1090 assert(WideningDecisions.contains(InstOnVF) &&
1091 "The cost is not calculated");
1092 return WideningDecisions[InstOnVF].second;
1105 std::optional<unsigned> MaskPos,
1108 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1114 auto I = CallWideningDecisions.find({CI, VF});
1115 if (
I == CallWideningDecisions.end())
1138 Value *
Op = Trunc->getOperand(0);
1139 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1143 return Legal->isInductionPhi(
Op);
1159 if (VF.
isScalar() || Uniforms.contains(VF))
1162 collectLoopUniforms(VF);
1164 collectLoopScalars(VF);
1172 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1180 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1195 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1202 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1203 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1204 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1215 return ScalarCost < SafeDivisorCost;
1239 std::pair<InstructionCost, InstructionCost>
1267 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1274 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1275 "from latch block\n");
1280 "interleaved group requires scalar epilogue\n");
1283 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1295 if (!ChosenTailFoldingStyle)
1297 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1298 : ChosenTailFoldingStyle->second;
1306 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1307 if (!
Legal->canFoldTailByMasking()) {
1313 ChosenTailFoldingStyle = {
1314 TTI.getPreferredTailFoldingStyle(
true),
1315 TTI.getPreferredTailFoldingStyle(
false)};
1325 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1339 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1340 "not try to generate VP Intrinsics "
1342 ?
"since interleave count specified is greater than 1.\n"
1343 :
"due to non-interleaving reasons.\n"));
1377 return InLoopReductions.contains(Phi);
1388 TTI.preferPredicatedReductionSelect();
1403 WideningDecisions.clear();
1404 CallWideningDecisions.clear();
1422 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1423 const unsigned IC)
const;
1431 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1433 Type *VectorTy)
const;
1437 bool shouldConsiderInvariant(
Value *
Op);
1443 unsigned NumPredStores = 0;
1447 std::optional<unsigned> VScaleForTuning;
1452 void initializeVScaleForTuning() {
1457 auto Max = Attr.getVScaleRangeMax();
1458 if (Max && Min == Max) {
1459 VScaleForTuning = Max;
1472 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1473 ElementCount UserVF,
1474 bool FoldTailByMasking);
1478 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1479 bool FoldTailByMasking)
const;
1484 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1485 unsigned SmallestType,
1486 unsigned WidestType,
1487 ElementCount MaxSafeVF,
1488 bool FoldTailByMasking);
1492 bool isScalableVectorizationAllowed();
1496 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1502 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1523 ElementCount VF)
const;
1527 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1532 MapVector<Instruction *, uint64_t> MinBWs;
1537 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1541 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1542 PredicatedBBsAfterVectorization;
1555 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1556 ChosenTailFoldingStyle;
1559 std::optional<bool> IsScalableVectorizationAllowed;
1565 std::optional<unsigned> MaxSafeElements;
1571 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1575 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1579 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1583 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1586 SmallPtrSet<PHINode *, 4> InLoopReductions;
1591 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1599 ScalarCostsTy &ScalarCosts,
1611 void collectLoopUniforms(ElementCount VF);
1620 void collectLoopScalars(ElementCount VF);
1624 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1625 std::pair<InstWidening, InstructionCost>>;
1627 DecisionList WideningDecisions;
1629 using CallDecisionList =
1630 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1632 CallDecisionList CallWideningDecisions;
1636 bool needsExtract(
Value *V, ElementCount VF)
const {
1640 getWideningDecision(
I, VF) == CM_Scalarize ||
1651 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1656 ElementCount VF)
const {
1658 SmallPtrSet<const Value *, 4> UniqueOperands;
1662 !needsExtract(
Op, VF))
1734class GeneratedRTChecks {
1740 Value *SCEVCheckCond =
nullptr;
1747 Value *MemRuntimeCheckCond =
nullptr;
1756 bool CostTooHigh =
false;
1758 Loop *OuterLoop =
nullptr;
1769 : DT(DT), LI(LI),
TTI(
TTI),
1770 SCEVExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1771 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1779 void create(Loop *L,
const LoopAccessInfo &LAI,
1780 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1800 nullptr,
"vector.scevcheck");
1807 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1808 SCEVCleaner.cleanup();
1813 if (RtPtrChecking.Need) {
1814 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1815 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1818 auto DiffChecks = RtPtrChecking.getDiffChecks();
1820 Value *RuntimeVF =
nullptr;
1823 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1825 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1831 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1834 assert(MemRuntimeCheckCond &&
1835 "no RT checks generated although RtPtrChecking "
1836 "claimed checks are required");
1841 if (!MemCheckBlock && !SCEVCheckBlock)
1851 if (SCEVCheckBlock) {
1854 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1858 if (MemCheckBlock) {
1861 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1867 if (MemCheckBlock) {
1871 if (SCEVCheckBlock) {
1877 OuterLoop =
L->getParentLoop();
1881 if (SCEVCheckBlock || MemCheckBlock)
1893 for (Instruction &
I : *SCEVCheckBlock) {
1894 if (SCEVCheckBlock->getTerminator() == &
I)
1900 if (MemCheckBlock) {
1902 for (Instruction &
I : *MemCheckBlock) {
1903 if (MemCheckBlock->getTerminator() == &
I)
1915 ScalarEvolution *SE = MemCheckExp.
getSE();
1920 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1925 unsigned BestTripCount = 2;
1929 PSE, OuterLoop,
false))
1930 if (EstimatedTC->isFixed())
1931 BestTripCount = EstimatedTC->getFixedValue();
1936 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1937 (InstructionCost::CostType)1);
1939 if (BestTripCount > 1)
1941 <<
"We expect runtime memory checks to be hoisted "
1942 <<
"out of the outer loop. Cost reduced from "
1943 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1945 MemCheckCost = NewMemCheckCost;
1949 RTCheckCost += MemCheckCost;
1952 if (SCEVCheckBlock || MemCheckBlock)
1953 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
1961 ~GeneratedRTChecks() {
1962 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1963 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
1964 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
1965 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
1967 SCEVCleaner.markResultUsed();
1969 if (MemChecksUsed) {
1970 MemCheckCleaner.markResultUsed();
1972 auto &SE = *MemCheckExp.
getSE();
1979 I.eraseFromParent();
1982 MemCheckCleaner.cleanup();
1983 SCEVCleaner.cleanup();
1985 if (!SCEVChecksUsed)
1986 SCEVCheckBlock->eraseFromParent();
1988 MemCheckBlock->eraseFromParent();
1993 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
1994 using namespace llvm::PatternMatch;
1996 return {
nullptr,
nullptr};
1998 return {SCEVCheckCond, SCEVCheckBlock};
2003 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2004 using namespace llvm::PatternMatch;
2005 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2006 return {
nullptr,
nullptr};
2007 return {MemRuntimeCheckCond, MemCheckBlock};
2011 bool hasChecks()
const {
2012 return getSCEVChecks().first || getMemRuntimeChecks().first;
2055 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2061 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2091 for (
Loop *InnerL : L)
2114 ?
B.CreateSExtOrTrunc(Index, StepTy)
2115 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2116 if (CastedIndex != Index) {
2118 Index = CastedIndex;
2128 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2133 return B.CreateAdd(
X,
Y);
2139 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2140 "Types don't match!");
2147 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2148 return B.CreateMul(
X,
Y);
2151 switch (InductionKind) {
2154 "Vector indices not supported for integer inductions yet");
2156 "Index type does not match StartValue type");
2158 return B.CreateSub(StartValue, Index);
2163 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2166 "Vector indices not supported for FP inductions yet");
2169 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2170 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2171 "Original bin op should be defined for FP induction");
2173 Value *MulExp =
B.CreateFMul(Step, Index);
2174 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2185 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2188 if (
F.hasFnAttribute(Attribute::VScaleRange))
2189 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2191 return std::nullopt;
2200 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2202 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2204 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2210 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2213 std::optional<unsigned> MaxVScale =
2217 MaxVF *= *MaxVScale;
2220 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2234 return TTI.enableMaskedInterleavedAccessVectorization();
2247 PreVectorPH = CheckVPIRBB;
2257 "must have incoming values for all operands");
2258 R.addOperand(R.getOperand(NumPredecessors - 2));
2284 auto CreateStep = [&]() ->
Value * {
2291 if (!
VF.isScalable())
2293 return Builder.CreateBinaryIntrinsic(
2299 Value *Step = CreateStep();
2308 CheckMinIters =
Builder.getTrue();
2310 TripCountSCEV, SE.
getSCEV(Step))) {
2313 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2315 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2323 Value *MaxUIntTripCount =
2330 return CheckMinIters;
2339 VPlan *Plan =
nullptr) {
2343 auto IP = IRVPBB->
begin();
2345 R.moveBefore(*IRVPBB, IP);
2349 R.moveBefore(*IRVPBB, IRVPBB->
end());
2358 assert(VectorPH &&
"Invalid loop structure");
2360 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2361 "loops not exiting via the latch without required epilogue?");
2368 Twine(Prefix) +
"scalar.ph");
2374 const SCEV2ValueTy &ExpandedSCEVs) {
2375 const SCEV *Step =
ID.getStep();
2377 return C->getValue();
2379 return U->getValue();
2380 Value *V = ExpandedSCEVs.lookup(Step);
2381 assert(V &&
"SCEV must be expanded at this point");
2391 auto *Cmp = L->getLatchCmpInst();
2393 InstsToIgnore.
insert(Cmp);
2394 for (
const auto &KV : IL) {
2403 [&](
const User *U) { return U == IV || U == Cmp; }))
2404 InstsToIgnore.
insert(IVInst);
2416struct CSEDenseMapInfo {
2427 return DenseMapInfo<Instruction *>::getTombstoneKey();
2430 static unsigned getHashValue(
const Instruction *
I) {
2431 assert(canHandle(
I) &&
"Unknown instruction!");
2436 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2437 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2438 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2440 return LHS->isIdenticalTo(
RHS);
2452 if (!CSEDenseMapInfo::canHandle(&In))
2458 In.replaceAllUsesWith(V);
2459 In.eraseFromParent();
2472 std::optional<unsigned> VScale) {
2476 EstimatedVF *= *VScale;
2477 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2495 for (
auto &ArgOp : CI->
args())
2506 return ScalarCallCost;
2519 assert(
ID &&
"Expected intrinsic call!");
2523 FMF = FPMO->getFastMathFlags();
2529 std::back_inserter(ParamTys),
2530 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2535 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2549 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2564 Builder.SetInsertPoint(NewPhi);
2566 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2571void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2576 "This function should not be visited twice for the same VF");
2599 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2600 assert(WideningDecision != CM_Unknown &&
2601 "Widening decision should be ready at this moment");
2603 if (
Ptr == Store->getValueOperand())
2604 return WideningDecision == CM_Scalarize;
2606 "Ptr is neither a value or pointer operand");
2607 return WideningDecision != CM_GatherScatter;
2612 auto IsLoopVaryingGEP = [&](
Value *
V) {
2623 if (!IsLoopVaryingGEP(
Ptr))
2635 if (IsScalarUse(MemAccess,
Ptr) &&
2639 PossibleNonScalarPtrs.
insert(
I);
2655 for (
auto *BB : TheLoop->
blocks())
2656 for (
auto &
I : *BB) {
2658 EvaluatePtrUse(Load,
Load->getPointerOperand());
2660 EvaluatePtrUse(Store,
Store->getPointerOperand());
2661 EvaluatePtrUse(Store,
Store->getValueOperand());
2664 for (
auto *
I : ScalarPtrs)
2665 if (!PossibleNonScalarPtrs.
