162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
169STATISTIC(LoopsVectorized,
"Number of loops vectorized");
170STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
176 cl::desc(
"Enable vectorization of epilogue loops."));
180 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
185 "epilogue-vectorization-minimum-VF",
cl::Hidden,
186 cl::desc(
"Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
193 cl::desc(
"Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
199 cl::desc(
"The maximum allowed number of runtime memory checks"));
215 "prefer-predicate-over-epilogue",
218 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
233 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
255 cl::desc(
"Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
260 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
265 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
271 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
275 cl::desc(
"A flag that overrides the target's number of scalar registers."));
279 cl::desc(
"A flag that overrides the target's number of vector registers."));
283 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 cl::desc(
"A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
293 cl::desc(
"A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
306 "The cost of a loop that is considered 'small' by the interleaver."));
310 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
318 "Enable runtime interleaving until load/store ports are saturated"));
323 cl::desc(
"Max number of stores to be predicated behind an if."));
327 cl::desc(
"Count the induction variable only once when interleaving"));
331 cl::desc(
"Enable if predication of stores during vectorization."));
335 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
341 cl::desc(
"Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
346 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
352 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
361#ifdef EXPENSIVE_CHECKS
367 cl::desc(
"Verfiy VPlans after VPlan transforms."));
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
382 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
385 cl::desc(
"Run the Loop vectorization passes"));
388 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
390 "Override cost based safe divisor widening for div/rem instructions"));
393 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
395 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
400 "Enable vectorization of early exit loops with uncountable exits."));
404 cl::desc(
"Discard VFs if their register pressure is too high."));
417 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
452static std::optional<ElementCount>
454 bool CanUseConstantMax =
true) {
464 if (!CanUseConstantMax)
476class GeneratedRTChecks;
508 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
617 "A high UF for the epilogue loop is likely not beneficial.");
637 UnrollFactor, CM, Checks,
Plan),
666 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
886 initializeVScaleForTuning();
897 bool runtimeChecksRequired();
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
935 void collectValuesToIgnore();
938 void collectElementTypesForWidening();
942 void collectInLoopReductions();
963 "Profitable to scalarize relevant only for VF > 1.");
966 "cost-model should not be used for outer loops (in VPlan-native path)");
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(
I);
978 "cost-model should not be used for outer loops (in VPlan-native path)");
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(
I);
998 "cost-model should not be used for outer loops (in VPlan-native path)");
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(
I);
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1015 return VF.
isVector() && MinBWs.contains(
I) &&
1037 WideningDecisions[{
I, VF}] = {W,
Cost};
1056 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1059 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1061 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1075 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1079 return Itr->second.first;
1086 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1102 std::optional<unsigned> MaskPos,
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (
I == CallWideningDecisions.end())
1135 Value *
Op = Trunc->getOperand(0);
1136 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1140 return Legal->isInductionPhi(
Op);
1156 if (VF.
isScalar() || Uniforms.contains(VF))
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1192 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1199 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1212 return ScalarCost < SafeDivisorCost;
1251 std::pair<InstructionCost, InstructionCost>
1278 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1285 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1291 "interleaved group requires scalar epilogue\n");
1294 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1323 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1324 if (!
Legal->canFoldTailByMasking()) {
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(
true),
1332 TTI.getPreferredTailFoldingStyle(
false)};
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1356 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1359 ?
"since interleave count specified is greater than 1.\n"
1360 :
"due to non-interleaving reasons.\n"));
1405 return InLoopReductions.contains(Phi);
1410 return InLoopReductions;
1421 TTI.preferPredicatedReductionSelect();
1436 WideningDecisions.clear();
1437 CallWideningDecisions.clear();
1455 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1456 const unsigned IC)
const;
1464 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1466 Type *VectorTy)
const;
1470 bool shouldConsiderInvariant(
Value *
Op);
1476 unsigned NumPredStores = 0;
1480 std::optional<unsigned> VScaleForTuning;
1485 void initializeVScaleForTuning() {
1490 auto Max = Attr.getVScaleRangeMax();
1491 if (Max && Min == Max) {
1492 VScaleForTuning = Max;
1505 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1506 ElementCount UserVF,
unsigned UserIC,
1507 bool FoldTailByMasking);
1511 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1513 bool FoldTailByMasking)
const;
1518 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1519 unsigned SmallestType,
1520 unsigned WidestType,
1521 ElementCount MaxSafeVF,
unsigned UserIC,
1522 bool FoldTailByMasking);
1526 bool isScalableVectorizationAllowed();
1530 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1536 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1557 ElementCount VF)
const;
1561 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1566 MapVector<Instruction *, uint64_t> MinBWs;
1571 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1575 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1576 PredicatedBBsAfterVectorization;
1589 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1590 ChosenTailFoldingStyle;
1593 std::optional<bool> IsScalableVectorizationAllowed;
1599 std::optional<unsigned> MaxSafeElements;
1605 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1609 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1613 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1617 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1620 SmallPtrSet<PHINode *, 4> InLoopReductions;
1625 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1633 ScalarCostsTy &ScalarCosts,
1645 void collectLoopUniforms(ElementCount VF);
1654 void collectLoopScalars(ElementCount VF);
1658 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1659 std::pair<InstWidening, InstructionCost>>;
1661 DecisionList WideningDecisions;
1663 using CallDecisionList =
1664 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1666 CallDecisionList CallWideningDecisions;
1670 bool needsExtract(
Value *V, ElementCount VF)
const {
1674 getWideningDecision(
I, VF) == CM_Scalarize ||
1685 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1689 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range
Ops,
1690 ElementCount VF)
const {
1692 SmallPtrSet<const Value *, 4> UniqueOperands;
1693 SmallVector<Value *, 4> Res;
1696 !needsExtract(
Op, VF))
1782class GeneratedRTChecks {
1788 Value *SCEVCheckCond =
nullptr;
1795 Value *MemRuntimeCheckCond =
nullptr;
1804 bool CostTooHigh =
false;
1806 Loop *OuterLoop =
nullptr;
1817 : DT(DT), LI(LI),
TTI(
TTI),
1818 SCEVExp(*PSE.
getSE(),
"scev.check",
false),
1819 MemCheckExp(*PSE.
getSE(),
"scev.check",
false),
1827 void create(Loop *L,
const LoopAccessInfo &LAI,
1828 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC,
1829 OptimizationRemarkEmitter &ORE) {
1842 return OptimizationRemarkAnalysisAliasing(
1843 DEBUG_TYPE,
"TooManyMemoryRuntimeChecks",
L->getStartLoc(),
1845 <<
"loop not vectorized: too many memory checks needed";
1860 nullptr,
"vector.scevcheck");
1867 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1868 SCEVCleaner.cleanup();
1873 if (RtPtrChecking.Need) {
1874 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1875 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1878 auto DiffChecks = RtPtrChecking.getDiffChecks();
1880 Value *RuntimeVF =
nullptr;
1883 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1885 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1891 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1894 assert(MemRuntimeCheckCond &&
1895 "no RT checks generated although RtPtrChecking "
1896 "claimed checks are required");
1901 if (!MemCheckBlock && !SCEVCheckBlock)
1911 if (SCEVCheckBlock) {
1914 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1918 if (MemCheckBlock) {
1921 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1927 if (MemCheckBlock) {
1931 if (SCEVCheckBlock) {
1937 OuterLoop =
L->getParentLoop();
1941 if (SCEVCheckBlock || MemCheckBlock)
1953 for (Instruction &
I : *SCEVCheckBlock) {
1954 if (SCEVCheckBlock->getTerminator() == &
I)
1960 if (MemCheckBlock) {
1962 for (Instruction &
I : *MemCheckBlock) {
1963 if (MemCheckBlock->getTerminator() == &
I)
1975 ScalarEvolution *SE = MemCheckExp.
getSE();
1980 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1985 unsigned BestTripCount = 2;
1989 PSE, OuterLoop,
false))
1990 if (EstimatedTC->isFixed())
1991 BestTripCount = EstimatedTC->getFixedValue();
1996 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1997 (InstructionCost::CostType)1);
1999 if (BestTripCount > 1)
2001 <<
"We expect runtime memory checks to be hoisted "
2002 <<
"out of the outer loop. Cost reduced from "
2003 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
2005 MemCheckCost = NewMemCheckCost;
2009 RTCheckCost += MemCheckCost;
2012 if (SCEVCheckBlock || MemCheckBlock)
2013 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2021 ~GeneratedRTChecks() {
2022 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2023 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2024 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
2025 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
2027 SCEVCleaner.markResultUsed();
2029 if (MemChecksUsed) {
2030 MemCheckCleaner.markResultUsed();
2032 auto &SE = *MemCheckExp.
getSE();
2039 I.eraseFromParent();
2042 MemCheckCleaner.cleanup();
2043 SCEVCleaner.cleanup();
2045 if (!SCEVChecksUsed)
2046 SCEVCheckBlock->eraseFromParent();
2048 MemCheckBlock->eraseFromParent();
2053 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2054 using namespace llvm::PatternMatch;
2056 return {
nullptr,
nullptr};
2058 return {SCEVCheckCond, SCEVCheckBlock};
2063 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2064 using namespace llvm::PatternMatch;
2065 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2066 return {
nullptr,
nullptr};
2067 return {MemRuntimeCheckCond, MemCheckBlock};
2071 bool hasChecks()
const {
2072 return getSCEVChecks().first || getMemRuntimeChecks().first;
2115 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2121 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2151 for (
Loop *InnerL : L)
2170 ?
B.CreateSExtOrTrunc(Index, StepTy)
2171 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2172 if (CastedIndex != Index) {
2174 Index = CastedIndex;
2184 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2189 return B.CreateAdd(
X,
Y);
2195 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2196 "Types don't match!");
2204 return B.CreateMul(
X,
Y);
2207 switch (InductionKind) {
2210 "Vector indices not supported for integer inductions yet");
2212 "Index type does not match StartValue type");
2214 return B.CreateSub(StartValue, Index);
2219 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2222 "Vector indices not supported for FP inductions yet");
2225 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2226 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2227 "Original bin op should be defined for FP induction");
2229 Value *MulExp =
B.CreateFMul(Step, Index);
2230 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2241 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2244 if (
F.hasFnAttribute(Attribute::VScaleRange))
2245 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2247 return std::nullopt;
2256 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2258 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2260 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2266 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2269 std::optional<unsigned> MaxVScale =
2273 MaxVF *= *MaxVScale;
2276 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2290 return TTI.enableMaskedInterleavedAccessVectorization();
2303 PreVectorPH = CheckVPIRBB;
2313 "must have incoming values for all operands");
2314 R.addOperand(R.getOperand(NumPredecessors - 2));
2340 auto CreateStep = [&]() ->
Value * {
2347 if (!
VF.isScalable())
2349 return Builder.CreateBinaryIntrinsic(
2355 Value *Step = CreateStep();
2364 CheckMinIters =
Builder.getTrue();
2366 TripCountSCEV, SE.
getSCEV(Step))) {
2369 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2371 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2379 Value *MaxUIntTripCount =
2386 return CheckMinIters;
2395 VPlan *Plan =
nullptr) {
2399 auto IP = IRVPBB->
begin();
2401 R.moveBefore(*IRVPBB, IP);
2405 R.moveBefore(*IRVPBB, IRVPBB->
end());
2414 assert(VectorPH &&
"Invalid loop structure");
2416 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2417 "loops not exiting via the latch without required epilogue?");
2424 Twine(Prefix) +
"scalar.ph");
2430 const SCEV2ValueTy &ExpandedSCEVs) {
2431 const SCEV *Step =
ID.getStep();
2433 return C->getValue();
2435 return U->getValue();
2436 Value *V = ExpandedSCEVs.lookup(Step);
2437 assert(V &&
"SCEV must be expanded at this point");
2447 auto *Cmp = L->getLatchCmpInst();
2449 InstsToIgnore.
insert(Cmp);
2450 for (
const auto &KV : IL) {
2459 [&](
const User *U) { return U == IV || U == Cmp; }))
2460 InstsToIgnore.
insert(IVInst);
2472struct CSEDenseMapInfo {
2483 return DenseMapInfo<Instruction *>::getTombstoneKey();
2486 static unsigned getHashValue(
const Instruction *
I) {
2487 assert(canHandle(
I) &&
"Unknown instruction!");
2492 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2493 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2494 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2496 return LHS->isIdenticalTo(
RHS);
2508 if (!CSEDenseMapInfo::canHandle(&In))
2514 In.replaceAllUsesWith(V);
2515 In.eraseFromParent();
2528 std::optional<unsigned> VScale) {
2532 EstimatedVF *= *VScale;
2533 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2551 for (
auto &ArgOp : CI->
args())
2562 return ScalarCallCost;
2575 assert(
ID &&
"Expected intrinsic call!");
2579 FMF = FPMO->getFastMathFlags();
2585 std::back_inserter(ParamTys),
2586 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2591 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2605 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2620 Builder.SetInsertPoint(NewPhi);
2622 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2627void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2632 "This function should not be visited twice for the same VF");
2655 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2656 assert(WideningDecision != CM_Unknown &&
2657 "Widening decision should be ready at this moment");
2659 if (Ptr == Store->getValueOperand())
2660 return WideningDecision == CM_Scalarize;
2662 "Ptr is neither a value or pointer operand");
2663 return WideningDecision != CM_GatherScatter;
2668 auto IsLoopVaryingGEP = [&](
Value *
V) {
2679 if (!IsLoopVaryingGEP(Ptr))
2691 if (IsScalarUse(MemAccess, Ptr) &&
2695 PossibleNonScalarPtrs.
insert(
I);
2711 for (
auto *BB : TheLoop->
blocks())
2712 for (
auto &
I : *BB) {
2714 EvaluatePtrUse(Load,
Load->getPointerOperand());
2716 EvaluatePtrUse(Store,
Store->getPointerOperand());
2717 EvaluatePtrUse(Store,
Store->getValueOperand());
2720 for (
auto *
I : ScalarPtrs)
2721 if (!PossibleNonScalarPtrs.
count(
I)) {
2729 auto ForcedScalar = ForcedScalars.
find(VF);
2730 if (ForcedScalar != ForcedScalars.
end())
2731 for (
auto *
I : ForcedScalar->second) {
2732 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2741 while (Idx != Worklist.
size()) {
2743 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2747 auto *J = cast<Instruction>(U);
2748 return !TheLoop->contains(J) || Worklist.count(J) ||
2749 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2750 IsScalarUse(J, Src));
2753 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2759 for (
const auto &Induction :
Legal->getInductionVars()) {
2760 auto *Ind = Induction.first;
2765 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2770 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2772 return Induction.second.getKind() ==
2780 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2781 auto *I = cast<Instruction>(U);
2782 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2783 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2792 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2797 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2798 auto *I = cast<Instruction>(U);
2799 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2800 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2802 if (!ScalarIndUpdate)
2807 Worklist.
insert(IndUpdate);
2808 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2809 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2823 switch(
I->getOpcode()) {
2826 case Instruction::Call:
2830 case Instruction::Load:
2831 case Instruction::Store: {
2840 TTI.isLegalMaskedGather(VTy, Alignment))
2842 TTI.isLegalMaskedScatter(VTy, Alignment));
2844 case Instruction::UDiv:
2845 case Instruction::SDiv:
2846 case Instruction::SRem:
2847 case Instruction::URem: {
2868 if (
Legal->blockNeedsPredication(
I->getParent()))
2880 switch(
I->getOpcode()) {
2883 "instruction should have been considered by earlier checks");
2884 case Instruction::Call:
2888 "should have returned earlier for calls not needing a mask");
2890 case Instruction::Load:
2893 case Instruction::Store: {
2901 case Instruction::UDiv:
2902 case Instruction::URem:
2904 return !
Legal->isInvariant(
I->getOperand(1));
2905 case Instruction::SDiv:
2906 case Instruction::SRem:
2919 if (!
Legal->blockNeedsPredication(BB))
2926 "Header has smaller block freq than dominated BB?");
2927 return std::round((
double)HeaderFreq /
BBFreq);
2930std::pair<InstructionCost, InstructionCost>
2933 assert(
I->getOpcode() == Instruction::UDiv ||
2934 I->getOpcode() == Instruction::SDiv ||
2935 I->getOpcode() == Instruction::SRem ||
2936 I->getOpcode() == Instruction::URem);
2945 ScalarizationCost = 0;
2951 ScalarizationCost +=
2955 ScalarizationCost +=
2957 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2975 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2980 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2982 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2983 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2985 return {ScalarizationCost, SafeDivisorCost};
2992 "Decision should not be set yet.");
2994 assert(Group &&
"Must have a group.");
2995 unsigned InterleaveFactor = Group->getFactor();
2999 auto &
DL =
I->getDataLayout();
3011 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
3012 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3017 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
3019 if (MemberNI != ScalarNI)
3022 if (MemberNI && ScalarNI &&
3023 ScalarTy->getPointerAddressSpace() !=
3024 MemberTy->getPointerAddressSpace())
3033 bool PredicatedAccessRequiresMasking =
3035 Legal->isMaskRequired(
I);
3036 bool LoadAccessWithGapsRequiresEpilogMasking =
3039 bool StoreAccessWithGapsRequiresMasking =
3041 if (!PredicatedAccessRequiresMasking &&
3042 !LoadAccessWithGapsRequiresEpilogMasking &&
3043 !StoreAccessWithGapsRequiresMasking)
3050 "Masked interleave-groups for predicated accesses are not enabled.");
3052 if (Group->isReverse())
3056 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3057 StoreAccessWithGapsRequiresMasking;
3065 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3077 if (!
Legal->isConsecutivePtr(ScalarTy, Ptr))
3087 auto &
DL =
I->getDataLayout();
3094void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3101 "This function should not be visited twice for the same VF");
3105 Uniforms[VF].
clear();
3113 auto IsOutOfScope = [&](
Value *V) ->
bool {
3125 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3126 if (IsOutOfScope(
I)) {
3131 if (isPredicatedInst(
I)) {
3133 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3137 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3147 for (BasicBlock *
E : Exiting) {
3151 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3152 AddToWorklistIfAllowed(Cmp);
3161 if (PrevVF.isVector()) {
3162 auto Iter = Uniforms.
find(PrevVF);
3163 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3166 if (!
Legal->isUniformMemOp(*
I, VF))
3176 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3177 InstWidening WideningDecision = getWideningDecision(
I, VF);
3178 assert(WideningDecision != CM_Unknown &&
3179 "Widening decision should be ready at this moment");
3181 if (IsUniformMemOpUse(
I))
3184 return (WideningDecision == CM_Widen ||
3185 WideningDecision == CM_Widen_Reverse ||
3186 WideningDecision == CM_Interleave);
3196 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(Ptr));
3204 SetVector<Value *> HasUniformUse;
3208 for (
auto *BB : TheLoop->
blocks())
3209 for (
auto &
I : *BB) {
3211 switch (
II->getIntrinsicID()) {
3212 case Intrinsic::sideeffect:
3213 case Intrinsic::experimental_noalias_scope_decl:
3214 case Intrinsic::assume:
3215 case Intrinsic::lifetime_start:
3216 case Intrinsic::lifetime_end:
3218 AddToWorklistIfAllowed(&
I);
3226 if (IsOutOfScope(EVI->getAggregateOperand())) {
3227 AddToWorklistIfAllowed(EVI);
3233 "Expected aggregate value to be call return value");
3246 if (IsUniformMemOpUse(&
I))
3247 AddToWorklistIfAllowed(&
I);
3249 if (IsVectorizedMemAccessUse(&
I, Ptr))
3250 HasUniformUse.
insert(Ptr);
3256 for (
auto *V : HasUniformUse) {
3257 if (IsOutOfScope(V))
3260 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3261 auto *UI = cast<Instruction>(U);
3262 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3264 if (UsersAreMemAccesses)
3265 AddToWorklistIfAllowed(
I);
3272 while (Idx != Worklist.
size()) {
3275 for (
auto *OV :
I->operand_values()) {
3277 if (IsOutOfScope(OV))
3282 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3288 auto *J = cast<Instruction>(U);
3289 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3291 AddToWorklistIfAllowed(OI);
3302 for (
const auto &Induction :
Legal->getInductionVars()) {
3303 auto *Ind = Induction.first;
3308 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3309 auto *I = cast<Instruction>(U);
3310 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3311 IsVectorizedMemAccessUse(I, Ind);
3318 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3319 auto *I = cast<Instruction>(U);
3320 return I == Ind || Worklist.count(I) ||
3321 IsVectorizedMemAccessUse(I, IndUpdate);
3323 if (!UniformIndUpdate)
3327 AddToWorklistIfAllowed(Ind);
3328 AddToWorklistIfAllowed(IndUpdate);
3337 if (
Legal->getRuntimePointerChecking()->Need) {
3339 "runtime pointer checks needed. Enable vectorization of this "
3340 "loop with '#pragma clang loop vectorize(enable)' when "
3341 "compiling with -Os/-Oz",
3342 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3346 if (!
PSE.getPredicate().isAlwaysTrue()) {
3348 "runtime SCEV checks needed. Enable vectorization of this "
3349 "loop with '#pragma clang loop vectorize(enable)' when "
3350 "compiling with -Os/-Oz",
3351 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3356 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3358 "runtime stride == 1 checks needed. Enable vectorization of "
3359 "this loop without such check by compiling with -Os/-Oz",
3360 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3367bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3368 if (IsScalableVectorizationAllowed)
3369 return *IsScalableVectorizationAllowed;
3371 IsScalableVectorizationAllowed =
false;
3375 if (Hints->isScalableVectorizationDisabled()) {
3377 "ScalableVectorizationDisabled", ORE, TheLoop);
3381 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3384 std::numeric_limits<ElementCount::ScalarTy>::max());
3393 if (!canVectorizeReductions(MaxScalableVF)) {
3395 "Scalable vectorization not supported for the reduction "
3396 "operations found in this loop.",
3397 "ScalableVFUnfeasible", ORE, TheLoop);
3403 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3408 "for all element types found in this loop.",
3409 "ScalableVFUnfeasible", ORE, TheLoop);
3415 "for safe distance analysis.",
3416 "ScalableVFUnfeasible", ORE, TheLoop);
3420 IsScalableVectorizationAllowed =
true;
3425LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3426 if (!isScalableVectorizationAllowed())
3430 std::numeric_limits<ElementCount::ScalarTy>::max());
3431 if (
Legal->isSafeForAnyVectorWidth())
3432 return MaxScalableVF;
3440 "Max legal vector width too small, scalable vectorization "
3442 "ScalableVFUnfeasible", ORE, TheLoop);
3444 return MaxScalableVF;
3447FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3448 unsigned MaxTripCount, ElementCount UserVF,
unsigned UserIC,
3449 bool FoldTailByMasking) {
3451 unsigned SmallestType, WidestType;
3452 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3458 unsigned MaxSafeElementsPowerOf2 =
3460 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3461 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3462 MaxSafeElementsPowerOf2 =
3463 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3466 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3468 if (!
Legal->isSafeForAnyVectorWidth())
3469 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3471 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3473 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3478 auto MaxSafeUserVF =
3479 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3481 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3484 return FixedScalableVFPair(
3490 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3496 <<
" is unsafe, clamping to max safe VF="
3497 << MaxSafeFixedVF <<
".\n");
3499 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3502 <<
"User-specified vectorization factor "
3503 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3504 <<
" is unsafe, clamping to maximum safe vectorization factor "
3505 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3507 return MaxSafeFixedVF;
3512 <<
" is ignored because scalable vectors are not "
3515 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3518 <<
"User-specified vectorization factor "
3519 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3520 <<
" is ignored because the target does not support scalable "
3521 "vectors. The compiler will pick a more suitable value.";
3525 <<
" is unsafe. Ignoring scalable UserVF.\n");
3527 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3530 <<
"User-specified vectorization factor "
3531 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3532 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3533 "more suitable value.";
3538 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3539 <<
" / " << WidestType <<
" bits.\n");
3544 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3545 MaxSafeFixedVF, UserIC, FoldTailByMasking))
3549 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3550 MaxSafeScalableVF, UserIC, FoldTailByMasking))
3551 if (MaxVF.isScalable()) {
3552 Result.ScalableVF = MaxVF;
3553 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3562 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3566 "Not inserting runtime ptr check for divergent target",
3567 "runtime pointer checks needed. Not enabled for divergent target",
3568 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3574 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3577 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3580 "loop trip count is one, irrelevant for vectorization",
3591 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3595 "Trip count computation wrapped",
3596 "backedge-taken count is -1, loop trip count wrapped to 0",
3601 switch (ScalarEpilogueStatus) {
3603 return computeFeasibleMaxVF(MaxTC, UserVF, UserIC,
false);
3608 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3609 <<
"LV: Not allowing scalar epilogue, creating predicated "
3610 <<
"vector loop.\n");
3617 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3619 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3635 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3636 "No decisions should have been taken at this point");
3643 computeFeasibleMaxVF(MaxTC, UserVF, UserIC,
true);
3647 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3651 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3652 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3653 *MaxPowerOf2RuntimeVF,
3656 MaxPowerOf2RuntimeVF = std::nullopt;
3659 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3663 !
Legal->hasUncountableEarlyExit())
3665 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3670 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3672 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3673 "Invalid loop count");
3675 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3682 if (MaxPowerOf2RuntimeVF > 0u) {
3684 "MaxFixedVF must be a power of 2");
3685 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3687 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3693 if (ExpectedTC && ExpectedTC->isFixed() &&
3694 ExpectedTC->getFixedValue() <=
3695 TTI.getMinTripCountTailFoldingThreshold()) {
3696 if (MaxPowerOf2RuntimeVF > 0u) {
3702 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3703 "remain for any chosen VF.\n");
3710 "The trip count is below the minial threshold value.",
3711 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3726 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3727 "try to generate VP Intrinsics with scalable vector "
3732 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3742 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3743 "scalar epilogue instead.\n");
3749 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3755 "unable to calculate the loop count due to complex control flow",
3761 "Cannot optimize for size and vectorize at the same time.",
3762 "cannot optimize for size and vectorize at the same time. "
3763 "Enable vectorization of this loop with '#pragma clang loop "
3764 "vectorize(enable)' when compiling with -Os/-Oz",
3776 if (
TTI.shouldConsiderVectorizationRegPressure())
3792 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3794 Legal->hasVectorCallVariants())));
3797ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3798 ElementCount VF,
unsigned MaxTripCount,
unsigned UserIC,
3799 bool FoldTailByMasking)
const {
3801 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3802 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3803 auto Min = Attr.getVScaleRangeMin();
3810 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3815 unsigned IC = UserIC > 0 ? UserIC : 1;
3816 unsigned EstimatedVFTimesIC = EstimatedVF * IC;
3818 if (MaxTripCount && MaxTripCount <= EstimatedVFTimesIC &&
3826 if (ClampedUpperTripCount == 0)
3827 ClampedUpperTripCount = 1;
3828 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3829 "exceeding the constant trip count"
3830 << (UserIC > 0 ?
" divided by UserIC" :
"") <<
": "
3831 << ClampedUpperTripCount <<
"\n");
3833 FoldTailByMasking ? VF.
isScalable() :
false);
3838ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3839 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3840 ElementCount MaxSafeVF,
unsigned UserIC,
bool FoldTailByMasking) {
3841 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3847 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3849 "Scalable flags must match");
3857 ComputeScalableMaxVF);
3858 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3860 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3862 if (!MaxVectorElementCount) {
3864 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3865 <<
" vector registers.\n");
3869 ElementCount MaxVF = clampVFByMaxTripCount(
3870 MaxVectorElementCount, MaxTripCount, UserIC, FoldTailByMasking);
3873 if (MaxVF != MaxVectorElementCount)
3881 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3883 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3885 if (useMaxBandwidth(RegKind)) {
3888 ComputeScalableMaxVF);
3889 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3891 if (ElementCount MinVF =
3893 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3895 <<
") with target's minimum: " << MinVF <<
'\n');
3901 clampVFByMaxTripCount(MaxVF, MaxTripCount, UserIC, FoldTailByMasking);
3903 if (MaxVectorElementCount != MaxVF) {
3907 invalidateCostModelingDecisions();
3915 const unsigned MaxTripCount,
3917 bool IsEpilogue)
const {
3923 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3924 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3925 if (
A.Width.isScalable())
3926 EstimatedWidthA *= *VScale;
3927 if (
B.Width.isScalable())
3928 EstimatedWidthB *= *VScale;
3935 return CostA < CostB ||
3936 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3942 A.Width.isScalable() && !
B.Width.isScalable();
3953 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3955 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3967 return VectorCost * (MaxTripCount / VF) +
3968 ScalarCost * (MaxTripCount % VF);
3969 return VectorCost *
divideCeil(MaxTripCount, VF);
3972 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3973 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3974 return CmpFn(RTCostA, RTCostB);
3980 bool IsEpilogue)
const {
3982 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3988 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3990 for (
const auto &Plan : VPlans) {
3999 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
4001 precomputeCosts(*Plan, VF, CostCtx);
4004 for (
auto &R : *VPBB) {
4005 if (!R.cost(VF, CostCtx).isValid())
4011 if (InvalidCosts.
empty())
4019 for (
auto &Pair : InvalidCosts)
4024 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4025 unsigned NA = Numbering[
A.first];
4026 unsigned NB = Numbering[
B.first];
4041 Subset =
Tail.take_front(1);
4048 [](
const auto *R) {
return Instruction::PHI; })
4049 .Case<VPWidenStoreRecipe>(
4050 [](
const auto *R) {
return Instruction::Store; })
4051 .Case<VPWidenLoadRecipe>(
4052 [](
const auto *R) {
return Instruction::Load; })
4053 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4054 [](
const auto *R) {
return Instruction::Call; })
4057 [](
const auto *R) {
return R->getOpcode(); })
4059 return R->getStoredValues().empty() ? Instruction::Load
4060 : Instruction::Store;
4062 .Case<VPReductionRecipe>([](
const auto *R) {
4071 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4072 std::string OutString;
4074 assert(!Subset.empty() &&
"Unexpected empty range");
4075 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4076 for (
const auto &Pair : Subset)
4077 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4079 if (Opcode == Instruction::Call) {
4082 Name =
Int->getIntrinsicName();
4086 WidenCall ? WidenCall->getCalledScalarFunction()
4088 ->getLiveInIRValue());
4091 OS <<
" call to " << Name;
4096 Tail =
Tail.drop_front(Subset.size());
4100 Subset =
Tail.take_front(Subset.size() + 1);
4101 }
while (!
Tail.empty());
4123 switch (R.getVPDefID()) {
4124 case VPDef::VPDerivedIVSC:
4125 case VPDef::VPScalarIVStepsSC:
4126 case VPDef::VPReplicateSC:
4127 case VPDef::VPInstructionSC:
4128 case VPDef::VPCanonicalIVPHISC:
4129 case VPDef::VPVectorPointerSC:
4130 case VPDef::VPVectorEndPointerSC:
4131 case VPDef::VPExpandSCEVSC:
4132 case VPDef::VPEVLBasedIVPHISC:
4133 case VPDef::VPPredInstPHISC:
4134 case VPDef::VPBranchOnMaskSC:
4136 case VPDef::VPReductionSC:
4137 case VPDef::VPActiveLaneMaskPHISC:
4138 case VPDef::VPWidenCallSC:
4139 case VPDef::VPWidenCanonicalIVSC:
4140 case VPDef::VPWidenCastSC:
4141 case VPDef::VPWidenGEPSC:
4142 case VPDef::VPWidenIntrinsicSC:
4143 case VPDef::VPWidenSC:
4144 case VPDef::VPBlendSC:
4145 case VPDef::VPFirstOrderRecurrencePHISC:
4146 case VPDef::VPHistogramSC:
4147 case VPDef::VPWidenPHISC:
4148 case VPDef::VPWidenIntOrFpInductionSC:
4149 case VPDef::VPWidenPointerInductionSC:
4150 case VPDef::VPReductionPHISC:
4151 case VPDef::VPInterleaveEVLSC:
4152 case VPDef::VPInterleaveSC:
4153 case VPDef::VPWidenLoadEVLSC:
4154 case VPDef::VPWidenLoadSC:
4155 case VPDef::VPWidenStoreEVLSC:
4156 case VPDef::VPWidenStoreSC:
4162 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4163 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4179 if (R.getNumDefinedValues() == 0 &&
4188 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4190 if (!Visited.
insert({ScalarTy}).second)
4204 [](
auto *VPRB) { return VPRB->isReplicator(); });
4210 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4211 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4214 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4215 "Expected Scalar VF to be a candidate");
4222 if (ForceVectorization &&
4223 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4227 ChosenFactor.
Cost = InstructionCost::getMax();
4230 for (
auto &
P : VPlans) {
4232 P->vectorFactors().end());
4235 if (
any_of(VFs, [
this](ElementCount VF) {
4236 return CM.shouldConsiderRegPressureForVF(VF);
4240 for (
unsigned I = 0;
I < VFs.size();
I++) {
4241 ElementCount VF = VFs[
I];
4249 if (CM.shouldConsiderRegPressureForVF(VF) &&
4257 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind, CM.PSE,
4259 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4260 assert(VectorRegion &&
"Expected to have a vector region!");
4263 for (VPRecipeBase &R : *VPBB) {
4267 switch (VPI->getOpcode()) {
4270 case Instruction::Select: {
4273 switch (WR->getOpcode()) {
4274 case Instruction::UDiv:
4275 case Instruction::SDiv:
4276 case Instruction::URem:
4277 case Instruction::SRem:
4283 C += VPI->cost(VF, CostCtx);
4287 unsigned Multiplier =
4289 C += VPI->cost(VF * Multiplier, CostCtx);
4293 C += VPI->cost(VF, CostCtx);
4305 <<
" costs: " << (Candidate.Cost / Width));
4308 << CM.getVScaleForTuning().value_or(1) <<
")");
4314 <<
"LV: Not considering vector loop of width " << VF
4315 <<
" because it will not generate any vector instructions.\n");
4322 <<
"LV: Not considering vector loop of width " << VF
4323 <<
" because it would cause replicated blocks to be generated,"
4324 <<
" which isn't allowed when optimizing for size.\n");
4328 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4329 ChosenFactor = Candidate;
4335 "There are conditional stores.",
4336 "store that is conditionally executed prevents vectorization",
4337 "ConditionalStore", ORE, OrigLoop);
4338 ChosenFactor = ScalarCost;
4342 !isMoreProfitable(ChosenFactor, ScalarCost,
4343 !CM.foldTailByMasking()))
dbgs()
4344 <<
"LV: Vectorization seems to be not beneficial, "
4345 <<
"but was forced by a user.\n");
4346 return ChosenFactor;
4355 auto *RedPhi = dyn_cast<VPReductionPHIRecipe>(&R);
4357 RecurrenceDescriptor::isFindLastRecurrenceKind(
4358 RedPhi->getRecurrenceKind());
4362bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4363 ElementCount VF)
const {
4366 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4367 if (!Legal->isReductionVariable(&Phi))
4368 return Legal->isFixedOrderRecurrence(&Phi);
4370 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind();
4371 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(Kind);
4382 for (
const auto &Entry :
Legal->getInductionVars()) {
4385 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4386 for (User *U :
PostInc->users())
4390 for (User *U :
Entry.first->users())
4399 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4413 if (!
TTI.preferEpilogueVectorization())
4418 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4423 :
TTI.getEpilogueVectorizationMinVF();
4431 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4435 if (!CM.isScalarEpilogueAllowed()) {
4436 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4437 "epilogue is allowed.\n");
4443 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4444 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4445 "is not a supported candidate.\n");
4450 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4453 return {ForcedEC, 0, 0};
4455 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4460 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4462 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4466 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4467 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4478 Type *TCType = Legal->getWidestInductionType();
4479 const SCEV *RemainingIterations =
nullptr;
4480 unsigned MaxTripCount = 0;
4484 const SCEV *KnownMinTC;
4486 bool ScalableRemIter =
false;
4490 ScalableRemIter = ScalableTC;
4491 RemainingIterations =
4493 }
else if (ScalableTC) {
4496 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4500 RemainingIterations =
4504 if (RemainingIterations->
isZero())
4514 << MaxTripCount <<
"\n");
4517 auto SkipVF = [&](
const SCEV *VF,
const SCEV *RemIter) ->
bool {
4520 for (
auto &NextVF : ProfitableVFs) {
4527 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4529 (NextVF.Width.isScalable() &&
4531 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4540 if (!ScalableRemIter) {
4544 if (NextVF.Width.isScalable())
4551 if (Result.Width.isScalar() ||
4552 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4559 << Result.Width <<
"\n");
4563std::pair<unsigned, unsigned>
4565 unsigned MinWidth = -1U;
4566 unsigned MaxWidth = 8;
4572 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4576 MinWidth = std::min(
4580 MaxWidth = std::max(MaxWidth,
4585 MinWidth = std::min<unsigned>(
4586 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4587 MaxWidth = std::max<unsigned>(
4588 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4591 return {MinWidth, MaxWidth};
4599 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4613 if (!
Legal->isReductionVariable(PN))
4616 Legal->getRecurrenceDescriptor(PN);
4626 T = ST->getValueOperand()->getType();
4629 "Expected the load/store/recurrence type to be sized");
4657 if (!CM.isScalarEpilogueAllowed() &&
4658 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4663 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4664 "Unroll factor forced to be 1.\n");
4669 if (!Legal->isSafeForAnyVectorWidth())
4678 const bool HasReductions =
4688 if (LoopCost == 0) {
4690 LoopCost = CM.expectedCost(VF);
4692 LoopCost = cost(Plan, VF);
4693 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4704 for (
auto &Pair : R.MaxLocalUsers) {
4705 Pair.second = std::max(Pair.second, 1U);
4719 unsigned IC = UINT_MAX;
4721 for (
const auto &Pair : R.MaxLocalUsers) {
4722 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4725 << TTI.getRegisterClassName(Pair.first)
4726 <<
" register class\n");
4734 unsigned MaxLocalUsers = Pair.second;
4735 unsigned LoopInvariantRegs = 0;
4736 if (R.LoopInvariantRegs.contains(Pair.first))
4737 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4739 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4743 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4744 std::max(1U, (MaxLocalUsers - 1)));
4747 IC = std::min(IC, TmpIC);
4751 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4767 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4769 unsigned AvailableTC =
4775 if (CM.requiresScalarEpilogue(VF.
isVector()))
4778 unsigned InterleaveCountLB =
bit_floor(std::max(
4779 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4793 unsigned InterleaveCountUB =
bit_floor(std::max(
4794 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4795 MaxInterleaveCount = InterleaveCountLB;
4797 if (InterleaveCountUB != InterleaveCountLB) {
4798 unsigned TailTripCountUB =
4799 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4800 unsigned TailTripCountLB =
4801 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4804 if (TailTripCountUB == TailTripCountLB)
4805 MaxInterleaveCount = InterleaveCountUB;
4813 MaxInterleaveCount = InterleaveCountLB;
4817 assert(MaxInterleaveCount > 0 &&
4818 "Maximum interleave count must be greater than 0");
4822 if (IC > MaxInterleaveCount)
4823 IC = MaxInterleaveCount;
4826 IC = std::max(1u, IC);
4828 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4832 if (VF.
isVector() && HasReductions) {
4833 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4841 bool ScalarInterleavingRequiresPredication =
4843 return Legal->blockNeedsPredication(BB);
4845 bool ScalarInterleavingRequiresRuntimePointerCheck =
4846 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4851 <<
"LV: IC is " << IC <<
'\n'
4852 <<
"LV: VF is " << VF <<
'\n');
4853 const bool AggressivelyInterleaveReductions =
4854 TTI.enableAggressiveInterleaving(HasReductions);
4855 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4856 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4865 unsigned NumStores = 0;
4866 unsigned NumLoads = 0;
4880 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4881 NumStores += StoreOps;
4883 NumLoads += InterleaveR->getNumDefinedValues();
4898 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4899 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4905 bool HasSelectCmpReductions =
4909 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4910 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4911 RedR->getRecurrenceKind()) ||
4912 RecurrenceDescriptor::isFindIVRecurrenceKind(
4913 RedR->getRecurrenceKind()));
4915 if (HasSelectCmpReductions) {
4916 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4925 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4926 bool HasOrderedReductions =
4929 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4931 return RedR && RedR->isOrdered();
4933 if (HasOrderedReductions) {
4935 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4940 SmallIC = std::min(SmallIC,
F);
4941 StoresIC = std::min(StoresIC,
F);
4942 LoadsIC = std::min(LoadsIC,
F);
4946 std::max(StoresIC, LoadsIC) > SmallIC) {
4948 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4949 return std::max(StoresIC, LoadsIC);
4954 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4958 return std::max(IC / 2, SmallIC);
4961 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4967 if (AggressivelyInterleaveReductions) {
4976bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4986 assert((isPredicatedInst(
I)) &&
4987 "Expecting a scalar emulated instruction");
5000 if (InstsToScalarize.contains(VF) ||
5001 PredicatedBBsAfterVectorization.contains(VF))
5007 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5017 ScalarCostsTy ScalarCosts;
5024 !useEmulatedMaskMemRefHack(&
I, VF) &&
5025 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
5026 for (
const auto &[
I, IC] : ScalarCosts)
5027 ScalarCostsVF.
insert({
I, IC});
5030 for (
const auto &[
I,
Cost] : ScalarCosts) {
5032 if (!CI || !CallWideningDecisions.contains({CI, VF}))
5035 CallWideningDecisions[{CI, VF}].Cost =
Cost;
5039 PredicatedBBsAfterVectorization[VF].insert(BB);
5041 if (Pred->getSingleSuccessor() == BB)
5042 PredicatedBBsAfterVectorization[VF].insert(Pred);
5050 assert(!isUniformAfterVectorization(PredInst, VF) &&
5051 "Instruction marked uniform-after-vectorization will be predicated");
5069 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5070 isScalarAfterVectorization(
I, VF))
5075 if (isScalarWithPredication(
I, VF))
5088 for (
Use &U :
I->operands())
5090 if (isUniformAfterVectorization(J, VF))
5101 while (!Worklist.
empty()) {
5105 if (ScalarCosts.contains(
I))
5125 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5128 ScalarCost +=
TTI.getScalarizationOverhead(
5141 for (Use &U :
I->operands())
5144 "Instruction has non-scalar type");
5145 if (CanBeScalarized(J))
5147 else if (needsExtract(J, VF)) {
5159 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5163 Discount += VectorCost - ScalarCost;
5164 ScalarCosts[
I] = ScalarCost;
5180 ValuesToIgnoreForVF);
5187 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5210 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5211 << VF <<
" For instruction: " <<
I <<
'\n');
5239 const Loop *TheLoop) {
5246LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5249 "Scalarization cost of instruction implies vectorization.");
5251 return InstructionCost::getInvalid();
5254 auto *SE = PSE.
getSE();
5285 if (isPredicatedInst(
I)) {
5290 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5296 if (useEmulatedMaskMemRefHack(
I, VF))
5306LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5312 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy, Ptr);
5314 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5315 "Stride should be 1 or -1 for consecutive memory access");
5318 if (
Legal->isMaskRequired(
I)) {
5319 unsigned IID =
I->getOpcode() == Instruction::Load
5320 ? Intrinsic::masked_load
5321 : Intrinsic::masked_store;
5323 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS),
CostKind);
5330 bool Reverse = ConsecutiveStride < 0;
5338LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5356 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5364 if (!IsLoopInvariantStoreValue)
5371LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5379 if (!
Legal->isUniform(Ptr, VF))
5382 unsigned IID =
I->getOpcode() == Instruction::Load
5383 ? Intrinsic::masked_gather
5384 : Intrinsic::masked_scatter;
5387 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5388 Legal->isMaskRequired(
I), Alignment,
I),
5393LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5395 const auto *Group = getInterleavedAccessGroup(
I);
5396 assert(Group &&
"Fail to get an interleaved access group.");
5403 unsigned InterleaveFactor = Group->getFactor();
5404 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5407 SmallVector<unsigned, 4> Indices;
5408 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
5409 if (Group->getMember(IF))
5413 bool UseMaskForGaps =
5414 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5417 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5421 if (Group->isReverse()) {
5424 "Reverse masked interleaved access not supported.");
5425 Cost += Group->getNumMembers() *
5432std::optional<InstructionCost>
5439 return std::nullopt;
5457 return std::nullopt;
5468 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5470 return std::nullopt;
5476 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5485 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5488 BaseCost =
TTI.getArithmeticReductionCost(
5496 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5513 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5519 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5531 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5534 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5536 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5544 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5545 return I == RetI ? RedCost : 0;
5547 !
TheLoop->isLoopInvariant(RedOp)) {
5556 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5558 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5559 return I == RetI ? RedCost : 0;
5560 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5564 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5583 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5589 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5590 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5591 ExtraExtCost =
TTI.getCastInstrCost(
5598 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5599 return I == RetI ? RedCost : 0;
5603 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5609 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5610 return I == RetI ? RedCost : 0;
5614 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5618LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5629 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5630 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5633 return getWideningCost(
I, VF);
5637LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5638 ElementCount VF)
const {
5643 return InstructionCost::getInvalid();
5671 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5676 for (
auto *V : filterExtractingOperands(
Ops, VF))
5699 if (
Legal->isUniformMemOp(
I, VF)) {
5700 auto IsLegalToScalarize = [&]() {
5720 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5732 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5738 if (GatherScatterCost < ScalarizationCost)
5748 int ConsecutiveStride =
Legal->isConsecutivePtr(
5750 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5751 "Expected consecutive stride.");
5760 unsigned NumAccesses = 1;
5763 assert(Group &&
"Fail to get an interleaved access group.");
5769 NumAccesses = Group->getNumMembers();
5771 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5776 ? getGatherScatterCost(&
I, VF) * NumAccesses
5780 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5786 if (InterleaveCost <= GatherScatterCost &&
5787 InterleaveCost < ScalarizationCost) {
5789 Cost = InterleaveCost;
5790 }
else if (GatherScatterCost < ScalarizationCost) {
5792 Cost = GatherScatterCost;
5795 Cost = ScalarizationCost;
5802 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5803 if (
auto *
I = Group->getMember(Idx)) {
5805 getMemInstScalarizationCost(
I, VF));
5821 if (
TTI.prefersVectorizedAddressing())
5830 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5838 while (!Worklist.
empty()) {
5840 for (
auto &
Op :
I->operands())
5843 AddrDefs.
insert(InstOp).second)
5847 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5851 for (
User *U :
LI->users()) {
5861 for (
auto *
I : AddrDefs) {
5882 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5883 if (
Instruction *Member = Group->getMember(Idx)) {
5887 getMemoryInstructionCost(Member,
5889 : getMemInstScalarizationCost(Member, VF);
5902 ForcedScalars[VF].insert(
I);
5909 "Trying to set a vectorization decision for a scalar VF");
5911 auto ForcedScalar = ForcedScalars.find(VF);
5926 for (
auto &ArgOp : CI->
args())
5935 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5945 "Unexpected valid cost for scalarizing scalable vectors");
5952 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5953 ForcedScalar->second.contains(CI)) ||
5961 bool MaskRequired =
Legal->isMaskRequired(CI);
5964 for (
Type *ScalarTy : ScalarTys)
5973 std::nullopt, *RedCost);
5984 if (Info.Shape.VF != VF)
5988 if (MaskRequired && !Info.isMasked())
5992 bool ParamsOk =
true;
5994 switch (Param.ParamKind) {
6000 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
6037 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
6070 return !OpI || !
TheLoop->contains(OpI) ||
6074 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
6086 return InstsToScalarize[VF][
I];
6089 auto ForcedScalar = ForcedScalars.find(VF);
6090 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
6091 auto InstSet = ForcedScalar->second;
6092 if (InstSet.count(
I))
6097 Type *RetTy =
I->getType();
6100 auto *SE =
PSE.getSE();
6104 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6109 auto Scalarized = InstsToScalarize.find(VF);
6110 assert(Scalarized != InstsToScalarize.end() &&
6111 "VF not yet analyzed for scalarization profitability");
6112 return !Scalarized->second.count(
I) &&
6114 auto *UI = cast<Instruction>(U);
6115 return !Scalarized->second.count(UI);
6124 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6125 I->getOpcode() == Instruction::PHI ||
6126 (
I->getOpcode() == Instruction::BitCast &&
6127 I->getType()->isPointerTy()) ||
6128 HasSingleCopyAfterVectorization(
I, VF));
6134 !
TTI.getNumberOfParts(VectorTy))
6138 switch (
I->getOpcode()) {
6139 case Instruction::GetElementPtr:
6145 case Instruction::Br: {
6152 bool ScalarPredicatedBB =
false;
6155 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6156 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6158 ScalarPredicatedBB =
true;
6160 if (ScalarPredicatedBB) {
6168 TTI.getScalarizationOverhead(
6176 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6184 case Instruction::Switch: {
6186 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6188 return Switch->getNumCases() *
6189 TTI.getCmpSelInstrCost(
6191 toVectorTy(Switch->getCondition()->getType(), VF),
6195 case Instruction::PHI: {
6212 Type *ResultTy = Phi->getType();
6218 auto *Phi = dyn_cast<PHINode>(U);
6219 if (Phi && Phi->getParent() == TheLoop->getHeader())
6224 auto &ReductionVars =
Legal->getReductionVars();
6225 auto Iter = ReductionVars.find(HeaderUser);
6226 if (Iter != ReductionVars.end() &&
6228 Iter->second.getRecurrenceKind()))
6231 return (Phi->getNumIncomingValues() - 1) *
6232 TTI.getCmpSelInstrCost(
6233 Instruction::Select,
toVectorTy(ResultTy, VF),
6243 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6244 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6248 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6250 case Instruction::UDiv:
6251 case Instruction::SDiv:
6252 case Instruction::URem:
6253 case Instruction::SRem:
6257 ScalarCost : SafeDivisorCost;
6261 case Instruction::Add:
6262 case Instruction::Sub: {
6263 auto Info =
Legal->getHistogramInfo(
I);
6270 if (!RHS || RHS->getZExtValue() != 1)
6272 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6276 Type *ScalarTy =
I->getType();
6280 {PtrTy, ScalarTy, MaskTy});
6283 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6284 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6288 case Instruction::FAdd:
6289 case Instruction::FSub:
6290 case Instruction::Mul:
6291 case Instruction::FMul:
6292 case Instruction::FDiv:
6293 case Instruction::FRem:
6294 case Instruction::Shl:
6295 case Instruction::LShr:
6296 case Instruction::AShr:
6297 case Instruction::And:
6298 case Instruction::Or:
6299 case Instruction::Xor: {
6303 if (
I->getOpcode() == Instruction::Mul &&
6304 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6305 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6306 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6307 PSE.getSCEV(
I->getOperand(1))->isOne())))
6316 Value *Op2 =
I->getOperand(1);
6322 auto Op2Info =
TTI.getOperandInfo(Op2);
6328 return TTI.getArithmeticInstrCost(
6330 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6331 Op2Info, Operands,
I,
TLI);
6333 case Instruction::FNeg: {
6334 return TTI.getArithmeticInstrCost(
6336 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6337 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6338 I->getOperand(0),
I);
6340 case Instruction::Select: {
6345 const Value *Op0, *Op1;
6356 return TTI.getArithmeticInstrCost(
6358 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6361 Type *CondTy =
SI->getCondition()->getType();
6367 Pred = Cmp->getPredicate();
6368 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6369 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6370 {TTI::OK_AnyValue, TTI::OP_None},
I);
6372 case Instruction::ICmp:
6373 case Instruction::FCmp: {
6374 Type *ValTy =
I->getOperand(0)->getType();
6380 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6381 "if both the operand and the compare are marked for "
6382 "truncation, they must have the same bitwidth");
6387 return TTI.getCmpSelInstrCost(
6390 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6392 case Instruction::Store:
6393 case Instruction::Load: {
6398 "CM decision should be taken at this point");
6405 return getMemoryInstructionCost(
I, VF);
6407 case Instruction::BitCast:
6408 if (
I->getType()->isPointerTy())
6411 case Instruction::ZExt:
6412 case Instruction::SExt:
6413 case Instruction::FPToUI:
6414 case Instruction::FPToSI:
6415 case Instruction::FPExt:
6416 case Instruction::PtrToInt:
6417 case Instruction::IntToPtr:
6418 case Instruction::SIToFP:
6419 case Instruction::UIToFP:
6420 case Instruction::Trunc:
6421 case Instruction::FPTrunc: {
6425 "Expected a load or a store!");
6451 unsigned Opcode =
I->getOpcode();
6454 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6457 CCH = ComputeCCH(Store);
6460 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6461 Opcode == Instruction::FPExt) {
6463 CCH = ComputeCCH(Load);
6471 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6472 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6479 Type *SrcScalarTy =
I->getOperand(0)->getType();
6491 (
I->getOpcode() == Instruction::ZExt ||
6492 I->getOpcode() == Instruction::SExt))
6496 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6498 case Instruction::Call:
6500 case Instruction::ExtractValue:
6502 case Instruction::Alloca:
6507 return TTI.getArithmeticInstrCost(Instruction::Mul, RetTy,
CostKind);
6510 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6525 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6526 return RequiresScalarEpilogue &&
6540 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6541 return VecValuesToIgnore.contains(U) ||
6542 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6551 if (Group->getInsertPos() == &
I)
6554 DeadInterleavePointerOps.
push_back(PointerOp);
6560 if (Br->isConditional())
6567 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6570 Instruction *UI = cast<Instruction>(U);
6571 return !VecValuesToIgnore.contains(U) &&
6572 (!isAccessInterleaved(UI) ||
6573 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6593 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6605 if ((ThenEmpty && ElseEmpty) ||
6607 ElseBB->
phis().empty()) ||
6609 ThenBB->
phis().empty())) {
6621 return !VecValuesToIgnore.contains(U) &&
6622 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6630 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6639 for (
const auto &Reduction :
Legal->getReductionVars()) {
6646 for (
const auto &Induction :
Legal->getInductionVars()) {
6654 if (!InLoopReductions.empty())
6657 for (
const auto &Reduction :
Legal->getReductionVars()) {
6658 PHINode *Phi = Reduction.first;
6679 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6687 bool InLoop = !ReductionOperations.
empty();
6690 InLoopReductions.insert(Phi);
6693 for (
auto *
I : ReductionOperations) {
6694 InLoopReductionImmediateChains[
I] = LastChain;
6698 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6699 <<
" reduction for phi: " << *Phi <<
"\n");
6712 unsigned WidestType;
6716 TTI.enableScalableVectorization()
6721 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6732 if (!OrigLoop->isInnermost()) {
6742 <<
"overriding computed VF.\n");
6745 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6747 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6748 <<
"not supported by the target.\n");
6750 "Scalable vectorization requested but not supported by the target",
6751 "the scalable user-specified vectorization width for outer-loop "
6752 "vectorization cannot be used because the target does not support "
6753 "scalable vectors.",
6754 "ScalableVFUnfeasible", ORE, OrigLoop);
6759 "VF needs to be a power of two");
6761 <<
"VF " << VF <<
" to build VPlans.\n");
6771 return {VF, 0 , 0 };
6775 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6776 "VPlan-native path.\n");
6781 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6782 CM.collectValuesToIgnore();
6783 CM.collectElementTypesForWidening();
6790 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6794 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6795 "which requires masked-interleaved support.\n");
6796 if (CM.InterleaveInfo.invalidateGroups())
6800 CM.invalidateCostModelingDecisions();
6803 if (CM.foldTailByMasking())
6804 Legal->prepareToFoldTailByMasking();
6811 "UserVF ignored because it may be larger than the maximal safe VF",
6812 "InvalidUserVF", ORE, OrigLoop);
6815 "VF needs to be a power of two");
6818 CM.collectInLoopReductions();
6819 if (CM.selectUserVectorizationFactor(UserVF)) {
6821 buildVPlansWithVPRecipes(UserVF, UserVF);
6826 "InvalidCost", ORE, OrigLoop);
6839 CM.collectInLoopReductions();
6840 for (
const auto &VF : VFCandidates) {
6842 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6861 return CM.isUniformAfterVectorization(
I, VF);
6865 return CM.ValuesToIgnore.contains(UI) ||
6866 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6871 return CM.getPredBlockCostDivisor(
CostKind, BB);
6890 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6892 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6894 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6895 for (
Value *
Op : IVInsts[
I]->operands()) {
6897 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6903 for (User *U :
IV->users()) {
6916 if (TC == VF && !CM.foldTailByMasking())
6920 for (Instruction *IVInst : IVInsts) {
6925 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6926 <<
": induction instruction " << *IVInst <<
"\n";
6928 Cost += InductionCost;
6938 CM.TheLoop->getExitingBlocks(Exiting);
6939 SetVector<Instruction *> ExitInstrs;
6941 for (BasicBlock *EB : Exiting) {
6946 ExitInstrs.
insert(CondI);
6950 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6952 if (!OrigLoop->contains(CondI) ||
6957 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6958 <<
": exit condition instruction " << *CondI <<
"\n";
6964 any_of(OpI->users(), [&ExitInstrs](User *U) {
6965 return !ExitInstrs.contains(cast<Instruction>(U));
6977 for (BasicBlock *BB : OrigLoop->blocks()) {
6981 if (BB == OrigLoop->getLoopLatch())
6983 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6990 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6996 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6997 <<
": forced scalar " << *ForcedScalar <<
"\n";
7001 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
7006 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
7007 <<
": profitable to scalarize " << *Scalarized <<
"\n";
7016 ElementCount VF)
const {
7017 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, PSE, OrigLoop);
7025 <<
" (Estimated cost per lane: ");
7027 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
7050 return &WidenMem->getIngredient();
7059 if (!VPI || VPI->getOpcode() != Instruction::Select)
7063 switch (WR->getOpcode()) {
7064 case Instruction::UDiv:
7065 case Instruction::SDiv:
7066 case Instruction::URem:
7067 case Instruction::SRem:
7080 auto *IG =
IR->getInterleaveGroup();
7081 unsigned NumMembers = IG->getNumMembers();
7082 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7100 if (VPR->isPartialReduction())
7112 if (WidenMemR->isReverse()) {
7118 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7122 if (StoreR->getStoredValue()->isDefinedOutsideLoopRegions())
7137 if (RepR->isSingleScalar() &&
7139 RepR->getUnderlyingInstr(), VF))
7142 if (
Instruction *UI = GetInstructionForCost(&R)) {
7147 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7159 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7161 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7164 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7165 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7167 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7177 VPlan &FirstPlan = *VPlans[0];
7183 ?
"Reciprocal Throughput\n"
7185 ?
"Instruction Latency\n"
7188 ?
"Code Size and Latency\n"
7193 "More than a single plan/VF w/o any plan having scalar VF");
7197 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7202 if (ForceVectorization) {
7209 for (
auto &
P : VPlans) {
7211 P->vectorFactors().end());
7215 return CM.shouldConsiderRegPressureForVF(VF);
7219 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7226 <<
"LV: Not considering vector loop of width " << VF
7227 <<
" because it will not generate any vector instructions.\n");
7233 <<
"LV: Not considering vector loop of width " << VF
7234 <<
" because it would cause replicated blocks to be generated,"
7235 <<
" which isn't allowed when optimizing for size.\n");
7242 if (CM.shouldConsiderRegPressureForVF(VF) &&
7244 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7245 << VF <<
" because it uses too many registers\n");
7249 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7250 BestFactor = CurrentFactor;
7253 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7254 ProfitableVFs.push_back(CurrentFactor);
7270 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind, CM.PSE,
7272 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7279 bool UsesEVLGatherScatter =
7283 return any_of(*VPBB, [](VPRecipeBase &R) {
7284 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7285 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7289 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7290 !
Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7292 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7294 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7295 " VPlan cost model and legacy cost model disagreed");
7296 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7297 "when vectorizing, the scalar cost must be computed.");
7300 LLVM_DEBUG(
dbgs() <<
"LV: Selecting VF: " << BestFactor.Width <<
".\n");
7306template <
typename PredT>
7310 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
7328 "RdxResult must be ComputeFindIVResult");
7346 if (!EpiRedResult ||
7354 EpiRedResult->getOperand(EpiRedResult->getNumOperands() - 1);
7357 if (!EpiRedHeaderPhi) {
7366 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7367 Value *MainResumeValue;
7371 "unexpected start recipe");
7372 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7374 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7376 [[maybe_unused]]
Value *StartV =
7377 EpiRedResult->getOperand(0)->getLiveInIRValue();
7380 "AnyOf expected to start with ICMP_NE");
7381 assert(Cmp->getOperand(1) == StartV &&
7382 "AnyOf expected to start by comparing main resume value to original "
7384 MainResumeValue = Cmp->getOperand(0);
7387 Value *SentinelV = EpiRedResult->getOperand(1)->getLiveInIRValue();
7389 Value *Cmp, *OrigResumeV, *CmpOp;
7390 [[maybe_unused]]
bool IsExpectedPattern =
7391 match(MainResumeValue,
7397 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7398 MainResumeValue = OrigResumeV;
7413 "Trying to execute plan with unsupported VF");
7415 "Trying to execute plan with unsupported UF");
7417 ++LoopsEarlyExitVectorized;
7425 bool HasBranchWeights =
7427 if (HasBranchWeights) {
7428 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7430 BestVPlan, BestVF, VScale);
7435 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7448 OrigLoop->getStartLoc(),
7449 OrigLoop->getHeader())
7450 <<
"Created vector loop never executes due to insufficient trip "
7474 BestVPlan, VectorPH, CM.foldTailByMasking(),
7475 CM.requiresScalarEpilogue(BestVF.
isVector()));
7487 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7488 "count during epilogue vectorization");
7493 OrigLoop->getParentLoop(),
7494 Legal->getWidestInductionType());
7496#ifdef EXPENSIVE_CHECKS
7497 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7508 "final VPlan is invalid");
7515 if (!Exit->hasPredecessors())
7537 MDNode *LID = OrigLoop->getLoopID();
7538 unsigned OrigLoopInvocationWeight = 0;
7539 std::optional<unsigned> OrigAverageTripCount =
7551 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7553 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7555 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7556 OrigLoopInvocationWeight,
7558 DisableRuntimeUnroll);
7566 return ExpandedSCEVs;
7581 EPI.EpilogueIterationCountCheck =
7583 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7593 EPI.MainLoopIterationCountCheck =
7602 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7603 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7604 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7605 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7606 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7612 dbgs() <<
"intermediate fn:\n"
7613 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7619 assert(Bypass &&
"Expected valid bypass basic block.");
7623 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7624 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7628 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7654 return TCCheckBlock;
7667 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7675 R.moveBefore(*NewEntry, NewEntry->
end());
7679 Plan.setEntry(NewEntry);
7682 return OriginalScalarPH;
7687 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7688 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7689 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7695 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7702 VPI->
getOpcode() == Instruction::Store) &&
7703 "Must be called with either a load or store");
7710 "CM decision should be taken at this point.");
7723 if (
Legal->isMaskRequired(
I))
7748 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7754 GEP ?
GEP->getNoWrapFlags()
7758 Builder.insert(VectorPtr);
7762 if (VPI->
getOpcode() == Instruction::Load) {
7764 auto *LoadR =
new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive,
Reverse,
7765 *VPI,
Load->getDebugLoc());
7767 Builder.insert(LoadR);
7769 LoadR->getDebugLoc());
7778 Store->getDebugLoc());
7779 return new VPWidenStoreRecipe(*Store, Ptr, StoredVal, Mask, Consecutive,
7784VPRecipeBuilder::tryToOptimizeInductionTruncate(
VPInstruction *VPI,
7794 auto IsOptimizableIVTruncate =
7795 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7796 return [=](ElementCount VF) ->
bool {
7797 return CM.isOptimizableIVTruncate(K, VF);
7802 IsOptimizableIVTruncate(
I),
Range))
7809 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7817 return new VPWidenIntOrFpInductionRecipe(
7818 Phi, Start, Step, &Plan.getVF(), IndDesc,
I, Flags, VPI->
getDebugLoc());
7825 [
this, CI](ElementCount VF) {
7826 return CM.isScalarWithPredication(CI, VF);
7834 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7835 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7836 ID == Intrinsic::pseudoprobe ||
7837 ID == Intrinsic::experimental_noalias_scope_decl))
7844 bool ShouldUseVectorIntrinsic =
7846 [&](ElementCount VF) ->
bool {
7847 return CM.getCallWideningDecision(CI, VF).Kind ==
7851 if (ShouldUseVectorIntrinsic)
7852 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(), *VPI, *VPI,
7856 std::optional<unsigned> MaskPos;
7860 [&](ElementCount VF) ->
bool {
7875 LoopVectorizationCostModel::CallWideningDecision Decision =
7876 CM.getCallWideningDecision(CI, VF);
7886 if (ShouldUseVectorCall) {
7887 if (MaskPos.has_value()) {
7895 VPValue *
Mask = Legal->isMaskRequired(CI)
7899 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7903 return new VPWidenCallRecipe(CI, Variant,
Ops, *VPI, *VPI,
7912 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7915 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7916 return CM.isScalarAfterVectorization(
I, VF) ||
7917 CM.isProfitableToScalarize(
I, VF) ||
7918 CM.isScalarWithPredication(
I, VF);
7929 case Instruction::SDiv:
7930 case Instruction::UDiv:
7931 case Instruction::SRem:
7932 case Instruction::URem: {
7935 if (CM.isPredicatedInst(
I)) {
7938 VPValue *One = Plan.getConstantInt(
I->getType(), 1u);
7946 case Instruction::Add:
7947 case Instruction::And:
7948 case Instruction::AShr:
7949 case Instruction::FAdd:
7950 case Instruction::FCmp:
7951 case Instruction::FDiv:
7952 case Instruction::FMul:
7953 case Instruction::FNeg:
7954 case Instruction::FRem:
7955 case Instruction::FSub:
7956 case Instruction::ICmp:
7957 case Instruction::LShr:
7958 case Instruction::Mul:
7959 case Instruction::Or:
7960 case Instruction::Select:
7961 case Instruction::Shl:
7962 case Instruction::Sub:
7963 case Instruction::Xor:
7964 case Instruction::Freeze:
7965 return new VPWidenRecipe(*
I, VPI->
operands(), *VPI, *VPI,
7967 case Instruction::ExtractValue: {
7970 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7971 unsigned Idx = EVI->getIndices()[0];
7972 NewOps.push_back(Plan.getConstantInt(32, Idx));
7973 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7981 unsigned Opcode =
HI->Update->getOpcode();
7982 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7983 "Histogram update operation must be an Add or Sub");
7993 if (Legal->isMaskRequired(
HI->Store))
7996 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
8003 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
8006 bool IsPredicated = CM.isPredicatedInst(
I);
8014 case Intrinsic::assume:
8015 case Intrinsic::lifetime_start:
8016 case Intrinsic::lifetime_end:
8038 VPValue *BlockInMask =
nullptr;
8039 if (!IsPredicated) {
8043 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8054 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8056 "Should not predicate a uniform recipe");
8072 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8073 if (
Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8074 getScaledReductions(Phi, RdxExitInstr,
Range, ChainsByPhi[Phi]);
8083 for (
const auto &[
_, Chains] : ChainsByPhi)
8084 for (
const auto &[PartialRdx,
_] : Chains)
8085 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8087 auto ExtendIsOnlyUsedByPartialReductions =
8089 return all_of(Extend->users(), [&](
const User *U) {
8090 return PartialReductionOps.contains(U);
8096 for (
const auto &[
_, Chains] : ChainsByPhi) {
8097 for (
const auto &[Chain, Scale] : Chains) {
8098 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8100 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8101 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8109 for (
const auto &[Phi, Chains] : ChainsByPhi) {
8110 for (
const auto &[Chain, Scale] : Chains) {
8111 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8112 this](
const User *U) {
8114 if (
isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8115 return UI == RdxPhi;
8116 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8117 !OrigLoop->contains(UI->getParent());
8122 if (!
all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8123 for (
const auto &[Chain,
_] : Chains)
8124 ScaledReductionMap.erase(Chain.Reduction);
8131bool VPRecipeBuilder::getScaledReductions(
8133 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8141 Value *
Op = Update->getOperand(0);
8142 Value *PhiOp = Update->getOperand(1);
8152 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8156 Op = Cast->getOperand(0);
8163 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8164 PHI = Chains.rbegin()->first.Reduction;
8166 Op = Update->getOperand(0);
8167 PhiOp = Update->getOperand(1);
8180 std::optional<unsigned> BinOpc;
8181 Type *ExtOpTypes[2] = {
nullptr};
8184 auto CollectExtInfo = [
this, OuterExtKind, &Exts, &ExtOpTypes,
8185 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
8190 ExtOpTypes[
I] = ExtOpTypes[0];
8191 ExtKinds[
I] = ExtKinds[0];
8200 if (!CM.TheLoop->contains(Exts[
I]))
8207 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[
I])
8222 if (!CollectExtInfo(
Ops))
8225 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8229 if (!CollectExtInfo(
Ops))
8232 ExtendUser = Update;
8233 BinOpc = std::nullopt;
8237 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8239 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8246 [&](ElementCount VF) {
8248 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8249 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8254 Chains.emplace_back(Chain, TargetScaleFactor);
8264 assert(!R->isPhi() &&
"phis must be handled earlier");
8270 if (VPI->
getOpcode() == Instruction::Trunc &&
8271 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8279 if (VPI->
getOpcode() == Instruction::Call)
8280 return tryToWidenCall(VPI,
Range);
8283 if (VPI->
getOpcode() == Instruction::Store)
8285 return tryToWidenHistogram(*HistInfo, VPI);
8287 if (VPI->
getOpcode() == Instruction::Load ||
8289 return tryToWidenMemory(VPI,
Range);
8294 if (!shouldWiden(Instr,
Range))
8297 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8305 CastR->getResultType(), CI, *VPI, *VPI,
8309 return tryToWiden(VPI);
8314 unsigned ScaleFactor) {
8315 assert(Reduction->getNumOperands() == 2 &&
8316 "Unexpected number of operands for partial reduction");
8318 VPValue *BinOp = Reduction->getOperand(0);
8327 RedPhiR->setVFScaleFactor(ScaleFactor);
8331 "all accumulators in chain must have same scale factor");
8333 auto *ReductionI = Reduction->getUnderlyingInstr();
8334 if (Reduction->getOpcode() == Instruction::Sub) {
8336 Ops.push_back(Plan.getConstantInt(ReductionI->getType(), 0));
8337 Ops.push_back(BinOp);
8344 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8352void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8361 OrigLoop, LI, DT, PSE.
getSE());
8366 LVer.prepareNoAliasMetadata();
8372 OrigLoop, *LI,
Legal->getWidestInductionType(),
8377 *VPlan0, PSE, *OrigLoop,
Legal->getInductionVars(),
8378 Legal->getReductionVars(),
Legal->getFixedOrderRecurrences(),
8381 auto MaxVFTimes2 = MaxVF * 2;
8383 VFRange SubRange = {VF, MaxVFTimes2};
8384 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8385 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8390 *Plan, CM.getMinimalBitwidths());
8393 if (CM.foldTailWithEVL()) {
8395 *Plan, CM.getMaxSafeElements());
8399 VPlans.push_back(std::move(Plan));
8405VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8408 using namespace llvm::VPlanPatternMatch;
8409 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8416 bool RequiresScalarEpilogueCheck =
8418 [
this](ElementCount VF) {
8419 return !CM.requiresScalarEpilogue(VF.
isVector());
8424 CM.foldTailByMasking());
8432 bool IVUpdateMayOverflow =
false;
8433 for (ElementCount VF :
Range)
8441 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8447 m_VPInstruction<Instruction::Add>(
8449 "Did not find the canonical IV increment");
8462 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8463 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8465 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8470 "Unsupported interleave factor for scalable vectors");
8475 InterleaveGroups.
insert(IG);
8482 *Plan, CM.foldTailByMasking());
8488 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, Builder,
8491 if (!CM.foldTailWithEVL())
8492 RecipeBuilder.collectScaledReductions(
Range);
8497 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8500 auto *MiddleVPBB = Plan->getMiddleBlock();
8504 DenseMap<VPValue *, VPValue *> Old2New;
8507 DenseSet<BasicBlock *> BlocksNeedingPredication;
8508 for (BasicBlock *BB : OrigLoop->blocks())
8509 if (CM.blockNeedsPredicationForAnyReason(BB))
8510 BlocksNeedingPredication.
insert(BB);
8513 *Plan, BlockMaskCache, BlocksNeedingPredication,
Range.Start);
8519 make_range(VPBB->getFirstNonPhi(), VPBB->end()))) {
8531 Builder.setInsertPoint(VPI);
8538 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8540 if (Legal->isInvariantStoreOfReduction(SI)) {
8541 auto *Recipe =
new VPReplicateRecipe(
8542 SI,
R.operands(),
true ,
nullptr , *VPI,
8544 Recipe->insertBefore(*MiddleVPBB, MBIP);
8546 R.eraseFromParent();
8550 VPRecipeBase *Recipe =
8551 RecipeBuilder.tryToCreateWidenNonPhiRecipe(VPI,
Range);
8556 RecipeBuilder.setRecipe(Instr, Recipe);
8562 Builder.insert(Recipe);
8569 "Unexpected multidef recipe");
8570 R.eraseFromParent();
8579 RecipeBuilder.updateBlockMaskCache(Old2New);
8580 for (VPValue *Old : Old2New.
keys())
8581 Old->getDefiningRecipe()->eraseFromParent();
8585 "entry block must be set to a VPRegionBlock having a non-empty entry "
8591 DenseMap<VPValue *, VPValue *> IVEndValues;
8599 addReductionResultComputation(Plan, RecipeBuilder,
Range.Start);
8621 if (!CM.foldTailWithEVL()) {
8622 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind, CM.PSE,
8628 for (ElementCount VF :
Range)
8630 Plan->setName(
"Initial VPlan");
8636 InterleaveGroups, RecipeBuilder,
8637 CM.isScalarEpilogueAllowed());
8641 Legal->getLAI()->getSymbolicStrides());
8643 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8644 return Legal->blockNeedsPredication(BB);
8647 BlockNeedsPredication);
8659 bool WithoutRuntimeCheck =
8662 WithoutRuntimeCheck);
8675 assert(!OrigLoop->isInnermost());
8679 OrigLoop, *LI, Legal->getWidestInductionType(),
8683 *Plan, PSE, *OrigLoop, Legal->getInductionVars(),
8684 MapVector<PHINode *, RecurrenceDescriptor>(),
8685 SmallPtrSet<const PHINode *, 1>(), SmallPtrSet<PHINode *, 1>(),
8694 for (ElementCount VF :
Range)
8704 DenseMap<VPValue *, VPValue *> IVEndValues;
8711void LoopVectorizationPlanner::addReductionResultComputation(
8713 using namespace VPlanPatternMatch;
8714 VPTypeAnalysis TypeInfo(*Plan);
8715 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8716 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8719 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8721 for (VPRecipeBase &R :
8722 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8727 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8729 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8739 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8740 (!RR || !RR->isPartialReduction())) {
8742 std::optional<FastMathFlags> FMFs =
8747 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8748 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8757 if (CM.usePredicatedReductionSelect())
8768 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8774 VPInstruction *FinalReductionResult;
8775 VPBuilder::InsertPointGuard Guard(Builder);
8776 Builder.setInsertPoint(MiddleVPBB, IP);
8780 VPRecipeBase *AnyOfSelect =
nullptr;
8783 return match(U, m_Select(m_VPValue(), m_VPValue(), m_VPValue()));
8796 VPIRFlags
Flags(MinMaxKind,
false,
false,
8798 FinalReductionResult =
8801 }
else if (AnyOfSelect) {
8804 VPValue *NewVal = AnyOfSelect->
getOperand(1) == PhiR
8807 FinalReductionResult =
8809 {
Start, NewVal, NewExitingVPV}, ExitDL);
8811 FastMathFlags FMFs =
8817 FinalReductionResult =
8819 {NewExitingVPV},
Flags, ExitDL);
8826 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8828 "Unexpected truncated min-max recurrence!");
8830 VPWidenCastRecipe *Trunc;
8832 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8833 VPWidenCastRecipe *Extnd;
8835 VPBuilder::InsertPointGuard Guard(Builder);
8836 Builder.setInsertPoint(
8837 NewExitingVPV->getDefiningRecipe()->getParent(),
8838 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8840 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8841 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8849 FinalReductionResult =
8850 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8855 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8857 if (FinalReductionResult == U || Parent->getParent())
8859 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8878 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8880 Builder.setInsertPoint(AnyOfSelect);
8885 Cmp = Builder.createNot(Cmp);
8886 VPValue *
Or = Builder.createOr(PhiR, Cmp);
8908 VPBuilder PHBuilder(Plan->getVectorPreheader());
8909 VPValue *Iden = Plan->getOrAddLiveIn(
8912 unsigned ScaleFactor =
8915 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8916 VPValue *StartV = PHBuilder.createNaryOp(
8924 for (VPRecipeBase *R : ToDelete)
8925 R->eraseFromParent();
8930void LoopVectorizationPlanner::attachRuntimeChecks(
8931 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
8932 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
8933 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
8934 assert((!CM.OptForSize ||
8936 "Cannot SCEV check stride or overflow when optimizing for size");
8940 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
8941 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
8945 "Runtime checks are not supported for outer loops yet");
8947 if (CM.OptForSize) {
8950 "Cannot emit memory checks when optimizing for size, unless forced "
8953 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
8954 OrigLoop->getStartLoc(),
8955 OrigLoop->getHeader())
8956 <<
"Code-size may be reduced by not forcing "
8957 "vectorization, or by source-code modifications "
8958 "eliminating the need for runtime checks "
8959 "(e.g., adding 'restrict').";
8973 bool IsIndvarOverflowCheckNeededForVF =
8974 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
8976 CM.getTailFoldingStyle() !=
8983 Plan, VF, UF, MinProfitableTripCount,
8984 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
8985 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
8986 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(), PSE);
8999 if (
F->hasOptSize() ||
9025 if (
TTI->preferPredicateOverEpilogue(&TFI))
9044 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9048 Function *
F = L->getHeader()->getParent();
9054 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
9055 GetBFI,
F, &Hints, IAI, OptForSize);
9059 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9079 GeneratedRTChecks Checks(PSE, DT, LI,
TTI, CM.
CostKind);
9083 << L->getHeader()->getParent()->getName() <<
"\"\n");
9105 if (S->getValueOperand()->getType()->isFloatTy())
9115 while (!Worklist.
empty()) {
9117 if (!L->contains(
I))
9119 if (!Visited.
insert(
I).second)
9129 I->getDebugLoc(), L->getHeader())
9130 <<
"floating point conversion changes vector width. "
9131 <<
"Mixed floating point precision requires an up/down "
9132 <<
"cast that will negatively impact performance.";
9135 for (
Use &
Op :
I->operands())
9151 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9157 << PredVPBB->getName() <<
":\n");
9158 Cost += PredVPBB->cost(VF, CostCtx);
9178 std::optional<unsigned> VScale) {
9196 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9257 uint64_t MinTC = std::max(MinTC1, MinTC2);
9259 MinTC =
alignTo(MinTC, IntVF);
9263 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9270 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9271 "trip count < minimum profitable VF ("
9282 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9284 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9305 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9324 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9325 bool UpdateResumePhis) {
9335 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9337 if (UpdateResumePhis)
9343 AddFreezeForFindLastIVReductions(MainPlan,
true);
9344 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9351 auto ResumePhiIter =
9353 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9356 VPPhi *ResumePhi =
nullptr;
9357 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9362 {},
"vec.epilog.resume.val");
9365 if (MainScalarPH->
begin() == MainScalarPH->
end())
9367 else if (&*MainScalarPH->
begin() != ResumePhi)
9382 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9387 Header->
setName(
"vec.epilog.vector.body");
9398 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9403 "Must only have a single non-zero incoming value");
9414 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9415 "all incoming values must be 0");
9421 return isa<VPScalarIVStepsRecipe>(U) ||
9422 isa<VPDerivedIVRecipe>(U) ||
9423 cast<VPRecipeBase>(U)->isScalarCast() ||
9424 cast<VPInstruction>(U)->getOpcode() ==
9427 "the canonical IV should only be used by its increment or "
9428 "ScalarIVSteps when resetting the start value");
9429 VPBuilder Builder(Header, Header->getFirstNonPhi());
9431 IV->replaceAllUsesWith(
Add);
9432 Add->setOperand(0,
IV);
9440 Value *ResumeV =
nullptr;
9453 findRecipe(ReductionPhi->getBackedgeValue(), IsReductionResult));
9456 ReductionPhi->getBackedgeValue()) ||
9458 is_contained(RdxResult->operands(), ReductionPhi->getBackedgeValue()
9459 ->getDefiningRecipe()
9460 ->getOperand(0))) ||
9462 "expected to find reduction result via backedge");
9465 ->getIncomingValueForBlock(L->getLoopPreheader());
9466 RecurKind RK = ReductionPhi->getRecurrenceKind();
9474 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9479 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9490 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9493 Value *
Sentinel = RdxResult->getOperand(1)->getLiveInIRValue();
9494 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9502 "unexpected start value");
9515 assert(ResumeV &&
"Must have a resume value");
9529 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9546 ExpandR->eraseFromParent();
9550 unsigned MainLoopStep =
9552 unsigned EpilogueLoopStep =
9557 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9568 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9573 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9574 if (OrigPhi != OldInduction) {
9575 auto *BinOp =
II.getInductionBinOp();
9581 EndValueFromAdditionalBypass =
9583 II.getStartValue(), Step,
II.getKind(), BinOp);
9584 EndValueFromAdditionalBypass->
setName(
"ind.end");
9586 return EndValueFromAdditionalBypass;
9592 const SCEV2ValueTy &ExpandedSCEVs,
9593 Value *MainVectorTripCount) {
9598 if (Phi.getBasicBlockIndex(Pred) != -1)
9600 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9604 if (ScalarPH->hasPredecessors()) {
9607 for (
const auto &[R, IRPhi] :
9608 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9617 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9619 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9622 Inc->setIncomingValueForBlock(BypassBlock, V);
9645 "expected this to be saved from the previous pass.");
9648 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9651 VecEpilogueIterationCountCheck},
9653 VecEpiloguePreHeader}});
9658 VecEpilogueIterationCountCheck, ScalarPH);
9661 VecEpilogueIterationCountCheck},
9665 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9666 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9667 if (SCEVCheckBlock) {
9669 VecEpilogueIterationCountCheck, ScalarPH);
9671 VecEpilogueIterationCountCheck},
9674 if (MemCheckBlock) {
9676 VecEpilogueIterationCountCheck, ScalarPH);
9689 for (
PHINode *Phi : PhisInBlock) {
9691 Phi->replaceIncomingBlockWith(
9693 VecEpilogueIterationCountCheck);
9700 return EPI.EpilogueIterationCountCheck == IncB;
9705 Phi->removeIncomingValue(SCEVCheckBlock);
9707 Phi->removeIncomingValue(MemCheckBlock);
9711 for (
auto *
I : InstsToMove)
9723 "VPlan-native path is not enabled. Only process inner loops.");
9726 << L->getHeader()->getParent()->getName() <<
"' from "
9727 << L->getLocStr() <<
"\n");
9732 dbgs() <<
"LV: Loop hints:"
9743 Function *
F = L->getHeader()->getParent();
9763 L->getHeader(),
PSI,
9770 &Requirements, &Hints,
DB,
AC,
9773 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9781 "early exit is not enabled",
9782 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9786 L->getExitingBlocks(ExitingBlocks);
9790 "uncountable early exits is not yet supported",
9791 "MultipleUncountableEarlyExits",
ORE, L);
9798 "faulting load is not supported",
9799 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9808 if (!L->isInnermost())
9813 assert(L->isInnermost() &&
"Inner loop expected.");
9816 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9830 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9832 "requiring a scalar epilogue is unsupported",
9833 "UncountableEarlyExitUnsupported",
ORE, L);
9846 if (ExpectedTC && ExpectedTC->isFixed() &&
9848 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9849 <<
"This loop is worth vectorizing only if no scalar "
9850 <<
"iteration overheads are incurred.");
9852 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9868 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9870 "Can't vectorize when the NoImplicitFloat attribute is used",
9871 "loop not vectorized due to NoImplicitFloat attribute",
9872 "NoImplicitFloat",
ORE, L);
9882 TTI->isFPVectorizationPotentiallyUnsafe()) {
9884 "Potentially unsafe FP op prevents vectorization",
9885 "loop not vectorized due to unsafe FP support.",
9886 "UnsafeFP",
ORE, L);
9891 bool AllowOrderedReductions;
9896 AllowOrderedReductions =
TTI->enableOrderedReductions();
9901 ExactFPMathInst->getDebugLoc(),
9902 ExactFPMathInst->getParent())
9903 <<
"loop not vectorized: cannot prove it is safe to reorder "
9904 "floating-point operations";
9906 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9907 "reorder floating-point operations\n");
9913 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9914 GetBFI,
F, &Hints, IAI, OptForSize);
9916 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9926 LVP.
plan(UserVF, UserIC);
9938 unsigned SelectedIC = std::max(IC, UserIC);
9948 if (Checks.getSCEVChecks().first &&
9949 match(Checks.getSCEVChecks().first,
m_One()))
9951 if (Checks.getMemRuntimeChecks().first &&
9952 match(Checks.getMemRuntimeChecks().first,
m_One()))
9957 bool ForceVectorization =
9961 if (!ForceVectorization &&
9967 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
9969 <<
"loop not vectorized: cannot prove it is safe to reorder "
9970 "memory operations";
9979 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
9980 bool VectorizeLoop =
true, InterleaveLoop =
true;
9982 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
9984 "VectorizationNotBeneficial",
9985 "the cost-model indicates that vectorization is not beneficial"};
9986 VectorizeLoop =
false;
9991 "UserIC should only be ignored due to unsafe dependencies");
9992 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
9993 IntDiagMsg = {
"InterleavingUnsafe",
9994 "Ignoring user-specified interleave count due to possibly "
9995 "unsafe dependencies in the loop."};
9996 InterleaveLoop =
false;
10000 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10001 "interleaving should be avoided up front\n");
10002 IntDiagMsg = {
"InterleavingAvoided",
10003 "Ignoring UserIC, because interleaving was avoided up front"};
10004 InterleaveLoop =
false;
10005 }
else if (IC == 1 && UserIC <= 1) {
10009 "InterleavingNotBeneficial",
10010 "the cost-model indicates that interleaving is not beneficial"};
10011 InterleaveLoop =
false;
10013 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10014 IntDiagMsg.second +=
10015 " and is explicitly disabled or interleave count is set to 1";
10017 }
else if (IC > 1 && UserIC == 1) {
10019 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10021 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10022 "the cost-model indicates that interleaving is beneficial "
10023 "but is explicitly disabled or interleave count is set to 1"};
10024 InterleaveLoop =
false;
10030 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10031 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10032 <<
"to histogram operations.\n");
10034 "HistogramPreventsScalarInterleaving",
10035 "Unable to interleave without vectorization due to constraints on "
10036 "the order of histogram operations"};
10037 InterleaveLoop =
false;
10041 IC = UserIC > 0 ? UserIC : IC;
10045 return RecurrenceDescriptor::isFindLastRecurrenceKind(
10046 RdxDesc.getRecurrenceKind());
10048 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving due to FindLast reduction.\n");
10049 IntDiagMsg = {
"FindLastPreventsScalarInterleaving",
10050 "Unable to interleave due to FindLast reduction."};
10051 InterleaveLoop =
false;
10057 if (!VectorizeLoop && !InterleaveLoop) {
10061 L->getStartLoc(), L->getHeader())
10062 << VecDiagMsg.second;
10066 L->getStartLoc(), L->getHeader())
10067 << IntDiagMsg.second;
10072 if (!VectorizeLoop && InterleaveLoop) {
10076 L->getStartLoc(), L->getHeader())
10077 << VecDiagMsg.second;
10079 }
else if (VectorizeLoop && !InterleaveLoop) {
10081 <<
") in " << L->getLocStr() <<
'\n');
10084 L->getStartLoc(), L->getHeader())
10085 << IntDiagMsg.second;
10087 }
else if (VectorizeLoop && InterleaveLoop) {
10089 <<
") in " << L->getLocStr() <<
'\n');
10095 using namespace ore;
10100 <<
"interleaved loop (interleaved count: "
10101 << NV(
"InterleaveCount", IC) <<
")";
10118 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10130 Checks, *BestMainPlan);
10132 *BestMainPlan, MainILV,
DT,
false);
10138 Checks, BestEpiPlan);
10140 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10144 Checks, InstsToMove);
10145 ++LoopsEpilogueVectorized;
10147 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM, Checks,
10161 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10162 "DT not preserved correctly");
10177 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10181 bool Changed =
false, CFGChanged =
false;
10188 for (
const auto &L : *
LI)
10200 LoopsAnalyzed += Worklist.
size();
10203 while (!Worklist.
empty()) {
10249 if (!Result.MadeAnyChange)
10263 if (Result.MadeCFGChange) {
10279 OS, MapClassName2PassName);
10282 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10283 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static const SCEV * getAddressAccessSCEV(Value *Ptr, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets the address access SCEV for Ptr, if it should be used for cost modeling according to isAddressSC...
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static bool hasFindLastReductionPhi(VPlan &Plan)
Returns true if the VPlan contains a VPReductionPHIRecipe with FindLast recurrence kind.
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static VPRecipeBase * findRecipe(VPValue *Start, PredT Pred)
Search Start's users for a recipe satisfying Pred, looking through recipes with definitions.
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
const SmallPtrSetImpl< PHINode * > & getInLoopReductions() const
Returns the set of in-loop reduction PHIs.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has uncountable early exits, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MainLoopVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
static bool isFindLastRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
VPIRValue * getStartValue() const
Returns the start value of the canonical induction.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreateWidenNonPhiRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for a non-phi recipe R if one can be created within the given VF R...
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
bool isOrdered() const
Returns true, if the phi is part of an ordered reduction.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
VPSymbolicValue & getVectorTripCount()
The vector trip count.
VPIRValue * getOrAddLiveIn(Value *V)
Gets the live-in VPIRValue for V or adds a new live-in (if none exists yet) for V.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
auto match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
AllRecipe_match< Instruction::Select, Op0_t, Op1_t, Op2_t > m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
This reduction is unordered with the partial result scaled down by some factor.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A struct that represents some properties of the register usage of a loop.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks