161#define LV_NAME "loop-vectorize"
162#define DEBUG_TYPE LV_NAME
168STATISTIC(LoopsVectorized,
"Number of loops vectorized");
169STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
170STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
171STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
175 cl::desc(
"Enable vectorization of epilogue loops."));
179 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
180 "1 is specified, forces the given VF for all applicable epilogue "
184 "epilogue-vectorization-minimum-VF",
cl::Hidden,
185 cl::desc(
"Only loops with vectorization factor equal to or larger than "
186 "the specified value are considered for epilogue vectorization."));
192 cl::desc(
"Loops with a constant trip count that is smaller than this "
193 "value are vectorized only if no scalar iteration overheads "
198 cl::desc(
"The maximum allowed number of runtime memory checks"));
214 "prefer-predicate-over-epilogue",
217 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
221 "Don't tail-predicate loops, create scalar epilogue"),
223 "predicate-else-scalar-epilogue",
224 "prefer tail-folding, create scalar epilogue if tail "
227 "predicate-dont-vectorize",
228 "prefers tail-folding, don't attempt vectorization if "
229 "tail-folding fails.")));
232 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
238 "Create lane mask for data only, using active.lane.mask intrinsic"),
240 "data-without-lane-mask",
241 "Create lane mask with compare/stepvector"),
243 "Create lane mask using active.lane.mask intrinsic, and use "
244 "it for both data and control flow"),
246 "data-and-control-without-rt-check",
247 "Similar to data-and-control, but remove the runtime check"),
249 "Use predicated EVL instructions for tail folding. If EVL "
250 "is unsupported, fallback to data-without-lane-mask.")));
254 cl::desc(
"Enable use of wide lane masks when used for control flow in "
255 "tail-folded loops"));
259 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
260 "will be determined by the smallest type in loop."));
264 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
270 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
274 cl::desc(
"A flag that overrides the target's number of scalar registers."));
278 cl::desc(
"A flag that overrides the target's number of vector registers."));
282 cl::desc(
"A flag that overrides the target's max interleave factor for "
287 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 "vectorized loops."));
292 cl::desc(
"A flag that overrides the target's expected cost for "
293 "an instruction to a single constant value. Mostly "
294 "useful for getting consistent testing."));
299 "Pretend that scalable vectors are supported, even if the target does "
300 "not support them. This flag should only be used for testing."));
305 "The cost of a loop that is considered 'small' by the interleaver."));
309 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
310 "heuristics minimizing code growth in cold regions and being more "
311 "aggressive in hot regions."));
317 "Enable runtime interleaving until load/store ports are saturated"));
322 cl::desc(
"Max number of stores to be predicated behind an if."));
326 cl::desc(
"Count the induction variable only once when interleaving"));
330 cl::desc(
"Enable if predication of stores during vectorization."));
334 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
335 "reduction in a nested loop."));
340 cl::desc(
"Prefer in-loop vector reductions, "
341 "overriding the targets preference."));
345 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
351 "Prefer predicating a reduction operation over an after loop select."));
355 cl::desc(
"Enable VPlan-native vectorization path with "
356 "support for outer loop vectorization."));
360#ifdef EXPENSIVE_CHECKS
366 cl::desc(
"Verfiy VPlans after VPlan transforms."));
375 "Build VPlan for every supported loop nest in the function and bail "
376 "out right after the build (stress test the VPlan H-CFG construction "
377 "in the VPlan-native vectorization path)."));
381 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
384 cl::desc(
"Run the Loop vectorization passes"));
387 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
389 "Override cost based safe divisor widening for div/rem instructions"));
392 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
394 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
399 "Enable vectorization of early exit loops with uncountable exits."));
403 cl::desc(
"Discard VFs if their register pressure is too high."));
416 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
451static std::optional<ElementCount>
453 bool CanUseConstantMax =
true) {
463 if (!CanUseConstantMax)
475class GeneratedRTChecks;
508 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
621 "A high UF for the epilogue loop is likely not beneficial.");
672 EPI.MainLoopVF,
EPI.MainLoopUF) {}
709 EPI.EpilogueVF,
EPI.EpilogueUF) {}
726 if (
I->getDebugLoc() !=
Empty)
727 return I->getDebugLoc();
730 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
731 if (OpInst->getDebugLoc() != Empty)
732 return OpInst->getDebugLoc();
735 return I->getDebugLoc();
744 dbgs() <<
"LV: " << Prefix << DebugMsg;
760static OptimizationRemarkAnalysis
766 if (
I &&
I->getDebugLoc())
767 DL =
I->getDebugLoc();
771 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
779 assert(Ty->isIntegerTy() &&
"Expected an integer step");
787 return B.CreateElementCount(Ty, VFxStep);
792 return B.CreateElementCount(Ty, VF);
803 <<
"loop not vectorized: " << OREMsg);
826 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
832 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
834 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
890 initializeVScaleForTuning();
905 bool runtimeChecksRequired();
924 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
943 void collectValuesToIgnore();
946 void collectElementTypesForWidening();
950 void collectInLoopReductions();
971 "Profitable to scalarize relevant only for VF > 1.");
974 "cost-model should not be used for outer loops (in VPlan-native path)");
976 auto Scalars = InstsToScalarize.find(VF);
977 assert(Scalars != InstsToScalarize.end() &&
978 "VF not yet analyzed for scalarization profitability");
979 return Scalars->second.contains(
I);
986 "cost-model should not be used for outer loops (in VPlan-native path)");
996 auto UniformsPerVF = Uniforms.find(VF);
997 assert(UniformsPerVF != Uniforms.end() &&
998 "VF not yet analyzed for uniformity");
999 return UniformsPerVF->second.count(
I);
1006 "cost-model should not be used for outer loops (in VPlan-native path)");
1010 auto ScalarsPerVF = Scalars.find(VF);
1011 assert(ScalarsPerVF != Scalars.end() &&
1012 "Scalar values are not calculated for VF");
1013 return ScalarsPerVF->second.count(
I);
1021 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1023 return VF.
isVector() && MinBWs.contains(
I) &&
1045 WideningDecisions[{
I, VF}] = {W,
Cost};
1064 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1067 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1069 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1081 "cost-model should not be used for outer loops (in VPlan-native path)");
1083 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1084 auto Itr = WideningDecisions.find(InstOnVF);
1085 if (Itr == WideningDecisions.end())
1087 return Itr->second.first;
1094 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1095 assert(WideningDecisions.contains(InstOnVF) &&
1096 "The cost is not calculated");
1097 return WideningDecisions[InstOnVF].second;
1110 std::optional<unsigned> MaskPos,
1113 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1119 auto I = CallWideningDecisions.find({CI, VF});
1120 if (
I == CallWideningDecisions.end())
1143 Value *
Op = Trunc->getOperand(0);
1144 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1148 return Legal->isInductionPhi(
Op);
1164 if (VF.
isScalar() || Uniforms.contains(VF))
1167 collectLoopUniforms(VF);
1169 collectLoopScalars(VF);
1177 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1185 return Legal->isConsecutivePtr(DataType,
Ptr) &&
1200 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1207 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1208 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1209 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1220 return ScalarCost < SafeDivisorCost;
1259 if (!
Legal->blockNeedsPredication(BB))
1268 std::pair<InstructionCost, InstructionCost>
1296 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1303 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1304 "from latch block\n");
1309 "interleaved group requires scalar epilogue\n");
1312 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1330 if (!ChosenTailFoldingStyle)
1332 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1333 : ChosenTailFoldingStyle->second;
1341 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1342 if (!
Legal->canFoldTailByMasking()) {
1348 ChosenTailFoldingStyle = {
1349 TTI.getPreferredTailFoldingStyle(
true),
1350 TTI.getPreferredTailFoldingStyle(
false)};
1360 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1374 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1375 "not try to generate VP Intrinsics "
1377 ?
"since interleave count specified is greater than 1.\n"
1378 :
"due to non-interleaving reasons.\n"));
1423 return InLoopReductions.contains(Phi);
1434 TTI.preferPredicatedReductionSelect();
1449 WideningDecisions.clear();
1450 CallWideningDecisions.clear();
1468 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1469 const unsigned IC)
const;
1477 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1479 Type *VectorTy)
const;
1483 bool shouldConsiderInvariant(
Value *
Op);
1489 unsigned NumPredStores = 0;
1493 std::optional<unsigned> VScaleForTuning;
1498 void initializeVScaleForTuning() {
1503 auto Max = Attr.getVScaleRangeMax();
1504 if (Max && Min == Max) {
1505 VScaleForTuning = Max;
1518 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1519 ElementCount UserVF,
1520 bool FoldTailByMasking);
1524 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1525 bool FoldTailByMasking)
const;
1530 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1531 unsigned SmallestType,
1532 unsigned WidestType,
1533 ElementCount MaxSafeVF,
1534 bool FoldTailByMasking);
1538 bool isScalableVectorizationAllowed();
1542 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1548 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1569 ElementCount VF)
const;
1573 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1578 MapVector<Instruction *, uint64_t> MinBWs;
1583 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1587 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1588 PredicatedBBsAfterVectorization;
1601 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1602 ChosenTailFoldingStyle;
1605 std::optional<bool> IsScalableVectorizationAllowed;
1611 std::optional<unsigned> MaxSafeElements;
1617 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1621 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1625 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1629 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1632 SmallPtrSet<PHINode *, 4> InLoopReductions;
1637 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1645 ScalarCostsTy &ScalarCosts,
1657 void collectLoopUniforms(ElementCount VF);
1666 void collectLoopScalars(ElementCount VF);
1670 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1671 std::pair<InstWidening, InstructionCost>>;
1673 DecisionList WideningDecisions;
1675 using CallDecisionList =
1676 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1678 CallDecisionList CallWideningDecisions;
1682 bool needsExtract(
Value *V, ElementCount VF)
const {
1686 getWideningDecision(
I, VF) == CM_Scalarize ||
1697 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1702 ElementCount VF)
const {
1704 SmallPtrSet<const Value *, 4> UniqueOperands;
1708 !needsExtract(
Op, VF))
1780class GeneratedRTChecks {
1786 Value *SCEVCheckCond =
nullptr;
1793 Value *MemRuntimeCheckCond =
nullptr;
1802 bool CostTooHigh =
false;
1804 Loop *OuterLoop =
nullptr;
1815 : DT(DT), LI(LI),
TTI(
TTI),
1816 SCEVExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1817 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1825 void create(Loop *L,
const LoopAccessInfo &LAI,
1826 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1846 nullptr,
"vector.scevcheck");
1853 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1854 SCEVCleaner.cleanup();
1859 if (RtPtrChecking.Need) {
1860 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1861 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1864 auto DiffChecks = RtPtrChecking.getDiffChecks();
1866 Value *RuntimeVF =
nullptr;
1869 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1871 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1877 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1880 assert(MemRuntimeCheckCond &&
1881 "no RT checks generated although RtPtrChecking "
1882 "claimed checks are required");
1887 if (!MemCheckBlock && !SCEVCheckBlock)
1897 if (SCEVCheckBlock) {
1900 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1904 if (MemCheckBlock) {
1907 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1913 if (MemCheckBlock) {
1917 if (SCEVCheckBlock) {
1923 OuterLoop =
L->getParentLoop();
1927 if (SCEVCheckBlock || MemCheckBlock)
1939 for (Instruction &
I : *SCEVCheckBlock) {
1940 if (SCEVCheckBlock->getTerminator() == &
I)
1946 if (MemCheckBlock) {
1948 for (Instruction &
I : *MemCheckBlock) {
1949 if (MemCheckBlock->getTerminator() == &
I)
1961 ScalarEvolution *SE = MemCheckExp.
getSE();
1966 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1971 unsigned BestTripCount = 2;
1975 PSE, OuterLoop,
false))
1976 if (EstimatedTC->isFixed())
1977 BestTripCount = EstimatedTC->getFixedValue();
1982 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1983 (InstructionCost::CostType)1);
1985 if (BestTripCount > 1)
1987 <<
"We expect runtime memory checks to be hoisted "
1988 <<
"out of the outer loop. Cost reduced from "
1989 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1991 MemCheckCost = NewMemCheckCost;
1995 RTCheckCost += MemCheckCost;
1998 if (SCEVCheckBlock || MemCheckBlock)
1999 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2007 ~GeneratedRTChecks() {
2008 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2009 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2010 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
2011 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
2013 SCEVCleaner.markResultUsed();
2015 if (MemChecksUsed) {
2016 MemCheckCleaner.markResultUsed();
2018 auto &SE = *MemCheckExp.
getSE();
2025 I.eraseFromParent();
2028 MemCheckCleaner.cleanup();
2029 SCEVCleaner.cleanup();
2031 if (!SCEVChecksUsed)
2032 SCEVCheckBlock->eraseFromParent();
2034 MemCheckBlock->eraseFromParent();
2039 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2040 using namespace llvm::PatternMatch;
2042 return {
nullptr,
nullptr};
2044 return {SCEVCheckCond, SCEVCheckBlock};
2049 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2050 using namespace llvm::PatternMatch;
2051 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2052 return {
nullptr,
nullptr};
2053 return {MemRuntimeCheckCond, MemCheckBlock};
2057 bool hasChecks()
const {
2058 return getSCEVChecks().first || getMemRuntimeChecks().first;
2101 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2107 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2137 for (
Loop *InnerL : L)
2160 ?