count(
I)) {
2673 auto ForcedScalar = ForcedScalars.
find(VF);
2674 if (ForcedScalar != ForcedScalars.
end())
2675 for (
auto *
I : ForcedScalar->second) {
2676 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2685 while (Idx != Worklist.
size()) {
2687 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2691 auto *J = cast<Instruction>(U);
2692 return !TheLoop->contains(J) || Worklist.count(J) ||
2693 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2694 IsScalarUse(J, Src));
2697 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2703 for (
const auto &Induction :
Legal->getInductionVars()) {
2704 auto *Ind = Induction.first;
2709 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2714 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2716 return Induction.second.getKind() ==
2724 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2725 auto *I = cast<Instruction>(U);
2726 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2727 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2736 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2741 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2742 auto *I = cast<Instruction>(U);
2743 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2744 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2746 if (!ScalarIndUpdate)
2751 Worklist.
insert(IndUpdate);
2752 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2753 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2767 switch(
I->getOpcode()) {
2770 case Instruction::Call:
2774 case Instruction::Load:
2775 case Instruction::Store: {
2784 TTI.isLegalMaskedGather(VTy, Alignment))
2786 TTI.isLegalMaskedScatter(VTy, Alignment));
2788 case Instruction::UDiv:
2789 case Instruction::SDiv:
2790 case Instruction::SRem:
2791 case Instruction::URem: {
2812 if (
Legal->blockNeedsPredication(
I->getParent()))
2824 switch(
I->getOpcode()) {
2827 "instruction should have been considered by earlier checks");
2828 case Instruction::Call:
2832 "should have returned earlier for calls not needing a mask");
2834 case Instruction::Load:
2837 case Instruction::Store: {
2845 case Instruction::UDiv:
2846 case Instruction::SDiv:
2847 case Instruction::SRem:
2848 case Instruction::URem:
2850 return !
Legal->isInvariant(
I->getOperand(1));
2854std::pair<InstructionCost, InstructionCost>
2857 assert(
I->getOpcode() == Instruction::UDiv ||
2858 I->getOpcode() == Instruction::SDiv ||
2859 I->getOpcode() == Instruction::SRem ||
2860 I->getOpcode() == Instruction::URem);
2869 ScalarizationCost = 0;
2875 ScalarizationCost +=
2879 ScalarizationCost +=
2881 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2898 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2903 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2905 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2906 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2908 return {ScalarizationCost, SafeDivisorCost};
2915 "Decision should not be set yet.");
2917 assert(Group &&
"Must have a group.");
2918 unsigned InterleaveFactor = Group->getFactor();
2922 auto &
DL =
I->getDataLayout();
2934 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2935 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2940 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2942 if (MemberNI != ScalarNI)
2945 if (MemberNI && ScalarNI &&
2946 ScalarTy->getPointerAddressSpace() !=
2947 MemberTy->getPointerAddressSpace())
2956 bool PredicatedAccessRequiresMasking =
2958 Legal->isMaskRequired(
I);
2959 bool LoadAccessWithGapsRequiresEpilogMasking =
2962 bool StoreAccessWithGapsRequiresMasking =
2964 if (!PredicatedAccessRequiresMasking &&
2965 !LoadAccessWithGapsRequiresEpilogMasking &&
2966 !StoreAccessWithGapsRequiresMasking)
2973 "Masked interleave-groups for predicated accesses are not enabled.");
2975 if (Group->isReverse())
2979 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
2980 StoreAccessWithGapsRequiresMasking;
2988 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3000 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3010 auto &
DL =
I->getDataLayout();
3017void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3024 "This function should not be visited twice for the same VF");
3028 Uniforms[VF].
clear();
3036 auto IsOutOfScope = [&](
Value *V) ->
bool {
3048 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3049 if (IsOutOfScope(
I)) {
3054 if (isPredicatedInst(
I)) {
3056 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3060 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3070 for (BasicBlock *
E : Exiting) {
3074 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3075 AddToWorklistIfAllowed(Cmp);
3084 if (PrevVF.isVector()) {
3085 auto Iter = Uniforms.
find(PrevVF);
3086 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3089 if (!
Legal->isUniformMemOp(*
I, VF))
3099 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3100 InstWidening WideningDecision = getWideningDecision(
I, VF);
3101 assert(WideningDecision != CM_Unknown &&
3102 "Widening decision should be ready at this moment");
3104 if (IsUniformMemOpUse(
I))
3107 return (WideningDecision == CM_Widen ||
3108 WideningDecision == CM_Widen_Reverse ||
3109 WideningDecision == CM_Interleave);
3119 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(
Ptr));
3127 SetVector<Value *> HasUniformUse;
3131 for (
auto *BB : TheLoop->
blocks())
3132 for (
auto &
I : *BB) {
3134 switch (
II->getIntrinsicID()) {
3135 case Intrinsic::sideeffect:
3136 case Intrinsic::experimental_noalias_scope_decl:
3137 case Intrinsic::assume:
3138 case Intrinsic::lifetime_start:
3139 case Intrinsic::lifetime_end:
3141 AddToWorklistIfAllowed(&
I);
3149 if (IsOutOfScope(EVI->getAggregateOperand())) {
3150 AddToWorklistIfAllowed(EVI);
3156 "Expected aggregate value to be call return value");
3169 if (IsUniformMemOpUse(&
I))
3170 AddToWorklistIfAllowed(&
I);
3172 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3179 for (
auto *V : HasUniformUse) {
3180 if (IsOutOfScope(V))
3183 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3184 auto *UI = cast<Instruction>(U);
3185 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3187 if (UsersAreMemAccesses)
3188 AddToWorklistIfAllowed(
I);
3195 while (Idx != Worklist.
size()) {
3198 for (
auto *OV :
I->operand_values()) {
3200 if (IsOutOfScope(OV))
3205 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3211 auto *J = cast<Instruction>(U);
3212 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3214 AddToWorklistIfAllowed(OI);
3225 for (
const auto &Induction :
Legal->getInductionVars()) {
3226 auto *Ind = Induction.first;
3231 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3232 auto *I = cast<Instruction>(U);
3233 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3234 IsVectorizedMemAccessUse(I, Ind);
3241 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3242 auto *I = cast<Instruction>(U);
3243 return I == Ind || Worklist.count(I) ||
3244 IsVectorizedMemAccessUse(I, IndUpdate);
3246 if (!UniformIndUpdate)
3250 AddToWorklistIfAllowed(Ind);
3251 AddToWorklistIfAllowed(IndUpdate);
3260 if (
Legal->getRuntimePointerChecking()->Need) {
3262 "runtime pointer checks needed. Enable vectorization of this "
3263 "loop with '#pragma clang loop vectorize(enable)' when "
3264 "compiling with -Os/-Oz",
3265 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3269 if (!
PSE.getPredicate().isAlwaysTrue()) {
3271 "runtime SCEV checks needed. Enable vectorization of this "
3272 "loop with '#pragma clang loop vectorize(enable)' when "
3273 "compiling with -Os/-Oz",
3274 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3279 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3281 "runtime stride == 1 checks needed. Enable vectorization of "
3282 "this loop without such check by compiling with -Os/-Oz",
3283 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3290bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3291 if (IsScalableVectorizationAllowed)
3292 return *IsScalableVectorizationAllowed;
3294 IsScalableVectorizationAllowed =
false;
3298 if (Hints->isScalableVectorizationDisabled()) {
3300 "ScalableVectorizationDisabled", ORE, TheLoop);
3304 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3307 std::numeric_limits<ElementCount::ScalarTy>::max());
3316 if (!canVectorizeReductions(MaxScalableVF)) {
3318 "Scalable vectorization not supported for the reduction "
3319 "operations found in this loop.",
3320 "ScalableVFUnfeasible", ORE, TheLoop);
3326 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3331 "for all element types found in this loop.",
3332 "ScalableVFUnfeasible", ORE, TheLoop);
3338 "for safe distance analysis.",
3339 "ScalableVFUnfeasible", ORE, TheLoop);
3343 IsScalableVectorizationAllowed =
true;
3348LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3349 if (!isScalableVectorizationAllowed())
3353 std::numeric_limits<ElementCount::ScalarTy>::max());
3354 if (
Legal->isSafeForAnyVectorWidth())
3355 return MaxScalableVF;
3363 "Max legal vector width too small, scalable vectorization "
3365 "ScalableVFUnfeasible", ORE, TheLoop);
3367 return MaxScalableVF;
3370FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3371 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3373 unsigned SmallestType, WidestType;
3374 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3380 unsigned MaxSafeElementsPowerOf2 =
3382 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3383 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3384 MaxSafeElementsPowerOf2 =
3385 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3388 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3390 if (!
Legal->isSafeForAnyVectorWidth())
3391 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3393 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3395 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3400 auto MaxSafeUserVF =
3401 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3403 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3406 return FixedScalableVFPair(
3412 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3418 <<
" is unsafe, clamping to max safe VF="
3419 << MaxSafeFixedVF <<
".\n");
3421 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3424 <<
"User-specified vectorization factor "
3425 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3426 <<
" is unsafe, clamping to maximum safe vectorization factor "
3427 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3429 return MaxSafeFixedVF;
3434 <<
" is ignored because scalable vectors are not "
3437 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3440 <<
"User-specified vectorization factor "
3441 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3442 <<
" is ignored because the target does not support scalable "
3443 "vectors. The compiler will pick a more suitable value.";
3447 <<
" is unsafe. Ignoring scalable UserVF.\n");
3449 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3452 <<
"User-specified vectorization factor "
3453 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3454 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3455 "more suitable value.";
3460 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3461 <<
" / " << WidestType <<
" bits.\n");
3466 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3467 MaxSafeFixedVF, FoldTailByMasking))
3471 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3472 MaxSafeScalableVF, FoldTailByMasking))
3473 if (MaxVF.isScalable()) {
3474 Result.ScalableVF = MaxVF;
3475 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3484 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3488 "Not inserting runtime ptr check for divergent target",
3489 "runtime pointer checks needed. Not enabled for divergent target",
3490 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3496 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3499 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3502 "loop trip count is one, irrelevant for vectorization",
3513 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3517 "Trip count computation wrapped",
3518 "backedge-taken count is -1, loop trip count wrapped to 0",
3523 switch (ScalarEpilogueStatus) {
3525 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3530 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3531 <<
"LV: Not allowing scalar epilogue, creating predicated "
3532 <<
"vector loop.\n");
3539 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3541 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3557 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3558 "No decisions should have been taken at this point");
3568 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3572 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3573 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3574 *MaxPowerOf2RuntimeVF,
3577 MaxPowerOf2RuntimeVF = std::nullopt;
3580 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3584 !
