158#define LV_NAME "loop-vectorize"
159#define DEBUG_TYPE LV_NAME
169 "llvm.loop.vectorize.followup_vectorized";
171 "llvm.loop.vectorize.followup_epilogue";
174STATISTIC(LoopsVectorized,
"Number of loops vectorized");
175STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
176STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
180 cl::desc(
"Enable vectorization of epilogue loops."));
184 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
185 "1 is specified, forces the given VF for all applicable epilogue "
189 "epilogue-vectorization-minimum-VF",
cl::Hidden,
190 cl::desc(
"Only loops with vectorization factor equal to or larger than "
191 "the specified value are considered for epilogue vectorization."));
197 cl::desc(
"Loops with a constant trip count that is smaller than this "
198 "value are vectorized only if no scalar iteration overheads "
203 cl::desc(
"The maximum allowed number of runtime memory checks"));
219 "prefer-predicate-over-epilogue",
222 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
226 "Don't tail-predicate loops, create scalar epilogue"),
228 "predicate-else-scalar-epilogue",
229 "prefer tail-folding, create scalar epilogue if tail "
232 "predicate-dont-vectorize",
233 "prefers tail-folding, don't attempt vectorization if "
234 "tail-folding fails.")));
237 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
240 clEnumValN(TailFoldingStyle::None,
"none",
"Disable tail folding"),
242 TailFoldingStyle::Data,
"data",
243 "Create lane mask for data only, using active.lane.mask intrinsic"),
244 clEnumValN(TailFoldingStyle::DataWithoutLaneMask,
245 "data-without-lane-mask",
246 "Create lane mask with compare/stepvector"),
247 clEnumValN(TailFoldingStyle::DataAndControlFlow,
"data-and-control",
248 "Create lane mask using active.lane.mask intrinsic, and use "
249 "it for both data and control flow"),
250 clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck,
251 "data-and-control-without-rt-check",
252 "Similar to data-and-control, but remove the runtime check"),
253 clEnumValN(TailFoldingStyle::DataWithEVL,
"data-with-evl",
254 "Use predicated EVL instructions for tail folding. If EVL "
255 "is unsupported, fallback to data-without-lane-mask.")));
259 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
260 "will be determined by the smallest type in loop."));
264 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
270 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
274 cl::desc(
"A flag that overrides the target's number of scalar registers."));
278 cl::desc(
"A flag that overrides the target's number of vector registers."));
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
287 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 "vectorized loops."));
292 cl::desc(
"A flag that overrides the target's expected cost for "
293 "an instruction to a single constant value. Mostly "
294 "useful for getting consistent testing."));
299 "Pretend that scalable vectors are supported, even if the target does "
300 "not support them. This flag should only be used for testing."));
305 "The cost of a loop that is considered 'small' by the interleaver."));
309 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
310 "heuristics minimizing code growth in cold regions and being more "
311 "aggressive in hot regions."));
317 "Enable runtime interleaving until load/store ports are saturated"));
322 cl::desc(
"Max number of stores to be predicated behind an if."));
326 cl::desc(
"Count the induction variable only once when interleaving"));
330 cl::desc(
"Enable if predication of stores during vectorization."));
334 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
335 "reduction in a nested loop."));
340 cl::desc(
"Prefer in-loop vector reductions, "
341 "overriding the targets preference."));
345 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
351 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
367 "Build VPlan for every supported loop nest in the function and bail "
368 "out right after the build (stress test the VPlan H-CFG construction "
369 "in the VPlan-native vectorization path)."));
373 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
376 cl::desc(
"Run the Loop vectorization passes"));
379 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
381 "Override cost based safe divisor widening for div/rem instructions"));
384 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
386 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
391 "Enable vectorization of early exit loops with uncountable exits."));
410 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
419static std::optional<unsigned>
421 bool CanUseConstantMax =
true) {
431 if (!CanUseConstantMax)
443class GeneratedRTChecks;
539 "Trying to access AdditionalBypassBlock but it has not been set");
579 Value *MainVectorTripCount);
713 "A high UF for the epilogue loop is likely not beneficial.");
735 EPI.MainLoopVF,
EPI.MainLoopVF,
EPI.MainLoopUF, LVL,
834 if (
I->getDebugLoc() != Empty)
835 return I->getDebugLoc();
837 for (
Use &
Op :
I->operands()) {
839 if (OpInst->getDebugLoc() != Empty)
840 return OpInst->getDebugLoc();
843 return I->getDebugLoc();
852 dbgs() <<
"LV: " << Prefix << DebugMsg;
874 if (
I &&
I->getDebugLoc())
875 DL =
I->getDebugLoc();
893 return B.CreateElementCount(Ty, VF);
904 <<
"loop not vectorized: " << OREMsg);
927 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
933 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
935 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
1081 "Profitable to scalarize relevant only for VF > 1.");
1084 "cost-model should not be used for outer loops (in VPlan-native path)");
1086 auto Scalars = InstsToScalarize.find(VF);
1087 assert(Scalars != InstsToScalarize.end() &&
1088 "VF not yet analyzed for scalarization profitability");
1089 return Scalars->second.contains(
I);
1096 "cost-model should not be used for outer loops (in VPlan-native path)");
1100 if (isa<PseudoProbeInst>(
I))
1106 auto UniformsPerVF = Uniforms.find(VF);
1107 assert(UniformsPerVF != Uniforms.end() &&
1108 "VF not yet analyzed for uniformity");
1109 return UniformsPerVF->second.count(
I);
1116 "cost-model should not be used for outer loops (in VPlan-native path)");
1120 auto ScalarsPerVF = Scalars.find(VF);
1121 assert(ScalarsPerVF != Scalars.end() &&
1122 "Scalar values are not calculated for VF");
1123 return ScalarsPerVF->second.count(
I);
1129 return VF.
isVector() && MinBWs.contains(
I) &&
1151 WideningDecisions[std::make_pair(
I, VF)] = std::make_pair(W,
Cost);
1173 WideningDecisions[std::make_pair(
I, VF)] =
1174 std::make_pair(W, InsertPosCost);
1176 WideningDecisions[std::make_pair(
I, VF)] =
1177 std::make_pair(W, OtherMemberCost);
1189 "cost-model should not be used for outer loops (in VPlan-native path)");
1191 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(
I, VF);
1192 auto Itr = WideningDecisions.
find(InstOnVF);
1193 if (Itr == WideningDecisions.
end())
1195 return Itr->second.first;
1202 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(
I, VF);
1204 "The cost is not calculated");
1205 return WideningDecisions[InstOnVF].second;
1218 std::optional<unsigned> MaskPos,
1221 CallWideningDecisions[std::make_pair(CI, VF)] = {Kind, Variant, IID,
1228 return CallWideningDecisions.
at(std::make_pair(CI, VF));
1236 auto *Trunc = dyn_cast<TruncInst>(
I);
1249 Value *
Op = Trunc->getOperand(0);
1269 if (VF.
isScalar() || Uniforms.contains(VF))
1272 collectLoopUniforms(VF);
1274 collectLoopScalars(VF);
1294 bool LI = isa<LoadInst>(V);
1295 bool SI = isa<StoreInst>(V);
1310 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1311 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1322 return ScalarCost < SafeDivisorCost;
1346 std::pair<InstructionCost, InstructionCost>
1374 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1381 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1382 "from latch block\n");
1387 "interleaved group requires scalar epilogue\n");
1390 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1399 auto RequiresScalarEpilogue = [
this](
ElementCount VF) {
1402 bool IsRequired =
all_of(
Range, RequiresScalarEpilogue);
1404 (IsRequired ||
none_of(
Range, RequiresScalarEpilogue)) &&
1405 "all VFs in range must agree on whether a scalar epilogue is required");
1417 if (!ChosenTailFoldingStyle)
1419 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1420 : ChosenTailFoldingStyle->second;
1428 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1430 ChosenTailFoldingStyle =
1436 ChosenTailFoldingStyle = std::make_pair(
1450 bool EVLIsLegal = UserIC <= 1 &&
1457 ChosenTailFoldingStyle =
1462 <<
"LV: Preference for VP intrinsics indicated. Will "
1463 "not try to generate VP Intrinsics "
1465 ?
"since interleave count specified is greater than 1.\n"
1466 :
"due to non-interleaving reasons.\n"));
1501 return InLoopReductions.contains(Phi);
1528 WideningDecisions.
clear();
1529 CallWideningDecisions.
clear();
1548 const unsigned IC)
const;
1556 std::optional<InstructionCost>
1565 unsigned NumPredStores = 0;
1574 bool FoldTailByMasking);
1579 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1580 unsigned SmallestType,
1581 unsigned WidestType,
1583 bool FoldTailByMasking);
1587 bool isScalableVectorizationAllowed();
1591 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1637 PredicatedBBsAfterVectorization;
1650 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1651 ChosenTailFoldingStyle;
1654 std::optional<bool> IsScalableVectorizationAllowed;
1660 std::optional<unsigned> MaxSafeElements;
1694 ScalarCostsTy &ScalarCosts,
1720 std::pair<InstWidening, InstructionCost>>;
1722 DecisionList WideningDecisions;
1724 using CallDecisionList =
1727 CallDecisionList CallWideningDecisions;
1751 Ops, [
this, VF](
Value *V) {
return this->needsExtract(V, VF); }));
1809class GeneratedRTChecks {
1815 Value *SCEVCheckCond =
nullptr;
1823 Value *MemRuntimeCheckCond =
nullptr;
1832 bool CostTooHigh =
false;
1833 const bool AddBranchWeights;
1835 Loop *OuterLoop =
nullptr;
1843 : DT(DT), LI(LI),
TTI(
TTI), SCEVExp(*PSE.
getSE(),
DL,
"scev.check"),
1844 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check"),
1845 AddBranchWeights(AddBranchWeights), PSE(PSE) {}
1873 nullptr,
"vector.scevcheck");
1880 if (RtPtrChecking.Need) {
1881 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1882 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1885 auto DiffChecks = RtPtrChecking.getDiffChecks();
1887 Value *RuntimeVF =
nullptr;
1892 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1898 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1901 assert(MemRuntimeCheckCond &&
1902 "no RT checks generated although RtPtrChecking "
1903 "claimed checks are required");
1906 if (!MemCheckBlock && !SCEVCheckBlock)
1916 if (SCEVCheckBlock) {
1921 if (MemCheckBlock) {
1928 if (MemCheckBlock) {
1932 if (SCEVCheckBlock) {
1938 OuterLoop =
L->getParentLoop();
1942 if (SCEVCheckBlock || MemCheckBlock)
1955 if (SCEVCheckBlock->getTerminator() == &
I)
1962 if (MemCheckBlock) {
1965 if (MemCheckBlock->getTerminator() == &
I)
1988 unsigned BestTripCount = 2;
1992 PSE, OuterLoop,
false))
1993 BestTripCount = *EstimatedTC;
1995 BestTripCount = std::max(BestTripCount, 1U);
1999 NewMemCheckCost = std::max(*NewMemCheckCost.
getValue(),
2002 if (BestTripCount > 1)
2004 <<
"We expect runtime memory checks to be hoisted "
2005 <<
"out of the outer loop. Cost reduced from "
2006 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
2008 MemCheckCost = NewMemCheckCost;
2012 RTCheckCost += MemCheckCost;
2015 if (SCEVCheckBlock || MemCheckBlock)
2016 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2024 ~GeneratedRTChecks() {
2028 SCEVCleaner.markResultUsed();
2030 if (!MemRuntimeCheckCond)
2031 MemCheckCleaner.markResultUsed();
2033 if (MemRuntimeCheckCond) {
2034 auto &SE = *MemCheckExp.
getSE();
2041 I.eraseFromParent();
2044 MemCheckCleaner.cleanup();
2045 SCEVCleaner.cleanup();
2048 SCEVCheckBlock->eraseFromParent();
2049 if (MemRuntimeCheckCond)
2050 MemCheckBlock->eraseFromParent();
2063 SCEVCheckCond =
nullptr;
2064 if (
auto *
C = dyn_cast<ConstantInt>(
Cond))
2075 SCEVCheckBlock->getTerminator()->eraseFromParent();
2076 SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2077 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2084 if (AddBranchWeights)
2087 return SCEVCheckBlock;
2096 if (!MemRuntimeCheckCond)
2105 MemCheckBlock->moveBefore(LoopVectorPreHeader);
2112 if (AddBranchWeights) {
2116 MemCheckBlock->getTerminator()->setDebugLoc(
2117 Pred->getTerminator()->getDebugLoc());
2120 MemRuntimeCheckCond =
nullptr;
2121 return MemCheckBlock;
2127 return Style == TailFoldingStyle::Data ||
2128 Style == TailFoldingStyle::DataAndControlFlow ||
2129 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2133 return Style == TailFoldingStyle::DataAndControlFlow ||
2134 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
2164 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2170 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2190 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2200 for (
Loop *InnerL : L)
2222 ?
B.CreateSExtOrTrunc(Index, StepTy)
2223 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2224 if (CastedIndex != Index) {
2226 Index = CastedIndex;
2236 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2237 if (
auto *CX = dyn_cast<ConstantInt>(
X))
2240 if (
auto *CY = dyn_cast<ConstantInt>(
Y))
2243 return B.CreateAdd(
X,
Y);
2249 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2250 "Types don't match!");
2251 if (
auto *CX = dyn_cast<ConstantInt>(
X))
2254 if (
auto *CY = dyn_cast<ConstantInt>(
Y))
2257 VectorType *XVTy = dyn_cast<VectorType>(
X->getType());
2258 if (XVTy && !isa<VectorType>(
Y->getType()))
2259 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2260 return B.CreateMul(
X,
Y);
2263 switch (InductionKind) {
2265 assert(!isa<VectorType>(Index->getType()) &&
2266 "Vector indices not supported for integer inductions yet");
2268 "Index type does not match StartValue type");
2269 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2270 return B.CreateSub(StartValue, Index);
2275 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2277 assert(!isa<VectorType>(Index->getType()) &&
2278 "Vector indices not supported for FP inductions yet");
2281 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2282 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2283 "Original bin op should be defined for FP induction");
2285 Value *MulExp =
B.CreateFMul(Step, Index);
2286 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2300 if (
F.hasFnAttribute(Attribute::VScaleRange))
2301 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2303 return std::nullopt;
2312 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2314 unsigned MaxUF = UF ? *UF :
Cost->TTI.getMaxInterleaveFactor(VF);
2316 Type *IdxTy =
Cost->Legal->getWidestInductionType();
2317 APInt MaxUIntTripCount = cast<IntegerType>(IdxTy)->getMask();
2322 if (
unsigned TC =
Cost->PSE.getSmallConstantMaxTripCount()) {
2325 std::optional<unsigned> MaxVScale =
2329 MaxVF *= *MaxVScale;
2332 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2353 assert(!Instr->getType()->isAggregateType() &&
"Can't handle vectors");
2356 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2360 Cloned->
setName(Instr->getName() +
".cloned");
2365 "inferred type and type from generated instructions do not match");
2371 if (
auto DL = Instr->getDebugLoc())
2377 auto InputLane = Lane;
2388 State.
set(RepRecipe, Cloned, Lane);
2391 if (
auto *
II = dyn_cast<AssumeInst>(Cloned))
2396 bool IfPredicateInstr = Parent ? Parent->
isReplicator() :
false;
2399 return Op->isDefinedOutsideLoopRegions();
2401 "Expected a recipe is either within a region or all of its operands "
2402 "are defined outside the vectorized region.");
2403 if (IfPredicateInstr)
2427 if (
Cost->foldTailByMasking()) {
2429 "VF*UF must be a power of 2 when folding tail by masking");
2463 "Unexpected successor");
2466 PreVectorPH = CheckVPIRBB;
2490 auto CreateStep = [&]() ->
Value * {
2505 Value *Step = CreateStep();
2516 TripCountSCEV, SE.
getSCEV(Step))) {
2529 Value *MaxUIntTripCount =
2530 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2544 "TC check is expected to dominate Bypass");
2560 if (!SCEVCheckBlock)
2566 "Cannot SCEV check stride or overflow when optimizing for size");
2568 "Should already be a bypass block due to iteration count check");
2573 return SCEVCheckBlock;
2592 "Cannot emit memory checks when optimizing for size, unless forced "
2598 <<
"Code-size may be reduced by not forcing "
2599 "vectorization, or by source-code modifications "
2600 "eliminating the need for runtime checks "
2601 "(e.g., adding 'restrict').";
2610 return MemCheckBlock;
2620 assert(!R.isPhi() &&
"Tried to move phi recipe to end of block");
2621 R.moveBefore(*IRVPBB, IRVPBB->
end());
2633 "loops not exiting via the latch without required epilogue?");
2637 LI,
nullptr,
Twine(Prefix) +
"middle.block");
2641 nullptr,
Twine(Prefix) +
"scalar.ph");
2648 const SCEV2ValueTy &ExpandedSCEVs) {
2649 const SCEV *Step =
ID.getStep();
2650 if (
auto *
C = dyn_cast<SCEVConstant>(Step))
2651 return C->getValue();
2652 if (
auto *U = dyn_cast<SCEVUnknown>(Step))
2653 return U->getValue();
2654 auto I = ExpandedSCEVs.find(Step);
2655 assert(
I != ExpandedSCEVs.end() &&
"SCEV must be expanded at this point");
2665 auto *Cmp = L->getLatchCmpInst();
2667 InstsToIgnore.
insert(Cmp);
2668 for (
const auto &KV : IL) {
2675 cast<Instruction>(
IV->getIncomingValueForBlock(L->getLoopLatch()));
2677 [&](
const User *U) { return U == IV || U == Cmp; }))
2678 InstsToIgnore.
insert(IVInst);
2683 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount) {
2684 assert(MainVectorTripCount &&
"Must have bypass information");
2690 PHINode *OrigPhi = InductionEntry.first;
2695 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
2696 if (OrigPhi != OldInduction) {
2697 auto *BinOp =
II.getInductionBinOp();
2699 if (isa_and_nonnull<FPMathOperator>(BinOp))
2703 EndValueFromAdditionalBypass =
2705 II.getStartValue(), Step,
II.getKind(), BinOp);
2706 EndValueFromAdditionalBypass->
setName(
"ind.end");
2713 "entry for OrigPhi already exits");
2719 const SCEV2ValueTy &ExpandedSCEVs) {
2784 Value *VectorTripCount,
2796 ->getIncomingValueForBlock(MiddleBlock);
2804 assert(isa<PHINode>(UI) &&
"Expected LCSSA form");
2805 MissingVals[UI] = EndValue;
2813 auto *UI = cast<Instruction>(U);
2815 assert(isa<PHINode>(UI) &&
"Expected LCSSA form");
2819 if (isa_and_nonnull<FPMathOperator>(
II.getInductionBinOp()))
2820 B.setFastMathFlags(
II.getInductionBinOp()->getFastMathFlags());
2823 assert(StepVPV &&
"step must have been expanded during VPlan execution");
2826 Value *Escape =
nullptr;
2828 Escape =
B.CreateSub(EndValue, Step);
2830 Escape =
B.CreatePtrAdd(EndValue,
B.CreateNeg(Step));
2833 "Unexpected induction type");
2834 Escape =
B.CreateBinOp(
II.getInductionBinOp()->getOpcode() ==
2837 : Instruction::FAdd,
2840 Escape->
setName(
"ind.escape");
2841 MissingVals[UI] = Escape;
2847 [MiddleBlock,
this](
const std::pair<Value *, Value *> &
P) {
2851 return Pred == MiddleBlock ||
2852 Pred == OrigLoop->getLoopLatch();
2855 "Expected escaping values from latch/middle.block only");
2857 for (
auto &
I : MissingVals) {
2864 if (
PHI->getBasicBlockIndex(MiddleBlock) == -1)
2865 PHI->addIncoming(
I.second, MiddleBlock);
2871struct CSEDenseMapInfo {
2873 return isa<InsertElementInst>(
I) || isa<ExtractElementInst>(
I) ||
2874 isa<ShuffleVectorInst>(
I) || isa<GetElementPtrInst>(
I);
2886 assert(canHandle(
I) &&
"Unknown instruction!");
2888 I->value_op_end()));
2892 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2893 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2895 return LHS->isIdenticalTo(
RHS);
2906 if (!CSEDenseMapInfo::canHandle(&In))
2912 In.replaceAllUsesWith(V);
2913 In.eraseFromParent();
2927 return CallWideningDecisions.at(std::make_pair(CI, VF)).Cost;
2936 for (
auto &ArgOp : CI->
args())
2937 Tys.push_back(ArgOp->getType());
2945 return std::min(ScalarCallCost, IntrinsicCost);
2947 return ScalarCallCost;
2960 assert(
ID &&
"Expected intrinsic call!");
2963 if (
auto *FPMO = dyn_cast<FPMathOperator>(CI))
2964 FMF = FPMO->getFastMathFlags();
2970 std::back_inserter(ParamTys),
2971 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2974 dyn_cast<IntrinsicInst>(CI));
2994 for (
PHINode &PN : Exit->phis())
3057 auto IsBlockOfUsePredicated = [&](
Use &U) ->
bool {
3058 auto *
I = cast<Instruction>(U.getUser());
3060 if (
auto *Phi = dyn_cast<PHINode>(
I))
3061 BB = Phi->getIncomingBlock(
3063 return BB == PredBB;
3074 Worklist.
insert(InstsToReanalyze.
begin(), InstsToReanalyze.
end());
3075 InstsToReanalyze.
clear();
3078 while (!Worklist.
empty()) {
3085 if (!
I || isa<PHINode>(
I) || !VectorLoop->contains(
I) ||
3086 I->mayHaveSideEffects() ||
I->mayReadFromMemory())
3094 if (
I->getParent() == PredBB) {
3095 Worklist.
insert(
I->op_begin(),
I->op_end());
3109 I->moveBefore(&*PredBB->getFirstInsertionPt());
3110 Worklist.
insert(
I->op_begin(),
I->op_end());
3121 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
3126 PHINode *NewPhi = cast<PHINode>(State.
get(VPPhi));
3138void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
3143 "This function should not be visited twice for the same VF");
3149 Scalars[VF].
insert(Uniforms[VF].begin(), Uniforms[VF].end());
3168 "Widening decision should be ready at this moment");
3169 if (
auto *Store = dyn_cast<StoreInst>(MemAccess))
3170 if (
Ptr == Store->getValueOperand())
3173 "Ptr is neither a value or pointer operand");
3179 auto IsLoopVaryingGEP = [&](
Value *
V) {
3190 if (!IsLoopVaryingGEP(
Ptr))
3195 auto *
I = cast<Instruction>(
Ptr);
3202 if (IsScalarUse(MemAccess,
Ptr) &&
3203 all_of(
I->users(), IsaPred<LoadInst, StoreInst>))
3206 PossibleNonScalarPtrs.
insert(
I);
3223 for (
auto &
I : *BB) {
3224 if (
auto *Load = dyn_cast<LoadInst>(&
I)) {
3225 EvaluatePtrUse(Load,
Load->getPointerOperand());
3226 }
else if (
auto *Store = dyn_cast<StoreInst>(&
I)) {
3227 EvaluatePtrUse(Store,
Store->getPointerOperand());
3228 EvaluatePtrUse(Store,
Store->getValueOperand());
3231 for (
auto *
I : ScalarPtrs)
3232 if (!PossibleNonScalarPtrs.
count(
I)) {
3240 auto ForcedScalar = ForcedScalars.
find(VF);
3241 if (ForcedScalar != ForcedScalars.
end())
3242 for (
auto *
I : ForcedScalar->second) {
3243 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
3252 while (
Idx != Worklist.
size()) {
3254 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
3256 auto *Src = cast<Instruction>(Dst->getOperand(0));
3258 auto *J = cast<Instruction>(U);
3259 return !TheLoop->contains(J) || Worklist.count(J) ||
3260 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
3261 IsScalarUse(J, Src));
3264 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
3271 auto *Ind = Induction.first;
3272 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3281 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
3283 return Induction.second.getKind() ==
3285 (isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
3291 bool ScalarInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
3292 auto *I = cast<Instruction>(U);
3293 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3294 IsDirectLoadStoreFromPtrIndvar(Ind, I);
3302 auto *IndUpdatePhi = dyn_cast<PHINode>(IndUpdate);
3308 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
3309 auto *I = cast<Instruction>(U);
3310 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3311 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
3313 if (!ScalarIndUpdate)
3318 Worklist.
insert(IndUpdate);
3319 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
3320 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
3334 switch(
I->getOpcode()) {
3337 case Instruction::Call:
3340 return CallWideningDecisions.at(std::make_pair(cast<CallInst>(
I), VF))
3342 case Instruction::Load:
3343 case Instruction::Store: {
3355 case Instruction::UDiv:
3356 case Instruction::SDiv:
3357 case Instruction::SRem:
3358 case Instruction::URem: {
3376 isa<BranchInst, SwitchInst, PHINode, AllocaInst>(
I))
3389 switch(
I->getOpcode()) {
3392 "instruction should have been considered by earlier checks");
3393 case Instruction::Call:
3397 "should have returned earlier for calls not needing a mask");
3399 case Instruction::Load:
3402 case Instruction::Store: {
3410 case Instruction::UDiv:
3411 case Instruction::SDiv:
3412 case Instruction::SRem:
3413 case Instruction::URem:
3419std::pair<InstructionCost, InstructionCost>
3422 assert(
I->getOpcode() == Instruction::UDiv ||
3423 I->getOpcode() == Instruction::SDiv ||
3424 I->getOpcode() == Instruction::SRem ||
3425 I->getOpcode() == Instruction::URem);
3436 ScalarizationCost = 0;
3451 ScalarizationCost += getScalarizationOverhead(
I, VF,
CostKind);
3471 Value *Op2 =
I->getOperand(1);
3480 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
3482 return {ScalarizationCost, SafeDivisorCost};
3489 "Decision should not be set yet.");
3491 assert(Group &&
"Must have a group.");
3492 unsigned InterleaveFactor = Group->getFactor();
3496 auto &
DL =
I->getDataLayout();
3504 if (VF.
isScalable() && InterleaveFactor != 2)
3509 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3510 for (
unsigned Idx = 0;
Idx < InterleaveFactor;
Idx++) {
3515 bool MemberNI =
DL.isNonIntegralPointerType(
MemberTy);
3517 if (MemberNI != ScalarNI)
3520 if (MemberNI && ScalarNI &&
3521 ScalarTy->getPointerAddressSpace() !=
3522 MemberTy->getPointerAddressSpace())
3531 bool PredicatedAccessRequiresMasking =
3534 bool LoadAccessWithGapsRequiresEpilogMasking =
3535 isa<LoadInst>(
I) && Group->requiresScalarEpilogue() &&
3537 bool StoreAccessWithGapsRequiresMasking =
3538 isa<StoreInst>(
I) && (Group->getNumMembers() < Group->getFactor());
3539 if (!PredicatedAccessRequiresMasking &&
3540 !LoadAccessWithGapsRequiresEpilogMasking &&
3541 !StoreAccessWithGapsRequiresMasking)
3548 "Masked interleave-groups for predicated accesses are not enabled.");
3550 if (Group->isReverse())
3562 assert((isa<LoadInst, StoreInst>(
I)) &&
"Invalid memory instruction");
3578 auto &
DL =
I->getDataLayout();
3585void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3592 "This function should not be visited twice for the same VF");
3596 Uniforms[VF].
clear();
3604 auto IsOutOfScope = [&](
Value *V) ->
bool {
3616 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3617 if (IsOutOfScope(
I)) {
3624 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3628 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3641 auto *
Cmp = dyn_cast<Instruction>(E->getTerminator()->getOperand(0));
3643 AddToWorklistIfAllowed(Cmp);
3652 if (PrevVF.isVector()) {
3653 auto Iter = Uniforms.
find(PrevVF);
3654 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3659 if (isa<LoadInst>(
I))
3670 "Widening decision should be ready at this moment");
3672 if (IsUniformMemOpUse(
I))
3675 return (WideningDecision ==
CM_Widen ||
3684 if (isa<StoreInst>(
I) &&
I->getOperand(0) ==
Ptr)
3700 for (
auto &
I : *BB) {
3702 switch (
II->getIntrinsicID()) {
3703 case Intrinsic::sideeffect:
3704 case Intrinsic::experimental_noalias_scope_decl:
3705 case Intrinsic::assume:
3706 case Intrinsic::lifetime_start:
3707 case Intrinsic::lifetime_end:
3709 AddToWorklistIfAllowed(&
I);
3718 if (
auto *EVI = dyn_cast<ExtractValueInst>(&
I)) {
3719 assert(IsOutOfScope(EVI->getAggregateOperand()) &&
3720 "Expected aggregate value to be loop invariant");
3721 AddToWorklistIfAllowed(EVI);
3730 if (IsUniformMemOpUse(&
I))
3731 AddToWorklistIfAllowed(&
I);
3733 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3740 for (
auto *V : HasUniformUse) {
3741 if (IsOutOfScope(V))
3743 auto *
I = cast<Instruction>(V);
3744 bool UsersAreMemAccesses =
all_of(
I->users(), [&](
User *U) ->
bool {
3745 auto *UI = cast<Instruction>(U);
3746 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3748 if (UsersAreMemAccesses)
3749 AddToWorklistIfAllowed(
I);
3756 while (
Idx != Worklist.
size()) {
3759 for (
auto *OV :
I->operand_values()) {
3761 if (IsOutOfScope(OV))
3765 auto *
OP = dyn_cast<PHINode>(OV);
3770 auto *OI = cast<Instruction>(OV);
3772 auto *J = cast<Instruction>(U);
3773 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3775 AddToWorklistIfAllowed(OI);
3787 auto *Ind = Induction.first;
3788 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
3792 bool UniformInd =
all_of(Ind->users(), [&](
User *U) ->
bool {
3793 auto *I = cast<Instruction>(U);
3794 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3795 IsVectorizedMemAccessUse(I, Ind);
3802 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](
User *U) ->
bool {
3803 auto *I = cast<Instruction>(U);
3804 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
3805 IsVectorizedMemAccessUse(I, IndUpdate);
3807 if (!UniformIndUpdate)
3811 AddToWorklistIfAllowed(Ind);
3812 AddToWorklistIfAllowed(IndUpdate);
3823 "runtime pointer checks needed. Enable vectorization of this "
3824 "loop with '#pragma clang loop vectorize(enable)' when "
3825 "compiling with -Os/-Oz",
3826 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3832 "runtime SCEV checks needed. Enable vectorization of this "
3833 "loop with '#pragma clang loop vectorize(enable)' when "
3834 "compiling with -Os/-Oz",
3835 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3842 "runtime stride == 1 checks needed. Enable vectorization of "
3843 "this loop without such check by compiling with -Os/-Oz",
3844 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3851bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3852 if (IsScalableVectorizationAllowed)
3853 return *IsScalableVectorizationAllowed;
3855 IsScalableVectorizationAllowed =
false;
3861 "ScalableVectorizationDisabled",
ORE,
TheLoop);
3865 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3868 std::numeric_limits<ElementCount::ScalarTy>::max());
3879 "Scalable vectorization not supported for the reduction "
3880 "operations found in this loop.",
3892 "for all element types found in this loop.",
3899 "for safe distance analysis.",
3904 IsScalableVectorizationAllowed =
true;
3909LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3910 if (!isScalableVectorizationAllowed())
3914 std::numeric_limits<ElementCount::ScalarTy>::max());
3916 return MaxScalableVF;
3924 "Max legal vector width too small, scalable vectorization "
3928 return MaxScalableVF;
3932 unsigned MaxTripCount,
ElementCount UserVF,
bool FoldTailByMasking) {
3934 unsigned SmallestType, WidestType;
3941 unsigned MaxSafeElements =
3945 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
3947 this->MaxSafeElements = MaxSafeElements;
3949 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3951 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3956 auto MaxSafeUserVF =
3957 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3974 <<
" is unsafe, clamping to max safe VF="
3975 << MaxSafeFixedVF <<
".\n");
3980 <<
"User-specified vectorization factor "
3981 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3982 <<
" is unsafe, clamping to maximum safe vectorization factor "
3983 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3985 return MaxSafeFixedVF;
3990 <<
" is ignored because scalable vectors are not "
3996 <<
"User-specified vectorization factor "
3997 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3998 <<
" is ignored because the target does not support scalable "
3999 "vectors. The compiler will pick a more suitable value.";
4003 <<
" is unsafe. Ignoring scalable UserVF.\n");
4008 <<
"User-specified vectorization factor "
4009 <<
ore::NV(
"UserVectorizationFactor", UserVF)
4010 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
4011 "more suitable value.";
4016 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
4017 <<
" / " << WidestType <<
" bits.\n");
4022 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
4023 MaxSafeFixedVF, FoldTailByMasking))
4027 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
4028 MaxSafeScalableVF, FoldTailByMasking))
4029 if (MaxVF.isScalable()) {
4030 Result.ScalableVF = MaxVF;
4031 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
4044 "Not inserting runtime ptr check for divergent target",
4045 "runtime pointer checks needed. Not enabled for divergent target",
4046 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
4054 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
4057 "loop trip count is one, irrelevant for vectorization",
4062 switch (ScalarEpilogueStatus) {
4064 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
4069 dbgs() <<
"LV: vector predicate hint/switch found.\n"
4070 <<
"LV: Not allowing scalar epilogue, creating predicated "
4071 <<
"vector loop.\n");
4078 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4080 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
4099 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
4100 "scalar epilogue instead.\n");
4102 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
4113 "No decisions should have been taken at this point");
4123 std::optional<unsigned> MaxPowerOf2RuntimeVF =
4128 MaxPowerOf2RuntimeVF = std::max<unsigned>(
4129 *MaxPowerOf2RuntimeVF,
4132 MaxPowerOf2RuntimeVF = std::nullopt;
4135 if (MaxPowerOf2RuntimeVF && *MaxPowerOf2RuntimeVF > 0) {
4137 "MaxFixedVF must be a power of 2");
4138 unsigned MaxVFtimesIC =
4139 UserIC ? *MaxPowerOf2RuntimeVF * UserIC : *MaxPowerOf2RuntimeVF;
4147 "Invalid loop count");
4149 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
4155 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
4169 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
4170 "try to generate VP Intrinsics with scalable vector "
4176 "Expected scalable vector factor.");
4186 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
4187 "scalar epilogue instead.\n");
4193 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
4199 "unable to calculate the loop count due to complex control flow",
4205 "Cannot optimize for size and vectorize at the same time.",
4206 "cannot optimize for size and vectorize at the same time. "
4207 "Enable vectorization of this loop with '#pragma clang loop "
4208 "vectorize(enable)' when compiling with -Os/-Oz",
4213ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
4214 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
4216 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
4224 "Scalable flags must match");
4232 ComputeScalableMaxVF);
4233 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
4235 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
4237 if (!MaxVectorElementCount) {
4239 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
4240 <<
" vector registers.\n");
4244 unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue();
4245 if (MaxVectorElementCount.isScalable() &&
4249 WidestRegisterMinEC *= Min;
4258 if (MaxTripCount && MaxTripCount <= WidestRegisterMinEC &&
4266 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
4267 "exceeding the constant trip count: "
4268 << ClampedUpperTripCount <<
"\n");
4270 ClampedUpperTripCount,
4271 FoldTailByMasking ? MaxVectorElementCount.isScalable() :
false);
4284 ComputeScalableMaxVF);
4285 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
4299 for (
int I = RUs.size() - 1;
I >= 0; --
I) {
4300 const auto &MLU = RUs[
I].MaxLocalUsers;
4301 if (
all_of(MLU, [&](
decltype(MLU.front()) &LU) {
4302 return LU.second <= TTI.getNumberOfRegisters(LU.first);
4312 <<
") with target's minimum: " << MinVF <<
'\n');
4328static std::optional<unsigned>
4330 const Function *Fn = L->getHeader()->getParent();
4334 auto Max = Attr.getVScaleRangeMax();
4335 if (Max && Min == Max)
4352 EstimatedVF *= *VScale;
4353 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
4357bool LoopVectorizationPlanner::isMoreProfitable(
4359 const unsigned MaxTripCount)
const {
4364 unsigned EstimatedWidthA =
A.Width.getKnownMinValue();
4365 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
4367 if (
A.Width.isScalable())
4368 EstimatedWidthA *= *VScale;
4369 if (
B.Width.isScalable())
4370 EstimatedWidthB *= *VScale;
4377 A.Width.isScalable() && !
B.Width.isScalable();
4388 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
4390 auto GetCostForTC = [MaxTripCount,
this](
unsigned VF,
4402 return VectorCost *
divideCeil(MaxTripCount, VF);
4403 return VectorCost * (MaxTripCount / VF) + ScalarCost * (MaxTripCount % VF);
4406 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
4407 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
4408 return CmpFn(RTCostA, RTCostB);
4411bool LoopVectorizationPlanner::isMoreProfitable(
4414 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount);
4419 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
4421 for (
const auto &Plan : VPlans) {
4425 precomputeCosts(*Plan, VF, CostCtx);
4427 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4428 for (
auto &R : *VPBB) {
4429 if (!R.cost(VF, CostCtx).isValid())
4435 if (InvalidCosts.
empty())
4443 for (
auto &Pair : InvalidCosts)
4444 if (!Numbering.
count(Pair.first))
4445 Numbering[Pair.first] =
I++;
4448 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4449 if (Numbering[
A.first] != Numbering[
B.first])
4450 return Numbering[
A.first] < Numbering[
B.first];
4451 const auto &
LHS =
A.second;
4452 const auto &
RHS =
B.second;
4453 return std::make_tuple(
LHS.isScalable(),
LHS.getKnownMinValue()) <
4454 std::make_tuple(
RHS.isScalable(),
RHS.getKnownMinValue());
4466 Subset =
Tail.take_front(1);
4473 [](
const auto *R) {
return Instruction::PHI; })
4474 .Case<VPWidenSelectRecipe>(
4475 [](
const auto *R) {
return Instruction::Select; })
4476 .Case<VPWidenStoreRecipe>(
4477 [](
const auto *R) {
return Instruction::Store; })
4478 .Case<VPWidenLoadRecipe>(
4479 [](
const auto *R) {
return Instruction::Load; })
4480 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4481 [](
const auto *R) {
return Instruction::Call; })
4484 [](
const auto *R) {
return R->getOpcode(); })
4486 return R->getStoredValues().empty() ? Instruction::Load
4487 : Instruction::Store;
4495 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4496 std::string OutString;
4498 assert(!Subset.empty() &&
"Unexpected empty range");
4499 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4500 for (
const auto &Pair : Subset)
4501 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4503 if (Opcode == Instruction::Call) {
4505 if (
auto *
Int = dyn_cast<VPWidenIntrinsicRecipe>(R)) {
4506 Name =
Int->getIntrinsicName();
4508 auto *WidenCall = dyn_cast<VPWidenCallRecipe>(R);
4510 WidenCall ? WidenCall->getCalledScalarFunction()
4511 : cast<Function>(R->getOperand(R->getNumOperands() - 1)
4512 ->getLiveInIRValue());
4515 OS <<
" call to " <<
Name;
4520 Tail =
Tail.drop_front(Subset.size());
4524 Subset =
Tail.take_front(Subset.size() + 1);
4525 }
while (!
Tail.empty());
4538 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
4547 switch (R.getVPDefID()) {
4548 case VPDef::VPDerivedIVSC:
4549 case VPDef::VPScalarIVStepsSC:
4550 case VPDef::VPScalarCastSC:
4551 case VPDef::VPReplicateSC:
4552 case VPDef::VPInstructionSC:
4553 case VPDef::VPCanonicalIVPHISC:
4554 case VPDef::VPVectorPointerSC:
4555 case VPDef::VPReverseVectorPointerSC:
4556 case VPDef::VPExpandSCEVSC:
4557 case VPDef::VPEVLBasedIVPHISC:
4558 case VPDef::VPPredInstPHISC:
4559 case VPDef::VPBranchOnMaskSC:
4561 case VPDef::VPReductionSC:
4562 case VPDef::VPActiveLaneMaskPHISC:
4563 case VPDef::VPWidenCallSC:
4564 case VPDef::VPWidenCanonicalIVSC:
4565 case VPDef::VPWidenCastSC:
4566 case VPDef::VPWidenGEPSC:
4567 case VPDef::VPWidenIntrinsicSC:
4568 case VPDef::VPWidenSC:
4569 case VPDef::VPWidenSelectSC:
4570 case VPDef::VPBlendSC:
4571 case VPDef::VPFirstOrderRecurrencePHISC:
4572 case VPDef::VPWidenPHISC:
4573 case VPDef::VPWidenIntOrFpInductionSC:
4574 case VPDef::VPWidenPointerInductionSC:
4575 case VPDef::VPReductionPHISC:
4576 case VPDef::VPInterleaveSC:
4577 case VPDef::VPWidenLoadEVLSC:
4578 case VPDef::VPWidenLoadSC:
4579 case VPDef::VPWidenStoreEVLSC:
4580 case VPDef::VPWidenStoreSC:
4586 auto WillWiden = [&
TTI, VF](
Type *ScalarTy) {
4604 if (R.getNumDefinedValues() == 0 &&
4605 !isa<VPWidenStoreRecipe, VPWidenStoreEVLRecipe, VPInterleaveRecipe>(
4614 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4616 if (!Visited.
insert({ScalarTy}).second)
4618 if (WillWiden(ScalarTy))
4629 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4630 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4632 [](std::unique_ptr<VPlan> &
P) {
4635 "Expected Scalar VF to be a candidate");
4642 if (ForceVectorization &&
4643 (VPlans.
size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4650 for (
auto &
P : VPlans) {
4661 <<
" costs: " << (Candidate.Cost / Width));
4662 if (VF.isScalable())
4671 <<
"LV: Not considering vector loop of width " << VF
4672 <<
" because it will not generate any vector instructions.\n");
4676 if (isMoreProfitable(Candidate, ChosenFactor))
4677 ChosenFactor = Candidate;
4683 "There are conditional stores.",
4684 "store that is conditionally executed prevents vectorization",
4685 "ConditionalStore", ORE, OrigLoop);
4686 ChosenFactor = ScalarCost;
4690 !isMoreProfitable(ChosenFactor, ScalarCost))
dbgs()
4691 <<
"LV: Vectorization seems to be not beneficial, "
4692 <<
"but was forced by a user.\n");
4694 return ChosenFactor;
4698bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4703 [&](
PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); }))
4713 if (!OrigLoop->
contains(cast<Instruction>(U)))
4717 if (!OrigLoop->
contains(cast<Instruction>(U)))
4751 unsigned Multiplier = VF.
isFixed() ? IC : 1;
4762 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4767 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4768 "epilogue is allowed.\n");
4774 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4775 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4776 "is not a supported candidate.\n");
4781 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4784 return {ForcedEC, 0, 0};
4786 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4794 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4799 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4812 const SCEV *RemainingIterations =
nullptr;
4813 unsigned MaxTripCount = 0;
4814 for (
auto &NextVF : ProfitableVFs) {
4821 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4823 (NextVF.Width.isScalable() &&
4825 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4831 if (!MainLoopVF.
isScalable() && !NextVF.Width.isScalable()) {
4833 if (!RemainingIterations) {
4836 assert(!isa<SCEVCouldNotCompute>(TC) &&
4837 "Trip count SCEV must be computable");
4847 << MaxTripCount <<
"\n");
4851 SE.
getConstant(TCType, NextVF.Width.getKnownMinValue()),
4852 RemainingIterations))
4856 if (Result.Width.isScalar() ||
4857 isMoreProfitable(NextVF, Result, MaxTripCount))
4863 << Result.Width <<
"\n");
4867std::pair<unsigned, unsigned>
4869 unsigned MinWidth = -1U;
4870 unsigned MaxWidth = 8;
4883 MaxWidth = std::min<unsigned>(
4884 MaxWidth, std::min<unsigned>(
4890 MinWidth = std::min<unsigned>(
4891 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4892 MaxWidth = std::max<unsigned>(
4893 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4896 return {MinWidth, MaxWidth};
4904 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4912 if (!isa<LoadInst>(
I) && !isa<StoreInst>(
I) && !isa<PHINode>(
I))
4917 if (
auto *PN = dyn_cast<PHINode>(&
I)) {
4931 if (
auto *ST = dyn_cast<StoreInst>(&
I))
4932 T = ST->getValueOperand()->getType();
4935 "Expected the load/store/recurrence type to be sized");
4964 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4965 "Unroll factor forced to be 1.\n");
4984 if (LoopCost == 0) {
4986 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4996 for (
auto &Pair : R.MaxLocalUsers) {
4997 Pair.second = std::max(Pair.second, 1U);
5011 unsigned IC = UINT_MAX;
5013 for (
const auto &Pair : R.MaxLocalUsers) {
5018 <<
" register class\n");
5026 unsigned MaxLocalUsers = Pair.second;
5027 unsigned LoopInvariantRegs = 0;
5028 if (R.LoopInvariantRegs.find(Pair.first) != R.LoopInvariantRegs.end())
5029 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
5031 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
5035 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5036 std::max(1U, (MaxLocalUsers - 1)));
5039 IC = std::min(IC, TmpIC);
5059 unsigned AvailableTC =
5071 std::max(1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
5072 unsigned InterleaveCountLB =
bit_floor(std::max(
5073 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5074 MaxInterleaveCount = InterleaveCountLB;
5076 if (InterleaveCountUB != InterleaveCountLB) {
5077 unsigned TailTripCountUB =
5078 (AvailableTC % (EstimatedVF * InterleaveCountUB));
5079 unsigned TailTripCountLB =
5080 (AvailableTC % (EstimatedVF * InterleaveCountLB));
5083 if (TailTripCountUB == TailTripCountLB)
5084 MaxInterleaveCount = InterleaveCountUB;
5086 }
else if (BestKnownTC && *BestKnownTC > 0) {
5090 ? (*BestKnownTC) - 1
5098 MaxInterleaveCount =
bit_floor(std::max(
5099 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
5102 assert(MaxInterleaveCount > 0 &&
5103 "Maximum interleave count must be greater than 0");
5107 if (IC > MaxInterleaveCount)
5108 IC = MaxInterleaveCount;
5111 IC = std::max(1u, IC);
5113 assert(IC > 0 &&
"Interleave count must be greater than 0.");
5117 if (VF.
isVector() && HasReductions) {
5118 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
5126 bool ScalarInterleavingRequiresPredication =
5128 return Legal->blockNeedsPredication(BB);
5130 bool ScalarInterleavingRequiresRuntimePointerCheck =
5136 <<
"LV: IC is " << IC <<
'\n'
5137 <<
"LV: VF is " << VF <<
'\n');
5138 const bool AggressivelyInterleaveReductions =
5140 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5141 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
5145 unsigned SmallIC = std::min(IC, (
unsigned)llvm::bit_floor<uint64_t>(
5152 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5153 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5159 bool HasSelectCmpReductions =
5162 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5163 RecurKind RK = RdxDesc.getRecurrenceKind();
5164 return RecurrenceDescriptor::isAnyOfRecurrenceKind(RK) ||
5165 RecurrenceDescriptor::isFindLastIVRecurrenceKind(RK);
5167 if (HasSelectCmpReductions) {
5168 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
5178 bool HasOrderedReductions =
5180 const RecurrenceDescriptor &RdxDesc = Reduction.second;
5181 return RdxDesc.isOrdered();
5183 if (HasOrderedReductions) {
5185 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
5190 SmallIC = std::min(SmallIC,
F);
5191 StoresIC = std::min(StoresIC,
F);
5192 LoadsIC = std::min(LoadsIC,
F);
5196 std::max(StoresIC, LoadsIC) > SmallIC) {
5198 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
5199 return std::max(StoresIC, LoadsIC);
5204 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
5208 return std::max(IC / 2, SmallIC);
5211 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
5217 if (AggressivelyInterleaveReductions) {
5267 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5271 for (
Value *U :
I.operands()) {
5272 auto *Instr = dyn_cast<Instruction>(U);
5283 LoopInvariants.
insert(Instr);
5288 EndPoint[Instr] = IdxToInstr.
size();
5306 LLVM_DEBUG(
dbgs() <<
"LV(REG): Calculating max register usage:\n");
5308 const auto &TTICapture =
TTI;
5312 !TTICapture.isElementTypeLegalForScalableVector(Ty)))
5317 for (
unsigned int Idx = 0, Sz = IdxToInstr.
size();
Idx < Sz; ++
Idx) {
5321 InstrList &
List = TransposeEnds[
Idx];
5336 for (
unsigned J = 0, E = VFs.
size(); J < E; ++J) {
5344 if (VFs[J].isScalar()) {
5345 for (
auto *Inst : OpenIntervals) {
5354 for (
auto *Inst : OpenIntervals) {
5367 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[J]);
5372 for (
const auto &Pair :
RegUsage) {
5373 auto &Entry = MaxUsages[J][Pair.first];
5374 Entry = std::max(Entry, Pair.second);
5379 << OpenIntervals.
size() <<
'\n');
5391 for (
auto *Inst : LoopInvariants) {
5394 bool IsScalar =
all_of(Inst->users(), [&](
User *U) {
5395 auto *I = cast<Instruction>(U);
5396 return TheLoop != LI->getLoopFor(I->getParent()) ||
5397 isScalarAfterVectorization(I, VFs[Idx]);
5403 Invariant[ClassID] += GetRegUsage(Inst->getType(), VF);
5407 dbgs() <<
"LV(REG): VF = " << VFs[
Idx] <<
'\n';
5408 dbgs() <<
"LV(REG): Found max usage: " << MaxUsages[
Idx].
size()
5410 for (
const auto &pair : MaxUsages[
Idx]) {
5411 dbgs() <<
"LV(REG): RegisterClass: "
5415 dbgs() <<
"LV(REG): Found invariant usage: " << Invariant.
size()
5417 for (
const auto &pair : Invariant) {
5418 dbgs() <<
"LV(REG): RegisterClass: "
5432bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
5443 "Expecting a scalar emulated instruction");
5444 return isa<LoadInst>(
I) ||
5445 (isa<StoreInst>(
I) &&
5462 PredicatedBBsAfterVectorization[VF].
clear();
5479 !useEmulatedMaskMemRefHack(&
I, VF) &&
5480 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
5484 for (
const auto &[
I,
_] : ScalarCosts) {
5485 auto *CI = dyn_cast<CallInst>(
I);
5486 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5489 CallWideningDecisions[{CI, VF}].Cost = ScalarCosts[CI];
5493 PredicatedBBsAfterVectorization[VF].
insert(BB);
5495 if (Pred->getSingleSuccessor() == BB)
5496 PredicatedBBsAfterVectorization[VF].
insert(Pred);
5505 "Instruction marked uniform-after-vectorization will be predicated");
5523 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5542 for (
Use &U :
I->operands())
5543 if (
auto *J = dyn_cast<Instruction>(U.get()))
5555 while (!Worklist.
empty()) {
5559 if (ScalarCosts.contains(
I))
5589 for (
Use &U :
I->operands())
5590 if (
auto *J = dyn_cast<Instruction>(
U.get())) {
5592 "Instruction has non-scalar type");
5593 if (CanBeScalarized(J))
5595 else if (needsExtract(J, VF)) {
5597 cast<VectorType>(
toVectorTy(J->getType(), VF)),
5608 Discount += VectorCost - ScalarCost;
5609 ScalarCosts[
I] = ScalarCost;
5625 ValuesToIgnoreForVF);
5632 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5645 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5646 << VF <<
" For instruction: " <<
I <<
'\n');
5674 const Loop *TheLoop) {
5676 auto *Gep = dyn_cast<GetElementPtrInst>(
Ptr);
5682 auto *SE = PSE.
getSE();
5683 unsigned NumOperands = Gep->getNumOperands();
5684 for (
unsigned Idx = 1;
Idx < NumOperands; ++
Idx) {
5687 !
Legal->isInductionVariable(Opd))
5696LoopVectorizationCostModel::getMemInstScalarizationCost(
Instruction *
I,
5699 "Scalarization cost of instruction implies vectorization.");
5746 if (useEmulatedMaskMemRefHack(
I, VF))
5756LoopVectorizationCostModel::getConsecutiveMemOpCost(
Instruction *
I,
5759 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5765 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5766 "Stride should be 1 or -1 for consecutive memory access");
5778 bool Reverse = ConsecutiveStride < 0;
5786LoopVectorizationCostModel::getUniformMemOpCost(
Instruction *
I,
5791 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5795 if (isa<LoadInst>(
I)) {
5807 (IsLoopInvariantStoreValue
5814LoopVectorizationCostModel::getGatherScatterCost(
Instruction *
I,
5817 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5828LoopVectorizationCostModel::getInterleaveGroupCost(
Instruction *
I,
5831 assert(Group &&
"Fail to get an interleaved access group.");
5835 auto *VectorTy = cast<VectorType>(
toVectorTy(ValTy, VF));
5839 unsigned InterleaveFactor = Group->getFactor();
5844 for (
unsigned IF = 0;
IF < InterleaveFactor;
IF++)
5845 if (Group->getMember(IF))
5849 bool UseMaskForGaps =
5851 (isa<StoreInst>(
I) && (Group->getNumMembers() < Group->getFactor()));
5853 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5857 if (Group->isReverse()) {
5860 "Reverse masked interleaved access not supported.");
5861 Cost += Group->getNumMembers() *
5868std::optional<InstructionCost>
5874 if (InLoopReductions.
empty() || VF.
isScalar() || !isa<VectorType>(Ty))
5875 return std::nullopt;
5876 auto *VectorTy = cast<VectorType>(Ty);
5893 return std::nullopt;
5904 if (!InLoopReductionImmediateChains.
count(RetI))
5905 return std::nullopt;
5909 Instruction *LastChain = InLoopReductionImmediateChains.
at(RetI);
5911 while (!isa<PHINode>(ReductionPhi))
5912 ReductionPhi = InLoopReductionImmediateChains.
at(ReductionPhi);
5944 : dyn_cast<Instruction>(RetI->
getOperand(1));
5949 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5962 bool IsUnsigned = isa<ZExtInst>(Op0);
5979 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5980 return I == RetI ? RedCost : 0;
5984 bool IsUnsigned = isa<ZExtInst>(RedOp);
5993 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5994 return I == RetI ? RedCost : 0;
5995 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
6000 bool IsUnsigned = isa<ZExtInst>(Op0);
6023 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6024 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6032 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6033 return I == RetI ? RedCost : 0;
6042 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
6043 return I == RetI ? RedCost : 0;
6047 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
6051LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
6081 if (!
RetTy->isVoidTy() &&
6103 for (
auto *V : filterExtractingOperands(Ops, VF))
6106 filterExtractingOperands(Ops, VF), Tys,
CostKind);
6128 auto IsLegalToScalarize = [&]() {
6142 if (isa<LoadInst>(
I))
6147 auto &SI = cast<StoreInst>(
I);
6160 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
6166 if (GatherScatterCost < ScalarizationCost)
6178 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6179 "Expected consecutive stride.");
6188 unsigned NumAccesses = 1;
6191 assert(Group &&
"Fail to get an interleaved access group.");
6197 NumAccesses = Group->getNumMembers();
6199 InterleaveCost = getInterleaveGroupCost(&
I, VF);
6204 ? getGatherScatterCost(&
I, VF) * NumAccesses
6208 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
6214 if (InterleaveCost <= GatherScatterCost &&
6215 InterleaveCost < ScalarizationCost) {
6217 Cost = InterleaveCost;
6218 }
else if (GatherScatterCost < ScalarizationCost) {
6220 Cost = GatherScatterCost;
6223 Cost = ScalarizationCost;
6257 while (!Worklist.
empty()) {
6259 for (
auto &
Op :
I->operands())
6260 if (
auto *InstOp = dyn_cast<Instruction>(
Op))
6261 if ((InstOp->getParent() ==
I->getParent()) && !isa<PHINode>(InstOp) &&
6262 AddrDefs.
insert(InstOp).second)
6266 for (
auto *
I : AddrDefs) {
6267 if (isa<LoadInst>(
I)) {
6281 for (
unsigned I = 0;
I < Group->getFactor(); ++
I) {
6298 "Trying to set a vectorization decision for a scalar VF");
6300 auto ForcedScalar = ForcedScalars.
find(VF);
6316 for (
auto &ArgOp : CI->
args())
6329 getScalarizationOverhead(CI, VF,
CostKind);
6335 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.
end() &&
6336 ForcedScalar->second.contains(CI)) ||
6347 for (
Type *ScalarTy : ScalarTys)
6356 std::nullopt, *RedCost);
6362 bool UsesMask =
false;
6368 if (
Info.Shape.VF != VF)
6372 if (MaskRequired && !
Info.isMasked())
6376 bool ParamsOk =
true;
6378 switch (Param.ParamKind) {
6397 dyn_cast<SCEVAddRecExpr>(SE->
getSCEV(ScalarParam));
6399 if (!SAR || SAR->getLoop() !=
TheLoop) {
6405 dyn_cast<SCEVConstant>(SAR->getStepRecurrence(*SE));
6433 if (VecFunc && UsesMask && !MaskRequired)
6453 if (VectorCost <=
Cost) {
6458 if (IntrinsicCost <=
Cost) {
6459 Cost = IntrinsicCost;
6474 auto *OpI = dyn_cast<Instruction>(
Op);
6491 return InstsToScalarize[VF][
I];
6494 auto ForcedScalar = ForcedScalars.
find(VF);
6495 if (VF.
isVector() && ForcedScalar != ForcedScalars.
end()) {
6496 auto InstSet = ForcedScalar->second;
6497 if (InstSet.count(
I))
6508 auto HasSingleCopyAfterVectorization = [
this](
Instruction *
I,
6513 auto Scalarized = InstsToScalarize.
find(VF);
6514 assert(Scalarized != InstsToScalarize.
end() &&
6515 "VF not yet analyzed for scalarization profitability");
6516 return !Scalarized->second.count(
I) &&
6518 auto *UI = cast<Instruction>(U);
6519 return !Scalarized->second.count(UI);
6522 (void)HasSingleCopyAfterVectorization;
6531 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6532 I->getOpcode() == Instruction::PHI ||
6533 (
I->getOpcode() == Instruction::BitCast &&
6534 I->getType()->isPointerTy()) ||
6535 HasSingleCopyAfterVectorization(
I, VF));
6545 switch (
I->getOpcode()) {
6546 case Instruction::GetElementPtr:
6552 case Instruction::Br: {
6559 bool ScalarPredicatedBB =
false;
6565 ScalarPredicatedBB =
true;
6567 if (ScalarPredicatedBB) {
6591 case Instruction::Switch: {
6594 auto *Switch = cast<SwitchInst>(
I);
6595 return Switch->getNumCases() *
6598 toVectorTy(Switch->getCondition()->getType(), VF),
6602 case Instruction::PHI: {
6603 auto *Phi = cast<PHINode>(
I);
6615 cast<VectorType>(VectorTy), Mask,
CostKind,
6623 Type *ResultTy = Phi->getType();
6627 auto *HeaderUser = cast_if_present<PHINode>(
6628 find_singleton<User>(Phi->users(), [
this](
User *U,
bool) ->
User * {
6629 auto *Phi = dyn_cast<PHINode>(U);
6630 if (Phi && Phi->getParent() == TheLoop->getHeader())
6636 auto Iter = ReductionVars.
find(HeaderUser);
6637 if (Iter != ReductionVars.end() &&
6639 Iter->second.getRecurrenceKind()))
6642 return (Phi->getNumIncomingValues() - 1) *
6644 Instruction::Select,
toVectorTy(ResultTy, VF),
6654 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6655 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6661 case Instruction::UDiv:
6662 case Instruction::SDiv:
6663 case Instruction::URem:
6664 case Instruction::SRem:
6668 ScalarCost : SafeDivisorCost;
6672 case Instruction::Add:
6673 case Instruction::Sub: {
6681 if (!
RHS ||
RHS->getZExtValue() != 1)
6686 Type *ScalarTy =
I->getType();
6690 {PtrTy, ScalarTy, MaskTy});
6699 case Instruction::FAdd:
6700 case Instruction::FSub:
6701 case Instruction::Mul:
6702 case Instruction::FMul:
6703 case Instruction::FDiv:
6704 case Instruction::FRem:
6705 case Instruction::Shl:
6706 case Instruction::LShr:
6707 case Instruction::AShr:
6708 case Instruction::And:
6709 case Instruction::Or:
6710 case Instruction::Xor: {
6714 if (
I->getOpcode() == Instruction::Mul &&
6725 Value *Op2 =
I->getOperand(1);
6728 Op2 = cast<SCEVConstant>(
PSE.
getSCEV(Op2))->getValue();
6738 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6741 case Instruction::FNeg: {
6744 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6745 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6746 I->getOperand(0),
I);
6748 case Instruction::Select: {
6750 const SCEV *CondSCEV = SE->
getSCEV(SI->getCondition());
6753 const Value *Op0, *Op1;
6770 Type *CondTy = SI->getCondition()->getType();
6775 if (
auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
6776 Pred = Cmp->getPredicate();
6778 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6779 {TTI::OK_AnyValue, TTI::OP_None},
I);
6781 case Instruction::ICmp:
6782 case Instruction::FCmp: {
6783 Type *ValTy =
I->getOperand(0)->getType();
6786 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6787 (void)Op0AsInstruction;
6789 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6790 "if both the operand and the compare are marked for "
6791 "truncation, they must have the same bitwidth");
6797 cast<CmpInst>(
I)->getPredicate(),
CostKind,
6798 {TTI::OK_AnyValue, TTI::OP_None},
6799 {TTI::OK_AnyValue, TTI::OP_None},
I);
6801 case Instruction::Store:
6802 case Instruction::Load: {
6807 "CM decision should be taken at this point");
6814 return getMemoryInstructionCost(
I, VF);
6816 case Instruction::BitCast:
6817 if (
I->getType()->isPointerTy())
6820 case Instruction::ZExt:
6821 case Instruction::SExt:
6822 case Instruction::FPToUI:
6823 case Instruction::FPToSI:
6824 case Instruction::FPExt:
6825 case Instruction::PtrToInt:
6826 case Instruction::IntToPtr:
6827 case Instruction::SIToFP:
6828 case Instruction::UIToFP:
6829 case Instruction::Trunc:
6830 case Instruction::FPTrunc: {
6833 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
6834 "Expected a load or a store!");
6860 unsigned Opcode =
I->getOpcode();
6863 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6865 if (
StoreInst *Store = dyn_cast<StoreInst>(*
I->user_begin()))
6866 CCH = ComputeCCH(Store);
6869 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6870 Opcode == Instruction::FPExt) {
6871 if (
LoadInst *Load = dyn_cast<LoadInst>(
I->getOperand(0)))
6872 CCH = ComputeCCH(Load);
6879 auto *Trunc = cast<TruncInst>(
I);
6881 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6888 Type *SrcScalarTy =
I->getOperand(0)->getType();
6889 Instruction *Op0AsInstruction = dyn_cast<Instruction>(
I->getOperand(0));
6900 (
I->getOpcode() == Instruction::ZExt ||
6901 I->getOpcode() == Instruction::SExt))
6907 case Instruction::Call:
6909 case Instruction::ExtractValue:
6911 case Instruction::Alloca:
6934 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6935 return RequiresScalarEpilogue &&
6947 if ((SI = dyn_cast<StoreInst>(&
I)) &&
6950 DeadInvariantStoreOps[SI->getPointerOperand()].push_back(
6951 SI->getValueOperand());
6960 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6961 return VecValuesToIgnore.contains(U) ||
6962 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6971 if (Group->getInsertPos() == &
I)
6974 DeadInterleavePointerOps.
push_back(PointerOp);
6979 if (
auto *Br = dyn_cast<BranchInst>(&
I)) {
6980 if (Br->isConditional())
6987 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6988 auto *
Op = dyn_cast<Instruction>(DeadInterleavePointerOps[
I]);
6990 Instruction *UI = cast<Instruction>(U);
6991 return !VecValuesToIgnore.contains(U) &&
6992 (!isAccessInterleaved(UI) ||
6993 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6997 DeadInterleavePointerOps.
append(
Op->op_begin(),
Op->op_end());
7000 for (
const auto &[
_, Ops] : DeadInvariantStoreOps) {
7014 (isa<BranchInst>(&
I) && !cast<BranchInst>(&
I)->isConditional());
7017 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
7018 auto *
Op = dyn_cast<Instruction>(DeadOps[
I]);
7021 if (
auto *Br = dyn_cast_or_null<BranchInst>(
Op)) {
7029 if ((ThenEmpty && ElseEmpty) ||
7031 ElseBB->
phis().empty()) ||
7033 ThenBB->
phis().empty())) {
7042 (isa<PHINode>(
Op) &&
Op->getParent() == Header) ||
7045 return !VecValuesToIgnore.contains(U) &&
7046 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
7057 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
7061 DeadOps.
append(
Op->op_begin(),
Op->op_end());
7102 bool InLoop = !ReductionOperations.
empty();
7105 InLoopReductions.
insert(Phi);
7108 for (
auto *
I : ReductionOperations) {
7109 InLoopReductionImmediateChains[
I] = LastChain;
7113 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
7114 <<
" reduction for phi: " << *Phi <<
"\n");
7127 unsigned WidestType;
7136 unsigned N =
RegSize.getKnownMinValue() / WidestType;
7157 <<
"overriding computed VF.\n");
7162 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
7163 <<
"not supported by the target.\n");
7165 "Scalable vectorization requested but not supported by the target",
7166 "the scalable user-specified vectorization width for outer-loop "
7167 "vectorization cannot be used because the target does not support "
7168 "scalable vectors.",
7169 "ScalableVFUnfeasible", ORE, OrigLoop);
7174 "VF needs to be a power of two");
7176 <<
"VF " << VF <<
" to build VPlans.\n");
7183 return {VF, 0 , 0 };
7187 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
7188 "VPlan-native path.\n");
7206 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
7207 "which requires masked-interleaved support.\n");
7223 "UserVF ignored because it may be larger than the maximal safe VF",
7224 "InvalidUserVF", ORE, OrigLoop);
7227 "VF needs to be a power of two");
7233 buildVPlansWithVPRecipes(UserVF, UserVF);
7238 "InvalidCost", ORE, OrigLoop);
7252 for (
const auto &VF : VFCandidates) {
7301 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
7302 for (
Value *
Op : IVInsts[
I]->operands()) {
7303 auto *OpI = dyn_cast<Instruction>(
Op);
7304 if (
Op ==
IV || !OpI || !OrigLoop->
contains(OpI) || !
Op->hasOneUse())
7310 for (
User *U :
IV->users()) {
7311 auto *CI = cast<Instruction>(U);
7332 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
7333 <<
": induction instruction " << *IVInst <<
"\n";
7335 Cost += InductionCost;
7349 auto *
Term = dyn_cast<BranchInst>(EB->getTerminator());
7352 if (
auto *CondI = dyn_cast<Instruction>(
Term->getOperand(0))) {
7353 ExitInstrs.
insert(CondI);
7357 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
7364 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
7365 <<
": exit condition instruction " << *CondI <<
"\n";
7369 auto *OpI = dyn_cast<Instruction>(
Op);
7370 if (!OpI ||
any_of(OpI->users(), [&ExitInstrs,
this](
User *U) {
7371 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
7372 !ExitInstrs.contains(cast<Instruction>(U));
7390 const auto &ChainOps = RdxDesc.getReductionOpChain(RedPhi, OrigLoop);
7393 auto IsZExtOrSExt = [](
const unsigned Opcode) ->
bool {
7394 return Opcode == Instruction::ZExt || Opcode == Instruction::SExt;
7403 for (
auto *ChainOp : ChainOps) {
7404 for (
Value *
Op : ChainOp->operands()) {
7405 if (
auto *
I = dyn_cast<Instruction>(
Op)) {
7406 ChainOpsAndOperands.insert(
I);
7407 if (
I->getOpcode() == Instruction::Mul) {
7408 auto *Ext0 = dyn_cast<Instruction>(
I->getOperand(0));
7409 auto *Ext1 = dyn_cast<Instruction>(
I->getOperand(1));
7410 if (Ext0 && IsZExtOrSExt(Ext0->getOpcode()) && Ext1 &&
7411 Ext0->getOpcode() == Ext1->getOpcode()) {
7412 ChainOpsAndOperands.insert(Ext0);
7413 ChainOpsAndOperands.insert(Ext1);
7428 "reduction op visited multiple times");
7430 LLVM_DEBUG(
dbgs() <<
"Cost of " << ReductionCost <<
" for VF " << VF
7431 <<
":\n in-loop reduction " << *
I <<
"\n");
7432 Cost += *ReductionCost;
7447 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
7454 for (
Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
7460 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
7461 <<
": forced scalar " << *ForcedScalar <<
"\n";
7465 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
7470 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
7471 <<
": profitable to scalarize " << *Scalarized <<
"\n";
7489 <<
" (Estimated cost per lane: ");
7491 double CostPerLane = double(*
Cost.
getValue()) / EstimatedWidth;
7510 if (
auto *S = dyn_cast<VPSingleDefRecipe>(R))
7511 return dyn_cast_or_null<Instruction>(S->getUnderlyingValue());
7512 if (
auto *WidenMem = dyn_cast<VPWidenMemoryRecipe>(R))
7513 return &WidenMem->getIngredient();
7519 for (
VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
7521 if (
auto *
IR = dyn_cast<VPInterleaveRecipe>(&R)) {
7522 auto *IG =
IR->getInterleaveGroup();
7523 unsigned NumMembers = IG->getNumMembers();
7524 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7538 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7540 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7541 if (isa<PHINode>(&I) && BB == TheLoop->getHeader())
7543 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7553 VPlan &FirstPlan = *VPlans[0];
7559 "More than a single plan/VF w/o any plan having scalar VF");
7563 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7568 if (ForceVectorization) {
7575 for (
auto &
P : VPlans) {
7582 <<
"LV: Not considering vector loop of width " << VF
7583 <<
" because it will not generate any vector instructions.\n");
7589 if (isMoreProfitable(CurrentFactor, BestFactor))
7590 BestFactor = CurrentFactor;
7593 if (isMoreProfitable(CurrentFactor, ScalarFactor))
7594 ProfitableVFs.push_back(CurrentFactor);
7611 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7614 CostCtx, OrigLoop) ||
7616 CostCtx, OrigLoop)) &&
7617 " VPlan cost model and legacy cost model disagreed");
7619 "when vectorizing, the scalar cost must be computed.");
7629 bool IsUnrollMetadata =
false;
7630 MDNode *LoopID = L->getLoopID();
7634 auto *MD = dyn_cast<MDNode>(LoopID->
getOperand(
I));
7636 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7638 S && S->getString().starts_with(
"llvm.loop.unroll.disable");
7644 if (!IsUnrollMetadata) {
7646 LLVMContext &Context = L->getHeader()->getContext();
7649 MDString::get(Context,
"llvm.loop.unroll.runtime.disable"));
7655 L->setLoopID(NewLoopID);
7665 auto *EpiRedResult = dyn_cast<VPInstruction>(R);
7666 if (!EpiRedResult ||
7670 auto *EpiRedHeaderPhi =
7671 cast<VPReductionPHIRecipe>(EpiRedResult->getOperand(0));
7673 EpiRedHeaderPhi->getRecurrenceDescriptor();
7674 Value *MainResumeValue =
7675 EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7678 auto *Cmp = cast<ICmpInst>(MainResumeValue);
7680 "AnyOf expected to start with ICMP_NE");
7682 "AnyOf expected to start by comparing main resume value to original "
7684 MainResumeValue = Cmp->getOperand(0);
7686 PHINode *MainResumePhi = cast<PHINode>(MainResumeValue);
7691 using namespace VPlanPatternMatch;
7692 auto IsResumePhi = [](
VPUser *U) {
7694 U, m_VPInstruction<VPInstruction::ResumePhi>(m_VPValue(), m_VPValue()));
7697 "ResumePhi must have a single user");
7698 auto *EpiResumePhiVPI =
7699 cast<VPInstruction>(*
find_if(EpiRedResult->users(), IsResumePhi));
7700 auto *EpiResumePhi = cast<PHINode>(State.
get(EpiResumePhiVPI,
true));
7701 EpiResumePhi->setIncomingValueForBlock(
7710 "Trying to execute plan with unsupported VF");
7712 "Trying to execute plan with unsupported UF");
7714 ((VectorizingEpilogue && ExpandedSCEVs) ||
7715 (!VectorizingEpilogue && !ExpandedSCEVs)) &&
7716 "expanded SCEVs to reuse can only be used during epilogue vectorization");
7730#ifdef EXPENSIVE_CHECKS
7731 assert(DT->
verify(DominatorTree::VerificationLevel::Fast));
7742 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7743 "count during epilogue vectorization");
7749 if (VectorizingEpilogue)
7755 std::unique_ptr<LoopVersioning> LVer =
nullptr;
7763 LVer = std::make_unique<LoopVersioning>(
7766 State.
LVer = &*LVer;
7791 if (VectorizingEpilogue) {
7793 "Epilogue vectorisation not yet supported with early exits");
7797 &R, State, State.
CFG.
VPBB2IRBB[ExitVPBB], BypassBlock);
7801 auto *Inc = cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
7803 Inc->setIncomingValueForBlock(BypassBlock, V);
7812 std::optional<MDNode *> VectorizedLoopID =
7819 if (VectorizedLoopID)
7820 L->setLoopID(*VectorizedLoopID);
7843 cast<BranchInst>(State.
CFG.
VPBB2IRBB[ExitVPBB]->getTerminator());
7844 if (MiddleTerm->isConditional() &&
7848 assert(TripCount > 0 &&
"trip count should not be zero");
7849 const uint32_t Weights[] = {1, TripCount - 1};
7863 const SCEV2ValueTy &ExpandedSCEVs) {
7898 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7908 dbgs() <<
"intermediate fn:\n"
7916 assert(Bypass &&
"Expected valid bypass basic block.");
7937 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7941 DT,
LI,
nullptr,
"vector.ph");
7946 "TC check is expected to dominate Bypass");
7963 return TCCheckBlock;
7974 const SCEV2ValueTy &ExpandedSCEVs) {
7982 nullptr,
"vec.epilog.iter.check",
true);
7984 VecEpilogueIterationCountCheck);
7990 "expected this to be saved from the previous pass.");
8018 for (
PHINode &Phi : VecEpilogueIterationCountCheck->
phis())
8021 for (
PHINode *Phi : PhisInBlock) {
8023 Phi->replaceIncomingBlockWith(
8025 VecEpilogueIterationCountCheck);
8032 return EPI.EpilogueIterationCountCheck == IncB;
8055 "Expected trip count to have been saved in the first pass.");
8059 "saved trip count does not dominate insertion point.");
8070 Value *CheckMinIters =
8074 "min.epilog.iters.check");
8080 unsigned EpilogueLoopStep =
8086 unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
8087 const uint32_t Weights[] = {EstimatedSkipCount,
8088 MainLoopStep - EstimatedSkipCount};
8108 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
8123 return getVPValueOrAddLiveIn(
Op);
8135 "unsupported switch either exiting loop or continuing to header");
8140 BasicBlock *DefaultDst = SI->getDefaultDest();
8142 for (
auto &
C : SI->cases()) {
8144 assert(!EdgeMaskCache.
contains({Src, Dst}) &&
"Edge masks already created");
8147 if (Dst == DefaultDst)
8149 auto &Compares = Dst2Compares[Dst];
8157 VPValue *DefaultMask =
nullptr;
8158 for (
const auto &[Dst, Conds] : Dst2Compares) {
8167 EdgeMaskCache[{Src, Dst}] = Mask;
8173 DefaultMask = DefaultMask ? Builder.
createOr(DefaultMask, Mask) : Mask;
8177 DefaultMask = Builder.
createNot(DefaultMask);
8181 EdgeMaskCache[{Src, DefaultDst}] = DefaultMask;
8188 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8190 if (ECEntryIt != EdgeMaskCache.
end())
8191 return ECEntryIt->second;
8193 if (
auto *SI = dyn_cast<SwitchInst>(Src->getTerminator())) {
8195 assert(EdgeMaskCache.
contains(Edge) &&
"Mask for Edge not created?");
8196 return EdgeMaskCache[Edge];
8202 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8203 assert(BI &&
"Unexpected terminator found");
8205 return EdgeMaskCache[Edge] = SrcMask;
8214 return EdgeMaskCache[Edge] = SrcMask;
8217 assert(EdgeMask &&
"No Edge Mask found for condition");
8229 return EdgeMaskCache[Edge] = EdgeMask;
8236 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8238 assert(ECEntryIt != EdgeMaskCache.
end() &&
8239 "looking up mask for edge which has not been created");
8240 return ECEntryIt->second;
8248 BlockMaskCache[Header] =
nullptr;
8260 HeaderVPBB->
insert(
IV, NewInsertionPoint);
8267 BlockMaskCache[Header] = BlockMask;
8273 assert(BCEntryIt != BlockMaskCache.
end() &&
8274 "Trying to access mask for block without one.");
8275 return BCEntryIt->second;
8279 assert(OrigLoop->
contains(BB) &&
"Block is not a part of a loop");
8280 assert(BlockMaskCache.
count(BB) == 0 &&
"Mask for block already computed");
8282 "Loop header must have cached block mask");
8288 for (
auto *Predecessor :
8292 BlockMaskCache[BB] = EdgeMask;
8297 BlockMask = EdgeMask;
8301 BlockMask = Builder.
createOr(BlockMask, EdgeMask, {});
8304 BlockMaskCache[BB] = BlockMask;
8310 assert((isa<LoadInst>(
I) || isa<StoreInst>(
I)) &&
8311 "Must be called with either a load or store");
8317 "CM decision should be taken at this point.");
8343 auto *
GEP = dyn_cast<GetElementPtrInst>(
8344 Ptr->getUnderlyingValue()->stripPointerCasts());
8354 GEP ?
GEP->getNoWrapFlags()
8360 if (
LoadInst *Load = dyn_cast<LoadInst>(
I))
8378 "step must be loop invariant");
8382 if (
auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8385 TruncI->getDebugLoc());
8387 assert(isa<PHINode>(PhiOrTrunc) &&
"must be a phi node here");
8389 IndDesc, Phi->getDebugLoc());
8399 *PSE.
getSE(), *OrigLoop);
8412 Phi->getDebugLoc());
8426 auto IsOptimizableIVTruncate =
8434 IsOptimizableIVTruncate(
I),
Range)) {
8436 auto *
Phi = cast<PHINode>(
I->getOperand(0));
8447 unsigned NumIncoming =
Phi->getNumIncomingValues();
8456 for (
unsigned In = 0;
In < NumIncoming;
In++) {
8461 assert(In == 0 &&
"Both null and non-null edge masks found");
8463 "Distinct incoming values with one having a full mask");
8484 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
8485 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
8486 ID == Intrinsic::pseudoprobe ||
8487 ID == Intrinsic::experimental_noalias_scope_decl))
8493 bool ShouldUseVectorIntrinsic =
8500 if (ShouldUseVectorIntrinsic)
8505 std::optional<unsigned> MaskPos;
8527 Variant = Decision.Variant;
8528 MaskPos = Decision.MaskPos;
8535 if (ShouldUseVectorCall) {
8536 if (MaskPos.has_value()) {
8551 Ops.insert(Ops.
begin() + *MaskPos, Mask);
8562 assert(!isa<BranchInst>(
I) && !isa<PHINode>(
I) && !isa<LoadInst>(
I) &&
8563 !isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
8578 switch (
I->getOpcode()) {
8581 case Instruction::SDiv:
8582 case Instruction::UDiv:
8583 case Instruction::SRem:
8584 case Instruction::URem: {
8592 auto *SafeRHS = Builder.
createSelect(Mask, Ops[1], One,
I->getDebugLoc());
8598 case Instruction::Add:
8599 case Instruction::And:
8600 case Instruction::AShr:
8601 case Instruction::FAdd:
8602 case Instruction::FCmp:
8603 case Instruction::FDiv:
8604 case Instruction::FMul:
8605 case Instruction::FNeg:
8606 case Instruction::FRem:
8607 case Instruction::FSub:
8608 case Instruction::ICmp:
8609 case Instruction::LShr:
8610 case Instruction::Mul:
8611 case Instruction::Or:
8612 case Instruction::Select:
8613 case Instruction::Shl:
8614 case Instruction::Sub:
8615 case Instruction::Xor:
8616 case Instruction::Freeze:
8623 auto GetConstantViaSCEV = [
this, &SE](
VPValue *
Op) {
8624 Value *
V =
Op->getUnderlyingValue();
8625 if (isa<Constant>(V) || !SE.
isSCEVable(
V->getType()))
8627 auto *
C = dyn_cast<SCEVConstant>(SE.
getSCEV(V));
8633 if (
I->getOpcode() == Instruction::Mul)
8634 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
8636 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
8643VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
8646 unsigned Opcode =
HI->Update->getOpcode();
8647 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
8648 "Histogram update operation must be an Add or Sub");
8663 HI->Store->getDebugLoc());
8669 auto *PN = cast<PHINode>(R->getUnderlyingValue());
8671 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8688 if (!IsUniform &&
Range.Start.isScalable() && isa<IntrinsicInst>(
I)) {
8690 case Intrinsic::assume:
8691 case Intrinsic::lifetime_start:
8692 case Intrinsic::lifetime_end:
8714 VPValue *BlockInMask =
nullptr;
8715 if (!IsPredicated) {
8719 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8730 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8731 (
Range.Start.isScalable() && isa<IntrinsicInst>(
I))) &&
8732 "Should not predicate a uniform recipe");
8734 IsUniform, BlockInMask);
8745 if (
auto *Phi = dyn_cast<PHINode>(Instr)) {
8746 if (Phi->getParent() != OrigLoop->
getHeader())
8749 if ((Recipe = tryToOptimizeInductionPHI(Phi,
Operands,
Range)))
8755 "can only widen reductions and fixed-order recurrences here");
8773 PhisToFix.push_back(PhiRecipe);
8777 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate(
8786 if (
auto *CI = dyn_cast<CallInst>(Instr))
8789 if (
StoreInst *SI = dyn_cast<StoreInst>(Instr))
8791 return tryToWidenHistogram(*HistInfo,
Operands);
8793 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8796 if (!shouldWiden(Instr,
Range))
8799 if (
auto *
GEP = dyn_cast<GetElementPtrInst>(Instr))
8803 if (
auto *SI = dyn_cast<SelectInst>(Instr)) {
8808 if (
auto *CI = dyn_cast<CastInst>(Instr)) {
8813 return tryToWiden(Instr,
Operands, VPBB);
8816void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8820 auto MaxVFTimes2 = MaxVF * 2;
8822 VFRange SubRange = {VF, MaxVFTimes2};
8823 if (
auto Plan = tryToBuildVPlanWithVPRecipes(SubRange)) {
8835 VPlans.push_back(std::move(Plan));
8845 Value *StartIdx = ConstantInt::get(IdxTy, 0);
8852 Header->insert(CanonicalIVPHI, Header->begin());
8857 Instruction::Add, {CanonicalIVPHI, &Plan.
getVFxUF()}, {HasNUW,
false},
DL,
8859 CanonicalIVPHI->
addOperand(CanonicalIVIncrement);
8874 auto *WideIntOrFp = dyn_cast<VPWidenIntOrFpInductionRecipe>(WideIV);
8877 if (WideIntOrFp && WideIntOrFp->getTruncInst())
8884 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
8886 ID.getKind(), dyn_cast_or_null<FPMathOperator>(
ID.getInductionBinOp()),
8887 Start, VectorTC, Step);
8895 ScalarTypeOfWideIV);
8898 auto *ResumePhiRecipe =
8901 return ResumePhiRecipe;
8910 auto *MiddleVPBB = cast<VPBasicBlock>(ScalarPH->getSinglePredecessor());
8913 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
8918 auto *ScalarPhiIRI = cast<VPIRInstruction>(&ScalarPhiR);
8919 auto *ScalarPhiI = dyn_cast<PHINode>(&ScalarPhiIRI->getInstruction());
8923 auto *VectorPhiR = cast<VPHeaderPHIRecipe>(Builder.
getRecipe(ScalarPhiI));
8924 if (
auto *WideIVR = dyn_cast<VPWidenInductionRecipe>(VectorPhiR)) {
8926 WideIVR, VectorPHBuilder, ScalarPHBuilder, TypeInfo,
8928 ScalarPhiIRI->addOperand(ResumePhi);
8934 assert(cast<VPWidenIntOrFpInductionRecipe>(VectorPhiR)->getTruncInst() &&
8935 "should only skip truncated wide inductions");
8942 bool IsFOR = isa<VPFirstOrderRecurrencePHIRecipe>(VectorPhiR);
8943 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
8947 "vector.recur.extract");
8948 StringRef Name = IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx";
8951 {ResumeFromVectorLoop, VectorPhiR->getStartValue()}, {},
Name);
8968 auto *ExitIRI = dyn_cast<VPIRInstruction>(&R);
8971 auto *ExitPhi = dyn_cast<PHINode>(&ExitIRI->getInstruction());
8976 if (PredVPBB != MiddleVPBB) {
8979 assert(ExitingBlocks.
size() == 2 &&
"only support 2 exiting blocks");
8980 ExitingBB = ExitingBB == ExitingBlocks[0] ? ExitingBlocks[1]
8983 Value *IncomingValue = ExitPhi->getIncomingValueForBlock(ExitingBB);
8988 if ((isa<VPWidenIntOrFpInductionRecipe>(V) &&
8989 !cast<VPWidenIntOrFpInductionRecipe>(V)->getTruncInst()) ||
8990 isa<VPWidenPointerInductionRecipe>(V) ||
8991 (isa<Instruction>(IncomingValue) &&
8992 OrigLoop->
contains(cast<Instruction>(IncomingValue)) &&
8994 auto *P = dyn_cast<PHINode>(U);
8995 return P && Inductions.contains(P);
8997 if (ExitVPBB->getSinglePredecessor() == MiddleVPBB)
9000 ExitUsersToFix.
insert(ExitIRI);
9001 ExitIRI->addOperand(V);
9005 return ExitUsersToFix;
9014 if (ExitUsersToFix.
empty())
9018 VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9031 if (ExitIRI->getParent()->getSinglePredecessor() != MiddleVPBB)
9034 LLVMContext &Ctx = ExitIRI->getInstruction().getContext();
9038 ExitIRI->setOperand(
Idx, Ext);
9053 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
9054 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
9059 auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&HeaderPhi);
9134 if (ExitIRI->getOperand(0) != FOR)
9138 "vector.recur.extract.for.phi");
9140 ExitUsersToFix.remove(ExitIRI);
9146LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
VFRange &
Range) {
9161 bool RequiresScalarEpilogueCheck =
9168 PSE, RequiresScalarEpilogueCheck,
9175 bool IVUpdateMayOverflow =
false;
9188 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, Legal, CM, PSE, Builder);
9208 "Unsupported interleave factor for scalable vectors");
9213 InterleaveGroups.
insert(IG);
9231 bool NeedsBlends = BB != HeaderBB && !BB->phis().empty();
9232 return Legal->blockNeedsPredication(BB) || NeedsBlends;
9234 auto *MiddleVPBB = Plan->getMiddleBlock();
9239 if (VPBB != HeaderVPBB)
9243 if (VPBB == HeaderVPBB)
9244 RecipeBuilder.createHeaderMask();
9245 else if (NeedsMasks)
9246 RecipeBuilder.createBlockInMask(BB);
9253 auto *
Phi = dyn_cast<PHINode>(Instr);
9254 if (Phi &&
Phi->getParent() == HeaderBB) {
9255 Operands.push_back(Plan->getOrAddLiveIn(
9258 auto OpRange = RecipeBuilder.mapToVPValues(
Instr->operands());
9259 Operands = {OpRange.begin(), OpRange.end()};
9266 if ((SI = dyn_cast<StoreInst>(&
I)) &&
9272 SI, RecipeBuilder.mapToVPValues(
Instr->operands()),
9274 Recipe->insertBefore(*MiddleVPBB, MBIP);
9279 RecipeBuilder.tryToCreateWidenRecipe(Instr,
Operands,
Range, VPBB);
9281 Recipe = RecipeBuilder.handleReplication(Instr,
Range);
9283 RecipeBuilder.setRecipe(Instr, Recipe);
9284 if (isa<VPHeaderPHIRecipe>(Recipe)) {
9295 "unexpected recipe needs moving");
9308 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
9309 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
9310 "entry block must be set to a VPRegionBlock having a non-empty entry "
9312 RecipeBuilder.fixHeaderPhis();
9314 if (
auto *UncountableExitingBlock =
9317 *Plan, *PSE.
getSE(), OrigLoop, UncountableExitingBlock, RecipeBuilder);
9325 "Some exit values in loop with uncountable exit not supported yet",
9326 "UncountableEarlyExitLoopsUnsupportedExitValue", ORE, OrigLoop);
9336 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
9346 Plan->setName(
"Initial VPlan");
9351 auto *
R = cast<VPRecipeBase>(&U);
9352 return R->getParent()->getParent() ||
9354 Plan->getVectorLoopRegion()->getSinglePredecessor();
9357 auto *StrideV = cast<SCEVUnknown>(Stride)->getValue();
9358 auto *ScevStride = dyn_cast<SCEVConstant>(PSE.
getSCEV(StrideV));
9363 auto *CI = Plan->getOrAddLiveIn(
9364 ConstantInt::get(Stride->getType(), ScevStride->getAPInt()));
9365 if (
VPValue *StrideVPV = Plan->getLiveIn(StrideV))
9371 if (!isa<SExtInst, ZExtInst>(U))
9373 VPValue *StrideVPV = Plan->getLiveIn(U);
9376 unsigned BW =
U->getType()->getScalarSizeInBits();
9377 APInt C = isa<SExtInst>(U) ? ScevStride->getAPInt().sext(BW)
9378 : ScevStride->getAPInt().zext(BW);
9379 VPValue *CI = Plan->getOrAddLiveIn(ConstantInt::get(
U->getType(),
C));
9397 bool WithoutRuntimeCheck =
9400 WithoutRuntimeCheck);
9415 true,
false, OrigLoop);
9419 HCFGBuilder.buildHierarchicalCFG();
9427 *PSE.
getSE(), *TLI);
9432 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9433 Term->eraseFromParent();
9443 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, Legal, CM, PSE, Builder);
9444 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9445 if (isa<VPCanonicalIVPHIRecipe>(&R))
9447 auto *HeaderR = cast<VPHeaderPHIRecipe>(&R);
9448 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
9469void LoopVectorizationPlanner::adjustRecipesForReductions(
9471 using namespace VPlanPatternMatch;
9472 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
9476 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9477 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
9485 "AnyOf and FindLast reductions are not allowed for in-loop reductions");
9490 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
9493 auto *UserRecipe = cast<VPSingleDefRecipe>(U);
9494 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
9495 assert((UserRecipe->getParent() == MiddleVPBB ||
9496 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
9497 "U must be either in the loop region, the middle block or the "
9498 "scalar preheader.");
9501 Worklist.
insert(UserRecipe);
9514 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
9517 unsigned IndexOfFirstOperand;
9525 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9526 assert(((MinVF.
isScalar() && isa<VPReplicateRecipe>(CurrentLink)) ||
9527 isa<VPWidenIntrinsicRecipe>(CurrentLink)) &&
9528 CurrentLink->getOperand(2) == PreviousLink &&
9529 "expected a call where the previous link is the added operand");
9537 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
9539 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
9542 auto *Blend = dyn_cast<VPBlendRecipe>(CurrentLink);
9543 if (PhiR->isInLoop() && Blend) {
9544 assert(Blend->getNumIncomingValues() == 2 &&
9545 "Blend must have 2 incoming values");
9546 if (Blend->getIncomingValue(0) == PhiR)
9547 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
9549 assert(Blend->getIncomingValue(1) == PhiR &&
9550 "PhiR must be an operand of the blend");
9551 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
9557 if (isa<VPWidenRecipe>(CurrentLink)) {
9558 assert(isa<CmpInst>(CurrentLinkI) &&
9559 "need to have the compare of the select");
9562 assert(isa<VPWidenSelectRecipe>(CurrentLink) &&
9563 "must be a select recipe");
9564 IndexOfFirstOperand = 1;
9567 "Expected to replace a VPWidenSC");
9568 IndexOfFirstOperand = 0;
9573 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
9574 ? IndexOfFirstOperand + 1
9575 : IndexOfFirstOperand;
9576 VecOp = CurrentLink->getOperand(VecOpId);
9577 assert(VecOp != PreviousLink &&
9578 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
9579 (VecOpId - IndexOfFirstOperand)) ==
9581 "PreviousLink must be the operand other than VecOp");
9590 RdxDesc, CurrentLinkI, PreviousLink, VecOp, CondOp,
9597 CurrentLink->replaceAllUsesWith(RedRecipe);
9598 PreviousLink = RedRecipe;
9605 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9618 assert(OrigExitingVPV->getDefiningRecipe()->getParent() != LatchVPBB &&
9619 "reduction recipe must be defined before latch");
9621 std::optional<FastMathFlags> FMFs =
9628 return isa<VPInstruction>(&U) &&
9629 cast<VPInstruction>(&U)->getOpcode() ==
9644 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
9653 Trunc->
insertAfter(NewExitingVPV->getDefiningRecipe());
9654 Extnd->insertAfter(Trunc);
9656 PhiR->
setOperand(1, Extnd->getVPSingleValue());
9657 NewExitingVPV = Extnd;
9677 FinalReductionResult, [](
VPUser &
User,
unsigned) {
9678 auto *Parent = cast<VPRecipeBase>(&
User)->getParent();
9679 return Parent && !Parent->getParent();
9681 FinalReductionResult->insertBefore(*MiddleVPBB, IP);
9690 return isa<VPWidenSelectRecipe>(U) ||
9691 (isa<VPReplicateRecipe>(U) &&
9692 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9693 Instruction::Select);
9699 for (
unsigned I = 0;
I != CmpR->getNumOperands(); ++
I)
9700 if (CmpR->getOperand(
I) == PhiR)
9708 if (
Select->getOperand(1) == PhiR)
9711 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9732 assert(!State.
Lane &&
"VPDerivedIVRecipe being replicated.");
9743 cast_if_present<BinaryOperator>(FPBinOp));
9749 assert((DerivedIV != Index ||
9751 "IV didn't need transforming?");
9759 "uniform recipe shouldn't be predicated");
9765 if (State.
Lane->isFirstLane()) {
9784 if (isa<StoreInst>(UI) &&
9794 for (
unsigned Lane = 0; Lane < EndLane; ++Lane)
9860 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9864 Function *
F = L->getHeader()->getParent();
9870 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9875 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9895 bool AddBranchWeights =
9897 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(),
9900 VF.
Width, 1, LVL, &CM, BFI, PSI, Checks, BestPlan);
9902 << L->getHeader()->getParent()->getName() <<
"\"\n");
9922 if (
auto *S = dyn_cast<StoreInst>(&Inst)) {
9923 if (S->getValueOperand()->getType()->isFloatTy())
9933 while (!Worklist.
empty()) {
9935 if (!L->contains(
I))
9937 if (!Visited.
insert(
I).second)
9944 if (isa<FPExtInst>(
I) && EmittedRemark.
insert(
I).second)
9947 I->getDebugLoc(), L->getHeader())
9948 <<
"floating point conversion changes vector width. "
9949 <<
"Mixed floating point precision requires an up/down "
9950 <<
"cast that will negatively impact performance.";
9953 for (
Use &
Op :
I->operands())
9954 if (
auto *OpI = dyn_cast<Instruction>(
Op))
9974 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
10030 uint64_t MinTC = std::max(MinTC1, MinTC2);
10032 MinTC =
alignTo(MinTC, IntVF);
10036 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
10044 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
10045 "trip count < minimum profitable VF ("
10056 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10058 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10071 if (isa<VPCanonicalIVPHIRecipe>(&R))
10074 cast<PHINode>(R.getVPSingleValue()->getUnderlyingValue()));
10078 auto *VPIRInst = cast<VPIRInstruction>(&R);
10079 auto *IRI = dyn_cast<PHINode>(&VPIRInst->getInstruction());
10094 using namespace VPlanPatternMatch;
10101 return match(&R, m_VPInstruction<VPInstruction::ResumePhi>(
10109 "vec.epilog.resume.val");
10116 const SCEV2ValueTy &ExpandedSCEVs,
10120 Header->setName(
"vec.epilog.vector.body");
10129 auto *ExpandR = dyn_cast<VPExpandSCEVRecipe>(&R);
10132 auto *ExpandedVal =
10133 Plan.
getOrAddLiveIn(ExpandedSCEVs.find(ExpandR->getSCEV())->second);
10137 ExpandR->eraseFromParent();
10143 if (
auto *
IV = dyn_cast<VPCanonicalIVPHIRecipe>(&R)) {
10150 BasicBlock *MainMiddle = find_singleton<BasicBlock>(
10153 if (BB != EPI.MainLoopIterationCountCheck &&
10154 BB != EPI.EpilogueIterationCountCheck &&
10155 BB != EPI.SCEVSafetyCheck && BB != EPI.MemSafetyCheck)
10160 Type *IdxTy =
IV->getScalarType();
10161 PHINode *EPResumeVal = find_singleton<PHINode>(
10162 L->getLoopPreheader()->phis(),
10164 if (P.getType() == IdxTy &&
10165 P.getIncomingValueForBlock(MainMiddle) == EPI.VectorTripCount &&
10167 P.getIncomingValueForBlock(EPI.MainLoopIterationCountCheck),
10172 assert(EPResumeVal &&
"must have a resume value for the canonical IV");
10176 return isa<VPScalarIVStepsRecipe>(U) ||
10177 isa<VPScalarCastRecipe>(U) ||
10178 isa<VPDerivedIVRecipe>(U) ||
10179 cast<VPInstruction>(U)->getOpcode() ==
10182 "the canonical IV should only be used by its increment or "
10183 "ScalarIVSteps when resetting the start value");
10184 IV->setOperand(0, VPV);
10188 Value *ResumeV =
nullptr;
10190 if (
auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10191 ResumeV = cast<PHINode>(ReductionPhi->getUnderlyingInstr())
10192 ->getIncomingValueForBlock(L->getLoopPreheader());
10194 ReductionPhi->getRecurrenceDescriptor();
10201 cast<Instruction>(ResumeV)->
getParent()->getFirstNonPHI());
10208 PHINode *IndPhi = cast<VPWidenInductionRecipe>(&R)->getPHINode();
10213 assert(ResumeV &&
"Must have a resume value");
10215 cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal);
10221 "VPlan-native path is not enabled. Only process inner loops.");
10224 << L->getHeader()->getParent()->getName() <<
"' from "
10225 << L->getLocStr() <<
"\n");
10230 dbgs() <<
"LV: Loop hints:"
10241 Function *
F = L->getHeader()->getParent();
10252 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent vectorization.\n");
10263 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
10270 "early exit is not enabled",
10271 "UncountableEarlyExitLoopsDisabled",
ORE, L);
10280 if (!L->isInnermost())
10284 assert(L->isInnermost() &&
"Inner loop expected.");
10294 if (UseInterleaved)
10301 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
10303 "requiring a scalar epilogue is unsupported",
10304 "UncountableEarlyExitUnsupported",
ORE, L);
10318 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
10319 <<
"This loop is worth vectorizing only if no scalar "
10320 <<
"iteration overheads are incurred.");
10322 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
10335 LLVM_DEBUG(
dbgs() <<
" But the target considers the trip count too "
10336 "small to consider vectorizing.\n");
10338 "The trip count is below the minial threshold value.",
10339 "loop trip count is too low, avoiding vectorization",
10340 "LowTripCount",
ORE, L);
10349 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10351 "Can't vectorize when the NoImplicitFloat attribute is used",
10352 "loop not vectorized due to NoImplicitFloat attribute",
10353 "NoImplicitFloat",
ORE, L);
10365 "Potentially unsafe FP op prevents vectorization",
10366 "loop not vectorized due to unsafe FP support.",
10367 "UnsafeFP",
ORE, L);
10372 bool AllowOrderedReductions;
10382 ExactFPMathInst->getDebugLoc(),
10383 ExactFPMathInst->getParent())
10384 <<
"loop not vectorized: cannot prove it is safe to reorder "
10385 "floating-point operations";
10387 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10388 "reorder floating-point operations\n");
10394 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10397 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10405 LVP.
plan(UserVF, UserIC);
10412 bool AddBranchWeights =
10414 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(),
10420 unsigned SelectedIC = std::max(IC, UserIC);
10427 bool ForceVectorization =
10429 if (!ForceVectorization &&
10433 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10435 <<
"loop not vectorized: cannot prove it is safe to reorder "
10436 "memory operations";
10445 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10446 bool VectorizeLoop =
true, InterleaveLoop =
true;
10448 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10449 VecDiagMsg = std::make_pair(
10450 "VectorizationNotBeneficial",
10451 "the cost-model indicates that vectorization is not beneficial");
10452 VectorizeLoop =
false;
10458 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10459 "interleaving should be avoided up front\n");
10460 IntDiagMsg = std::make_pair(
10461 "InterleavingAvoided",
10462 "Ignoring UserIC, because interleaving was avoided up front");
10463 InterleaveLoop =
false;
10464 }
else if (IC == 1 && UserIC <= 1) {
10467 IntDiagMsg = std::make_pair(
10468 "InterleavingNotBeneficial",
10469 "the cost-model indicates that interleaving is not beneficial");
10470 InterleaveLoop =
false;
10472 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10473 IntDiagMsg.second +=
10474 " and is explicitly disabled or interleave count is set to 1";
10476 }
else if (IC > 1 && UserIC == 1) {
10479 dbgs() <<
"LV: Interleaving is beneficial but is explicitly disabled.");
10480 IntDiagMsg = std::make_pair(
10481 "InterleavingBeneficialButDisabled",
10482 "the cost-model indicates that interleaving is beneficial "
10483 "but is explicitly disabled or interleave count is set to 1");
10484 InterleaveLoop =
false;
10490 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10491 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10492 <<
"to histogram operations.\n");
10493 IntDiagMsg = std::make_pair(
10494 "HistogramPreventsScalarInterleaving",
10495 "Unable to interleave without vectorization due to constraints on "
10496 "the order of histogram operations");
10497 InterleaveLoop =
false;
10501 IC = UserIC > 0 ? UserIC : IC;
10505 if (!VectorizeLoop && !InterleaveLoop) {
10509 L->getStartLoc(), L->getHeader())
10510 << VecDiagMsg.second;
10514 L->getStartLoc(), L->getHeader())
10515 << IntDiagMsg.second;
10520 if (!VectorizeLoop && InterleaveLoop) {
10524 L->getStartLoc(), L->getHeader())
10525 << VecDiagMsg.second;
10527 }
else if (VectorizeLoop && !InterleaveLoop) {
10529 <<
") in " << L->getLocStr() <<
'\n');
10532 L->getStartLoc(), L->getHeader())
10533 << IntDiagMsg.second;
10535 }
else if (VectorizeLoop && InterleaveLoop) {
10537 <<
") in " << L->getLocStr() <<
'\n');
10541 bool DisableRuntimeUnroll =
false;
10542 MDNode *OrigLoopID = L->getLoopID();
10544 using namespace ore;
10545 if (!VectorizeLoop) {
10546 assert(IC > 1 &&
"interleave count should not be 1 or 0");
10559 <<
"interleaved loop (interleaved count: "
10560 << NV(
"InterleaveCount", IC) <<
")";
10570 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10580 EPI, &LVL, &CM,
BFI,
PSI, Checks,
10583 *BestMainPlan, MainILV,
DT,
false);
10592 Checks, BestEpiPlan);
10597 DT,
true, &ExpandedSCEVs);
10598 ++LoopsEpilogueVectorized;
10601 DisableRuntimeUnroll =
true;
10605 PSI, Checks, BestPlan);
10613 DisableRuntimeUnroll =
true;
10624 "DT not preserved correctly");
10626 std::optional<MDNode *> RemainderLoopID =
10629 if (RemainderLoopID) {
10630 L->setLoopID(*RemainderLoopID);
10632 if (DisableRuntimeUnroll)
10656 bool Changed =
false, CFGChanged =
false;
10663 for (
const auto &L : *
LI)
10664 Changed |= CFGChanged |=
10675 LoopsAnalyzed += Worklist.
size();
10678 while (!Worklist.
empty()) {
10723 if (!Result.MadeAnyChange)
10737 if (Result.MadeCFGChange) {
10753 OS, MapClassName2PassName);
10756 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10757 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
static unsigned getIntrinsicID(const SDNode *N)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
Legalize the Machine IR a function s Machine IR
This header provides classes for managing per-loop analyses.
static const char * VerboseDebug
loop Loop Strength Reduction
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static void addRuntimeUnrollDisableMetaData(Loop *L)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static SetVector< VPIRInstruction * > collectUsersInExitBlocks(Loop *OrigLoop, VPRecipeBuilder &Builder, VPlan &Plan, const MapVector< PHINode *, InductionDescriptor > &Inductions)
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, const TargetTransformInfo &TTI, PredicatedScalarEvolution &PSE, ScalarEpilogueLowering SEL)
static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
const char LLVMLoopVectorizeFollowupAll[]
static void addExitUsersForFirstOrderRecurrences(VPlan &Plan, SetVector< VPIRInstruction * > &ExitUsersToFix)
Handle users in the exit block for first order reductions in the original exit block.
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, bool HasNUW, DebugLoc DL)
static std::optional< unsigned > getVScaleForTuning(const Loop *L, const TargetTransformInfo &TTI)
Convenience function that returns the value of vscale_range iff vscale_range.min == vscale_range....
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static constexpr uint32_t MemCheckBypassWeights[]
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static VPValue * addResumePhiRecipeForInduction(VPWidenInductionRecipe *WideIV, VPBuilder &VectorPHBuilder, VPBuilder &ScalarPHBuilder, VPTypeAnalysis &TypeInfo, VPValue *VectorTC)
Create and return a ResumePhi for WideIV, unless it is truncated.
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static Type * maybeVectorizeType(Type *Elt, ElementCount VF)
static std::optional< unsigned > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count for the specified loop L as defined by the following procedure: 1) Re...
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
const char VerboseDebug[]
static void fixReductionScalarResumeWhenVectorizingEpilog(VPRecipeBase *R, VPTransformState &State, BasicBlock *LoopMiddleBlock, BasicBlock *BypassBlock)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecpipe for Phi.
static constexpr uint32_t SCEVCheckBypassWeights[]
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
const char LLVMLoopVectorizeFollowupVectorized[]
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
const char LLVMLoopVectorizeFollowupEpilogue[]
static void preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, const EpilogueLoopVectorizationInfo &EPI)
Prepare Plan for vectorizing the epilogue loop.
static bool useActiveLaneMask(TailFoldingStyle Style)
static unsigned getEstimatedRuntimeVF(const Loop *L, const TargetTransformInfo &TTI, ElementCount VF)
This function attempts to return a value that represents the vectorization factor at runtime.
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static bool addUsersInExitBlocks(VPlan &Plan, const SetVector< VPIRInstruction * > &ExitUsersToFix)
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static void addScalarResumePhis(VPRecipeBuilder &Builder, VPlan &Plan)
Create resume phis in the scalar preheader for first-order recurrences, reductions and inductions,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static void cse(BasicBlock *BB)
Perform cse of induction variable instructions.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(false), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
mir Rename Register Operands
This file implements a map that provides insertion order iteration.
std::pair< uint64_t, uint64_t > Interval
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file defines the VPlanHCFGBuilder class which contains the public interface (buildHierarchicalCF...
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
int64_t getSExtValue() const
Get sign extended value.
A container for analyses that lazily runs them and caches their results.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
const ValueT & at(const_arg_type_t< KeyT > Val) const
at - Return the entry for the specified key, or abort if no such entry exists.
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Implements a dense probed hash-table based set.
DomTreeNodeBase * getIDom() const
Analysis pass which computes a DominatorTree.
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
BasicBlock * emitMinimumVectorEpilogueIterCountCheck(BasicBlock *Bypass, BasicBlock *Insert)
Emits an iteration count bypass check after the main vector loop has finished to see if there are any...
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (ie the ...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void printDebugTracesAtEnd() override
BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Implements the interface for creating a vectorized skeleton using the main loop strategy (ie the firs...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *VectorTripCount, BasicBlock *MiddleBlock, VPTransformState &State) override
Set up the values of the IVs correctly when exiting the vector loop.
BasicBlock * emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
FunctionType * getFunctionType() const
Returns the FunctionType for me.
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags none()
Common base class shared among various IRBuilders.
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
ConstantInt * getTrue()
Get the constant value for i1 true.
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateURem(Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
An extension of the inner loop vectorizer that creates a skeleton for a vectorized loop that has its ...
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs) final
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
virtual BasicBlock * createEpilogueVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)=0
The interface for creating a vectorized skeleton using one of two different strategies,...
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
void sinkScalarOperands(Instruction *PredInst)
Iteratively sink the scalarized operands of a predicated instruction into the block that was created ...
const TargetLibraryInfo * TLI
Target Library Info.
virtual void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, Value *VectorTripCount, BasicBlock *MiddleBlock, VPTransformState &State)
Set up the values of the IVs correctly when exiting the vector loop.
ElementCount MinProfitableTripCount
const TargetTransformInfo * TTI
Target Transform Info.
Value * VectorTripCount
Trip count of the widened loop (TripCount - TripCount % (VF*UF))
bool areSafetyChecksAdded()
BasicBlock * emitSCEVChecks(BasicBlock *Bypass)
Emit a bypass check to see if all of the SCEV assumptions we've had to make are correct.
virtual BasicBlock * createVectorizedLoopSkeleton(const SCEV2ValueTy &ExpandedSCEVs)
Create a new empty loop that will contain vectorized instructions later on, while the old loop will b...
LoopVectorizationCostModel * Cost
The profitablity analysis.
BasicBlock * AdditionalBypassBlock
The additional bypass block which conditionally skips over the epilogue loop after executing the main...
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
BasicBlock * LoopMiddleBlock
Middle Block between the vector and the scalar.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
SmallVector< Instruction *, 4 > PredicatedInstructions
Store instructions that were predicated.
DenseMap< PHINode *, Value * > Induction2AdditionalBypassValue
Mapping of induction phis to their additional bypass values.
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
void createVectorLoopSkeleton(StringRef Prefix)
Emit basic blocks (prefixed with Prefix) for the iteration check, vector loop preheader,...
BasicBlock * emitMemRuntimeChecks(BasicBlock *Bypass)
Emit bypass checks to check any memory assumptions we may have made.
BasicBlock * LoopScalarPreHeader
The scalar-loop preheader.
void createInductionAdditionalBypassValues(const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
Create and record the values for induction variables to resume coming from the additional bypass bloc...
VPBlockBase * VectorPHVPB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
LoopVectorizationLegality * Legal
The legality analysis.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor, LoopVectorizationLegality *LVL, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
void emitIterationCountCheck(BasicBlock *Bypass)
Emit a bypass check to see if the vector trip count is zero, including if it overflows.
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
Value * getInductionAdditionalBypassValue(PHINode *OrigPhi) const
induction header phi.
BasicBlock * getAdditionalBypassBlock() const
Return the additional bypass block which targets the scalar loop by skipping the epilogue loop after ...
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
bool OptForSizeBasedOnProfile
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
BasicBlock * LoopVectorPreHeader
The vector-loop preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
Value * getOrCreateVectorTripCount(BasicBlock *InsertBlock)
Returns (and creates if needed) the trip count of the widened loop.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
unsigned UF
The vectorization unroll factor to use.
SmallVector< BasicBlock *, 4 > LoopBypassBlocks
A list of all bypass blocks. The first block is the entry of the loop.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
std::optional< CostType > getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB)
Replace specified successor OldBB to point at the provided block.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
bool isInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleave group.
bool invalidateGroups()
Invalidate groups, e.g., in case all blocks in loop will be predicated contrary to original assumptio...
iterator_range< SmallPtrSetIterator< llvm::InterleaveGroup< Instruction > * > > getInterleaveGroups()
void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
void invalidateGroupsRequiringScalarEpilogue()
Invalidate groups that require a scalar epilogue (due to gaps).
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
const DenseMap< Value *, const SCEV * > & getSymbolicStrides() const
If an access has a symbolic strides, this maps the pointer value to the stride symbol.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Return all of the successor blocks of this loop.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
BlockT * getExitingBlock() const
If getExitingBlocks would return exactly one block, return that block.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
bool isLoopExiting(const BlockT *BB) const
True if terminator in the block can branch to another block that is outside of the current loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool requiresScalarEpilogue(VFRange Range) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
bool usePredicatedReductionSelect(unsigned Opcode, Type *PhiTy) const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, TTI::TargetCostKind CostKind) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
const TargetTransformInfo & TTI
Vector target information.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI)
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
Loop * TheLoop
The loop that we evaluate.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallVector< RegisterUsage, 8 > calculateRegisterUsage(ArrayRef< ElementCount > VFs)
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
void collectUniformsAndScalars(ElementCount VF)
Collect Uniform and Scalar values for the given VF.
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost)
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
unsigned getNumStores() const
bool isInvariantStoreOfReduction(StoreInst *SI)
Returns True if given store is a final invariant store of one of the reductions found in the loop.
bool hasVectorCallVariants() const
Returns true if there is at least one function call in the loop which has a vectorized variant availa...
uint64_t getMaxSafeVectorWidthInBits() const
bool isInvariantAddressOfReduction(Value *V)
Returns True if given address is invariant and is used to store recurrent expression.
bool blockNeedsPredication(BasicBlock *BB) const
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
int isConsecutivePtr(Type *AccessTy, Value *Ptr) const
Check if this pointer is consecutive when vectorizing.
std::optional< const HistogramInfo * > getHistogramInfo(Instruction *I) const
Returns a HistogramInfo* for the given instruction if it was determined to be part of a load -> updat...
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
bool isReductionVariable(PHINode *PN) const
Returns True if PN is a reduction variable in this loop.
bool isFixedOrderRecurrence(const PHINode *Phi) const
Returns True if Phi is a fixed-order recurrence in this loop.
const InductionDescriptor * getPointerInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is pointer induction.
const InductionDescriptor * getIntOrFpInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is an integer or floating point induction.
bool isInductionPhi(const Value *V) const
Returns True if V is a Phi node of an induction variable in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isInvariant(Value *V) const
Returns true if V is invariant across all loop iterations according to SCEV.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool isSafeForAnyVectorWidth() const
unsigned getNumLoads() const
bool canFoldTailByMasking() const
Return true if we can vectorize this loop while folding its tail by masking.
void prepareToFoldTailByMasking()
Mark all respective loads/stores for masking.
Type * getWidestInductionType()
Returns the widest induction type.
bool hasUncountableEarlyExit() const
Returns true if the loop has an uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
bool isUniformMemOp(Instruction &I, ElementCount VF) const
A uniform memory op is a load or store which accesses the same memory location on all VF lanes,...
BasicBlock * getUncountableEarlyExitingBlock() const
Returns the uncountable early exiting block.
bool isMaskRequired(const Instruction *I) const
Returns true if vector representation of the instruction I requires mask.
const RuntimePointerChecking * getRuntimePointerChecking() const
Returns the information that we collected about runtime memory check.
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue, const DenseMap< const SCEV *, Value * > *ExpandedSCEVs=nullptr)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
bool isScalableVectorizationDisabled() const
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
void prepareNoAliasMetadata()
Set up the aliasing scopes based on the memchecks.
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned getNumOperands() const
Return number of MDNode operands.
static MDString * get(LLVMContext &Context, StringRef Str)
This class implements a map that also provides access to all stored values in a deterministic order.
iterator find(const KeyT &Key)
bool contains(const KeyT &Key) const
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
An analysis over an "inner" IR unit that provides access to an analysis manager over a "outer" IR uni...
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
static unsigned getIncomingValueNumForOperand(unsigned i)
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
void preserveSet()
Mark an analysis set as preserved.
void preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
static unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
Value * getSentinelValue() const
Returns the sentinel value for FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
bool Need
This flag indicates if we need to add the runtime check.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class represents a constant integer value.
const APInt & getAPInt() const
Helper to remove instructions inserted during SCEV expansion, unless they are marked as used.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
bool isOne() const
Return true if the expression is a constant one.
bool isZero() const
Return true if the expression is a constant zero.
Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
const SCEV * getConstant(ConstantInt *V)
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
ArrayRef< value_type > getArrayRef() const
size_type size() const
Determine the number of elements in the SetVector.
iterator end()
Get an iterator to the end of the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
value_type pop_back_val()
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static Type * getVoidTy(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isVoidTy() const
Return true if this is 'void'.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
const VPBlocksTy & getPredecessors() const
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
VPValue * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPScalarCastRecipe * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
VPBasicBlock * getInsertBlock() const
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPValue * createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Type * getScalarType() const
Returns the scalar type of the induction.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
A recipe to wrap on original IR instruction not to be modified during execution, execept for PHIs.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ResumePhi
Creates a scalar phi in a leaf VPBB with a single predecessor in VPlan.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getFirstLane()
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * createEdgeMask(BasicBlock *Src, BasicBlock *Dst)
A helper function that computes the predicate of the edge between SRC and DST.
VPReplicateRecipe * handleReplication(Instruction *I, VFRange &Range)
Build a VPReplicationRecipe for I.
void createSwitchEdgeMasks(SwitchInst *SI)
Create an edge mask for every destination of cases and/or default.
VPValue * getBlockInMask(BasicBlock *BB) const
Returns the entry mask for the block BB.
VPValue * getEdgeMask(BasicBlock *Src, BasicBlock *Dst) const
A helper that returns the previously computed predicate of the edge between SRC and DST.
iterator_range< mapped_iterator< Use *, std::function< VPValue *(Value *)> > > mapToVPValues(User::op_range Operands)
Returns a range mapping the values of the range Operands to their corresponding VPValues.
void fixHeaderPhis()
Add the incoming values from the backedge to reduction & first-order recurrence cross-iteration phis.
VPRecipeBase * tryToCreateWidenRecipe(Instruction *Instr, ArrayRef< VPValue * > Operands, VFRange &Range, VPBasicBlock *VPBB)
Create and return a widened recipe for I if one can be created within the given VF Range.
VPValue * getVPValueOrAddLiveIn(Value *V)
void createHeaderMask()
Create the mask for the vector loop header block.
void createBlockInMask(BasicBlock *BB)
A helper function that computes the predicate of the block BB, assuming that the header block of the ...
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
void setFlags(Instruction *I) const
Set the IR flags for I.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
const RecurrenceDescriptor & getRecurrenceDescriptor() const
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
A recipe to compute the pointers for widened memory accesses of IndexTy in reverse order.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void replaceAllUsesWith(VPValue *New)
Value * getLiveInIRValue()
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute the pointers for widened memory accesses of IndexTy.
A recipe for widening Call instructions using library calls.
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
A recipe for handling phis that are widened in the vector loop.
VPValue * getIncomingValue(unsigned I)
Returns the I th incoming VPValue.
VPBasicBlock * getIncomingBlock(unsigned I)
Returns the I th incoming VPBasicBlock.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Main class to build the VPlan H-CFG for an incoming IR.
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
void prepareToExecute(Value *TripCount, Value *VectorTripCount, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
static VPlanPtr createInitialVPlan(Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header) which cont...
bool hasVF(ElementCount VF)
bool hasUF(unsigned UF) const
auto getExitBlocks()
Return an iterator range over the VPIRBasicBlock wrapping the exit blocks of the VPlan,...
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
const VPBasicBlock * getMiddleBlock() const
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
void setEntry(VPBasicBlock *VPBB)
VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getSCEVExpansion(const SCEV *S) const
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region.
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUser() const
Return true if there is exactly one user of this value.
void setName(const Twine &Name)
Change the name of the value.
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
LLVMContext & getContext() const
All values hold a context through their type.
StringRef getName() const
Return a constant reference to the value's name.
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
ID ArrayRef< Type * > Tys
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
OneUse_match< T > m_OneUse(const T &SubPattern)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
const_iterator end(StringRef path)
Get end iterator over path.
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
auto pred_end(const MachineBasicBlock *BB)
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
auto successors(const MachineBasicBlock *BB)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
std::pair< Instruction *, ElementCount > InstructionVFPair
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
auto map_range(ContainerTy &&C, FuncTy F)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
void sort(IteratorTy Start, IteratorTy End)
std::unique_ptr< VPlan > VPlanPtr
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
cl::opt< bool > EnableLoopVectorization
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop, Loop *RemainderLoop, uint64_t UF)
Set weights for UnrolledLoop and RemainderLoop based on weights for OrigLoop and the following distri...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
auto pred_begin(const MachineBasicBlock *BB)
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
bool verifyVPlanIsValid(const VPlan &Plan)
Verify invariants for general VPlans.
MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
cl::opt< bool > EnableLoopInterleaving
Implement std::hash so that hash_code can be used in STL containers.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
BasicBlock * SCEVSafetyCheck
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MemSafetyCheck
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
std::optional< unsigned > MaskPos
A struct that represents some properties of the register usage of a loop.
SmallMapVector< unsigned, unsigned, 4 > MaxLocalUsers
Holds the maximum number of concurrent live intervals in the loop.
SmallMapVector< unsigned, unsigned, 4 > LoopInvariantRegs
Holds the number of loop invariant values that are used in the loop.
LoopVectorizeResult runImpl(Function &F)
bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LoopVectorizePass(LoopVectorizeOptions Opts={})
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
A MapVector that performs no allocations if smaller than a certain size.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
LoopVectorizationCostModel & CM
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening select instructions.
A recipe for widening store operations, using the stored value, the address to store to and an option...
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static bool HoistRuntimeChecks