30#define DEBUG_TYPE "iv-descriptors"
34 for (
const Use &
Use :
I->operands())
35 if (!Set.count(dyn_cast<Instruction>(
Use)))
71 if (!Phi->hasOneUse())
74 const APInt *M =
nullptr;
75 Instruction *
I, *J = cast<Instruction>(Phi->use_begin()->getUser());
80 int32_t Bits = (*M + 1).exactLogBase2();
97 bool IsSigned =
false;
99 uint64_t MaxBitWidth =
DL.getTypeSizeInBits(Exit->getType());
107 auto Mask = DB->getDemandedBits(Exit);
108 MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero();
111 if (MaxBitWidth ==
DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
116 auto NumTypeBits =
DL.getTypeSizeInBits(Exit->getType());
117 MaxBitWidth = NumTypeBits - NumSignBits;
119 if (!Bits.isNonNegative()) {
131 return std::make_pair(
Type::getIntNTy(Exit->getContext(), MaxBitWidth),
140 Type *RecurrenceType,
142 unsigned &MinWidthCastToRecurTy) {
147 MinWidthCastToRecurTy = -1U;
149 while (!Worklist.
empty()) {
152 if (
auto *Cast = dyn_cast<CastInst>(Val)) {
153 if (Cast->getSrcTy() == RecurrenceType) {
160 if (Cast->getDestTy() == RecurrenceType) {
165 MinWidthCastToRecurTy = std::min<unsigned>(
166 MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
172 for (
Value *O : cast<User>(Val)->operands())
173 if (
auto *
I = dyn_cast<Instruction>(O))
195 if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
200 auto *Op0 = Exit->getOperand(0);
201 auto *Op1 = Exit->getOperand(1);
207 LLVM_DEBUG(
dbgs() <<
"LV: Found an ordered reduction: Phi: " << *Phi
208 <<
", ExitInst: " << *Exit <<
"\n");
217 if (Phi->getNumIncomingValues() != 2)
221 if (Phi->getParent() != TheLoop->
getHeader())
240 bool FoundReduxOp =
false;
246 bool FoundStartPHI =
false;
251 unsigned NumCmpSelectPatternInst = 0;
255 Type *RecurrenceType = Phi->getType();
257 unsigned MinWidthCastToRecurrenceType;
259 bool IsSigned =
false;
276 Start =
lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
283 VisitedInsts.
insert(Start);
312 while (!Worklist.
empty()) {
317 if (
auto *SI = dyn_cast<StoreInst>(Cur)) {
319 LLVM_DEBUG(
dbgs() <<
"Store instructions are not processed without "
320 <<
"Scalar Evolution Analysis\n");
324 const SCEV *PtrScev = SE->
getSCEV(SI->getPointerOperand());
327 const SCEV *OtherScev =
330 if (OtherScev != PtrScev) {
331 LLVM_DEBUG(
dbgs() <<
"Storing reduction value to different addresses "
332 <<
"inside the loop: " << *SI->getPointerOperand()
341 LLVM_DEBUG(
dbgs() <<
"Storing reduction value to non-uniform address "
342 <<
"inside the loop: " << *SI->getPointerOperand()
358 bool IsAPhi = isa<PHINode>(Cur);
361 if (Cur != Phi && IsAPhi && Cur->
getParent() == Phi->getParent())
366 if (!Cur->
isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
367 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
377 ExactFPMathInst = ExactFPMathInst ==
nullptr
385 if (
auto *Sel = dyn_cast<SelectInst>(ReduxDesc.
getPatternInst())) {
390 if (
auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
391 CurFMF |= FCmp->getFastMathFlags();
402 bool IsASelect = isa<SelectInst>(Cur);
416 if (IsAPhi && Cur != Phi && !
areAllUsesIn(Cur, VisitedInsts))
420 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
421 ++NumCmpSelectPatternInst;
423 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
424 ++NumCmpSelectPatternInst;
427 FoundReduxOp |= !IsAPhi && Cur != Start;
448 if (ExitInstruction == Cur)
455 if (ExitInstruction !=
nullptr || Cur == Phi)
464 ExitInstruction = Cur;
471 InstDesc IgnoredVal(
false,
nullptr);
472 if (VisitedInsts.
insert(UI).second) {
473 if (isa<PHINode>(UI)) {
477 if (SI && SI->getPointerOperand() == Cur) {
484 }
else if (!isa<PHINode>(UI) &&
485 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
486 !isa<SelectInst>(UI)) ||
495 FoundStartPHI =
true;
505 NumCmpSelectPatternInst != 0)
523 if (ExitInstruction &&
525 LLVM_DEBUG(
dbgs() <<
"Last store Instruction of reduction value does not "
526 "store last calculated value of the reduction: "
533 if (!ExitInstruction)
537 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
540 const bool IsOrdered =
569 std::tie(ComputedType, IsSigned) =
571 if (ComputedType != RecurrenceType)
589 MinWidthCastToRecurrenceType);
599 FMF, ExactFPMathInst, RecurrenceType, IsSigned,
600 IsOrdered, CastInsts, MinWidthCastToRecurrenceType);
634 if (
auto *
Select = dyn_cast<SelectInst>(*
I->user_begin()))
643 Value *NonPhi =
nullptr;
645 if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
646 NonPhi = SI->getFalseValue();
647 else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
648 NonPhi = SI->getTrueValue();
665 assert((isa<CmpInst>(
I) || isa<SelectInst>(
I) || isa<CallInst>(
I)) &&
666 "Expected a cmp or select or call instruction");
674 if (
auto *
Select = dyn_cast<SelectInst>(*
I->user_begin()))
679 if (!isa<IntrinsicInst>(
I) &&
728 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
733 Value *TrueVal = SI->getTrueValue();
734 Value *FalseVal = SI->getFalseValue();
737 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
738 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
742 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
743 : dyn_cast<Instruction>(TrueVal);
744 if (!I1 || !I1->isBinaryOp())
757 Instruction *IPhi = isa<PHINode>(*Op1) ? dyn_cast<Instruction>(Op1)
758 : dyn_cast<Instruction>(Op2);
759 if (!IPhi || IPhi != FalseVal)
770 switch (
I->getOpcode()) {
773 case Instruction::PHI:
775 case Instruction::Sub:
776 case Instruction::Add:
778 case Instruction::Mul:
780 case Instruction::And:
782 case Instruction::Or:
784 case Instruction::Xor:
786 case Instruction::FDiv:
787 case Instruction::FMul:
789 I->hasAllowReassoc() ?
nullptr :
I);
790 case Instruction::FSub:
791 case Instruction::FAdd:
793 I->hasAllowReassoc() ?
nullptr :
I);
794 case Instruction::Select:
799 case Instruction::FCmp:
800 case Instruction::ICmp:
801 case Instruction::Call:
804 auto HasRequiredFMF = [&]() {
807 if (isa<FPMathOperator>(
I) &&
I->hasNoNaNs() &&
I->hasNoSignedZeros())
819 I->hasAllowReassoc() ?
nullptr :
I);
826 unsigned MaxNumUses) {
827 unsigned NumUses = 0;
828 for (
const Use &U :
I->operands()) {
829 if (Insts.
count(dyn_cast<Instruction>(U)))
831 if (NumUses > MaxNumUses)
847 F.getFnAttribute(
"no-nans-fp-math").getValueAsBool());
849 F.getFnAttribute(
"no-signed-zeros-fp-math").getValueAsBool());
853 LLVM_DEBUG(
dbgs() <<
"Found an ADD reduction PHI." << *Phi <<
"\n");
858 LLVM_DEBUG(
dbgs() <<
"Found a MUL reduction PHI." << *Phi <<
"\n");
863 LLVM_DEBUG(
dbgs() <<
"Found an OR reduction PHI." << *Phi <<
"\n");
868 LLVM_DEBUG(
dbgs() <<
"Found an AND reduction PHI." << *Phi <<
"\n");
873 LLVM_DEBUG(
dbgs() <<
"Found a XOR reduction PHI." << *Phi <<
"\n");
878 LLVM_DEBUG(
dbgs() <<
"Found a SMAX reduction PHI." << *Phi <<
"\n");
883 LLVM_DEBUG(
dbgs() <<
"Found a SMIN reduction PHI." << *Phi <<
"\n");
888 LLVM_DEBUG(
dbgs() <<
"Found a UMAX reduction PHI." << *Phi <<
"\n");
893 LLVM_DEBUG(
dbgs() <<
"Found a UMIN reduction PHI." << *Phi <<
"\n");
898 LLVM_DEBUG(
dbgs() <<
"Found an integer conditional select reduction PHI."
904 LLVM_DEBUG(
dbgs() <<
"Found an FMult reduction PHI." << *Phi <<
"\n");
909 LLVM_DEBUG(
dbgs() <<
"Found an FAdd reduction PHI." << *Phi <<
"\n");
914 LLVM_DEBUG(
dbgs() <<
"Found a float MAX reduction PHI." << *Phi <<
"\n");
919 LLVM_DEBUG(
dbgs() <<
"Found a float MIN reduction PHI." << *Phi <<
"\n");
924 LLVM_DEBUG(
dbgs() <<
"Found a float conditional select reduction PHI."
925 <<
" PHI." << *Phi <<
"\n");
930 LLVM_DEBUG(
dbgs() <<
"Found an FMulAdd reduction PHI." << *Phi <<
"\n");
935 LLVM_DEBUG(
dbgs() <<
"Found a float MAXIMUM reduction PHI." << *Phi <<
"\n");
940 LLVM_DEBUG(
dbgs() <<
"Found a float MINIMUM reduction PHI." << *Phi <<
"\n");
951 if (Phi->getParent() != TheLoop->
getHeader() ||
952 Phi->getNumIncomingValues() != 2)
959 if (!Preheader || !Latch)
963 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
964 Phi->getBasicBlockIndex(Latch) < 0)
969 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
976 while (
auto *PrevPhi = dyn_cast_or_null<PHINode>(Previous)) {
977 if (PrevPhi->getParent() != Phi->getParent())
979 if (!SeenPhis.
insert(PrevPhi).second)
981 Previous = dyn_cast<Instruction>(PrevPhi->getIncomingValueForBlock(Latch));
984 if (!Previous || !TheLoop->
contains(Previous) || isa<PHINode>(Previous))
996 auto TryToPushSinkCandidate = [&](
Instruction *SinkCandidate) {
998 if (Previous == SinkCandidate)
1001 if (!Seen.
insert(SinkCandidate).second)
1007 if (SinkCandidate->getParent() != PhiBB ||
1008 SinkCandidate->mayHaveSideEffects() ||
1009 SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
1014 if (isa<PHINode>(SinkCandidate))
1024 while (!WorkList.
empty()) {
1027 if (!TryToPushSinkCandidate(cast<Instruction>(
User)))
1044 return ConstantInt::get(Tp, 0);
1047 return ConstantInt::get(Tp, 1);
1050 return ConstantInt::get(Tp, -1,
true);
1053 return ConstantFP::get(Tp, 1.0L);
1063 return ConstantFP::get(Tp, 0.0L);
1064 return ConstantFP::get(Tp, -0.0L);
1066 return ConstantInt::get(Tp, -1,
true);
1068 return ConstantInt::get(Tp, 0);
1070 return ConstantInt::get(Tp,
1073 return ConstantInt::get(Tp,
1077 "nnan, nsz is expected to be set for FP min reduction.");
1081 "nnan, nsz is expected to be set for FP max reduction.");
1099 return Instruction::Add;
1101 return Instruction::Mul;
1103 return Instruction::Or;
1105 return Instruction::And;
1107 return Instruction::Xor;
1109 return Instruction::FMul;
1112 return Instruction::FAdd;
1118 return Instruction::ICmp;
1124 return Instruction::FCmp;
1150 unsigned ExpectedUses = 1;
1151 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1157 if (isa<PHINode>(UI))
1159 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1162 if (isa<SelectInst>(UI))
1171 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1180 return Cur->getOpcode() == RedOp;
1184 unsigned ExtraPhiUses = 0;
1186 if (
auto ExitPhi = dyn_cast<PHINode>(LoopExitInstr)) {
1187 if (ExitPhi->getNumIncomingValues() != 2)
1190 Instruction *Inc0 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(0));
1191 Instruction *Inc1 = dyn_cast<Instruction>(ExitPhi->getIncomingValue(1));
1196 else if (Inc1 == Phi)
1209 if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->
hasNUses(2))
1214 if (!Phi->hasNUses(ExpectedUses + ExtraPhiUses))
1221 while (Cur != RdxInstr) {
1222 if (!Cur || !isCorrectOpcode(Cur) || !Cur->
hasNUses(ExpectedUses))
1226 Cur = getNextInstruction(Cur);
1230 return ReductionOperations;
1236 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
1237 assert(IK != IK_NoInduction &&
"Not an induction");
1241 assert(StartValue &&
"StartValue is null");
1243 "StartValue is not a pointer for pointer induction");
1245 "StartValue is not an integer for integer induction");
1248 assert((!getConstIntStepValue() || !getConstIntStepValue()->
isZero()) &&
1249 "Step value is zero");
1252 "StepValue is not an integer");
1255 "StepValue is not FP for FpInduction");
1256 assert((IK != IK_FpInduction ||
1258 (InductionBinOp->getOpcode() == Instruction::FAdd ||
1259 InductionBinOp->getOpcode() == Instruction::FSub))) &&
1260 "Binary opcode should be specified for FP induction");
1263 for (
auto &Inst : *Casts) {
1264 RedundantCasts.push_back(Inst);
1270 if (isa<SCEVConstant>(Step))
1271 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1280 assert(Phi->getType()->isFloatingPointTy() &&
"Unexpected Phi type");
1282 if (TheLoop->
getHeader() != Phi->getParent())
1287 if (Phi->getNumIncomingValues() != 2)
1289 Value *BEValue =
nullptr, *StartValue =
nullptr;
1290 if (TheLoop->
contains(Phi->getIncomingBlock(0))) {
1291 BEValue = Phi->getIncomingValue(0);
1292 StartValue = Phi->getIncomingValue(1);
1295 "Unexpected Phi node in the loop");
1296 BEValue = Phi->getIncomingValue(1);
1297 StartValue = Phi->getIncomingValue(0);
1304 Value *Addend =
nullptr;
1305 if (BOp->
getOpcode() == Instruction::FAdd) {
1310 }
else if (BOp->
getOpcode() == Instruction::FSub)
1318 if (
auto *
I = dyn_cast<Instruction>(Addend))
1365 assert(CastInsts.
empty() &&
"CastInsts is expected to be empty.");
1366 auto *PN = cast<PHINode>(PhiScev->
getValue());
1367 assert(PSE.
getSCEV(PN) == AR &&
"Unexpected phi node SCEV expression");
1378 auto getDef = [&](
const Value *Val) ->
Value * {
1384 Value *Def =
nullptr;
1385 if (L->isLoopInvariant(Op0))
1387 else if (L->isLoopInvariant(Op1))
1397 Value *Val = PN->getIncomingValueForBlock(Latch);
1405 bool InCastSequence =
false;
1406 auto *Inst = dyn_cast<Instruction>(Val);
1410 if (!Inst || !L->contains(Inst)) {
1413 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.
getSCEV(Val));
1415 InCastSequence =
true;
1416 if (InCastSequence) {
1419 if (!CastInsts.
empty())
1420 if (!Inst->hasOneUse())
1427 Inst = dyn_cast<Instruction>(Val);
1430 return InCastSequence;
1436 Type *PhiTy = Phi->getType();
1450 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1462 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1468 if (PhiScev != AR && SymbolicPhi) {
1481 Type *PhiTy = Phi->getType();
1487 const SCEV *PhiScev = Expr ? Expr : SE->
getSCEV(Phi);
1495 if (AR->
getLoop() != TheLoop) {
1499 dbgs() <<
"LV: PHI is a recurrence with respect to an outer loop.\n");
1507 &&
"Invalid Phi node, not present in loop header");
1519 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1525 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
amdgpu AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, const SCEVUnknown *PhiScev, const SCEVAddRecExpr *AR, SmallVectorImpl< Instruction * > &CastInsts)
This function is called when we suspect that the update-chain of a phi node (whose symbolic SCEV expr...
static void collectCastInstrs(Loop *TheLoop, Instruction *Exit, Type *RecurrenceType, SmallPtrSetImpl< Instruction * > &Casts, unsigned &MinWidthCastToRecurTy)
Collect cast instructions that can be ignored in the vectorizer's cost model, given a reduction exit ...
static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, Instruction *Exit, PHINode *Phi)
static Instruction * lookThroughAnd(PHINode *Phi, Type *&RT, SmallPtrSetImpl< Instruction * > &Visited, SmallPtrSetImpl< Instruction * > &CI)
Determines if Phi may have been type-promoted.
static std::pair< Type *, bool > computeRecurrenceType(Instruction *Exit, DemandedBits *DB, AssumptionCache *AC, DominatorTree *DT)
Compute the minimal bit width needed to represent a reduction whose exit instruction is given by Exit...
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Module.h This file contains the declarations for the Module class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Class for arbitrary precision integers.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
BinaryOps getOpcode() const
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
static Constant * getInfinity(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
static FastMathFlags getFast()
A struct for saving information about induction variables.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
static bool isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr=nullptr, SmallVectorImpl< Instruction * > *CastsToIgnore=nullptr)
Returns true if Phi is an induction in the loop L.
static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D)
Returns true if Phi is a floating point induction in the loop L.
InductionDescriptor()=default
Default constructor - creates an invalid induction.
ConstantInt * getConstIntStepValue() const
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getHeader() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Represents a single loop in the control flow graph.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const
Check if AR1 and AR2 are equal, while taking into account Equal predicates in Preds.
const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
This POD struct holds information about a potential recurrence operation.
RecurKind getRecKind() const
Instruction * getPatternInst() const
bool isRecurrence() const
Instruction * getExactFPMathInst() const
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
static bool isFPMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating-point min/max kind.
static bool isFMulAddIntrinsic(Instruction *I)
Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
static bool isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, DominatorTree *DT)
Returns true if Phi is a fixed-order recurrence.
unsigned getOpcode() const
static bool hasMultipleUsesOf(Instruction *I, SmallPtrSetImpl< Instruction * > &Insts, unsigned MaxNumUses)
Returns true if instruction I has multiple uses in Insts.
static bool isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes, DemandedBits *DB=nullptr, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr, ScalarEvolution *SE=nullptr)
Returns true if Phi is a reduction in TheLoop.
static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl< Instruction * > &Set)
Returns true if all uses of the instruction I is within the Set.
TrackingVH< Value > getRecurrenceStartValue() const
SmallVector< Instruction *, 4 > getReductionOpChain(PHINode *Phi, Loop *L) const
Attempts to find a chain of operations from Phi to LoopExitInst that can be treated as a set of reduc...
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static InstDesc isAnyOfPattern(Loop *Loop, PHINode *OrigPhi, Instruction *I, InstDesc &Prev)
Returns a struct describing whether the instruction is either a Select(ICmp(A, B),...
static InstDesc isConditionalRdxPattern(RecurKind Kind, Instruction *I)
Returns a struct describing if the instruction is a Select(FCmp(X, Y), (Z = X op PHINode),...
Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF) const
Returns identity corresponding to the RecurrenceKind.
StoreInst * IntermediateStore
Reductions may store temporary or final result to an invariant address.
static bool isFloatingPointRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is a floating point kind.
static InstDesc isRecurrenceInstr(Loop *L, PHINode *Phi, Instruction *I, RecurKind Kind, InstDesc &Prev, FastMathFlags FuncFMF)
Returns a struct describing if the instruction 'I' can be a recurrence variable of type 'Kind' for a ...
static InstDesc isMinMaxPattern(Instruction *I, RecurKind Kind, const InstDesc &Prev)
Returns a struct describing if the instruction is a llvm.
static bool AddReductionVar(PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF, RecurrenceDescriptor &RedDes, DemandedBits *DB=nullptr, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr, ScalarEvolution *SE=nullptr)
Returns true if Phi is a reduction of type Kind and adds it to the RecurrenceDescriptor.
static bool isIntegerRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is an integer kind.
static bool isIntMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is an integer min/max kind.
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
const Loop * getLoop() const
This class represents a constant integer value.
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
const SCEV * getUnknown(Value *V)
This class represents the LLVM 'select' instruction.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Value * getValueOperand()
Value * getPointerOperand()
The instances of the Type class are immutable: once they are created, they are never changed.
unsigned getIntegerBitWidth() const
bool isPointerTy() const
True if this is an instance of PointerType.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > m_UnordFMin(const LHS &L, const RHS &R)
Match an 'unordered' floating point minimum function.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
OneUse_match< T > m_OneUse(const T &SubPattern)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > m_UnordFMax(const LHS &L, const RHS &R)
Match an 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty > m_OrdFMax(const LHS &L, const RHS &R)
Match an 'ordered' floating point maximum function.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty > m_OrdFMin(const LHS &L, const RHS &R)
Match an 'ordered' floating point minimum function.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
This is an optimization pass for GlobalISel generic memory operations.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FAnyOf
Any_of reduction with select(fcmp(),x,y) where one of (x,y) is loop invariant, and both x and y are i...
@ Or
Bitwise or logical OR of integers.
@ FMinimum
FP min with llvm.minimum semantics.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMax
FP max implemented in terms of select(cmp()).
@ FMaximum
FP max with llvm.maximum semantics.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ IAnyOf
Any_of reduction with select(icmp(),x,y) where one of (x,y) is loop invariant, and both x and y are i...
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?