Legal->hasUncountableEarlyExit())
3586 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3591 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3593 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3594 "Invalid loop count");
3596 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3603 if (MaxPowerOf2RuntimeVF > 0u) {
3605 "MaxFixedVF must be a power of 2");
3606 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3608 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3614 if (ExpectedTC && ExpectedTC->isFixed() &&
3615 ExpectedTC->getFixedValue() <=
3616 TTI.getMinTripCountTailFoldingThreshold()) {
3617 if (MaxPowerOf2RuntimeVF > 0u) {
3623 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3624 "remain for any chosen VF.\n");
3631 "The trip count is below the minial threshold value.",
3632 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3647 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3648 "try to generate VP Intrinsics with scalable vector "
3653 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3663 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3664 "scalar epilogue instead.\n");
3670 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3676 "unable to calculate the loop count due to complex control flow",
3682 "Cannot optimize for size and vectorize at the same time.",
3683 "cannot optimize for size and vectorize at the same time. "
3684 "Enable vectorization of this loop with '#pragma clang loop "
3685 "vectorize(enable)' when compiling with -Os/-Oz",
3697 if (
TTI.shouldConsiderVectorizationRegPressure())
3713 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3715 Legal->hasVectorCallVariants())));
3718ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3719 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3721 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3722 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3723 auto Min = Attr.getVScaleRangeMin();
3730 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3733 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3741 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3742 "exceeding the constant trip count: "
3743 << ClampedUpperTripCount <<
"\n");
3745 FoldTailByMasking ? VF.
isScalable() :
false);
3750ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3751 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3752 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3753 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3759 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3761 "Scalable flags must match");
3769 ComputeScalableMaxVF);
3770 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3772 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3774 if (!MaxVectorElementCount) {
3776 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3777 <<
" vector registers.\n");
3781 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3782 MaxTripCount, FoldTailByMasking);
3785 if (MaxVF != MaxVectorElementCount)
3793 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3795 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3797 if (useMaxBandwidth(RegKind)) {
3800 ComputeScalableMaxVF);
3801 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3803 if (ElementCount MinVF =
3805 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3807 <<
") with target's minimum: " << MinVF <<
'\n');
3812 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3814 if (MaxVectorElementCount != MaxVF) {
3818 invalidateCostModelingDecisions();
3826 const unsigned MaxTripCount,
3828 bool IsEpilogue)
const {
3834 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3835 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3836 if (
A.Width.isScalable())
3837 EstimatedWidthA *= *VScale;
3838 if (
B.Width.isScalable())
3839 EstimatedWidthB *= *VScale;
3846 return CostA < CostB ||
3847 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3853 A.Width.isScalable() && !
B.Width.isScalable();
3864 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3866 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3878 return VectorCost * (MaxTripCount / VF) +
3879 ScalarCost * (MaxTripCount % VF);
3880 return VectorCost *
divideCeil(MaxTripCount, VF);
3883 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3884 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3885 return CmpFn(RTCostA, RTCostB);
3891 bool IsEpilogue)
const {
3893 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3899 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3901 for (
const auto &Plan : VPlans) {
3910 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3912 precomputeCosts(*Plan, VF, CostCtx);
3915 for (
auto &R : *VPBB) {
3916 if (!R.cost(VF, CostCtx).isValid())
3922 if (InvalidCosts.
empty())
3930 for (
auto &Pair : InvalidCosts)
3935 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3936 unsigned NA = Numbering[
A.first];
3937 unsigned NB = Numbering[
B.first];
3952 Subset =
Tail.take_front(1);
3959 [](
const auto *R) {
return Instruction::PHI; })
3960 .Case<VPWidenSelectRecipe>(
3961 [](
const auto *R) {
return Instruction::Select; })
3962 .Case<VPWidenStoreRecipe>(
3963 [](
const auto *R) {
return Instruction::Store; })
3964 .Case<VPWidenLoadRecipe>(
3965 [](
const auto *R) {
return Instruction::Load; })
3966 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
3967 [](
const auto *R) {
return Instruction::Call; })
3970 [](
const auto *R) {
return R->getOpcode(); })
3972 return R->getStoredValues().empty() ? Instruction::Load
3973 : Instruction::Store;
3981 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
3982 std::string OutString;
3984 assert(!Subset.empty() &&
"Unexpected empty range");
3985 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
3986 for (
const auto &Pair : Subset)
3987 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
3989 if (Opcode == Instruction::Call) {
3992 Name =
Int->getIntrinsicName();
3996 WidenCall ? WidenCall->getCalledScalarFunction()
3998 ->getLiveInIRValue());
4001 OS <<
" call to " << Name;
4006 Tail =
Tail.drop_front(Subset.size());
4010 Subset =
Tail.take_front(Subset.size() + 1);
4011 }
while (!
Tail.empty());
4033 switch (R.getVPDefID()) {
4034 case VPDef::VPDerivedIVSC:
4035 case VPDef::VPScalarIVStepsSC:
4036 case VPDef::VPReplicateSC:
4037 case VPDef::VPInstructionSC:
4038 case VPDef::VPCanonicalIVPHISC:
4039 case VPDef::VPVectorPointerSC:
4040 case VPDef::VPVectorEndPointerSC:
4041 case VPDef::VPExpandSCEVSC:
4042 case VPDef::VPEVLBasedIVPHISC:
4043 case VPDef::VPPredInstPHISC:
4044 case VPDef::VPBranchOnMaskSC:
4046 case VPDef::VPReductionSC:
4047 case VPDef::VPActiveLaneMaskPHISC:
4048 case VPDef::VPWidenCallSC:
4049 case VPDef::VPWidenCanonicalIVSC:
4050 case VPDef::VPWidenCastSC:
4051 case VPDef::VPWidenGEPSC:
4052 case VPDef::VPWidenIntrinsicSC:
4053 case VPDef::VPWidenSC:
4054 case VPDef::VPWidenSelectSC:
4055 case VPDef::VPBlendSC:
4056 case VPDef::VPFirstOrderRecurrencePHISC:
4057 case VPDef::VPHistogramSC:
4058 case VPDef::VPWidenPHISC:
4059 case VPDef::VPWidenIntOrFpInductionSC:
4060 case VPDef::VPWidenPointerInductionSC:
4061 case VPDef::VPReductionPHISC:
4062 case VPDef::VPInterleaveEVLSC:
4063 case VPDef::VPInterleaveSC:
4064 case VPDef::VPWidenLoadEVLSC:
4065 case VPDef::VPWidenLoadSC:
4066 case VPDef::VPWidenStoreEVLSC:
4067 case VPDef::VPWidenStoreSC:
4073 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4074 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4090 if (R.getNumDefinedValues() == 0 &&
4099 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4101 if (!Visited.
insert({ScalarTy}).second)
4115 [](
auto *VPRB) { return VPRB->isReplicator(); });
4121 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4122 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4125 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4126 "Expected Scalar VF to be a candidate");
4133 if (ForceVectorization &&
4134 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4138 ChosenFactor.
Cost = InstructionCost::getMax();
4141 for (
auto &
P : VPlans) {
4143 P->vectorFactors().end());
4146 if (
any_of(VFs, [
this](ElementCount VF) {
4147 return CM.shouldConsiderRegPressureForVF(VF);
4151 for (
unsigned I = 0;
I < VFs.size();
I++) {
4152 ElementCount VF = VFs[
I];
4160 if (CM.shouldConsiderRegPressureForVF(VF) &&
4168 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind,
4170 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4171 assert(VectorRegion &&
"Expected to have a vector region!");
4174 for (VPRecipeBase &R : *VPBB) {
4178 switch (VPI->getOpcode()) {
4181 case Instruction::Select: {
4182 VPValue *VPV = VPI->getVPSingleValue();
4185 switch (WR->getOpcode()) {
4186 case Instruction::UDiv:
4187 case Instruction::SDiv:
4188 case Instruction::URem:
4189 case Instruction::SRem:
4196 C += VPI->cost(VF, CostCtx);
4200 unsigned Multiplier =
4203 C += VPI->cost(VF * Multiplier, CostCtx);
4207 C += VPI->cost(VF, CostCtx);
4219 <<
" costs: " << (Candidate.Cost / Width));
4222 << CM.getVScaleForTuning().value_or(1) <<
")");
4228 <<
"LV: Not considering vector loop of width " << VF
4229 <<
" because it will not generate any vector instructions.\n");
4236 <<
"LV: Not considering vector loop of width " << VF
4237 <<
" because it would cause replicated blocks to be generated,"
4238 <<
" which isn't allowed when optimizing for size.\n");
4242 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4243 ChosenFactor = Candidate;
4249 "There are conditional stores.",
4250 "store that is conditionally executed prevents vectorization",
4251 "ConditionalStore", ORE, OrigLoop);
4252 ChosenFactor = ScalarCost;
4256 !isMoreProfitable(ChosenFactor, ScalarCost,
4257 !CM.foldTailByMasking()))
dbgs()
4258 <<
"LV: Vectorization seems to be not beneficial, "
4259 <<
"but was forced by a user.\n");
4260 return ChosenFactor;
4264bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4265 ElementCount VF)
const {
4268 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4269 if (!Legal->isReductionVariable(&Phi))
4270 return Legal->isFixedOrderRecurrence(&Phi);
4271 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4272 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4278 for (
const auto &Entry :
Legal->getInductionVars()) {
4281 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4282 for (User *U :
PostInc->users())
4286 for (User *U :
Entry.first->users())
4295 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4309 if (!
TTI.preferEpilogueVectorization())
4314 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4319 :
TTI.getEpilogueVectorizationMinVF();
4327 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4331 if (!CM.isScalarEpilogueAllowed()) {
4332 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4333 "epilogue is allowed.\n");
4339 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4340 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4341 "is not a supported candidate.\n");
4346 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4349 return {ForcedEC, 0, 0};
4351 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4356 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4358 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4362 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4363 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4375 Type *TCType = Legal->getWidestInductionType();
4376 const SCEV *RemainingIterations =
nullptr;
4377 unsigned MaxTripCount = 0;
4381 const SCEV *KnownMinTC;
4385 RemainingIterations =
4387 else if (ScalableTC) {
4390 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4394 RemainingIterations =
4398 if (RemainingIterations->
isZero())
4408 << MaxTripCount <<
"\n");
4411 for (
auto &NextVF : ProfitableVFs) {
4418 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4420 (NextVF.Width.isScalable() &&
4422 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4428 if (RemainingIterations && !NextVF.Width.isScalable()) {
4431 SE.
getConstant(TCType, NextVF.Width.getFixedValue()),
4432 RemainingIterations))
4436 if (Result.Width.isScalar() ||
4437 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4444 << Result.Width <<
"\n");
4448std::pair<unsigned, unsigned>
4450 unsigned MinWidth = -1U;
4451 unsigned MaxWidth = 8;
4457 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4461 MinWidth = std::min(
4465 MaxWidth = std::max(MaxWidth,
4470 MinWidth = std::min<unsigned>(
4471 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4472 MaxWidth = std::max<unsigned>(
4473 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4476 return {MinWidth, MaxWidth};
4484 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4498 if (!
Legal->isReductionVariable(PN))
4501 Legal->getRecurrenceDescriptor(PN);
4511 T = ST->getValueOperand()->getType();
4514 "Expected the load/store/recurrence type to be sized");
4538 if (!CM.isScalarEpilogueAllowed())
4543 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4544 "Unroll factor forced to be 1.\n");
4549 if (!Legal->isSafeForAnyVectorWidth())
4558 const bool HasReductions =
4564 if (LoopCost == 0) {
4566 LoopCost = CM.expectedCost(VF);
4568 LoopCost = cost(Plan, VF);
4569 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4580 for (
auto &Pair : R.MaxLocalUsers) {
4581 Pair.second = std::max(Pair.second, 1U);
4595 unsigned IC = UINT_MAX;
4597 for (
const auto &Pair : R.MaxLocalUsers) {
4598 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4601 << TTI.getRegisterClassName(Pair.first)
4602 <<
" register class\n");
4610 unsigned MaxLocalUsers = Pair.second;
4611 unsigned LoopInvariantRegs = 0;
4612 if (R.LoopInvariantRegs.contains(Pair.first))
4613 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4615 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4619 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4620 std::max(1U, (MaxLocalUsers - 1)));
4623 IC = std::min(IC, TmpIC);
4627 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4643 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4645 unsigned AvailableTC =
4651 if (CM.requiresScalarEpilogue(VF.
isVector()))
4654 unsigned InterleaveCountLB =
bit_floor(std::max(
4655 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4669 unsigned InterleaveCountUB =
bit_floor(std::max(
4670 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4671 MaxInterleaveCount = InterleaveCountLB;
4673 if (InterleaveCountUB != InterleaveCountLB) {
4674 unsigned TailTripCountUB =
4675 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4676 unsigned TailTripCountLB =
4677 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4680 if (TailTripCountUB == TailTripCountLB)
4681 MaxInterleaveCount = InterleaveCountUB;
4689 MaxInterleaveCount = InterleaveCountLB;
4693 assert(MaxInterleaveCount > 0 &&
4694 "Maximum interleave count must be greater than 0");
4698 if (IC > MaxInterleaveCount)
4699 IC = MaxInterleaveCount;
4702 IC = std::max(1u, IC);
4704 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4708 if (VF.
isVector() && HasReductions) {
4709 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4717 bool ScalarInterleavingRequiresPredication =
4719 return Legal->blockNeedsPredication(BB);
4721 bool ScalarInterleavingRequiresRuntimePointerCheck =
4722 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4727 <<
"LV: IC is " << IC <<
'\n'
4728 <<
"LV: VF is " << VF <<
'\n');
4729 const bool AggressivelyInterleaveReductions =
4730 TTI.enableAggressiveInterleaving(HasReductions);
4731 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4732 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4741 unsigned NumStores = 0;
4742 unsigned NumLoads = 0;
4756 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4757 NumStores += StoreOps;
4759 NumLoads += InterleaveR->getNumDefinedValues();
4774 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4775 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4781 bool HasSelectCmpReductions =
4785 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4786 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4787 RedR->getRecurrenceKind()) ||
4788 RecurrenceDescriptor::isFindIVRecurrenceKind(
4789 RedR->getRecurrenceKind()));
4791 if (HasSelectCmpReductions) {
4792 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4801 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4802 bool HasOrderedReductions =
4805 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4807 return RedR && RedR->isOrdered();
4809 if (HasOrderedReductions) {
4811 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4816 SmallIC = std::min(SmallIC,
F);
4817 StoresIC = std::min(StoresIC,
F);
4818 LoadsIC = std::min(LoadsIC,
F);
4822 std::max(StoresIC, LoadsIC) > SmallIC) {
4824 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4825 return std::max(StoresIC, LoadsIC);
4830 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4834 return std::max(IC / 2, SmallIC);
4837 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4843 if (AggressivelyInterleaveReductions) {
4852bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4862 assert((isPredicatedInst(
I)) &&
4863 "Expecting a scalar emulated instruction");
4876 if (InstsToScalarize.contains(VF) ||
4877 PredicatedBBsAfterVectorization.contains(VF))
4883 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4893 ScalarCostsTy ScalarCosts;
4900 !useEmulatedMaskMemRefHack(&
I, VF) &&
4901 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4902 for (
const auto &[
I, IC] : ScalarCosts)
4903 ScalarCostsVF.
insert({
I, IC});
4906 for (
const auto &[
I,
Cost] : ScalarCosts) {
4908 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4911 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4915 PredicatedBBsAfterVectorization[VF].insert(BB);
4917 if (Pred->getSingleSuccessor() == BB)
4918 PredicatedBBsAfterVectorization[VF].insert(Pred);
4926 assert(!isUniformAfterVectorization(PredInst, VF) &&
4927 "Instruction marked uniform-after-vectorization will be predicated");
4945 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
4946 isScalarAfterVectorization(
I, VF))
4951 if (isScalarWithPredication(
I, VF))
4964 for (
Use &U :
I->operands())
4966 if (isUniformAfterVectorization(J, VF))
4977 while (!Worklist.
empty()) {
4981 if (ScalarCosts.contains(
I))
5001 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5004 ScalarCost +=
TTI.getScalarizationOverhead(
5017 for (Use &U :
I->operands())
5020 "Instruction has non-scalar type");
5021 if (CanBeScalarized(J))
5023 else if (needsExtract(J, VF)) {
5039 Discount += VectorCost - ScalarCost;
5040 ScalarCosts[
I] = ScalarCost;
5056 ValuesToIgnoreForVF);
5063 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5076 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5077 << VF <<
" For instruction: " <<
I <<
'\n');
5105 const Loop *TheLoop) {
5113 auto *SE = PSE.
getSE();
5114 unsigned NumOperands = Gep->getNumOperands();
5115 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5116 Value *Opd = Gep->getOperand(Idx);
5118 !
Legal->isInductionVariable(Opd))
5127LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5130 "Scalarization cost of instruction implies vectorization.");
5132 return InstructionCost::getInvalid();
5135 auto *SE = PSE.
getSE();
5166 if (isPredicatedInst(
I)) {
5171 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5177 if (useEmulatedMaskMemRefHack(
I, VF))
5187LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5193 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5195 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5196 "Stride should be 1 or -1 for consecutive memory access");
5199 if (
Legal->isMaskRequired(
I)) {
5208 bool Reverse = ConsecutiveStride < 0;
5216LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5234 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5242 if (!IsLoopInvariantStoreValue)
5249LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5262 Legal->isMaskRequired(
I), Alignment,
5267LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5269 const auto *Group = getInterleavedAccessGroup(
I);
5270 assert(Group &&
"Fail to get an interleaved access group.");
5277 unsigned InterleaveFactor = Group->getFactor();
5278 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5281 SmallVector<unsigned, 4> Indices;
5282 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5283 if (Group->getMember(IF))
5287 bool UseMaskForGaps =
5288 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5291 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5295 if (Group->isReverse()) {
5298 "Reverse masked interleaved access not supported.");
5299 Cost += Group->getNumMembers() *
5306std::optional<InstructionCost>
5313 return std::nullopt;
5331 return std::nullopt;
5342 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5344 return std::nullopt;
5350 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5359 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5362 BaseCost =
TTI.getArithmeticReductionCost(
5370 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5387 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5393 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5405 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5408 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5410 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5418 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5419 return I == RetI ? RedCost : 0;
5421 !
TheLoop->isLoopInvariant(RedOp)) {
5430 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5432 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5433 return I == RetI ? RedCost : 0;
5434 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5438 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5457 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5463 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5464 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5465 ExtraExtCost =
TTI.getCastInstrCost(
5472 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5473 return I == RetI ? RedCost : 0;
5477 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5483 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5484 return I == RetI ? RedCost : 0;
5488 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5492LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5503 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5504 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5507 return getWideningCost(
I, VF);
5511LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5512 ElementCount VF)
const {
5517 return InstructionCost::getInvalid();
5545 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5550 for (
auto *V : filterExtractingOperands(
Ops, VF))
5573 if (
Legal->isUniformMemOp(
I, VF)) {
5574 auto IsLegalToScalarize = [&]() {
5594 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5606 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5612 if (GatherScatterCost < ScalarizationCost)
5622 int ConsecutiveStride =
Legal->isConsecutivePtr(
5624 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5625 "Expected consecutive stride.");
5634 unsigned NumAccesses = 1;
5637 assert(Group &&
"Fail to get an interleaved access group.");
5643 NumAccesses = Group->getNumMembers();
5645 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5650 ? getGatherScatterCost(&
I, VF) * NumAccesses
5654 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5660 if (InterleaveCost <= GatherScatterCost &&
5661 InterleaveCost < ScalarizationCost) {
5663 Cost = InterleaveCost;
5664 }
else if (GatherScatterCost < ScalarizationCost) {
5666 Cost = GatherScatterCost;
5669 Cost = ScalarizationCost;
5676 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5677 if (
auto *
I = Group->getMember(Idx)) {
5679 getMemInstScalarizationCost(
I, VF));
5695 if (
TTI.prefersVectorizedAddressing())
5704 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5712 while (!Worklist.
empty()) {
5714 for (
auto &
Op :
I->operands())
5717 AddrDefs.
insert(InstOp).second)
5721 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5725 for (
User *U :
LI->users()) {
5735 for (
auto *
I : AddrDefs) {
5754 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
5771 ForcedScalars[VF].insert(
I);
5778 "Trying to set a vectorization decision for a scalar VF");
5780 auto ForcedScalar = ForcedScalars.find(VF);
5795 for (
auto &ArgOp : CI->
args())
5804 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5814 "Unexpected valid cost for scalarizing scalable vectors");
5821 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5822 ForcedScalar->second.contains(CI)) ||
5830 bool MaskRequired =
Legal->isMaskRequired(CI);
5833 for (
Type *ScalarTy : ScalarTys)
5842 std::nullopt, *RedCost);
5853 if (Info.Shape.VF != VF)
5857 if (MaskRequired && !Info.isMasked())
5861 bool ParamsOk =
true;
5863 switch (Param.ParamKind) {
5869 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5906 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5917 if (VectorCost <=
Cost) {
5939 return !OpI || !
TheLoop->contains(OpI) ||
5943 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
5955 return InstsToScalarize[VF][
I];
5958 auto ForcedScalar = ForcedScalars.find(VF);
5959 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
5960 auto InstSet = ForcedScalar->second;
5961 if (InstSet.count(
I))
5966 Type *RetTy =
I->getType();
5969 auto *SE =
PSE.getSE();
5973 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
5978 auto Scalarized = InstsToScalarize.find(VF);
5979 assert(Scalarized != InstsToScalarize.end() &&
5980 "VF not yet analyzed for scalarization profitability");
5981 return !Scalarized->second.count(
I) &&
5983 auto *UI = cast<Instruction>(U);
5984 return !Scalarized->second.count(UI);
5993 assert(
I->getOpcode() == Instruction::GetElementPtr ||
5994 I->getOpcode() == Instruction::PHI ||
5995 (
I->getOpcode() == Instruction::BitCast &&
5996 I->getType()->isPointerTy()) ||
5997 HasSingleCopyAfterVectorization(
I, VF));
6003 !
