LLVM 22.0.0git
VPlanPatternMatch.h
Go to the documentation of this file.
1//===- VPlanPatternMatch.h - Match on VPValues and recipes ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the VPlan values and recipes, based on
11// LLVM's IR pattern matchers.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H
16#define LLVM_TRANSFORM_VECTORIZE_VPLANPATTERNMATCH_H
17
18#include "VPlan.h"
19
21
22template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
23 return P.match(V);
24}
25
26template <typename Pattern> bool match(VPUser *U, const Pattern &P) {
27 auto *R = dyn_cast<VPRecipeBase>(U);
28 return R && match(R, P);
29}
30
31template <typename Pattern> bool match(VPSingleDefRecipe *R, const Pattern &P) {
32 return P.match(static_cast<const VPRecipeBase *>(R));
33}
34
35template <typename Val, typename Pattern> struct VPMatchFunctor {
36 const Pattern &P;
37 VPMatchFunctor(const Pattern &P) : P(P) {}
38 bool operator()(Val *V) const { return match(V, P); }
39};
40
41/// A match functor that can be used as a UnaryPredicate in functional
42/// algorithms like all_of.
43template <typename Val = VPUser, typename Pattern>
47
48template <typename Class> struct class_match {
49 template <typename ITy> bool match(ITy *V) const { return isa<Class>(V); }
50};
51
52/// Match an arbitrary VPValue and ignore it.
54
55template <typename Class> struct bind_ty {
56 Class *&VR;
57
58 bind_ty(Class *&V) : VR(V) {}
59
60 template <typename ITy> bool match(ITy *V) const {
61 if (auto *CV = dyn_cast<Class>(V)) {
62 VR = CV;
63 return true;
64 }
65 return false;
66 }
67};
68
69/// Match a specified VPValue.
71 const VPValue *Val;
72
73 specificval_ty(const VPValue *V) : Val(V) {}
74
75 bool match(VPValue *VPV) const { return VPV == Val; }
76};
77
78inline specificval_ty m_Specific(const VPValue *VPV) { return VPV; }
79
80/// Stores a reference to the VPValue *, not the VPValue * itself,
81/// thus can be used in commutative matchers.
83 VPValue *const &Val;
84
85 deferredval_ty(VPValue *const &V) : Val(V) {}
86
87 bool match(VPValue *const V) const { return V == Val; }
88};
89
90/// Like m_Specific(), but works if the specific value to match is determined
91/// as part of the same match() expression. For example:
92/// m_Mul(m_VPValue(X), m_Specific(X)) is incorrect, because m_Specific() will
93/// bind X before the pattern match starts.
94/// m_Mul(m_VPValue(X), m_Deferred(X)) is correct, and will check against
95/// whichever value m_VPValue(X) populated.
96inline deferredval_ty m_Deferred(VPValue *const &V) { return V; }
97
98/// Match an integer constant or vector of constants if Pred::isValue returns
99/// true for the APInt. \p BitWidth optionally specifies the bitwidth the
100/// matched constant must have. If it is 0, the matched constant can have any
101/// bitwidth.
102template <typename Pred, unsigned BitWidth = 0> struct int_pred_ty {
103 Pred P;
104
105 int_pred_ty(Pred P) : P(std::move(P)) {}
106 int_pred_ty() : P() {}
107
108 bool match(VPValue *VPV) const {
109 auto *VPI = dyn_cast<VPInstruction>(VPV);
110 if (VPI && VPI->getOpcode() == VPInstruction::Broadcast)
111 VPV = VPI->getOperand(0);
112 auto *IRV = dyn_cast<VPIRValue>(VPV);
113 if (!IRV)
114 return false;
115 assert(!IRV->getType()->isVectorTy() && "Unexpected vector live-in");
116 const auto *CI = dyn_cast<ConstantInt>(IRV->getValue());
117 if (!CI)
118 return false;
119
120 if (BitWidth != 0 && CI->getBitWidth() != BitWidth)
121 return false;
122 return P.isValue(CI->getValue());
123 }
124};
125
126/// Match a specified integer value or vector of all elements of that
127/// value. \p BitWidth optionally specifies the bitwidth the matched constant
128/// must have. If it is 0, the matched constant can have any bitwidth.
131
133
134 bool isValue(const APInt &C) const { return APInt::isSameValue(Val, C); }
135};
136
137template <unsigned Bitwidth = 0>
139
143
147
151
153 bool isValue(const APInt &C) const { return C.isAllOnes(); }
154};
155
156/// Match an integer or vector with all bits set.
157/// For vectors, this includes constants with undefined elements.
161
163 bool isValue(const APInt &C) const { return C.isZero(); }
164};
165
166struct is_one {
167 bool isValue(const APInt &C) const { return C.isOne(); }
168};
169
170/// Match an integer 0 or a vector with all elements equal to 0.
171/// For vectors, this includes constants with undefined elements.
175
176/// Match an integer 1 or a vector with all elements equal to 1.
177/// For vectors, this includes constants with undefined elements.
179
181 const APInt *&Res;
182
183 bind_apint(const APInt *&Res) : Res(Res) {}
184
185 bool match(VPValue *VPV) const {
186 auto *IRV = dyn_cast<VPIRValue>(VPV);
187 if (!IRV)
188 return false;
189 assert(!IRV->getType()->isVectorTy() && "Unexpected vector live-in");
190 const auto *CI = dyn_cast<ConstantInt>(IRV->getValue());
191 if (!CI)
192 return false;
193 Res = &CI->getValue();
194 return true;
195 }
196};
197
198inline bind_apint m_APInt(const APInt *&C) { return C; }
199
202
204
205 bool match(VPValue *VPV) const {
206 const APInt *APConst;
207 if (!bind_apint(APConst).match(VPV))
208 return false;
209 if (auto C = APConst->tryZExtValue()) {
210 Res = *C;
211 return true;
212 }
213 return false;
214 }
215};
216
217/// Match a plain integer constant no wider than 64-bits, capturing it if we
218/// match.
220
221/// Matching combinators
222template <typename LTy, typename RTy> struct match_combine_or {
223 LTy L;
224 RTy R;
225
226 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
227
228 template <typename ITy> bool match(ITy *V) const {
229 return L.match(V) || R.match(V);
230 }
231};
232
233template <typename LTy, typename RTy> struct match_combine_and {
234 LTy L;
235 RTy R;
236
237 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
238
239 template <typename ITy> bool match(ITy *V) const {
240 return L.match(V) && R.match(V);
241 }
242};
243
244/// Combine two pattern matchers matching L || R
245template <typename LTy, typename RTy>
246inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
247 return match_combine_or<LTy, RTy>(L, R);
248}
249
250/// Combine two pattern matchers matching L && R
251template <typename LTy, typename RTy>
252inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
253 return match_combine_and<LTy, RTy>(L, R);
254}
255
256/// Match a VPValue, capturing it if we match.
257inline bind_ty<VPValue> m_VPValue(VPValue *&V) { return V; }
258
259/// Match a VPInstruction, capturing if we match.
261
262template <typename Ops_t, unsigned Opcode, bool Commutative,
263 typename... RecipeTys>
265 Ops_t Ops;
266
267 template <typename... OpTy> Recipe_match(OpTy... Ops) : Ops(Ops...) {
268 static_assert(std::tuple_size<Ops_t>::value == sizeof...(Ops) &&
269 "number of operands in constructor doesn't match Ops_t");
270 static_assert((!Commutative || std::tuple_size<Ops_t>::value == 2) &&
271 "only binary ops can be commutative");
272 }
273
274 bool match(const VPValue *V) const {
275 auto *DefR = V->getDefiningRecipe();
276 return DefR && match(DefR);
277 }
278
279 bool match(const VPSingleDefRecipe *R) const {
280 return match(static_cast<const VPRecipeBase *>(R));
281 }
282
283 bool match(const VPRecipeBase *R) const {
284 if (std::tuple_size_v<Ops_t> == 0) {
285 auto *VPI = dyn_cast<VPInstruction>(R);
286 return VPI && VPI->getOpcode() == Opcode;
287 }
288
289 if ((!matchRecipeAndOpcode<RecipeTys>(R) && ...))
290 return false;
291
292 if (R->getNumOperands() != std::tuple_size_v<Ops_t>) {
293 [[maybe_unused]] auto *RepR = dyn_cast<VPReplicateRecipe>(R);
296 (RepR && std::tuple_size_v<Ops_t> ==
297 RepR->getNumOperands() - RepR->isPredicated())) &&
298 "non-variadic recipe with matched opcode does not have the "
299 "expected number of operands");
300 return false;
301 }
302
303 auto IdxSeq = std::make_index_sequence<std::tuple_size<Ops_t>::value>();
304 if (all_of_tuple_elements(IdxSeq, [R](auto Op, unsigned Idx) {
305 return Op.match(R->getOperand(Idx));
306 }))
307 return true;
308
309 return Commutative &&
310 all_of_tuple_elements(IdxSeq, [R](auto Op, unsigned Idx) {
311 return Op.match(R->getOperand(R->getNumOperands() - Idx - 1));
312 });
313 }
314
315private:
316 template <typename RecipeTy>
317 static bool matchRecipeAndOpcode(const VPRecipeBase *R) {
318 auto *DefR = dyn_cast<RecipeTy>(R);
319 // Check for recipes that do not have opcodes.
320 if constexpr (std::is_same_v<RecipeTy, VPScalarIVStepsRecipe> ||
321 std::is_same_v<RecipeTy, VPCanonicalIVPHIRecipe> ||
322 std::is_same_v<RecipeTy, VPDerivedIVRecipe> ||
323 std::is_same_v<RecipeTy, VPVectorEndPointerRecipe>)
324 return DefR;
325 else
326 return DefR && DefR->getOpcode() == Opcode;
327 }
328
329 /// Helper to check if predicate \p P holds on all tuple elements in Ops using
330 /// the provided index sequence.
331 template <typename Fn, std::size_t... Is>
332 bool all_of_tuple_elements(std::index_sequence<Is...>, Fn P) const {
333 return (P(std::get<Is>(Ops), Is) && ...);
334 }
335};
336
337template <unsigned Opcode, typename... OpTys>
339 Recipe_match<std::tuple<OpTys...>, Opcode, /*Commutative*/ false,
342
343template <unsigned Opcode, typename... OpTys>
345 Recipe_match<std::tuple<OpTys...>, Opcode, /*Commutative*/ true,
347
348template <unsigned Opcode, typename... OpTys>
349using VPInstruction_match = Recipe_match<std::tuple<OpTys...>, Opcode,
350 /*Commutative*/ false, VPInstruction>;
351
352template <unsigned Opcode, typename... OpTys>
353inline VPInstruction_match<Opcode, OpTys...>
354m_VPInstruction(const OpTys &...Ops) {
355 return VPInstruction_match<Opcode, OpTys...>(Ops...);
356}
357
358/// BuildVector is matches only its opcode, w/o matching its operands as the
359/// number of operands is not fixed.
363
364template <typename Op0_t>
366m_Freeze(const Op0_t &Op0) {
368}
369
373
374template <typename Op0_t>
376m_BranchOnCond(const Op0_t &Op0) {
378}
379
384
385template <typename Op0_t, typename Op1_t>
387m_BranchOnTwoConds(const Op0_t &Op0, const Op1_t &Op1) {
389}
390
391template <typename Op0_t>
393m_Broadcast(const Op0_t &Op0) {
395}
396
397template <typename Op0_t>
399m_EVL(const Op0_t &Op0) {
401}
402
403template <typename Op0_t>
408
409template <typename Op0_t, typename Op1_t>
411m_ExtractElement(const Op0_t &Op0, const Op1_t &Op1) {
413}
414
415template <typename Op0_t, typename Op1_t>
417m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1) {
419}
420
421template <typename Op0_t>
426
427template <typename Op0_t>
433}
434
435template <typename Op0_t>
440
441template <typename Op0_t, typename Op1_t, typename Op2_t>
443m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
445}
446
450
451template <typename Op0_t, typename Op1_t>
453m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1) {
455}
456
460
461template <typename Op0_t>
463m_AnyOf(const Op0_t &Op0) {
465}
466
467template <typename Op0_t>
472
473template <typename Op0_t>
475m_LastActiveLane(const Op0_t &Op0) {
477}
478
479template <typename Op0_t>
481m_Reverse(const Op0_t &Op0) {
483}
484
488
489template <unsigned Opcode, typename Op0_t>
490inline AllRecipe_match<Opcode, Op0_t> m_Unary(const Op0_t &Op0) {
492}
493
494template <typename Op0_t>
498
499template <typename Op0_t>
501m_TruncOrSelf(const Op0_t &Op0) {
502 return m_CombineOr(m_Trunc(Op0), Op0);
503}
504
505template <typename Op0_t>
509
510template <typename Op0_t>
514
515template <typename Op0_t>
518m_ZExtOrSExt(const Op0_t &Op0) {
519 return m_CombineOr(m_ZExt(Op0), m_SExt(Op0));
520}
521
522template <typename Op0_t>
524m_ZExtOrSelf(const Op0_t &Op0) {
525 return m_CombineOr(m_ZExt(Op0), Op0);
526}
527
528template <unsigned Opcode, typename Op0_t, typename Op1_t>
530 const Op1_t &Op1) {
532}
533
534template <unsigned Opcode, typename Op0_t, typename Op1_t>
536m_c_Binary(const Op0_t &Op0, const Op1_t &Op1) {
538}
539
540template <typename Op0_t, typename Op1_t>
542 const Op1_t &Op1) {
544}
545
546template <typename Op0_t, typename Op1_t>
548m_c_Add(const Op0_t &Op0, const Op1_t &Op1) {
550}
551
552template <typename Op0_t, typename Op1_t>
554 const Op1_t &Op1) {
556}
557
558template <typename Op0_t, typename Op1_t>
560 const Op1_t &Op1) {
562}
563
564template <typename Op0_t, typename Op1_t>
566m_c_Mul(const Op0_t &Op0, const Op1_t &Op1) {
568}
569
570template <typename Op0_t, typename Op1_t>
572m_UDiv(const Op0_t &Op0, const Op1_t &Op1) {
574}
575
576/// Match a binary AND operation.
577template <typename Op0_t, typename Op1_t>
579m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1) {
581}
582
583/// Match a binary OR operation. Note that while conceptually the operands can
584/// be matched commutatively, \p Commutative defaults to false in line with the
585/// IR-based pattern matching infrastructure. Use m_c_BinaryOr for a commutative
586/// version of the matcher.
587template <typename Op0_t, typename Op1_t>
589m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) {
591}
592
593template <typename Op0_t, typename Op1_t>
595m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1) {
597}
598
599/// Cmp_match is a variant of BinaryRecipe_match that also binds the comparison
600/// predicate. Opcodes must either be Instruction::ICmp or Instruction::FCmp, or
601/// both.
602template <typename Op0_t, typename Op1_t, unsigned... Opcodes>
603struct Cmp_match {
604 static_assert((sizeof...(Opcodes) == 1 || sizeof...(Opcodes) == 2) &&
605 "Expected one or two opcodes");
606 static_assert(
607 ((Opcodes == Instruction::ICmp || Opcodes == Instruction::FCmp) && ...) &&
608 "Expected a compare instruction opcode");
609
611 Op0_t Op0;
613
614 Cmp_match(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1)
615 : Predicate(&Pred), Op0(Op0), Op1(Op1) {}
616 Cmp_match(const Op0_t &Op0, const Op1_t &Op1) : Op0(Op0), Op1(Op1) {}
617
618 bool match(const VPValue *V) const {
619 auto *DefR = V->getDefiningRecipe();
620 return DefR && match(DefR);
621 }
622
623 bool match(const VPRecipeBase *V) const {
624 if ((m_Binary<Opcodes>(Op0, Op1).match(V) || ...)) {
625 if (Predicate)
626 *Predicate = cast<VPRecipeWithIRFlags>(V)->getPredicate();
627 return true;
628 }
629 return false;
630 }
631};
632
633/// SpecificCmp_match is a variant of Cmp_match that matches the comparison
634/// predicate, instead of binding it.
635template <typename Op0_t, typename Op1_t, unsigned... Opcodes>
638 Op0_t Op0;
640
641 SpecificCmp_match(CmpPredicate Pred, const Op0_t &LHS, const Op1_t &RHS)
642 : Predicate(Pred), Op0(LHS), Op1(RHS) {}
643
644 bool match(const VPValue *V) const {
645 CmpPredicate CurrentPred;
646 return Cmp_match<Op0_t, Op1_t, Opcodes...>(CurrentPred, Op0, Op1)
647 .match(V) &&
649 }
650};
651
652template <typename Op0_t, typename Op1_t>
654 const Op1_t &Op1) {
656}
657
658template <typename Op0_t, typename Op1_t>
659inline Cmp_match<Op0_t, Op1_t, Instruction::ICmp>
660m_ICmp(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1) {
661 return Cmp_match<Op0_t, Op1_t, Instruction::ICmp>(Pred, Op0, Op1);
662}
663
664template <typename Op0_t, typename Op1_t>
665inline SpecificCmp_match<Op0_t, Op1_t, Instruction::ICmp>
666m_SpecificICmp(CmpPredicate MatchPred, const Op0_t &Op0, const Op1_t &Op1) {
668 Op1);
669}
670
671template <typename Op0_t, typename Op1_t>
672inline Cmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp>
673m_Cmp(const Op0_t &Op0, const Op1_t &Op1) {
675 Op1);
676}
677
678template <typename Op0_t, typename Op1_t>
679inline Cmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp>
680m_Cmp(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1) {
682 Pred, Op0, Op1);
683}
684
685template <typename Op0_t, typename Op1_t>
686inline SpecificCmp_match<Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp>
687m_SpecificCmp(CmpPredicate MatchPred, const Op0_t &Op0, const Op1_t &Op1) {
689 MatchPred, Op0, Op1);
690}
691
692template <typename Op0_t, typename Op1_t>
694 Recipe_match<std::tuple<Op0_t, Op1_t>, Instruction::GetElementPtr,
695 /*Commutative*/ false, VPReplicateRecipe, VPWidenGEPRecipe>,
699
700template <typename Op0_t, typename Op1_t>
702 const Op1_t &Op1) {
703 return m_CombineOr(
704 Recipe_match<std::tuple<Op0_t, Op1_t>, Instruction::GetElementPtr,
705 /*Commutative*/ false, VPReplicateRecipe, VPWidenGEPRecipe>(
706 Op0, Op1),
710 Op1)));
711}
712
713template <typename Op0_t, typename Op1_t, typename Op2_t>
715m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
717 {Op0, Op1, Op2});
718}
719
720template <typename Op0_t>
723 Instruction::Xor, int_pred_ty<is_all_ones>, Op0_t>>
728
729template <typename Op0_t, typename Op1_t>
730inline match_combine_or<
733m_LogicalAnd(const Op0_t &Op0, const Op1_t &Op1) {
734 return m_CombineOr(
736 m_Select(Op0, Op1, m_False()));
737}
738
739template <typename Op0_t, typename Op1_t>
741m_LogicalOr(const Op0_t &Op0, const Op1_t &Op1) {
742 return m_Select(Op0, m_True(), Op1);
743}
744
745template <typename Op0_t, typename Op1_t, typename Op2_t>
747 false, VPScalarIVStepsRecipe>;
748
749template <typename Op0_t, typename Op1_t, typename Op2_t>
751m_ScalarIVSteps(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
752 return VPScalarIVSteps_match<Op0_t, Op1_t, Op2_t>({Op0, Op1, Op2});
753}
754
755template <typename Op0_t, typename Op1_t, typename Op2_t>
758
759template <typename Op0_t, typename Op1_t, typename Op2_t>
761m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2) {
762 return VPDerivedIV_match<Op0_t, Op1_t, Op2_t>({Op0, Op1, Op2});
763}
764
765template <typename Addr_t, typename Mask_t> struct Load_match {
766 Addr_t Addr;
767 Mask_t Mask;
768
769 Load_match(Addr_t Addr, Mask_t Mask) : Addr(Addr), Mask(Mask) {}
770
771 template <typename OpTy> bool match(const OpTy *V) const {
772 auto *Load = dyn_cast<VPWidenLoadRecipe>(V);
773 if (!Load || !Addr.match(Load->getAddr()) || !Load->isMasked() ||
774 !Mask.match(Load->getMask()))
775 return false;
776 return true;
777 }
778};
779
780/// Match a (possibly reversed) masked load.
781template <typename Addr_t, typename Mask_t>
782inline Load_match<Addr_t, Mask_t> m_MaskedLoad(const Addr_t &Addr,
783 const Mask_t &Mask) {
784 return Load_match<Addr_t, Mask_t>(Addr, Mask);
785}
786
787template <typename Addr_t, typename Val_t, typename Mask_t> struct Store_match {
788 Addr_t Addr;
789 Val_t Val;
790 Mask_t Mask;
791
792 Store_match(Addr_t Addr, Val_t Val, Mask_t Mask)
793 : Addr(Addr), Val(Val), Mask(Mask) {}
794
795 template <typename OpTy> bool match(const OpTy *V) const {
796 auto *Store = dyn_cast<VPWidenStoreRecipe>(V);
797 if (!Store || !Addr.match(Store->getAddr()) ||
798 !Val.match(Store->getStoredValue()) || !Store->isMasked() ||
799 !Mask.match(Store->getMask()))
800 return false;
801 return true;
802 }
803};
804
805/// Match a (possibly reversed) masked store.
806template <typename Addr_t, typename Val_t, typename Mask_t>
807inline Store_match<Addr_t, Val_t, Mask_t>
808m_MaskedStore(const Addr_t &Addr, const Val_t &Val, const Mask_t &Mask) {
809 return Store_match<Addr_t, Val_t, Mask_t>(Addr, Val, Mask);
810}
811
812template <typename Op0_t, typename Op1_t>
815 /*Commutative*/ false, VPVectorEndPointerRecipe>;
816
817template <typename Op0_t, typename Op1_t>
822
823/// Match a call argument at a given argument index.
824template <typename Opnd_t> struct Argument_match {
825 /// Call argument index to match.
826 unsigned OpI;
827 Opnd_t Val;
828
829 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
830
831 template <typename OpTy> bool match(OpTy *V) const {
832 if (const auto *R = dyn_cast<VPWidenIntrinsicRecipe>(V))
833 return Val.match(R->getOperand(OpI));
834 if (const auto *R = dyn_cast<VPWidenCallRecipe>(V))
835 return Val.match(R->getOperand(OpI));
836 if (const auto *R = dyn_cast<VPReplicateRecipe>(V))
837 if (R->getOpcode() == Instruction::Call)
838 return Val.match(R->getOperand(OpI));
839 if (const auto *R = dyn_cast<VPInstruction>(V))
840 if (R->getOpcode() == Instruction::Call)
841 return Val.match(R->getOperand(OpI));
842 return false;
843 }
844};
845
846/// Match a call argument.
847template <unsigned OpI, typename Opnd_t>
848inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
849 return Argument_match<Opnd_t>(OpI, Op);
850}
851
852/// Intrinsic matchers.
854 unsigned ID;
855
856 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
857
858 template <typename OpTy> bool match(OpTy *V) const {
859 if (const auto *R = dyn_cast<VPWidenIntrinsicRecipe>(V))
860 return R->getVectorIntrinsicID() == ID;
861 if (const auto *R = dyn_cast<VPWidenCallRecipe>(V))
862 return R->getCalledScalarFunction()->getIntrinsicID() == ID;
863
864 auto MatchCalleeIntrinsic = [&](VPValue *CalleeOp) {
865 if (!isa<VPIRValue>(CalleeOp))
866 return false;
867 auto *F = cast<Function>(CalleeOp->getLiveInIRValue());
868 return F->getIntrinsicID() == ID;
869 };
870 if (const auto *R = dyn_cast<VPReplicateRecipe>(V))
871 if (R->getOpcode() == Instruction::Call) {
872 // The mask is always the last operand if predicated.
873 return MatchCalleeIntrinsic(
874 R->getOperand(R->getNumOperands() - 1 - R->isPredicated()));
875 }
876 if (const auto *R = dyn_cast<VPInstruction>(V))
877 if (R->getOpcode() == Instruction::Call)
878 return MatchCalleeIntrinsic(R->getOperand(R->getNumOperands() - 1));
879 return false;
880 }
881};
882
883/// Intrinsic matches are combinations of ID matchers, and argument
884/// matchers. Higher arity matcher are defined recursively in terms of and-ing
885/// them with lower arity matchers. Here's some convenient typedefs for up to
886/// several arguments, and more can be added as needed
887template <typename T0 = void, typename T1 = void, typename T2 = void,
888 typename T3 = void>
889struct m_Intrinsic_Ty;
890template <typename T0> struct m_Intrinsic_Ty<T0> {
892};
893template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
894 using Ty =
896};
897template <typename T0, typename T1, typename T2>
902template <typename T0, typename T1, typename T2, typename T3>
907
908/// Match intrinsic calls like this:
909/// m_Intrinsic<Intrinsic::fabs>(m_VPValue(X), ...)
910template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
911 return IntrinsicID_match(IntrID);
912}
913
914/// Match intrinsic calls with a runtime intrinsic ID.
916 return IntrinsicID_match(IntrID);
917}
918
919template <Intrinsic::ID IntrID, typename T0>
920inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
922}
923
924template <Intrinsic::ID IntrID, typename T0, typename T1>
925inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
926 const T1 &Op1) {
928}
929
930template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
931inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
932m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
933 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
934}
935
936template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
937 typename T3>
939m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
940 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
941}
942
944 template <typename ITy> bool match(ITy *V) const {
946 }
947};
948
950
951template <typename SubPattern_t> struct OneUse_match {
952 SubPattern_t SubPattern;
953
954 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
955
956 template <typename OpTy> bool match(OpTy *V) {
957 return V->hasOneUse() && SubPattern.match(V);
958 }
959};
960
961template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
962 return SubPattern;
963}
964
965} // namespace llvm::VPlanPatternMatch
966
967#endif
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define T
#define T1
MachineInstr unsigned OpIdx
#define P(N)
This file contains the declarations of the Vectorization Plan base classes:
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition APInt.h:78
std::optional< uint64_t > tryZExtValue() const
Get zero extended value if possible.
Definition APInt.h:1553
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition APInt.h:554
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
Definition VPlan.h:3702
This is a concrete Recipe that models a single VPlan-level instruction.
Definition VPlan.h:1034
static unsigned getNumOperandsForOpcode(unsigned Opcode)
Return the number of operands determined by the opcode of the VPInstruction.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition VPlan.h:387
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition VPlan.h:2921
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition VPlan.h:3770
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition VPlan.h:531
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition VPlanValue.h:229
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Definition VPlanValue.h:45
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
Definition VPlan.h:1877
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition VPlan.h:1568
A recipe for handling GEP instructions.
Definition VPlan.h:1814
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition VPlan.h:1520
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
VPInstruction_match< VPInstruction::ExtractLastLane, VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > > m_ExtractLastLaneOfLastPart(const Op0_t &Op0)
AllRecipe_match< Instruction::Select, Op0_t, Op1_t, Op2_t > m_Select(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< Instruction::Freeze, Op0_t > m_Freeze(const Op0_t &Op0)
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::ZExt, Op0_t > m_ZExt(const Op0_t &Op0)
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
int_pred_ty< is_specific_int, Bitwidth > specific_intval
Store_match< Addr_t, Val_t, Mask_t > m_MaskedStore(const Addr_t &Addr, const Val_t &Val, const Mask_t &Mask)
Match a (possibly reversed) masked store.
int_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
SpecificCmp_match< Op0_t, Op1_t, Instruction::ICmp, Instruction::FCmp > m_SpecificCmp(CmpPredicate MatchPred, const Op0_t &Op0, const Op1_t &Op1)
match_combine_or< VPInstruction_match< VPInstruction::Not, Op0_t >, AllRecipe_commutative_match< Instruction::Xor, int_pred_ty< is_all_ones >, Op0_t > > m_Not(const Op0_t &Op0)
VPInstruction_match< VPInstruction::AnyOf > m_AnyOf()
int_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Add, Op0_t, Op1_t > m_c_Add(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::StepVector > m_StepVector()
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, AllRecipe_match< Instruction::SExt, Op0_t > > m_ZExtOrSExt(const Op0_t &Op0)
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
SpecificCmp_match< Op0_t, Op1_t, Instruction::ICmp > m_SpecificICmp(CmpPredicate MatchPred, const Op0_t &Op0, const Op1_t &Op1)
VPScalarIVSteps_match< Op0_t, Op1_t, Op2_t > m_ScalarIVSteps(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
AllRecipe_match< Instruction::Add, Op0_t, Op1_t > m_Add(const Op0_t &Op0, const Op1_t &Op1)
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
Recipe_match< std::tuple< OpTys... >, Opcode, false, VPInstruction > VPInstruction_match
VPInstruction_match< VPInstruction::BranchOnTwoConds > m_BranchOnTwoConds()
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::LastActiveLane, Op0_t > m_LastActiveLane(const Op0_t &Op0)
AllRecipe_match< Opcode, Op0_t > m_Unary(const Op0_t &Op0)
Load_match< Addr_t, Mask_t > m_MaskedLoad(const Addr_t &Addr, const Mask_t &Mask)
Match a (possibly reversed) masked load.
match_combine_or< AllRecipe_match< Instruction::Trunc, Op0_t >, Op0_t > m_TruncOrSelf(const Op0_t &Op0)
AllRecipe_commutative_match< Instruction::Mul, Op0_t, Op1_t > m_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
Cmp_match< Op0_t, Op1_t, Instruction::ICmp > m_ICmp(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_match< Instruction::Mul, Op0_t, Op1_t > m_Mul(const Op0_t &Op0, const Op1_t &Op1)
specificval_ty m_Specific(const VPValue *VPV)
match_combine_or< Recipe_match< std::tuple< Op0_t, Op1_t >, Instruction::GetElementPtr, false, VPReplicateRecipe, VPWidenGEPRecipe >, match_combine_or< VPInstruction_match< VPInstruction::PtrAdd, Op0_t, Op1_t >, VPInstruction_match< VPInstruction::WidePtrAdd, Op0_t, Op1_t > > > GEPLikeRecipe_match
VPInstruction_match< Instruction::ExtractElement, Op0_t, Op1_t > m_ExtractElement(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPMatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
specific_intval< 0 > m_SpecificInt(uint64_t V)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount > m_BranchOnCount()
Recipe_match< std::tuple< Op0_t, Op1_t, Op2_t >, 0, false, VPDerivedIVRecipe > VPDerivedIV_match
AllRecipe_match< Instruction::Sub, Op0_t, Op1_t > m_Sub(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_match< Instruction::SExt, Op0_t > m_SExt(const Op0_t &Op0)
specific_intval< 1 > m_True()
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_VPValue(X), ...)
Recipe_match< std::tuple< OpTys... >, Opcode, true, VPWidenRecipe, VPReplicateRecipe, VPInstruction > AllRecipe_commutative_match
deferredval_ty m_Deferred(VPValue *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
VectorEndPointerRecipe_match< Op0_t, Op1_t > m_VecEndPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
bool match(Val *V, const Pattern &P)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
OneUse_match< T > m_OneUse(const T &SubPattern)
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
AllRecipe_match< Instruction::Trunc, Op0_t > m_Trunc(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ExtractPenultimateElement, Op0_t > m_ExtractPenultimateElement(const Op0_t &Op0)
Recipe_match< std::tuple< Op0_t, Op1_t >, 0, false, VPVectorEndPointerRecipe > VectorEndPointerRecipe_match
match_combine_or< AllRecipe_match< Instruction::ZExt, Op0_t >, Op0_t > m_ZExtOrSelf(const Op0_t &Op0)
VPInstruction_match< VPInstruction::FirstActiveLane, Op0_t > m_FirstActiveLane(const Op0_t &Op0)
Argument_match< Opnd_t > m_Argument(const Opnd_t &Op)
Match a call argument.
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
AllRecipe_match< Instruction::UDiv, Op0_t, Op1_t > m_UDiv(const Op0_t &Op0, const Op1_t &Op1)
Recipe_match< std::tuple< Op0_t, Op1_t, Op2_t >, 0, false, VPScalarIVStepsRecipe > VPScalarIVSteps_match
int_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Recipe_match< std::tuple< OpTys... >, Opcode, false, VPWidenRecipe, VPReplicateRecipe, VPWidenCastRecipe, VPInstruction > AllRecipe_match
VPInstruction_match< VPInstruction::BranchOnCond > m_BranchOnCond()
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
bind_apint m_APInt(const APInt *&C)
VPInstruction_match< VPInstruction::Reverse, Op0_t > m_Reverse(const Op0_t &Op0)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
DWARFExpression::Operation Op
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1915
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
Intrinsic matches are combinations of ID matchers, and argument matchers.
Match a call argument at a given argument index.
unsigned OpI
Call argument index to match.
Argument_match(unsigned OpIdx, const Opnd_t &V)
Cmp_match is a variant of BinaryRecipe_match that also binds the comparison predicate.
Cmp_match(CmpPredicate &Pred, const Op0_t &Op0, const Op1_t &Op1)
Cmp_match(const Op0_t &Op0, const Op1_t &Op1)
bool match(const VPValue *V) const
bool match(const VPRecipeBase *V) const
Load_match(Addr_t Addr, Mask_t Mask)
bool match(const VPSingleDefRecipe *R) const
bool match(const VPValue *V) const
bool match(const VPRecipeBase *R) const
SpecificCmp_match is a variant of Cmp_match that matches the comparison predicate,...
SpecificCmp_match(CmpPredicate Pred, const Op0_t &LHS, const Op1_t &RHS)
Store_match(Addr_t Addr, Val_t Val, Mask_t Mask)
Stores a reference to the VPValue *, not the VPValue * itself, thus can be used in commutative matche...
Match an integer constant or vector of constants if Pred::isValue returns true for the APInt.
bool isValue(const APInt &C) const
Match a specified integer value or vector of all elements of that value.
match_combine_and< typename m_Intrinsic_Ty< T0, T1 >::Ty, Argument_match< T2 > > Ty
match_combine_and< typename m_Intrinsic_Ty< T0 >::Ty, Argument_match< T1 > > Ty
match_combine_and< IntrinsicID_match, Argument_match< T0 > > Ty
Intrinsic matches are combinations of ID matchers, and argument matchers.
match_combine_and< typename m_Intrinsic_Ty< T0, T1, T2 >::Ty, Argument_match< T3 > > Ty
match_combine_and(const LTy &Left, const RTy &Right)
match_combine_or(const LTy &Left, const RTy &Right)