162#define LV_NAME "loop-vectorize"
163#define DEBUG_TYPE LV_NAME
169STATISTIC(LoopsVectorized,
"Number of loops vectorized");
170STATISTIC(LoopsAnalyzed,
"Number of loops analyzed for vectorization");
171STATISTIC(LoopsEpilogueVectorized,
"Number of epilogues vectorized");
172STATISTIC(LoopsEarlyExitVectorized,
"Number of early exit loops vectorized");
176 cl::desc(
"Enable vectorization of epilogue loops."));
180 cl::desc(
"When epilogue vectorization is enabled, and a value greater than "
181 "1 is specified, forces the given VF for all applicable epilogue "
185 "epilogue-vectorization-minimum-VF",
cl::Hidden,
186 cl::desc(
"Only loops with vectorization factor equal to or larger than "
187 "the specified value are considered for epilogue vectorization."));
193 cl::desc(
"Loops with a constant trip count that is smaller than this "
194 "value are vectorized only if no scalar iteration overheads "
199 cl::desc(
"The maximum allowed number of runtime memory checks"));
215 "prefer-predicate-over-epilogue",
218 cl::desc(
"Tail-folding and predication preferences over creating a scalar "
222 "Don't tail-predicate loops, create scalar epilogue"),
224 "predicate-else-scalar-epilogue",
225 "prefer tail-folding, create scalar epilogue if tail "
228 "predicate-dont-vectorize",
229 "prefers tail-folding, don't attempt vectorization if "
230 "tail-folding fails.")));
233 "force-tail-folding-style",
cl::desc(
"Force the tail folding style"),
239 "Create lane mask for data only, using active.lane.mask intrinsic"),
241 "data-without-lane-mask",
242 "Create lane mask with compare/stepvector"),
244 "Create lane mask using active.lane.mask intrinsic, and use "
245 "it for both data and control flow"),
247 "data-and-control-without-rt-check",
248 "Similar to data-and-control, but remove the runtime check"),
250 "Use predicated EVL instructions for tail folding. If EVL "
251 "is unsupported, fallback to data-without-lane-mask.")));
255 cl::desc(
"Enable use of wide lane masks when used for control flow in "
256 "tail-folded loops"));
260 cl::desc(
"Maximize bandwidth when selecting vectorization factor which "
261 "will be determined by the smallest type in loop."));
265 cl::desc(
"Enable vectorization on interleaved memory accesses in a loop"));
271 cl::desc(
"Enable vectorization on masked interleaved memory accesses in a loop"));
275 cl::desc(
"A flag that overrides the target's number of scalar registers."));
279 cl::desc(
"A flag that overrides the target's number of vector registers."));
283 cl::desc(
"A flag that overrides the target's max interleave factor for "
288 cl::desc(
"A flag that overrides the target's max interleave factor for "
289 "vectorized loops."));
293 cl::desc(
"A flag that overrides the target's expected cost for "
294 "an instruction to a single constant value. Mostly "
295 "useful for getting consistent testing."));
300 "Pretend that scalable vectors are supported, even if the target does "
301 "not support them. This flag should only be used for testing."));
306 "The cost of a loop that is considered 'small' by the interleaver."));
310 cl::desc(
"Enable the use of the block frequency analysis to access PGO "
311 "heuristics minimizing code growth in cold regions and being more "
312 "aggressive in hot regions."));
318 "Enable runtime interleaving until load/store ports are saturated"));
323 cl::desc(
"Max number of stores to be predicated behind an if."));
327 cl::desc(
"Count the induction variable only once when interleaving"));
331 cl::desc(
"Enable if predication of stores during vectorization."));
335 cl::desc(
"The maximum interleave count to use when interleaving a scalar "
336 "reduction in a nested loop."));
341 cl::desc(
"Prefer in-loop vector reductions, "
342 "overriding the targets preference."));
346 cl::desc(
"Enable the vectorisation of loops with in-order (strict) "
352 "Prefer predicating a reduction operation over an after loop select."));
356 cl::desc(
"Enable VPlan-native vectorization path with "
357 "support for outer loop vectorization."));
361#ifdef EXPENSIVE_CHECKS
367 cl::desc(
"Verfiy VPlans after VPlan transforms."));
376 "Build VPlan for every supported loop nest in the function and bail "
377 "out right after the build (stress test the VPlan H-CFG construction "
378 "in the VPlan-native vectorization path)."));
382 cl::desc(
"Enable loop interleaving in Loop vectorization passes"));
385 cl::desc(
"Run the Loop vectorization passes"));
388 "force-widen-divrem-via-safe-divisor",
cl::Hidden,
390 "Override cost based safe divisor widening for div/rem instructions"));
393 "vectorizer-maximize-bandwidth-for-vector-calls",
cl::init(
true),
395 cl::desc(
"Try wider VFs if they enable the use of vector variants"));
400 "Enable vectorization of early exit loops with uncountable exits."));
404 cl::desc(
"Discard VFs if their register pressure is too high."));
417 return DL.getTypeAllocSizeInBits(Ty) !=
DL.getTypeSizeInBits(Ty);
452static std::optional<ElementCount>
454 bool CanUseConstantMax =
true) {
464 if (!CanUseConstantMax)
476class GeneratedRTChecks;
508 VF(VecWidth),
UF(UnrollFactor),
Builder(
PSE.getSE()->getContext()),
511 Plan.getVectorLoopRegion()->getSinglePredecessor())) {}
617 "A high UF for the epilogue loop is likely not beneficial.");
637 UnrollFactor, CM, Checks,
Plan),
666 EPI.MainLoopVF,
EPI.MainLoopUF) {}
704 EPI.EpilogueVF,
EPI.EpilogueUF) {}
721 if (
I->getDebugLoc() !=
Empty)
722 return I->getDebugLoc();
725 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
726 if (OpInst->getDebugLoc() != Empty)
727 return OpInst->getDebugLoc();
730 return I->getDebugLoc();
739 dbgs() <<
"LV: " << Prefix << DebugMsg;
755static OptimizationRemarkAnalysis
761 if (
I &&
I->getDebugLoc())
762 DL =
I->getDebugLoc();
766 return OptimizationRemarkAnalysis(
PassName, RemarkName,
DL, CodeRegion);
774 assert(Ty->isIntegerTy() &&
"Expected an integer step");
782 return B.CreateElementCount(Ty, VFxStep);
787 return B.CreateElementCount(Ty, VF);
798 <<
"loop not vectorized: " << OREMsg);
821 "Vectorizing: ", TheLoop->
isInnermost() ?
"innermost loop" :
"outer loop",
827 <<
"vectorized " << LoopType <<
"loop (vectorization width: "
829 <<
", interleaved count: " <<
ore::NV(
"InterleaveCount", IC) <<
")";
886 initializeVScaleForTuning();
897 bool runtimeChecksRequired();
916 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
935 void collectValuesToIgnore();
938 void collectElementTypesForWidening();
942 void collectInLoopReductions();
963 "Profitable to scalarize relevant only for VF > 1.");
966 "cost-model should not be used for outer loops (in VPlan-native path)");
968 auto Scalars = InstsToScalarize.find(VF);
969 assert(Scalars != InstsToScalarize.end() &&
970 "VF not yet analyzed for scalarization profitability");
971 return Scalars->second.contains(
I);
978 "cost-model should not be used for outer loops (in VPlan-native path)");
988 auto UniformsPerVF = Uniforms.find(VF);
989 assert(UniformsPerVF != Uniforms.end() &&
990 "VF not yet analyzed for uniformity");
991 return UniformsPerVF->second.count(
I);
998 "cost-model should not be used for outer loops (in VPlan-native path)");
1002 auto ScalarsPerVF = Scalars.find(VF);
1003 assert(ScalarsPerVF != Scalars.end() &&
1004 "Scalar values are not calculated for VF");
1005 return ScalarsPerVF->second.count(
I);
1013 I->getType()->getScalarSizeInBits() < MinBWs.lookup(
I))
1015 return VF.
isVector() && MinBWs.contains(
I) &&
1037 WideningDecisions[{
I, VF}] = {W,
Cost};
1056 for (
unsigned Idx = 0; Idx < Grp->
getFactor(); ++Idx) {
1059 WideningDecisions[{
I, VF}] = {W, InsertPosCost};
1061 WideningDecisions[{
I, VF}] = {W, OtherMemberCost};
1073 "cost-model should not be used for outer loops (in VPlan-native path)");
1075 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1076 auto Itr = WideningDecisions.find(InstOnVF);
1077 if (Itr == WideningDecisions.end())
1079 return Itr->second.first;
1086 std::pair<Instruction *, ElementCount> InstOnVF(
I, VF);
1087 assert(WideningDecisions.contains(InstOnVF) &&
1088 "The cost is not calculated");
1089 return WideningDecisions[InstOnVF].second;
1102 std::optional<unsigned> MaskPos,
1105 CallWideningDecisions[{CI, VF}] = {Kind, Variant, IID, MaskPos,
Cost};
1111 auto I = CallWideningDecisions.find({CI, VF});
1112 if (
I == CallWideningDecisions.end())
1135 Value *
Op = Trunc->getOperand(0);
1136 if (
Op !=
Legal->getPrimaryInduction() &&
TTI.isTruncateFree(SrcTy, DestTy))
1140 return Legal->isInductionPhi(
Op);
1156 if (VF.
isScalar() || Uniforms.contains(VF))
1159 collectLoopUniforms(VF);
1161 collectLoopScalars(VF);
1169 return Legal->isConsecutivePtr(DataType, Ptr) &&
1177 return Legal->isConsecutivePtr(DataType, Ptr) &&
1192 return (
LI &&
TTI.isLegalMaskedGather(Ty,
Align)) ||
1199 return (
all_of(
Legal->getReductionVars(), [&](
auto &Reduction) ->
bool {
1200 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1201 return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1212 return ScalarCost < SafeDivisorCost;
1251 std::pair<InstructionCost, InstructionCost>
1278 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1285 LLVM_DEBUG(
dbgs() <<
"LV: Loop requires scalar epilogue: not exiting "
1286 "from latch block\n");
1291 "interleaved group requires scalar epilogue\n");
1294 LLVM_DEBUG(
dbgs() <<
"LV: Loop does not require scalar epilogue\n");
1312 if (!ChosenTailFoldingStyle)
1314 return IVUpdateMayOverflow ? ChosenTailFoldingStyle->first
1315 : ChosenTailFoldingStyle->second;
1323 assert(!ChosenTailFoldingStyle &&
"Tail folding must not be selected yet.");
1324 if (!
Legal->canFoldTailByMasking()) {
1330 ChosenTailFoldingStyle = {
1331 TTI.getPreferredTailFoldingStyle(
true),
1332 TTI.getPreferredTailFoldingStyle(
false)};
1342 bool EVLIsLegal = UserIC <= 1 && IsScalableVF &&
1356 dbgs() <<
"LV: Preference for VP intrinsics indicated. Will "
1357 "not try to generate VP Intrinsics "
1359 ?
"since interleave count specified is greater than 1.\n"
1360 :
"due to non-interleaving reasons.\n"));
1405 return InLoopReductions.contains(Phi);
1416 TTI.preferPredicatedReductionSelect();
1431 WideningDecisions.clear();
1432 CallWideningDecisions.clear();
1450 bool isEpilogueVectorizationProfitable(
const ElementCount VF,
1451 const unsigned IC)
const;
1459 std::optional<InstructionCost> getReductionPatternCost(
Instruction *
I,
1461 Type *VectorTy)
const;
1465 bool shouldConsiderInvariant(
Value *
Op);
1471 unsigned NumPredStores = 0;
1475 std::optional<unsigned> VScaleForTuning;
1480 void initializeVScaleForTuning() {
1485 auto Max = Attr.getVScaleRangeMax();
1486 if (Max && Min == Max) {
1487 VScaleForTuning = Max;
1500 FixedScalableVFPair computeFeasibleMaxVF(
unsigned MaxTripCount,
1501 ElementCount UserVF,
1502 bool FoldTailByMasking);
1506 ElementCount clampVFByMaxTripCount(ElementCount VF,
unsigned MaxTripCount,
1507 bool FoldTailByMasking)
const;
1512 ElementCount getMaximizedVFForTarget(
unsigned MaxTripCount,
1513 unsigned SmallestType,
1514 unsigned WidestType,
1515 ElementCount MaxSafeVF,
1516 bool FoldTailByMasking);
1520 bool isScalableVectorizationAllowed();
1524 ElementCount getMaxLegalScalableVF(
unsigned MaxSafeElements);
1530 InstructionCost getMemInstScalarizationCost(Instruction *
I, ElementCount VF);
1551 ElementCount VF)
const;
1555 bool useEmulatedMaskMemRefHack(Instruction *
I, ElementCount VF);
1560 MapVector<Instruction *, uint64_t> MinBWs;
1565 using ScalarCostsTy = MapVector<Instruction *, InstructionCost>;
1569 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1570 PredicatedBBsAfterVectorization;
1583 std::optional<std::pair<TailFoldingStyle, TailFoldingStyle>>
1584 ChosenTailFoldingStyle;
1587 std::optional<bool> IsScalableVectorizationAllowed;
1593 std::optional<unsigned> MaxSafeElements;
1599 MapVector<ElementCount, ScalarCostsTy> InstsToScalarize;
1603 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1607 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1611 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1614 SmallPtrSet<PHINode *, 4> InLoopReductions;
1619 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1627 ScalarCostsTy &ScalarCosts,
1639 void collectLoopUniforms(ElementCount VF);
1648 void collectLoopScalars(ElementCount VF);
1652 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1653 std::pair<InstWidening, InstructionCost>>;
1655 DecisionList WideningDecisions;
1657 using CallDecisionList =
1658 DenseMap<std::pair<CallInst *, ElementCount>, CallWideningDecision>;
1660 CallDecisionList CallWideningDecisions;
1664 bool needsExtract(
Value *V, ElementCount VF)
const {
1668 getWideningDecision(
I, VF) == CM_Scalarize ||
1679 return !Scalars.
contains(VF) || !isScalarAfterVectorization(
I, VF);
1684 ElementCount VF)
const {
1686 SmallPtrSet<const Value *, 4> UniqueOperands;
1690 !needsExtract(
Op, VF))
1776class GeneratedRTChecks {
1782 Value *SCEVCheckCond =
nullptr;
1789 Value *MemRuntimeCheckCond =
nullptr;
1798 bool CostTooHigh =
false;
1800 Loop *OuterLoop =
nullptr;
1811 : DT(DT), LI(LI),
TTI(
TTI),
1812 SCEVExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1813 MemCheckExp(*PSE.
getSE(),
DL,
"scev.check",
false),
1821 void create(Loop *L,
const LoopAccessInfo &LAI,
1822 const SCEVPredicate &UnionPred, ElementCount VF,
unsigned IC) {
1846 nullptr,
"vector.scevcheck");
1853 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
1854 SCEVCleaner.cleanup();
1859 if (RtPtrChecking.Need) {
1860 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1861 MemCheckBlock =
SplitBlock(Pred, Pred->getTerminator(), DT, LI,
nullptr,
1864 auto DiffChecks = RtPtrChecking.getDiffChecks();
1866 Value *RuntimeVF =
nullptr;
1869 [VF, &RuntimeVF](IRBuilderBase &
B,
unsigned Bits) {
1871 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1877 MemCheckBlock->
getTerminator(), L, RtPtrChecking.getChecks(),
1880 assert(MemRuntimeCheckCond &&
1881 "no RT checks generated although RtPtrChecking "
1882 "claimed checks are required");
1887 if (!MemCheckBlock && !SCEVCheckBlock)
1897 if (SCEVCheckBlock) {
1900 auto *UI =
new UnreachableInst(Preheader->
getContext(), SCEVCheckBlock);
1904 if (MemCheckBlock) {
1907 auto *UI =
new UnreachableInst(Preheader->
getContext(), MemCheckBlock);
1913 if (MemCheckBlock) {
1917 if (SCEVCheckBlock) {
1923 OuterLoop =
L->getParentLoop();
1927 if (SCEVCheckBlock || MemCheckBlock)
1939 for (Instruction &
I : *SCEVCheckBlock) {
1940 if (SCEVCheckBlock->getTerminator() == &
I)
1946 if (MemCheckBlock) {
1948 for (Instruction &
I : *MemCheckBlock) {
1949 if (MemCheckBlock->getTerminator() == &
I)
1961 ScalarEvolution *SE = MemCheckExp.
getSE();
1966 const SCEV *
Cond = SE->
getSCEV(MemRuntimeCheckCond);
1971 unsigned BestTripCount = 2;
1975 PSE, OuterLoop,
false))
1976 if (EstimatedTC->isFixed())
1977 BestTripCount = EstimatedTC->getFixedValue();
1982 NewMemCheckCost = std::max(NewMemCheckCost.
getValue(),
1983 (InstructionCost::CostType)1);
1985 if (BestTripCount > 1)
1987 <<
"We expect runtime memory checks to be hoisted "
1988 <<
"out of the outer loop. Cost reduced from "
1989 << MemCheckCost <<
" to " << NewMemCheckCost <<
'\n');
1991 MemCheckCost = NewMemCheckCost;
1995 RTCheckCost += MemCheckCost;
1998 if (SCEVCheckBlock || MemCheckBlock)
1999 LLVM_DEBUG(
dbgs() <<
"Total cost of runtime checks: " << RTCheckCost
2007 ~GeneratedRTChecks() {
2008 SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2009 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2010 bool SCEVChecksUsed = !SCEVCheckBlock || !
pred_empty(SCEVCheckBlock);
2011 bool MemChecksUsed = !MemCheckBlock || !
pred_empty(MemCheckBlock);
2013 SCEVCleaner.markResultUsed();
2015 if (MemChecksUsed) {
2016 MemCheckCleaner.markResultUsed();
2018 auto &SE = *MemCheckExp.
getSE();
2025 I.eraseFromParent();
2028 MemCheckCleaner.cleanup();
2029 SCEVCleaner.cleanup();
2031 if (!SCEVChecksUsed)
2032 SCEVCheckBlock->eraseFromParent();
2034 MemCheckBlock->eraseFromParent();
2039 std::pair<Value *, BasicBlock *> getSCEVChecks()
const {
2040 using namespace llvm::PatternMatch;
2042 return {
nullptr,
nullptr};
2044 return {SCEVCheckCond, SCEVCheckBlock};
2049 std::pair<Value *, BasicBlock *> getMemRuntimeChecks()
const {
2050 using namespace llvm::PatternMatch;
2051 if (MemRuntimeCheckCond &&
match(MemRuntimeCheckCond,
m_ZeroInt()))
2052 return {
nullptr,
nullptr};
2053 return {MemRuntimeCheckCond, MemCheckBlock};
2057 bool hasChecks()
const {
2058 return getSCEVChecks().first || getMemRuntimeChecks().first;
2101 LLVM_DEBUG(
dbgs() <<
"LV: Loop hints prevent outer loop vectorization.\n");
2107 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Interleave is not supported for "
2137 for (
Loop *InnerL : L)
2160 ?
B.CreateSExtOrTrunc(Index, StepTy)
2161 :
B.CreateCast(Instruction::SIToFP, Index, StepTy);
2162 if (CastedIndex != Index) {
2164 Index = CastedIndex;
2174 assert(
X->getType() ==
Y->getType() &&
"Types don't match!");
2179 return B.CreateAdd(
X,
Y);
2185 assert(
X->getType()->getScalarType() ==
Y->getType() &&
2186 "Types don't match!");
2193 Y =
B.CreateVectorSplat(XVTy->getElementCount(),
Y);
2194 return B.CreateMul(
X,
Y);
2197 switch (InductionKind) {
2200 "Vector indices not supported for integer inductions yet");
2202 "Index type does not match StartValue type");
2204 return B.CreateSub(StartValue, Index);
2209 return B.CreatePtrAdd(StartValue,
CreateMul(Index, Step));
2212 "Vector indices not supported for FP inductions yet");
2215 (InductionBinOp->
getOpcode() == Instruction::FAdd ||
2216 InductionBinOp->
getOpcode() == Instruction::FSub) &&
2217 "Original bin op should be defined for FP induction");
2219 Value *MulExp =
B.CreateFMul(Step, Index);
2220 return B.CreateBinOp(InductionBinOp->
getOpcode(), StartValue, MulExp,
2231 if (std::optional<unsigned> MaxVScale =
TTI.getMaxVScale())
2234 if (
F.hasFnAttribute(Attribute::VScaleRange))
2235 return F.getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
2237 return std::nullopt;
2246 ElementCount VF, std::optional<unsigned> UF = std::nullopt) {
2248 unsigned MaxUF = UF ? *UF : Cost->TTI.getMaxInterleaveFactor(VF);
2250 IntegerType *IdxTy = Cost->Legal->getWidestInductionType();
2256 if (
unsigned TC = Cost->PSE.getSmallConstantMaxTripCount()) {
2259 std::optional<unsigned> MaxVScale =
2263 MaxVF *= *MaxVScale;
2266 return (MaxUIntTripCount - TC).ugt(MaxVF * MaxUF);
2280 return TTI.enableMaskedInterleavedAccessVectorization();
2293 PreVectorPH = CheckVPIRBB;
2303 "must have incoming values for all operands");
2304 R.addOperand(R.getOperand(NumPredecessors - 2));
2330 auto CreateStep = [&]() ->
Value * {
2337 if (!
VF.isScalable())
2339 return Builder.CreateBinaryIntrinsic(
2345 Value *Step = CreateStep();
2354 CheckMinIters =
Builder.getTrue();
2356 TripCountSCEV, SE.
getSCEV(Step))) {
2359 CheckMinIters =
Builder.CreateICmp(
P,
Count, Step,
"min.iters.check");
2361 }
else if (
VF.isScalable() && !
TTI->isVScaleKnownToBeAPowerOfTwo() &&
2369 Value *MaxUIntTripCount =
2376 return CheckMinIters;
2385 VPlan *Plan =
nullptr) {
2389 auto IP = IRVPBB->
begin();
2391 R.moveBefore(*IRVPBB, IP);
2395 R.moveBefore(*IRVPBB, IRVPBB->
end());
2404 assert(VectorPH &&
"Invalid loop structure");
2406 Cost->requiresScalarEpilogue(
VF.isVector())) &&
2407 "loops not exiting via the latch without required epilogue?");
2414 Twine(Prefix) +
"scalar.ph");
2420 const SCEV2ValueTy &ExpandedSCEVs) {
2421 const SCEV *Step =
ID.getStep();
2423 return C->getValue();
2425 return U->getValue();
2426 Value *V = ExpandedSCEVs.lookup(Step);
2427 assert(V &&
"SCEV must be expanded at this point");
2437 auto *Cmp = L->getLatchCmpInst();
2439 InstsToIgnore.
insert(Cmp);
2440 for (
const auto &KV : IL) {
2449 [&](
const User *U) { return U == IV || U == Cmp; }))
2450 InstsToIgnore.
insert(IVInst);
2462struct CSEDenseMapInfo {
2473 return DenseMapInfo<Instruction *>::getTombstoneKey();
2476 static unsigned getHashValue(
const Instruction *
I) {
2477 assert(canHandle(
I) &&
"Unknown instruction!");
2482 static bool isEqual(
const Instruction *
LHS,
const Instruction *
RHS) {
2483 if (
LHS == getEmptyKey() ||
RHS == getEmptyKey() ||
2484 LHS == getTombstoneKey() ||
RHS == getTombstoneKey())
2486 return LHS->isIdenticalTo(
RHS);
2498 if (!CSEDenseMapInfo::canHandle(&In))
2504 In.replaceAllUsesWith(V);
2505 In.eraseFromParent();
2518 std::optional<unsigned> VScale) {
2522 EstimatedVF *= *VScale;
2523 assert(EstimatedVF >= 1 &&
"Estimated VF shouldn't be less than 1");
2541 for (
auto &ArgOp : CI->
args())
2552 return ScalarCallCost;
2565 assert(
ID &&
"Expected intrinsic call!");
2569 FMF = FPMO->getFastMathFlags();
2575 std::back_inserter(ParamTys),
2576 [&](
Type *Ty) { return maybeVectorizeType(Ty, VF); });
2581 return TTI.getIntrinsicInstrCost(CostAttrs,
CostKind);
2595 BasicBlock *HeaderBB = State.CFG.VPBB2IRBB[HeaderVPBB];
2610 Builder.SetInsertPoint(NewPhi);
2612 NewPhi->
addIncoming(State.get(Inc), State.CFG.VPBB2IRBB[VPBB]);
2617void LoopVectorizationCostModel::collectLoopScalars(
ElementCount VF) {
2622 "This function should not be visited twice for the same VF");
2645 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
2646 assert(WideningDecision != CM_Unknown &&
2647 "Widening decision should be ready at this moment");
2649 if (Ptr == Store->getValueOperand())
2650 return WideningDecision == CM_Scalarize;
2652 "Ptr is neither a value or pointer operand");
2653 return WideningDecision != CM_GatherScatter;
2658 auto IsLoopVaryingGEP = [&](
Value *
V) {
2669 if (!IsLoopVaryingGEP(Ptr))
2681 if (IsScalarUse(MemAccess, Ptr) &&
2685 PossibleNonScalarPtrs.
insert(
I);
2701 for (
auto *BB : TheLoop->
blocks())
2702 for (
auto &
I : *BB) {
2704 EvaluatePtrUse(Load,
Load->getPointerOperand());
2706 EvaluatePtrUse(Store,
Store->getPointerOperand());
2707 EvaluatePtrUse(Store,
Store->getValueOperand());
2710 for (
auto *
I : ScalarPtrs)
2711 if (!PossibleNonScalarPtrs.
count(
I)) {
2719 auto ForcedScalar = ForcedScalars.
find(VF);
2720 if (ForcedScalar != ForcedScalars.
end())
2721 for (
auto *
I : ForcedScalar->second) {
2722 LLVM_DEBUG(
dbgs() <<
"LV: Found (forced) scalar instruction: " << *
I <<
"\n");
2731 while (Idx != Worklist.
size()) {
2733 if (!IsLoopVaryingGEP(Dst->getOperand(0)))
2737 auto *J = cast<Instruction>(U);
2738 return !TheLoop->contains(J) || Worklist.count(J) ||
2739 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
2740 IsScalarUse(J, Src));
2743 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Src <<
"\n");
2749 for (
const auto &Induction :
Legal->getInductionVars()) {
2750 auto *Ind = Induction.first;
2755 if (Ind ==
Legal->getPrimaryInduction() && foldTailByMasking())
2760 auto IsDirectLoadStoreFromPtrIndvar = [&](
Instruction *Indvar,
2762 return Induction.second.getKind() ==
2770 bool ScalarInd =
all_of(Ind->users(), [&](User *U) ->
bool {
2771 auto *I = cast<Instruction>(U);
2772 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
2773 IsDirectLoadStoreFromPtrIndvar(Ind, I);
2782 if (IndUpdatePhi &&
Legal->isFixedOrderRecurrence(IndUpdatePhi))
2787 bool ScalarIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
2788 auto *I = cast<Instruction>(U);
2789 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
2790 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
2792 if (!ScalarIndUpdate)
2797 Worklist.
insert(IndUpdate);
2798 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *Ind <<
"\n");
2799 LLVM_DEBUG(
dbgs() <<
"LV: Found scalar instruction: " << *IndUpdate
2813 switch(
I->getOpcode()) {
2816 case Instruction::Call:
2820 case Instruction::Load:
2821 case Instruction::Store: {
2830 TTI.isLegalMaskedGather(VTy, Alignment))
2832 TTI.isLegalMaskedScatter(VTy, Alignment));
2834 case Instruction::UDiv:
2835 case Instruction::SDiv:
2836 case Instruction::SRem:
2837 case Instruction::URem: {
2858 if (
Legal->blockNeedsPredication(
I->getParent()))
2870 switch(
I->getOpcode()) {
2873 "instruction should have been considered by earlier checks");
2874 case Instruction::Call:
2878 "should have returned earlier for calls not needing a mask");
2880 case Instruction::Load:
2883 case Instruction::Store: {
2891 case Instruction::UDiv:
2892 case Instruction::SDiv:
2893 case Instruction::SRem:
2894 case Instruction::URem:
2896 return !
Legal->isInvariant(
I->getOperand(1));
2906 if (!
Legal->blockNeedsPredication(BB))
2913 "Header has smaller block freq than dominated BB?");
2914 return std::round((
double)HeaderFreq /
BBFreq);
2917std::pair<InstructionCost, InstructionCost>
2920 assert(
I->getOpcode() == Instruction::UDiv ||
2921 I->getOpcode() == Instruction::SDiv ||
2922 I->getOpcode() == Instruction::SRem ||
2923 I->getOpcode() == Instruction::URem);
2932 ScalarizationCost = 0;
2938 ScalarizationCost +=
2942 ScalarizationCost +=
2944 TTI.getArithmeticInstrCost(
I->getOpcode(),
I->getType(),
CostKind);
2962 TTI.getCmpSelInstrCost(Instruction::Select, VecTy,
2967 SafeDivisorCost +=
TTI.getArithmeticInstrCost(
2969 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2970 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
2972 return {ScalarizationCost, SafeDivisorCost};
2979 "Decision should not be set yet.");
2981 assert(Group &&
"Must have a group.");
2982 unsigned InterleaveFactor = Group->getFactor();
2986 auto &
DL =
I->getDataLayout();
2998 bool ScalarNI =
DL.isNonIntegralPointerType(ScalarTy);
2999 for (
unsigned Idx = 0; Idx < InterleaveFactor; Idx++) {
3004 bool MemberNI =
DL.isNonIntegralPointerType(MemberTy);
3006 if (MemberNI != ScalarNI)
3009 if (MemberNI && ScalarNI &&
3010 ScalarTy->getPointerAddressSpace() !=
3011 MemberTy->getPointerAddressSpace())
3020 bool PredicatedAccessRequiresMasking =
3022 Legal->isMaskRequired(
I);
3023 bool LoadAccessWithGapsRequiresEpilogMasking =
3026 bool StoreAccessWithGapsRequiresMasking =
3028 if (!PredicatedAccessRequiresMasking &&
3029 !LoadAccessWithGapsRequiresEpilogMasking &&
3030 !StoreAccessWithGapsRequiresMasking)
3037 "Masked interleave-groups for predicated accesses are not enabled.");
3039 if (Group->isReverse())
3043 bool NeedsMaskForGaps = LoadAccessWithGapsRequiresEpilogMasking ||
3044 StoreAccessWithGapsRequiresMasking;
3052 :
TTI.isLegalMaskedStore(Ty, Alignment, AS);
3064 if (!
Legal->isConsecutivePtr(ScalarTy, Ptr))
3074 auto &
DL =
I->getDataLayout();
3081void LoopVectorizationCostModel::collectLoopUniforms(
ElementCount VF) {
3088 "This function should not be visited twice for the same VF");
3092 Uniforms[VF].
clear();
3100 auto IsOutOfScope = [&](
Value *V) ->
bool {
3112 auto AddToWorklistIfAllowed = [&](
Instruction *
I) ->
void {
3113 if (IsOutOfScope(
I)) {
3118 if (isPredicatedInst(
I)) {
3120 dbgs() <<
"LV: Found not uniform due to requiring predication: " << *
I
3124 LLVM_DEBUG(
dbgs() <<
"LV: Found uniform instruction: " << *
I <<
"\n");
3134 for (BasicBlock *
E : Exiting) {
3138 if (Cmp && TheLoop->
contains(Cmp) &&
Cmp->hasOneUse())
3139 AddToWorklistIfAllowed(Cmp);
3148 if (PrevVF.isVector()) {
3149 auto Iter = Uniforms.
find(PrevVF);
3150 if (Iter != Uniforms.
end() && !Iter->second.contains(
I))
3153 if (!
Legal->isUniformMemOp(*
I, VF))
3163 auto IsUniformDecision = [&](
Instruction *
I, ElementCount VF) {
3164 InstWidening WideningDecision = getWideningDecision(
I, VF);
3165 assert(WideningDecision != CM_Unknown &&
3166 "Widening decision should be ready at this moment");
3168 if (IsUniformMemOpUse(
I))
3171 return (WideningDecision == CM_Widen ||
3172 WideningDecision == CM_Widen_Reverse ||
3173 WideningDecision == CM_Interleave);
3183 (IsUniformDecision(
I, VF) ||
Legal->isInvariant(Ptr));
3191 SetVector<Value *> HasUniformUse;
3195 for (
auto *BB : TheLoop->
blocks())
3196 for (
auto &
I : *BB) {
3198 switch (
II->getIntrinsicID()) {
3199 case Intrinsic::sideeffect:
3200 case Intrinsic::experimental_noalias_scope_decl:
3201 case Intrinsic::assume:
3202 case Intrinsic::lifetime_start:
3203 case Intrinsic::lifetime_end:
3205 AddToWorklistIfAllowed(&
I);
3213 if (IsOutOfScope(EVI->getAggregateOperand())) {
3214 AddToWorklistIfAllowed(EVI);
3220 "Expected aggregate value to be call return value");
3233 if (IsUniformMemOpUse(&
I))
3234 AddToWorklistIfAllowed(&
I);
3236 if (IsVectorizedMemAccessUse(&
I, Ptr))
3237 HasUniformUse.
insert(Ptr);
3243 for (
auto *V : HasUniformUse) {
3244 if (IsOutOfScope(V))
3247 bool UsersAreMemAccesses =
all_of(
I->users(), [&](User *U) ->
bool {
3248 auto *UI = cast<Instruction>(U);
3249 return TheLoop->contains(UI) && IsVectorizedMemAccessUse(UI, V);
3251 if (UsersAreMemAccesses)
3252 AddToWorklistIfAllowed(
I);
3259 while (Idx != Worklist.
size()) {
3262 for (
auto *OV :
I->operand_values()) {
3264 if (IsOutOfScope(OV))
3269 if (
OP &&
Legal->isFixedOrderRecurrence(
OP))
3275 auto *J = cast<Instruction>(U);
3276 return Worklist.count(J) || IsVectorizedMemAccessUse(J, OI);
3278 AddToWorklistIfAllowed(OI);
3289 for (
const auto &Induction :
Legal->getInductionVars()) {
3290 auto *Ind = Induction.first;
3295 bool UniformInd =
all_of(Ind->users(), [&](User *U) ->
bool {
3296 auto *I = cast<Instruction>(U);
3297 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
3298 IsVectorizedMemAccessUse(I, Ind);
3305 bool UniformIndUpdate =
all_of(IndUpdate->users(), [&](User *U) ->
bool {
3306 auto *I = cast<Instruction>(U);
3307 return I == Ind || Worklist.count(I) ||
3308 IsVectorizedMemAccessUse(I, IndUpdate);
3310 if (!UniformIndUpdate)
3314 AddToWorklistIfAllowed(Ind);
3315 AddToWorklistIfAllowed(IndUpdate);
3324 if (
Legal->getRuntimePointerChecking()->Need) {
3326 "runtime pointer checks needed. Enable vectorization of this "
3327 "loop with '#pragma clang loop vectorize(enable)' when "
3328 "compiling with -Os/-Oz",
3329 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3333 if (!
PSE.getPredicate().isAlwaysTrue()) {
3335 "runtime SCEV checks needed. Enable vectorization of this "
3336 "loop with '#pragma clang loop vectorize(enable)' when "
3337 "compiling with -Os/-Oz",
3338 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3343 if (!
Legal->getLAI()->getSymbolicStrides().empty()) {
3345 "runtime stride == 1 checks needed. Enable vectorization of "
3346 "this loop without such check by compiling with -Os/-Oz",
3347 "CantVersionLoopWithOptForSize",
ORE,
TheLoop);
3354bool LoopVectorizationCostModel::isScalableVectorizationAllowed() {
3355 if (IsScalableVectorizationAllowed)
3356 return *IsScalableVectorizationAllowed;
3358 IsScalableVectorizationAllowed =
false;
3362 if (Hints->isScalableVectorizationDisabled()) {
3364 "ScalableVectorizationDisabled", ORE, TheLoop);
3368 LLVM_DEBUG(
dbgs() <<
"LV: Scalable vectorization is available\n");
3371 std::numeric_limits<ElementCount::ScalarTy>::max());
3380 if (!canVectorizeReductions(MaxScalableVF)) {
3382 "Scalable vectorization not supported for the reduction "
3383 "operations found in this loop.",
3384 "ScalableVFUnfeasible", ORE, TheLoop);
3390 if (
any_of(ElementTypesInLoop, [&](
Type *Ty) {
3395 "for all element types found in this loop.",
3396 "ScalableVFUnfeasible", ORE, TheLoop);
3402 "for safe distance analysis.",
3403 "ScalableVFUnfeasible", ORE, TheLoop);
3407 IsScalableVectorizationAllowed =
true;
3412LoopVectorizationCostModel::getMaxLegalScalableVF(
unsigned MaxSafeElements) {
3413 if (!isScalableVectorizationAllowed())
3417 std::numeric_limits<ElementCount::ScalarTy>::max());
3418 if (
Legal->isSafeForAnyVectorWidth())
3419 return MaxScalableVF;
3427 "Max legal vector width too small, scalable vectorization "
3429 "ScalableVFUnfeasible", ORE, TheLoop);
3431 return MaxScalableVF;
3434FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
3435 unsigned MaxTripCount, ElementCount UserVF,
bool FoldTailByMasking) {
3437 unsigned SmallestType, WidestType;
3438 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
3444 unsigned MaxSafeElementsPowerOf2 =
3446 if (!
Legal->isSafeForAnyStoreLoadForwardDistances()) {
3447 unsigned SLDist =
Legal->getMaxStoreLoadForwardSafeDistanceInBits();
3448 MaxSafeElementsPowerOf2 =
3449 std::min(MaxSafeElementsPowerOf2, SLDist / WidestType);
3452 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElementsPowerOf2);
3454 if (!
Legal->isSafeForAnyVectorWidth())
3455 this->MaxSafeElements = MaxSafeElementsPowerOf2;
3457 LLVM_DEBUG(
dbgs() <<
"LV: The max safe fixed VF is: " << MaxSafeFixedVF
3459 LLVM_DEBUG(
dbgs() <<
"LV: The max safe scalable VF is: " << MaxSafeScalableVF
3464 auto MaxSafeUserVF =
3465 UserVF.
isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
3467 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
3470 return FixedScalableVFPair(
3476 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
3482 <<
" is unsafe, clamping to max safe VF="
3483 << MaxSafeFixedVF <<
".\n");
3485 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3488 <<
"User-specified vectorization factor "
3489 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3490 <<
" is unsafe, clamping to maximum safe vectorization factor "
3491 <<
ore::NV(
"VectorizationFactor", MaxSafeFixedVF);
3493 return MaxSafeFixedVF;
3498 <<
" is ignored because scalable vectors are not "
3501 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3504 <<
"User-specified vectorization factor "
3505 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3506 <<
" is ignored because the target does not support scalable "
3507 "vectors. The compiler will pick a more suitable value.";
3511 <<
" is unsafe. Ignoring scalable UserVF.\n");
3513 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationFactor",
3516 <<
"User-specified vectorization factor "
3517 <<
ore::NV(
"UserVectorizationFactor", UserVF)
3518 <<
" is unsafe. Ignoring the hint to let the compiler pick a "
3519 "more suitable value.";
3524 LLVM_DEBUG(
dbgs() <<
"LV: The Smallest and Widest types: " << SmallestType
3525 <<
" / " << WidestType <<
" bits.\n");
3530 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3531 MaxSafeFixedVF, FoldTailByMasking))
3535 getMaximizedVFForTarget(MaxTripCount, SmallestType, WidestType,
3536 MaxSafeScalableVF, FoldTailByMasking))
3537 if (MaxVF.isScalable()) {
3538 Result.ScalableVF = MaxVF;
3539 LLVM_DEBUG(
dbgs() <<
"LV: Found feasible scalable VF = " << MaxVF
3548 if (
Legal->getRuntimePointerChecking()->Need &&
TTI.hasBranchDivergence()) {
3552 "Not inserting runtime ptr check for divergent target",
3553 "runtime pointer checks needed. Not enabled for divergent target",
3554 "CantVersionLoopWithDivergentTarget",
ORE,
TheLoop);
3560 unsigned MaxTC =
PSE.getSmallConstantMaxTripCount();
3563 LLVM_DEBUG(
dbgs() <<
"LV: Found maximum trip count: " << MaxTC <<
'\n');
3566 "loop trip count is one, irrelevant for vectorization",
3577 Legal->getWidestInductionType()->getScalarSizeInBits() &&
3581 "Trip count computation wrapped",
3582 "backedge-taken count is -1, loop trip count wrapped to 0",
3587 switch (ScalarEpilogueStatus) {
3589 return computeFeasibleMaxVF(MaxTC, UserVF,
false);
3594 dbgs() <<
"LV: vector predicate hint/switch found.\n"
3595 <<
"LV: Not allowing scalar epilogue, creating predicated "
3596 <<
"vector loop.\n");
3603 dbgs() <<
"LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
3605 LLVM_DEBUG(
dbgs() <<
"LV: Not allowing scalar epilogue due to low trip "
3621 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
3622 "No decisions should have been taken at this point");
3632 std::optional<unsigned> MaxPowerOf2RuntimeVF =
3636 if (MaxVScale &&
TTI.isVScaleKnownToBeAPowerOfTwo()) {
3637 MaxPowerOf2RuntimeVF = std::max<unsigned>(
3638 *MaxPowerOf2RuntimeVF,
3641 MaxPowerOf2RuntimeVF = std::nullopt;
3644 auto NoScalarEpilogueNeeded = [
this, &UserIC](
unsigned MaxVF) {
3648 !
Legal->hasUncountableEarlyExit())
3650 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
3655 const SCEV *BackedgeTakenCount =
PSE.getSymbolicMaxBackedgeTakenCount();
3657 BackedgeTakenCount ==
PSE.getBackedgeTakenCount()) &&
3658 "Invalid loop count");
3660 BackedgeTakenCount, SE->
getOne(BackedgeTakenCount->
getType()));
3667 if (MaxPowerOf2RuntimeVF > 0u) {
3669 "MaxFixedVF must be a power of 2");
3670 if (NoScalarEpilogueNeeded(*MaxPowerOf2RuntimeVF)) {
3672 LLVM_DEBUG(
dbgs() <<
"LV: No tail will remain for any chosen VF.\n");
3678 if (ExpectedTC && ExpectedTC->isFixed() &&
3679 ExpectedTC->getFixedValue() <=
3680 TTI.getMinTripCountTailFoldingThreshold()) {
3681 if (MaxPowerOf2RuntimeVF > 0u) {
3687 LLVM_DEBUG(
dbgs() <<
"LV: Picking a fixed-width so that no tail will "
3688 "remain for any chosen VF.\n");
3695 "The trip count is below the minial threshold value.",
3696 "loop trip count is too low, avoiding vectorization",
"LowTripCount",
3711 <<
"LV: tail is folded with EVL, forcing unroll factor to be 1. Will "
3712 "try to generate VP Intrinsics with scalable vector "
3717 assert(ContainsScalableVF &&
"Expected scalable vector factor.");
3727 LLVM_DEBUG(
dbgs() <<
"LV: Cannot fold tail by masking: vectorize with a "
3728 "scalar epilogue instead.\n");
3734 LLVM_DEBUG(
dbgs() <<
"LV: Can't fold tail by masking: don't vectorize\n");
3740 "unable to calculate the loop count due to complex control flow",
3746 "Cannot optimize for size and vectorize at the same time.",
3747 "cannot optimize for size and vectorize at the same time. "
3748 "Enable vectorization of this loop with '#pragma clang loop "
3749 "vectorize(enable)' when compiling with -Os/-Oz",
3761 if (
TTI.shouldConsiderVectorizationRegPressure())
3777 (
TTI.shouldMaximizeVectorBandwidth(RegKind) ||
3779 Legal->hasVectorCallVariants())));
3782ElementCount LoopVectorizationCostModel::clampVFByMaxTripCount(
3783 ElementCount VF,
unsigned MaxTripCount,
bool FoldTailByMasking)
const {
3785 if (VF.
isScalable() && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
3786 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
3787 auto Min = Attr.getVScaleRangeMin();
3794 if (MaxTripCount > 0 && requiresScalarEpilogue(
true))
3797 if (MaxTripCount && MaxTripCount <= EstimatedVF &&
3805 LLVM_DEBUG(
dbgs() <<
"LV: Clamping the MaxVF to maximum power of two not "
3806 "exceeding the constant trip count: "
3807 << ClampedUpperTripCount <<
"\n");
3809 FoldTailByMasking ? VF.
isScalable() :
false);
3814ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
3815 unsigned MaxTripCount,
unsigned SmallestType,
unsigned WidestType,
3816 ElementCount MaxSafeVF,
bool FoldTailByMasking) {
3817 bool ComputeScalableMaxVF = MaxSafeVF.
isScalable();
3823 auto MinVF = [](
const ElementCount &
LHS,
const ElementCount &
RHS) {
3825 "Scalable flags must match");
3833 ComputeScalableMaxVF);
3834 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
3836 << (MaxVectorElementCount * WidestType) <<
" bits.\n");
3838 if (!MaxVectorElementCount) {
3840 << (ComputeScalableMaxVF ?