TTI.getNumberOfParts(VectorTy))
6007 switch (
I->getOpcode()) {
6008 case Instruction::GetElementPtr:
6014 case Instruction::Br: {
6021 bool ScalarPredicatedBB =
false;
6024 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6025 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6027 ScalarPredicatedBB =
true;
6029 if (ScalarPredicatedBB) {
6037 TTI.getScalarizationOverhead(
6045 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6053 case Instruction::Switch: {
6055 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6057 return Switch->getNumCases() *
6058 TTI.getCmpSelInstrCost(
6060 toVectorTy(Switch->getCondition()->getType(), VF),
6064 case Instruction::PHI: {
6081 Type *ResultTy = Phi->getType();
6087 auto *Phi = dyn_cast<PHINode>(U);
6088 if (Phi && Phi->getParent() == TheLoop->getHeader())
6093 auto &ReductionVars =
Legal->getReductionVars();
6094 auto Iter = ReductionVars.find(HeaderUser);
6095 if (Iter != ReductionVars.end() &&
6097 Iter->second.getRecurrenceKind()))
6100 return (Phi->getNumIncomingValues() - 1) *
6101 TTI.getCmpSelInstrCost(
6102 Instruction::Select,
toVectorTy(ResultTy, VF),
6112 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6113 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6117 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6119 case Instruction::UDiv:
6120 case Instruction::SDiv:
6121 case Instruction::URem:
6122 case Instruction::SRem:
6126 ScalarCost : SafeDivisorCost;
6130 case Instruction::Add:
6131 case Instruction::Sub: {
6132 auto Info =
Legal->getHistogramInfo(
I);
6139 if (!RHS || RHS->getZExtValue() != 1)
6141 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6145 Type *ScalarTy =
I->getType();
6149 {PtrTy, ScalarTy, MaskTy});
6152 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6153 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6157 case Instruction::FAdd:
6158 case Instruction::FSub:
6159 case Instruction::Mul:
6160 case Instruction::FMul:
6161 case Instruction::FDiv:
6162 case Instruction::FRem:
6163 case Instruction::Shl:
6164 case Instruction::LShr:
6165 case Instruction::AShr:
6166 case Instruction::And:
6167 case Instruction::Or:
6168 case Instruction::Xor: {
6172 if (
I->getOpcode() == Instruction::Mul &&
6173 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6174 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6175 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6176 PSE.getSCEV(
I->getOperand(1))->isOne())))
6185 Value *Op2 =
I->getOperand(1);
6191 auto Op2Info =
TTI.getOperandInfo(Op2);
6197 return TTI.getArithmeticInstrCost(
6199 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6200 Op2Info, Operands,
I,
TLI);
6202 case Instruction::FNeg: {
6203 return TTI.getArithmeticInstrCost(
6205 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6206 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6207 I->getOperand(0),
I);
6209 case Instruction::Select: {
6214 const Value *Op0, *Op1;
6225 return TTI.getArithmeticInstrCost(
6227 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6230 Type *CondTy =
SI->getCondition()->getType();
6236 Pred = Cmp->getPredicate();
6237 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6238 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6239 {TTI::OK_AnyValue, TTI::OP_None},
I);
6241 case Instruction::ICmp:
6242 case Instruction::FCmp: {
6243 Type *ValTy =
I->getOperand(0)->getType();
6249 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6250 "if both the operand and the compare are marked for "
6251 "truncation, they must have the same bitwidth");
6256 return TTI.getCmpSelInstrCost(
6259 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6261 case Instruction::Store:
6262 case Instruction::Load: {
6267 "CM decision should be taken at this point");
6274 return getMemoryInstructionCost(
I, VF);
6276 case Instruction::BitCast:
6277 if (
I->getType()->isPointerTy())
6280 case Instruction::ZExt:
6281 case Instruction::SExt:
6282 case Instruction::FPToUI:
6283 case Instruction::FPToSI:
6284 case Instruction::FPExt:
6285 case Instruction::PtrToInt:
6286 case Instruction::IntToPtr:
6287 case Instruction::SIToFP:
6288 case Instruction::UIToFP:
6289 case Instruction::Trunc:
6290 case Instruction::FPTrunc: {
6294 "Expected a load or a store!");
6320 unsigned Opcode =
I->getOpcode();
6323 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6326 CCH = ComputeCCH(Store);
6329 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6330 Opcode == Instruction::FPExt) {
6332 CCH = ComputeCCH(Load);
6340 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6341 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6348 Type *SrcScalarTy =
I->getOperand(0)->getType();
6360 (
I->getOpcode() == Instruction::ZExt ||
6361 I->getOpcode() == Instruction::SExt))
6365 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6367 case Instruction::Call:
6369 case Instruction::ExtractValue:
6371 case Instruction::Alloca:
6379 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6394 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6395 return RequiresScalarEpilogue &&
6409 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6410 return VecValuesToIgnore.contains(U) ||
6411 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6420 if (Group->getInsertPos() == &
I)
6423 DeadInterleavePointerOps.
push_back(PointerOp);
6429 if (Br->isConditional())
6436 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6439 Instruction *UI = cast<Instruction>(U);
6440 return !VecValuesToIgnore.contains(U) &&
6441 (!isAccessInterleaved(UI) ||
6442 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6462 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6474 if ((ThenEmpty && ElseEmpty) ||
6476 ElseBB->
phis().empty()) ||
6478 ThenBB->
phis().empty())) {
6490 return !VecValuesToIgnore.contains(U) &&
6491 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6499 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6508 for (
const auto &Reduction :
Legal->getReductionVars()) {
6515 for (
const auto &Induction :
Legal->getInductionVars()) {
6524 if (!InLoopReductions.empty())
6527 for (
const auto &Reduction :
Legal->getReductionVars()) {
6528 PHINode *Phi = Reduction.first;
6539 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6547 bool InLoop = !ReductionOperations.
empty();
6550 InLoopReductions.insert(Phi);
6553 for (
auto *
I : ReductionOperations) {
6554 InLoopReductionImmediateChains[
I] = LastChain;
6558 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6559 <<
" reduction for phi: " << *Phi <<
"\n");
6572 unsigned WidestType;
6576 TTI.enableScalableVectorization()
6581 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6592 if (!OrigLoop->isInnermost()) {
6602 <<
"overriding computed VF.\n");
6605 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6607 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6608 <<
"not supported by the target.\n");
6610 "Scalable vectorization requested but not supported by the target",
6611 "the scalable user-specified vectorization width for outer-loop "
6612 "vectorization cannot be used because the target does not support "
6613 "scalable vectors.",
6614 "ScalableVFUnfeasible", ORE, OrigLoop);
6619 "VF needs to be a power of two");
6621 <<
"VF " << VF <<
" to build VPlans.\n");
6631 return {VF, 0 , 0 };
6635 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6636 "VPlan-native path.\n");
6641 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6642 CM.collectValuesToIgnore();
6643 CM.collectElementTypesForWidening();
6650 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6654 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6655 "which requires masked-interleaved support.\n");
6656 if (CM.InterleaveInfo.invalidateGroups())
6660 CM.invalidateCostModelingDecisions();
6663 if (CM.foldTailByMasking())
6664 Legal->prepareToFoldTailByMasking();
6671 "UserVF ignored because it may be larger than the maximal safe VF",
6672 "InvalidUserVF", ORE, OrigLoop);
6675 "VF needs to be a power of two");
6678 CM.collectInLoopReductions();
6679 if (CM.selectUserVectorizationFactor(UserVF)) {
6681 buildVPlansWithVPRecipes(UserVF, UserVF);
6686 "InvalidCost", ORE, OrigLoop);
6699 CM.collectInLoopReductions();
6700 for (
const auto &VF : VFCandidates) {
6702 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6721 return CM.isUniformAfterVectorization(
I, VF);
6725 return CM.ValuesToIgnore.contains(UI) ||
6726 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6746 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6748 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6750 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6751 for (
Value *
Op : IVInsts[
I]->operands()) {
6753 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6759 for (User *U :
IV->users()) {
6772 if (TC == VF && !CM.foldTailByMasking())
6776 for (Instruction *IVInst : IVInsts) {
6781 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6782 <<
": induction instruction " << *IVInst <<
"\n";
6784 Cost += InductionCost;
6794 CM.TheLoop->getExitingBlocks(Exiting);
6795 SetVector<Instruction *> ExitInstrs;
6797 for (BasicBlock *EB : Exiting) {
6802 ExitInstrs.
insert(CondI);
6806 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6808 if (!OrigLoop->contains(CondI) ||
6813 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6814 <<
": exit condition instruction " << *CondI <<
"\n";
6820 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6821 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6822 !ExitInstrs.contains(cast<Instruction>(U));
6834 for (BasicBlock *BB : OrigLoop->blocks()) {
6838 if (BB == OrigLoop->getLoopLatch())
6840 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6847 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6853 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6854 <<
": forced scalar " << *ForcedScalar <<
"\n";
6858 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6863 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6864 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6873 ElementCount VF)
const {
6874 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.
getSE());
6882 <<
" (Estimated cost per lane: ");
6884 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6907 return &WidenMem->getIngredient();
6916 if (!VPI || VPI->getOpcode() != Instruction::Select ||
6917 VPI->getNumUsers() != 1)
6921 switch (WR->getOpcode()) {
6922 case Instruction::UDiv:
6923 case Instruction::SDiv:
6924 case Instruction::URem:
6925 case Instruction::SRem:
6938 auto *IG =
IR->getInterleaveGroup();
6939 unsigned NumMembers = IG->getNumMembers();
6940 for (
unsigned I = 0;
I != NumMembers; ++
I) {
6974 if (RepR->isSingleScalar() &&
6976 RepR->getUnderlyingInstr(), VF))
6979 if (
Instruction *UI = GetInstructionForCost(&R)) {
6984 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
6996 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
6998 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7001 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7002 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7004 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7014 VPlan &FirstPlan = *VPlans[0];
7020 ?
"Reciprocal Throughput\n"
7022 ?
"Instruction Latency\n"
7025 ?
"Code Size and Latency\n"
7030 "More than a single plan/VF w/o any plan having scalar VF");
7034 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7039 if (ForceVectorization) {
7046 for (
auto &
P : VPlans) {
7048 P->vectorFactors().end());
7052 return CM.shouldConsiderRegPressureForVF(VF);
7056 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7063 <<
"LV: Not considering vector loop of width " << VF
7064 <<
" because it will not generate any vector instructions.\n");
7070 <<
"LV: Not considering vector loop of width " << VF
7071 <<
" because it would cause replicated blocks to be generated,"
7072 <<
" which isn't allowed when optimizing for size.\n");
7079 if (CM.shouldConsiderRegPressureForVF(VF) &&
7081 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7082 << VF <<
" because it uses too many registers\n");
7086 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7087 BestFactor = CurrentFactor;
7090 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7091 ProfitableVFs.push_back(CurrentFactor);
7107 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7109 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7116 BestFactor.
Width) ||
7119 " VPlan cost model and legacy cost model disagreed");
7121 "when vectorizing, the scalar cost must be computed.");
7131 "RdxResult must be ComputeFindIVResult");
7149 if (!EpiRedResult ||
7155 auto *EpiRedHeaderPhi =
7157 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7158 Value *MainResumeValue;
7162 "unexpected start recipe");
7163 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7165 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7167 [[maybe_unused]]
Value *StartV =
7168 EpiRedResult->getOperand(1)->getLiveInIRValue();
7171 "AnyOf expected to start with ICMP_NE");
7172 assert(Cmp->getOperand(1) == StartV &&
7173 "AnyOf expected to start by comparing main resume value to original "
7175 MainResumeValue = Cmp->getOperand(0);
7178 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7180 Value *Cmp, *OrigResumeV, *CmpOp;
7181 [[maybe_unused]]
bool IsExpectedPattern =
7182 match(MainResumeValue,
7188 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7189 MainResumeValue = OrigResumeV;
7204 "Trying to execute plan with unsupported VF");
7206 "Trying to execute plan with unsupported UF");
7208 ++LoopsEarlyExitVectorized;
7216 bool HasBranchWeights =
7218 if (HasBranchWeights) {
7219 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7221 BestVPlan, BestVF, VScale);
7226 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7239 OrigLoop->getStartLoc(),
7240 OrigLoop->getHeader())
7241 <<
"Created vector loop never executes due to insufficient trip "
7260 BestVPlan, VectorPH, CM.foldTailByMasking(),
7261 CM.requiresScalarEpilogue(BestVF.
isVector()));
7273 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7274 "count during epilogue vectorization");
7278 OrigLoop->getParentLoop(),
7279 Legal->getWidestInductionType());
7281#ifdef EXPENSIVE_CHECKS
7282 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7293 "final VPlan is invalid");
7300 if (!Exit->hasPredecessors())
7322 MDNode *LID = OrigLoop->getLoopID();
7323 unsigned OrigLoopInvocationWeight = 0;
7324 std::optional<unsigned> OrigAverageTripCount =
7336 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7338 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7340 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7341 OrigLoopInvocationWeight,
7343 DisableRuntimeUnroll);
7351 return ExpandedSCEVs;
7366 EPI.EpilogueIterationCountCheck =
7368 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7378 EPI.MainLoopIterationCountCheck =
7387 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7388 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7389 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7390 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7391 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7397 dbgs() <<
"intermediate fn:\n"
7398 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7404 assert(Bypass &&
"Expected valid bypass basic block.");
7408 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7409 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7413 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7439 return TCCheckBlock;
7452 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7460 R.moveBefore(*NewEntry, NewEntry->
end());
7464 Plan.setEntry(NewEntry);
7467 return OriginalScalarPH;
7472 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7473 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7474 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7480 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7488 "Must be called with either a load or store");
7492 CM.getWideningDecision(
I, VF);
7494 "CM decision should be taken at this point.");
7497 if (CM.isScalarAfterVectorization(
I, VF) ||
7498 CM.isProfitableToScalarize(
I, VF))
7507 if (
Legal->isMaskRequired(
I))
7508 Mask = getBlockInMask(Builder.getInsertBlock());
7513 CM.getWideningDecision(
I,
Range.Start);
7521 Ptr->getUnderlyingValue()->stripPointerCasts());
7529 CM.foldTailByMasking() || !
GEP
7531 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7534 -1, Flags,
I->getDebugLoc());
7537 GEP ?
GEP->getNoWrapFlags()
7541 Builder.insert(VectorPtr);
7545 return new VPWidenLoadRecipe(*Load,
Ptr, Mask, Consecutive,
Reverse,
7546 Load->getAlign(), VPIRMetadata(*Load, LVer),
7550 return new VPWidenStoreRecipe(*Store,
Ptr, Operands[0], Mask, Consecutive,
7552 VPIRMetadata(*Store, LVer),
I->getDebugLoc());
7557static VPWidenIntOrFpInductionRecipe *
7564 "step must be loop invariant");
7571 TruncI->getDebugLoc());
7575 IndDesc, Phi->getDebugLoc());
7578VPHeaderPHIRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
7583 if (
auto *
II =
Legal->getIntOrFpInductionDescriptor(Phi))
7585 *PSE.
getSE(), *OrigLoop);
7588 if (
auto *
II =
Legal->getPointerInductionDescriptor(Phi)) {
7590 return new VPWidenPointerInductionRecipe(
7591 Phi, Operands[0], Step, &Plan.
getVFxUF(), *
II,
7593 [&](ElementCount VF) {
7594 return CM.isScalarAfterVectorization(Phi, VF);
7597 Phi->getDebugLoc());
7602VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
7611 auto IsOptimizableIVTruncate =
7612 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7613 return [=](ElementCount VF) ->
bool {
7614 return CM.isOptimizableIVTruncate(K, VF);
7619 IsOptimizableIVTruncate(
I),
Range)) {
7622 const InductionDescriptor &
II = *
Legal->getIntOrFpInductionDescriptor(Phi);
7630VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
7634 [
this, CI](ElementCount VF) {
7635 return CM.isScalarWithPredication(CI, VF);
7643 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7644 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7645 ID == Intrinsic::pseudoprobe ||
7646 ID == Intrinsic::experimental_noalias_scope_decl))
7652 bool ShouldUseVectorIntrinsic =
7654 [&](ElementCount VF) ->
bool {
7655 return CM.getCallWideningDecision(CI, VF).Kind ==
7659 if (ShouldUseVectorIntrinsic)
7660 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(),
7664 std::optional<unsigned> MaskPos;
7668 [&](ElementCount VF) ->
bool {
7683 LoopVectorizationCostModel::CallWideningDecision Decision =
7684 CM.getCallWideningDecision(CI, VF);
7694 if (ShouldUseVectorCall) {
7695 if (MaskPos.has_value()) {
7703 VPValue *
Mask =
nullptr;
7704 if (
Legal->isMaskRequired(CI))
7705 Mask = getBlockInMask(Builder.getInsertBlock());
7710 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7713 Ops.push_back(Operands.
back());
7714 return new VPWidenCallRecipe(CI, Variant,
Ops, CI->
getDebugLoc());
7720bool VPRecipeBuilder::shouldWiden(Instruction *
I, VFRange &
Range)
const {
7722 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7725 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7726 return CM.isScalarAfterVectorization(
I, VF) ||
7727 CM.isProfitableToScalarize(
I, VF) ||
7728 CM.isScalarWithPredication(
I, VF);
7734VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *
I,
7736 switch (
I->getOpcode()) {
7739 case Instruction::SDiv:
7740 case Instruction::UDiv:
7741 case Instruction::SRem:
7742 case Instruction::URem: {
7745 if (CM.isPredicatedInst(
I)) {
7747 VPValue *
Mask = getBlockInMask(Builder.getInsertBlock());
7750 auto *SafeRHS = Builder.createSelect(Mask,
Ops[1], One,
I->getDebugLoc());
7752 return new VPWidenRecipe(*
I,
Ops);
7756 case Instruction::Add:
7757 case Instruction::And:
7758 case Instruction::AShr:
7759 case Instruction::FAdd:
7760 case Instruction::FCmp:
7761 case Instruction::FDiv:
7762 case Instruction::FMul:
7763 case Instruction::FNeg:
7764 case Instruction::FRem:
7765 case Instruction::FSub:
7766 case Instruction::ICmp:
7767 case Instruction::LShr:
7768 case Instruction::Mul:
7769 case Instruction::Or:
7770 case Instruction::Select:
7771 case Instruction::Shl:
7772 case Instruction::Sub:
7773 case Instruction::Xor:
7774 case Instruction::Freeze: {
7780 ScalarEvolution &SE = *PSE.
getSE();
7781 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7782 if (!
Op->isLiveIn())
7784 Value *
V =
Op->getUnderlyingValue();
7793 if (
I->getOpcode() == Instruction::Mul)
7794 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7796 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7798 return new VPWidenRecipe(*
I, NewOps);
7800 case Instruction::ExtractValue: {
7802 Type *I32Ty = IntegerType::getInt32Ty(
I->getContext());
7804 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7805 unsigned Idx = EVI->getIndices()[0];
7806 NewOps.push_back(Plan.
getOrAddLiveIn(ConstantInt::get(I32Ty, Idx,
false)));
7807 return new VPWidenRecipe(*
I, NewOps);
7813VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7816 unsigned Opcode =
HI->Update->getOpcode();
7817 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7818 "Histogram update operation must be an Add or Sub");
7824 HGramOps.
push_back(getVPValueOrAddLiveIn(
HI->Update->getOperand(1)));
7828 if (
Legal->isMaskRequired(
HI->Store))
7829 HGramOps.
push_back(getBlockInMask(Builder.getInsertBlock()));
7831 return new VPHistogramRecipe(Opcode, HGramOps,
HI->Store->getDebugLoc());
7838 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7841 bool IsPredicated = CM.isPredicatedInst(
I);
7849 case Intrinsic::assume:
7850 case Intrinsic::lifetime_start:
7851 case Intrinsic::lifetime_end:
7873 VPValue *BlockInMask =
nullptr;
7874 if (!IsPredicated) {
7878 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7889 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7891 "Should not predicate a uniform recipe");
7902 PartialReductionChains;
7903 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
7904 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
7905 PartialReductionChains);
7914 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
7915 PartialReductionOps.
insert(PartialRdx.ExtendUser);
7917 auto ExtendIsOnlyUsedByPartialReductions =
7919 return all_of(Extend->users(), [&](
const User *U) {
7920 return PartialReductionOps.contains(U);
7926 for (
auto Pair : PartialReductionChains) {
7928 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
7929 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
7930 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
7934bool VPRecipeBuilder::getScaledReductions(
7936 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
7937 if (!CM.TheLoop->contains(RdxExitInstr))
7944 Value *
Op = Update->getOperand(0);
7945 Value *PhiOp = Update->getOperand(1);
7953 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
7954 PHI = Chains.rbegin()->first.Reduction;
7956 Op = Update->getOperand(0);
7957 PhiOp = Update->getOperand(1);
7965 using namespace llvm::PatternMatch;
7972 std::optional<unsigned> BinOpc;
7973 Type *ExtOpTypes[2] = {
nullptr};
7976 auto CollectExtInfo = [
this, &Exts, &ExtOpTypes,
7977 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
7982 ExtOpTypes[
I] = ExtOpTypes[0];
7983 ExtKinds[
I] = ExtKinds[0];
7992 if (!CM.TheLoop->contains(Exts[
I]))
8010 if (!CollectExtInfo(
Ops))
8013 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8017 if (!CollectExtInfo(
Ops))
8020 ExtendUser = Update;
8021 BinOpc = std::nullopt;
8025 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8027 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8034 [&](ElementCount VF) {
8036 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8037 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8042 Chains.emplace_back(Chain, TargetScaleFactor);
8061 "Non-header phis should have been handled during predication");
8063 assert(Operands.
size() == 2 &&
"Must have 2 operands for header phis");
8064 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands,
Range)))
8068 assert((Legal->isReductionVariable(Phi) ||
8069 Legal->isFixedOrderRecurrence(Phi)) &&
8070 "can only widen reductions and fixed-order recurrences here");
8071 VPValue *StartV = Operands[0];
8072 if (Legal->isReductionVariable(Phi)) {
8075 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8078 unsigned ScaleFactor =
8082 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8094 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8096 if (
isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8106 return tryToWidenCall(CI, Operands,
Range);
8109 if (
auto HistInfo = Legal->getHistogramInfo(
SI))
8110 return tryToWidenHistogram(*HistInfo, Operands);
8113 return tryToWidenMemory(Instr, Operands,
Range);
8116 if (
auto PartialRed =
8121 if (!shouldWiden(Instr,
Range))
8136 return tryToWiden(Instr, Operands);
8142 unsigned ScaleFactor) {
8144 "Unexpected number of operands for partial reduction");
8157 unsigned ReductionOpcode = Reduction->getOpcode();
8158 if (ReductionOpcode == Instruction::Sub) {
8159 auto *
const Zero = ConstantInt::get(Reduction->getType(), 0);
8161 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8162 Ops.push_back(BinOp);
8165 ReductionOpcode = Instruction::Add;
8169 if (CM.blockNeedsPredicationForAnyReason(Reduction->getParent())) {
8170 assert((ReductionOpcode == Instruction::Add ||
8171 ReductionOpcode == Instruction::Sub) &&
8172 "Expected an ADD or SUB operation for predicated partial "
8173 "reductions (because the neutral element in the mask is zero)!");
8176 Plan.getOrAddLiveIn(ConstantInt::get(Reduction->getType(), 0));
8177 BinOp = Builder.createSelect(
Cond, BinOp, Zero, Reduction->getDebugLoc());
8180 ScaleFactor, Reduction);
8183void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8188 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
8192 OrigLoop, LI, DT, PSE.
getSE());
8197 LVer.prepareNoAliasMetadata();
8203 OrigLoop, *LI,
Legal->getWidestInductionType(),
8206 auto MaxVFTimes2 = MaxVF * 2;
8208 VFRange SubRange = {VF, MaxVFTimes2};
8209 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8210 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8213 *Plan, CM.getMinimalBitwidths());
8216 if (CM.foldTailWithEVL())
8218 *Plan, CM.getMaxSafeElements());
8220 VPlans.push_back(std::move(Plan));
8226VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8229 using namespace llvm::VPlanPatternMatch;
8230 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8237 bool RequiresScalarEpilogueCheck =
8239 [
this](ElementCount VF) {
8240 return !CM.requiresScalarEpilogue(VF.
isVector());
8245 CM.foldTailByMasking());
8253 bool IVUpdateMayOverflow =
false;
8254 for (ElementCount VF :
Range)
8262 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8263 bool HasNUW = !IVUpdateMayOverflow ||
Style == TailFoldingStyle::None;
8268 m_VPInstruction<Instruction::Add>(
8270 "Did not find the canonical IV increment");
8283 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8284 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8286 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8291 "Unsupported interleave factor for scalable vectors");
8294 if (!getDecisionAndClampRange(ApplyIG,
Range))
8296 InterleaveGroups.
insert(IG);
8303 *Plan, CM.foldTailByMasking());
8309 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8310 Builder, BlockMaskCache, LVer);
8311 RecipeBuilder.collectScaledReductions(
Range);
8316 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8319 auto *MiddleVPBB = Plan->getMiddleBlock();
8323 DenseMap<VPValue *, VPValue *> Old2New;
8328 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8342 UnderlyingValue &&
"unsupported recipe");
8347 Builder.setInsertPoint(SingleDef);
8354 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8356 if (
Legal->isInvariantStoreOfReduction(SI)) {
8358 new VPReplicateRecipe(SI,
R.operands(),
true ,
8359 nullptr , VPIRMetadata(*SI, LVer));
8360 Recipe->insertBefore(*MiddleVPBB, MBIP);
8362 R.eraseFromParent();
8366 VPRecipeBase *Recipe =
8367 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8369 Recipe = RecipeBuilder.handleReplication(Instr,
R.operands(),
Range);
8371 RecipeBuilder.setRecipe(Instr, Recipe);
8377 Builder.insert(Recipe);
8384 "Unexpected multidef recipe");
8385 R.eraseFromParent();
8394 RecipeBuilder.updateBlockMaskCache(Old2New);
8395 for (VPValue *Old : Old2New.
keys())
8396 Old->getDefiningRecipe()->eraseFromParent();
8400 "entry block must be set to a VPRegionBlock having a non-empty entry "
8406 for (
const auto &[Phi,
ID] :
Legal->getInductionVars()) {
8408 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
8411 VPWidenInductionRecipe *WideIV =
8413 VPRecipeBase *
R = RecipeBuilder.getRecipe(IVInc);
8420 DenseMap<VPValue *, VPValue *> IVEndValues;
8429 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8441 if (!CM.foldTailWithEVL()) {
8442 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8448 for (ElementCount VF :
Range)
8450 Plan->setName(
"Initial VPlan");
8456 InterleaveGroups, RecipeBuilder,
8457 CM.isScalarEpilogueAllowed());
8461 Legal->getLAI()->getSymbolicStrides());
8463 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8464 return Legal->blockNeedsPredication(BB);
8467 BlockNeedsPredication);
8479 bool WithoutRuntimeCheck =
8480 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
8482 WithoutRuntimeCheck);
8490VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &
Range) {
8495 assert(!OrigLoop->isInnermost());
8499 OrigLoop, *LI,
Legal->getWidestInductionType(),
8508 for (ElementCount VF :
Range)
8513 [
this](PHINode *
P) {
8514 return Legal->getIntOrFpInductionDescriptor(
P);
8521 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8522 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8523 Builder, BlockMaskCache,
nullptr );
8524 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8528 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8530 DenseMap<VPValue *, VPValue *> IVEndValues;
8554void LoopVectorizationPlanner::adjustRecipesForReductions(
8555 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8556 using namespace VPlanPatternMatch;
8557 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8559 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8562 for (VPRecipeBase &R : Header->phis()) {
8564 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8571 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8574 SetVector<VPSingleDefRecipe *> Worklist;
8576 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8577 VPSingleDefRecipe *Cur = Worklist[
I];
8578 for (VPUser *U : Cur->
users()) {
8580 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8581 assert((UserRecipe->getParent() == MiddleVPBB ||
8582 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8583 "U must be either in the loop region, the middle block or the "
8584 "scalar preheader.");
8587 Worklist.
insert(UserRecipe);
8598 VPSingleDefRecipe *PreviousLink = PhiR;
8599 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8601 assert(Blend->getNumIncomingValues() == 2 &&
8602 "Blend must have 2 incoming values");
8603 if (Blend->getIncomingValue(0) == PhiR) {
8604 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8606 assert(Blend->getIncomingValue(1) == PhiR &&
8607 "PhiR must be an operand of the blend");
8608 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8613 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8616 unsigned IndexOfFirstOperand;
8618 bool IsFMulAdd = (
Kind == RecurKind::FMulAdd);
8620 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8624 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8627 CurrentLink->getOperand(2) == PreviousLink &&
8628 "expected a call where the previous link is the added operand");
8634 VPInstruction *FMulRecipe =
new VPInstruction(
8636 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8638 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8640 }
else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8641 CurrentLinkI->
getOpcode() == Instruction::Sub) {
8642 Type *PhiTy = PhiR->getUnderlyingValue()->getType();
8643 auto *
Zero = Plan->getOrAddLiveIn(ConstantInt::get(PhiTy, 0));
8644 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8645 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8647 Sub->setUnderlyingValue(CurrentLinkI);
8648 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8654 "need to have the compare of the select");
8658 "must be a select recipe");
8659 IndexOfFirstOperand = 1;
8662 "Expected to replace a VPWidenSC");
8663 IndexOfFirstOperand = 0;
8668 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8669 ? IndexOfFirstOperand + 1
8670 : IndexOfFirstOperand;
8671 VecOp = CurrentLink->getOperand(VecOpId);
8672 assert(VecOp != PreviousLink &&
8673 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8674 (VecOpId - IndexOfFirstOperand)) ==
8676 "PreviousLink must be the operand other than VecOp");
8679 VPValue *CondOp =
nullptr;
8680 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8684 RecurrenceDescriptor RdxDesc =
Legal->getRecurrenceDescriptor(
8690 auto *RedRecipe =
new VPReductionRecipe(
8691 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8698 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8702 CurrentLink->replaceAllUsesWith(RedRecipe);
8704 PreviousLink = RedRecipe;
8708 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8710 for (VPRecipeBase &R :
8711 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8716 const RecurrenceDescriptor &RdxDesc =
Legal->getRecurrenceDescriptor(
8727 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8730 std::optional<FastMathFlags> FMFs =
8735 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8736 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8745 if (CM.usePredicatedReductionSelect())
8756 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8762 VPInstruction *FinalReductionResult;
8763 VPBuilder::InsertPointGuard Guard(Builder);
8764 Builder.setInsertPoint(MiddleVPBB, IP);
8769 FinalReductionResult =
8774 FinalReductionResult =
8776 {PhiR,
Start, NewExitingVPV}, ExitDL);
8782 FinalReductionResult =
8784 {PhiR, NewExitingVPV},
Flags, ExitDL);
8791 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8793 "Unexpected truncated min-max recurrence!");
8795 VPWidenCastRecipe *Trunc;
8797 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8798 VPWidenCastRecipe *Extnd;
8800 VPBuilder::InsertPointGuard Guard(Builder);
8801 Builder.setInsertPoint(
8802 NewExitingVPV->getDefiningRecipe()->getParent(),
8803 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8805 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8806 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8814 FinalReductionResult =
8815 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8820 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8822 if (FinalReductionResult == U || Parent->getParent())
8824 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8835 return isa<VPWidenSelectRecipe>(U) ||
8836 (isa<VPReplicateRecipe>(U) &&
8837 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8838 Instruction::Select);
8843 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8845 Builder.setInsertPoint(
Select);
8849 if (
Select->getOperand(1) == PhiR)
8850 Cmp = Builder.createNot(Cmp);
8851 VPValue *
Or = Builder.createOr(PhiR, Cmp);
8852 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
8858 OrigLoop->getHeader()->getContext())));
8873 VPBuilder PHBuilder(Plan->getVectorPreheader());
8874 VPValue *Iden = Plan->getOrAddLiveIn(
8877 unsigned ScaleFactor =
8881 auto *ScaleFactorVPV =
8882 Plan->getOrAddLiveIn(ConstantInt::get(I32Ty, ScaleFactor));
8883 VPValue *StartV = PHBuilder.createNaryOp(
8891 for (VPRecipeBase *R : ToDelete)
8892 R->eraseFromParent();
8897void LoopVectorizationPlanner::attachRuntimeChecks(
8898 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
8899 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8900 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8901 assert((!CM.OptForSize ||
8903 "Cannot SCEV check stride or overflow when optimizing for size");
8907 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8908 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8912 "Runtime checks are not supported for outer loops yet");
8914 if (CM.OptForSize) {
8917 "Cannot emit memory checks when optimizing for size, unless forced "
8920 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
8921 OrigLoop->getStartLoc(),
8922 OrigLoop->getHeader())
8923 <<
"Code-size may be reduced by not forcing "
8924 "vectorization, or by source-code modifications "
8925 "eliminating the need for runtime checks "
8926 "(e.g., adding 'restrict').";
8940 bool IsIndvarOverflowCheckNeededForVF =
8941 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
8943 CM.getTailFoldingStyle() !=
8950 Plan, VF, UF, MinProfitableTripCount,
8951 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
8952 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
8953 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
8958 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
8963 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
8971 State.set(
this, DerivedIV,
VPLane(0));
9017 if (
TTI->preferPredicateOverEpilogue(&TFI))
9036 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9040 Function *
F = L->getHeader()->getParent();
9046 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9047 &Hints, IAI, PSI, BFI);
9051 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9071 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9073 BFI, PSI, Checks, BestPlan);
9075 << L->getHeader()->getParent()->getName() <<
"\"\n");
9097 if (S->getValueOperand()->getType()->isFloatTy())
9107 while (!Worklist.
empty()) {
9109 if (!L->contains(
I))
9111 if (!Visited.
insert(
I).second)
9121 I->getDebugLoc(), L->getHeader())
9122 <<
"floating point conversion changes vector width. "
9123 <<
"Mixed floating point precision requires an up/down "
9124 <<
"cast that will negatively impact performance.";
9127 for (
Use &
Op :
I->operands())
9143 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9149 << PredVPBB->getName() <<
":\n");
9150 Cost += PredVPBB->cost(VF, CostCtx);
9169 std::optional<unsigned> VScale) {
9185 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9244 uint64_t MinTC = std::max(MinTC1, MinTC2);
9246 MinTC =
alignTo(MinTC, IntVF);
9250 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9257 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9258 "trip count < minimum profitable VF ("
9269 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9271 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9292 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9311 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9312 bool UpdateResumePhis) {
9318 VPValue *OrigStart = VPI->getOperand(1);
9322 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9324 if (UpdateResumePhis)
9330 AddFreezeForFindLastIVReductions(MainPlan,
true);
9331 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9338 auto ResumePhiIter =
9340 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9343 VPPhi *ResumePhi =
nullptr;
9344 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9349 {},
"vec.epilog.resume.val");
9352 if (MainScalarPH->
begin() == MainScalarPH->
end())
9354 else if (&*MainScalarPH->
begin() != ResumePhi)
9369 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9374 Header->
setName(
"vec.epilog.vector.body");
9385 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9390 "Must only have a single non-zero incoming value");
9401 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9402 "all incoming values must be 0");
9408 return isa<VPScalarIVStepsRecipe>(U) ||
9409 isa<VPDerivedIVRecipe>(U) ||
9410 cast<VPRecipeBase>(U)->isScalarCast() ||
9411 cast<VPInstruction>(U)->getOpcode() ==
9414 "the canonical IV should only be used by its increment or "
9415 "ScalarIVSteps when resetting the start value");
9416 VPBuilder Builder(Header, Header->getFirstNonPhi());
9418 IV->replaceAllUsesWith(
Add);
9419 Add->setOperand(0,
IV);
9427 Value *ResumeV =
nullptr;
9432 auto *VPI = dyn_cast<VPInstruction>(U);
9434 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9435 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9436 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9439 ->getIncomingValueForBlock(L->getLoopPreheader());
9440 RecurKind RK = ReductionPhi->getRecurrenceKind();
9448 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9453 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9464 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9467 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9468 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9476 "unexpected start value");
9477 VPI->setOperand(0, StartVal);
9489 assert(ResumeV &&
"Must have a resume value");
9503 if (VPI && VPI->getOpcode() == Instruction::Freeze) {
9505 ToFrozen.
lookup(VPI->getOperand(0)->getLiveInIRValue())));
9520 ExpandR->eraseFromParent();
9524 unsigned MainLoopStep =
9526 unsigned EpilogueLoopStep =
9531 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9542 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9547 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9548 if (OrigPhi != OldInduction) {
9549 auto *BinOp =
II.getInductionBinOp();
9555 EndValueFromAdditionalBypass =
9557 II.getStartValue(), Step,
II.getKind(), BinOp);
9558 EndValueFromAdditionalBypass->
setName(
"ind.end");
9560 return EndValueFromAdditionalBypass;
9566 const SCEV2ValueTy &ExpandedSCEVs,
9567 Value *MainVectorTripCount) {
9572 if (Phi.getBasicBlockIndex(Pred) != -1)
9574 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9578 if (ScalarPH->hasPredecessors()) {
9581 for (
const auto &[R, IRPhi] :
9582 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9591 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9593 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9596 Inc->setIncomingValueForBlock(BypassBlock, V);
9619 "expected this to be saved from the previous pass.");
9622 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9625 VecEpilogueIterationCountCheck},
9627 VecEpiloguePreHeader}});
9632 VecEpilogueIterationCountCheck, ScalarPH);
9635 VecEpilogueIterationCountCheck},
9639 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9640 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9641 if (SCEVCheckBlock) {
9643 VecEpilogueIterationCountCheck, ScalarPH);
9645 VecEpilogueIterationCountCheck},
9648 if (MemCheckBlock) {
9650 VecEpilogueIterationCountCheck, ScalarPH);
9663 for (
PHINode *Phi : PhisInBlock) {
9665 Phi->replaceIncomingBlockWith(
9667 VecEpilogueIterationCountCheck);
9674 return EPI.EpilogueIterationCountCheck == IncB;
9679 Phi->removeIncomingValue(SCEVCheckBlock);
9681 Phi->removeIncomingValue(MemCheckBlock);
9685 for (
auto *
I : InstsToMove)
9697 "VPlan-native path is not enabled. Only process inner loops.");
9700 << L->getHeader()->getParent()->getName() <<
"' from "
9701 << L->getLocStr() <<
"\n");
9706 dbgs() <<
"LV: Loop hints:"
9717 Function *
F = L->getHeader()->getParent();
9739 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9746 "early exit is not enabled",
9747 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9753 "faulting load is not supported",
9754 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9763 if (!L->isInnermost())
9767 assert(L->isInnermost() &&
"Inner loop expected.");
9770 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9784 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9786 "requiring a scalar epilogue is unsupported",
9787 "UncountableEarlyExitUnsupported",
ORE, L);
9800 if (ExpectedTC && ExpectedTC->isFixed() &&
9802 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9803 <<
"This loop is worth vectorizing only if no scalar "
9804 <<
"iteration overheads are incurred.");
9806 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9822 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9824 "Can't vectorize when the NoImplicitFloat attribute is used",
9825 "loop not vectorized due to NoImplicitFloat attribute",
9826 "NoImplicitFloat",
ORE, L);
9836 TTI->isFPVectorizationPotentiallyUnsafe()) {
9838 "Potentially unsafe FP op prevents vectorization",
9839 "loop not vectorized due to unsafe FP support.",
9840 "UnsafeFP",
ORE, L);
9845 bool AllowOrderedReductions;
9850 AllowOrderedReductions =
TTI->enableOrderedReductions();
9855 ExactFPMathInst->getDebugLoc(),
9856 ExactFPMathInst->getParent())
9857 <<
"loop not vectorized: cannot prove it is safe to reorder "
9858 "floating-point operations";
9860 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9861 "reorder floating-point operations\n");
9867 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9870 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9880 LVP.
plan(UserVF, UserIC);
9887 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9892 unsigned SelectedIC = std::max(IC, UserIC);
9901 if (Checks.getSCEVChecks().first &&
9902 match(Checks.getSCEVChecks().first,
m_One()))
9904 if (Checks.getMemRuntimeChecks().first &&
9905 match(Checks.getMemRuntimeChecks().first,
m_One()))
9910 bool ForceVectorization =
9914 if (!ForceVectorization &&
9920 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
9922 <<
"loop not vectorized: cannot prove it is safe to reorder "
9923 "memory operations";
9932 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9933 bool VectorizeLoop =
true, InterleaveLoop =
true;
9935 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
9937 "VectorizationNotBeneficial",
9938 "the cost-model indicates that vectorization is not beneficial"};
9939 VectorizeLoop =
false;
9944 "UserIC should only be ignored due to unsafe dependencies");
9945 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
9946 IntDiagMsg = {
"InterleavingUnsafe",
9947 "Ignoring user-specified interleave count due to possibly "
9948 "unsafe dependencies in the loop."};
9949 InterleaveLoop =
false;
9953 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
9954 "interleaving should be avoided up front\n");
9955 IntDiagMsg = {
"InterleavingAvoided",
9956 "Ignoring UserIC, because interleaving was avoided up front"};
9957 InterleaveLoop =
false;
9958 }
else if (IC == 1 && UserIC <= 1) {
9962 "InterleavingNotBeneficial",
9963 "the cost-model indicates that interleaving is not beneficial"};
9964 InterleaveLoop =
false;
9966 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
9967 IntDiagMsg.second +=
9968 " and is explicitly disabled or interleave count is set to 1";
9970 }
else if (IC > 1 && UserIC == 1) {
9972 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
9974 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
9975 "the cost-model indicates that interleaving is beneficial "
9976 "but is explicitly disabled or interleave count is set to 1"};
9977 InterleaveLoop =
false;
9983 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
9984 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
9985 <<
"to histogram operations.\n");
9987 "HistogramPreventsScalarInterleaving",
9988 "Unable to interleave without vectorization due to constraints on "
9989 "the order of histogram operations"};
9990 InterleaveLoop =
false;
9994 IC = UserIC > 0 ? UserIC : IC;
9998 if (!VectorizeLoop && !InterleaveLoop) {
10002 L->getStartLoc(), L->getHeader())
10003 << VecDiagMsg.second;
10007 L->getStartLoc(), L->getHeader())
10008 << IntDiagMsg.second;
10013 if (!VectorizeLoop && InterleaveLoop) {
10017 L->getStartLoc(), L->getHeader())
10018 << VecDiagMsg.second;
10020 }
else if (VectorizeLoop && !InterleaveLoop) {
10022 <<
") in " << L->getLocStr() <<
'\n');
10025 L->getStartLoc(), L->getHeader())
10026 << IntDiagMsg.second;
10028 }
else if (VectorizeLoop && InterleaveLoop) {
10030 <<
") in " << L->getLocStr() <<
'\n');
10036 using namespace ore;
10041 <<
"interleaved loop (interleaved count: "
10042 << NV(
"InterleaveCount", IC) <<
")";
10059 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10071 PSI, Checks, *BestMainPlan);
10073 *BestMainPlan, MainILV,
DT,
false);
10079 BFI,
PSI, Checks, BestEpiPlan);
10081 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10085 Checks, InstsToMove);
10086 ++LoopsEpilogueVectorized;
10088 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10102 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10103 "DT not preserved correctly");
10118 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10122 bool Changed =
false, CFGChanged =
false;
10129 for (
const auto &L : *
LI)
10141 LoopsAnalyzed += Worklist.
size();
10144 while (!Worklist.
empty()) {
10187 if (
PSI &&
PSI->hasProfileSummary())
10190 if (!Result.MadeAnyChange)
10204 if (Result.MadeCFGChange) {
10220 OS, MapClassName2PassName);
10223 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10224 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A special type of VPBasicBlock that wraps an existing IR basic block.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(Instruction *I, ArrayRef< VPValue * > Operands, VFRange &Range)
Build a VPReplicationRecipe for I using Operands.
VPRecipeBase * tryToCreatePartialReduction(Instruction *Reduction, ArrayRef< VPValue * > Operands, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
user_iterator user_begin()
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
VPValue * getStepValue()
Returns the step value of the induction.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks