LLVM 20.0.0git
VPlanTransforms.cpp
Go to the documentation of this file.
1//===-- VPlanTransforms.cpp - Utility VPlan to VPlan transforms -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a set of utility VPlan to VPlan transformations.
11///
12//===----------------------------------------------------------------------===//
13
14#include "VPlanTransforms.h"
15#include "VPRecipeBuilder.h"
16#include "VPlan.h"
17#include "VPlanAnalysis.h"
18#include "VPlanCFG.h"
19#include "VPlanDominatorTree.h"
20#include "VPlanPatternMatch.h"
21#include "VPlanUtils.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SetVector.h"
25#include "llvm/ADT/TypeSwitch.h"
28#include "llvm/IR/Intrinsics.h"
30
31using namespace llvm;
32
34 VPlanPtr &Plan,
36 GetIntOrFpInductionDescriptor,
37 ScalarEvolution &SE, const TargetLibraryInfo &TLI) {
38
40 Plan->getVectorLoopRegion());
41 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
42 // Skip blocks outside region
43 if (!VPBB->getParent())
44 break;
45 VPRecipeBase *Term = VPBB->getTerminator();
46 auto EndIter = Term ? Term->getIterator() : VPBB->end();
47 // Introduce each ingredient into VPlan.
48 for (VPRecipeBase &Ingredient :
49 make_early_inc_range(make_range(VPBB->begin(), EndIter))) {
50
51 VPValue *VPV = Ingredient.getVPSingleValue();
52 Instruction *Inst = cast<Instruction>(VPV->getUnderlyingValue());
53
54 VPRecipeBase *NewRecipe = nullptr;
55 if (auto *VPPhi = dyn_cast<VPWidenPHIRecipe>(&Ingredient)) {
56 auto *Phi = cast<PHINode>(VPPhi->getUnderlyingValue());
57 const auto *II = GetIntOrFpInductionDescriptor(Phi);
58 if (!II)
59 continue;
60
61 VPValue *Start = Plan->getOrAddLiveIn(II->getStartValue());
62 VPValue *Step =
63 vputils::getOrCreateVPValueForSCEVExpr(*Plan, II->getStep(), SE);
64 NewRecipe = new VPWidenIntOrFpInductionRecipe(
65 Phi, Start, Step, &Plan->getVF(), *II, Ingredient.getDebugLoc());
66 } else {
67 assert(isa<VPInstruction>(&Ingredient) &&
68 "only VPInstructions expected here");
69 assert(!isa<PHINode>(Inst) && "phis should be handled above");
70 // Create VPWidenMemoryRecipe for loads and stores.
71 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
72 NewRecipe = new VPWidenLoadRecipe(
73 *Load, Ingredient.getOperand(0), nullptr /*Mask*/,
74 false /*Consecutive*/, false /*Reverse*/,
75 Ingredient.getDebugLoc());
76 } else if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) {
77 NewRecipe = new VPWidenStoreRecipe(
78 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
79 nullptr /*Mask*/, false /*Consecutive*/, false /*Reverse*/,
80 Ingredient.getDebugLoc());
81 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
82 NewRecipe = new VPWidenGEPRecipe(GEP, Ingredient.operands());
83 } else if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
84 NewRecipe = new VPWidenIntrinsicRecipe(
85 *CI, getVectorIntrinsicIDForCall(CI, &TLI),
86 {Ingredient.op_begin(), Ingredient.op_end() - 1}, CI->getType(),
87 CI->getDebugLoc());
88 } else if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
89 NewRecipe = new VPWidenSelectRecipe(*SI, Ingredient.operands());
90 } else if (auto *CI = dyn_cast<CastInst>(Inst)) {
91 NewRecipe = new VPWidenCastRecipe(
92 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), *CI);
93 } else {
94 NewRecipe = new VPWidenRecipe(*Inst, Ingredient.operands());
95 }
96 }
97
98 NewRecipe->insertBefore(&Ingredient);
99 if (NewRecipe->getNumDefinedValues() == 1)
100 VPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
101 else
102 assert(NewRecipe->getNumDefinedValues() == 0 &&
103 "Only recpies with zero or one defined values expected");
104 Ingredient.eraseFromParent();
105 }
106 }
107}
108
109static bool sinkScalarOperands(VPlan &Plan) {
110 auto Iter = vp_depth_first_deep(Plan.getEntry());
111 bool Changed = false;
112 // First, collect the operands of all recipes in replicate blocks as seeds for
113 // sinking.
115 for (VPRegionBlock *VPR : VPBlockUtils::blocksOnly<VPRegionBlock>(Iter)) {
116 VPBasicBlock *EntryVPBB = VPR->getEntryBasicBlock();
117 if (!VPR->isReplicator() || EntryVPBB->getSuccessors().size() != 2)
118 continue;
119 VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(EntryVPBB->getSuccessors()[0]);
120 if (!VPBB || VPBB->getSingleSuccessor() != VPR->getExitingBasicBlock())
121 continue;
122 for (auto &Recipe : *VPBB) {
123 for (VPValue *Op : Recipe.operands())
124 if (auto *Def =
125 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
126 WorkList.insert(std::make_pair(VPBB, Def));
127 }
128 }
129
130 bool ScalarVFOnly = Plan.hasScalarVFOnly();
131 // Try to sink each replicate or scalar IV steps recipe in the worklist.
132 for (unsigned I = 0; I != WorkList.size(); ++I) {
133 VPBasicBlock *SinkTo;
134 VPSingleDefRecipe *SinkCandidate;
135 std::tie(SinkTo, SinkCandidate) = WorkList[I];
136 if (SinkCandidate->getParent() == SinkTo ||
137 SinkCandidate->mayHaveSideEffects() ||
138 SinkCandidate->mayReadOrWriteMemory())
139 continue;
140 if (auto *RepR = dyn_cast<VPReplicateRecipe>(SinkCandidate)) {
141 if (!ScalarVFOnly && RepR->isUniform())
142 continue;
143 } else if (!isa<VPScalarIVStepsRecipe>(SinkCandidate))
144 continue;
145
146 bool NeedsDuplicating = false;
147 // All recipe users of the sink candidate must be in the same block SinkTo
148 // or all users outside of SinkTo must be uniform-after-vectorization (
149 // i.e., only first lane is used) . In the latter case, we need to duplicate
150 // SinkCandidate.
151 auto CanSinkWithUser = [SinkTo, &NeedsDuplicating,
152 SinkCandidate](VPUser *U) {
153 auto *UI = cast<VPRecipeBase>(U);
154 if (UI->getParent() == SinkTo)
155 return true;
156 NeedsDuplicating = UI->onlyFirstLaneUsed(SinkCandidate);
157 // We only know how to duplicate VPRecipeRecipes for now.
158 return NeedsDuplicating && isa<VPReplicateRecipe>(SinkCandidate);
159 };
160 if (!all_of(SinkCandidate->users(), CanSinkWithUser))
161 continue;
162
163 if (NeedsDuplicating) {
164 if (ScalarVFOnly)
165 continue;
166 Instruction *I = SinkCandidate->getUnderlyingInstr();
167 auto *Clone = new VPReplicateRecipe(I, SinkCandidate->operands(), true);
168 // TODO: add ".cloned" suffix to name of Clone's VPValue.
169
170 Clone->insertBefore(SinkCandidate);
171 SinkCandidate->replaceUsesWithIf(Clone, [SinkTo](VPUser &U, unsigned) {
172 return cast<VPRecipeBase>(&U)->getParent() != SinkTo;
173 });
174 }
175 SinkCandidate->moveBefore(*SinkTo, SinkTo->getFirstNonPhi());
176 for (VPValue *Op : SinkCandidate->operands())
177 if (auto *Def =
178 dyn_cast_or_null<VPSingleDefRecipe>(Op->getDefiningRecipe()))
179 WorkList.insert(std::make_pair(SinkTo, Def));
180 Changed = true;
181 }
182 return Changed;
183}
184
185/// If \p R is a region with a VPBranchOnMaskRecipe in the entry block, return
186/// the mask.
188 auto *EntryBB = dyn_cast<VPBasicBlock>(R->getEntry());
189 if (!EntryBB || EntryBB->size() != 1 ||
190 !isa<VPBranchOnMaskRecipe>(EntryBB->begin()))
191 return nullptr;
192
193 return cast<VPBranchOnMaskRecipe>(&*EntryBB->begin())->getOperand(0);
194}
195
196/// If \p R is a triangle region, return the 'then' block of the triangle.
198 auto *EntryBB = cast<VPBasicBlock>(R->getEntry());
199 if (EntryBB->getNumSuccessors() != 2)
200 return nullptr;
201
202 auto *Succ0 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[0]);
203 auto *Succ1 = dyn_cast<VPBasicBlock>(EntryBB->getSuccessors()[1]);
204 if (!Succ0 || !Succ1)
205 return nullptr;
206
207 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
208 return nullptr;
209 if (Succ0->getSingleSuccessor() == Succ1)
210 return Succ0;
211 if (Succ1->getSingleSuccessor() == Succ0)
212 return Succ1;
213 return nullptr;
214}
215
216// Merge replicate regions in their successor region, if a replicate region
217// is connected to a successor replicate region with the same predicate by a
218// single, empty VPBasicBlock.
220 SetVector<VPRegionBlock *> DeletedRegions;
221
222 // Collect replicate regions followed by an empty block, followed by another
223 // replicate region with matching masks to process front. This is to avoid
224 // iterator invalidation issues while merging regions.
226 for (VPRegionBlock *Region1 : VPBlockUtils::blocksOnly<VPRegionBlock>(
227 vp_depth_first_deep(Plan.getEntry()))) {
228 if (!Region1->isReplicator())
229 continue;
230 auto *MiddleBasicBlock =
231 dyn_cast_or_null<VPBasicBlock>(Region1->getSingleSuccessor());
232 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
233 continue;
234
235 auto *Region2 =
236 dyn_cast_or_null<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
237 if (!Region2 || !Region2->isReplicator())
238 continue;
239
240 VPValue *Mask1 = getPredicatedMask(Region1);
241 VPValue *Mask2 = getPredicatedMask(Region2);
242 if (!Mask1 || Mask1 != Mask2)
243 continue;
244
245 assert(Mask1 && Mask2 && "both region must have conditions");
246 WorkList.push_back(Region1);
247 }
248
249 // Move recipes from Region1 to its successor region, if both are triangles.
250 for (VPRegionBlock *Region1 : WorkList) {
251 if (DeletedRegions.contains(Region1))
252 continue;
253 auto *MiddleBasicBlock = cast<VPBasicBlock>(Region1->getSingleSuccessor());
254 auto *Region2 = cast<VPRegionBlock>(MiddleBasicBlock->getSingleSuccessor());
255
256 VPBasicBlock *Then1 = getPredicatedThenBlock(Region1);
257 VPBasicBlock *Then2 = getPredicatedThenBlock(Region2);
258 if (!Then1 || !Then2)
259 continue;
260
261 // Note: No fusion-preventing memory dependencies are expected in either
262 // region. Such dependencies should be rejected during earlier dependence
263 // checks, which guarantee accesses can be re-ordered for vectorization.
264 //
265 // Move recipes to the successor region.
266 for (VPRecipeBase &ToMove : make_early_inc_range(reverse(*Then1)))
267 ToMove.moveBefore(*Then2, Then2->getFirstNonPhi());
268
269 auto *Merge1 = cast<VPBasicBlock>(Then1->getSingleSuccessor());
270 auto *Merge2 = cast<VPBasicBlock>(Then2->getSingleSuccessor());
271
272 // Move VPPredInstPHIRecipes from the merge block to the successor region's
273 // merge block. Update all users inside the successor region to use the
274 // original values.
275 for (VPRecipeBase &Phi1ToMove : make_early_inc_range(reverse(*Merge1))) {
276 VPValue *PredInst1 =
277 cast<VPPredInstPHIRecipe>(&Phi1ToMove)->getOperand(0);
278 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
279 Phi1ToMoveV->replaceUsesWithIf(PredInst1, [Then2](VPUser &U, unsigned) {
280 return cast<VPRecipeBase>(&U)->getParent() == Then2;
281 });
282
283 // Remove phi recipes that are unused after merging the regions.
284 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
285 Phi1ToMove.eraseFromParent();
286 continue;
287 }
288 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
289 }
290
291 // Finally, remove the first region.
292 for (VPBlockBase *Pred : make_early_inc_range(Region1->getPredecessors())) {
293 VPBlockUtils::disconnectBlocks(Pred, Region1);
294 VPBlockUtils::connectBlocks(Pred, MiddleBasicBlock);
295 }
296 VPBlockUtils::disconnectBlocks(Region1, MiddleBasicBlock);
297 DeletedRegions.insert(Region1);
298 }
299
300 for (VPRegionBlock *ToDelete : DeletedRegions)
301 delete ToDelete;
302 return !DeletedRegions.empty();
303}
304
306 VPlan &Plan) {
307 Instruction *Instr = PredRecipe->getUnderlyingInstr();
308 // Build the triangular if-then region.
309 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
310 assert(Instr->getParent() && "Predicated instruction not in any basic block");
311 auto *BlockInMask = PredRecipe->getMask();
312 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
313 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
314
315 // Replace predicated replicate recipe with a replicate recipe without a
316 // mask but in the replicate region.
317 auto *RecipeWithoutMask = new VPReplicateRecipe(
318 PredRecipe->getUnderlyingInstr(),
319 make_range(PredRecipe->op_begin(), std::prev(PredRecipe->op_end())),
320 PredRecipe->isUniform());
321 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", RecipeWithoutMask);
322
323 VPPredInstPHIRecipe *PHIRecipe = nullptr;
324 if (PredRecipe->getNumUsers() != 0) {
325 PHIRecipe = new VPPredInstPHIRecipe(RecipeWithoutMask);
326 PredRecipe->replaceAllUsesWith(PHIRecipe);
327 PHIRecipe->setOperand(0, RecipeWithoutMask);
328 }
329 PredRecipe->eraseFromParent();
330 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
331 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
332
333 // Note: first set Entry as region entry and then connect successors starting
334 // from it in order, to propagate the "parent" of each VPBasicBlock.
335 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
336 VPBlockUtils::connectBlocks(Pred, Exiting);
337
338 return Region;
339}
340
341static void addReplicateRegions(VPlan &Plan) {
343 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
344 vp_depth_first_deep(Plan.getEntry()))) {
345 for (VPRecipeBase &R : *VPBB)
346 if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
347 if (RepR->isPredicated())
348 WorkList.push_back(RepR);
349 }
350 }
351
352 unsigned BBNum = 0;
353 for (VPReplicateRecipe *RepR : WorkList) {
354 VPBasicBlock *CurrentBlock = RepR->getParent();
355 VPBasicBlock *SplitBlock = CurrentBlock->splitAt(RepR->getIterator());
356
357 BasicBlock *OrigBB = RepR->getUnderlyingInstr()->getParent();
359 OrigBB->hasName() ? OrigBB->getName() + "." + Twine(BBNum++) : "");
360 // Record predicated instructions for above packing optimizations.
362 Region->setParent(CurrentBlock->getParent());
364 }
365}
366
367/// Remove redundant VPBasicBlocks by merging them into their predecessor if
368/// the predecessor has a single successor.
371 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
372 vp_depth_first_deep(Plan.getEntry()))) {
373 // Don't fold the blocks in the skeleton of the Plan into their single
374 // predecessors for now.
375 // TODO: Remove restriction once more of the skeleton is modeled in VPlan.
376 if (!VPBB->getParent())
377 continue;
378 auto *PredVPBB =
379 dyn_cast_or_null<VPBasicBlock>(VPBB->getSinglePredecessor());
380 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
381 isa<VPIRBasicBlock>(PredVPBB))
382 continue;
383 WorkList.push_back(VPBB);
384 }
385
386 for (VPBasicBlock *VPBB : WorkList) {
387 VPBasicBlock *PredVPBB = cast<VPBasicBlock>(VPBB->getSinglePredecessor());
388 for (VPRecipeBase &R : make_early_inc_range(*VPBB))
389 R.moveBefore(*PredVPBB, PredVPBB->end());
390 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
391 auto *ParentRegion = cast_or_null<VPRegionBlock>(VPBB->getParent());
392 if (ParentRegion && ParentRegion->getExiting() == VPBB)
393 ParentRegion->setExiting(PredVPBB);
394 for (auto *Succ : to_vector(VPBB->successors())) {
396 VPBlockUtils::connectBlocks(PredVPBB, Succ);
397 }
398 delete VPBB;
399 }
400 return !WorkList.empty();
401}
402
404 // Convert masked VPReplicateRecipes to if-then region blocks.
406
407 bool ShouldSimplify = true;
408 while (ShouldSimplify) {
409 ShouldSimplify = sinkScalarOperands(Plan);
410 ShouldSimplify |= mergeReplicateRegionsIntoSuccessors(Plan);
411 ShouldSimplify |= mergeBlocksIntoPredecessors(Plan);
412 }
413}
414
415/// Remove redundant casts of inductions.
416///
417/// Such redundant casts are casts of induction variables that can be ignored,
418/// because we already proved that the casted phi is equal to the uncasted phi
419/// in the vectorized loop. There is no need to vectorize the cast - the same
420/// value can be used for both the phi and casts in the vector loop.
422 for (auto &Phi : Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
423 auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
424 if (!IV || IV->getTruncInst())
425 continue;
426
427 // A sequence of IR Casts has potentially been recorded for IV, which
428 // *must be bypassed* when the IV is vectorized, because the vectorized IV
429 // will produce the desired casted value. This sequence forms a def-use
430 // chain and is provided in reverse order, ending with the cast that uses
431 // the IV phi. Search for the recipe of the last cast in the chain and
432 // replace it with the original IV. Note that only the final cast is
433 // expected to have users outside the cast-chain and the dead casts left
434 // over will be cleaned up later.
435 auto &Casts = IV->getInductionDescriptor().getCastInsts();
436 VPValue *FindMyCast = IV;
437 for (Instruction *IRCast : reverse(Casts)) {
438 VPSingleDefRecipe *FoundUserCast = nullptr;
439 for (auto *U : FindMyCast->users()) {
440 auto *UserCast = dyn_cast<VPSingleDefRecipe>(U);
441 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
442 FoundUserCast = UserCast;
443 break;
444 }
445 }
446 FindMyCast = FoundUserCast;
447 }
448 FindMyCast->replaceAllUsesWith(IV);
449 }
450}
451
452/// Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV
453/// recipe, if it exists.
455 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
456 VPWidenCanonicalIVRecipe *WidenNewIV = nullptr;
457 for (VPUser *U : CanonicalIV->users()) {
458 WidenNewIV = dyn_cast<VPWidenCanonicalIVRecipe>(U);
459 if (WidenNewIV)
460 break;
461 }
462
463 if (!WidenNewIV)
464 return;
465
467 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
468 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
469
470 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
471 continue;
472
473 // Replace WidenNewIV with WidenOriginalIV if WidenOriginalIV provides
474 // everything WidenNewIV's users need. That is, WidenOriginalIV will
475 // generate a vector phi or all users of WidenNewIV demand the first lane
476 // only.
477 if (any_of(WidenOriginalIV->users(),
478 [WidenOriginalIV](VPUser *U) {
479 return !U->usesScalars(WidenOriginalIV);
480 }) ||
481 vputils::onlyFirstLaneUsed(WidenNewIV)) {
482 WidenNewIV->replaceAllUsesWith(WidenOriginalIV);
483 WidenNewIV->eraseFromParent();
484 return;
485 }
486 }
487}
488
489/// Returns true if \p R is dead and can be removed.
490static bool isDeadRecipe(VPRecipeBase &R) {
491 using namespace llvm::PatternMatch;
492 // Do remove conditional assume instructions as their conditions may be
493 // flattened.
494 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
495 bool IsConditionalAssume =
496 RepR && RepR->isPredicated() &&
497 match(RepR->getUnderlyingInstr(), m_Intrinsic<Intrinsic::assume>());
498 if (IsConditionalAssume)
499 return true;
500
501 if (R.mayHaveSideEffects())
502 return false;
503
504 // Recipe is dead if no user keeps the recipe alive.
505 return all_of(R.definedValues(),
506 [](VPValue *V) { return V->getNumUsers() == 0; });
507}
508
511 Plan.getEntry());
512
513 for (VPBasicBlock *VPBB : reverse(VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT))) {
514 // The recipes in the block are processed in reverse order, to catch chains
515 // of dead recipes.
516 for (VPRecipeBase &R : make_early_inc_range(reverse(*VPBB))) {
517 if (isDeadRecipe(R))
518 R.eraseFromParent();
519 }
520 }
521}
522
525 Instruction::BinaryOps InductionOpcode,
526 FPMathOperator *FPBinOp, Instruction *TruncI,
527 VPValue *StartV, VPValue *Step, VPBuilder &Builder) {
529 VPCanonicalIVPHIRecipe *CanonicalIV = Plan.getCanonicalIV();
530 VPSingleDefRecipe *BaseIV = CanonicalIV;
531 if (!CanonicalIV->isCanonical(Kind, StartV, Step)) {
532 BaseIV = Builder.createDerivedIV(Kind, FPBinOp, StartV, CanonicalIV, Step,
533 "offset.idx");
534 }
535
536 // Truncate base induction if needed.
537 Type *CanonicalIVType = CanonicalIV->getScalarType();
538 VPTypeAnalysis TypeInfo(CanonicalIVType);
539 Type *ResultTy = TypeInfo.inferScalarType(BaseIV);
540 if (TruncI) {
541 Type *TruncTy = TruncI->getType();
542 assert(ResultTy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits() &&
543 "Not truncating.");
544 assert(ResultTy->isIntegerTy() && "Truncation requires an integer type");
545 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy);
546 ResultTy = TruncTy;
547 }
548
549 // Truncate step if needed.
550 Type *StepTy = TypeInfo.inferScalarType(Step);
551 if (ResultTy != StepTy) {
552 assert(StepTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits() &&
553 "Not truncating.");
554 assert(StepTy->isIntegerTy() && "Truncation requires an integer type");
555 auto *VecPreheader =
556 cast<VPBasicBlock>(HeaderVPBB->getSingleHierarchicalPredecessor());
557 VPBuilder::InsertPointGuard Guard(Builder);
558 Builder.setInsertPoint(VecPreheader);
559 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy);
560 }
561 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step);
562}
563
564/// Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd
565/// (IndStart, ScalarIVSteps (0, Step)) if only its scalar values are used, as
566/// VPWidenPointerInductionRecipe will generate vectors only. If some users
567/// require vectors while other require scalars, the scalar uses need to extract
568/// the scalars from the generated vectors (Note that this is different to how
569/// int/fp inductions are handled). Also optimize VPWidenIntOrFpInductionRecipe,
570/// if any of its users needs scalar values, by providing them scalar steps
571/// built on the canonical scalar IV and update the original IV's users. This is
572/// an optional optimization to reduce the needs of vector extracts.
576 bool HasOnlyVectorVFs = !Plan.hasVF(ElementCount::getFixed(1));
577 VPBuilder Builder(HeaderVPBB, HeaderVPBB->getFirstNonPhi());
578 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
579 // Replace wide pointer inductions which have only their scalars used by
580 // PtrAdd(IndStart, ScalarIVSteps (0, Step)).
581 if (auto *PtrIV = dyn_cast<VPWidenPointerInductionRecipe>(&Phi)) {
582 if (!PtrIV->onlyScalarsGenerated(Plan.hasScalableVF()))
583 continue;
584
585 const InductionDescriptor &ID = PtrIV->getInductionDescriptor();
586 VPValue *StartV =
587 Plan.getOrAddLiveIn(ConstantInt::get(ID.getStep()->getType(), 0));
588 VPValue *StepV = PtrIV->getOperand(1);
590 Plan, InductionDescriptor::IK_IntInduction, Instruction::Add, nullptr,
591 nullptr, StartV, StepV, Builder);
592
593 VPValue *PtrAdd = Builder.createPtrAdd(PtrIV->getStartValue(), Steps,
594 PtrIV->getDebugLoc(), "next.gep");
595
596 PtrIV->replaceAllUsesWith(PtrAdd);
597 continue;
598 }
599
600 // Replace widened induction with scalar steps for users that only use
601 // scalars.
602 auto *WideIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
603 if (!WideIV)
604 continue;
605 if (HasOnlyVectorVFs && none_of(WideIV->users(), [WideIV](VPUser *U) {
606 return U->usesScalars(WideIV);
607 }))
608 continue;
609
610 const InductionDescriptor &ID = WideIV->getInductionDescriptor();
612 Plan, ID.getKind(), ID.getInductionOpcode(),
613 dyn_cast_or_null<FPMathOperator>(ID.getInductionBinOp()),
614 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
615 Builder);
616
617 // Update scalar users of IV to use Step instead.
618 if (!HasOnlyVectorVFs)
619 WideIV->replaceAllUsesWith(Steps);
620 else
621 WideIV->replaceUsesWithIf(Steps, [WideIV](VPUser &U, unsigned) {
622 return U.usesScalars(WideIV);
623 });
624 }
625}
626
627/// Remove redundant EpxandSCEVRecipes in \p Plan's entry block by replacing
628/// them with already existing recipes expanding the same SCEV expression.
631
632 for (VPRecipeBase &R :
634 auto *ExpR = dyn_cast<VPExpandSCEVRecipe>(&R);
635 if (!ExpR)
636 continue;
637
638 auto I = SCEV2VPV.insert({ExpR->getSCEV(), ExpR});
639 if (I.second)
640 continue;
641 ExpR->replaceAllUsesWith(I.first->second);
642 ExpR->eraseFromParent();
643 }
644}
645
647 SmallVector<VPValue *> WorkList;
649 WorkList.push_back(V);
650
651 while (!WorkList.empty()) {
652 VPValue *Cur = WorkList.pop_back_val();
653 if (!Seen.insert(Cur).second)
654 continue;
656 if (!R)
657 continue;
658 if (!isDeadRecipe(*R))
659 continue;
660 WorkList.append(R->op_begin(), R->op_end());
661 R->eraseFromParent();
662 }
663}
664
666 unsigned BestUF,
668 assert(Plan.hasVF(BestVF) && "BestVF is not available in Plan");
669 assert(Plan.hasUF(BestUF) && "BestUF is not available in Plan");
670 VPBasicBlock *ExitingVPBB =
672 auto *Term = &ExitingVPBB->back();
673 // Try to simplify the branch condition if TC <= VF * UF when preparing to
674 // execute the plan for the main vector loop. We only do this if the
675 // terminator is:
676 // 1. BranchOnCount, or
677 // 2. BranchOnCond where the input is Not(ActiveLaneMask).
678 using namespace llvm::VPlanPatternMatch;
679 if (!match(Term, m_BranchOnCount(m_VPValue(), m_VPValue())) &&
680 !match(Term,
681 m_BranchOnCond(m_Not(m_ActiveLaneMask(m_VPValue(), m_VPValue())))))
682 return;
683
684 ScalarEvolution &SE = *PSE.getSE();
685 const SCEV *TripCount =
687 assert(!isa<SCEVCouldNotCompute>(TripCount) &&
688 "Trip count SCEV must be computable");
689 ElementCount NumElements = BestVF.multiplyCoefficientBy(BestUF);
690 const SCEV *C = SE.getElementCount(TripCount->getType(), NumElements);
691 if (TripCount->isZero() ||
692 !SE.isKnownPredicate(CmpInst::ICMP_ULE, TripCount, C))
693 return;
694
695 LLVMContext &Ctx = SE.getContext();
696 auto *BOC = new VPInstruction(
698 {Plan.getOrAddLiveIn(ConstantInt::getTrue(Ctx))}, Term->getDebugLoc());
699
700 SmallVector<VPValue *> PossiblyDead(Term->operands());
701 Term->eraseFromParent();
702 for (VPValue *Op : PossiblyDead)
704 ExitingVPBB->appendRecipe(BOC);
705 Plan.setVF(BestVF);
706 Plan.setUF(BestUF);
707 // TODO: Further simplifications are possible
708 // 1. Replace inductions with constants.
709 // 2. Replace vector loop region with VPBasicBlock.
710}
711
712/// Sink users of \p FOR after the recipe defining the previous value \p
713/// Previous of the recurrence. \returns true if all users of \p FOR could be
714/// re-arranged as needed or false if it is not possible.
715static bool
717 VPRecipeBase *Previous,
718 VPDominatorTree &VPDT) {
719 // Collect recipes that need sinking.
722 Seen.insert(Previous);
723 auto TryToPushSinkCandidate = [&](VPRecipeBase *SinkCandidate) {
724 // The previous value must not depend on the users of the recurrence phi. In
725 // that case, FOR is not a fixed order recurrence.
726 if (SinkCandidate == Previous)
727 return false;
728
729 if (isa<VPHeaderPHIRecipe>(SinkCandidate) ||
730 !Seen.insert(SinkCandidate).second ||
731 VPDT.properlyDominates(Previous, SinkCandidate))
732 return true;
733
734 if (SinkCandidate->mayHaveSideEffects())
735 return false;
736
737 WorkList.push_back(SinkCandidate);
738 return true;
739 };
740
741 // Recursively sink users of FOR after Previous.
742 WorkList.push_back(FOR);
743 for (unsigned I = 0; I != WorkList.size(); ++I) {
744 VPRecipeBase *Current = WorkList[I];
745 assert(Current->getNumDefinedValues() == 1 &&
746 "only recipes with a single defined value expected");
747
748 for (VPUser *User : Current->getVPSingleValue()->users()) {
749 if (!TryToPushSinkCandidate(cast<VPRecipeBase>(User)))
750 return false;
751 }
752 }
753
754 // Keep recipes to sink ordered by dominance so earlier instructions are
755 // processed first.
756 sort(WorkList, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
757 return VPDT.properlyDominates(A, B);
758 });
759
760 for (VPRecipeBase *SinkCandidate : WorkList) {
761 if (SinkCandidate == FOR)
762 continue;
763
764 SinkCandidate->moveAfter(Previous);
765 Previous = SinkCandidate;
766 }
767 return true;
768}
769
770/// Try to hoist \p Previous and its operands before all users of \p FOR.
772 VPRecipeBase *Previous,
773 VPDominatorTree &VPDT) {
774 if (Previous->mayHaveSideEffects() || Previous->mayReadFromMemory())
775 return false;
776
777 // Collect recipes that need hoisting.
778 SmallVector<VPRecipeBase *> HoistCandidates;
780 VPRecipeBase *HoistPoint = nullptr;
781 // Find the closest hoist point by looking at all users of FOR and selecting
782 // the recipe dominating all other users.
783 for (VPUser *U : FOR->users()) {
784 auto *R = cast<VPRecipeBase>(U);
785 if (!HoistPoint || VPDT.properlyDominates(R, HoistPoint))
786 HoistPoint = R;
787 }
788 assert(all_of(FOR->users(),
789 [&VPDT, HoistPoint](VPUser *U) {
790 auto *R = cast<VPRecipeBase>(U);
791 return HoistPoint == R ||
792 VPDT.properlyDominates(HoistPoint, R);
793 }) &&
794 "HoistPoint must dominate all users of FOR");
795
796 auto NeedsHoisting = [HoistPoint, &VPDT,
797 &Visited](VPValue *HoistCandidateV) -> VPRecipeBase * {
798 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
799 if (!HoistCandidate)
800 return nullptr;
801 VPRegionBlock *EnclosingLoopRegion =
802 HoistCandidate->getParent()->getEnclosingLoopRegion();
803 assert((!HoistCandidate->getParent()->getParent() ||
804 HoistCandidate->getParent()->getParent() == EnclosingLoopRegion) &&
805 "CFG in VPlan should still be flat, without replicate regions");
806 // Hoist candidate was already visited, no need to hoist.
807 if (!Visited.insert(HoistCandidate).second)
808 return nullptr;
809
810 // Candidate is outside loop region or a header phi, dominates FOR users w/o
811 // hoisting.
812 if (!EnclosingLoopRegion || isa<VPHeaderPHIRecipe>(HoistCandidate))
813 return nullptr;
814
815 // If we reached a recipe that dominates HoistPoint, we don't need to
816 // hoist the recipe.
817 if (VPDT.properlyDominates(HoistCandidate, HoistPoint))
818 return nullptr;
819 return HoistCandidate;
820 };
821 auto CanHoist = [&](VPRecipeBase *HoistCandidate) {
822 // Avoid hoisting candidates with side-effects, as we do not yet analyze
823 // associated dependencies.
824 return !HoistCandidate->mayHaveSideEffects();
825 };
826
827 if (!NeedsHoisting(Previous->getVPSingleValue()))
828 return true;
829
830 // Recursively try to hoist Previous and its operands before all users of FOR.
831 HoistCandidates.push_back(Previous);
832
833 for (unsigned I = 0; I != HoistCandidates.size(); ++I) {
834 VPRecipeBase *Current = HoistCandidates[I];
835 assert(Current->getNumDefinedValues() == 1 &&
836 "only recipes with a single defined value expected");
837 if (!CanHoist(Current))
838 return false;
839
840 for (VPValue *Op : Current->operands()) {
841 // If we reach FOR, it means the original Previous depends on some other
842 // recurrence that in turn depends on FOR. If that is the case, we would
843 // also need to hoist recipes involving the other FOR, which may break
844 // dependencies.
845 if (Op == FOR)
846 return false;
847
848 if (auto *R = NeedsHoisting(Op))
849 HoistCandidates.push_back(R);
850 }
851 }
852
853 // Order recipes to hoist by dominance so earlier instructions are processed
854 // first.
855 sort(HoistCandidates, [&VPDT](const VPRecipeBase *A, const VPRecipeBase *B) {
856 return VPDT.properlyDominates(A, B);
857 });
858
859 for (VPRecipeBase *HoistCandidate : HoistCandidates) {
860 HoistCandidate->moveBefore(*HoistPoint->getParent(),
861 HoistPoint->getIterator());
862 }
863
864 return true;
865}
866
868 VPBuilder &LoopBuilder) {
869 VPDominatorTree VPDT;
870 VPDT.recalculate(Plan);
871
873 for (VPRecipeBase &R :
875 if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
876 RecurrencePhis.push_back(FOR);
877
878 for (VPFirstOrderRecurrencePHIRecipe *FOR : RecurrencePhis) {
880 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
881 // Fixed-order recurrences do not contain cycles, so this loop is guaranteed
882 // to terminate.
883 while (auto *PrevPhi =
884 dyn_cast_or_null<VPFirstOrderRecurrencePHIRecipe>(Previous)) {
885 assert(PrevPhi->getParent() == FOR->getParent());
886 assert(SeenPhis.insert(PrevPhi).second);
887 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
888 }
889
890 if (!sinkRecurrenceUsersAfterPrevious(FOR, Previous, VPDT) &&
891 !hoistPreviousBeforeFORUsers(FOR, Previous, VPDT))
892 return false;
893
894 // Introduce a recipe to combine the incoming and previous values of a
895 // fixed-order recurrence.
896 VPBasicBlock *InsertBlock = Previous->getParent();
897 if (isa<VPHeaderPHIRecipe>(Previous))
898 LoopBuilder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
899 else
900 LoopBuilder.setInsertPoint(InsertBlock,
901 std::next(Previous->getIterator()));
902
903 auto *RecurSplice = cast<VPInstruction>(
905 {FOR, FOR->getBackedgeValue()}));
906
907 FOR->replaceAllUsesWith(RecurSplice);
908 // Set the first operand of RecurSplice to FOR again, after replacing
909 // all users.
910 RecurSplice->setOperand(0, FOR);
911 }
912 return true;
913}
914
916 SetVector<VPUser *> Users(V->user_begin(), V->user_end());
917 for (unsigned I = 0; I != Users.size(); ++I) {
918 VPRecipeBase *Cur = cast<VPRecipeBase>(Users[I]);
919 if (isa<VPHeaderPHIRecipe>(Cur))
920 continue;
921 for (VPValue *V : Cur->definedValues())
922 Users.insert(V->user_begin(), V->user_end());
923 }
924 return Users.takeVector();
925}
926
928 for (VPRecipeBase &R :
930 auto *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
931 if (!PhiR)
932 continue;
933 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
934 RecurKind RK = RdxDesc.getRecurrenceKind();
935 if (RK != RecurKind::Add && RK != RecurKind::Mul)
936 continue;
937
938 for (VPUser *U : collectUsersRecursively(PhiR))
939 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(U)) {
940 RecWithFlags->dropPoisonGeneratingFlags();
941 }
942 }
943}
944
945/// Try to simplify recipe \p R.
946static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo) {
947 using namespace llvm::VPlanPatternMatch;
948
949 if (auto *Blend = dyn_cast<VPBlendRecipe>(&R)) {
950 // Try to remove redundant blend recipes.
951 SmallPtrSet<VPValue *, 4> UniqueValues;
952 if (Blend->isNormalized() || !match(Blend->getMask(0), m_False()))
953 UniqueValues.insert(Blend->getIncomingValue(0));
954 for (unsigned I = 1; I != Blend->getNumIncomingValues(); ++I)
955 if (!match(Blend->getMask(I), m_False()))
956 UniqueValues.insert(Blend->getIncomingValue(I));
957
958 if (UniqueValues.size() == 1) {
959 Blend->replaceAllUsesWith(*UniqueValues.begin());
960 Blend->eraseFromParent();
961 return;
962 }
963
964 if (Blend->isNormalized())
965 return;
966
967 // Normalize the blend so its first incoming value is used as the initial
968 // value with the others blended into it.
969
970 unsigned StartIndex = 0;
971 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
972 // If a value's mask is used only by the blend then is can be deadcoded.
973 // TODO: Find the most expensive mask that can be deadcoded, or a mask
974 // that's used by multiple blends where it can be removed from them all.
975 VPValue *Mask = Blend->getMask(I);
976 if (Mask->getNumUsers() == 1 && !match(Mask, m_False())) {
977 StartIndex = I;
978 break;
979 }
980 }
981
982 SmallVector<VPValue *, 4> OperandsWithMask;
983 OperandsWithMask.push_back(Blend->getIncomingValue(StartIndex));
984
985 for (unsigned I = 0; I != Blend->getNumIncomingValues(); ++I) {
986 if (I == StartIndex)
987 continue;
988 OperandsWithMask.push_back(Blend->getIncomingValue(I));
989 OperandsWithMask.push_back(Blend->getMask(I));
990 }
991
992 auto *NewBlend = new VPBlendRecipe(
993 cast<PHINode>(Blend->getUnderlyingValue()), OperandsWithMask);
994 NewBlend->insertBefore(&R);
995
996 VPValue *DeadMask = Blend->getMask(StartIndex);
997 Blend->replaceAllUsesWith(NewBlend);
998 Blend->eraseFromParent();
1000 return;
1001 }
1002
1003 VPValue *A;
1004 if (match(&R, m_Trunc(m_ZExtOrSExt(m_VPValue(A))))) {
1005 VPValue *Trunc = R.getVPSingleValue();
1006 Type *TruncTy = TypeInfo.inferScalarType(Trunc);
1007 Type *ATy = TypeInfo.inferScalarType(A);
1008 if (TruncTy == ATy) {
1009 Trunc->replaceAllUsesWith(A);
1010 } else {
1011 // Don't replace a scalarizing recipe with a widened cast.
1012 if (isa<VPReplicateRecipe>(&R))
1013 return;
1014 if (ATy->getScalarSizeInBits() < TruncTy->getScalarSizeInBits()) {
1015
1016 unsigned ExtOpcode = match(R.getOperand(0), m_SExt(m_VPValue()))
1017 ? Instruction::SExt
1018 : Instruction::ZExt;
1019 auto *VPC =
1020 new VPWidenCastRecipe(Instruction::CastOps(ExtOpcode), A, TruncTy);
1021 if (auto *UnderlyingExt = R.getOperand(0)->getUnderlyingValue()) {
1022 // UnderlyingExt has distinct return type, used to retain legacy cost.
1023 VPC->setUnderlyingValue(UnderlyingExt);
1024 }
1025 VPC->insertBefore(&R);
1026 Trunc->replaceAllUsesWith(VPC);
1027 } else if (ATy->getScalarSizeInBits() > TruncTy->getScalarSizeInBits()) {
1028 auto *VPC = new VPWidenCastRecipe(Instruction::Trunc, A, TruncTy);
1029 VPC->insertBefore(&R);
1030 Trunc->replaceAllUsesWith(VPC);
1031 }
1032 }
1033#ifndef NDEBUG
1034 // Verify that the cached type info is for both A and its users is still
1035 // accurate by comparing it to freshly computed types.
1036 VPTypeAnalysis TypeInfo2(
1037 R.getParent()->getPlan()->getCanonicalIV()->getScalarType());
1038 assert(TypeInfo.inferScalarType(A) == TypeInfo2.inferScalarType(A));
1039 for (VPUser *U : A->users()) {
1040 auto *R = cast<VPRecipeBase>(U);
1041 for (VPValue *VPV : R->definedValues())
1042 assert(TypeInfo.inferScalarType(VPV) == TypeInfo2.inferScalarType(VPV));
1043 }
1044#endif
1045 }
1046
1047 // Simplify (X && Y) || (X && !Y) -> X.
1048 // TODO: Split up into simpler, modular combines: (X && Y) || (X && Z) into X
1049 // && (Y || Z) and (X || !X) into true. This requires queuing newly created
1050 // recipes to be visited during simplification.
1051 VPValue *X, *Y, *X1, *Y1;
1052 if (match(&R,
1053 m_c_BinaryOr(m_LogicalAnd(m_VPValue(X), m_VPValue(Y)),
1054 m_LogicalAnd(m_VPValue(X1), m_Not(m_VPValue(Y1))))) &&
1055 X == X1 && Y == Y1) {
1056 R.getVPSingleValue()->replaceAllUsesWith(X);
1057 R.eraseFromParent();
1058 return;
1059 }
1060
1061 if (match(&R, m_c_Mul(m_VPValue(A), m_SpecificInt(1))))
1062 return R.getVPSingleValue()->replaceAllUsesWith(A);
1063
1064 if (match(&R, m_Not(m_Not(m_VPValue(A)))))
1065 return R.getVPSingleValue()->replaceAllUsesWith(A);
1066}
1067
1068/// Move loop-invariant recipes out of the vector loop region in \p Plan.
1069static void licm(VPlan &Plan) {
1070 VPBasicBlock *Preheader = Plan.getVectorPreheader();
1071
1072 // Return true if we do not know how to (mechanically) hoist a given recipe
1073 // out of a loop region. Does not address legality concerns such as aliasing
1074 // or speculation safety.
1075 auto CannotHoistRecipe = [](VPRecipeBase &R) {
1076 // Allocas cannot be hoisted.
1077 auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
1078 return RepR && RepR->getOpcode() == Instruction::Alloca;
1079 };
1080
1081 // Hoist any loop invariant recipes from the vector loop region to the
1082 // preheader. Preform a shallow traversal of the vector loop region, to
1083 // exclude recipes in replicate regions.
1084 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
1085 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
1086 vp_depth_first_shallow(LoopRegion->getEntry()))) {
1087 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1088 if (CannotHoistRecipe(R))
1089 continue;
1090 // TODO: Relax checks in the future, e.g. we could also hoist reads, if
1091 // their memory location is not modified in the vector loop.
1092 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi() ||
1093 any_of(R.operands(), [](VPValue *Op) {
1094 return !Op->isDefinedOutsideLoopRegions();
1095 }))
1096 continue;
1097 R.moveBefore(*Preheader, Preheader->end());
1098 }
1099 }
1100}
1101
1102/// Try to simplify the recipes in \p Plan.
1103static void simplifyRecipes(VPlan &Plan) {
1105 Plan.getEntry());
1106 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
1107 VPTypeAnalysis TypeInfo(CanonicalIVType);
1108 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(RPOT)) {
1109 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1110 simplifyRecipe(R, TypeInfo);
1111 }
1112 }
1113}
1114
1116 VPlan &Plan, const MapVector<Instruction *, uint64_t> &MinBWs) {
1117#ifndef NDEBUG
1118 // Count the processed recipes and cross check the count later with MinBWs
1119 // size, to make sure all entries in MinBWs have been handled.
1120 unsigned NumProcessedRecipes = 0;
1121#endif
1122 // Keep track of created truncates, so they can be re-used. Note that we
1123 // cannot use RAUW after creating a new truncate, as this would could make
1124 // other uses have different types for their operands, making them invalidly
1125 // typed.
1127 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
1128 VPTypeAnalysis TypeInfo(CanonicalIVType);
1129 VPBasicBlock *PH = Plan.getVectorPreheader();
1130 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
1132 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
1135 continue;
1136
1137 VPValue *ResultVPV = R.getVPSingleValue();
1138 auto *UI = cast_or_null<Instruction>(ResultVPV->getUnderlyingValue());
1139 unsigned NewResSizeInBits = MinBWs.lookup(UI);
1140 if (!NewResSizeInBits)
1141 continue;
1142
1143#ifndef NDEBUG
1144 NumProcessedRecipes++;
1145#endif
1146 // If the value wasn't vectorized, we must maintain the original scalar
1147 // type. Skip those here, after incrementing NumProcessedRecipes. Also
1148 // skip casts which do not need to be handled explicitly here, as
1149 // redundant casts will be removed during recipe simplification.
1150 if (isa<VPReplicateRecipe, VPWidenCastRecipe>(&R)) {
1151#ifndef NDEBUG
1152 // If any of the operands is a live-in and not used by VPWidenRecipe or
1153 // VPWidenSelectRecipe, but in MinBWs, make sure it is counted as
1154 // processed as well. When MinBWs is currently constructed, there is no
1155 // information about whether recipes are widened or replicated and in
1156 // case they are reciplicated the operands are not truncated. Counting
1157 // them them here ensures we do not miss any recipes in MinBWs.
1158 // TODO: Remove once the analysis is done on VPlan.
1159 for (VPValue *Op : R.operands()) {
1160 if (!Op->isLiveIn())
1161 continue;
1162 auto *UV = dyn_cast_or_null<Instruction>(Op->getUnderlyingValue());
1163 if (UV && MinBWs.contains(UV) && !ProcessedTruncs.contains(Op) &&
1164 none_of(Op->users(),
1165 IsaPred<VPWidenRecipe, VPWidenSelectRecipe>)) {
1166 // Add an entry to ProcessedTruncs to avoid counting the same
1167 // operand multiple times.
1168 ProcessedTruncs[Op] = nullptr;
1169 NumProcessedRecipes += 1;
1170 }
1171 }
1172#endif
1173 continue;
1174 }
1175
1176 Type *OldResTy = TypeInfo.inferScalarType(ResultVPV);
1177 unsigned OldResSizeInBits = OldResTy->getScalarSizeInBits();
1178 assert(OldResTy->isIntegerTy() && "only integer types supported");
1179 (void)OldResSizeInBits;
1180
1181 LLVMContext &Ctx = CanonicalIVType->getContext();
1182 auto *NewResTy = IntegerType::get(Ctx, NewResSizeInBits);
1183
1184 // Any wrapping introduced by shrinking this operation shouldn't be
1185 // considered undefined behavior. So, we can't unconditionally copy
1186 // arithmetic wrapping flags to VPW.
1187 if (auto *VPW = dyn_cast<VPRecipeWithIRFlags>(&R))
1188 VPW->dropPoisonGeneratingFlags();
1189
1190 using namespace llvm::VPlanPatternMatch;
1191 if (OldResSizeInBits != NewResSizeInBits &&
1192 !match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue()))) {
1193 // Extend result to original width.
1194 auto *Ext =
1195 new VPWidenCastRecipe(Instruction::ZExt, ResultVPV, OldResTy);
1196 Ext->insertAfter(&R);
1197 ResultVPV->replaceAllUsesWith(Ext);
1198 Ext->setOperand(0, ResultVPV);
1199 assert(OldResSizeInBits > NewResSizeInBits && "Nothing to shrink?");
1200 } else {
1201 assert(
1202 match(&R, m_Binary<Instruction::ICmp>(m_VPValue(), m_VPValue())) &&
1203 "Only ICmps should not need extending the result.");
1204 }
1205
1206 assert(!isa<VPWidenStoreRecipe>(&R) && "stores cannot be narrowed");
1207 if (isa<VPWidenLoadRecipe>(&R))
1208 continue;
1209
1210 // Shrink operands by introducing truncates as needed.
1211 unsigned StartIdx = isa<VPWidenSelectRecipe>(&R) ? 1 : 0;
1212 for (unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
1213 auto *Op = R.getOperand(Idx);
1214 unsigned OpSizeInBits =
1216 if (OpSizeInBits == NewResSizeInBits)
1217 continue;
1218 assert(OpSizeInBits > NewResSizeInBits && "nothing to truncate");
1219 auto [ProcessedIter, IterIsEmpty] =
1220 ProcessedTruncs.insert({Op, nullptr});
1221 VPWidenCastRecipe *NewOp =
1222 IterIsEmpty
1223 ? new VPWidenCastRecipe(Instruction::Trunc, Op, NewResTy)
1224 : ProcessedIter->second;
1225 R.setOperand(Idx, NewOp);
1226 if (!IterIsEmpty)
1227 continue;
1228 ProcessedIter->second = NewOp;
1229 if (!Op->isLiveIn()) {
1230 NewOp->insertBefore(&R);
1231 } else {
1232 PH->appendRecipe(NewOp);
1233#ifndef NDEBUG
1234 auto *OpInst = dyn_cast<Instruction>(Op->getLiveInIRValue());
1235 bool IsContained = MinBWs.contains(OpInst);
1236 NumProcessedRecipes += IsContained;
1237#endif
1238 }
1239 }
1240
1241 }
1242 }
1243
1244 assert(MinBWs.size() == NumProcessedRecipes &&
1245 "some entries in MinBWs haven't been processed");
1246}
1247
1251
1252 simplifyRecipes(Plan);
1254 removeDeadRecipes(Plan);
1255
1257
1260 licm(Plan);
1261}
1262
1263// Add a VPActiveLaneMaskPHIRecipe and related recipes to \p Plan and replace
1264// the loop terminator with a branch-on-cond recipe with the negated
1265// active-lane-mask as operand. Note that this turns the loop into an
1266// uncountable one. Only the existing terminator is replaced, all other existing
1267// recipes/users remain unchanged, except for poison-generating flags being
1268// dropped from the canonical IV increment. Return the created
1269// VPActiveLaneMaskPHIRecipe.
1270//
1271// The function uses the following definitions:
1272//
1273// %TripCount = DataWithControlFlowWithoutRuntimeCheck ?
1274// calculate-trip-count-minus-VF (original TC) : original TC
1275// %IncrementValue = DataWithControlFlowWithoutRuntimeCheck ?
1276// CanonicalIVPhi : CanonicalIVIncrement
1277// %StartV is the canonical induction start value.
1278//
1279// The function adds the following recipes:
1280//
1281// vector.ph:
1282// %TripCount = calculate-trip-count-minus-VF (original TC)
1283// [if DataWithControlFlowWithoutRuntimeCheck]
1284// %EntryInc = canonical-iv-increment-for-part %StartV
1285// %EntryALM = active-lane-mask %EntryInc, %TripCount
1286//
1287// vector.body:
1288// ...
1289// %P = active-lane-mask-phi [ %EntryALM, %vector.ph ], [ %ALM, %vector.body ]
1290// ...
1291// %InLoopInc = canonical-iv-increment-for-part %IncrementValue
1292// %ALM = active-lane-mask %InLoopInc, TripCount
1293// %Negated = Not %ALM
1294// branch-on-cond %Negated
1295//
1298 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
1299 VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
1300 auto *CanonicalIVPHI = Plan.getCanonicalIV();
1301 VPValue *StartV = CanonicalIVPHI->getStartValue();
1302
1303 auto *CanonicalIVIncrement =
1304 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
1305 // TODO: Check if dropping the flags is needed if
1306 // !DataAndControlFlowWithoutRuntimeCheck.
1307 CanonicalIVIncrement->dropPoisonGeneratingFlags();
1308 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
1309 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since
1310 // we have to take unrolling into account. Each part needs to start at
1311 // Part * VF
1312 auto *VecPreheader = Plan.getVectorPreheader();
1313 VPBuilder Builder(VecPreheader);
1314
1315 // Create the ActiveLaneMask instruction using the correct start values.
1316 VPValue *TC = Plan.getTripCount();
1317
1318 VPValue *TripCount, *IncrementValue;
1320 // When the loop is guarded by a runtime overflow check for the loop
1321 // induction variable increment by VF, we can increment the value before
1322 // the get.active.lane mask and use the unmodified tripcount.
1323 IncrementValue = CanonicalIVIncrement;
1324 TripCount = TC;
1325 } else {
1326 // When avoiding a runtime check, the active.lane.mask inside the loop
1327 // uses a modified trip count and the induction variable increment is
1328 // done after the active.lane.mask intrinsic is called.
1329 IncrementValue = CanonicalIVPHI;
1331 {TC}, DL);
1332 }
1333 auto *EntryIncrement = Builder.createOverflowingOp(
1334 VPInstruction::CanonicalIVIncrementForPart, {StartV}, {false, false}, DL,
1335 "index.part.next");
1336
1337 // Create the active lane mask instruction in the VPlan preheader.
1338 auto *EntryALM =
1339 Builder.createNaryOp(VPInstruction::ActiveLaneMask, {EntryIncrement, TC},
1340 DL, "active.lane.mask.entry");
1341
1342 // Now create the ActiveLaneMaskPhi recipe in the main loop using the
1343 // preheader ActiveLaneMask instruction.
1344 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
1345 LaneMaskPhi->insertAfter(CanonicalIVPHI);
1346
1347 // Create the active lane mask for the next iteration of the loop before the
1348 // original terminator.
1349 VPRecipeBase *OriginalTerminator = EB->getTerminator();
1350 Builder.setInsertPoint(OriginalTerminator);
1351 auto *InLoopIncrement =
1353 {IncrementValue}, {false, false}, DL);
1354 auto *ALM = Builder.createNaryOp(VPInstruction::ActiveLaneMask,
1355 {InLoopIncrement, TripCount}, DL,
1356 "active.lane.mask.next");
1357 LaneMaskPhi->addOperand(ALM);
1358
1359 // Replace the original terminator with BranchOnCond. We have to invert the
1360 // mask here because a true condition means jumping to the exit block.
1361 auto *NotMask = Builder.createNot(ALM, DL);
1362 Builder.createNaryOp(VPInstruction::BranchOnCond, {NotMask}, DL);
1363 OriginalTerminator->eraseFromParent();
1364 return LaneMaskPhi;
1365}
1366
1367/// Collect all VPValues representing a header mask through the (ICMP_ULE,
1368/// WideCanonicalIV, backedge-taken-count) pattern.
1369/// TODO: Introduce explicit recipe for header-mask instead of searching
1370/// for the header-mask pattern manually.
1372 SmallVector<VPValue *> WideCanonicalIVs;
1373 auto *FoundWidenCanonicalIVUser =
1374 find_if(Plan.getCanonicalIV()->users(),
1375 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
1377 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); }) <=
1378 1 &&
1379 "Must have at most one VPWideCanonicalIVRecipe");
1380 if (FoundWidenCanonicalIVUser != Plan.getCanonicalIV()->users().end()) {
1381 auto *WideCanonicalIV =
1382 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
1383 WideCanonicalIVs.push_back(WideCanonicalIV);
1384 }
1385
1386 // Also include VPWidenIntOrFpInductionRecipes that represent a widened
1387 // version of the canonical induction.
1388 VPBasicBlock *HeaderVPBB = Plan.getVectorLoopRegion()->getEntryBasicBlock();
1389 for (VPRecipeBase &Phi : HeaderVPBB->phis()) {
1390 auto *WidenOriginalIV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi);
1391 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
1392 WideCanonicalIVs.push_back(WidenOriginalIV);
1393 }
1394
1395 // Walk users of wide canonical IVs and collect to all compares of the form
1396 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count).
1397 SmallVector<VPValue *> HeaderMasks;
1398 for (auto *Wide : WideCanonicalIVs) {
1399 for (VPUser *U : SmallVector<VPUser *>(Wide->users())) {
1400 auto *HeaderMask = dyn_cast<VPInstruction>(U);
1401 if (!HeaderMask || !vputils::isHeaderMask(HeaderMask, Plan))
1402 continue;
1403
1404 assert(HeaderMask->getOperand(0) == Wide &&
1405 "WidenCanonicalIV must be the first operand of the compare");
1406 HeaderMasks.push_back(HeaderMask);
1407 }
1408 }
1409 return HeaderMasks;
1410}
1411
1413 VPlan &Plan, bool UseActiveLaneMaskForControlFlow,
1416 UseActiveLaneMaskForControlFlow) &&
1417 "DataAndControlFlowWithoutRuntimeCheck implies "
1418 "UseActiveLaneMaskForControlFlow");
1419
1420 auto *FoundWidenCanonicalIVUser =
1421 find_if(Plan.getCanonicalIV()->users(),
1422 [](VPUser *U) { return isa<VPWidenCanonicalIVRecipe>(U); });
1423 assert(FoundWidenCanonicalIVUser &&
1424 "Must have widened canonical IV when tail folding!");
1425 auto *WideCanonicalIV =
1426 cast<VPWidenCanonicalIVRecipe>(*FoundWidenCanonicalIVUser);
1427 VPSingleDefRecipe *LaneMask;
1428 if (UseActiveLaneMaskForControlFlow) {
1431 } else {
1432 VPBuilder B = VPBuilder::getToInsertAfter(WideCanonicalIV);
1433 LaneMask = B.createNaryOp(VPInstruction::ActiveLaneMask,
1434 {WideCanonicalIV, Plan.getTripCount()}, nullptr,
1435 "active.lane.mask");
1436 }
1437
1438 // Walk users of WideCanonicalIV and replace all compares of the form
1439 // (ICMP_ULE, WideCanonicalIV, backedge-taken-count) with an
1440 // active-lane-mask.
1441 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan))
1442 HeaderMask->replaceAllUsesWith(LaneMask);
1443}
1444
1445/// Replace recipes with their EVL variants.
1447 using namespace llvm::VPlanPatternMatch;
1448 Type *CanonicalIVType = Plan.getCanonicalIV()->getScalarType();
1449 VPTypeAnalysis TypeInfo(CanonicalIVType);
1450 LLVMContext &Ctx = CanonicalIVType->getContext();
1452
1453 for (VPUser *U : Plan.getVF().users()) {
1454 if (auto *R = dyn_cast<VPReverseVectorPointerRecipe>(U))
1455 R->setOperand(1, &EVL);
1456 }
1457
1459
1460 for (VPValue *HeaderMask : collectAllHeaderMasks(Plan)) {
1461 for (VPUser *U : collectUsersRecursively(HeaderMask)) {
1462 auto *CurRecipe = cast<VPRecipeBase>(U);
1463 auto GetNewMask = [&](VPValue *OrigMask) -> VPValue * {
1464 assert(OrigMask && "Unmasked recipe when folding tail");
1465 return HeaderMask == OrigMask ? nullptr : OrigMask;
1466 };
1467
1468 VPRecipeBase *NewRecipe =
1471 VPValue *NewMask = GetNewMask(L->getMask());
1472 return new VPWidenLoadEVLRecipe(*L, EVL, NewMask);
1473 })
1474 .Case<VPWidenStoreRecipe>([&](VPWidenStoreRecipe *S) {
1475 VPValue *NewMask = GetNewMask(S->getMask());
1476 return new VPWidenStoreEVLRecipe(*S, EVL, NewMask);
1477 })
1478 .Case<VPWidenRecipe>([&](VPWidenRecipe *W) -> VPRecipeBase * {
1479 unsigned Opcode = W->getOpcode();
1480 if (!Instruction::isBinaryOp(Opcode) &&
1481 !Instruction::isUnaryOp(Opcode))
1482 return nullptr;
1483 return new VPWidenEVLRecipe(*W, EVL);
1484 })
1485 .Case<VPReductionRecipe>([&](VPReductionRecipe *Red) {
1486 VPValue *NewMask = GetNewMask(Red->getCondOp());
1487 return new VPReductionEVLRecipe(*Red, EVL, NewMask);
1488 })
1489 .Case<VPWidenIntrinsicRecipe>(
1490 [&](VPWidenIntrinsicRecipe *CInst) -> VPRecipeBase * {
1491 auto *CI = cast<CallInst>(CInst->getUnderlyingInstr());
1493 CI->getCalledFunction()->getIntrinsicID());
1494 if (VPID == Intrinsic::not_intrinsic)
1495 return nullptr;
1496
1497 SmallVector<VPValue *> Ops(CInst->operands());
1500 "Expected VP intrinsic");
1502 IntegerType::getInt1Ty(CI->getContext())));
1503 Ops.push_back(Mask);
1504 Ops.push_back(&EVL);
1505 return new VPWidenIntrinsicRecipe(
1506 *CI, VPID, Ops, TypeInfo.inferScalarType(CInst),
1507 CInst->getDebugLoc());
1508 })
1509 .Case<VPWidenCastRecipe>(
1510 [&](VPWidenCastRecipe *CastR) -> VPRecipeBase * {
1511 Intrinsic::ID VPID =
1514 "Expected vp.casts Instrinsic");
1515
1516 SmallVector<VPValue *> Ops(CastR->operands());
1519 "Expected VP intrinsic");
1520 VPValue *Mask =
1522 Ops.push_back(Mask);
1523 Ops.push_back(&EVL);
1524 return new VPWidenIntrinsicRecipe(
1525 VPID, Ops, TypeInfo.inferScalarType(CastR),
1526 CastR->getDebugLoc());
1527 })
1528 .Case<VPWidenSelectRecipe>([&](VPWidenSelectRecipe *Sel) {
1529 SmallVector<VPValue *> Ops(Sel->operands());
1530 Ops.push_back(&EVL);
1531 return new VPWidenIntrinsicRecipe(Intrinsic::vp_select, Ops,
1532 TypeInfo.inferScalarType(Sel),
1533 Sel->getDebugLoc());
1534 })
1535 .Case<VPInstruction>([&](VPInstruction *VPI) -> VPRecipeBase * {
1536 VPValue *LHS, *RHS;
1537 // Transform select with a header mask condition
1538 // select(header_mask, LHS, RHS)
1539 // into vector predication merge.
1540 // vp.merge(all-true, LHS, RHS, EVL)
1541 if (!match(VPI, m_Select(m_Specific(HeaderMask), m_VPValue(LHS),
1542 m_VPValue(RHS))))
1543 return nullptr;
1544 // Use all true as the condition because this transformation is
1545 // limited to selects whose condition is a header mask.
1546 VPValue *AllTrue =
1548 return new VPWidenIntrinsicRecipe(
1549 Intrinsic::vp_merge, {AllTrue, LHS, RHS, &EVL},
1550 TypeInfo.inferScalarType(LHS), VPI->getDebugLoc());
1551 })
1552 .Default([&](VPRecipeBase *R) { return nullptr; });
1553
1554 if (!NewRecipe)
1555 continue;
1556
1557 [[maybe_unused]] unsigned NumDefVal = NewRecipe->getNumDefinedValues();
1558 assert(NumDefVal == CurRecipe->getNumDefinedValues() &&
1559 "New recipe must define the same number of values as the "
1560 "original.");
1561 assert(
1562 NumDefVal <= 1 &&
1563 "Only supports recipes with a single definition or without users.");
1564 NewRecipe->insertBefore(CurRecipe);
1565 if (isa<VPSingleDefRecipe, VPWidenLoadEVLRecipe>(NewRecipe)) {
1566 VPValue *CurVPV = CurRecipe->getVPSingleValue();
1567 CurVPV->replaceAllUsesWith(NewRecipe->getVPSingleValue());
1568 }
1569 // Defer erasing recipes till the end so that we don't invalidate the
1570 // VPTypeAnalysis cache.
1571 ToErase.push_back(CurRecipe);
1572 }
1573 }
1574
1575 for (VPRecipeBase *R : reverse(ToErase)) {
1576 SmallVector<VPValue *> PossiblyDead(R->operands());
1577 R->eraseFromParent();
1578 for (VPValue *Op : PossiblyDead)
1580 }
1581}
1582
1583/// Add a VPEVLBasedIVPHIRecipe and related recipes to \p Plan and
1584/// replaces all uses except the canonical IV increment of
1585/// VPCanonicalIVPHIRecipe with a VPEVLBasedIVPHIRecipe. VPCanonicalIVPHIRecipe
1586/// is used only for loop iterations counting after this transformation.
1587///
1588/// The function uses the following definitions:
1589/// %StartV is the canonical induction start value.
1590///
1591/// The function adds the following recipes:
1592///
1593/// vector.ph:
1594/// ...
1595///
1596/// vector.body:
1597/// ...
1598/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
1599/// [ %NextEVLIV, %vector.body ]
1600/// %AVL = sub original TC, %EVLPhi
1601/// %VPEVL = EXPLICIT-VECTOR-LENGTH %AVL
1602/// ...
1603/// %NextEVLIV = add IVSize (cast i32 %VPEVVL to IVSize), %EVLPhi
1604/// ...
1605///
1606/// If MaxSafeElements is provided, the function adds the following recipes:
1607/// vector.ph:
1608/// ...
1609///
1610/// vector.body:
1611/// ...
1612/// %EVLPhi = EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI [ %StartV, %vector.ph ],
1613/// [ %NextEVLIV, %vector.body ]
1614/// %AVL = sub original TC, %EVLPhi
1615/// %cmp = cmp ult %AVL, MaxSafeElements
1616/// %SAFE_AVL = select %cmp, %AVL, MaxSafeElements
1617/// %VPEVL = EXPLICIT-VECTOR-LENGTH %SAFE_AVL
1618/// ...
1619/// %NextEVLIV = add IVSize (cast i32 %VPEVL to IVSize), %EVLPhi
1620/// ...
1621///
1623 VPlan &Plan, const std::optional<unsigned> &MaxSafeElements) {
1625 // The transform updates all users of inductions to work based on EVL, instead
1626 // of the VF directly. At the moment, widened inductions cannot be updated, so
1627 // bail out if the plan contains any.
1628 bool ContainsWidenInductions = any_of(
1629 Header->phis(),
1630 IsaPred<VPWidenIntOrFpInductionRecipe, VPWidenPointerInductionRecipe>);
1631 if (ContainsWidenInductions)
1632 return false;
1633
1634 auto *CanonicalIVPHI = Plan.getCanonicalIV();
1635 VPValue *StartV = CanonicalIVPHI->getStartValue();
1636
1637 // Create the ExplicitVectorLengthPhi recipe in the main loop.
1638 auto *EVLPhi = new VPEVLBasedIVPHIRecipe(StartV, DebugLoc());
1639 EVLPhi->insertAfter(CanonicalIVPHI);
1640 VPBuilder Builder(Header, Header->getFirstNonPhi());
1641 // Compute original TC - IV as the AVL (application vector length).
1642 VPValue *AVL = Builder.createNaryOp(
1643 Instruction::Sub, {Plan.getTripCount(), EVLPhi}, DebugLoc(), "avl");
1644 if (MaxSafeElements) {
1645 // Support for MaxSafeDist for correct loop emission.
1646 VPValue *AVLSafe = Plan.getOrAddLiveIn(
1647 ConstantInt::get(CanonicalIVPHI->getScalarType(), *MaxSafeElements));
1648 VPValue *Cmp = Builder.createICmp(ICmpInst::ICMP_ULT, AVL, AVLSafe);
1649 AVL = Builder.createSelect(Cmp, AVL, AVLSafe, DebugLoc(), "safe_avl");
1650 }
1651 auto *VPEVL = Builder.createNaryOp(VPInstruction::ExplicitVectorLength, AVL,
1652 DebugLoc());
1653
1654 auto *CanonicalIVIncrement =
1655 cast<VPInstruction>(CanonicalIVPHI->getBackedgeValue());
1656 VPSingleDefRecipe *OpVPEVL = VPEVL;
1657 if (unsigned IVSize = CanonicalIVPHI->getScalarType()->getScalarSizeInBits();
1658 IVSize != 32) {
1659 OpVPEVL = new VPScalarCastRecipe(IVSize < 32 ? Instruction::Trunc
1660 : Instruction::ZExt,
1661 OpVPEVL, CanonicalIVPHI->getScalarType());
1662 OpVPEVL->insertBefore(CanonicalIVIncrement);
1663 }
1664 auto *NextEVLIV =
1665 new VPInstruction(Instruction::Add, {OpVPEVL, EVLPhi},
1666 {CanonicalIVIncrement->hasNoUnsignedWrap(),
1667 CanonicalIVIncrement->hasNoSignedWrap()},
1668 CanonicalIVIncrement->getDebugLoc(), "index.evl.next");
1669 NextEVLIV->insertBefore(CanonicalIVIncrement);
1670 EVLPhi->addOperand(NextEVLIV);
1671
1672 transformRecipestoEVLRecipes(Plan, *VPEVL);
1673
1674 // Replace all uses of VPCanonicalIVPHIRecipe by
1675 // VPEVLBasedIVPHIRecipe except for the canonical IV increment.
1676 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
1677 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
1678 // TODO: support unroll factor > 1.
1679 Plan.setUF(1);
1680 return true;
1681}
1682
1684 VPlan &Plan, function_ref<bool(BasicBlock *)> BlockNeedsPredication) {
1685 // Collect recipes in the backward slice of `Root` that may generate a poison
1686 // value that is used after vectorization.
1688 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1690 Worklist.push_back(Root);
1691
1692 // Traverse the backward slice of Root through its use-def chain.
1693 while (!Worklist.empty()) {
1694 VPRecipeBase *CurRec = Worklist.pop_back_val();
1695
1696 if (!Visited.insert(CurRec).second)
1697 continue;
1698
1699 // Prune search if we find another recipe generating a widen memory
1700 // instruction. Widen memory instructions involved in address computation
1701 // will lead to gather/scatter instructions, which don't need to be
1702 // handled.
1703 if (isa<VPWidenMemoryRecipe, VPInterleaveRecipe, VPScalarIVStepsRecipe,
1704 VPHeaderPHIRecipe>(CurRec))
1705 continue;
1706
1707 // This recipe contributes to the address computation of a widen
1708 // load/store. If the underlying instruction has poison-generating flags,
1709 // drop them directly.
1710 if (auto *RecWithFlags = dyn_cast<VPRecipeWithIRFlags>(CurRec)) {
1711 VPValue *A, *B;
1712 using namespace llvm::VPlanPatternMatch;
1713 // Dropping disjoint from an OR may yield incorrect results, as some
1714 // analysis may have converted it to an Add implicitly (e.g. SCEV used
1715 // for dependence analysis). Instead, replace it with an equivalent Add.
1716 // This is possible as all users of the disjoint OR only access lanes
1717 // where the operands are disjoint or poison otherwise.
1718 if (match(RecWithFlags, m_BinaryOr(m_VPValue(A), m_VPValue(B))) &&
1719 RecWithFlags->isDisjoint()) {
1720 VPBuilder Builder(RecWithFlags);
1721 VPInstruction *New = Builder.createOverflowingOp(
1722 Instruction::Add, {A, B}, {false, false},
1723 RecWithFlags->getDebugLoc());
1724 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
1725 RecWithFlags->replaceAllUsesWith(New);
1726 RecWithFlags->eraseFromParent();
1727 CurRec = New;
1728 } else
1729 RecWithFlags->dropPoisonGeneratingFlags();
1730 } else {
1731 Instruction *Instr = dyn_cast_or_null<Instruction>(
1732 CurRec->getVPSingleValue()->getUnderlyingValue());
1733 (void)Instr;
1734 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
1735 "found instruction with poison generating flags not covered by "
1736 "VPRecipeWithIRFlags");
1737 }
1738
1739 // Add new definitions to the worklist.
1740 for (VPValue *Operand : CurRec->operands())
1741 if (VPRecipeBase *OpDef = Operand->getDefiningRecipe())
1742 Worklist.push_back(OpDef);
1743 }
1744 });
1745
1746 // Traverse all the recipes in the VPlan and collect the poison-generating
1747 // recipes in the backward slice starting at the address of a VPWidenRecipe or
1748 // VPInterleaveRecipe.
1749 auto Iter = vp_depth_first_deep(Plan.getEntry());
1750 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1751 for (VPRecipeBase &Recipe : *VPBB) {
1752 if (auto *WidenRec = dyn_cast<VPWidenMemoryRecipe>(&Recipe)) {
1753 Instruction &UnderlyingInstr = WidenRec->getIngredient();
1754 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
1755 if (AddrDef && WidenRec->isConsecutive() &&
1756 BlockNeedsPredication(UnderlyingInstr.getParent()))
1757 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
1758 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1759 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
1760 if (AddrDef) {
1761 // Check if any member of the interleave group needs predication.
1762 const InterleaveGroup<Instruction> *InterGroup =
1763 InterleaveRec->getInterleaveGroup();
1764 bool NeedPredication = false;
1765 for (int I = 0, NumMembers = InterGroup->getNumMembers();
1766 I < NumMembers; ++I) {
1767 Instruction *Member = InterGroup->getMember(I);
1768 if (Member)
1769 NeedPredication |= BlockNeedsPredication(Member->getParent());
1770 }
1771
1772 if (NeedPredication)
1773 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
1774 }
1775 }
1776 }
1777 }
1778}
1779
1781 VPlan &Plan,
1783 &InterleaveGroups,
1784 VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed) {
1785 if (InterleaveGroups.empty())
1786 return;
1787
1788 // Interleave memory: for each Interleave Group we marked earlier as relevant
1789 // for this VPlan, replace the Recipes widening its memory instructions with a
1790 // single VPInterleaveRecipe at its insertion point.
1791 VPDominatorTree VPDT;
1792 VPDT.recalculate(Plan);
1793 for (const auto *IG : InterleaveGroups) {
1794 SmallVector<VPValue *, 4> StoredValues;
1795 for (unsigned i = 0; i < IG->getFactor(); ++i)
1796 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
1797 auto *StoreR = cast<VPWidenStoreRecipe>(RecipeBuilder.getRecipe(SI));
1798 StoredValues.push_back(StoreR->getStoredValue());
1799 }
1800
1801 bool NeedsMaskForGaps =
1802 IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed;
1803
1804 Instruction *IRInsertPos = IG->getInsertPos();
1805 auto *InsertPos =
1806 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IRInsertPos));
1807
1808 // Get or create the start address for the interleave group.
1809 auto *Start =
1810 cast<VPWidenMemoryRecipe>(RecipeBuilder.getRecipe(IG->getMember(0)));
1811 VPValue *Addr = Start->getAddr();
1812 VPRecipeBase *AddrDef = Addr->getDefiningRecipe();
1813 if (AddrDef && !VPDT.properlyDominates(AddrDef, InsertPos)) {
1814 // TODO: Hoist Addr's defining recipe (and any operands as needed) to
1815 // InsertPos or sink loads above zero members to join it.
1816 bool InBounds = false;
1817 if (auto *Gep = dyn_cast<GetElementPtrInst>(
1818 getLoadStorePointerOperand(IRInsertPos)->stripPointerCasts()))
1819 InBounds = Gep->isInBounds();
1820
1821 // We cannot re-use the address of member zero because it does not
1822 // dominate the insert position. Instead, use the address of the insert
1823 // position and create a PtrAdd adjusting it to the address of member
1824 // zero.
1825 assert(IG->getIndex(IRInsertPos) != 0 &&
1826 "index of insert position shouldn't be zero");
1827 auto &DL = IRInsertPos->getDataLayout();
1828 APInt Offset(32,
1829 DL.getTypeAllocSize(getLoadStoreType(IRInsertPos)) *
1830 IG->getIndex(IRInsertPos),
1831 /*IsSigned=*/true);
1832 VPValue *OffsetVPV = Plan.getOrAddLiveIn(
1833 ConstantInt::get(IRInsertPos->getParent()->getContext(), -Offset));
1834 VPBuilder B(InsertPos);
1835 Addr = InBounds ? B.createInBoundsPtrAdd(InsertPos->getAddr(), OffsetVPV)
1836 : B.createPtrAdd(InsertPos->getAddr(), OffsetVPV);
1837 }
1838 auto *VPIG = new VPInterleaveRecipe(IG, Addr, StoredValues,
1839 InsertPos->getMask(), NeedsMaskForGaps);
1840 VPIG->insertBefore(InsertPos);
1841
1842 unsigned J = 0;
1843 for (unsigned i = 0; i < IG->getFactor(); ++i)
1844 if (Instruction *Member = IG->getMember(i)) {
1845 VPRecipeBase *MemberR = RecipeBuilder.getRecipe(Member);
1846 if (!Member->getType()->isVoidTy()) {
1847 VPValue *OriginalV = MemberR->getVPSingleValue();
1848 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
1849 J++;
1850 }
1851 MemberR->eraseFromParent();
1852 }
1853 }
1854}
1855
1857 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(
1858 vp_depth_first_deep(Plan.getEntry()))) {
1859 for (VPRecipeBase &R : make_early_inc_range(VPBB->phis())) {
1860 if (!isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(&R))
1861 continue;
1862 auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1863 StringRef Name =
1864 isa<VPCanonicalIVPHIRecipe>(PhiR) ? "index" : "evl.based.iv";
1865 auto *ScalarR =
1866 new VPScalarPHIRecipe(PhiR->getStartValue(), PhiR->getBackedgeValue(),
1867 PhiR->getDebugLoc(), Name);
1868 ScalarR->insertBefore(PhiR);
1869 PhiR->replaceAllUsesWith(ScalarR);
1870 PhiR->eraseFromParent();
1871 }
1872 }
1873}
1874
1876 VPlan &Plan, ScalarEvolution &SE, Loop *OrigLoop,
1877 BasicBlock *UncountableExitingBlock, VPRecipeBuilder &RecipeBuilder) {
1878 VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
1879 auto *LatchVPBB = cast<VPBasicBlock>(LoopRegion->getExiting());
1880 VPBuilder Builder(LatchVPBB->getTerminator());
1881 auto *MiddleVPBB = Plan.getMiddleBlock();
1882 VPValue *IsEarlyExitTaken = nullptr;
1883
1884 // Process the uncountable exiting block. Update IsEarlyExitTaken, which
1885 // tracks if the uncountable early exit has been taken. Also split the middle
1886 // block and have it conditionally branch to the early exit block if
1887 // EarlyExitTaken.
1888 auto *EarlyExitingBranch =
1889 cast<BranchInst>(UncountableExitingBlock->getTerminator());
1890 BasicBlock *TrueSucc = EarlyExitingBranch->getSuccessor(0);
1891 BasicBlock *FalseSucc = EarlyExitingBranch->getSuccessor(1);
1892
1893 // The early exit block may or may not be the same as the "countable" exit
1894 // block. Creates a new VPIRBB for the early exit block in case it is distinct
1895 // from the countable exit block.
1896 // TODO: Introduce both exit blocks during VPlan skeleton construction.
1897 VPIRBasicBlock *VPEarlyExitBlock;
1898 if (OrigLoop->getUniqueExitBlock()) {
1899 VPEarlyExitBlock = cast<VPIRBasicBlock>(MiddleVPBB->getSuccessors()[0]);
1900 } else {
1901 VPEarlyExitBlock = VPIRBasicBlock::fromBasicBlock(
1902 !OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc);
1903 }
1904
1905 VPValue *EarlyExitNotTakenCond = RecipeBuilder.getBlockInMask(
1906 OrigLoop->contains(TrueSucc) ? TrueSucc : FalseSucc);
1907 auto *EarlyExitTakenCond = Builder.createNot(EarlyExitNotTakenCond);
1908 IsEarlyExitTaken =
1909 Builder.createNaryOp(VPInstruction::AnyOf, {EarlyExitTakenCond});
1910
1911 VPBasicBlock *NewMiddle = new VPBasicBlock("middle.split");
1912 VPBlockUtils::insertOnEdge(LoopRegion, MiddleVPBB, NewMiddle);
1913 VPBlockUtils::connectBlocks(NewMiddle, VPEarlyExitBlock);
1914 NewMiddle->swapSuccessors();
1915
1916 VPBuilder MiddleBuilder(NewMiddle);
1917 MiddleBuilder.createNaryOp(VPInstruction::BranchOnCond, {IsEarlyExitTaken});
1918
1919 // Replace the condition controlling the non-early exit from the vector loop
1920 // with one exiting if either the original condition of the vector latch is
1921 // true or the early exit has been taken.
1922 auto *LatchExitingBranch = cast<VPInstruction>(LatchVPBB->getTerminator());
1923 assert(LatchExitingBranch->getOpcode() == VPInstruction::BranchOnCount &&
1924 "Unexpected terminator");
1925 auto *IsLatchExitTaken =
1926 Builder.createICmp(CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0),
1927 LatchExitingBranch->getOperand(1));
1928 auto *AnyExitTaken = Builder.createNaryOp(
1929 Instruction::Or, {IsEarlyExitTaken, IsLatchExitTaken});
1930 Builder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken);
1931 LatchExitingBranch->eraseFromParent();
1932}
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Addr
std::string Name
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
Hexagon Common GEP
iv Induction Variable Users
Definition: IVUsers.cpp:48
licm
Definition: LICM.cpp:378
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
if(PassOpts->AAPipeline)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
static VPScalarIVStepsRecipe * createScalarIVSteps(VPlan &Plan, InductionDescriptor::InductionKind Kind, Instruction::BinaryOps InductionOpcode, FPMathOperator *FPBinOp, Instruction *TruncI, VPValue *StartV, VPValue *Step, VPBuilder &Builder)
static bool sinkScalarOperands(VPlan &Plan)
static void removeRedundantInductionCasts(VPlan &Plan)
Remove redundant casts of inductions.
static bool sinkRecurrenceUsersAfterPrevious(VPFirstOrderRecurrencePHIRecipe *FOR, VPRecipeBase *Previous, VPDominatorTree &VPDT)
Sink users of FOR after the recipe defining the previous value Previous of the recurrence.
static bool mergeReplicateRegionsIntoSuccessors(VPlan &Plan)
static VPActiveLaneMaskPHIRecipe * addVPLaneMaskPhiAndUpdateExitBranch(VPlan &Plan, bool DataAndControlFlowWithoutRuntimeCheck)
static void transformRecipestoEVLRecipes(VPlan &Plan, VPValue &EVL)
Replace recipes with their EVL variants.
static bool isDeadRecipe(VPRecipeBase &R)
Returns true if R is dead and can be removed.
static void legalizeAndOptimizeInductions(VPlan &Plan)
Legalize VPWidenPointerInductionRecipe, by replacing it with a PtrAdd (IndStart, ScalarIVSteps (0,...
static void addReplicateRegions(VPlan &Plan)
static void simplifyRecipe(VPRecipeBase &R, VPTypeAnalysis &TypeInfo)
Try to simplify recipe R.
static void removeRedundantExpandSCEVRecipes(VPlan &Plan)
Remove redundant EpxandSCEVRecipes in Plan's entry block by replacing them with already existing reci...
static SmallVector< VPValue * > collectAllHeaderMasks(VPlan &Plan)
Collect all VPValues representing a header mask through the (ICMP_ULE, WideCanonicalIV,...
static bool hoistPreviousBeforeFORUsers(VPFirstOrderRecurrencePHIRecipe *FOR, VPRecipeBase *Previous, VPDominatorTree &VPDT)
Try to hoist Previous and its operands before all users of FOR.
static SmallVector< VPUser * > collectUsersRecursively(VPValue *V)
static void recursivelyDeleteDeadRecipes(VPValue *V)
static void simplifyRecipes(VPlan &Plan)
Try to simplify the recipes in Plan.
static VPRegionBlock * createReplicateRegion(VPReplicateRecipe *PredRecipe, VPlan &Plan)
static VPBasicBlock * getPredicatedThenBlock(VPRegionBlock *R)
If R is a triangle region, return the 'then' block of the triangle.
VPValue * getPredicatedMask(VPRegionBlock *R)
If R is a region with a VPBranchOnMaskRecipe in the entry block, return the mask.
static void removeRedundantCanonicalIVs(VPlan &Plan)
Try to replace VPWidenCanonicalIVRecipes with a widened canonical IV recipe, if it exists.
This file provides utility VPlan to VPlan transformations.
This file contains the declarations of the Vectorization Plan base classes:
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
Class for arbitrary precision integers.
Definition: APInt.h:78
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:698
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:699
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:866
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:311
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:205
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:933
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_IntInduction
Integer induction variable. Step = C.
bool isBinaryOp() const
Definition: Instruction.h:279
bool isUnaryOp() const
Definition: Instruction.h:278
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Definition: Instruction.cpp:74
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:311
The group of interleaved loads/stores sharing the same stride and close to each other.
Definition: VectorUtils.h:480
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
Definition: VectorUtils.h:550
uint32_t getNumMembers() const
Definition: VectorUtils.h:498
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:176
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getUniqueExitBlock() const
If getUniqueExitBlocks would return exactly one block, return that block.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
bool contains(const KeyT &Key) const
Definition: MapVector.h:163
ValueT lookup(const KeyT &Key) const
Definition: MapVector.h:110
size_type size() const
Definition: MapVector.h:60
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Definition: IVDescriptors.h:77
RecurKind getRecurrenceKind() const
This class represents an analyzed expression in the program.
bool isZero() const
Return true if the expression is a constant zero.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
const SCEV * getElementCount(Type *Ty, ElementCount EC)
LLVMContext & getContext() const
This class represents the LLVM 'select' instruction.
A vector that has set insertion semantics.
Definition: SetVector.h:57
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:93
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
bool contains(const key_type &key) const
Check if the SetVector contains the given key.
Definition: SetVector.h:254
size_type size() const
Definition: SmallPtrSet.h:94
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
iterator begin() const
Definition: SmallPtrSet.h:472
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:683
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
Definition: TypeSwitch.h:87
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
Definition: TypeSwitch.h:96
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt1Ty(LLVMContext &C)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
op_range operands()
Definition: User.h:288
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
Definition: VPlan.h:3228
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:3470
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition: VPlan.h:3542
iterator end()
Definition: VPlan.h:3504
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
Definition: VPlan.h:3555
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition: VPlan.cpp:213
VPRegionBlock * getEnclosingLoopRegion()
Definition: VPlan.cpp:566
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition: VPlan.cpp:538
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition: VPlan.cpp:602
const VPRecipeBase & back() const
Definition: VPlan.h:3516
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
Definition: VPlan.h:2425
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:396
VPRegionBlock * getParent()
Definition: VPlan.h:488
const VPBasicBlock * getExitingBasicBlock() const
Definition: VPlan.cpp:178
void swapSuccessors()
Swap successors of the block. The block must have exactly 2 successors.
Definition: VPlan.h:627
const VPBasicBlock * getEntryBasicBlock() const
Definition: VPlan.cpp:158
VPBlockBase * getSingleHierarchicalPredecessor()
Definition: VPlan.h:576
VPBlockBase * getSingleSuccessor() const
Definition: VPlan.h:524
const VPBlocksTy & getSuccessors() const
Definition: VPlan.h:513
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
Definition: VPlan.h:4232
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
Definition: VPlan.h:4151
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition: VPlan.h:4170
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
Definition: VPlan.h:4189
A recipe for generating conditional branches on the bits of a mask.
Definition: VPlan.h:2783
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
VPScalarCastRecipe * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
VPInstruction * createPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL={}, const Twine &Name="")
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step, const Twine &Name="")
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPScalarIVStepsRecipe * createScalarIVSteps(Instruction::BinaryOps InductionOpcode, FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step)
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Definition: VPlan.h:3162
Type * getScalarType() const
Returns the scalar type of the induction.
Definition: VPlan.h:3193
bool isCanonical(InductionDescriptor::InductionKind Kind, VPValue *Start, VPValue *Step) const
Check if the induction described by Kind, /p Start and Step is canonical, i.e.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
Definition: VPlanValue.h:414
ArrayRef< VPValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
Definition: VPlanValue.h:409
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
Definition: VPlanValue.h:387
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
Returns true if A properly dominates B.
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
Definition: VPlan.h:3263
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition: VPlan.h:3616
static VPIRBasicBlock * fromBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
Definition: VPlan.cpp:843
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:1197
@ FirstOrderRecurrenceSplice
Definition: VPlan.h:1203
@ CanonicalIVIncrementForPart
Definition: VPlan.h:1218
@ CalculateTripCountMinusVF
Definition: VPlan.h:1216
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
Definition: VPlan.h:2492
static std::optional< unsigned > getMaskParamPos(Intrinsic::ID IntrinsicID)
static std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
static Intrinsic::ID getForOpcode(unsigned OC)
The llvm.vp.* intrinsics for this instruction Opcode.
static Intrinsic::ID getForIntrinsic(Intrinsic::ID Id)
The llvm.vp.
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
Definition: VPlan.h:2838
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:720
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayReadOrWriteMemory() const
Returns true if the recipe may read from or write to memory.
Definition: VPlan.h:809
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
VPBasicBlock * getParent()
Definition: VPlan.h:745
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
Definition: VPlan.h:814
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPValue * getBlockInMask(BasicBlock *BB) const
Returns the entry mask for the block BB.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
Definition: VPlan.h:2665
A recipe to represent inloop reduction operations, performing a reduction on a vector operand into a ...
Definition: VPlan.h:2587
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:3657
const VPBlockBase * getEntry() const
Definition: VPlan.h:3696
const VPBlockBase * getExiting() const
Definition: VPlan.h:3708
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
Definition: VPlan.h:2706
bool isUniform() const
Definition: VPlan.h:2750
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
Definition: VPlan.h:2774
VPScalarCastRecipe is a recipe to create scalar cast instructions.
Definition: VPlan.h:1581
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition: VPlan.h:3413
Recipe to generate a scalar PHI.
Definition: VPlan.h:2250
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Definition: VPlan.h:847
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
Definition: VPlan.h:916
An analysis for type-inference for VPValues.
Definition: VPlanAnalysis.h:40
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition: VPlanValue.h:200
operand_range operands()
Definition: VPlanValue.h:257
void setOperand(unsigned I, VPValue *New)
Definition: VPlanValue.h:242
operand_iterator op_end()
Definition: VPlanValue.h:255
operand_iterator op_begin()
Definition: VPlanValue.h:253
void addOperand(VPValue *Operand)
Definition: VPlanValue.h:231
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition: VPlan.cpp:123
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
Definition: VPlanValue.h:77
void replaceAllUsesWith(VPValue *New)
Definition: VPlan.cpp:1422
unsigned getNumUsers() const
Definition: VPlanValue.h:111
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition: VPlan.cpp:1426
user_range users()
Definition: VPlanValue.h:132
A Recipe for widening the canonical induction variable of the vector loop.
Definition: VPlan.h:3308
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition: VPlan.h:1529
Instruction::CastOps getOpcode() const
Definition: VPlan.h:1574
A recipe for widening operations with vector-predication intrinsics with explicit vector length (EVL)...
Definition: VPlan.h:1482
A recipe for handling GEP instructions.
Definition: VPlan.h:1851
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition: VPlan.h:2129
A recipe for widening vector intrinsics.
Definition: VPlan.h:1627
VPValue * getMask() const
Return the mask used by this recipe.
Definition: VPlan.h:2940
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
Definition: VPlan.h:1431
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:3761
bool hasScalableVF()
Definition: VPlan.h:3944
VPBasicBlock * getEntry()
Definition: VPlan.h:3869
VPValue & getVF()
Returns the VF of the vector loop region.
Definition: VPlan.h:3930
VPValue * getTripCount() const
The trip count of the original loop.
Definition: VPlan.h:3906
bool hasVF(ElementCount VF)
Definition: VPlan.h:3943
bool hasUF(unsigned UF) const
Definition: VPlan.h:3956
void setVF(ElementCount VF)
Definition: VPlan.h:3937
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition: VPlan.cpp:1084
const VPBasicBlock * getMiddleBlock() const
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
Definition: VPlan.h:3884
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition: VPlan.h:3976
bool hasScalarVFOnly() const
Definition: VPlan.h:3954
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the vector loop.
Definition: VPlan.h:4010
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region.
Definition: VPlan.h:3873
void setUF(unsigned UF)
Definition: VPlan.h:3963
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:377
bool hasName() const
Definition: Value.h:261
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition: TypeSize.h:258
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
IteratorT end() const
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:982
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:885
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
Definition: VPlanUtils.cpp:26
const SCEV * getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE)
Return the SCEV expression for V.
Definition: VPlanUtils.cpp:65
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
Definition: VPlanUtils.cpp:16
bool isHeaderMask(const VPValue *V, VPlan &Plan)
Return true if V is a header mask in Plan.
Definition: VPlanUtils.cpp:43
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition: VPlanCFG.h:214
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
Definition: VPlanCFG.h:226
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1664
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:144
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1753
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Definition: SmallVector.h:1299
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition: Casting.h:548
RecurKind
These are the kinds of recurrences that we support.
Definition: IVDescriptors.h:33
@ Mul
Product of integers.
@ Add
Sum of integers.
DWARFExpression::Operation Op
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1945
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ Default
The result values are uniform if and only if all operands are uniform.
A recipe for handling first-order recurrence phis.
Definition: VPlan.h:2334
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
Definition: VPlan.h:2998
A recipe for widening load operations, using the address to load from and an optional mask.
Definition: VPlan.h:2959
A recipe for widening select instructions.
Definition: VPlan.h:1813
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
Definition: VPlan.h:3078
A recipe for widening store operations, using the stored value, the address to store to and an option...
Definition: VPlan.h:3037
static void handleUncountableEarlyExit(VPlan &Plan, ScalarEvolution &SE, Loop *OrigLoop, BasicBlock *UncountableExitingBlock, VPRecipeBuilder &RecipeBuilder)
Update Plan to account for the uncountable early exit block in UncountableExitingBlock by.
static void createAndOptimizeReplicateRegions(VPlan &Plan)
Wrap predicated VPReplicateRecipes with a mask operand in an if-then region block and remove the mask...
static void convertToConcreteRecipes(VPlan &Plan)
Lower abstract recipes to concrete ones, that can be codegen'd.
static void dropPoisonGeneratingRecipes(VPlan &Plan, function_ref< bool(BasicBlock *)> BlockNeedsPredication)
Drop poison flags from recipes that may generate a poison value that is used after vectorization,...
static void createInterleaveGroups(VPlan &Plan, const SmallPtrSetImpl< const InterleaveGroup< Instruction > * > &InterleaveGroups, VPRecipeBuilder &RecipeBuilder, bool ScalarEpilogueAllowed)
static void removeDeadRecipes(VPlan &Plan)
Remove dead recipes from Plan.
static void clearReductionWrapFlags(VPlan &Plan)
Clear NSW/NUW flags from reduction instructions if necessary.
static bool tryAddExplicitVectorLength(VPlan &Plan, const std::optional< unsigned > &MaxEVLSafeElements)
Add a VPEVLBasedIVPHIRecipe and related recipes to Plan and replaces all uses except the canonical IV...
static void VPInstructionsToVPRecipes(VPlanPtr &Plan, function_ref< const InductionDescriptor *(PHINode *)> GetIntOrFpInductionDescriptor, ScalarEvolution &SE, const TargetLibraryInfo &TLI)
Replaces the VPInstructions in Plan with corresponding widen recipes.
static void addActiveLaneMask(VPlan &Plan, bool UseActiveLaneMaskForControlFlow, bool DataAndControlFlowWithoutRuntimeCheck)
Replace (ICMP_ULE, wide canonical IV, backedge-taken-count) checks with an (active-lane-mask recipe,...
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...
static void truncateToMinimalBitwidths(VPlan &Plan, const MapVector< Instruction *, uint64_t > &MinBWs)
Insert truncates and extends for any truncated recipe.
static bool adjustFixedOrderRecurrences(VPlan &Plan, VPBuilder &Builder)
Try to have all users of fixed-order recurrences appear after the recipe defining their previous valu...
static void optimizeForVFAndUF(VPlan &Plan, ElementCount BestVF, unsigned BestUF, PredicatedScalarEvolution &PSE)
Optimize Plan based on BestVF and BestUF.