"scalable" :
"fixed")
3841 <<
" vector registers.\n");
3845 ElementCount MaxVF = clampVFByMaxTripCount(MaxVectorElementCount,
3846 MaxTripCount, FoldTailByMasking);
3849 if (MaxVF != MaxVectorElementCount)
3857 MaxPermissibleVFWithoutMaxBW.ScalableVF = MaxVF;
3859 MaxPermissibleVFWithoutMaxBW.FixedVF = MaxVF;
3861 if (useMaxBandwidth(RegKind)) {
3864 ComputeScalableMaxVF);
3865 MaxVF = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
3867 if (ElementCount MinVF =
3869 if (ElementCount::isKnownLT(MaxVF, MinVF)) {
3871 <<
") with target's minimum: " << MinVF <<
'\n');
3876 MaxVF = clampVFByMaxTripCount(MaxVF, MaxTripCount, FoldTailByMasking);
3878 if (MaxVectorElementCount != MaxVF) {
3882 invalidateCostModelingDecisions();
3890 const unsigned MaxTripCount,
3892 bool IsEpilogue)
const {
3898 unsigned EstimatedWidthB =
B.Width.getKnownMinValue();
3899 if (std::optional<unsigned> VScale = CM.getVScaleForTuning()) {
3900 if (
A.Width.isScalable())
3901 EstimatedWidthA *= *VScale;
3902 if (
B.Width.isScalable())
3903 EstimatedWidthB *= *VScale;
3910 return CostA < CostB ||
3911 (CostA == CostB && EstimatedWidthA > EstimatedWidthB);
3917 A.Width.isScalable() && !
B.Width.isScalable();
3928 return CmpFn(CostA * EstimatedWidthB, CostB * EstimatedWidthA);
3930 auto GetCostForTC = [MaxTripCount, HasTail](
unsigned VF,
3942 return VectorCost * (MaxTripCount / VF) +
3943 ScalarCost * (MaxTripCount % VF);
3944 return VectorCost *
divideCeil(MaxTripCount, VF);
3947 auto RTCostA = GetCostForTC(EstimatedWidthA, CostA,
A.ScalarCost);
3948 auto RTCostB = GetCostForTC(EstimatedWidthB, CostB,
B.ScalarCost);
3949 return CmpFn(RTCostA, RTCostB);
3955 bool IsEpilogue)
const {
3957 return LoopVectorizationPlanner::isMoreProfitable(
A,
B, MaxTripCount, HasTail,
3963 using RecipeVFPair = std::pair<VPRecipeBase *, ElementCount>;
3965 for (
const auto &Plan : VPlans) {
3974 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
3975 *CM.PSE.getSE(), OrigLoop);
3976 precomputeCosts(*Plan, VF, CostCtx);
3979 for (
auto &R : *VPBB) {
3980 if (!R.cost(VF, CostCtx).isValid())
3986 if (InvalidCosts.
empty())
3994 for (
auto &Pair : InvalidCosts)
3999 sort(InvalidCosts, [&Numbering](RecipeVFPair &
A, RecipeVFPair &
B) {
4000 unsigned NA = Numbering[
A.first];
4001 unsigned NB = Numbering[
B.first];
4016 Subset =
Tail.take_front(1);
4023 [](
const auto *R) {
return Instruction::PHI; })
4024 .Case<VPWidenSelectRecipe>(
4025 [](
const auto *R) {
return Instruction::Select; })
4026 .Case<VPWidenStoreRecipe>(
4027 [](
const auto *R) {
return Instruction::Store; })
4028 .Case<VPWidenLoadRecipe>(
4029 [](
const auto *R) {
return Instruction::Load; })
4030 .Case<VPWidenCallRecipe, VPWidenIntrinsicRecipe>(
4031 [](
const auto *R) {
return Instruction::Call; })
4034 [](
const auto *R) {
return R->getOpcode(); })
4036 return R->getStoredValues().empty() ? Instruction::Load
4037 : Instruction::Store;
4039 .Case<VPReductionRecipe>([](
const auto *R) {
4048 if (Subset ==
Tail ||
Tail[Subset.size()].first != R) {
4049 std::string OutString;
4051 assert(!Subset.empty() &&
"Unexpected empty range");
4052 OS <<
"Recipe with invalid costs prevented vectorization at VF=(";
4053 for (
const auto &Pair : Subset)
4054 OS << (Pair.second == Subset.front().second ?
"" :
", ") << Pair.second;
4056 if (Opcode == Instruction::Call) {
4059 Name =
Int->getIntrinsicName();
4063 WidenCall ? WidenCall->getCalledScalarFunction()
4065 ->getLiveInIRValue());
4068 OS <<
" call to " << Name;
4073 Tail =
Tail.drop_front(Subset.size());
4077 Subset =
Tail.take_front(Subset.size() + 1);
4078 }
while (!
Tail.empty());
4100 switch (R.getVPDefID()) {
4101 case VPDef::VPDerivedIVSC:
4102 case VPDef::VPScalarIVStepsSC:
4103 case VPDef::VPReplicateSC:
4104 case VPDef::VPInstructionSC:
4105 case VPDef::VPCanonicalIVPHISC:
4106 case VPDef::VPVectorPointerSC:
4107 case VPDef::VPVectorEndPointerSC:
4108 case VPDef::VPExpandSCEVSC:
4109 case VPDef::VPEVLBasedIVPHISC:
4110 case VPDef::VPPredInstPHISC:
4111 case VPDef::VPBranchOnMaskSC:
4113 case VPDef::VPReductionSC:
4114 case VPDef::VPActiveLaneMaskPHISC:
4115 case VPDef::VPWidenCallSC:
4116 case VPDef::VPWidenCanonicalIVSC:
4117 case VPDef::VPWidenCastSC:
4118 case VPDef::VPWidenGEPSC:
4119 case VPDef::VPWidenIntrinsicSC:
4120 case VPDef::VPWidenSC:
4121 case VPDef::VPWidenSelectSC:
4122 case VPDef::VPBlendSC:
4123 case VPDef::VPFirstOrderRecurrencePHISC:
4124 case VPDef::VPHistogramSC:
4125 case VPDef::VPWidenPHISC:
4126 case VPDef::VPWidenIntOrFpInductionSC:
4127 case VPDef::VPWidenPointerInductionSC:
4128 case VPDef::VPReductionPHISC:
4129 case VPDef::VPInterleaveEVLSC:
4130 case VPDef::VPInterleaveSC:
4131 case VPDef::VPWidenLoadEVLSC:
4132 case VPDef::VPWidenLoadSC:
4133 case VPDef::VPWidenStoreEVLSC:
4134 case VPDef::VPWidenStoreSC:
4140 auto WillGenerateTargetVectors = [&
TTI, VF](
Type *VectorTy) {
4141 unsigned NumLegalParts =
TTI.getNumberOfParts(VectorTy);
4157 if (R.getNumDefinedValues() == 0 &&
4166 R.getNumDefinedValues() >= 1 ? R.getVPValue(0) : R.getOperand(1);
4168 if (!Visited.
insert({ScalarTy}).second)
4182 [](
auto *VPRB) { return VPRB->isReplicator(); });
4188 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ExpectedCost <<
".\n");
4189 assert(ExpectedCost.
isValid() &&
"Unexpected invalid cost for scalar loop");
4192 [](std::unique_ptr<VPlan> &
P) {
return P->hasScalarVFOnly(); }) &&
4193 "Expected Scalar VF to be a candidate");
4200 if (ForceVectorization &&
4201 (VPlans.size() > 1 || !VPlans[0]->hasScalarVFOnly())) {
4205 ChosenFactor.
Cost = InstructionCost::getMax();
4208 for (
auto &
P : VPlans) {
4210 P->vectorFactors().end());
4213 if (
any_of(VFs, [
this](ElementCount VF) {
4214 return CM.shouldConsiderRegPressureForVF(VF);
4218 for (
unsigned I = 0;
I < VFs.size();
I++) {
4219 ElementCount VF = VFs[
I];
4227 if (CM.shouldConsiderRegPressureForVF(VF) &&
4235 VPCostContext CostCtx(CM.TTI, *CM.TLI, *
P, CM, CM.CostKind,
4236 *CM.PSE.getSE(), OrigLoop);
4237 VPRegionBlock *VectorRegion =
P->getVectorLoopRegion();
4238 assert(VectorRegion &&
"Expected to have a vector region!");
4241 for (VPRecipeBase &R : *VPBB) {
4245 switch (VPI->getOpcode()) {
4248 case Instruction::Select: {
4251 switch (WR->getOpcode()) {
4252 case Instruction::UDiv:
4253 case Instruction::SDiv:
4254 case Instruction::URem:
4255 case Instruction::SRem:
4261 C += VPI->cost(VF, CostCtx);
4265 unsigned Multiplier =
4268 C += VPI->cost(VF * Multiplier, CostCtx);
4272 C += VPI->cost(VF, CostCtx);
4284 <<
" costs: " << (Candidate.Cost / Width));
4287 << CM.getVScaleForTuning().value_or(1) <<
")");
4293 <<
"LV: Not considering vector loop of width " << VF
4294 <<
" because it will not generate any vector instructions.\n");
4301 <<
"LV: Not considering vector loop of width " << VF
4302 <<
" because it would cause replicated blocks to be generated,"
4303 <<
" which isn't allowed when optimizing for size.\n");
4307 if (isMoreProfitable(Candidate, ChosenFactor,
P->hasScalarTail()))
4308 ChosenFactor = Candidate;
4314 "There are conditional stores.",
4315 "store that is conditionally executed prevents vectorization",
4316 "ConditionalStore", ORE, OrigLoop);
4317 ChosenFactor = ScalarCost;
4321 !isMoreProfitable(ChosenFactor, ScalarCost,
4322 !CM.foldTailByMasking()))
dbgs()
4323 <<
"LV: Vectorization seems to be not beneficial, "
4324 <<
"but was forced by a user.\n");
4325 return ChosenFactor;
4329bool LoopVectorizationPlanner::isCandidateForEpilogueVectorization(
4330 ElementCount VF)
const {
4333 if (
any_of(OrigLoop->getHeader()->phis(), [&](PHINode &Phi) {
4334 if (!Legal->isReductionVariable(&Phi))
4335 return Legal->isFixedOrderRecurrence(&Phi);
4336 return RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
4337 Legal->getRecurrenceDescriptor(&Phi).getRecurrenceKind());
4343 for (
const auto &Entry :
Legal->getInductionVars()) {
4346 Entry.first->getIncomingValueForBlock(OrigLoop->getLoopLatch());
4347 for (User *U :
PostInc->users())
4351 for (User *U :
Entry.first->users())
4360 if (OrigLoop->getExitingBlock() != OrigLoop->getLoopLatch())
4374 if (!
TTI.preferEpilogueVectorization())
4379 if (
TTI.getMaxInterleaveFactor(VF) <= 1)
4384 :
TTI.getEpilogueVectorizationMinVF();
4392 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is disabled.\n");
4396 if (!CM.isScalarEpilogueAllowed()) {
4397 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because no "
4398 "epilogue is allowed.\n");
4404 if (!isCandidateForEpilogueVectorization(MainLoopVF)) {
4405 LLVM_DEBUG(
dbgs() <<
"LEV: Unable to vectorize epilogue because the loop "
4406 "is not a supported candidate.\n");
4411 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization factor is forced.\n");
4414 return {ForcedEC, 0, 0};
4416 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization forced factor is not "
4421 if (OrigLoop->getHeader()->getParent()->hasOptSize()) {
4423 dbgs() <<
"LEV: Epilogue vectorization skipped due to opt for size.\n");
4427 if (!CM.isEpilogueVectorizationProfitable(MainLoopVF, IC)) {
4428 LLVM_DEBUG(
dbgs() <<
"LEV: Epilogue vectorization is not profitable for "
4440 Type *TCType = Legal->getWidestInductionType();
4441 const SCEV *RemainingIterations =
nullptr;
4442 unsigned MaxTripCount = 0;
4446 const SCEV *KnownMinTC;
4448 bool ScalableRemIter =
false;
4451 ScalableRemIter = ScalableTC;
4452 RemainingIterations =
4454 }
else if (ScalableTC) {
4457 SE.
getConstant(TCType, CM.getVScaleForTuning().value_or(1)));
4461 RemainingIterations =
4465 if (RemainingIterations->
isZero())
4475 << MaxTripCount <<
"\n");
4478 auto SkipVF = [&](
const SCEV *VF,
const SCEV *RemIter) ->
bool {
4481 for (
auto &NextVF : ProfitableVFs) {
4488 if ((!NextVF.Width.isScalable() && MainLoopVF.
isScalable() &&
4490 (NextVF.Width.isScalable() &&
4492 (!NextVF.Width.isScalable() && !MainLoopVF.
isScalable() &&
4501 if (!ScalableRemIter) {
4505 if (NextVF.Width.isScalable())
4512 if (Result.Width.isScalar() ||
4513 isMoreProfitable(NextVF, Result, MaxTripCount, !CM.foldTailByMasking(),
4520 << Result.Width <<
"\n");
4524std::pair<unsigned, unsigned>
4526 unsigned MinWidth = -1U;
4527 unsigned MaxWidth = 8;
4533 for (
const auto &PhiDescriptorPair :
Legal->getReductionVars()) {
4537 MinWidth = std::min(
4541 MaxWidth = std::max(MaxWidth,
4546 MinWidth = std::min<unsigned>(
4547 MinWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4548 MaxWidth = std::max<unsigned>(
4549 MaxWidth,
DL.getTypeSizeInBits(
T->getScalarType()).getFixedValue());
4552 return {MinWidth, MaxWidth};
4560 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
4574 if (!
Legal->isReductionVariable(PN))
4577 Legal->getRecurrenceDescriptor(PN);
4587 T = ST->getValueOperand()->getType();
4590 "Expected the load/store/recurrence type to be sized");
4618 if (!CM.isScalarEpilogueAllowed() &&
4619 !(CM.preferPredicatedLoop() && CM.useWideActiveLaneMask()))
4624 LLVM_DEBUG(
dbgs() <<
"LV: Preference for VP intrinsics indicated. "
4625 "Unroll factor forced to be 1.\n");
4630 if (!Legal->isSafeForAnyVectorWidth())
4639 const bool HasReductions =
4645 if (LoopCost == 0) {
4647 LoopCost = CM.expectedCost(VF);
4649 LoopCost = cost(Plan, VF);
4650 assert(LoopCost.
isValid() &&
"Expected to have chosen a VF with valid cost");
4661 for (
auto &Pair : R.MaxLocalUsers) {
4662 Pair.second = std::max(Pair.second, 1U);
4676 unsigned IC = UINT_MAX;
4678 for (
const auto &Pair : R.MaxLocalUsers) {
4679 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(Pair.first);
4682 << TTI.getRegisterClassName(Pair.first)
4683 <<
" register class\n");
4691 unsigned MaxLocalUsers = Pair.second;
4692 unsigned LoopInvariantRegs = 0;
4693 if (R.LoopInvariantRegs.contains(Pair.first))
4694 LoopInvariantRegs = R.LoopInvariantRegs[Pair.first];
4696 unsigned TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs) /
4700 TmpIC =
llvm::bit_floor((TargetNumRegisters - LoopInvariantRegs - 1) /
4701 std::max(1U, (MaxLocalUsers - 1)));
4704 IC = std::min(IC, TmpIC);
4708 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
4724 if (BestKnownTC && (BestKnownTC->isFixed() || VF.
isScalable())) {
4726 unsigned AvailableTC =
4732 if (CM.requiresScalarEpilogue(VF.
isVector()))
4735 unsigned InterleaveCountLB =
bit_floor(std::max(
4736 1u, std::min(AvailableTC / (EstimatedVF * 2), MaxInterleaveCount)));
4750 unsigned InterleaveCountUB =
bit_floor(std::max(
4751 1u, std::min(AvailableTC / EstimatedVF, MaxInterleaveCount)));
4752 MaxInterleaveCount = InterleaveCountLB;
4754 if (InterleaveCountUB != InterleaveCountLB) {
4755 unsigned TailTripCountUB =
4756 (AvailableTC % (EstimatedVF * InterleaveCountUB));
4757 unsigned TailTripCountLB =
4758 (AvailableTC % (EstimatedVF * InterleaveCountLB));
4761 if (TailTripCountUB == TailTripCountLB)
4762 MaxInterleaveCount = InterleaveCountUB;
4770 MaxInterleaveCount = InterleaveCountLB;
4774 assert(MaxInterleaveCount > 0 &&
4775 "Maximum interleave count must be greater than 0");
4779 if (IC > MaxInterleaveCount)
4780 IC = MaxInterleaveCount;
4783 IC = std::max(1u, IC);
4785 assert(IC > 0 &&
"Interleave count must be greater than 0.");
4789 if (VF.
isVector() && HasReductions) {
4790 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving because of reductions.\n");
4798 bool ScalarInterleavingRequiresPredication =
4800 return Legal->blockNeedsPredication(BB);
4802 bool ScalarInterleavingRequiresRuntimePointerCheck =
4803 (VF.
isScalar() && Legal->getRuntimePointerChecking()->Need);
4808 <<
"LV: IC is " << IC <<
'\n'
4809 <<
"LV: VF is " << VF <<
'\n');
4810 const bool AggressivelyInterleaveReductions =
4811 TTI.enableAggressiveInterleaving(HasReductions);
4812 if (!ScalarInterleavingRequiresRuntimePointerCheck &&
4813 !ScalarInterleavingRequiresPredication && LoopCost <
SmallLoopCost) {
4822 unsigned NumStores = 0;
4823 unsigned NumLoads = 0;
4837 if (
unsigned StoreOps = InterleaveR->getNumStoreOperands())
4838 NumStores += StoreOps;
4840 NumLoads += InterleaveR->getNumDefinedValues();
4855 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
4856 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
4862 bool HasSelectCmpReductions =
4866 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4867 return RedR && (RecurrenceDescriptor::isAnyOfRecurrenceKind(
4868 RedR->getRecurrenceKind()) ||
4869 RecurrenceDescriptor::isFindIVRecurrenceKind(
4870 RedR->getRecurrenceKind()));
4872 if (HasSelectCmpReductions) {
4873 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving select-cmp reductions.\n");
4882 if (HasReductions && OrigLoop->getLoopDepth() > 1) {
4883 bool HasOrderedReductions =
4886 auto *RedR = dyn_cast<VPReductionPHIRecipe>(&R);
4888 return RedR && RedR->isOrdered();
4890 if (HasOrderedReductions) {
4892 dbgs() <<
"LV: Not interleaving scalar ordered reductions.\n");
4897 SmallIC = std::min(SmallIC,
F);
4898 StoresIC = std::min(StoresIC,
F);
4899 LoadsIC = std::min(LoadsIC,
F);
4903 std::max(StoresIC, LoadsIC) > SmallIC) {
4905 dbgs() <<
"LV: Interleaving to saturate store or load ports.\n");
4906 return std::max(StoresIC, LoadsIC);
4911 if (VF.
isScalar() && AggressivelyInterleaveReductions) {
4915 return std::max(IC / 2, SmallIC);
4918 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving to reduce branch cost.\n");
4924 if (AggressivelyInterleaveReductions) {
4933bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(
Instruction *
I,
4943 assert((isPredicatedInst(
I)) &&
4944 "Expecting a scalar emulated instruction");
4957 if (InstsToScalarize.contains(VF) ||
4958 PredicatedBBsAfterVectorization.contains(VF))
4964 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
4974 ScalarCostsTy ScalarCosts;
4981 !useEmulatedMaskMemRefHack(&
I, VF) &&
4982 computePredInstDiscount(&
I, ScalarCosts, VF) >= 0) {
4983 for (
const auto &[
I, IC] : ScalarCosts)
4984 ScalarCostsVF.
insert({
I, IC});
4987 for (
const auto &[
I,
Cost] : ScalarCosts) {
4989 if (!CI || !CallWideningDecisions.contains({CI, VF}))
4992 CallWideningDecisions[{CI, VF}].Cost =
Cost;
4996 PredicatedBBsAfterVectorization[VF].insert(BB);
4998 if (Pred->getSingleSuccessor() == BB)
4999 PredicatedBBsAfterVectorization[VF].insert(Pred);
5007 assert(!isUniformAfterVectorization(PredInst, VF) &&
5008 "Instruction marked uniform-after-vectorization will be predicated");
5026 if (!
I->hasOneUse() || PredInst->
getParent() !=
I->getParent() ||
5027 isScalarAfterVectorization(
I, VF))
5032 if (isScalarWithPredication(
I, VF))
5045 for (
Use &U :
I->operands())
5047 if (isUniformAfterVectorization(J, VF))
5058 while (!Worklist.
empty()) {
5062 if (ScalarCosts.contains(
I))
5082 if (isScalarWithPredication(
I, VF) && !
I->getType()->isVoidTy()) {
5085 ScalarCost +=
TTI.getScalarizationOverhead(
5098 for (Use &U :
I->operands())
5101 "Instruction has non-scalar type");
5102 if (CanBeScalarized(J))
5104 else if (needsExtract(J, VF)) {
5116 ScalarCost /= getPredBlockCostDivisor(
CostKind,
I->getParent());
5120 Discount += VectorCost - ScalarCost;
5121 ScalarCosts[
I] = ScalarCost;
5137 ValuesToIgnoreForVF);
5144 for (
Instruction &
I : BB->instructionsWithoutDebug()) {
5167 LLVM_DEBUG(
dbgs() <<
"LV: Found an estimated cost of " <<
C <<
" for VF "
5168 << VF <<
" For instruction: " <<
I <<
'\n');
5197 const Loop *TheLoop) {
5205 auto *SE = PSE.
getSE();
5206 unsigned NumOperands = Gep->getNumOperands();
5207 for (
unsigned Idx = 1; Idx < NumOperands; ++Idx) {
5208 Value *Opd = Gep->getOperand(Idx);
5210 !
Legal->isInductionVariable(Opd))
5219LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *
I,
5222 "Scalarization cost of instruction implies vectorization.");
5224 return InstructionCost::getInvalid();
5227 auto *SE = PSE.
getSE();
5258 if (isPredicatedInst(
I)) {
5263 VectorType::get(IntegerType::getInt1Ty(ValTy->
getContext()), VF);
5269 if (useEmulatedMaskMemRefHack(
I, VF))
5279LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *
I,
5285 int ConsecutiveStride =
Legal->isConsecutivePtr(ValTy, Ptr);
5287 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5288 "Stride should be 1 or -1 for consecutive memory access");
5291 if (
Legal->isMaskRequired(
I)) {
5292 unsigned IID =
I->getOpcode() == Instruction::Load
5293 ? Intrinsic::masked_load
5294 : Intrinsic::masked_store;
5296 MemIntrinsicCostAttributes(IID, VectorTy, Alignment, AS),
CostKind);
5303 bool Reverse = ConsecutiveStride < 0;
5311LoopVectorizationCostModel::getUniformMemOpCost(Instruction *
I,
5329 bool IsLoopInvariantStoreValue =
Legal->isInvariant(
SI->getValueOperand());
5337 if (!IsLoopInvariantStoreValue)
5344LoopVectorizationCostModel::getGatherScatterCost(Instruction *
I,
5352 if (!
Legal->isUniform(Ptr, VF))
5355 unsigned IID =
I->getOpcode() == Instruction::Load
5356 ? Intrinsic::masked_gather
5357 : Intrinsic::masked_scatter;
5360 MemIntrinsicCostAttributes(IID, VectorTy, Ptr,
5361 Legal->isMaskRequired(
I), Alignment,
I),
5366LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *
I,
5368 const auto *Group = getInterleavedAccessGroup(
I);
5369 assert(Group &&
"Fail to get an interleaved access group.");
5376 unsigned InterleaveFactor = Group->getFactor();
5377 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5380 SmallVector<unsigned, 4> Indices;
5381 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
5382 if (Group->getMember(IF))
5386 bool UseMaskForGaps =
5387 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
5390 InsertPos->
getOpcode(), WideVecTy, Group->getFactor(), Indices,
5394 if (Group->isReverse()) {
5397 "Reverse masked interleaved access not supported.");
5398 Cost += Group->getNumMembers() *
5405std::optional<InstructionCost>
5412 return std::nullopt;
5430 return std::nullopt;
5441 Instruction *LastChain = InLoopReductionImmediateChains.lookup(RetI);
5443 return std::nullopt;
5449 ReductionPhi = InLoopReductionImmediateChains.at(ReductionPhi);
5458 BaseCost =
TTI.getMinMaxReductionCost(MinMaxID, VectorTy,
5461 BaseCost =
TTI.getArithmeticReductionCost(
5469 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy,
CostKind);
5486 if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5492 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1) &&
5504 TTI.getCastInstrCost(Op0->
getOpcode(), MulType, ExtType,
5507 TTI.getArithmeticInstrCost(Instruction::Mul, MulType,
CostKind);
5509 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, MulType,
5517 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
5518 return I == RetI ? RedCost : 0;
5520 !
TheLoop->isLoopInvariant(RedOp)) {
5529 TTI.getCastInstrCost(RedOp->
getOpcode(), VectorTy, ExtType,
5531 if (RedCost.
isValid() && RedCost < BaseCost + ExtCost)
5532 return I == RetI ? RedCost : 0;
5533 }
else if (RedOp && RdxDesc.
getOpcode() == Instruction::Add &&
5537 !
TheLoop->isLoopInvariant(Op0) && !
TheLoop->isLoopInvariant(Op1)) {
5556 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5562 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
5563 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
5564 ExtraExtCost =
TTI.getCastInstrCost(
5571 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
5572 return I == RetI ? RedCost : 0;
5576 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
5582 if (RedCost.
isValid() && RedCost < MulCost + BaseCost)
5583 return I == RetI ? RedCost : 0;
5587 return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt;
5591LoopVectorizationCostModel::getMemoryInstructionCost(
Instruction *
I,
5602 return TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
CostKind) +
5603 TTI.getMemoryOpCost(
I->getOpcode(), ValTy, Alignment, AS,
CostKind,
5606 return getWideningCost(
I, VF);
5610LoopVectorizationCostModel::getScalarizationOverhead(Instruction *
I,
5611 ElementCount VF)
const {
5616 return InstructionCost::getInvalid();
5644 Instruction::op_range
Ops = CI ? CI->
args() :
I->operands();
5649 for (
auto *V : filterExtractingOperands(
Ops, VF))
5672 if (
Legal->isUniformMemOp(
I, VF)) {
5673 auto IsLegalToScalarize = [&]() {
5693 return TheLoop->isLoopInvariant(
SI.getValueOperand());
5705 IsLegalToScalarize() ? getUniformMemOpCost(&
I, VF)
5711 if (GatherScatterCost < ScalarizationCost)
5721 int ConsecutiveStride =
Legal->isConsecutivePtr(
5723 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5724 "Expected consecutive stride.");
5733 unsigned NumAccesses = 1;
5736 assert(Group &&
"Fail to get an interleaved access group.");
5742 NumAccesses = Group->getNumMembers();
5744 InterleaveCost = getInterleaveGroupCost(&
I, VF);
5749 ? getGatherScatterCost(&
I, VF) * NumAccesses
5753 getMemInstScalarizationCost(&
I, VF) * NumAccesses;
5759 if (InterleaveCost <= GatherScatterCost &&
5760 InterleaveCost < ScalarizationCost) {
5762 Cost = InterleaveCost;
5763 }
else if (GatherScatterCost < ScalarizationCost) {
5765 Cost = GatherScatterCost;
5768 Cost = ScalarizationCost;
5775 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5776 if (
auto *
I = Group->getMember(Idx)) {
5778 getMemInstScalarizationCost(
I, VF));
5794 if (
TTI.prefersVectorizedAddressing())
5803 if (PtrDef &&
TheLoop->contains(PtrDef) &&
5811 while (!Worklist.
empty()) {
5813 for (
auto &
Op :
I->operands())
5816 AddrDefs.
insert(InstOp).second)
5820 auto UpdateMemOpUserCost = [
this, VF](
LoadInst *
LI) {
5824 for (
User *U :
LI->users()) {
5834 for (
auto *
I : AddrDefs) {
5855 for (
unsigned Idx = 0; Idx < Group->getFactor(); ++Idx) {
5856 if (
Instruction *Member = Group->getMember(Idx)) {
5860 getMemoryInstructionCost(Member,
5862 : getMemInstScalarizationCost(Member, VF);
5875 ForcedScalars[VF].insert(
I);
5882 "Trying to set a vectorization decision for a scalar VF");
5884 auto ForcedScalar = ForcedScalars.find(VF);
5899 for (
auto &ArgOp : CI->
args())
5908 TTI.getCallInstrCost(ScalarFunc, ScalarRetTy, ScalarTys,
CostKind);
5918 "Unexpected valid cost for scalarizing scalable vectors");
5925 if (VF.
isVector() && ((ForcedScalar != ForcedScalars.end() &&
5926 ForcedScalar->second.contains(CI)) ||
5934 bool MaskRequired =
Legal->isMaskRequired(CI);
5937 for (
Type *ScalarTy : ScalarTys)
5946 std::nullopt, *RedCost);
5957 if (Info.Shape.VF != VF)
5961 if (MaskRequired && !Info.isMasked())
5965 bool ParamsOk =
true;
5967 switch (Param.ParamKind) {
5973 if (!
PSE.getSE()->isLoopInvariant(
PSE.getSCEV(ScalarParam),
6010 VectorCost =
TTI.getCallInstrCost(
nullptr, RetTy, Tys,
CostKind);
6021 if (VectorCost <=
Cost) {
6043 return !OpI || !
TheLoop->contains(OpI) ||
6047 [
this](
Value *
Op) { return shouldConsiderInvariant(Op); }));
6059 return InstsToScalarize[VF][
I];
6062 auto ForcedScalar = ForcedScalars.find(VF);
6063 if (VF.
isVector() && ForcedScalar != ForcedScalars.end()) {
6064 auto InstSet = ForcedScalar->second;
6065 if (InstSet.count(
I))
6070 Type *RetTy =
I->getType();
6073 auto *SE =
PSE.getSE();
6077 [[maybe_unused]]
auto HasSingleCopyAfterVectorization =
6082 auto Scalarized = InstsToScalarize.find(VF);
6083 assert(Scalarized != InstsToScalarize.end() &&
6084 "VF not yet analyzed for scalarization profitability");
6085 return !Scalarized->second.count(
I) &&
6087 auto *UI = cast<Instruction>(U);
6088 return !Scalarized->second.count(UI);
6097 assert(
I->getOpcode() == Instruction::GetElementPtr ||
6098 I->getOpcode() == Instruction::PHI ||
6099 (
I->getOpcode() == Instruction::BitCast &&
6100 I->getType()->isPointerTy()) ||
6101 HasSingleCopyAfterVectorization(
I, VF));
6107 !
TTI.getNumberOfParts(VectorTy))
6111 switch (
I->getOpcode()) {
6112 case Instruction::GetElementPtr:
6118 case Instruction::Br: {
6125 bool ScalarPredicatedBB =
false;
6128 (PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(0)) ||
6129 PredicatedBBsAfterVectorization[VF].count(BI->
getSuccessor(1))) &&
6131 ScalarPredicatedBB =
true;
6133 if (ScalarPredicatedBB) {
6141 TTI.getScalarizationOverhead(
6149 return TTI.getCFInstrCost(Instruction::Br,
CostKind);
6157 case Instruction::Switch: {
6159 return TTI.getCFInstrCost(Instruction::Switch,
CostKind);
6161 return Switch->getNumCases() *
6162 TTI.getCmpSelInstrCost(
6164 toVectorTy(Switch->getCondition()->getType(), VF),
6168 case Instruction::PHI: {
6185 Type *ResultTy = Phi->getType();
6191 auto *Phi = dyn_cast<PHINode>(U);
6192 if (Phi && Phi->getParent() == TheLoop->getHeader())
6197 auto &ReductionVars =
Legal->getReductionVars();
6198 auto Iter = ReductionVars.find(HeaderUser);
6199 if (Iter != ReductionVars.end() &&
6201 Iter->second.getRecurrenceKind()))
6204 return (Phi->getNumIncomingValues() - 1) *
6205 TTI.getCmpSelInstrCost(
6206 Instruction::Select,
toVectorTy(ResultTy, VF),
6216 Intrinsic::vp_merge,
toVectorTy(Phi->getType(), VF),
6217 {toVectorTy(Type::getInt1Ty(Phi->getContext()), VF)});
6221 return TTI.getCFInstrCost(Instruction::PHI,
CostKind);
6223 case Instruction::UDiv:
6224 case Instruction::SDiv:
6225 case Instruction::URem:
6226 case Instruction::SRem:
6230 ScalarCost : SafeDivisorCost;
6234 case Instruction::Add:
6235 case Instruction::Sub: {
6236 auto Info =
Legal->getHistogramInfo(
I);
6243 if (!RHS || RHS->getZExtValue() != 1)
6245 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6249 Type *ScalarTy =
I->getType();
6253 {PtrTy, ScalarTy, MaskTy});
6256 return TTI.getIntrinsicInstrCost(ICA,
CostKind) + MulCost +
6257 TTI.getArithmeticInstrCost(
I->getOpcode(), VectorTy,
CostKind);
6261 case Instruction::FAdd:
6262 case Instruction::FSub:
6263 case Instruction::Mul:
6264 case Instruction::FMul:
6265 case Instruction::FDiv:
6266 case Instruction::FRem:
6267 case Instruction::Shl:
6268 case Instruction::LShr:
6269 case Instruction::AShr:
6270 case Instruction::And:
6271 case Instruction::Or:
6272 case Instruction::Xor: {
6276 if (
I->getOpcode() == Instruction::Mul &&
6277 ((
TheLoop->isLoopInvariant(
I->getOperand(0)) &&
6278 PSE.getSCEV(
I->getOperand(0))->isOne()) ||
6279 (
TheLoop->isLoopInvariant(
I->getOperand(1)) &&
6280 PSE.getSCEV(
I->getOperand(1))->isOne())))
6289 Value *Op2 =
I->getOperand(1);
6295 auto Op2Info =
TTI.getOperandInfo(Op2);
6301 return TTI.getArithmeticInstrCost(
6303 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6304 Op2Info, Operands,
I,
TLI);
6306 case Instruction::FNeg: {
6307 return TTI.getArithmeticInstrCost(
6309 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6310 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
6311 I->getOperand(0),
I);
6313 case Instruction::Select: {
6318 const Value *Op0, *Op1;
6329 return TTI.getArithmeticInstrCost(
6331 VectorTy,
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, {Op0, Op1},
I);
6334 Type *CondTy =
SI->getCondition()->getType();
6340 Pred = Cmp->getPredicate();
6341 return TTI.getCmpSelInstrCost(
I->getOpcode(), VectorTy, CondTy, Pred,
6342 CostKind, {TTI::OK_AnyValue, TTI::OP_None},
6343 {TTI::OK_AnyValue, TTI::OP_None},
I);
6345 case Instruction::ICmp:
6346 case Instruction::FCmp: {
6347 Type *ValTy =
I->getOperand(0)->getType();
6353 MinBWs[
I] == MinBWs[Op0AsInstruction]) &&
6354 "if both the operand and the compare are marked for "
6355 "truncation, they must have the same bitwidth");
6360 return TTI.getCmpSelInstrCost(
6363 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None},
I);
6365 case Instruction::Store:
6366 case Instruction::Load: {
6371 "CM decision should be taken at this point");
6378 return getMemoryInstructionCost(
I, VF);
6380 case Instruction::BitCast:
6381 if (
I->getType()->isPointerTy())
6384 case Instruction::ZExt:
6385 case Instruction::SExt:
6386 case Instruction::FPToUI:
6387 case Instruction::FPToSI:
6388 case Instruction::FPExt:
6389 case Instruction::PtrToInt:
6390 case Instruction::IntToPtr:
6391 case Instruction::SIToFP:
6392 case Instruction::UIToFP:
6393 case Instruction::Trunc:
6394 case Instruction::FPTrunc: {
6398 "Expected a load or a store!");
6424 unsigned Opcode =
I->getOpcode();
6427 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
6430 CCH = ComputeCCH(Store);
6433 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
6434 Opcode == Instruction::FPExt) {
6436 CCH = ComputeCCH(Load);
6444 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6445 Trunc->getSrcTy(), CCH,
CostKind, Trunc);
6452 Type *SrcScalarTy =
I->getOperand(0)->getType();
6464 (
I->getOpcode() == Instruction::ZExt ||
6465 I->getOpcode() == Instruction::SExt))
6469 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH,
CostKind,
I);
6471 case Instruction::Call:
6473 case Instruction::ExtractValue:
6475 case Instruction::Alloca:
6483 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
CostKind);
6498 auto IsLiveOutDead = [
this, RequiresScalarEpilogue](
User *U) {
6499 return RequiresScalarEpilogue &&
6513 all_of(
I.users(), [
this, IsLiveOutDead](
User *U) {
6514 return VecValuesToIgnore.contains(U) ||
6515 ValuesToIgnore.contains(U) || IsLiveOutDead(U);
6524 if (Group->getInsertPos() == &
I)
6527 DeadInterleavePointerOps.
push_back(PointerOp);
6533 if (Br->isConditional())
6540 for (
unsigned I = 0;
I != DeadInterleavePointerOps.
size(); ++
I) {
6543 Instruction *UI = cast<Instruction>(U);
6544 return !VecValuesToIgnore.contains(U) &&
6545 (!isAccessInterleaved(UI) ||
6546 getInterleavedAccessGroup(UI)->getInsertPos() == UI);
6566 for (
unsigned I = 0;
I != DeadOps.
size(); ++
I) {
6578 if ((ThenEmpty && ElseEmpty) ||
6580 ElseBB->
phis().empty()) ||
6582 ThenBB->
phis().empty())) {
6594 return !VecValuesToIgnore.contains(U) &&
6595 !ValuesToIgnore.contains(U) && !IsLiveOutDead(U);
6603 [
this](
User *U) { return ValuesToIgnore.contains(U); }))
6612 for (
const auto &Reduction :
Legal->getReductionVars()) {
6619 for (
const auto &Induction :
Legal->getInductionVars()) {
6627 if (!InLoopReductions.empty())
6630 for (
const auto &Reduction :
Legal->getReductionVars()) {
6631 PHINode *Phi = Reduction.first;
6652 !
TTI.preferInLoopReduction(Kind, Phi->getType()))
6660 bool InLoop = !ReductionOperations.
empty();
6663 InLoopReductions.insert(Phi);
6666 for (
auto *
I : ReductionOperations) {
6667 InLoopReductionImmediateChains[
I] = LastChain;
6671 LLVM_DEBUG(
dbgs() <<
"LV: Using " << (InLoop ?
"inloop" :
"out of loop")
6672 <<
" reduction for phi: " << *Phi <<
"\n");
6685 unsigned WidestType;
6689 TTI.enableScalableVectorization()
6694 unsigned N =
RegSize.getKnownMinValue() / WidestType;
6705 if (!OrigLoop->isInnermost()) {
6715 <<
"overriding computed VF.\n");
6718 }
else if (UserVF.
isScalable() && !TTI.supportsScalableVectors() &&
6720 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing. Scalable VF requested, but "
6721 <<
"not supported by the target.\n");
6723 "Scalable vectorization requested but not supported by the target",
6724 "the scalable user-specified vectorization width for outer-loop "
6725 "vectorization cannot be used because the target does not support "
6726 "scalable vectors.",
6727 "ScalableVFUnfeasible", ORE, OrigLoop);
6732 "VF needs to be a power of two");
6734 <<
"VF " << VF <<
" to build VPlans.\n");
6744 return {VF, 0 , 0 };
6748 dbgs() <<
"LV: Not vectorizing. Inner loops aren't supported in the "
6749 "VPlan-native path.\n");
6754 assert(OrigLoop->isInnermost() &&
"Inner loop expected.");
6755 CM.collectValuesToIgnore();
6756 CM.collectElementTypesForWidening();
6763 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
6767 <<
"LV: Invalidate all interleaved groups due to fold-tail by masking "
6768 "which requires masked-interleaved support.\n");
6769 if (CM.InterleaveInfo.invalidateGroups())
6773 CM.invalidateCostModelingDecisions();
6776 if (CM.foldTailByMasking())
6777 Legal->prepareToFoldTailByMasking();
6784 "UserVF ignored because it may be larger than the maximal safe VF",
6785 "InvalidUserVF", ORE, OrigLoop);
6788 "VF needs to be a power of two");
6791 CM.collectInLoopReductions();
6792 if (CM.selectUserVectorizationFactor(UserVF)) {
6794 buildVPlansWithVPRecipes(UserVF, UserVF);
6799 "InvalidCost", ORE, OrigLoop);
6812 CM.collectInLoopReductions();
6813 for (
const auto &VF : VFCandidates) {
6815 CM.collectNonVectorizedAndSetWideningDecisions(VF);
6834 return CM.isUniformAfterVectorization(
I, VF);
6838 return CM.ValuesToIgnore.contains(UI) ||
6839 (IsVector &&
CM.VecValuesToIgnore.contains(UI)) ||
6844 return CM.getPredBlockCostDivisor(
CostKind, BB);
6863 for (
const auto &[
IV, IndDesc] :
Legal->getInductionVars()) {
6865 IV->getIncomingValueForBlock(OrigLoop->getLoopLatch()));
6867 for (
unsigned I = 0;
I != IVInsts.
size();
I++) {
6868 for (
Value *
Op : IVInsts[
I]->operands()) {
6870 if (
Op ==
IV || !OpI || !OrigLoop->contains(OpI) || !
Op->hasOneUse())
6876 for (User *U :
IV->users()) {
6889 if (TC == VF && !CM.foldTailByMasking())
6893 for (Instruction *IVInst : IVInsts) {
6898 dbgs() <<
"Cost of " << InductionCost <<
" for VF " << VF
6899 <<
": induction instruction " << *IVInst <<
"\n";
6901 Cost += InductionCost;
6911 CM.TheLoop->getExitingBlocks(Exiting);
6912 SetVector<Instruction *> ExitInstrs;
6914 for (BasicBlock *EB : Exiting) {
6919 ExitInstrs.
insert(CondI);
6923 for (
unsigned I = 0;
I != ExitInstrs.
size(); ++
I) {
6925 if (!OrigLoop->contains(CondI) ||
6930 dbgs() <<
"Cost of " << CondICost <<
" for VF " << VF
6931 <<
": exit condition instruction " << *CondI <<
"\n";
6937 any_of(OpI->users(), [&ExitInstrs,
this](User *U) {
6938 return OrigLoop->contains(cast<Instruction>(U)->getParent()) &&
6939 !ExitInstrs.contains(cast<Instruction>(U));
6951 for (BasicBlock *BB : OrigLoop->blocks()) {
6955 if (BB == OrigLoop->getLoopLatch())
6957 auto BranchCost = CostCtx.
getLegacyCost(BB->getTerminator(), VF);
6964 for (Instruction *ForcedScalar : CM.ForcedScalars[VF]) {
6970 dbgs() <<
"Cost of " << ForcedCost <<
" for VF " << VF
6971 <<
": forced scalar " << *ForcedScalar <<
"\n";
6975 for (
const auto &[Scalarized, ScalarCost] : CM.InstsToScalarize[VF]) {
6980 dbgs() <<
"Cost of " << ScalarCost <<
" for VF " << VF
6981 <<
": profitable to scalarize " << *Scalarized <<
"\n";
6990 ElementCount VF)
const {
6991 VPCostContext CostCtx(CM.TTI, *CM.TLI, Plan, CM, CM.CostKind, *PSE.
getSE(),
7000 <<
" (Estimated cost per lane: ");
7002 double CostPerLane = double(
Cost.
getValue()) / EstimatedWidth;
7025 return &WidenMem->getIngredient();
7034 if (!VPI || VPI->getOpcode() != Instruction::Select)
7038 switch (WR->getOpcode()) {
7039 case Instruction::UDiv:
7040 case Instruction::SDiv:
7041 case Instruction::URem:
7042 case Instruction::SRem:
7055 auto *IG =
IR->getInterleaveGroup();
7056 unsigned NumMembers = IG->getNumMembers();
7057 for (
unsigned I = 0;
I != NumMembers; ++
I) {
7075 if (VPR->isPartialReduction())
7092 if (RepR->isSingleScalar() &&
7094 RepR->getUnderlyingInstr(), VF))
7097 if (
Instruction *UI = GetInstructionForCost(&R)) {
7102 if (
match(&R,
m_Cmp(Pred, m_VPValue(), m_VPValue())) &&
7114 return any_of(TheLoop->
blocks(), [&SeenInstrs, &CostCtx,
7116 return any_of(*BB, [&SeenInstrs, &CostCtx, TheLoop, BB](Instruction &I) {
7119 if (isa<PHINode>(&I) && BB == TheLoop->getHeader() &&
7120 CostCtx.CM.Legal->isInductionPhi(cast<PHINode>(&I)))
7122 return !SeenInstrs.contains(&I) && !CostCtx.skipCostComputation(&I, true);
7132 VPlan &FirstPlan = *VPlans[0];
7138 ?
"Reciprocal Throughput\n"
7140 ?
"Instruction Latency\n"
7143 ?
"Code Size and Latency\n"
7148 "More than a single plan/VF w/o any plan having scalar VF");
7152 LLVM_DEBUG(
dbgs() <<
"LV: Scalar loop costs: " << ScalarCost <<
".\n");
7157 if (ForceVectorization) {
7164 for (
auto &
P : VPlans) {
7166 P->vectorFactors().end());
7170 return CM.shouldConsiderRegPressureForVF(VF);
7174 for (
unsigned I = 0;
I < VFs.
size();
I++) {
7181 <<
"LV: Not considering vector loop of width " << VF
7182 <<
" because it will not generate any vector instructions.\n");
7188 <<
"LV: Not considering vector loop of width " << VF
7189 <<
" because it would cause replicated blocks to be generated,"
7190 <<
" which isn't allowed when optimizing for size.\n");
7197 if (CM.shouldConsiderRegPressureForVF(VF) &&
7199 LLVM_DEBUG(
dbgs() <<
"LV(REG): Not considering vector loop of width "
7200 << VF <<
" because it uses too many registers\n");
7204 if (isMoreProfitable(CurrentFactor, BestFactor,
P->hasScalarTail()))
7205 BestFactor = CurrentFactor;
7208 if (isMoreProfitable(CurrentFactor, ScalarFactor,
P->hasScalarTail()))
7209 ProfitableVFs.push_back(CurrentFactor);
7225 VPCostContext CostCtx(CM.TTI, *CM.TLI, BestPlan, CM, CM.CostKind,
7226 *CM.PSE.getSE(), OrigLoop);
7227 precomputeCosts(BestPlan, BestFactor.
Width, CostCtx);
7234 bool UsesEVLGatherScatter =
7238 return any_of(*VPBB, [](VPRecipeBase &R) {
7239 return isa<VPWidenLoadEVLRecipe, VPWidenStoreEVLRecipe>(&R) &&
7240 !cast<VPWidenMemoryRecipe>(&R)->isConsecutive();
7244 (BestFactor.Width == LegacyVF.Width || BestPlan.hasEarlyExit() ||
7245 !
Legal->getLAI()->getSymbolicStrides().empty() || UsesEVLGatherScatter ||
7247 getPlanFor(BestFactor.Width), CostCtx, OrigLoop, BestFactor.Width) ||
7249 getPlanFor(LegacyVF.Width), CostCtx, OrigLoop, LegacyVF.Width)) &&
7250 " VPlan cost model and legacy cost model disagreed");
7251 assert((BestFactor.Width.isScalar() || BestFactor.ScalarCost > 0) &&
7252 "when vectorizing, the scalar cost must be computed.");
7255 LLVM_DEBUG(
dbgs() <<
"LV: Selecting VF: " << BestFactor.Width <<
".\n");
7262 "RdxResult must be ComputeFindIVResult");
7280 if (!EpiRedResult ||
7286 auto *EpiRedHeaderPhi =
7288 RecurKind Kind = EpiRedHeaderPhi->getRecurrenceKind();
7289 Value *MainResumeValue;
7293 "unexpected start recipe");
7294 MainResumeValue = VPI->getOperand(0)->getUnderlyingValue();
7296 MainResumeValue = EpiRedHeaderPhi->getStartValue()->getUnderlyingValue();
7298 [[maybe_unused]]
Value *StartV =
7299 EpiRedResult->getOperand(1)->getLiveInIRValue();
7302 "AnyOf expected to start with ICMP_NE");
7303 assert(Cmp->getOperand(1) == StartV &&
7304 "AnyOf expected to start by comparing main resume value to original "
7306 MainResumeValue = Cmp->getOperand(0);
7309 Value *SentinelV = EpiRedResult->getOperand(2)->getLiveInIRValue();
7311 Value *Cmp, *OrigResumeV, *CmpOp;
7312 [[maybe_unused]]
bool IsExpectedPattern =
7313 match(MainResumeValue,
7319 assert(IsExpectedPattern &&
"Unexpected reduction resume pattern");
7320 MainResumeValue = OrigResumeV;
7335 "Trying to execute plan with unsupported VF");
7337 "Trying to execute plan with unsupported UF");
7339 ++LoopsEarlyExitVectorized;
7347 bool HasBranchWeights =
7349 if (HasBranchWeights) {
7350 std::optional<unsigned> VScale = CM.getVScaleForTuning();
7352 BestVPlan, BestVF, VScale);
7357 attachRuntimeChecks(BestVPlan, ILV.
RTChecks, HasBranchWeights);
7370 OrigLoop->getStartLoc(),
7371 OrigLoop->getHeader())
7372 <<
"Created vector loop never executes due to insufficient trip "
7393 BestVPlan, VectorPH, CM.foldTailByMasking(),
7394 CM.requiresScalarEpilogue(BestVF.
isVector()));
7406 assert(VectorizingEpilogue &&
"should only re-use the existing trip "
7407 "count during epilogue vectorization");
7411 OrigLoop->getParentLoop(),
7412 Legal->getWidestInductionType());
7414#ifdef EXPENSIVE_CHECKS
7415 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
7426 "final VPlan is invalid");
7433 if (!Exit->hasPredecessors())
7455 MDNode *LID = OrigLoop->getLoopID();
7456 unsigned OrigLoopInvocationWeight = 0;
7457 std::optional<unsigned> OrigAverageTripCount =
7469 bool DisableRuntimeUnroll = !ILV.
RTChecks.hasChecks() && !BestVF.
isScalar();
7471 HeaderVPBB ? LI->getLoopFor(State.CFG.VPBB2IRBB.lookup(HeaderVPBB))
7473 HeaderVPBB, BestVPlan, VectorizingEpilogue, LID, OrigAverageTripCount,
7474 OrigLoopInvocationWeight,
7476 DisableRuntimeUnroll);
7484 return ExpandedSCEVs;
7499 EPI.EpilogueIterationCountCheck =
7501 EPI.EpilogueIterationCountCheck->setName(
"iter.check");
7511 EPI.MainLoopIterationCountCheck =
7520 dbgs() <<
"Create Skeleton for epilogue vectorized loop (first pass)\n"
7521 <<
"Main Loop VF:" <<
EPI.MainLoopVF
7522 <<
", Main Loop UF:" <<
EPI.MainLoopUF
7523 <<
", Epilogue Loop VF:" <<
EPI.EpilogueVF
7524 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7530 dbgs() <<
"intermediate fn:\n"
7531 << *
OrigLoop->getHeader()->getParent() <<
"\n";
7537 assert(Bypass &&
"Expected valid bypass basic block.");
7541 VectorPH, ForEpilogue ?
EPI.EpilogueVF :
EPI.MainLoopVF,
7542 ForEpilogue ?
EPI.EpilogueUF :
EPI.MainLoopUF);
7546 TCCheckBlock->
setName(
"vector.main.loop.iter.check");
7572 return TCCheckBlock;
7585 OriginalScalarPH->
setName(
"vec.epilog.iter.check");
7593 R.moveBefore(*NewEntry, NewEntry->
end());
7597 Plan.setEntry(NewEntry);
7600 return OriginalScalarPH;
7605 dbgs() <<
"Create Skeleton for epilogue vectorized loop (second pass)\n"
7606 <<
"Epilogue Loop VF:" <<
EPI.EpilogueVF
7607 <<
", Epilogue Loop UF:" <<
EPI.EpilogueUF <<
"\n";
7613 dbgs() <<
"final fn:\n" << *
OrigLoop->getHeader()->getParent() <<
"\n";
7620 VPI->
getOpcode() == Instruction::Store) &&
7621 "Must be called with either a load or store");
7628 "CM decision should be taken at this point.");
7641 if (
Legal->isMaskRequired(
I))
7666 :
GEP->getNoWrapFlags().withoutNoUnsignedWrap();
7672 GEP ?
GEP->getNoWrapFlags()
7676 Builder.insert(VectorPtr);
7679 if (VPI->
getOpcode() == Instruction::Load) {
7681 return new VPWidenLoadRecipe(*Load, Ptr, Mask, Consecutive,
Reverse, *VPI,
7686 return new VPWidenStoreRecipe(*Store, Ptr, VPI->
getOperand(0), Mask,
7697 "step must be loop invariant");
7704 "Start VPValue must match IndDesc's start value");
7726VPRecipeBuilder::tryToOptimizeInductionPHI(
VPInstruction *VPI) {
7731 if (
auto *
II = Legal->getIntOrFpInductionDescriptor(Phi))
7735 if (
auto *
II = Legal->getPointerInductionDescriptor(Phi)) {
7737 return new VPWidenPointerInductionRecipe(Phi, VPI->
getOperand(0), Step,
7738 &Plan.getVFxUF(), *
II,
7745VPRecipeBuilder::tryToOptimizeInductionTruncate(
VPInstruction *VPI,
7755 auto IsOptimizableIVTruncate =
7756 [&](
Instruction *
K) -> std::function<
bool(ElementCount)> {
7757 return [=](ElementCount VF) ->
bool {
7758 return CM.isOptimizableIVTruncate(K, VF);
7763 IsOptimizableIVTruncate(
I),
Range))
7770 const InductionDescriptor &IndDesc =
WidenIV->getInductionDescriptor();
7778 return new VPWidenIntOrFpInductionRecipe(
7779 Phi, Start, Step, &Plan.getVF(), IndDesc,
I, Flags, VPI->
getDebugLoc());
7786 [
this, CI](ElementCount VF) {
7787 return CM.isScalarWithPredication(CI, VF);
7795 if (
ID && (
ID == Intrinsic::assume ||
ID == Intrinsic::lifetime_end ||
7796 ID == Intrinsic::lifetime_start ||
ID == Intrinsic::sideeffect ||
7797 ID == Intrinsic::pseudoprobe ||
7798 ID == Intrinsic::experimental_noalias_scope_decl))
7805 bool ShouldUseVectorIntrinsic =
7807 [&](ElementCount VF) ->
bool {
7808 return CM.getCallWideningDecision(CI, VF).Kind ==
7812 if (ShouldUseVectorIntrinsic)
7813 return new VPWidenIntrinsicRecipe(*CI,
ID,
Ops, CI->
getType(), *VPI, *VPI,
7817 std::optional<unsigned> MaskPos;
7821 [&](ElementCount VF) ->
bool {
7836 LoopVectorizationCostModel::CallWideningDecision Decision =
7837 CM.getCallWideningDecision(CI, VF);
7847 if (ShouldUseVectorCall) {
7848 if (MaskPos.has_value()) {
7856 VPValue *
Mask =
nullptr;
7857 if (Legal->isMaskRequired(CI))
7860 Mask = Plan.getOrAddLiveIn(
7863 Ops.insert(
Ops.begin() + *MaskPos, Mask);
7867 return new VPWidenCallRecipe(CI, Variant,
Ops, *VPI, *VPI,
7876 !
isa<StoreInst>(
I) &&
"Instruction should have been handled earlier");
7879 auto WillScalarize = [
this,
I](ElementCount VF) ->
bool {
7880 return CM.isScalarAfterVectorization(
I, VF) ||
7881 CM.isProfitableToScalarize(
I, VF) ||
7882 CM.isScalarWithPredication(
I, VF);
7893 case Instruction::SDiv:
7894 case Instruction::UDiv:
7895 case Instruction::SRem:
7896 case Instruction::URem: {
7899 if (CM.isPredicatedInst(
I)) {
7902 VPValue *One = Plan.getConstantInt(
I->getType(), 1u);
7910 case Instruction::Add:
7911 case Instruction::And:
7912 case Instruction::AShr:
7913 case Instruction::FAdd:
7914 case Instruction::FCmp:
7915 case Instruction::FDiv:
7916 case Instruction::FMul:
7917 case Instruction::FNeg:
7918 case Instruction::FRem:
7919 case Instruction::FSub:
7920 case Instruction::ICmp:
7921 case Instruction::LShr:
7922 case Instruction::Mul:
7923 case Instruction::Or:
7924 case Instruction::Select:
7925 case Instruction::Shl:
7926 case Instruction::Sub:
7927 case Instruction::Xor:
7928 case Instruction::Freeze: {
7934 ScalarEvolution &SE = *PSE.getSE();
7935 auto GetConstantViaSCEV = [
this, &SE](VPValue *
Op) {
7936 if (!
Op->isLiveIn())
7938 Value *
V =
Op->getUnderlyingValue();
7944 return Plan.getOrAddLiveIn(
C->getValue());
7947 if (VPI->
getOpcode() == Instruction::Mul)
7948 NewOps[0] = GetConstantViaSCEV(NewOps[0]);
7950 NewOps[1] = GetConstantViaSCEV(NewOps[1]);
7952 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7954 case Instruction::ExtractValue: {
7957 assert(EVI->getNumIndices() == 1 &&
"Expected one extractvalue index");
7958 unsigned Idx = EVI->getIndices()[0];
7959 NewOps.push_back(Plan.getConstantInt(32, Idx));
7960 return new VPWidenRecipe(*
I, NewOps, *VPI, *VPI, VPI->
getDebugLoc());
7968 unsigned Opcode =
HI->Update->getOpcode();
7969 assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
7970 "Histogram update operation must be an Add or Sub");
7980 if (Legal->isMaskRequired(
HI->Store))
7983 return new VPHistogramRecipe(Opcode, HGramOps, VPI->
getDebugLoc());
7990 [&](
ElementCount VF) {
return CM.isUniformAfterVectorization(
I, VF); },
7993 bool IsPredicated = CM.isPredicatedInst(
I);
8001 case Intrinsic::assume:
8002 case Intrinsic::lifetime_start:
8003 case Intrinsic::lifetime_end:
8025 VPValue *BlockInMask =
nullptr;
8026 if (!IsPredicated) {
8030 LLVM_DEBUG(
dbgs() <<
"LV: Scalarizing and predicating:" << *
I <<
"\n");
8041 assert((
Range.Start.isScalar() || !IsUniform || !IsPredicated ||
8043 "Should not predicate a uniform recipe");
8059 for (
const auto &[Phi, RdxDesc] : Legal->getReductionVars()) {
8060 if (
Instruction *RdxExitInstr = RdxDesc.getLoopExitInstr())
8061 getScaledReductions(Phi, RdxExitInstr,
Range, ChainsByPhi[Phi]);
8070 for (
const auto &[
_, Chains] : ChainsByPhi)
8071 for (
const auto &[PartialRdx,
_] : Chains)
8072 PartialReductionOps.
insert(PartialRdx.ExtendUser);
8074 auto ExtendIsOnlyUsedByPartialReductions =
8076 return all_of(Extend->users(), [&](
const User *U) {
8077 return PartialReductionOps.contains(U);
8083 for (
const auto &[
_, Chains] : ChainsByPhi) {
8084 for (
const auto &[Chain, Scale] : Chains) {
8085 if (ExtendIsOnlyUsedByPartialReductions(Chain.ExtendA) &&
8087 ExtendIsOnlyUsedByPartialReductions(Chain.ExtendB)))
8088 ScaledReductionMap.try_emplace(Chain.Reduction, Scale);
8096 for (
const auto &[Phi, Chains] : ChainsByPhi) {
8097 for (
const auto &[Chain, Scale] : Chains) {
8098 auto AllUsersPartialRdx = [ScaleVal = Scale, RdxPhi = Phi,
8099 this](
const User *U) {
8101 if (
isa<PHINode>(UI) && UI->getParent() == OrigLoop->getHeader())
8102 return UI == RdxPhi;
8103 return ScaledReductionMap.lookup_or(UI, 0) == ScaleVal ||
8104 !OrigLoop->contains(UI->getParent());
8109 if (!
all_of(Chain.Reduction->users(), AllUsersPartialRdx)) {
8110 for (
const auto &[Chain,
_] : Chains)
8111 ScaledReductionMap.erase(Chain.Reduction);
8118bool VPRecipeBuilder::getScaledReductions(
8120 SmallVectorImpl<std::pair<PartialReductionChain, unsigned>> &Chains) {
8128 Value *
Op = Update->getOperand(0);
8129 Value *PhiOp = Update->getOperand(1);
8139 std::optional<TTI::PartialReductionExtendKind> OuterExtKind = std::nullopt;
8143 Op = Cast->getOperand(0);
8150 if (getScaledReductions(
PHI, OpInst,
Range, Chains)) {
8151 PHI = Chains.rbegin()->first.Reduction;
8153 Op = Update->getOperand(0);
8154 PhiOp = Update->getOperand(1);
8167 std::optional<unsigned> BinOpc;
8168 Type *ExtOpTypes[2] = {
nullptr};
8171 auto CollectExtInfo = [
this, OuterExtKind, &Exts, &ExtOpTypes,
8172 &ExtKinds](SmallVectorImpl<Value *> &
Ops) ->
bool {
8177 ExtOpTypes[
I] = ExtOpTypes[0];
8178 ExtKinds[
I] = ExtKinds[0];
8187 if (!CM.TheLoop->contains(Exts[
I]))
8194 if (OuterExtKind.has_value() && OuterExtKind.value() != ExtKinds[
I])
8209 if (!CollectExtInfo(
Ops))
8212 BinOpc = std::make_optional(ExtendUser->
getOpcode());
8216 if (!CollectExtInfo(
Ops))
8219 ExtendUser = Update;
8220 BinOpc = std::nullopt;
8224 PartialReductionChain Chain(RdxExitInstr, Exts[0], Exts[1], ExtendUser);
8226 TypeSize PHISize =
PHI->getType()->getPrimitiveSizeInBits();
8233 [&](ElementCount VF) {
8235 Update->getOpcode(), ExtOpTypes[0], ExtOpTypes[1],
8236 PHI->getType(), VF, ExtKinds[0], ExtKinds[1], BinOpc,
8241 Chains.emplace_back(Chain, TargetScaleFactor);
8258 "Non-header phis should have been handled during predication");
8260 assert(R->getNumOperands() == 2 &&
"Must have 2 operands for header phis");
8261 if ((Recipe = tryToOptimizeInductionPHI(PhiR)))
8265 assert((Legal->isReductionVariable(Phi) ||
8266 Legal->isFixedOrderRecurrence(Phi)) &&
8267 "can only widen reductions and fixed-order recurrences here");
8268 VPValue *StartV = R->getOperand(0);
8269 if (Legal->isReductionVariable(Phi)) {
8272 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8275 bool UseInLoopReduction = CM.isInLoopReduction(Phi);
8276 bool UseOrderedReductions = CM.useOrderedReductions(RdxDesc);
8277 unsigned ScaleFactor =
8296 assert(!R->isPhi() &&
"only VPPhi nodes expected at this point");
8300 if (VPI->
getOpcode() == Instruction::Trunc &&
8301 (Recipe = tryToOptimizeInductionTruncate(VPI,
Range)))
8309 if (VPI->
getOpcode() == Instruction::Call)
8310 return tryToWidenCall(VPI,
Range);
8312 if (VPI->
getOpcode() == Instruction::Store)
8314 return tryToWidenHistogram(*HistInfo, VPI);
8316 if (VPI->
getOpcode() == Instruction::Load ||
8318 return tryToWidenMemory(VPI,
Range);
8323 if (!shouldWiden(Instr,
Range))
8326 if (VPI->
getOpcode() == Instruction::GetElementPtr)
8330 if (VPI->
getOpcode() == Instruction::Select)
8338 CastR->getResultType(), CI, *VPI, *VPI,
8342 return tryToWiden(VPI);
8347 unsigned ScaleFactor) {
8348 assert(Reduction->getNumOperands() == 2 &&
8349 "Unexpected number of operands for partial reduction");
8351 VPValue *BinOp = Reduction->getOperand(0);
8361 "all accumulators in chain must have same scale factor");
8363 auto *ReductionI = Reduction->getUnderlyingInstr();
8364 if (Reduction->getOpcode() == Instruction::Sub) {
8365 auto *
const Zero = ConstantInt::get(ReductionI->getType(), 0);
8367 Ops.push_back(Plan.getOrAddLiveIn(Zero));
8368 Ops.push_back(BinOp);
8375 if (CM.blockNeedsPredicationForAnyReason(ReductionI->getParent()))
8383void LoopVectorizationPlanner::buildVPlansWithVPRecipes(
ElementCount MinVF,
8392 OrigLoop, LI, DT, PSE.
getSE());
8397 LVer.prepareNoAliasMetadata();
8403 OrigLoop, *LI,
Legal->getWidestInductionType(),
8406 auto MaxVFTimes2 = MaxVF * 2;
8408 VFRange SubRange = {VF, MaxVFTimes2};
8409 if (
auto Plan = tryToBuildVPlanWithVPRecipes(
8410 std::unique_ptr<VPlan>(VPlan0->duplicate()), SubRange, &LVer)) {
8415 *Plan, CM.getMinimalBitwidths());
8418 if (CM.foldTailWithEVL())
8420 *Plan, CM.getMaxSafeElements());
8422 VPlans.push_back(std::move(Plan));
8428VPlanPtr LoopVectorizationPlanner::tryToBuildVPlanWithVPRecipes(
8431 using namespace llvm::VPlanPatternMatch;
8432 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8439 bool RequiresScalarEpilogueCheck =
8441 [
this](ElementCount VF) {
8442 return !CM.requiresScalarEpilogue(VF.
isVector());
8447 CM.foldTailByMasking());
8455 bool IVUpdateMayOverflow =
false;
8456 for (ElementCount VF :
Range)
8464 VPRegionBlock *LoopRegion = Plan->getVectorLoopRegion();
8470 m_VPInstruction<Instruction::Add>(
8472 "Did not find the canonical IV increment");
8485 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8486 auto ApplyIG = [IG,
this](ElementCount VF) ->
bool {
8488 CM.getWideningDecision(IG->getInsertPos(), VF) ==
8493 "Unsupported interleave factor for scalable vectors");
8498 InterleaveGroups.
insert(IG);
8505 *Plan, CM.foldTailByMasking());
8511 VPRecipeBuilder RecipeBuilder(*Plan, OrigLoop, TLI, &TTI, Legal, CM, PSE,
8512 Builder, BlockMaskCache);
8514 if (!CM.foldTailWithEVL())
8515 RecipeBuilder.collectScaledReductions(
Range);
8520 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
8523 auto *MiddleVPBB = Plan->getMiddleBlock();
8527 DenseMap<VPValue *, VPValue *> Old2New;
8532 auto *UnderlyingValue = SingleDef->getUnderlyingValue();
8547 Builder.setInsertPoint(SingleDef);
8554 Legal->isInvariantAddressOfReduction(
SI->getPointerOperand())) {
8556 if (Legal->isInvariantStoreOfReduction(SI)) {
8558 auto *Recipe =
new VPReplicateRecipe(
8559 SI,
R.operands(),
true ,
nullptr , *VPI,
8561 Recipe->insertBefore(*MiddleVPBB, MBIP);
8563 R.eraseFromParent();
8567 VPRecipeBase *Recipe =
8568 RecipeBuilder.tryToCreateWidenRecipe(SingleDef,
Range);
8573 RecipeBuilder.setRecipe(Instr, Recipe);
8579 Builder.insert(Recipe);
8586 "Unexpected multidef recipe");
8587 R.eraseFromParent();
8596 RecipeBuilder.updateBlockMaskCache(Old2New);
8597 for (VPValue *Old : Old2New.
keys())
8598 Old->getDefiningRecipe()->eraseFromParent();
8602 "entry block must be set to a VPRegionBlock having a non-empty entry "
8608 DenseMap<VPValue *, VPValue *> IVEndValues;
8617 adjustRecipesForReductions(Plan, RecipeBuilder,
Range.Start);
8634 if (!CM.foldTailWithEVL()) {
8635 VPCostContext CostCtx(CM.TTI, *CM.TLI, *Plan, CM, CM.CostKind,
8636 *CM.PSE.getSE(), OrigLoop);
8641 for (ElementCount VF :
Range)
8643 Plan->setName(
"Initial VPlan");
8649 InterleaveGroups, RecipeBuilder,
8650 CM.isScalarEpilogueAllowed());
8654 Legal->getLAI()->getSymbolicStrides());
8656 auto BlockNeedsPredication = [
this](
BasicBlock *BB) {
8657 return Legal->blockNeedsPredication(BB);
8660 BlockNeedsPredication);
8672 bool WithoutRuntimeCheck =
8675 WithoutRuntimeCheck);
8688 assert(!OrigLoop->isInnermost());
8692 OrigLoop, *LI, Legal->getWidestInductionType(),
8701 for (ElementCount VF :
Range)
8706 [
this](PHINode *
P) {
8707 return Legal->getIntOrFpInductionDescriptor(
P);
8716 DenseMap<VPValue *, VPValue *> IVEndValues;
8736void LoopVectorizationPlanner::adjustRecipesForReductions(
8738 using namespace VPlanPatternMatch;
8739 VPTypeAnalysis TypeInfo(*Plan);
8740 VPRegionBlock *VectorLoopRegion = Plan->getVectorLoopRegion();
8742 VPBasicBlock *MiddleVPBB = Plan->getMiddleBlock();
8745 for (VPRecipeBase &R : Header->phis()) {
8747 if (!PhiR || !PhiR->isInLoop() || (MinVF.
isScalar() && !PhiR->isOrdered()))
8754 "AnyOf and FindIV reductions are not allowed for in-loop reductions");
8756 bool IsFPRecurrence =
8758 FastMathFlags FMFs =
8762 SetVector<VPSingleDefRecipe *> Worklist;
8764 for (
unsigned I = 0;
I != Worklist.
size(); ++
I) {
8765 VPSingleDefRecipe *Cur = Worklist[
I];
8766 for (VPUser *U : Cur->
users()) {
8768 if (!UserRecipe->getParent()->getEnclosingLoopRegion()) {
8769 assert((UserRecipe->getParent() == MiddleVPBB ||
8770 UserRecipe->getParent() == Plan->getScalarPreheader()) &&
8771 "U must be either in the loop region, the middle block or the "
8772 "scalar preheader.");
8775 Worklist.
insert(UserRecipe);
8786 VPSingleDefRecipe *PreviousLink = PhiR;
8787 for (VPSingleDefRecipe *CurrentLink :
drop_begin(Worklist)) {
8789 assert(Blend->getNumIncomingValues() == 2 &&
8790 "Blend must have 2 incoming values");
8791 if (Blend->getIncomingValue(0) == PhiR) {
8792 Blend->replaceAllUsesWith(Blend->getIncomingValue(1));
8794 assert(Blend->getIncomingValue(1) == PhiR &&
8795 "PhiR must be an operand of the blend");
8796 Blend->replaceAllUsesWith(Blend->getIncomingValue(0));
8801 if (IsFPRecurrence) {
8802 FastMathFlags CurFMF =
8806 ->getFastMathFlags();
8810 Instruction *CurrentLinkI = CurrentLink->getUnderlyingInstr();
8813 unsigned IndexOfFirstOperand;
8817 VPBasicBlock *LinkVPBB = CurrentLink->getParent();
8821 "Expected instruction to be a call to the llvm.fmuladd intrinsic");
8824 CurrentLink->getOperand(2) == PreviousLink &&
8825 "expected a call where the previous link is the added operand");
8831 VPInstruction *FMulRecipe =
new VPInstruction(
8833 {CurrentLink->getOperand(0), CurrentLink->getOperand(1)},
8835 LinkVPBB->
insert(FMulRecipe, CurrentLink->getIterator());
8839 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8840 auto *
Zero = Plan->getConstantInt(PhiTy, 0);
8841 auto *
Sub =
new VPInstruction(Instruction::Sub,
8842 {
Zero, CurrentLink->getOperand(1)}, {},
8844 Sub->setUnderlyingValue(CurrentLinkI);
8845 LinkVPBB->
insert(
Sub, CurrentLink->getIterator());
8852 "must be a select recipe");
8853 IndexOfFirstOperand = 1;
8856 "Expected to replace a VPWidenSC");
8857 IndexOfFirstOperand = 0;
8862 CurrentLink->getOperand(IndexOfFirstOperand) == PreviousLink
8863 ? IndexOfFirstOperand + 1
8864 : IndexOfFirstOperand;
8865 VecOp = CurrentLink->getOperand(VecOpId);
8866 assert(VecOp != PreviousLink &&
8867 CurrentLink->getOperand(CurrentLink->getNumOperands() - 1 -
8868 (VecOpId - IndexOfFirstOperand)) ==
8870 "PreviousLink must be the operand other than VecOp");
8873 VPValue *CondOp =
nullptr;
8874 if (CM.blockNeedsPredicationForAnyReason(CurrentLinkI->
getParent()))
8879 new VPReductionRecipe(Kind, FMFs, CurrentLinkI, PreviousLink, VecOp,
8886 RedRecipe->insertBefore(&*std::prev(std::prev(LinkVPBB->
end())));
8890 CurrentLink->replaceAllUsesWith(RedRecipe);
8892 PreviousLink = RedRecipe;
8896 Builder.setInsertPoint(&*std::prev(std::prev(LatchVPBB->
end())));
8898 for (VPRecipeBase &R :
8899 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8904 const RecurrenceDescriptor &RdxDesc = Legal->getRecurrenceDescriptor(
8906 Type *PhiTy = TypeInfo.inferScalarType(PhiR);
8916 if (!PhiR->
isInLoop() && CM.foldTailByMasking() &&
8917 (!RR || !RR->isPartialReduction())) {
8919 std::optional<FastMathFlags> FMFs =
8924 Builder.createSelect(
Cond, OrigExitingVPV, PhiR, {},
"", FMFs);
8925 OrigExitingVPV->replaceUsesWithIf(NewExitingVPV, [](VPUser &U,
unsigned) {
8934 if (CM.usePredicatedReductionSelect())
8945 DebugLoc ExitDL = OrigLoop->getLoopLatch()->getTerminator()->getDebugLoc();
8951 VPInstruction *FinalReductionResult;
8952 VPBuilder::InsertPointGuard Guard(Builder);
8953 Builder.setInsertPoint(MiddleVPBB, IP);
8958 FinalReductionResult =
8963 FinalReductionResult =
8965 {PhiR,
Start, NewExitingVPV}, ExitDL);
8971 FinalReductionResult =
8973 {PhiR, NewExitingVPV},
Flags, ExitDL);
8980 assert(!PhiR->
isInLoop() &&
"Unexpected truncated inloop reduction!");
8982 "Unexpected truncated min-max recurrence!");
8984 VPWidenCastRecipe *Trunc;
8986 RdxDesc.
isSigned() ? Instruction::SExt : Instruction::ZExt;
8987 VPWidenCastRecipe *Extnd;
8989 VPBuilder::InsertPointGuard Guard(Builder);
8990 Builder.setInsertPoint(
8991 NewExitingVPV->getDefiningRecipe()->getParent(),
8992 std::next(NewExitingVPV->getDefiningRecipe()->getIterator()));
8994 Builder.createWidenCast(Instruction::Trunc, NewExitingVPV, RdxTy);
8995 Extnd = Builder.createWidenCast(ExtendOpc, Trunc, PhiTy);
9003 FinalReductionResult =
9004 Builder.createScalarCast(ExtendOpc, FinalReductionResult, PhiTy, {});
9009 for (
auto *U :
to_vector(OrigExitingVPV->users())) {
9011 if (FinalReductionResult == U || Parent->getParent())
9013 U->replaceUsesOfWith(OrigExitingVPV, FinalReductionResult);
9030 return isa<VPWidenSelectRecipe>(U) ||
9031 (isa<VPReplicateRecipe>(U) &&
9032 cast<VPReplicateRecipe>(U)->getUnderlyingInstr()->getOpcode() ==
9033 Instruction::Select);
9038 if (VPRecipeBase *CmpR =
Cmp->getDefiningRecipe())
9040 Builder.setInsertPoint(
Select);
9044 if (
Select->getOperand(1) == PhiR)
9045 Cmp = Builder.createNot(Cmp);
9046 VPValue *
Or = Builder.createOr(PhiR, Cmp);
9047 Select->getVPSingleValue()->replaceAllUsesWith(
Or);
9067 VPBuilder PHBuilder(Plan->getVectorPreheader());
9068 VPValue *Iden = Plan->getOrAddLiveIn(
9071 unsigned ScaleFactor =
9074 auto *ScaleFactorVPV = Plan->getConstantInt(32, ScaleFactor);
9075 VPValue *StartV = PHBuilder.createNaryOp(
9083 for (VPRecipeBase *R : ToDelete)
9084 R->eraseFromParent();
9089void LoopVectorizationPlanner::attachRuntimeChecks(
9090 VPlan &Plan, GeneratedRTChecks &RTChecks,
bool HasBranchWeights)
const {
9091 const auto &[SCEVCheckCond, SCEVCheckBlock] = RTChecks.getSCEVChecks();
9092 if (SCEVCheckBlock && SCEVCheckBlock->hasNPredecessors(0)) {
9093 assert((!CM.OptForSize ||
9095 "Cannot SCEV check stride or overflow when optimizing for size");
9099 const auto &[MemCheckCond, MemCheckBlock] = RTChecks.getMemRuntimeChecks();
9100 if (MemCheckBlock && MemCheckBlock->hasNPredecessors(0)) {
9104 "Runtime checks are not supported for outer loops yet");
9106 if (CM.OptForSize) {
9109 "Cannot emit memory checks when optimizing for size, unless forced "
9112 return OptimizationRemarkAnalysis(
DEBUG_TYPE,
"VectorizationCodeSize",
9113 OrigLoop->getStartLoc(),
9114 OrigLoop->getHeader())
9115 <<
"Code-size may be reduced by not forcing "
9116 "vectorization, or by source-code modifications "
9117 "eliminating the need for runtime checks "
9118 "(e.g., adding 'restrict').";
9132 bool IsIndvarOverflowCheckNeededForVF =
9133 VF.
isScalable() && !TTI.isVScaleKnownToBeAPowerOfTwo() &&
9135 CM.getTailFoldingStyle() !=
9142 Plan, VF, UF, MinProfitableTripCount,
9143 CM.requiresScalarEpilogue(VF.
isVector()), CM.foldTailByMasking(),
9144 IsIndvarOverflowCheckNeededForVF, OrigLoop, BranchWeigths,
9145 OrigLoop->getLoopPredecessor()->getTerminator()->getDebugLoc(),
9150 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
9155 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
9163 State.set(
this, DerivedIV,
VPLane(0));
9176 if (
F->hasOptSize() ||
9202 if (
TTI->preferPredicateOverEpilogue(&TFI))
9221 LLVM_DEBUG(
dbgs() <<
"LV: cannot compute the outer-loop trip count\n");
9225 Function *
F = L->getHeader()->getParent();
9231 LoopVectorizationCostModel CM(
SEL, L, PSE, LI, LVL, *
TTI, TLI, DB, AC, ORE,
9232 GetBFI,
F, &Hints, IAI, OptForSize);
9236 LoopVectorizationPlanner LVP(L, LI, DT, TLI, *
TTI, LVL, CM, IAI, PSE, Hints,
9256 GeneratedRTChecks Checks(PSE, DT, LI,
TTI,
F->getDataLayout(), CM.
CostKind);
9260 << L->getHeader()->getParent()->getName() <<
"\"\n");
9282 if (S->getValueOperand()->getType()->isFloatTy())
9292 while (!Worklist.
empty()) {
9294 if (!L->contains(
I))
9296 if (!Visited.
insert(
I).second)
9306 I->getDebugLoc(), L->getHeader())
9307 <<
"floating point conversion changes vector width. "
9308 <<
"Mixed floating point precision requires an up/down "
9309 <<
"cast that will negatively impact performance.";
9312 for (
Use &
Op :
I->operands())
9328 for (
auto *PredVPBB : ExitVPBB->getPredecessors()) {
9334 << PredVPBB->getName() <<
":\n");
9335 Cost += PredVPBB->cost(VF, CostCtx);
9355 std::optional<unsigned> VScale) {
9379 <<
"LV: Interleaving only is not profitable due to runtime checks\n");
9440 uint64_t MinTC = std::max(MinTC1, MinTC2);
9442 MinTC =
alignTo(MinTC, IntVF);
9446 dbgs() <<
"LV: Minimum required TC for runtime checks to be profitable:"
9453 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is not beneficial: expected "
9454 "trip count < minimum profitable VF ("
9465 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9467 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9488 if (EpiWidenedPhis.
contains(&VPIRInst->getIRPhi()))
9507 auto AddFreezeForFindLastIVReductions = [](
VPlan &Plan,
9508 bool UpdateResumePhis) {
9518 Builder.createNaryOp(Instruction::Freeze, {OrigStart}, {},
"fr");
9520 if (UpdateResumePhis)
9526 AddFreezeForFindLastIVReductions(MainPlan,
true);
9527 AddFreezeForFindLastIVReductions(EpiPlan,
false);
9534 auto ResumePhiIter =
9536 return match(&R, m_VPInstruction<Instruction::PHI>(m_Specific(VectorTC),
9539 VPPhi *ResumePhi =
nullptr;
9540 if (ResumePhiIter == MainScalarPH->
phis().
end()) {
9545 {},
"vec.epilog.resume.val");
9548 if (MainScalarPH->
begin() == MainScalarPH->
end())
9550 else if (&*MainScalarPH->
begin() != ResumePhi)
9565 VPlan &Plan,
Loop *L,
const SCEV2ValueTy &ExpandedSCEVs,
9570 Header->
setName(
"vec.epilog.vector.body");
9581 PHINode *EPResumeVal = &*L->getLoopPreheader()->phis().begin();
9586 "Must only have a single non-zero incoming value");
9597 [](
Value *Inc) { return match(Inc, m_SpecificInt(0)); }) &&
9598 "all incoming values must be 0");
9604 return isa<VPScalarIVStepsRecipe>(U) ||
9605 isa<VPDerivedIVRecipe>(U) ||
9606 cast<VPRecipeBase>(U)->isScalarCast() ||
9607 cast<VPInstruction>(U)->getOpcode() ==
9610 "the canonical IV should only be used by its increment or "
9611 "ScalarIVSteps when resetting the start value");
9612 VPBuilder Builder(Header, Header->getFirstNonPhi());
9614 IV->replaceAllUsesWith(
Add);
9615 Add->setOperand(0,
IV);
9623 Value *ResumeV =
nullptr;
9628 auto *VPI = dyn_cast<VPInstruction>(U);
9630 (VPI->getOpcode() == VPInstruction::ComputeAnyOfResult ||
9631 VPI->getOpcode() == VPInstruction::ComputeReductionResult ||
9632 VPI->getOpcode() == VPInstruction::ComputeFindIVResult);
9635 ->getIncomingValueForBlock(L->getLoopPreheader());
9636 RecurKind RK = ReductionPhi->getRecurrenceKind();
9644 ResumeV = Builder.CreateICmpNE(ResumeV, StartV);
9649 ToFrozen[StartV] =
cast<PHINode>(ResumeV)->getIncomingValueForBlock(
9660 Value *Cmp = Builder.CreateICmpEQ(ResumeV, ToFrozen[StartV]);
9663 Value *
Sentinel = RdxResult->getOperand(2)->getLiveInIRValue();
9664 ResumeV = Builder.CreateSelect(Cmp,
Sentinel, ResumeV);
9672 "unexpected start value");
9685 assert(ResumeV &&
"Must have a resume value");
9699 if (VPI && VPI->
getOpcode() == Instruction::Freeze) {
9716 ExpandR->eraseFromParent();
9720 unsigned MainLoopStep =
9722 unsigned EpilogueLoopStep =
9727 EPI.
EpilogueUF, MainLoopStep, EpilogueLoopStep, SE);
9738 const SCEV2ValueTy &ExpandedSCEVs,
Value *MainVectorTripCount,
9743 Value *EndValueFromAdditionalBypass = MainVectorTripCount;
9744 if (OrigPhi != OldInduction) {
9745 auto *BinOp =
II.getInductionBinOp();
9751 EndValueFromAdditionalBypass =
9753 II.getStartValue(), Step,
II.getKind(), BinOp);
9754 EndValueFromAdditionalBypass->
setName(
"ind.end");
9756 return EndValueFromAdditionalBypass;
9762 const SCEV2ValueTy &ExpandedSCEVs,
9763 Value *MainVectorTripCount) {
9768 if (Phi.getBasicBlockIndex(Pred) != -1)
9770 Phi.addIncoming(Phi.getIncomingValueForBlock(BypassBlock), Pred);
9774 if (ScalarPH->hasPredecessors()) {
9777 for (
const auto &[R, IRPhi] :
9778 zip(ScalarPH->phis(), ScalarPH->getIRBasicBlock()->phis())) {
9787 auto *Inc =
cast<PHINode>(IVPhi->getIncomingValueForBlock(PH));
9789 IVPhi,
II, BypassBuilder, ExpandedSCEVs, MainVectorTripCount,
9792 Inc->setIncomingValueForBlock(BypassBlock, V);
9815 "expected this to be saved from the previous pass.");
9818 VecEpilogueIterationCountCheck, VecEpiloguePreHeader);
9821 VecEpilogueIterationCountCheck},
9823 VecEpiloguePreHeader}});
9828 VecEpilogueIterationCountCheck, ScalarPH);
9831 VecEpilogueIterationCountCheck},
9835 BasicBlock *SCEVCheckBlock = Checks.getSCEVChecks().second;
9836 BasicBlock *MemCheckBlock = Checks.getMemRuntimeChecks().second;
9837 if (SCEVCheckBlock) {
9839 VecEpilogueIterationCountCheck, ScalarPH);
9841 VecEpilogueIterationCountCheck},
9844 if (MemCheckBlock) {
9846 VecEpilogueIterationCountCheck, ScalarPH);
9859 for (
PHINode *Phi : PhisInBlock) {
9861 Phi->replaceIncomingBlockWith(
9863 VecEpilogueIterationCountCheck);
9870 return EPI.EpilogueIterationCountCheck == IncB;
9875 Phi->removeIncomingValue(SCEVCheckBlock);
9877 Phi->removeIncomingValue(MemCheckBlock);
9881 for (
auto *
I : InstsToMove)
9893 "VPlan-native path is not enabled. Only process inner loops.");
9896 << L->getHeader()->getParent()->getName() <<
"' from "
9897 << L->getLocStr() <<
"\n");
9902 dbgs() <<
"LV: Loop hints:"
9913 Function *
F = L->getHeader()->getParent();
9933 L->getHeader(),
PSI,
9940 &Requirements, &Hints,
DB,
AC,
9943 LLVM_DEBUG(
dbgs() <<
"LV: Not vectorizing: Cannot prove legality.\n");
9950 "early exit is not enabled",
9951 "UncountableEarlyExitLoopsDisabled",
ORE, L);
9957 "faulting load is not supported",
9958 "PotentiallyFaultingLoadsNotSupported",
ORE, L);
9967 if (!L->isInnermost())
9972 assert(L->isInnermost() &&
"Inner loop expected.");
9975 bool UseInterleaved =
TTI->enableInterleavedAccessVectorization();
9989 [LoopLatch](
BasicBlock *BB) { return BB != LoopLatch; })) {
9991 "requiring a scalar epilogue is unsupported",
9992 "UncountableEarlyExitUnsupported",
ORE, L);
10005 if (ExpectedTC && ExpectedTC->isFixed() &&
10007 LLVM_DEBUG(
dbgs() <<
"LV: Found a loop with a very small trip count. "
10008 <<
"This loop is worth vectorizing only if no scalar "
10009 <<
"iteration overheads are incurred.");
10011 LLVM_DEBUG(
dbgs() <<
" But vectorizing was explicitly forced.\n");
10027 if (
F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10029 "Can't vectorize when the NoImplicitFloat attribute is used",
10030 "loop not vectorized due to NoImplicitFloat attribute",
10031 "NoImplicitFloat",
ORE, L);
10041 TTI->isFPVectorizationPotentiallyUnsafe()) {
10043 "Potentially unsafe FP op prevents vectorization",
10044 "loop not vectorized due to unsafe FP support.",
10045 "UnsafeFP",
ORE, L);
10050 bool AllowOrderedReductions;
10055 AllowOrderedReductions =
TTI->enableOrderedReductions();
10060 ExactFPMathInst->getDebugLoc(),
10061 ExactFPMathInst->getParent())
10062 <<
"loop not vectorized: cannot prove it is safe to reorder "
10063 "floating-point operations";
10065 LLVM_DEBUG(
dbgs() <<
"LV: loop not vectorized: cannot prove it is safe to "
10066 "reorder floating-point operations\n");
10072 LoopVectorizationCostModel CM(
SEL, L, PSE,
LI, &LVL, *
TTI,
TLI,
DB,
AC,
ORE,
10073 GetBFI,
F, &Hints, IAI, OptForSize);
10075 LoopVectorizationPlanner LVP(L,
LI,
DT,
TLI, *
TTI, &LVL, CM, IAI, PSE, Hints,
10085 LVP.
plan(UserVF, UserIC);
10092 GeneratedRTChecks Checks(PSE,
DT,
LI,
TTI,
F->getDataLayout(), CM.
CostKind);
10097 unsigned SelectedIC = std::max(IC, UserIC);
10106 if (Checks.getSCEVChecks().first &&
10107 match(Checks.getSCEVChecks().first,
m_One()))
10109 if (Checks.getMemRuntimeChecks().first &&
10110 match(Checks.getMemRuntimeChecks().first,
m_One()))
10115 bool ForceVectorization =
10119 if (!ForceVectorization &&
10125 DEBUG_TYPE,
"CantReorderMemOps", L->getStartLoc(),
10127 <<
"loop not vectorized: cannot prove it is safe to reorder "
10128 "memory operations";
10137 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10138 bool VectorizeLoop =
true, InterleaveLoop =
true;
10140 LLVM_DEBUG(
dbgs() <<
"LV: Vectorization is possible but not beneficial.\n");
10142 "VectorizationNotBeneficial",
10143 "the cost-model indicates that vectorization is not beneficial"};
10144 VectorizeLoop =
false;
10149 "UserIC should only be ignored due to unsafe dependencies");
10150 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring user-specified interleave count.\n");
10151 IntDiagMsg = {
"InterleavingUnsafe",
10152 "Ignoring user-specified interleave count due to possibly "
10153 "unsafe dependencies in the loop."};
10154 InterleaveLoop =
false;
10158 LLVM_DEBUG(
dbgs() <<
"LV: Ignoring UserIC, because vectorization and "
10159 "interleaving should be avoided up front\n");
10160 IntDiagMsg = {
"InterleavingAvoided",
10161 "Ignoring UserIC, because interleaving was avoided up front"};
10162 InterleaveLoop =
false;
10163 }
else if (IC == 1 && UserIC <= 1) {
10167 "InterleavingNotBeneficial",
10168 "the cost-model indicates that interleaving is not beneficial"};
10169 InterleaveLoop =
false;
10171 IntDiagMsg.first =
"InterleavingNotBeneficialAndDisabled";
10172 IntDiagMsg.second +=
10173 " and is explicitly disabled or interleave count is set to 1";
10175 }
else if (IC > 1 && UserIC == 1) {
10177 LLVM_DEBUG(
dbgs() <<
"LV: Interleaving is beneficial but is explicitly "
10179 IntDiagMsg = {
"InterleavingBeneficialButDisabled",
10180 "the cost-model indicates that interleaving is beneficial "
10181 "but is explicitly disabled or interleave count is set to 1"};
10182 InterleaveLoop =
false;
10188 if (!VectorizeLoop && InterleaveLoop && LVL.
hasHistograms()) {
10189 LLVM_DEBUG(
dbgs() <<
"LV: Not interleaving without vectorization due "
10190 <<
"to histogram operations.\n");
10192 "HistogramPreventsScalarInterleaving",
10193 "Unable to interleave without vectorization due to constraints on "
10194 "the order of histogram operations"};
10195 InterleaveLoop =
false;
10199 IC = UserIC > 0 ? UserIC : IC;
10203 if (!VectorizeLoop && !InterleaveLoop) {
10207 L->getStartLoc(), L->getHeader())
10208 << VecDiagMsg.second;
10212 L->getStartLoc(), L->getHeader())
10213 << IntDiagMsg.second;
10218 if (!VectorizeLoop && InterleaveLoop) {
10222 L->getStartLoc(), L->getHeader())
10223 << VecDiagMsg.second;
10225 }
else if (VectorizeLoop && !InterleaveLoop) {
10227 <<
") in " << L->getLocStr() <<
'\n');
10230 L->getStartLoc(), L->getHeader())
10231 << IntDiagMsg.second;
10233 }
else if (VectorizeLoop && InterleaveLoop) {
10235 <<
") in " << L->getLocStr() <<
'\n');
10241 using namespace ore;
10246 <<
"interleaved loop (interleaved count: "
10247 << NV(
"InterleaveCount", IC) <<
")";
10264 std::unique_ptr<VPlan> BestMainPlan(BestPlan.
duplicate());
10276 Checks, *BestMainPlan);
10278 *BestMainPlan, MainILV,
DT,
false);
10284 Checks, BestEpiPlan);
10286 BestEpiPlan, L, ExpandedSCEVs, EPI, CM, *PSE.
getSE());
10290 Checks, InstsToMove);
10291 ++LoopsEpilogueVectorized;
10293 InnerLoopVectorizer LB(L, PSE,
LI,
DT,
TTI,
AC, VF.
Width, IC, &CM, Checks,
10307 assert(
DT->verify(DominatorTree::VerificationLevel::Fast) &&
10308 "DT not preserved correctly");
10323 if (!
TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(
true)) &&
10327 bool Changed =
false, CFGChanged =
false;
10334 for (
const auto &L : *
LI)
10346 LoopsAnalyzed += Worklist.
size();
10349 while (!Worklist.
empty()) {
10395 if (!Result.MadeAnyChange)
10409 if (Result.MadeCFGChange) {
10425 OS, MapClassName2PassName);
10428 OS << (InterleaveOnlyWhenForced ?
"" :
"no-") <<
"interleave-forced-only;";
10429 OS << (VectorizeOnlyWhenForced ?
"" :
"no-") <<
"vectorize-forced-only;";
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This is the interface for LLVM's primary stateless and local alias analysis.
static bool IsEmptyBlock(MachineBasicBlock *MBB)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static cl::opt< IntrinsicCostStrategy > IntrinsicCost("intrinsic-cost-strategy", cl::desc("Costing strategy for intrinsic instructions"), cl::init(IntrinsicCostStrategy::InstructionCost), cl::values(clEnumValN(IntrinsicCostStrategy::InstructionCost, "instruction-cost", "Use TargetTransformInfo::getInstructionCost"), clEnumValN(IntrinsicCostStrategy::IntrinsicCost, "intrinsic-cost", "Use TargetTransformInfo::getIntrinsicInstrCost"), clEnumValN(IntrinsicCostStrategy::TypeBasedIntrinsicCost, "type-based-intrinsic-cost", "Calculate the intrinsic cost based only on argument types")))
static InstructionCost getCost(Instruction &Inst, TTI::TargetCostKind CostKind, TargetTransformInfo &TTI, TargetLibraryInfo &TLI)
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This defines the Use class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static cl::opt< unsigned, true > VectorizationFactor("force-vector-width", cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect."), cl::location(VectorizerParams::VectorizationFactor))
This header provides classes for managing per-loop analyses.
static cl::opt< bool > WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), cl::desc("Widen the loop induction variables, if possible, so " "overflow checks won't reject flattening"))
static const char * VerboseDebug
This file defines the LoopVectorizationLegality class.
This file provides a LoopVectorizationPlanner class.
static void collectSupportedLoops(Loop &L, LoopInfo *LI, OptimizationRemarkEmitter *ORE, SmallVectorImpl< Loop * > &V)
static cl::opt< unsigned > EpilogueVectorizationMinVF("epilogue-vectorization-minimum-VF", cl::Hidden, cl::desc("Only loops with vectorization factor equal to or larger than " "the specified value are considered for epilogue vectorization."))
static cl::opt< unsigned > EpilogueVectorizationForceVF("epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, cl::desc("When epilogue vectorization is enabled, and a value greater than " "1 is specified, forces the given VF for all applicable epilogue " "loops."))
static Type * maybeVectorizeType(Type *Ty, ElementCount VF)
static ElementCount determineVPlanVF(const TargetTransformInfo &TTI, LoopVectorizationCostModel &CM)
static ElementCount getSmallConstantTripCount(ScalarEvolution *SE, const Loop *L)
A version of ScalarEvolution::getSmallConstantTripCount that returns an ElementCount to include loops...
static cl::opt< unsigned > VectorizeMemoryCheckThreshold("vectorize-memory-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum allowed number of runtime memory checks"))
static void preparePlanForMainVectorLoop(VPlan &MainPlan, VPlan &EpiPlan)
Prepare MainPlan for vectorizing the main vector loop during epilogue vectorization.
static cl::opt< unsigned > TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden, cl::desc("Loops with a constant trip count that is smaller than this " "value are vectorized only if no scalar iteration overheads " "are incurred."))
Loops with a known constant trip count below this number are vectorized only if no scalar iteration o...
static void debugVectorizationMessage(const StringRef Prefix, const StringRef DebugMsg, Instruction *I)
Write a DebugMsg about vectorization to the debug output stream.
static cl::opt< bool > EnableCondStoresVectorization("enable-cond-stores-vec", cl::init(true), cl::Hidden, cl::desc("Enable if predication of stores during vectorization."))
static void legacyCSE(BasicBlock *BB)
FIXME: This legacy common-subexpression-elimination routine is scheduled for removal,...
static VPIRBasicBlock * replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB, VPlan *Plan=nullptr)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
static Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
static DebugLoc getDebugLocFromInstOrOperands(Instruction *I)
Look for a meaningful debug location on the instruction or its operands.
static Value * createInductionAdditionalBypassValues(PHINode *OrigPhi, const InductionDescriptor &II, IRBuilder<> &BypassBuilder, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount, Instruction *OldInduction)
static void fixReductionScalarResumeWhenVectorizingEpilog(VPPhi *EpiResumePhiR, PHINode &EpiResumePhi, BasicBlock *BypassBlock)
static Value * getStartValueFromReductionResult(VPInstruction *RdxResult)
static cl::opt< bool > ForceTargetSupportsScalableVectors("force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, cl::desc("Pretend that scalable vectors are supported, even if the target does " "not support them. This flag should only be used for testing."))
static bool useActiveLaneMaskForControlFlow(TailFoldingStyle Style)
static VPWidenIntOrFpInductionRecipe * createWidenInductionRecipes(VPInstruction *PhiR, const InductionDescriptor &IndDesc, VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop)
Creates a VPWidenIntOrFpInductionRecipe for PhiR.
static cl::opt< bool > EnableEarlyExitVectorization("enable-early-exit-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of early exit loops with uncountable exits."))
static bool processLoopInVPlanNativePath(Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, bool OptForSize, LoopVectorizeHints &Hints, LoopVectorizationRequirements &Requirements)
static cl::opt< bool > ConsiderRegPressure("vectorizer-consider-reg-pressure", cl::init(false), cl::Hidden, cl::desc("Discard VFs if their register pressure is too high."))
static unsigned estimateElementCount(ElementCount VF, std::optional< unsigned > VScale)
This function attempts to return a value that represents the ElementCount at runtime.
static constexpr uint32_t MinItersBypassWeights[]
static cl::opt< unsigned > ForceTargetNumScalarRegs("force-target-num-scalar-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of scalar registers."))
static cl::opt< bool > UseWiderVFIfCallVariantsPresent("vectorizer-maximize-bandwidth-for-vector-calls", cl::init(true), cl::Hidden, cl::desc("Try wider VFs if they enable the use of vector variants"))
static std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
static cl::opt< unsigned > SmallLoopCost("small-loop-cost", cl::init(20), cl::Hidden, cl::desc("The cost of a loop that is considered 'small' by the interleaver."))
static void connectEpilogueVectorLoop(VPlan &EpiPlan, Loop *L, EpilogueLoopVectorizationInfo &EPI, DominatorTree *DT, LoopVectorizationLegality &LVL, DenseMap< const SCEV *, Value * > &ExpandedSCEVs, GeneratedRTChecks &Checks, ArrayRef< Instruction * > InstsToMove)
Connect the epilogue vector loop generated for EpiPlan to the main vector.
static bool planContainsAdditionalSimplifications(VPlan &Plan, VPCostContext &CostCtx, Loop *TheLoop, ElementCount VF)
Return true if the original loop \ TheLoop contains any instructions that do not have corresponding r...
static cl::opt< unsigned > ForceTargetNumVectorRegs("force-target-num-vector-regs", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's number of vector registers."))
static bool isExplicitVecOuterLoop(Loop *OuterLp, OptimizationRemarkEmitter *ORE)
static cl::opt< bool > EnableIndVarRegisterHeur("enable-ind-var-reg-heur", cl::init(true), cl::Hidden, cl::desc("Count the induction variable only once when interleaving"))
static cl::opt< TailFoldingStyle > ForceTailFoldingStyle("force-tail-folding-style", cl::desc("Force the tail folding style"), cl::init(TailFoldingStyle::None), cl::values(clEnumValN(TailFoldingStyle::None, "none", "Disable tail folding"), clEnumValN(TailFoldingStyle::Data, "data", "Create lane mask for data only, using active.lane.mask intrinsic"), clEnumValN(TailFoldingStyle::DataWithoutLaneMask, "data-without-lane-mask", "Create lane mask with compare/stepvector"), clEnumValN(TailFoldingStyle::DataAndControlFlow, "data-and-control", "Create lane mask using active.lane.mask intrinsic, and use " "it for both data and control flow"), clEnumValN(TailFoldingStyle::DataAndControlFlowWithoutRuntimeCheck, "data-and-control-without-rt-check", "Similar to data-and-control, but remove the runtime check"), clEnumValN(TailFoldingStyle::DataWithEVL, "data-with-evl", "Use predicated EVL instructions for tail folding. If EVL " "is unsupported, fallback to data-without-lane-mask.")))
static ScalarEpilogueLowering getScalarEpilogueLowering(Function *F, Loop *L, LoopVectorizeHints &Hints, bool OptForSize, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI)
static cl::opt< bool > EnableEpilogueVectorization("enable-epilogue-vectorization", cl::init(true), cl::Hidden, cl::desc("Enable vectorization of epilogue loops."))
static cl::opt< bool > PreferPredicatedReductionSelect("prefer-predicated-reduction-select", cl::init(false), cl::Hidden, cl::desc("Prefer predicating a reduction operation over an after loop select."))
static cl::opt< bool > PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), cl::Hidden, cl::desc("Prefer in-loop vector reductions, " "overriding the targets preference."))
static SmallVector< Instruction * > preparePlanForEpilogueVectorLoop(VPlan &Plan, Loop *L, const SCEV2ValueTy &ExpandedSCEVs, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel &CM, ScalarEvolution &SE)
Prepare Plan for vectorizing the epilogue loop.
static cl::opt< bool > EnableLoadStoreRuntimeInterleave("enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, cl::desc("Enable runtime interleaving until load/store ports are saturated"))
static cl::opt< bool > VPlanBuildStressTest("vplan-build-stress-test", cl::init(false), cl::Hidden, cl::desc("Build VPlan for every supported loop nest in the function and bail " "out right after the build (stress test the VPlan H-CFG construction " "in the VPlan-native vectorization path)."))
static bool hasIrregularType(Type *Ty, const DataLayout &DL)
A helper function that returns true if the given type is irregular.
static cl::opt< bool > LoopVectorizeWithBlockFrequency("loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, cl::desc("Enable the use of the block frequency analysis to access PGO " "heuristics minimizing code growth in cold regions and being more " "aggressive in hot regions."))
static std::optional< ElementCount > getSmallBestKnownTC(PredicatedScalarEvolution &PSE, Loop *L, bool CanUseConstantMax=true)
Returns "best known" trip count, which is either a valid positive trip count or std::nullopt when an ...
static Value * getExpandedStep(const InductionDescriptor &ID, const SCEV2ValueTy &ExpandedSCEVs)
Return the expanded step for ID using ExpandedSCEVs to look up SCEV expansion results.
static bool useActiveLaneMask(TailFoldingStyle Style)
static bool hasReplicatorRegion(VPlan &Plan)
static bool isIndvarOverflowCheckKnownFalse(const LoopVectorizationCostModel *Cost, ElementCount VF, std::optional< unsigned > UF=std::nullopt)
For the given VF and UF and maximum trip count computed for the loop, return whether the induction va...
static void addFullyUnrolledInstructionsToIgnore(Loop *L, const LoopVectorizationLegality::InductionList &IL, SmallPtrSetImpl< Instruction * > &InstsToIgnore)
Knowing that loop L executes a single vector iteration, add instructions that will get simplified and...
static cl::opt< PreferPredicateTy::Option > PreferPredicateOverEpilogue("prefer-predicate-over-epilogue", cl::init(PreferPredicateTy::ScalarEpilogue), cl::Hidden, cl::desc("Tail-folding and predication preferences over creating a scalar " "epilogue loop."), cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, "scalar-epilogue", "Don't tail-predicate loops, create scalar epilogue"), clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, "predicate-else-scalar-epilogue", "prefer tail-folding, create scalar epilogue if tail " "folding fails."), clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, "predicate-dont-vectorize", "prefers tail-folding, don't attempt vectorization if " "tail-folding fails.")))
static cl::opt< bool > EnableInterleavedMemAccesses("enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on interleaved memory accesses in a loop"))
static cl::opt< bool > EnableMaskedInterleavedMemAccesses("enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"))
An interleave-group may need masking if it resides in a block that needs predication,...
static cl::opt< bool > ForceOrderedReductions("force-ordered-reductions", cl::init(false), cl::Hidden, cl::desc("Enable the vectorisation of loops with in-order (strict) " "FP reductions"))
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static cl::opt< cl::boolOrDefault > ForceSafeDivisor("force-widen-divrem-via-safe-divisor", cl::Hidden, cl::desc("Override cost based safe divisor widening for div/rem instructions"))
static InstructionCost calculateEarlyExitCost(VPCostContext &CostCtx, VPlan &Plan, ElementCount VF)
For loops with uncountable early exits, find the cost of doing work when exiting the loop early,...
static cl::opt< unsigned > ForceTargetMaxVectorInterleaveFactor("force-target-max-vector-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "vectorized loops."))
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI)
static cl::opt< unsigned > NumberOfStoresToPredicate("vectorize-num-stores-pred", cl::init(1), cl::Hidden, cl::desc("Max number of stores to be predicated behind an if."))
The number of stores in a loop that are allowed to need predication.
static cl::opt< unsigned > MaxNestedScalarReductionIC("max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, cl::desc("The maximum interleave count to use when interleaving a scalar " "reduction in a nested loop."))
static cl::opt< unsigned > ForceTargetMaxScalarInterleaveFactor("force-target-max-scalar-interleave", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's max interleave factor for " "scalar loops."))
static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE)
static bool willGenerateVectors(VPlan &Plan, ElementCount VF, const TargetTransformInfo &TTI)
Check if any recipe of Plan will generate a vector value, which will be assigned a vector register.
static bool isOutsideLoopWorkProfitable(GeneratedRTChecks &Checks, VectorizationFactor &VF, Loop *L, PredicatedScalarEvolution &PSE, VPCostContext &CostCtx, VPlan &Plan, ScalarEpilogueLowering SEL, std::optional< unsigned > VScale)
This function determines whether or not it's still profitable to vectorize the loop given the extra w...
static void fixScalarResumeValuesFromBypass(BasicBlock *BypassBlock, Loop *L, VPlan &BestEpiPlan, LoopVectorizationLegality &LVL, const SCEV2ValueTy &ExpandedSCEVs, Value *MainVectorTripCount)
static cl::opt< bool > MaximizeBandwidth("vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, cl::desc("Maximize bandwidth when selecting vectorization factor which " "will be determined by the smallest type in loop."))
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, Instruction *I, DebugLoc DL={})
Create an analysis remark that explains why vectorization failed.
This file implements a map that provides insertion order iteration.
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static BinaryOperator * CreateMul(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static BinaryOperator * CreateAdd(Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore, Value *FlagsOp)
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
static InstructionCost getScalarizationOverhead(const TargetTransformInfo &TTI, Type *ScalarTy, VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={})
This is similar to TargetTransformInfo::getScalarizationOverhead, but if ScalarTy is a FixedVectorTyp...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
#define DEBUG_WITH_TYPE(TYPE,...)
DEBUG_WITH_TYPE macro - This macro should be used by passes to emit debug information.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const char PassName[]
static const uint32_t IV[8]
A manager for alias analyses.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
Represents analyses that only rely on functions' control flow.
bool isNoBuiltin() const
Return true if the call should not be treated as a call to a builtin.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getTemporary()
static DebugLoc getUnknown()
An analysis that produces DemandedBits for a function.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
void insert_range(Range &&R)
Inserts range of 'std::pair<KeyT, ValueT>' values into the map.
Implements a dense probed hash-table based set.
Analysis pass which computes a DominatorTree.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
void eraseNode(NodeT *BB)
eraseNode - Removes a node from the dominator tree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
void printDebugTracesAtEnd() override
EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the epilogue loop strategy (i....
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
A specialized derived class of inner loop vectorizer that performs vectorization of main loops in the...
void introduceCheckBlockInVPlan(BasicBlock *CheckIRBB)
Introduces a new VPIRBasicBlock for CheckIRBB to Plan between the vector preheader and its predecesso...
BasicBlock * emitIterationCountCheck(BasicBlock *VectorPH, BasicBlock *Bypass, bool ForEpilogue)
Emits an iteration count bypass check once for the main loop (when ForEpilogue is false) and once for...
void printDebugTracesAtEnd() override
Value * createIterationCountCheck(BasicBlock *VectorPH, ElementCount VF, unsigned UF) const
void printDebugTracesAtStart() override
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
EpilogueVectorizerMainLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Check, VPlan &Plan)
BasicBlock * createVectorizedLoopSkeleton() final
Implements the interface for creating a vectorized skeleton using the main loop strategy (i....
Convenience struct for specifying and reasoning about fast-math flags.
static FastMathFlags getFast()
Class to represent function types.
param_iterator param_begin() const
param_iterator param_end() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags none()
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Common base class shared among various IRBuilders.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
const SCEV * getStep() const
ArrayRef< Instruction * > getCastInsts() const
Returns an ArrayRef to the type cast instructions in the induction update chain, that are redundant w...
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_NoInduction
Not an induction variable.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
Value * getStartValue() const
ElementCount MinProfitableTripCount
InnerLoopAndEpilogueVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, EpilogueLoopVectorizationInfo &EPI, LoopVectorizationCostModel *CM, GeneratedRTChecks &Checks, VPlan &Plan, ElementCount VecWidth, ElementCount MinProfitableTripCount, unsigned UnrollFactor)
EpilogueLoopVectorizationInfo & EPI
Holds and updates state information required to vectorize the main loop and its epilogue in two separ...
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
virtual void printDebugTracesAtStart()
Allow subclasses to override and print debug traces before/after vplan execution, when trace informat...
Value * TripCount
Trip count of the original loop.
const TargetTransformInfo * TTI
Target Transform Info.
LoopVectorizationCostModel * Cost
The profitablity analysis.
Value * getTripCount() const
Returns the original loop trip count.
friend class LoopVectorizationPlanner
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, const TargetTransformInfo *TTI, AssumptionCache *AC, ElementCount VecWidth, unsigned UnrollFactor, LoopVectorizationCostModel *CM, GeneratedRTChecks &RTChecks, VPlan &Plan)
PredicatedScalarEvolution & PSE
A wrapper around ScalarEvolution used to add runtime SCEV checks.
DominatorTree * DT
Dominator Tree.
void setTripCount(Value *TC)
Used to set the trip count after ILV's construction and after the preheader block has been executed.
void fixVectorizedLoop(VPTransformState &State)
Fix the vectorized code, taking care of header phi's, and more.
virtual BasicBlock * createVectorizedLoopSkeleton()
Creates a basic block for the scalar preheader.
virtual void printDebugTracesAtEnd()
AssumptionCache * AC
Assumption Cache.
IRBuilder Builder
The builder that we use.
void fixNonInductionPHIs(VPTransformState &State)
Fix the non-induction PHIs in Plan.
VPBasicBlock * VectorPHVPBB
The vector preheader block of Plan, used as target for check blocks introduced during skeleton creati...
unsigned UF
The vectorization unroll factor to use.
GeneratedRTChecks & RTChecks
Structure to hold information about generated runtime checks, responsible for cleaning the checks,...
virtual ~InnerLoopVectorizer()=default
ElementCount VF
The vectorization SIMD factor to use.
Loop * OrigLoop
The original loop.
BasicBlock * createScalarPreheader(StringRef Prefix)
Create and return a new IR basic block for the scalar preheader whose name is prefixed with Prefix.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
static InstructionCost getInvalid(CostType Val=0)
static InstructionCost getMax()
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
LLVM_ABI APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
uint32_t getNumMembers() const
Drive the analysis of interleaved memory accesses in the loop.
bool requiresScalarEpilogue() const
Returns true if an interleaved group that may access memory out-of-bounds requires a scalar epilogue ...
LLVM_ABI void analyzeInterleaving(bool EnableMaskedInterleavedGroup)
Analyze the interleaved accesses and collect them in interleave groups.
An instruction for reading from memory.
Type * getPointerOperandType() const
This analysis provides dependence information for the memory accesses of a loop.
Drive the analysis of memory accesses in the loop.
const RuntimePointerChecking * getRuntimePointerChecking() const
unsigned getNumRuntimePointerChecks() const
Number of memchecks required to prove independence of otherwise may-alias pointers.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Return all blocks inside the loop that have successors outside of the loop.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
Wrapper class to LoopBlocksDFS that provides a standard begin()/end() interface for the DFS reverse p...
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
SmallPtrSet< Type *, 16 > ElementTypesInLoop
All element types found in the loop.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked load operation for the given DataType and kind of ...
void collectElementTypesForWidening()
Collect all element types in the loop for which widening is needed.
bool canVectorizeReductions(ElementCount VF) const
Returns true if the target machine supports all of the reduction variables found for the given VF.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment, unsigned AddressSpace) const
Returns true if the target machine supports masked store operation for the given DataType and kind of...
bool isEpilogueVectorizationProfitable(const ElementCount VF, const unsigned IC) const
Returns true if epilogue vectorization is considered profitable, and false otherwise.
bool useWideActiveLaneMask() const
Returns true if the use of wide lane masks is requested and the loop is using tail-folding with a lan...
bool isPredicatedInst(Instruction *I) const
Returns true if I is an instruction that needs to be predicated at runtime.
bool hasPredStores() const
void collectValuesToIgnore()
Collect values we want to ignore in the cost model.
BlockFrequencyInfo * BFI
The BlockFrequencyInfo returned from GetBFI.
void collectInLoopReductions()
Split reductions into those that happen in the loop, and those that happen outside.
BlockFrequencyInfo & getBFI()
Returns the BlockFrequencyInfo for the function if cached, otherwise fetches it via GetBFI.
std::pair< unsigned, unsigned > getSmallestAndWidestTypes()
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be uniform after vectorization.
void collectNonVectorizedAndSetWideningDecisions(ElementCount VF)
Collect values that will not be widened, including Uniforms, Scalars, and Instructions to Scalarize f...
PredicatedScalarEvolution & PSE
Predicated scalar evolution analysis.
const LoopVectorizeHints * Hints
Loop Vectorize Hint.
std::optional< unsigned > getMaxSafeElements() const
Return maximum safe number of elements to be processed per vector iteration, which do not prevent sto...
const TargetTransformInfo & TTI
Vector target information.
friend class LoopVectorizationPlanner
const Function * TheFunction
LoopVectorizationLegality * Legal
Vectorization legality.
uint64_t getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind, const BasicBlock *BB)
A helper function that returns how much we should divide the cost of a predicated block by.
std::optional< InstructionCost > getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy) const
Return the cost of instructions in an inloop reduction pattern, if I is part of that pattern.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF)
Returns the execution time cost of an instruction for a given vector width.
DemandedBits * DB
Demanded bits analysis.
bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF) const
Returns true if I is a memory instruction in an interleaved-group of memory accesses that can be vect...
const TargetLibraryInfo * TLI
Target Library Info.
bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF)
Returns true if I is a memory instruction with consecutive memory access that can be widened.
const InterleaveGroup< Instruction > * getInterleavedAccessGroup(Instruction *Instr) const
Get the interleaved access group that Instr belongs to.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const
Estimate cost of an intrinsic call instruction CI if it were vectorized with factor VF.
bool OptForSize
Whether this loop should be optimized for size based on function attribute or profile information.
bool useMaxBandwidth(TargetTransformInfo::RegisterKind RegKind)
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const
Returns true if I is known to be scalar after vectorization.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF)
Return True if instruction I is an optimizable truncate whose operand is an induction variable.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC)
bool shouldConsiderRegPressureForVF(ElementCount VF)
Loop * TheLoop
The loop that we evaluate.
TTI::TargetCostKind CostKind
The kind of cost that we are calculating.
TailFoldingStyle getTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Returns the TailFoldingStyle that is best for the current loop.
InterleavedAccessInfo & InterleaveInfo
The interleave access information contains groups of interleaved accesses with the same stride and cl...
SmallPtrSet< const Value *, 16 > ValuesToIgnore
Values to ignore in the cost model.
void setVectorizedCallDecision(ElementCount VF)
A call may be vectorized in different ways depending on whether we have vectorized variants available...
void invalidateCostModelingDecisions()
Invalidates decisions already taken by the cost model.
bool isAccessInterleaved(Instruction *Instr) const
Check if Instr belongs to any interleaved access group.
bool selectUserVectorizationFactor(ElementCount UserVF)
Setup cost-based decisions for user vectorization factor.
std::optional< unsigned > getVScaleForTuning() const
Return the value of vscale used for tuning the cost model.
OptimizationRemarkEmitter * ORE
Interface to emit optimization remarks.
bool preferPredicatedLoop() const
Returns true if tail-folding is preferred over a scalar epilogue.
LoopInfo * LI
Loop Info analysis.
bool requiresScalarEpilogue(bool IsVectorizing) const
Returns true if we're required to use a scalar epilogue for at least the final iteration of the origi...
SmallPtrSet< const Value *, 16 > VecValuesToIgnore
Values to ignore in the cost model when VF > 1.
bool isInLoopReduction(PHINode *Phi) const
Returns true if the Phi is part of an inloop reduction.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const
void setWideningDecision(const InterleaveGroup< Instruction > *Grp, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for interleaving group Grp and vector ...
const MapVector< Instruction *, uint64_t > & getMinimalBitwidths() const
CallWideningDecision getCallWideningDecision(CallInst *CI, ElementCount VF) const
bool isLegalGatherOrScatter(Value *V, ElementCount VF)
Returns true if the target machine can represent V as a masked gather or scatter operation.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const
bool runtimeChecksRequired()
bool shouldConsiderInvariant(Value *Op)
Returns true if Op should be considered invariant and if it is trivially hoistable.
bool foldTailByMasking() const
Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailWithEVL() const
Returns true if VP intrinsics with explicit vector length support should be generated in the tail fol...
bool usePredicatedReductionSelect() const
Returns true if the predicated reduction select should be used to set the incoming value for the redu...
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const
Returns true if the instructions in this block requires predication for any reason,...
void setCallWideningDecision(CallInst *CI, ElementCount VF, InstWidening Kind, Function *Variant, Intrinsic::ID IID, std::optional< unsigned > MaskPos, InstructionCost Cost)
void setTailFoldingStyles(bool IsScalableVF, unsigned UserIC)
Selects and saves TailFoldingStyle for 2 options - if IV update may overflow or not.
AssumptionCache * AC
Assumption cache.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, InstructionCost Cost)
Save vectorization decision W and Cost taken by the cost model for instruction I and vector width VF.
InstWidening
Decision that was taken during cost calculation for memory instruction.
std::pair< InstructionCost, InstructionCost > getDivRemSpeculationCost(Instruction *I, ElementCount VF)
Return the costs for our two available strategies for lowering a div/rem operation which requires spe...
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF) const
Estimate cost of a call instruction CI if it were vectorized with factor VF.
bool isScalarWithPredication(Instruction *I, ElementCount VF)
Returns true if I is an instruction which requires predication and for which our chosen predication s...
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const
Returns true if we should use strict in-order reductions for the given RdxDesc.
bool isDivRemScalarWithPredication(InstructionCost ScalarCost, InstructionCost SafeDivisorCost) const
Given costs for both strategies, return true if the scalar predication lowering should be used for di...
std::function< BlockFrequencyInfo &()> GetBFI
A function to lazily fetch BlockFrequencyInfo.
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, LoopVectorizationLegality *Legal, const TargetTransformInfo &TTI, const TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, OptimizationRemarkEmitter *ORE, std::function< BlockFrequencyInfo &()> GetBFI, const Function *F, const LoopVectorizeHints *Hints, InterleavedAccessInfo &IAI, bool OptForSize)
InstructionCost expectedCost(ElementCount VF)
Returns the expected execution cost.
void setCostBasedWideningDecision(ElementCount VF)
Memory access instruction may be vectorized in more than one way.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const
Return the cost model decision for the given instruction I and vector width VF.
FixedScalableVFPair MaxPermissibleVFWithoutMaxBW
The highest VF possible for this loop, without using MaxBandwidth.
bool isScalarEpilogueAllowed() const
Returns true if a scalar epilogue is not allowed due to optsize or a loop hint annotation.
InstructionCost getWideningCost(Instruction *I, ElementCount VF)
Return the vectorization cost for the given instruction I and vector width VF.
void collectInstsToScalarize(ElementCount VF)
Collects the instructions to scalarize for each predicated instruction in the loop.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
MapVector< PHINode *, InductionDescriptor > InductionList
InductionList saves induction variables and maps them to the induction descriptor.
const SmallPtrSetImpl< const Instruction * > & getPotentiallyFaultingLoads() const
Returns potentially faulting loads.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
PHINode * getPrimaryInduction()
Returns the primary induction variable.
const SmallVector< BasicBlock *, 4 > & getCountableExitingBlocks() const
Returns all exiting blocks with a countable exit, i.e.
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isSafeForAnyVectorWidth() const
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool hasHistograms() const
Returns a list of all known histogram operations in the loop.
const LoopAccessInfo * getLAI() const
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void updateLoopMetadataAndProfileInfo(Loop *VectorLoop, VPBasicBlock *HeaderVPBB, const VPlan &Plan, bool VectorizingEpilogue, MDNode *OrigLoopID, std::optional< unsigned > OrigAverageTripCount, unsigned OrigLoopInvocationWeight, unsigned EstimatedVFxUF, bool DisableRuntimeUnroll)
Update loop metadata and profile info for both the scalar remainder loop and VectorLoop,...
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
unsigned selectInterleaveCount(VPlan &Plan, ElementCount VF, InstructionCost LoopCost)
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
void printPlans(raw_ostream &O)
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
void addMinimumIterationCheck(VPlan &Plan, ElementCount VF, unsigned UF, ElementCount MinProfitableTripCount) const
Create a check to Plan to see if the vector loop should be executed based on its trip count.
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
This holds vectorization requirements that must be verified late in the process.
Instruction * getExactFPInst()
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
enum ForceKind getForce() const
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
void emitRemarkWithHints() const
Dumps all the hint information.
bool isPotentiallyUnsafe() const
ElementCount getWidth() const
@ FK_Enabled
Forcing enabled.
@ FK_Undefined
Not selected.
@ FK_Disabled
Forcing disabled.
unsigned getPredicate() const
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
unsigned getInterleave() const
This class emits a version of the loop where run-time checks ensure that may-alias pointers can't ove...
Represents a single loop in the control flow graph.
bool hasLoopInvariantOperands(const Instruction *I) const
Return true if all the operands of the specified instruction are loop invariant.
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
This class implements a map that also provides access to all stored values in a deterministic order.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
FastMathFlags getFastMathFlags() const
Instruction * getLoopExitInstr() const
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
Type * getRecurrenceType() const
Returns the type of the recurrence.
bool hasUsesOutsideReductionChain() const
Returns true if the reduction PHI has any uses outside the reduction chain.
const SmallPtrSet< Instruction *, 8 > & getCastInsts() const
Returns a reference to the instructions used for type-promoting the recurrence.
unsigned getMinWidthCastToRecurrenceTypeInBits() const
Returns the minimum width used by the recurrence in bits.
TrackingVH< Value > getRecurrenceStartValue() const
LLVM_ABI SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
bool isSigned() const
Returns true if all source operands of the recurrence are SExtInsts.
RecurKind getRecurrenceKind() const
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
static LLVM_ABI bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
Value * getSentinelValue() const
Returns the sentinel value for FindFirstIV & FindLastIV recurrences to replace the start value.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
std::optional< ArrayRef< PointerDiffInfo > > getDiffChecks() const
const SmallVectorImpl< RuntimePointerCheck > & getChecks() const
Returns the checks that generateChecks created.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
bool isInsertedInstruction(Instruction *I) const
Return true if the specified instruction was inserted by the code rewriter.
LLVM_ABI Value * expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc)
Generates a code sequence that evaluates this predicate.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents an analyzed expression in the program.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
void insert_range(Range &&R)
size_type count(const_arg_type key) const
Count the number of elements of a given key in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Value * getOperand(unsigned i) const
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
void setName(const Twine &newName)
size_t getNumSuccessors() const
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
size_t getNumPredecessors() const
const VPBasicBlock * getEntryBasicBlock() const
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPValue * getStepValue() const
VPValue * getStartValue() const
A recipe representing a sequence of load -> update -> store as part of a histogram operation.
A special type of VPBasicBlock that wraps an existing IR basic block.
Class to record and manage LLVM IR flags.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
unsigned getOpcode() const
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * tryToCreateWidenRecipe(VPSingleDefRecipe *R, VFRange &Range)
Create and return a widened recipe for R if one can be created within the given VF Range.
VPValue * getBlockInMask(VPBasicBlock *VPBB) const
Returns the entry mask for block VPBB or null if the mask is all-true.
VPValue * getVPValueOrAddLiveIn(Value *V)
VPRecipeBase * tryToCreatePartialReduction(VPInstruction *Reduction, unsigned ScaleFactor)
Create and return a partial reduction recipe for a reduction instruction along with binary operation ...
std::optional< unsigned > getScalingForReduction(const Instruction *ExitInst)
void collectScaledReductions(VFRange &Range)
Find all possible partial reductions in the loop and track all of those that are valid so recipes can...
VPReplicateRecipe * handleReplication(VPInstruction *VPI, VFRange &Range)
Build a VPReplicationRecipe for VPI.
A recipe for handling reduction phis.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
RecurKind getRecurrenceKind() const
Returns the recurrence kind of the reduction.
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
An analysis for type-inference for VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
VPWidenCastRecipe is a recipe to create vector cast instructions.
A recipe for handling GEP instructions.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
bool hasVF(ElementCount VF) const
VPBasicBlock * getEntry()
VPValue & getVectorTripCount()
The vector trip count.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
iterator_range< SmallSetVector< ElementCount, 2 >::iterator > vectorFactors() const
Returns an iterator range over all VFs of the plan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
bool hasEarlyExit() const
Returns true if the VPlan is based on a loop with an early exit.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPValue * getLiveIn(Value *V) const
Return the live-in VPValue for V, if there is one or nullptr otherwise.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
LLVM_ABI_FOR_TEST VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isNonZero() const
constexpr ScalarTy getKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns a value X where RHS.multiplyCoefficientBy(X) will result in a value whose quantity matches ou...
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr bool isZero() const
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ PredicateElseScalarEpilogue
@ PredicateOrDontVectorize
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
std::variant< std::monostate, Loc::Single, Loc::Multi, Loc::MMI, Loc::EntryValue > Variant
Alias for the std::variant specialization base class of DbgVariable.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
specificloop_ty m_SpecificLoop(const Loop *L)
cst_pred_ty< is_specific_signed_cst > m_scev_SpecificSInt(int64_t V)
Match an SCEV constant with a plain signed integer (sign-extended value will be matched)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
bind_ty< const SCEVMulExpr > m_scev_Mul(const SCEVMulExpr *&V)
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
VPIRFlags getFlagsFromIndDesc(const InductionDescriptor &ID)
Extracts and returns NoWrap and FastMath flags from the induction binop in ID.
unsigned getVFScaleFactor(VPRecipeBase *R)
Get the VF scaling factor applied to the recipe's output, if the recipe has one.
const SCEV * getSCEVExprForVPValue(const VPValue *V, ScalarEvolution &SE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
LLVM_ABI void ReplaceInstWithInst(BasicBlock *BB, BasicBlock::iterator &BI, Instruction *I)
Replace the instruction specified by BI with the instruction specified by I.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
LLVM_ABI bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
LLVM_ABI_FOR_TEST cl::opt< bool > VerifyEachVPlan
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
static void reportVectorization(OptimizationRemarkEmitter *ORE, Loop *TheLoop, VectorizationFactor VF, unsigned IC)
Report successful vectorization of the loop.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
unsigned getLoadStoreAddressSpace(const Value *I)
A helper function that returns the address space of the pointer operand of load or store instruction.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI_FOR_TEST bool verifyVPlanIsValid(const VPlan &Plan, bool VerifyLate=false)
Verify invariants for general VPlans.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
ReductionStyle getReductionStyle(bool InLoop, bool Ordered, unsigned ScaleFactor)
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa_and_nonnull(const Y &Val)
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
SmallVector< VPRegisterUsage, 8 > calculateRegisterUsageForPlan(VPlan &Plan, ArrayRef< ElementCount > VFs, const TargetTransformInfo &TTI, const SmallPtrSetImpl< const Value * > &ValuesToIgnore)
Estimate the register usage for Plan and vectorization factors in VFs by calculating the highest numb...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
void collectEphemeralRecipesForVPlan(VPlan &Plan, DenseSet< VPRecipeBase * > &EphRecipes)
auto reverse(ContainerTy &&C)
bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI)
Return true if the control flow in RPOTraversal is irreducible.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI cl::opt< bool > EnableLoopVectorization
LLVM_ABI bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
FunctionAddr VTableAddr Count
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
LLVM_ABI void llvm_unreachable_internal(const char *msg=nullptr, const char *file=nullptr, unsigned line=0)
This function calls abort(), and prints the optional message to stderr.
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
T * find_singleton(R &&Range, Predicate P, bool AllowRepeats=false)
Return the single value in Range that satisfies P(<member of Range> *, AllowRepeats)->T * returning n...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
static void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr, DebugLoc DL={})
Reports an informative message: print Msg for debugging purposes as well as an optimization remark.
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
RecurKind
These are the kinds of recurrences that we support.
@ Or
Bitwise or logical OR of integers.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
DWARFExpression::Operation Op
@ CM_ScalarEpilogueNotAllowedLowTripLoop
@ CM_ScalarEpilogueNotNeededUsePredicate
@ CM_ScalarEpilogueNotAllowedOptSize
@ CM_ScalarEpilogueAllowed
@ CM_ScalarEpilogueNotAllowedUsePredicate
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
auto predecessors(const MachineBasicBlock *BB)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
cl::opt< bool > EnableVPlanNativePath
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
std::variant< RdxOrdered, RdxInLoop, RdxUnordered > ReductionStyle
bool pred_empty(const BasicBlock *BB)
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ None
Don't use tail folding.
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
std::unique_ptr< VPlan > VPlanPtr
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI MapVector< Instruction *, uint64_t > computeMinimumValueSizes(ArrayRef< BasicBlock * > Blocks, DemandedBits &DB, const TargetTransformInfo *TTI=nullptr)
Compute a map of integer instructions to their minimum legal type size.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
LLVM_ABI cl::opt< bool > EnableLoopInterleaving
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static LLVM_ABI void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
An information struct used to provide DenseMap with the various necessary components for a given valu...
Encapsulate information regarding vectorization of a loop and its epilogue.
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, ElementCount EVF, unsigned EUF, VPlan &EpiloguePlan)
BasicBlock * MainLoopIterationCountCheck
BasicBlock * EpilogueIterationCountCheck
A class that represents two vectorization factors (initialized with 0 by default).
static FixedScalableVFPair getNone()
This holds details about a histogram operation – a load -> update -> store sequence where each lane i...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
std::optional< unsigned > MaskPos
LLVM_ABI LoopVectorizeResult runImpl(Function &F)
LLVM_ABI bool processLoop(Loop *L)
LoopAccessInfoManager * LAIs
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI LoopVectorizePass(LoopVectorizeOptions Opts={})
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
OptimizationRemarkEmitter * ORE
std::function< BlockFrequencyInfo &()> GetBFI
TargetTransformInfo * TTI
Storage for information about made changes.
A CRTP mix-in to automatically provide informational APIs needed for passes.
This reduction is unordered with the partial result scaled down by some factor.
Holds the VFShape for a specific scalar to vector function mapping.
std::optional< unsigned > getParamIndexForOptionalMask() const
Instruction Set Architecture.
Encapsulates information needed to describe a parameter.
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
unsigned getPredBlockCostDivisor(BasicBlock *BB) const
LoopVectorizationCostModel & CM
bool isLegacyUniformAfterVectorization(Instruction *I, ElementCount VF) const
Return true if I is considered uniform-after-vectorization in the legacy cost model for VF.
bool skipCostComputation(Instruction *UI, bool IsVector) const
Return true if the cost for UI shouldn't be computed, e.g.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const
Return the cost for UI with VF using the legacy cost model as fallback until computing the cost of al...
TargetTransformInfo::TargetCostKind CostKind
SmallPtrSet< Instruction *, 8 > SkipCostComputation
A recipe for handling first-order recurrence phis.
A struct that represents some properties of the register usage of a loop.
A recipe for widening select instructions.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
static LLVM_ABI bool HoistRuntimeChecks