B.CreateSExtOrTrunc(Index, StepTy)
2161 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2162 if (CastedIndex != Index) {
2164 Index = CastedIndex;
2174 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2179 return B.CreateAdd(
X,
Y);
2185 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2186 "Types don't match!");
2193 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2194 return B.CreateMul(
X,
Y);
2197 switch (InductionKind) {
2200 "Vector indices not supported for integer inductions yet");
2202 "Index type does not match StartValue type");
2204 return B.CreateSub(StartValue, Index);
2209 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2212 "Vector indices not supported for FP inductions yet");
2215 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2216 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2217 "Original bin op should be defined for FP induction");
2219 Value *MulExp =
B.CreateFMul(Step, Index);
2220 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2231 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2234 if (
F.hasFnAttribute(Attribute::VScaleRange))
2235 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2237 return std::nullopt;
2246 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2248 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2250 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2256 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2259 std::optional<unsigned> MaxVScale =
2263 MaxVF *= *MaxVScale;
2266 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2280 return TTI.enableMaskedInterleavedAccessVectorization();
2293 PreVectorPH = CheckVPIRBB;
2303 "must have incoming values for all operands");
2304 R.addOperand(R.getOperand(NumPredecessors - 2));
2330 auto CreateStep = [&]() ->
Value * {
2337 if (!
VF.isScalable())
2339 return Builder.CreateBinaryIntrinsic(
2345 Value *Step = CreateStep();
2354 CheckMinIters =
Builder.getTrue();
2356 TripCountSCEV, SE.
getSCEV(Step))) {
2359 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2361 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2369 Value *MaxUIntTripCount =
2376 return CheckMinIters;
2385 VPlan *Plan =
nullptr) {
2389 auto IP = IRVPBB->
begin();
2391 R.moveBefore(*IRVPBB, IP);
2395 R.moveBefore(*IRVPBB, IRVPBB->
end());
2404 assert(VectorPH &&
"Invalid loop structure");
2406 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2407 "loops not exiting via the latch without required epilogue?");
2414 Twine(Prefix) +
"scalar.ph");
2420 const SCEV2ValueTy &ExpandedSCEVs) {
2421 const SCEV *Step =
ID.getStep();
2423 return C->getValue();
2425 return U->getValue();
2426 Value *V = ExpandedSCEVs.lookup(Step);
2427 assert(V &&
"SCEV must be expanded at this point");
2437 auto *Cmp = L->getLatchCmpInst();
2439 InstsToIgnore.
insert(Cmp);
2440 for (
const auto &KV : IL) {
2449 [&](
const User *U) { return U == IV || U == Cmp; }))
2450 InstsToIgnore.
insert(IVInst);
2462struct CSEDenseMapInfo {
2473 return DenseMapInfo<Instruction *>::getTombstoneKey();
2476 static unsigned getHashValue(
const Instruction *
I) {
2477 assert(canHandle(
I) &&
"Unknown instruction!");
2482 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2483 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2484 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2486 return LHS->isIdenticalTo(
RHS);
2498 if (!CSEDenseMapInfo::canHandle(&In))
2504 In.replaceAllUsesWith(V);
2505 In.eraseFromParent();
2518 std::optional<unsigned> VScale) {
2522 EstimatedVF *= *VScale;
2523 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2541 for (
auto &ArgOp : CI->
args())
2552 return ScalarCallCost;
2565 assert(
ID &&
"Expected intrinsic call!");
2569 FMF = FPMO->getFastMathFlags();
2575 std::back_inserter(ParamTys),
2576 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2581 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2595 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2610 Builder.SetInsertPoint(NewPhi);
2612 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2617void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2622 "This function should not be visited twice for the same VF");
2645 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2646 assert(WideningDecision != CM_Unknown &&
2647 "Widening decision should be ready at this moment");
2649 if (
Ptr == Store->getValueOperand())
2650 return WideningDecision == CM_Scalarize;
2652 "Ptr is neither a value or pointer operand");
2653 return WideningDecision != CM_GatherScatter;
2658 auto IsLoopVaryingGEP = [&](
Value *
V) {
2669 if (!IsLoopVaryingGEP(
Ptr))
2681 if (IsScalarUse(MemAccess,
Ptr) &&
2685 PossibleNonScalarPtrs.
insert(
I);
2701 for (
auto *BB : TheLoop->
blocks())
2702 for (
auto &
I : *BB) {
2704 EvaluatePtrUse(Load,
Load->getPointerOperand());
2706 EvaluatePtrUse(Store,
Store->getPointerOperand());
2707 EvaluatePtrUse(Store,
Store->getValueOperand());
2710 for (
auto *
I : ScalarPtrs)
2711 if (!PossibleNonScalarPtrs.
count(
I)) {
2719 auto ForcedScalar = ForcedScalars.
find(VF);
2720 if (ForcedScalar != ForcedScalars.
end())
2721 for (
auto *
I : ForcedScalar->second) {
2722 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2731 while (Idx != Worklist.
size()) {
2733 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2737 auto *J = cast<Instruction>(U);
2738 return !TheLoop->contains(J) || Worklist.count(J) ||
2739 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2740 IsScalarUse(J, Src));
2743 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2749 for (
const auto &Induction :
Legal->getInductionVars()) {
2750 auto *Ind = Induction.first;
2755 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2760 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2762 return Induction.second.getKind() ==
2770 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2771 auto *I = cast<Instruction>(U);
2772 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2773 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2782 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2787 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2788 auto *I = cast<Instruction>(U);
2789 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2790 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2792 if (!ScalarIndUpdate)
2797 Worklist.
insert(IndUpdate);
2798 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2799 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2813 switch(
I->getOpcode()) {
2816 case Instruction::Call:
2820 case Instruction::Load:
2821 case Instruction::Store: {
2830 TTI.isLegalMaskedGather(VTy, Alignment))
2832 TTI.isLegalMaskedScatter(VTy, Alignment));
2834 case Instruction::UDiv:
2835 case Instruction::SDiv:
2836 case Instruction::SRem:
2837 case Instruction::URem: {
2858 if (
Legal->blockNeedsPredication(
I->getParent()))
2870 switch(
I->getOpcode()) {
2873 "instruction should have been considered by earlier checks");
2874 case Instruction::Call:
2878 "should have returned earlier for calls not needing a mask");
2880 case Instruction::Load:
2883 case Instruction::Store: {
2891 case Instruction::UDiv:
2892 case Instruction::SDiv:
2893 case Instruction::SRem:
2894 case Instruction::URem:
2896 return !
Legal->isInvariant(
I->getOperand(1));
2900std::pair<InstructionCost, InstructionCost>
2903 assert(
I->getOpcode() == Instruction::UDiv ||
2904 I->getOpcode() == Instruction::SDiv ||
2905 I->getOpcode() == Instruction::SRem ||
2906 I->getOpcode() == Instruction::URem);
2915 ScalarizationCost = 0;
2921 ScalarizationCost +=
2925 ScalarizationCost +=
2927 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2945 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2950 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2952 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2953 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2955 return {ScalarizationCost, SafeDivisorCost};
2962 "Decision should not be set yet.");
2964 assert(Group &&
"Must have a group.");
2965 unsigned InterleaveFactor = Group->getFactor();
2969 auto &
DL =
I->getDataLayout();
2981 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2982 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
2987 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
2989 if (MemberNI != ScalarNI)
2992 if (MemberNI && ScalarNI &&
2993 ScalarTy->getPointerAddressSpace() !=
2994 MemberTy->getPointerAddressSpace())
3003 bool PredicatedAccessRequiresMasking =
3005 Legal->isMaskRequired(
I);
3006 bool LoadAccessWithGapsRequiresEpilogMasking =
3009 bool StoreAccessWithGapsRequiresMasking =
3011 if (!PredicatedAccessRequiresMasking &&
3012 !LoadAccessWithGapsRequiresEpilogMasking &&
3013 !StoreAccessWithGapsRequiresMasking)
3020 "Masked interleave-groups for predicated accesses are not enabled.");
3022 if (Group->isReverse())
3026 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3027 StoreAccessWithGapsRequiresMasking;
3035 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3047 if (!
Legal->isConsecutivePtr(ScalarTy,
Ptr))
3057 auto &
DL =
I->getDataLayout();
3064void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3071 "This function should not be visited twice for the same VF");
3075 Uniforms[VF].
clear();
3083 auto IsOutOfScope = [&](
Value *V) ->
bool {
3095 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3096 if (IsOutOfScope(
I)) {
3101 if (isPredicatedInst(
I)) {
3103 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3107 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3117 for (BasicBlock *
E : Exiting) {
3121 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3122 AddToWorklistIfAllowed(Cmp);
3131 if (PrevVF.isVector()) {
3132 auto Iter = Uniforms.
find(PrevVF);
3133 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3136 if (!
Legal->isUniformMemOp(*
I, VF))
3146 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3147 InstWidening WideningDecision = getWideningDecision(
I, VF);
3148 assert(WideningDecision != CM_Unknown &&
3149 "Widening decision should be ready at this moment");
3151 if (IsUniformMemOpUse(
I))
3154 return (WideningDecision == CM_Widen ||
3155 WideningDecision == CM_Widen_Reverse ||
3156 WideningDecision == CM_Interleave);
3166 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(
Ptr));
3174 SetVector<Value *> HasUniformUse;
3178 for (
auto *BB : TheLoop->
blocks())
3179 for (
auto &
I : *BB) {
3181 switch (
II->getIntrinsicID()) {
3182 case Intrinsic::sideeffect:
3183 case Intrinsic::experimental_noalias_scope_decl:
3184 case Intrinsic::assume:
3185 case Intrinsic::lifetime_start:
3186 case Intrinsic::lifetime_end:
3188 AddToWorklistIfAllowed(&
I);
3196 if (IsOutOfScope(EVI->getAggregateOperand())) {
3197 AddToWorklistIfAllowed(EVI);
3203 "Expected aggregate value to be call return value");
3216 if (IsUniformMemOpUse(&
I))
3217 AddToWorklistIfAllowed(&
I);
3219 if (IsVectorizedMemAccessUse(&
I,
Ptr))
3226 for (
auto *V : HasUniformUse) {
3227 if (IsOutOfScope(V))
3230 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3231 auto *UI = cast<Instruction>(U);
3232 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3234 if (UsersAreMemAccesses)
3235 AddToWorklistIfAllowed(
I);
3242 while (Idx != Worklist.
size()) {
3245 for (
auto *OV :
I->operand_values()) {
3247 if (IsOutOfScope(OV))
3252 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3258 auto *J = cast<Instruction>(U);
3259 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3261 AddToWorklistIfAllowed(OI);
3272 for (
const auto &Induction :
Legal->getInductionVars()) {
3273 auto *Ind = Induction.first;
3278 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3279 auto *I = cast<Instruction>(U);
3280 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3281 IsVectorizedMemAccessUse(I, Ind);
3288 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3289 auto *I = cast<Instruction>(U);
3290 return I == Ind || Worklist.count(I) ||
3291 IsVectorizedMemAccessUse(I, IndUpdate);
3293 if (!UniformIndUpdate)
3297 AddToWorklistIfAllowed(Ind);
3298 AddToWorklistIfAllowed(IndUpdate);
3307 if (
Legal->getRuntimePointerChecking()->Need) {
3309 "runtime pointer checks needed. Enable vectorization of this "
3310 "loop with '#pragma clang loop vectorize(enable)' when "
3311 "compiling with -Os/-Oz",
3312 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3316 if (!
PSE.getPredicate().isAlwaysTrue()) {
3318 "runtime SCEV checks needed. Enable vectorization of this "
3319 "loop with '#pragma clang loop vectorize(enable)' when "
3320 "compiling with -Os/-Oz",
3321 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3326 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3328 "runtime stride == 1 checks needed. Enable vectorization of "
3329 "this loop without such check by compiling with -Os/-Oz",
3330 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3337bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3338 if (IsScalableVectorizationAllowed)
3339 return *IsScalableVectorizationAllowed;
3341 IsScalableVectorizationAllowed =
false;
3345 if (Hints->isScalableVectorizationDisabled()) {
3347 "ScalableVectorizationDisabled", ORE, TheLoop);
3351 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3354 std::numeric_limits<ElementCount::ScalarTy>::max());
3363 if (!canVectorizeReductions(MaxScalableVF)) {
3365 "Scalable vectorization not supported for the reduction "
3366 "operations found in this loop.",
3367 "ScalableVFUnfeasible", ORE, TheLoop);
3373 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3378 "for all element types found in this loop.",
3379 "ScalableVFUnfeasible", ORE, TheLoop);
3385 "for safe distance analysis.",
3386 "ScalableVFUnfeasible", ORE, TheLoop);
3390 IsScalableVectorizationAllowed =
true;
3395LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3396 if (!isScalableVectorizationAllowed())
3400 std::numeric_limits<ElementCount::ScalarTy>::max());
3401 if (
Legal->isSafeForAnyVectorWidth())
3402 return MaxScalableVF;
3410 "Max legal vector width too small, scalable vectorization "
3412 "ScalableVFUnfeasible", ORE, TheLoop);
3414 return MaxScalableVF;
3417FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3418 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3420 unsigned SmallestType, WidestType;
3421 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3427 unsigned MaxSafeElementsPowerOf2 =
3429 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3430 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3431 MaxSafeElementsPowerOf2 =
3432 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3435 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3437 if (!
Legal->isSafeForAnyVectorWidth())
3438 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3440 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3442 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3447 auto MaxSafeUserVF =
3448 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3450 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3453 return FixedScalableVFPair(
3459 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3465 <<
" is unsafe, clamping to max safe VF="
3466 << MaxSafeFixedVF <<
".\n");
3468 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3471 <<
"User-specified vectorization factor "
3472 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3473 <<
" is unsafe, clamping to maximum safe vectorization factor "
3474 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3476 return MaxSafeFixedVF;
3481 <<
" is ignored because scalable vectors are not "
3484 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3487 <<
"User-specified vectorization factor "
3488 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3489 <<
" is ignored because the target does not support scalable "
3490 "vectors. The compiler will pick a more suitable value.";
3494 <<
" is unsafe. Ignoring scalable UserVF.\n");
3496 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3499 <<
"User-specified vectorization factor "
3500 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3501 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3502 "more suitable value.";
3507 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3508 <<
" / " << WidestType <<
" bits.\n");
3513 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3514 MaxSafeFixedVF, FoldTailByMasking))
3518 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3519 MaxSafeScalableVF, FoldTailByMasking))
3520 if (MaxVF.isScalable()) {
3521 Result.ScalableVF = MaxVF;
3522 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3531 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3535 "Not inserting runtime ptr check for divergent target",
3536 "runtime pointer checks needed. Not enabled for divergent target",
3537 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3543 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3546 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3549 "loop trip count is one, irrelevant for vectorization",
3560 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3564 "Trip count computation wrapped",
3565 "backedge-taken count is -1, loop trip count wrapped to 0",
3570 switch (ScalarEpilogueStatus) {
3572 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3577 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3578 <<
"LV: Not allowing scalar epilogue, creating predicated "
3579 <<
"vector loop.\n");
3586 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3588 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3604 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3605 "No decisions should have been taken at this point");
3615 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3619 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3620 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3621 *MaxPowerOf2RuntimeVF,
3624 MaxPowerOf2RuntimeVF = std::nullopt;
3627 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3631 !
Legal->hasUncountableEarlyExit())
3633 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3638 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3640 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3641 "Invalid loop count");
3643 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3650 if (MaxPowerOf2RuntimeVF > 0u) {
3652 "MaxFixedVF must be a power of 2");
3653 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3655 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3661 if (ExpectedTC && ExpectedTC->isFixed() &&
3662 ExpectedTC->getFixedValue() <=
3663 TTI.getMinTripCountTailFoldingThreshold()) {
3664 if (MaxPowerOf2RuntimeVF > 0u) {
3670 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3671 "remain for any chosen VF.\n");
3678 "The trip count is below the minial threshold value.",
3679 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3694 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3695 "try to generate VP Intrinsics with scalable vector "
3700 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3710 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3711 "scalar epilogue instead.\n");
3717 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3723 "unable to calculate the loop count due to complex control flow",
3729 "Cannot optimize for size and vectorize at the same time.",
3730 "cannot optimize for size and vectorize at the same time. "
3731 "Enable vectorization of this loop with '#pragma clang loop "
3732 "vectorize(enable)' when compiling with -Os/-Oz",
3744 if (
TTI.shouldConsiderVectorizationRegPressure())
3760 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3762 Legal->hasVectorCallVariants())));
3765ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3766 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3768 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3769 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3770 auto Min = Attr.getVScaleRangeMin();
3777 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3780 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3788 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3789 "exceeding the constant trip count: "
3790 << ClampedUpperTripCount <<
"\n");
3792 FoldTailByMasking ? VF.
isScalable() :
false);
3797ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3798 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3799 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3800 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3806 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3808 "Scalable flags must match");
3816 ComputeScalableMaxVF);
3817 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3819 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3821 if (!MaxVectorElementCount) {
3823 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3824 <<
" vector registers.\n");
3828 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3829 MaxTripCount, FoldTailByMasking);
3832 if (MaxVF != MaxVectorElementCount)
3840 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3842 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3844 if (useMaxBandwidth(RegKind)) {
3847 ComputeScalableMaxVF);
3848 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3850 if (ElementCount MinVF =
3852 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3854 <<
") with target's minimum: " << MinVF <<
'\n');
3859 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3861 if (MaxVectorElementCount != MaxVF) {
3865 invalidateCostModelingDecisions();
3873 const unsigned MaxTripCount,
3875 bool IsEpilogue)
const {
3881 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3882 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3883 if (
A.Width.isScalable())
3884 EstimatedWidthA *= *VScale;
3885 if (
B.Width.isScalable())
3886 EstimatedWidthB *= *VScale;
3893 return CostA < CostB ||
3894 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3900 A.Width.isScalable() && !
B.Width.isScalable();
3911 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3913 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3925 return VectorCost * (MaxTripCount / VF) +
3926 ScalarCost * (MaxTripCount % VF);
3927 return VectorCost *
divideCeil(MaxTripCount, VF);
3930 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3931 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3932 return CmpFn(RTCostA, RTCostB);
3938 bool IsEpilogue)
const {
3940 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3946 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3948 for (
const auto &Plan : VPlans) {
3957 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3958 *CM.PSE.getSE(), OrigLoop);
3959 precomputeCosts(*Plan, VF, CostCtx);
3962 for (
auto &R : *VPBB) {
3963 if (!R.cost(VF, CostCtx).isValid())
3969 if (InvalidCosts.
empty())
3977 for (
auto &Pair : InvalidCosts)
3982 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
3983 unsigned NA = Numbering[
A.first];
3984 unsigned NB = Numbering[
B.first];
3999 Subset =
Tail.take_front(1);
4006 [](
const auto *R) {
return Instruction::PHI; })
4007 .Case<VPWidenSelectRecipe>(
4008 [](
const auto *R) {
return Instruction::Select; })
4009 .Case<VPWidenStoreRecipe>(
4010 [](
const auto *R) {
return Instruction::Store; })
4011 .Case<VPWidenLoadRecipe>(
4012 [](
const auto *R) {
return Instruction::Load; })
4013 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4014 [](
const auto *R) {
return Instruction::Call; })
4017 [](
const auto *R) {
return R->getOpcode(); })
4019 return R->getStoredValues().empty() ? Instruction::Load
4020 : Instruction::Store;
4022 .Case<VPReductionRecipe>([](
const auto *R) {
4031 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4032 std::string OutString;
4034 assert(!Subset.empty() &&
"Unexpected empty range");
4035 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4036 for (
const auto &Pair : Subset)
4037 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4039 if (Opcode == Instruction::Call) {
4042 Name =
Int->getIntrinsicName();
4046 WidenCall ? WidenCall->getCalledScalarFunction()
4048 ->getLiveInIRValue());
4051 OS <<
" call to " << Name;
4056 Tail =
Tail.drop_front(Subset.size());
4060 Subset =
Tail.take_front(Subset.size() + 1);
4061 }
while (!
Tail.empty());
4083 switch (R.getVPDefID()) {
4084 case VPDef::VPDerivedIVSC:
4085 case VPDef::VPScalarIVStepsSC:
4086 case VPDef::VPReplicateSC:
4087 case VPDef::VPInstructionSC:
4088 case VPDef::VPCanonicalIVPHISC:
4089 case VPDef::VPVectorPointerSC:
4090 case VPDef::VPVectorEndPointerSC:
4091 case VPDef::VPExpandSCEVSC:
4092 case VPDef::VPEVLBasedIVPHISC:
4093 case VPDef::VPPredInstPHISC:
4094 case VPDef::VPBranchOnMaskSC:
4096 case VPDef::VPReductionSC:
4097 case VPDef::VPActiveLaneMaskPHISC:
4098 case VPDef::VPWidenCallSC:
4099 case VPDef::VPWidenCanonicalIVSC:
4100 case VPDef::VPWidenCastSC:
4101 case VPDef::VPWidenGEPSC:
4102 case VPDef::VPWidenIntrinsicSC:
4103 case VPDef::VPWidenSC:
4104 case VPDef::VPWidenSelectSC:
4105 case VPDef::VPBlendSC:
4106 case VPDef::VPFirstOrderRecurrencePHISC:
4107 case VPDef::VPHistogramSC:
4108 case VPDef::VPWidenPHISC:
4109 case VPDef::VPWidenIntOrFpInductionSC:
4110 case VPDef::VPWidenPointerInductionSC:
4111 case VPDef::VPReductionPHISC:
4112 case VPDef::VPInterleaveEVLSC:
4113 case VPDef::VPInterleaveSC:
4114 case VPDef::VPWidenLoadEVLSC:
4115 case VPDef::VPWidenLoadSC:
4116 case VPDef::VPWidenStoreEVLSC:
4117 case VPDef::VPWidenStoreSC:
4123 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4124 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4140 if (R.getNumDefinedValues() == 0 &&
4149 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4151 if (!Visited.
insert({ScalarTy}).second)
4165 [](
auto *VPRB) { return VPRB->isReplicator(); });
4171 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4172 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4175 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4176 "Expected Scalar VF to be a candidate");
4183 if (ForceVectorization &&
4184 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4188 ChosenFactor.
Cost = InstructionCost::getMax();
4191 for (
auto &
P : VPlans) {
4193 P->vectorFactors().end());
4196 if (
any_of(VFs, [
this](ElementCount VF) {
4197 return CM.shouldConsiderRegPressureForVF(VF);
4201 for (
unsigned I = 0;
I < VFs.size();
I++) {
4202 ElementCount VF = VFs[
I];
4210 if (CM.shouldConsiderRegPressureForVF(VF) &&
4218 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind,
4219 *CM.PSE.getSE(), OrigLoop);
4220 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4221 assert(VectorRegion &&
"Expected to have a vector region!");
4224 for (VPRecipeBase &R : *VPBB) {
4228 switch (VPI->getOpcode()) {
4231 case Instruction::Select: {
4234 switch (WR->getOpcode()) {
4235 case Instruction::UDiv:
4236 case Instruction::SDiv:
4237 case Instruction::URem:
4238 case Instruction::SRem:
4244 C += VPI->cost(VF, CostCtx);
4248 unsigned Multiplier =
4251 C += VPI->cost(VF * Multiplier, CostCtx);
4255 C += VPI->cost(VF, CostCtx);
4267 <<
" costs: " << (Candidate.Cost / Width));
4270 << CM.getVScaleForTuning().value_or(1) <<
")");
4276 <<
"LV: Not considering vector loop of width " << VF
4277 <<
" because it will not generate any vector instructions.\n");
4284 <<
"LV: Not considering vector loop of width " << VF
4285 <<
" because it would cause replicated blocks to be generated,"
4286 <<
" which isn't allowed when optimizing for size.\n");
4290 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4291 ChosenFactor = Candidate;
4297 "There are conditional stores.",
4298 "store that is conditionally executed prevents vectorization",
4299 "ConditionalStore", ORE, OrigLoop);
4300 ChosenFactor = ScalarCost;
4304 !isMoreProfitable(ChosenFactor, ScalarCost,
4305 !CM.foldTailByMasking()))
dbgs()
4306 <<
"LV: Vectorization seems to be not beneficial, "
4307 <<
"but was forced by a user.\n");
4308 return ChosenFactor;
4312bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4313 ElementCount VF)
const {
4316 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4317 if (!Legal->isReductionVariable(&Phi))
4318 return Legal->isFixedOrderRecurrence(&Phi);
4319 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4320 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4326 for (
const auto &Entry :
Legal->getInductionVars()) {
4329 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4330 for (User *U :
PostInc->users())
4334 for (User *U :
Entry.first->users())
4343 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4357 if (!
TTI.preferEpilogueVectorization())
4362 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4367 :
TTI.getEpilogueVectorizationMinVF();
4375 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4379 if (!CM.isScalarEpilogueAllowed()) {
4380 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4381 "epilogue is allowed.\n");
4387 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4388 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4389 "is not a supported candidate.\n");
4394 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4397 return {ForcedEC, 0, 0};
4399 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4404 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4406 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4410 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4411 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4423 Type *TCType = Legal->getWidestInductionType();
4424 const SCEV *RemainingIterations =
nullptr;
4425 unsigned MaxTripCount = 0;
4429 const SCEV *KnownMinTC;
4431 bool ScalableRemIter =
false;
4434 ScalableRemIter = ScalableTC;
4435 RemainingIterations =
4437 }
else if (ScalableTC) {
4440 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4444 RemainingIterations =
4448 if (RemainingIterations->
isZero())
4458 << MaxTripCount <<
"\n");
4461 auto SkipVF = [&](
const SCEV *VF,
const SCEV *RemIter) ->
bool {
4464 for (
auto &NextVF : ProfitableVFs) {
4471 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4473 (NextVF.Width.isScalable() &&
4475 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4484 if (!ScalableRemIter) {
4488 if (NextVF.Width.isScalable())
4495 if (Result.Width.isScalar() ||
4496 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4503 << Result.Width <<
"\n");
4507std::pair<unsigned, unsigned>
4509 unsigned MinWidth = -1U;
4510 unsigned MaxWidth = 8;
4516 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4520 MinWidth = std::min(
4524 MaxWidth = std::max(MaxWidth,
4529 MinWidth = std::min<unsigned>(
4530 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4531 MaxWidth = std::max<unsigned>(
4532 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4535 return {MinWidth, MaxWidth};
4543 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4557 if (!
Legal->isReductionVariable(PN))
4560 Legal->getRecurrenceDescriptor(PN);
4570 T = ST->getValueOperand()->getType();
4573 "Expected the load/store/recurrence type to be sized");
4601 if (!CM.isScalarEpilogueAllowed() &&
4602 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4607 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4608 "Unroll factor forced to be 1.\n");
4613 if (!Legal->isSafeForAnyVectorWidth())
4622 const bool HasReductions =
4628 if (LoopCost == 0) {
4630 LoopCost = CM.expectedCost(VF);
4632 LoopCost = cost(Plan, VF);
4633 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4644 for (
auto &Pair : R.MaxLocalUsers) {
4645 Pair.second = std::max(Pair.second, 1U);
4659 unsigned IC = UINT_MAX;
4661 for (
const auto &Pair : R.MaxLocalUsers) {
4662 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4665 << TTI.getRegisterClassName(Pair.first)
4666 <<
" register class\n");
4674 unsigned MaxLocalUsers = Pair.second;
4675 unsigned LoopInvariantRegs = 0;
4676 if (R.LoopInvariantRegs.contains(Pair.first))
4677 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4679 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4683 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4684 std::max(1U, (MaxLocalUsers - 1)));
4687 IC = std::min(IC, TmpIC);
4691 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4707 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4709 unsigned AvailableTC =
4715 if (CM.requiresScalarEpilogue(VF.
isVector()))
4718 unsigned InterleaveCountLB =
bit_floor(std::max(
4719 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4733 unsigned InterleaveCountUB =
bit_floor(std::max(
4734 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4735 MaxInterleaveCount = InterleaveCountLB;
4737 if (InterleaveCountUB != InterleaveCountLB) {
4738 unsigned TailTripCountUB =
4739 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4740 unsigned TailTripCountLB =
4741 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4744 if (TailTripCountUB == TailTripCountLB)
4745 MaxInterleaveCount = InterleaveCountUB;
4753 MaxInterleaveCount = InterleaveCountLB;
4757 assert(MaxInterleaveCount > 0 &&
4758 "Maximum interleave count must be greater than 0");
4762 if (IC > MaxInterleaveCount)
4763 IC = MaxInterleaveCount;
4766 IC = std::max(1u, IC);
4768 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4772 if (VF.
isVector() && HasReductions) {
4773 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4781 bool ScalarInterleavingRequiresPredication =
4783 return Legal->blockNeedsPredication(BB);
4785 bool ScalarInterleavingRequiresRuntimePointerCheck =
4786 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4791 <<
"LV: IC is " << IC <<
'\n'
4792 <<
"LV: VF is " << VF <<
'\n');
4793 const bool AggressivelyInterleaveReductions =
4794 TTI.enableAggressiveInterleaving(HasReductions);
4795 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4796 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4805 unsigned NumStores = 0;
4806 unsigned NumLoads = 0;
4820 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4821 NumStores += StoreOps;
4823 NumLoads += InterleaveR->getNumDefinedValues();
4838 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4839 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4845 bool HasSelectCmpReductions =
4849 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4850 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4851 RedR->getRecurrenceKind()) ||
4852 RecurrenceDescriptor::isFindIVRecurrenceKind(
4853 RedR->getRecurrenceKind()));
4855 if (HasSelectCmpReductions) {
4856 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4865 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4866 bool HasOrderedReductions =
4869 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4871 return RedR && RedR->isOrdered();
4873 if (HasOrderedReductions) {
4875 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4880 SmallIC = std::min(SmallIC,
F);
4881 StoresIC = std::min(StoresIC,
F);
4882 LoadsIC = std::min(LoadsIC,
F);
4886 std::max(StoresIC, LoadsIC) > SmallIC) {
4888 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4889 return std::max(StoresIC, LoadsIC);
4894 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4898 return std::max(IC / 2, SmallIC);
4901 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4907 if (AggressivelyInterleaveReductions) {
4916bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4926 assert((isPredicatedInst(
I)) &&
4927 "Expecting a scalar emulated instruction");
4940 if (InstsToScalarize.contains(VF) ||
4941 PredicatedBBsAfterVectorization.contains(VF))
4947 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4957 ScalarCostsTy ScalarCosts;
4964 !useEmulatedMaskMemRefHack(&
I, VF) &&
4965 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4966 for (
const auto &[
I, IC] : ScalarCosts)
4967 ScalarCostsVF.
insert({
I, IC});
4970 for (
const auto &[
I,
Cost] : ScalarCosts) {
4972 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4975 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4979 PredicatedBBsAfterVectorization[VF].insert(BB);
4981 if (Pred->getSingleSuccessor() == BB)
4982 PredicatedBBsAfterVectorization[VF].insert(Pred);
4990 assert(!isUniformAfterVectorization(PredInst, VF) &&
4991 "Instruction marked uniform-after-vectorization will be predicated");
5009 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5010 isScalarAfterVectorization(
I, VF))
5015 if (isScalarWithPredication(
I, VF))
5028 for (
Use &U :
I->operands())
5030 if (isUniformAfterVectorization(J, VF))
5041 while (!Worklist.
empty()) {
5045 if (ScalarCosts.contains(
I))
5065 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5068 ScalarCost +=
TTI.getScalarizationOverhead(
5081 for (Use &U :
I->operands())
5084 "Instruction has non-scalar type");
5085 if (CanBeScalarized(J))
5087 else if (needsExtract(J, VF)) {
5099 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5103 Discount += VectorCost - ScalarCost;
5104 ScalarCosts[
I] = ScalarCost;
5120 ValuesToIgnoreForVF);
5127 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5140 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5141 << VF <<
" For instruction: " <<
I <<
'\n');
5170 const Loop *TheLoop) {
5178 auto *SE = PSE.
getSE();
5179 unsigned NumOperands = Gep->getNumOperands();
5180 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5181 Value *Opd = Gep->getOperand(Idx);
5183 !
Legal->isInductionVariable(Opd))
5192LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5195 "Scalarization cost of instruction implies vectorization.");
5197 return InstructionCost::getInvalid();
5200 auto *SE = PSE.
getSE();
5231 if (isPredicatedInst(
I)) {
5236 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5242 if (useEmulatedMaskMemRefHack(
I, VF))
5252LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5258 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy,
Ptr);
5260 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5261 "Stride should be 1 or -1 for consecutive memory access");
5264 if (
Legal->isMaskRequired(
I)) {
5265 unsigned IID =
I->getOpcode() == Instruction::Load
5266 ? Intrinsic::masked_load
5267 : Intrinsic::masked_store;
5275 bool Reverse = ConsecutiveStride < 0;
5283LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5301 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5309 if (!IsLoopInvariantStoreValue)
5316LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5329 Legal->isMaskRequired(
I), Alignment,
5334LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5336 const auto *Group = getInterleavedAccessGroup(
I);
5337 assert(Group &&
"Fail to get an interleaved access group.");
5344 unsigned InterleaveFactor = Group->getFactor();
5345 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5348 SmallVector<unsigned, 4> Indices;
5349 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
5350 if (Group->getMember(IF))
5354 bool UseMaskForGaps =
5355 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5358 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5362 if (Group->isReverse()) {
5365 "Reverse masked interleaved access not supported.");
5366 Cost += Group->getNumMembers() *
5373std::optional<InstructionCost>
5380 return std::nullopt;
5398 return std::nullopt;
5409 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5411 return std::nullopt;
5417 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5426 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5429 BaseCost =
TTI.getArithmeticReductionCost(
5437 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5454 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5460 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5472 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5475 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5477 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5485 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5486 return I == RetI ? RedCost : 0;
5488 !
TheLoop->isLoopInvariant(RedOp)) {
5497 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5499 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5500 return I == RetI ? RedCost : 0;
5501 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5505 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5524 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5530 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5531 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5532 ExtraExtCost =
TTI.getCastInstrCost(
5539 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5540 return I == RetI ? RedCost : 0;
5544 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5550 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5551 return I == RetI ? RedCost : 0;
5555 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5559LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5570 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5571 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5574 return getWideningCost(
I, VF);
5578LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5579 ElementCount VF)
const {
5584 return InstructionCost::getInvalid();
5612 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5617 for (
auto *V : filterExtractingOperands(
Ops, VF))
5640 if (
Legal->isUniformMemOp(
I, VF)) {
5641 auto IsLegalToScalarize = [&]() {
5661 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5673 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5679 if (GatherScatterCost < ScalarizationCost)
5689 int ConsecutiveStride =
Legal->isConsecutivePtr(
5691 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5692 "Expected consecutive stride.");
5701 unsigned NumAccesses = 1;
5704 assert(Group &&
"Fail to get an interleaved access group.");
5710 NumAccesses = Group->getNumMembers();
5712 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5717 ? getGatherScatterCost(&
I, VF) * NumAccesses
5721 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5727 if (InterleaveCost <= GatherScatterCost &&
5728 InterleaveCost < ScalarizationCost) {
5730 Cost = InterleaveCost;
5731 }
else if (GatherScatterCost < ScalarizationCost) {
5733 Cost = GatherScatterCost;
5736 Cost = ScalarizationCost;
5743 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5744 if (
auto *
I = Group->getMember(Idx)) {
5746 getMemInstScalarizationCost(
I, VF));
5762 if (
TTI.prefersVectorizedAddressing())
5771 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5779 while (!Worklist.
empty()) {
5781 for (
auto &
Op :
I->operands())
5784 AddrDefs.
insert(InstOp).second)
5788 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5792 for (
User *U :
LI->users()) {
5802 for (
auto *
I : AddrDefs) {
5823 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5824 if (
Instruction *Member = Group->getMember(Idx)) {
5828 getMemoryInstructionCost(Member,
5830 : getMemInstScalarizationCost(Member, VF);
5843 ForcedScalars[VF].insert(
I);
5850 "Trying to set a vectorization decision for a scalar VF");
5852 auto ForcedScalar = ForcedScalars.find(VF);
5867 for (
auto &ArgOp : CI->
args())
5876 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5886 "Unexpected valid cost for scalarizing scalable vectors");
5893 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5894 ForcedScalar->second.contains(CI)) ||
5902 bool MaskRequired =
Legal->isMaskRequired(CI);
5905 for (
Type *ScalarTy : ScalarTys)
5914 std::nullopt, *RedCost);
5925 if (Info.Shape.VF != VF)
5929 if (MaskRequired && !Info.isMasked())
5933 bool ParamsOk =
true;
5935 switch (Param.ParamKind) {
5941 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
5978 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
5989 if (VectorCost <=
Cost) {
6011 return !OpI || !
TheLoop->contains(OpI) ||
6015 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
6027 return InstsToScalarize[VF][
I];
6030 auto ForcedScalar = ForcedScalars.find(VF);
6031 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
6032 auto InstSet = ForcedScalar->second;
6033 if (InstSet.count(
I))
6038 Type *RetTy =
I->getType();
6041 auto *SE =
PSE.getSE();
6045 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6050 auto Scalarized = InstsToScalarize.find(VF);
6051 assert(Scalarized != InstsToScalarize.end() &&
6052 "VF not yet analyzed for scalarization profitability");
6053 return !Scalarized->second.count(
I) &&
6055 auto *UI = cast<Instruction>(U);
6056 return !Scalarized->second.count(UI);
6065 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6066 I->getOpcode() == Instruction::PHI ||
6067 (
I->getOpcode() == Instruction::BitCast &&
6068 I->getType()->isPointerTy()) ||
6069 HasSingleCopyAfterVectorization(
I, VF));
6075 !
TTI.getNumberOfParts(VectorTy))
6079 switch (
I->getOpcode()) {
6080 case Instruction::GetElementPtr:
6086 case Instruction::Br: {
6093 bool ScalarPredicatedBB =
false;
6096 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6097 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6099 ScalarPredicatedBB =
true;
6101 if (ScalarPredicatedBB) {
6109 TTI.getScalarizationOverhead(
6117 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6125 case Instruction::Switch: {
6127 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6129 return Switch->getNumCases() *
6130 TTI.getCmpSelInstrCost(
6132 toVectorTy(Switch->getCondition()->getType(), VF),
6136 case Instruction::PHI: {
6153 Type *ResultTy = Phi->getType();
6159 auto *Phi = dyn_cast<PHINode>(U);
6160 if (Phi && Phi->getParent() == TheLoop->getHeader())
6165 auto &ReductionVars =
Legal->getReductionVars();
6166 auto Iter = ReductionVars.find(HeaderUser);
6167 if (Iter != ReductionVars.end() &&
6169 Iter->second.getRecurrenceKind()))
6172 return (Phi->getNumIncomingValues() - 1) *
6173 TTI.getCmpSelInstrCost(
6174 Instruction::Select,
toVectorTy(ResultTy, VF),
6184 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6185 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6189 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6191 case Instruction::UDiv:
6192 case Instruction::SDiv:
6193 case Instruction::URem:
6194 case Instruction::SRem:
6198 ScalarCost : SafeDivisorCost;
6202 case Instruction::Add:
6203 case Instruction::Sub: {
6204 auto Info =
Legal->getHistogramInfo(
I);
6211 if (!RHS || RHS->getZExtValue() != 1)
6213 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6217 Type *ScalarTy =
I->getType();
6221 {PtrTy, ScalarTy, MaskTy});
6224 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6225 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6229 case Instruction::FAdd:
6230 case Instruction::FSub:
6231 case Instruction::Mul:
6232 case Instruction::FMul:
6233 case Instruction::FDiv:
6234 case Instruction::FRem:
6235 case Instruction::Shl:
6236 case Instruction::LShr:
6237 case Instruction::AShr:
6238 case Instruction::And:
6239 case Instruction::Or:
6240 case Instruction::Xor: {
6244 if (
I->getOpcode() == Instruction::Mul &&
6245 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6246 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6247 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6248 PSE.getSCEV(
I->getOperand(1))->isOne())))
6257 Value *Op2 =
I->getOperand(1);
6263 auto Op2Info =
TTI.getOperandInfo(Op2);
6269 return TTI.getArithmeticInstrCost(
6271 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6272 Op2Info, Operands,
I,
TLI);
6274 case Instruction::FNeg: {
6275 return TTI.getArithmeticInstrCost(
6277 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6278 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6279 I->getOperand(0),
I);
6281 case Instruction::Select: {
6286 const Value *Op0, *Op1;
6297 return TTI.getArithmeticInstrCost(
6299 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6302 Type *CondTy =
SI->getCondition()->getType();
6308 Pred = Cmp->getPredicate();
6309 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6310 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6311 {TTI::OK_AnyValue, TTI::OP_None},
I);
6313 case Instruction::ICmp:
6314 case Instruction::FCmp: {
6315 Type *ValTy =
I->getOperand(0)->getType();
6321 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6322 "if both the operand and the compare are marked for "
6323 "truncation, they must have the same bitwidth");
6328 return TTI.getCmpSelInstrCost(
6331 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6333 case Instruction::Store:
6334 case Instruction::Load: {
6339 "CM decision should be taken at this point");
6346 return getMemoryInstructionCost(
I, VF);
6348 case Instruction::BitCast:
6349 if (
I->getType()->isPointerTy())
6352 case Instruction::ZExt:
6353 case Instruction::SExt:
6354 case Instruction::FPToUI:
6355 case Instruction::FPToSI:
6356 case Instruction::FPExt:
6357 case Instruction::PtrToInt:
6358 case Instruction::IntToPtr:
6359 case Instruction::SIToFP:
6360 case Instruction::UIToFP:
6361 case Instruction::Trunc:
6362 case Instruction::FPTrunc: {
6366 "Expected a load or a store!");
6392 unsigned Opcode =
I->getOpcode();
6395 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6398 CCH = ComputeCCH(Store);
6401 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6402 Opcode == Instruction::FPExt) {
6404 CCH = ComputeCCH(Load);
6412 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6413 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6420 Type *SrcScalarTy =
I->getOperand(0)->getType();
6432 (
I->getOpcode() == Instruction::ZExt ||
6433 I->getOpcode() == Instruction::SExt))
6437 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6439 case Instruction::Call:
6441 case Instruction::ExtractValue:
6443 case Instruction::Alloca:
6451 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6466 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6467 return RequiresScalarEpilogue &&
6481 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6482 return VecValuesToIgnore.contains(U) ||
6483 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6492 if (Group->getInsertPos() == &
I)
6495 DeadInterleavePointerOps.
push_back(PointerOp);
6501 if (Br->isConditional())
6508 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6511 Instruction *UI = cast<Instruction>(U);
6512 return !VecValuesToIgnore.contains(U) &&
6513 (!isAccessInterleaved(UI) ||
6514 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6534 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6546 if ((ThenEmpty && ElseEmpty) ||
6548 ElseBB->
phis().empty()) ||
6550 ThenBB->
phis().empty())) {
6562 return !VecValuesToIgnore.contains(U) &&
6563 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6571 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6580 for (
const auto &Reduction :
Legal->getReductionVars()) {
6587 for (
const auto &Induction :
Legal->getInductionVars()) {
6596 if (!InLoopReductions.empty())
6599 for (
const auto &Reduction :
Legal->getReductionVars()) {
6600 PHINode *Phi = Reduction.first;
6616 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6624 bool InLoop = !ReductionOperations.
empty();
6627 InLoopReductions.insert(Phi);
6630 for (
auto *
I : ReductionOperations) {
6631 InLoopReductionImmediateChains[
I] = LastChain;
6635 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6636 <<
" reduction for phi: " << *Phi <<
"\n");
6649 unsigned WidestType;
6653 TTI.enableScalableVectorization()
6658 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6669 if (!OrigLoop->isInnermost()) {
6679 <<
"overriding computed VF.\n");
6682 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6684 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6685 <<
"not supported by the target.\n");
6687 "Scalable vectorization requested but not supported by the target",
6688 "the scalable user-specified vectorization width for outer-loop "
6689 "vectorization cannot be used because the target does not support "
6690 "scalable vectors.",
6691 "ScalableVFUnfeasible", ORE, OrigLoop);
6696 "VF needs to be a power of two");
6698 <<
"VF " << VF <<
" to build VPlans.\n");
6708 return {VF, 0 , 0 };
6712 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6713 "VPlan-native path.\n");
6718 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6719 CM.collectValuesToIgnore();
6720 CM.collectElementTypesForWidening();
6727 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6731 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6732 "which requires masked-interleaved support.\n");
6733 if (CM.InterleaveInfo.invalidateGroups())
6737 CM.invalidateCostModelingDecisions();
6740 if (CM.foldTailByMasking())
6741 Legal->prepareToFoldTailByMasking();
6748 "UserVF ignored because it may be larger than the maximal safe VF",
6749 "InvalidUserVF", ORE, OrigLoop);
6752 "VF needs to be a power of two");
6755 CM.collectInLoopReductions();
6756 if (CM.selectUserVectorizationFactor(UserVF)) {
6758 buildVPlansWithVPRecipes(UserVF, UserVF);
6763 "InvalidCost", ORE, OrigLoop);
6776 CM.collectInLoopReductions();
6777 for (
const auto &VF : VFCandidates) {
6779 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6798 return CM.isUniformAfterVectorization(
I, VF);
6802 return CM.ValuesToIgnore.contains(UI) ||
6803 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6808 return CM.getPredBlockCostDivisor(
CostKind, BB);
6827 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6829 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6831 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6832 for (
Value *
Op : IVInsts[
I]->operands()) {
6834 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6840 for (User *U :
IV->users()) {
6853 if (TC == VF && !CM.foldTailByMasking())
6857 for (Instruction *IVInst : IVInsts) {
6862 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6863 <<
": induction instruction " << *IVInst <<
"\n";
6865 Cost += InductionCost;
6875 CM.TheLoop->getExitingBlocks(Exiting);
6876 SetVector<Instruction *> ExitInstrs;
6878 for (BasicBlock *EB : Exiting) {
6883 ExitInstrs.
insert(CondI);
6887 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6889 if (!OrigLoop->contains(CondI) ||
6894 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6895 <<
": exit condition instruction " << *CondI <<
"\n";
6901 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6902 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6903 !ExitInstrs.contains(cast<Instruction>(U));
6915 for (BasicBlock *BB : OrigLoop->blocks()) {
6919 if (BB == OrigLoop->getLoopLatch())
6921 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6928 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6934 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6935 <<
": forced scalar " << *ForcedScalar <<
"\n";
6939 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6944 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6945 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6954 ElementCount VF)
const {
6955 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.
getSE(),
6964 <<
" (Estimated cost per lane: ");
6966 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
6989 return &WidenMem->getIngredient();
6998 if (!VPI || VPI->getOpcode() != Instruction::Select)
7002 switch (WR->getOpcode()) {
7003 case Instruction::UDiv:
7004 case Instruction::SDiv:
7005 case Instruction::URem:
7006 case Instruction::SRem:
7019 auto *IG =
IR->getInterleaveGroup();
7020 unsigned NumMembers = IG->getNumMembers();
7021 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7055 if (RepR->isSingleScalar() &&
7057 RepR->getUnderlyingInstr(), VF))
7060 if (
Instruction *UI = GetInstructionForCost(&R)) {
7065 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7077 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7079 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7082 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7083 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7085 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7095 VPlan &FirstPlan = *VPlans[0];
7101 ?
"Reciprocal Throughput\n"
7103 ?
"Instruction Latency\n"
7106 ?
"Code Size and Latency\n"
7111 "More than a single plan/VF w/o any plan having scalar VF");
7115 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7120 if (ForceVectorization) {
7127 for (
auto &
P : VPlans) {
7129 P->vectorFactors().end());
7133 return CM.shouldConsiderRegPressureForVF(VF);
7137 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7144 <<
"LV: Not considering vector loop of width " << VF
7145 <<
" because it will not generate any vector instructions.\n");
7151 <<
"LV: Not considering vector loop of width " << VF
7152 <<
" because it would cause replicated blocks to be generated,"
7153 <<
" which isn't allowed when optimizing for size.\n");
7160 if (CM.shouldConsiderRegPressureForVF(VF) &&
7162 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7163 << VF <<
" because it uses too many registers\n");
7167 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7168 BestFactor = CurrentFactor;
7171 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7172 ProfitableVFs.push_back(CurrentFactor);
7188 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7189 *CM.PSE.getSE(), OrigLoop);
7190 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7195 !Legal->getLAI()->getSymbolicStrides().empty() ||
7198 BestFactor.
Width) ||
7201 " VPlan cost model and legacy cost model disagreed");
7203 "when vectorizing, the scalar cost must be computed.");
7213 "RdxResult must be ComputeFindIVResult");
7231 if (!EpiRedResult ||
7237 auto *EpiRedHeaderPhi =
7239 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7240 Value *MainResumeValue;
7244 "unexpected start recipe");
7245 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7247 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7249 [[maybe_unused]]
Value *StartV =
7250 EpiRedResult->getOperand(1)->getLiveInIRValue();
7253 "AnyOf expected to start with ICMP_NE");
7254 assert(Cmp->getOperand(1) == StartV &&
7255 "AnyOf expected to start by comparing main resume value to original "
7257 MainResumeValue = Cmp->getOperand(0);
7260 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7262 Value *Cmp, *OrigResumeV, *CmpOp;
7263 [[maybe_unused]]
bool IsExpectedPattern =
7264 match(MainResumeValue,
7270 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7271 MainResumeValue = OrigResumeV;
7286 "Trying to execute plan with unsupported VF");
7288 "Trying to execute plan with unsupported UF");
7290 ++LoopsEarlyExitVectorized;
7298 bool HasBranchWeights =
7300 if (HasBranchWeights) {
7301 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7303 BestVPlan, BestVF, VScale);
7308 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7321 OrigLoop->getStartLoc(),
7322 OrigLoop->getHeader())
7323 <<
"Created vector loop never executes due to insufficient trip "
7344 BestVPlan, VectorPH, CM.foldTailByMasking(),
7345 CM.requiresScalarEpilogue(BestVF.
isVector()));
7357 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7358 "count during epilogue vectorization");
7362 OrigLoop->getParentLoop(),
7363 Legal->getWidestInductionType());
7365#ifdef EXPENSIVE_CHECKS
7366 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7377 "final VPlan is invalid");
7384 if (!Exit->hasPredecessors())
7406 MDNode *LID = OrigLoop->getLoopID();
7407 unsigned OrigLoopInvocationWeight = 0;
7408 std::optional<unsigned> OrigAverageTripCount =
7420 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7422 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7424 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7425 OrigLoopInvocationWeight,
7427 DisableRuntimeUnroll);
7435 return ExpandedSCEVs;
7450 EPI.EpilogueIterationCountCheck =
7452 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7462 EPI.MainLoopIterationCountCheck =
7471 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7472 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7473 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7474 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7475 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7481 dbgs() <<
"intermediate fn:\n"
7482 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7488 assert(Bypass &&
"Expected valid bypass basic block.");
7492 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7493 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7497 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7523 return TCCheckBlock;
7536 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7544 R.moveBefore(*NewEntry, NewEntry->
end());
7548 Plan.setEntry(NewEntry);
7551 return OriginalScalarPH;
7556 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7557 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7558 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7564 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7571 VPI->
getOpcode() == Instruction::Store) &&
7572 "Must be called with either a load or store");
7577 CM.getWideningDecision(
I, VF);
7579 "CM decision should be taken at this point.");
7582 if (CM.isScalarAfterVectorization(
I, VF) ||
7583 CM.isProfitableToScalarize(
I, VF))
7592 if (
Legal->isMaskRequired(
I))
7593 Mask = getBlockInMask(Builder.getInsertBlock());
7598 CM.getWideningDecision(
I,
Range.Start);
7607 Ptr->getUnderlyingValue()->stripPointerCasts());
7615 CM.foldTailByMasking() || !
GEP
7617 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7623 GEP ?
GEP->getNoWrapFlags()
7627 Builder.insert(VectorPtr);
7630 if (VPI->
getOpcode() == Instruction::Load) {
7632 return new VPWidenLoadRecipe(*Load,
Ptr, Mask, Consecutive,
Reverse, *VPI,
7637 return new VPWidenStoreRecipe(*Store,
Ptr, VPI->
getOperand(0), Mask,
7643static VPWidenIntOrFpInductionRecipe *
7648 "step must be loop invariant");
7652 "Start VPValue must match IndDesc's start value");
7674VPRecipeBuilder::tryToOptimizeInductionPHI(VPInstruction *VPI, VFRange &
Range) {
7679 if (
auto *
II =
Legal->getIntOrFpInductionDescriptor(Phi))
7683 if (
auto *
II =
Legal->getPointerInductionDescriptor(Phi)) {
7685 return new VPWidenPointerInductionRecipe(
7688 [&](ElementCount VF) {
7689 return CM.isScalarAfterVectorization(Phi, VF);
7697VPWidenIntOrFpInductionRecipe *
7698VPRecipeBuilder::tryToOptimizeInductionTruncate(VPInstruction *VPI,
7708 auto IsOptimizableIVTruncate =
7709 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7710 return [=](ElementCount VF) ->
bool {
7711 return CM.isOptimizableIVTruncate(K, VF);
7716 IsOptimizableIVTruncate(
I),
Range))
7723 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7731 return new VPWidenIntOrFpInductionRecipe(
7735VPSingleDefRecipe *VPRecipeBuilder::tryToWidenCall(VPInstruction *VPI,
7739 [
this, CI](ElementCount VF) {
7740 return CM.isScalarWithPredication(CI, VF);
7748 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7749 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7750 ID == Intrinsic::pseudoprobe ||
7751 ID == Intrinsic::experimental_noalias_scope_decl))
7758 bool ShouldUseVectorIntrinsic =
7760 [&](ElementCount VF) ->
bool {
7761 return CM.getCallWideningDecision(CI, VF).Kind ==
7765 if (ShouldUseVectorIntrinsic)
7766 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(), *VPI, *VPI,
7770 std::optional<unsigned> MaskPos;
7774 [&](ElementCount VF) ->
bool {
7789 LoopVectorizationCostModel::CallWideningDecision Decision =
7790 CM.getCallWideningDecision(CI, VF);
7800 if (ShouldUseVectorCall) {
7801 if (MaskPos.has_value()) {
7809 VPValue *
Mask =
nullptr;
7810 if (
Legal->isMaskRequired(CI))
7811 Mask = getBlockInMask(Builder.getInsertBlock());
7816 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7820 return new VPWidenCallRecipe(CI, Variant,
Ops, *VPI, *VPI,
7827bool VPRecipeBuilder::shouldWiden(Instruction *
I, VFRange &
Range)
const {
7829 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7832 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7833 return CM.isScalarAfterVectorization(
I, VF) ||
7834 CM.isProfitableToScalarize(
I, VF) ||
7835 CM.isScalarWithPredication(
I, VF);
7841VPWidenRecipe *VPRecipeBuilder::tryToWiden(VPInstruction *VPI) {
7846 case Instruction::SDiv:
7847 case Instruction::UDiv:
7848 case Instruction::SRem:
7849 case Instruction::URem: {
7852 if (CM.isPredicatedInst(
I)) {
7854 VPValue *
Mask = getBlockInMask(Builder.getInsertBlock());
7863 case Instruction::Add:
7864 case Instruction::And:
7865 case Instruction::AShr:
7866 case Instruction::FAdd:
7867 case Instruction::FCmp:
7868 case Instruction::FDiv:
7869 case Instruction::FMul:
7870 case Instruction::FNeg:
7871 case Instruction::FRem:
7872 case Instruction::FSub:
7873 case Instruction::ICmp:
7874 case Instruction::LShr:
7875 case Instruction::Mul:
7876 case Instruction::Or:
7877 case Instruction::Select:
7878 case Instruction::Shl:
7879 case Instruction::Sub:
7880 case Instruction::Xor:
7881 case Instruction::Freeze: {
7887 ScalarEvolution &SE = *PSE.
getSE();
7888 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7889 if (!
Op->isLiveIn())
7891 Value *
V =
Op->getUnderlyingValue();
7900 if (VPI->
getOpcode() == Instruction::Mul)
7901 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7903 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7905 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7907 case Instruction::ExtractValue: {
7910 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7911 unsigned Idx = EVI->getIndices()[0];
7913 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7918VPHistogramRecipe *VPRecipeBuilder::tryToWidenHistogram(
const HistogramInfo *HI,
7919 VPInstruction *VPI) {
7921 unsigned Opcode =
HI->Update->getOpcode();
7922 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7923 "Histogram update operation must be an Add or Sub");
7929 HGramOps.
push_back(getVPValueOrAddLiveIn(
HI->Update->getOperand(1)));
7933 if (
Legal->isMaskRequired(
HI->Store))
7934 HGramOps.
push_back(getBlockInMask(Builder.getInsertBlock()));
7936 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
7943 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7946 bool IsPredicated = CM.isPredicatedInst(
I);
7954 case Intrinsic::assume:
7955 case Intrinsic::lifetime_start:
7956 case Intrinsic::lifetime_end:
7978 VPValue *BlockInMask =
nullptr;
7979 if (!IsPredicated) {
7983 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
7994 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
7996 "Should not predicate a uniform recipe");
8008 PartialReductionChains;
8009 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8010 getScaledReductions(Phi, RdxDesc.getLoopExitInstr(),
Range,
8011 PartialReductionChains);
8020 for (
const auto &[PartialRdx,
_] : PartialReductionChains)
8021 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8023 auto ExtendIsOnlyUsedByPartialReductions =
8025 return all_of(Extend->users(), [&](
const User *U) {
8026 return PartialReductionOps.contains(U);
8032 for (
auto Pair : PartialReductionChains) {
8034 if (ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendA) &&
8035 (!Chain.
ExtendB || ExtendIsOnlyUsedByPartialReductions(Chain.
ExtendB)))
8036 ScaledReductionMap.try_emplace(Chain.
Reduction, Pair.second);
8043 for (
const auto &[Chain, Scale] : PartialReductionChains) {
8044 auto AllUsersPartialRdx = [ScaleVal = Scale,
this](
const User *U) {
8046 if (
isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader()) {
8047 return all_of(UI->users(), [ScaleVal,
this](
const User *U) {
8048 auto *UI = cast<Instruction>(U);
8049 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal;
8052 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8053 !OrigLoop->contains(UI->getParent());
8055 if (!
all_of(Chain.Reduction->users(), AllUsersPartialRdx))
8056 ScaledReductionMap.erase(Chain.Reduction);
8060bool VPRecipeBuilder::getScaledReductions(
8062 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8063 if (!CM.TheLoop->contains(RdxExitInstr))
8070 Value *
Op = Update->getOperand(0);
8071 Value *PhiOp = Update->getOperand(1);
8079 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8080 PHI = Chains.rbegin()->first.Reduction;
8082 Op = Update->getOperand(0);
8083 PhiOp = Update->getOperand(1);
8091 using namespace llvm::PatternMatch;
8098 std::optional<unsigned> BinOpc;
8099 Type *ExtOpTypes[2] = {
nullptr};
8102 auto CollectExtInfo = [
this, &Exts, &ExtOpTypes,
8103 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
8108 ExtOpTypes[
I] = ExtOpTypes[0];
8109 ExtKinds[
I] = ExtKinds[0];
8118 if (!CM.TheLoop->contains(Exts[
I]))
8136 if (!CollectExtInfo(
Ops))
8139 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8143 if (!CollectExtInfo(
Ops))
8146 ExtendUser = Update;
8147 BinOpc = std::nullopt;
8151 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8153 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8160 [&](ElementCount VF) {
8162 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8163 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8168 Chains.emplace_back(Chain, TargetScaleFactor);
8185 "Non-header phis should have been handled during predication");
8187 assert(R->getNumOperands() == 2 &&
"Must have 2 operands for header phis");
8188 if ((Recipe = tryToOptimizeInductionPHI(PhiR,
Range)))
8192 assert((Legal->isReductionVariable(Phi) ||
8193 Legal->isFixedOrderRecurrence(Phi)) &&
8194 "can only widen reductions and fixed-order recurrences here");
8195 VPValue *StartV = R->getOperand(0);
8196 if (Legal->isReductionVariable(Phi)) {
8199 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8202 unsigned ScaleFactor =
8206 CM.useOrderedReductions(RdxDesc), ScaleFactor);
8218 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8222 if (VPI->
getOpcode() == Instruction::Trunc &&
8223 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8231 if (VPI->
getOpcode() == Instruction::Call)
8232 return tryToWidenCall(VPI,
Range);
8234 if (VPI->
getOpcode() == Instruction::Store)
8236 return tryToWidenHistogram(*HistInfo, VPI);
8238 if (VPI->
getOpcode() == Instruction::Load ||
8240 return tryToWidenMemory(VPI,
Range);
8245 if (!shouldWiden(Instr,
Range))
8248 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8252 if (VPI->
getOpcode() == Instruction::Select)
8260 CastR->getResultType(), CI, *VPI, *VPI,
8264 return tryToWiden(VPI);
8269 unsigned ScaleFactor) {
8270 assert(Reduction->getNumOperands() == 2 &&
8271 "Unexpected number of operands for partial reduction");
8273 VPValue *BinOp = Reduction->getOperand(0);
8280 "all accumulators in chain must have same scale factor");
8282 unsigned ReductionOpcode = Reduction->getOpcode();
8283 auto *ReductionI = Reduction->getUnderlyingInstr();
8284 if (ReductionOpcode == Instruction::Sub) {
8285 auto *
const Zero = ConstantInt::get(ReductionI->getType(), 0);
8287 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8288 Ops.push_back(BinOp);
8292 ReductionOpcode = Instruction::Add;
8296 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8299 ScaleFactor, ReductionI);
8302void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8307 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
8311 OrigLoop, LI, DT, PSE.
getSE());
8316 LVer.prepareNoAliasMetadata();
8322 OrigLoop, *LI,
Legal->getWidestInductionType(),
8325 auto MaxVFTimes2 = MaxVF * 2;
8327 VFRange SubRange = {VF, MaxVFTimes2};
8328 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8329 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8332 *Plan, CM.getMinimalBitwidths());
8335 if (CM.foldTailWithEVL())
8337 *Plan, CM.getMaxSafeElements());
8339 VPlans.push_back(std::move(Plan));
8345VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8348 using namespace llvm::VPlanPatternMatch;
8349 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8356 bool RequiresScalarEpilogueCheck =
8358 [
this](ElementCount VF) {
8359 return !CM.requiresScalarEpilogue(VF.
isVector());
8364 CM.foldTailByMasking());
8372 bool IVUpdateMayOverflow =
false;
8373 for (ElementCount VF :
Range)
8381 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8382 bool HasNUW = !IVUpdateMayOverflow ||
Style == TailFoldingStyle::None;
8387 m_VPInstruction<Instruction::Add>(
8389 "Did not find the canonical IV increment");
8402 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8403 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8405 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8410 "Unsupported interleave factor for scalable vectors");
8413 if (!getDecisionAndClampRange(ApplyIG,
Range))
8415 InterleaveGroups.
insert(IG);
8422 *Plan, CM.foldTailByMasking());
8428 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8429 Builder, BlockMaskCache);
8431 if (!CM.foldTailWithEVL())
8432 RecipeBuilder.collectScaledReductions(
Range);
8437 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8440 auto *MiddleVPBB = Plan->getMiddleBlock();
8444 DenseMap<VPValue *, VPValue *> Old2New;
8449 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8464 Builder.setInsertPoint(SingleDef);
8471 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8473 if (
Legal->isInvariantStoreOfReduction(SI)) {
8475 auto *Recipe =
new VPReplicateRecipe(
8476 SI,
R.operands(),
true ,
nullptr , *VPI,
8478 Recipe->insertBefore(*MiddleVPBB, MBIP);
8480 R.eraseFromParent();
8484 VPRecipeBase *Recipe =
8485 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8490 RecipeBuilder.setRecipe(Instr, Recipe);
8496 Builder.insert(Recipe);
8503 "Unexpected multidef recipe");
8504 R.eraseFromParent();
8513 RecipeBuilder.updateBlockMaskCache(Old2New);
8514 for (VPValue *Old : Old2New.
keys())
8515 Old->getDefiningRecipe()->eraseFromParent();
8519 "entry block must be set to a VPRegionBlock having a non-empty entry "
8525 DenseMap<VPValue *, VPValue *> IVEndValues;
8534 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8546 if (!CM.foldTailWithEVL()) {
8547 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8548 *CM.PSE.getSE(), OrigLoop);
8553 for (ElementCount VF :
Range)
8555 Plan->setName(
"Initial VPlan");
8561 InterleaveGroups, RecipeBuilder,
8562 CM.isScalarEpilogueAllowed());
8566 Legal->getLAI()->getSymbolicStrides());
8568 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8569 return Legal->blockNeedsPredication(BB);
8572 BlockNeedsPredication);
8584 bool WithoutRuntimeCheck =
8585 Style == TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck;
8587 WithoutRuntimeCheck);
8595VPlanPtr LoopVectorizationPlanner::tryToBuildVPlan(VFRange &
Range) {
8600 assert(!OrigLoop->isInnermost());
8604 OrigLoop, *LI,
Legal->getWidestInductionType(),
8613 for (ElementCount VF :
Range)
8618 [
this](PHINode *
P) {
8619 return Legal->getIntOrFpInductionDescriptor(
P);
8626 DenseMap<VPBasicBlock *, VPValue *> BlockMaskCache;
8627 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &
TTI,
Legal, CM, PSE,
8628 Builder, BlockMaskCache);
8629 for (
auto &R : Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8633 RecipeBuilder.setRecipe(HeaderR->getUnderlyingInstr(), HeaderR);
8635 DenseMap<VPValue *, VPValue *> IVEndValues;
8659void LoopVectorizationPlanner::adjustRecipesForReductions(
8660 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
8661 using namespace VPlanPatternMatch;
8662 VPTypeAnalysis TypeInfo(*Plan);
8663 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8665 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8668 for (VPRecipeBase &R : Header->phis()) {
8670 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8677 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8680 SetVector<VPSingleDefRecipe *> Worklist;
8682 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8683 VPSingleDefRecipe *Cur = Worklist[
I];
8684 for (VPUser *U : Cur->
users()) {
8686 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8687 assert((UserRecipe->getParent() == MiddleVPBB ||
8688 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8689 "U must be either in the loop region, the middle block or the "
8690 "scalar preheader.");
8693 Worklist.
insert(UserRecipe);
8704 VPSingleDefRecipe *PreviousLink = PhiR;
8705 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8707 assert(Blend->getNumIncomingValues() == 2 &&
8708 "Blend must have 2 incoming values");
8709 if (Blend->getIncomingValue(0) == PhiR) {
8710 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8712 assert(Blend->getIncomingValue(1) == PhiR &&
8713 "PhiR must be an operand of the blend");
8714 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8719 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8722 unsigned IndexOfFirstOperand;
8724 bool IsFMulAdd = (
Kind == RecurKind::FMulAdd);
8726 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8730 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8733 CurrentLink->getOperand(2) == PreviousLink &&
8734 "expected a call where the previous link is the added operand");
8740 VPInstruction *FMulRecipe =
new VPInstruction(
8742 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8744 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8746 }
else if (PhiR->isInLoop() && Kind == RecurKind::AddChainWithSubs &&
8748 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8749 auto *
Zero = Plan->getConstantInt(PhiTy, 0);
8750 VPWidenRecipe *
Sub =
new VPWidenRecipe(
8751 Instruction::Sub, {
Zero, CurrentLink->getOperand(1)}, {},
8753 Sub->setUnderlyingValue(CurrentLinkI);
8754 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8761 "must be a select recipe");
8762 IndexOfFirstOperand = 1;
8765 "Expected to replace a VPWidenSC");
8766 IndexOfFirstOperand = 0;
8771 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8772 ? IndexOfFirstOperand + 1
8773 : IndexOfFirstOperand;
8774 VecOp = CurrentLink->getOperand(VecOpId);
8775 assert(VecOp != PreviousLink &&
8776 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8777 (VecOpId - IndexOfFirstOperand)) ==
8779 "PreviousLink must be the operand other than VecOp");
8782 VPValue *CondOp =
nullptr;
8783 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8787 RecurrenceDescriptor RdxDesc =
Legal->getRecurrenceDescriptor(
8793 auto *RedRecipe =
new VPReductionRecipe(
8794 Kind, FMFs, CurrentLinkI, PreviousLink, VecOp, CondOp,
8801 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8805 CurrentLink->replaceAllUsesWith(RedRecipe);
8807 PreviousLink = RedRecipe;
8811 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8813 for (VPRecipeBase &R :
8814 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8819 const RecurrenceDescriptor &RdxDesc =
Legal->getRecurrenceDescriptor(
8821 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8830 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8833 std::optional<FastMathFlags> FMFs =
8838 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8839 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8848 if (CM.usePredicatedReductionSelect())
8859 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8865 VPInstruction *FinalReductionResult;
8866 VPBuilder::InsertPointGuard Guard(Builder);
8867 Builder.setInsertPoint(MiddleVPBB, IP);
8872 FinalReductionResult =
8877 FinalReductionResult =
8879 {PhiR,
Start, NewExitingVPV}, ExitDL);
8885 FinalReductionResult =
8887 {PhiR, NewExitingVPV},
Flags, ExitDL);
8894 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8896 "Unexpected truncated min-max recurrence!");
8898 VPWidenCastRecipe *Trunc;
8900 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8901 VPWidenCastRecipe *Extnd;
8903 VPBuilder::InsertPointGuard Guard(Builder);
8904 Builder.setInsertPoint(
8905 NewExitingVPV->getDefiningRecipe()->getParent(),
8906 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8908 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8909 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
8917 FinalReductionResult =
8918 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
8923 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
8925 if (FinalReductionResult == U || Parent->getParent())
8927 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
8938 return isa<VPWidenSelectRecipe>(U) ||
8939 (isa<VPReplicateRecipe>(U) &&
8940 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
8941 Instruction::Select);
8946 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
8948 Builder.setInsertPoint(
Select);
8952 if (
Select->getOperand(1) == PhiR)
8953 Cmp = Builder.createNot(Cmp);
8954 VPValue *
Or = Builder.createOr(PhiR, Cmp);
8955 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
8975 VPBuilder PHBuilder(Plan->getVectorPreheader());
8976 VPValue *Iden = Plan->getOrAddLiveIn(
8979 unsigned ScaleFactor =
8982 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
8983 VPValue *StartV = PHBuilder.createNaryOp(
8991 for (VPRecipeBase *R : ToDelete)
8992 R->eraseFromParent();
8997void LoopVectorizationPlanner::attachRuntimeChecks(
8998 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
8999 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9000 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9001 assert((!CM.OptForSize ||
9003 "Cannot SCEV check stride or overflow when optimizing for size");
9007 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9008 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9012 "Runtime checks are not supported for outer loops yet");
9014 if (CM.OptForSize) {
9017 "Cannot emit memory checks when optimizing for size, unless forced "
9020 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9021 OrigLoop->getStartLoc(),
9022 OrigLoop->getHeader())
9023 <<
"Code-size may be reduced by not forcing "
9024 "vectorization, or by source-code modifications "
9025 "eliminating the need for runtime checks "
9026 "(e.g., adding 'restrict').";
9040 bool IsIndvarOverflowCheckNeededForVF =
9041 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9043 CM.getTailFoldingStyle() !=
9050 Plan, VF, UF, MinProfitableTripCount,
9051 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9052 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9053 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9058 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9063 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9071 State.set(
this, DerivedIV,
VPLane(0));
9117 if (
TTI->preferPredicateOverEpilogue(&TFI))
9136 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9140 Function *
F = L->getHeader()->getParent();
9146 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
F,
9147 &Hints, IAI, PSI, BFI);
9151 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9171 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9173 BFI, PSI, Checks, BestPlan);
9175 << L->getHeader()->getParent()->getName() <<
"\"\n");
9197 if (S->getValueOperand()->getType()->isFloatTy())
9207 while (!Worklist.
empty()) {
9209 if (!L->contains(
I))
9211 if (!Visited.
insert(
I).second)
9221 I->getDebugLoc(), L->getHeader())
9222 <<
"floating point conversion changes vector width. "
9223 <<
"Mixed floating point precision requires an up/down "
9224 <<
"cast that will negatively impact performance.";
9227 for (
Use &
Op :
I->operands())
9243 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9249 << PredVPBB->getName() <<
":\n");
9250 Cost += PredVPBB->cost(VF, CostCtx);
9269 std::optional<unsigned> VScale) {
9285 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9344 uint64_t MinTC = std::max(MinTC1, MinTC2);
9346 MinTC =
alignTo(MinTC, IntVF);
9350 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9357 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9358 "trip count < minimum profitable VF ("
9369 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9371 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9392 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9411 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9412 bool UpdateResumePhis) {
9422 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9424 if (UpdateResumePhis)
9430 AddFreezeForFindLastIVReductions(MainPlan,
true);
9431 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9438 auto ResumePhiIter =
9440 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9443 VPPhi *ResumePhi =
nullptr;
9444 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9449 {},
"vec.epilog.resume.val");
9452 if (MainScalarPH->
begin() == MainScalarPH->
end())
9454 else if (&*MainScalarPH->
begin() != ResumePhi)
9469 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9474 Header->
setName(
"vec.epilog.vector.body");
9485 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9490 "Must only have a single non-zero incoming value");
9501 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9502 "all incoming values must be 0");
9508 return isa<VPScalarIVStepsRecipe>(U) ||
9509 isa<VPDerivedIVRecipe>(U) ||
9510 cast<VPRecipeBase>(U)->isScalarCast() ||
9511 cast<VPInstruction>(U)->getOpcode() ==
9514 "the canonical IV should only be used by its increment or "
9515 "ScalarIVSteps when resetting the start value");
9516 VPBuilder Builder(Header, Header->getFirstNonPhi());
9518 IV->replaceAllUsesWith(
Add);
9519 Add->setOperand(0,
IV);
9527 Value *ResumeV =
nullptr;
9532 auto *VPI = dyn_cast<VPInstruction>(U);
9534 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9535 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9536 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9539 ->getIncomingValueForBlock(L->getLoopPreheader());
9540 RecurKind RK = ReductionPhi->getRecurrenceKind();
9548 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9553 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9564 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9567 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9568 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9576 "unexpected start value");
9589 assert(ResumeV &&
"Must have a resume value");
9603 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9620 ExpandR->eraseFromParent();
9624 unsigned MainLoopStep =
9626 unsigned EpilogueLoopStep =
9631 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9642 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9647 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9648 if (OrigPhi != OldInduction) {
9649 auto *BinOp =
II.getInductionBinOp();
9655 EndValueFromAdditionalBypass =
9657 II.getStartValue(), Step,
II.getKind(), BinOp);
9658 EndValueFromAdditionalBypass->
setName(
"ind.end");
9660 return EndValueFromAdditionalBypass;
9666 const SCEV2ValueTy &ExpandedSCEVs,
9667 Value *MainVectorTripCount) {
9672 if (Phi.getBasicBlockIndex(Pred) != -1)
9674 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9678 if (ScalarPH->hasPredecessors()) {
9681 for (
const auto &[R, IRPhi] :
9682 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9691 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9693 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9696 Inc->setIncomingValueForBlock(BypassBlock, V);
9719 "expected this to be saved from the previous pass.");
9722 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9725 VecEpilogueIterationCountCheck},
9727 VecEpiloguePreHeader}});
9732 VecEpilogueIterationCountCheck, ScalarPH);
9735 VecEpilogueIterationCountCheck},
9739 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9740 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9741 if (SCEVCheckBlock) {
9743 VecEpilogueIterationCountCheck, ScalarPH);
9745 VecEpilogueIterationCountCheck},
9748 if (MemCheckBlock) {
9750 VecEpilogueIterationCountCheck, ScalarPH);
9763 for (
PHINode *Phi : PhisInBlock) {
9765 Phi->replaceIncomingBlockWith(
9767 VecEpilogueIterationCountCheck);
9774 return EPI.EpilogueIterationCountCheck == IncB;
9779 Phi->removeIncomingValue(SCEVCheckBlock);
9781 Phi->removeIncomingValue(MemCheckBlock);
9785 for (
auto *
I : InstsToMove)
9797 "VPlan-native path is not enabled. Only process inner loops.");
9800 << L->getHeader()->getParent()->getName() <<
"' from "
9801 << L->getLocStr() <<
"\n");
9806 dbgs() <<
"LV: Loop hints:"
9817 Function *
F = L->getHeader()->getParent();
9839 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9846 "early exit is not enabled",
9847 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9853 "faulting load is not supported",
9854 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9863 if (!L->isInnermost())
9867 assert(L->isInnermost() &&
"Inner loop expected.");
9870 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9884 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9886 "requiring a scalar epilogue is unsupported",
9887 "UncountableEarlyExitUnsupported",
ORE, L);
9900 if (ExpectedTC && ExpectedTC->isFixed() &&
9902 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
9903 <<
"This loop is worth vectorizing only if no scalar "
9904 <<
"iteration overheads are incurred.");
9906 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
9922 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
9924 "Can't vectorize when the NoImplicitFloat attribute is used",
9925 "loop not vectorized due to NoImplicitFloat attribute",
9926 "NoImplicitFloat",
ORE, L);
9936 TTI->isFPVectorizationPotentiallyUnsafe()) {
9938 "Potentially unsafe FP op prevents vectorization",
9939 "loop not vectorized due to unsafe FP support.",
9940 "UnsafeFP",
ORE, L);
9945 bool AllowOrderedReductions;
9950 AllowOrderedReductions =
TTI->enableOrderedReductions();
9955 ExactFPMathInst->getDebugLoc(),
9956 ExactFPMathInst->getParent())
9957 <<
"loop not vectorized: cannot prove it is safe to reorder "
9958 "floating-point operations";
9960 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
9961 "reorder floating-point operations\n");
9967 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
9970 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
9980 LVP.
plan(UserVF, UserIC);
9987 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9992 unsigned SelectedIC = std::max(IC, UserIC);
10001 if (Checks.getSCEVChecks().first &&
10002 match(Checks.getSCEVChecks().first,
m_One()))
10004 if (Checks.getMemRuntimeChecks().first &&
10005 match(Checks.getMemRuntimeChecks().first,
m_One()))
10010 bool ForceVectorization =
10014 if (!ForceVectorization &&
10020 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10022 <<
"loop not vectorized: cannot prove it is safe to reorder "
10023 "memory operations";
10032 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10033 bool VectorizeLoop =
true, InterleaveLoop =
true;
10035 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10037 "VectorizationNotBeneficial",
10038 "the cost-model indicates that vectorization is not beneficial"};
10039 VectorizeLoop =
false;
10044 "UserIC should only be ignored due to unsafe dependencies");
10045 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
10046 IntDiagMsg = {
"InterleavingUnsafe",
10047 "Ignoring user-specified interleave count due to possibly "
10048 "unsafe dependencies in the loop."};
10049 InterleaveLoop =
false;
10053 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10054 "interleaving should be avoided up front\n");
10055 IntDiagMsg = {
"InterleavingAvoided",
10056 "Ignoring UserIC, because interleaving was avoided up front"};
10057 InterleaveLoop =
false;
10058 }
else if (IC == 1 && UserIC <= 1) {
10062 "InterleavingNotBeneficial",
10063 "the cost-model indicates that interleaving is not beneficial"};
10064 InterleaveLoop =
false;
10066 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10067 IntDiagMsg.second +=
10068 " and is explicitly disabled or interleave count is set to 1";
10070 }
else if (IC > 1 && UserIC == 1) {
10072 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10074 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10075 "the cost-model indicates that interleaving is beneficial "
10076 "but is explicitly disabled or interleave count is set to 1"};
10077 InterleaveLoop =
false;
10083 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10084 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10085 <<
"to histogram operations.\n");
10087 "HistogramPreventsScalarInterleaving",
10088 "Unable to interleave without vectorization due to constraints on "
10089 "the order of histogram operations"};
10090 InterleaveLoop =
false;
10094 IC = UserIC > 0 ? UserIC : IC;
10098 if (!VectorizeLoop && !InterleaveLoop) {
10102 L->getStartLoc(), L->getHeader())
10103 << VecDiagMsg.second;
10107 L->getStartLoc(), L->getHeader())
10108 << IntDiagMsg.second;
10113 if (!VectorizeLoop && InterleaveLoop) {
10117 L->getStartLoc(), L->getHeader())
10118 << VecDiagMsg.second;
10120 }
else if (VectorizeLoop && !InterleaveLoop) {
10122 <<
") in " << L->getLocStr() <<
'\n');
10125 L->getStartLoc(), L->getHeader())
10126 << IntDiagMsg.second;
10128 }
else if (VectorizeLoop && InterleaveLoop) {
10130 <<
") in " << L->getLocStr() <<
'\n');
10136 using namespace ore;
10141 <<
"interleaved loop (interleaved count: "
10142 << NV(
"InterleaveCount", IC) <<
")";
10159 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10171 PSI, Checks, *BestMainPlan);
10173 *BestMainPlan, MainILV,
DT,
false);
10179 BFI,
PSI, Checks, BestEpiPlan);
10181 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10185 Checks, InstsToMove);
10186 ++LoopsEpilogueVectorized;
10188 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM,
BFI,
PSI,
10202 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10203 "DT not preserved correctly");
10218 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10222 bool Changed =
false, CFGChanged =
false;
10229 for (
const auto &L : *
LI)
10241 LoopsAnalyzed += Worklist.
size();
10244 while (!Worklist.
empty()) {
10287 if (
PSI &&
PSI->hasProfileSummary())
10290 if (!Result.MadeAnyChange)
10304 if (Result.MadeCFGChange) {
10320 OS, MapClassName2PassName);
10323 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10324 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(VPInstruction *PhiR, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecipe for PhiR.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan)
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Check, VPlan &Plan)
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
const SmallVectorImpl< Instruction * > & getCastInsts() const
Returns a reference to the type cast instructions in the induction update chain, that are redundant w...
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
BlockFrequencyInfo * BFI
BFI and PSI are used to check for profile guided size optimizations.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks, VPlan &Plan)
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, BasicBlock *BB) const
A helper function that returns how much we should divide the cost of a predicated block by.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
bool isScalarWithPredication(Instruction *I, ElementCount VF) const
Returns true if I is an instruction which requires predication and for which our chosen predication s...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF) const
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
Type * getRecurrenceType() const
Returns the type of the recurrence.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
A recipe for forming partial reductions.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true, if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
void replaceAllUsesWith(VPValue *New)
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
LLVMContext & getContext() const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
VPValue * getConstantInt(Type *Ty, uint64_t Val, bool IsSigned=false)
Return a VPValue wrapping a ConstantInt with the given type and value.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastElement, Op0_t > m_ExtractLastElement(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
TargetTransformInfo * TTI
Storage for information about made changes.
A chain of instructions that form a partial reduction.
Instruction * Reduction
The top-level binary operation that forms the reduction to a scalar after the loop body.
Instruction * ExtendA
The extension of each of the inner binary operation's operands.
A CRTP mix-in to automatically provide informational APIs needed for passes.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks