56 if (!VPBB->getParent())
59 auto EndIter = Term ? Term->getIterator() : VPBB->end();
64 VPValue *VPV = Ingredient.getVPSingleValue();
81 *Load, Ingredient.getOperand(0),
nullptr ,
83 Ingredient.getDebugLoc());
86 *Store, Ingredient.getOperand(1), Ingredient.getOperand(0),
87 nullptr ,
false ,
false , *VPI,
88 Ingredient.getDebugLoc());
91 Ingredient.getDebugLoc());
99 *VPI, CI->getDebugLoc());
102 CI->getOpcode(), Ingredient.getOperand(0), CI->getType(), CI,
106 *VPI, Ingredient.getDebugLoc());
110 "inductions must be created earlier");
119 "Only recpies with zero or one defined values expected");
120 Ingredient.eraseFromParent();
137 if (
A->getOpcode() != Instruction::Store ||
138 B->getOpcode() != Instruction::Store)
148 const APInt *Distance;
154 Type *TyA = TypeInfo.inferScalarType(
A->getOperand(0));
156 Type *TyB = TypeInfo.inferScalarType(
B->getOperand(0));
162 uint64_t MaxStoreSize = std::max(SizeA, SizeB);
164 auto VFs =
B->getParent()->getPlan()->vectorFactors();
168 return Distance->
abs().
uge(
176 : ExcludeRecipes(ExcludeRecipes), GroupLeader(GroupLeader), PSE(PSE),
177 L(L), TypeInfo(TypeInfo) {}
184 return ExcludeRecipes.contains(&R) ||
185 (Store && isNoAliasViaDistance(Store, &GroupLeader));
198 std::optional<SinkStoreInfo> SinkInfo = {}) {
199 bool CheckReads = SinkInfo.has_value();
208 "Expected at most one successor in block chain");
211 if (SinkInfo && SinkInfo->shouldSkip(R))
215 if (!
R.mayWriteToMemory() && !(CheckReads &&
R.mayReadFromMemory()))
226 if (CheckReads &&
R.mayReadFromMemory() &&
233 Loc->AATags.NoAlias))
253 if (R.mayHaveSideEffects() || R.mayReadFromMemory() || R.isPhi())
258 return RepR && RepR->getOpcode() == Instruction::Alloca;
267 auto InsertIfValidSinkCandidate = [ScalarVFOnly, &WorkList](
283 if (!ScalarVFOnly && RepR->isSingleScalar())
286 WorkList.
insert({SinkTo, Candidate});
298 for (
auto &Recipe : *VPBB)
300 InsertIfValidSinkCandidate(VPBB,
Op);
304 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
307 std::tie(SinkTo, SinkCandidate) = WorkList[
I];
312 auto UsersOutsideSinkTo =
314 return cast<VPRecipeBase>(U)->getParent() != SinkTo;
316 if (
any_of(UsersOutsideSinkTo, [SinkCandidate](
VPUser *U) {
317 return !U->usesFirstLaneOnly(SinkCandidate);
320 bool NeedsDuplicating = !UsersOutsideSinkTo.empty();
322 if (NeedsDuplicating) {
326 if (
auto *SinkCandidateRepR =
332 nullptr , *SinkCandidateRepR,
336 Clone = SinkCandidate->
clone();
346 InsertIfValidSinkCandidate(SinkTo,
Op);
356 if (!EntryBB || EntryBB->size() != 1 ||
366 if (EntryBB->getNumSuccessors() != 2)
371 if (!Succ0 || !Succ1)
374 if (Succ0->getNumSuccessors() + Succ1->getNumSuccessors() != 1)
376 if (Succ0->getSingleSuccessor() == Succ1)
378 if (Succ1->getSingleSuccessor() == Succ0)
395 if (!Region1->isReplicator())
397 auto *MiddleBasicBlock =
399 if (!MiddleBasicBlock || !MiddleBasicBlock->empty())
404 if (!Region2 || !Region2->isReplicator())
409 if (!Mask1 || Mask1 != Mask2)
412 assert(Mask1 && Mask2 &&
"both region must have conditions");
418 if (TransformedRegions.
contains(Region1))
425 if (!Then1 || !Then2)
445 VPValue *Phi1ToMoveV = Phi1ToMove.getVPSingleValue();
451 if (Phi1ToMove.getVPSingleValue()->getNumUsers() == 0) {
452 Phi1ToMove.eraseFromParent();
455 Phi1ToMove.moveBefore(*Merge2, Merge2->begin());
469 TransformedRegions.
insert(Region1);
472 return !TransformedRegions.
empty();
479 std::string RegionName = (
Twine(
"pred.") + Instr->getOpcodeName()).str();
480 assert(Instr->getParent() &&
"Predicated instruction not in any basic block");
481 auto *BlockInMask = PredRecipe->
getMask();
500 RecipeWithoutMask->getDebugLoc());
524 if (RepR->isPredicated())
543 if (ParentRegion && ParentRegion->
getExiting() == CurrentBlock)
557 if (!VPBB->getParent())
561 if (!PredVPBB || PredVPBB->getNumSuccessors() != 1 ||
570 R.moveBefore(*PredVPBB, PredVPBB->
end());
572 auto *ParentRegion = VPBB->getParent();
573 if (ParentRegion && ParentRegion->getExiting() == VPBB)
574 ParentRegion->setExiting(PredVPBB);
575 for (
auto *Succ :
to_vector(VPBB->successors())) {
581 return !WorkList.
empty();
588 bool ShouldSimplify =
true;
589 while (ShouldSimplify) {
605 if (!
IV ||
IV->getTruncInst())
620 for (
auto *U : FindMyCast->
users()) {
622 if (UserCast && UserCast->getUnderlyingValue() == IRCast) {
623 FoundUserCast = UserCast;
627 FindMyCast = FoundUserCast;
652 if (!WidenOriginalIV || !WidenOriginalIV->isCanonical())
665 WidenOriginalIV->dropPoisonGeneratingFlags();
678 bool IsConditionalAssume = RepR && RepR->isPredicated() &&
680 if (IsConditionalAssume)
683 if (R.mayHaveSideEffects())
687 return all_of(R.definedValues(),
688 [](
VPValue *V) { return V->getNumUsers() == 0; });
704 if (!PhiR || PhiR->getNumOperands() != 2)
706 VPUser *PhiUser = PhiR->getSingleUser();
710 if (PhiUser !=
Incoming->getDefiningRecipe() ||
713 PhiR->replaceAllUsesWith(PhiR->getOperand(0));
714 PhiR->eraseFromParent();
715 Incoming->getDefiningRecipe()->eraseFromParent();
730 Kind, FPBinOp, StartV, CanonicalIV, Step,
"offset.idx");
740 BaseIV = Builder.createScalarCast(Instruction::Trunc, BaseIV, TruncTy,
DL);
746 if (ResultTy != StepTy) {
753 Builder.setInsertPoint(VecPreheader);
754 Step = Builder.createScalarCast(Instruction::Trunc, Step, ResultTy,
DL);
756 return Builder.createScalarIVSteps(InductionOpcode, FPBinOp, BaseIV, Step,
762 for (
unsigned I = 0;
I !=
Users.size(); ++
I) {
767 Users.insert_range(V->users());
769 return Users.takeVector();
783 nullptr, StartV, StepV, PtrIV->
getDebugLoc(), Builder);
820 Def->getNumUsers() == 0 || !Def->getUnderlyingValue() ||
821 (RepR && (RepR->isSingleScalar() || RepR->isPredicated())))
829 Def->operands(),
true,
831 Clone->insertAfter(Def);
832 Def->replaceAllUsesWith(Clone);
843 PtrIV->replaceAllUsesWith(PtrAdd);
850 if (HasOnlyVectorVFs &&
none_of(WideIV->users(), [WideIV](
VPUser *U) {
851 return U->usesScalars(WideIV);
857 Plan,
ID.getKind(),
ID.getInductionOpcode(),
859 WideIV->getTruncInst(), WideIV->getStartValue(), WideIV->getStepValue(),
860 WideIV->getDebugLoc(), Builder);
863 if (!HasOnlyVectorVFs) {
865 "plans containing a scalar VF cannot also include scalable VFs");
866 WideIV->replaceAllUsesWith(Steps);
869 WideIV->replaceUsesWithIf(Steps,
870 [WideIV, HasScalableVF](
VPUser &U,
unsigned) {
872 return U.usesFirstLaneOnly(WideIV);
873 return U.usesScalars(WideIV);
889 return (IntOrFpIV && IntOrFpIV->getTruncInst()) ? nullptr : WideIV;
894 if (!Def || Def->getNumOperands() != 2)
902 auto IsWideIVInc = [&]() {
903 auto &
ID = WideIV->getInductionDescriptor();
906 VPValue *IVStep = WideIV->getStepValue();
907 switch (
ID.getInductionOpcode()) {
908 case Instruction::Add:
910 case Instruction::FAdd:
913 case Instruction::FSub:
916 case Instruction::Sub: {
936 return IsWideIVInc() ? WideIV :
nullptr;
956 if (WideIntOrFp && WideIntOrFp->getTruncInst())
969 FirstActiveLane =
B.createScalarZExtOrTrunc(FirstActiveLane, CanonicalIVType,
970 FirstActiveLaneType,
DL);
972 B.createNaryOp(Instruction::Add, {CanonicalIV, FirstActiveLane},
DL);
979 EndValue =
B.createNaryOp(Instruction::Add, {EndValue, One},
DL);
982 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
984 VPIRValue *Start = WideIV->getStartValue();
985 VPValue *Step = WideIV->getStepValue();
986 EndValue =
B.createDerivedIV(
988 Start, EndValue, Step);
1008 assert(EndValue &&
"end value must have been pre-computed");
1018 VPValue *Step = WideIV->getStepValue();
1021 return B.createNaryOp(Instruction::Sub, {EndValue, Step},
1026 return B.createPtrAdd(EndValue,
1027 B.createNaryOp(Instruction::Sub, {Zero, Step}),
1031 const auto &
ID = WideIV->getInductionDescriptor();
1032 return B.createNaryOp(
1033 ID.getInductionBinOp()->getOpcode() == Instruction::FAdd
1035 : Instruction::FAdd,
1036 {EndValue, Step}, {ID.getInductionBinOp()->getFastMathFlags()});
1051 for (
auto [Idx, PredVPBB] :
enumerate(ExitVPBB->getPredecessors())) {
1053 if (PredVPBB == MiddleVPBB)
1055 ExitIRI->getOperand(Idx),
1059 Plan, TypeInfo, PredVPBB, ExitIRI->getOperand(Idx), PSE);
1061 ExitIRI->setOperand(Idx, Escape);
1078 const auto &[V, Inserted] = SCEV2VPV.
try_emplace(ExpR->getSCEV(), ExpR);
1081 ExpR->replaceAllUsesWith(V->second);
1082 ExpR->eraseFromParent();
1091 while (!WorkList.
empty()) {
1093 if (!Seen.
insert(Cur).second)
1101 R->eraseFromParent();
1108static std::optional<std::pair<bool, unsigned>>
1111 std::optional<std::pair<bool, unsigned>>>(R)
1114 [](
auto *
I) {
return std::make_pair(
false,
I->getOpcode()); })
1115 .Case<VPWidenIntrinsicRecipe>([](
auto *
I) {
1116 return std::make_pair(
true,
I->getVectorIntrinsicID());
1118 .Case<VPVectorPointerRecipe, VPPredInstPHIRecipe>([](
auto *
I) {
1122 return std::make_pair(
false,
1125 .
Default([](
auto *) {
return std::nullopt; });
1143 Value *V =
Op->getUnderlyingValue();
1149 auto FoldToIRValue = [&]() ->
Value * {
1151 if (OpcodeOrIID->first) {
1152 if (R.getNumOperands() != 2)
1154 unsigned ID = OpcodeOrIID->second;
1155 return Folder.FoldBinaryIntrinsic(
ID,
Ops[0],
Ops[1],
1158 unsigned Opcode = OpcodeOrIID->second;
1167 return Folder.FoldSelect(
Ops[0],
Ops[1],
1170 return Folder.FoldBinOp(Instruction::BinaryOps::Xor,
Ops[0],
1172 case Instruction::Select:
1173 return Folder.FoldSelect(
Ops[0],
Ops[1],
Ops[2]);
1174 case Instruction::ICmp:
1175 case Instruction::FCmp:
1178 case Instruction::GetElementPtr: {
1181 return Folder.FoldGEP(
GEP->getSourceElementType(),
Ops[0],
1191 case Instruction::ExtractElement:
1198 if (
Value *V = FoldToIRValue())
1199 return R.getParent()->getPlan()->getOrAddLiveIn(V);
1205 VPlan *Plan = Def->getParent()->getPlan();
1212 return Def->replaceAllUsesWith(V);
1218 PredPHI->replaceAllUsesWith(
Op);
1226 if (TruncTy == ATy) {
1227 Def->replaceAllUsesWith(
A);
1236 : Instruction::ZExt;
1239 if (
auto *UnderlyingExt = Def->getOperand(0)->getUnderlyingValue()) {
1241 Ext->setUnderlyingValue(UnderlyingExt);
1243 Def->replaceAllUsesWith(Ext);
1245 auto *Trunc = Builder.createWidenCast(Instruction::Trunc,
A, TruncTy);
1246 Def->replaceAllUsesWith(Trunc);
1254 for (
VPUser *U :
A->users()) {
1256 for (
VPValue *VPV : R->definedValues())
1270 Def->replaceAllUsesWith(
X);
1271 Def->eraseFromParent();
1277 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1281 return Def->replaceAllUsesWith(
X);
1285 return Def->replaceAllUsesWith(Def->getOperand(Def->getOperand(0) ==
X));
1289 return Def->replaceAllUsesWith(Def->getOperand(1));
1296 (!Def->getOperand(0)->hasMoreThanOneUniqueUser() ||
1297 !Def->getOperand(1)->hasMoreThanOneUniqueUser()))
1298 return Def->replaceAllUsesWith(
1299 Builder.createLogicalAnd(
X, Builder.createOr(
Y, Z)));
1303 return Def->replaceAllUsesWith(Plan->
getFalse());
1306 return Def->replaceAllUsesWith(
X);
1311 return Def->replaceAllUsesWith(Builder.createNot(
C));
1315 Def->setOperand(0,
C);
1316 Def->setOperand(1,
Y);
1317 Def->setOperand(2,
X);
1326 X->hasMoreThanOneUniqueUser())
1327 return Def->replaceAllUsesWith(
1328 Builder.createLogicalAnd(
X, Builder.createLogicalAnd(
Y, Z)));
1331 return Def->replaceAllUsesWith(
A);
1334 return Def->replaceAllUsesWith(
A);
1337 return Def->replaceAllUsesWith(
1338 Def->getOperand(0) ==
A ? Def->getOperand(1) : Def->getOperand(0));
1342 return Def->replaceAllUsesWith(Builder.createNaryOp(
1344 {A, Plan->getConstantInt(APC->getBitWidth(), APC->exactLogBase2())},
1349 const VPRegionBlock *ParentRegion = Def->getParent()->getParent();
1350 bool IsInReplicateRegion = ParentRegion && ParentRegion->
isReplicator();
1353 return Def->replaceAllUsesWith(Builder.createNaryOp(
1355 {A, Plan->getConstantInt(APC->getBitWidth(), APC->exactLogBase2())}, {},
1356 Def->getDebugLoc()));
1360 return Def->replaceAllUsesWith(
A);
1375 R->setOperand(1,
Y);
1376 R->setOperand(2,
X);
1380 R->replaceAllUsesWith(Cmp);
1385 if (!Cmp->getDebugLoc() && Def->getDebugLoc())
1386 Cmp->setDebugLoc(Def->getDebugLoc());
1398 if (
Op->getNumUsers() > 1 ||
1402 }
else if (!UnpairedCmp) {
1403 UnpairedCmp =
Op->getDefiningRecipe();
1407 UnpairedCmp =
nullptr;
1414 if (NewOps.
size() < Def->getNumOperands()) {
1416 return Def->replaceAllUsesWith(NewAnyOf);
1428 return Def->replaceAllUsesWith(NewCmp);
1436 return Def->replaceAllUsesWith(Def->getOperand(1));
1442 X = Builder.createWidenCast(Instruction::Trunc,
X, WideStepTy);
1443 Def->replaceAllUsesWith(
X);
1453 Def->setOperand(1, Def->getOperand(0));
1454 Def->setOperand(0,
Y);
1459 if (Phi->getOperand(0) == Phi->getOperand(1))
1460 Phi->replaceAllUsesWith(Phi->getOperand(0));
1468 Def->replaceAllUsesWith(
1469 BuildVector->getOperand(BuildVector->getNumOperands() - 1));
1473 return Def->replaceAllUsesWith(
A);
1479 Def->replaceAllUsesWith(
1480 BuildVector->getOperand(BuildVector->getNumOperands() - 2));
1487 Def->replaceAllUsesWith(BuildVector->getOperand(Idx));
1492 Def->replaceAllUsesWith(
1502 "broadcast operand must be single-scalar");
1503 Def->setOperand(0,
C);
1508 if (Phi->getNumOperands() == 1)
1509 Phi->replaceAllUsesWith(Phi->getOperand(0));
1524 return Def->replaceAllUsesWith(
A);
1527 Def->replaceAllUsesWith(Builder.createNaryOp(
1528 Instruction::ExtractElement, {A, LaneToExtract}, Def->getDebugLoc()));
1536 if (Phi->getOperand(1) != Def &&
match(Phi->getOperand(0),
m_ZeroInt()) &&
1537 Phi->getSingleUser() == Def) {
1538 Phi->setOperand(0,
Y);
1539 Def->replaceAllUsesWith(Phi);
1554 Steps->replaceAllUsesWith(Steps->getOperand(0));
1562 Def->replaceUsesWithIf(StartV, [](
const VPUser &U,
unsigned Idx) {
1564 return PhiR && PhiR->isInLoop();
1570 Def->replaceAllUsesWith(
A);
1579 [Def,
A](
VPUser *U) { return U->usesScalars(A) || Def == U; })) {
1580 return Def->replaceAllUsesWith(
A);
1584 return Def->replaceAllUsesWith(
A);
1613 if (RepR && (RepR->isSingleScalar() || RepR->isPredicated()))
1622 !WidenStoreR->isConsecutive()) {
1623 assert(!WidenStoreR->isReverse() &&
1624 "Not consecutive memory recipes shouldn't be reversed");
1625 VPValue *Mask = WidenStoreR->getMask();
1634 {WidenStoreR->getOperand(1)});
1639 &WidenStoreR->getIngredient(), {Extract, WidenStoreR->getAddr()},
1640 true ,
nullptr , {},
1642 ScalarStore->insertBefore(WidenStoreR);
1643 WidenStoreR->eraseFromParent();
1651 RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(),
1652 true ,
nullptr , *RepR ,
1653 *RepR , RepR->getDebugLoc());
1654 Clone->insertBefore(RepOrWidenR);
1656 VPValue *ExtractOp = Clone->getOperand(0);
1662 Clone->setOperand(0, ExtractOp);
1663 RepR->eraseFromParent();
1676 if (!
all_of(RepOrWidenR->users(),
1677 [RepOrWidenR](
const VPUser *U) {
1678 if (auto *VPI = dyn_cast<VPInstruction>(U)) {
1679 unsigned Opcode = VPI->getOpcode();
1680 if (Opcode == VPInstruction::ExtractLastLane ||
1681 Opcode == VPInstruction::ExtractLastPart ||
1682 Opcode == VPInstruction::ExtractPenultimateElement)
1686 return U->usesScalars(RepOrWidenR);
1689 if (Op->getSingleUser() != RepOrWidenR)
1693 auto *IRV = dyn_cast<VPIRValue>(Op);
1694 bool LiveInNeedsBroadcast = IRV && !isa<Constant>(IRV->getValue());
1695 auto *OpR = dyn_cast<VPReplicateRecipe>(Op);
1696 return LiveInNeedsBroadcast || (OpR && OpR->isSingleScalar());
1701 RepOrWidenR->getUnderlyingInstr(), RepOrWidenR->operands(),
1702 true ,
nullptr, *RepOrWidenR);
1703 Clone->insertBefore(RepOrWidenR);
1704 RepOrWidenR->replaceAllUsesWith(Clone);
1706 RepOrWidenR->eraseFromParent();
1742 if (Blend->isNormalized() || !
match(Blend->getMask(0),
m_False()))
1743 UniqueValues.
insert(Blend->getIncomingValue(0));
1744 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
1746 UniqueValues.
insert(Blend->getIncomingValue(
I));
1748 if (UniqueValues.
size() == 1) {
1749 Blend->replaceAllUsesWith(*UniqueValues.
begin());
1750 Blend->eraseFromParent();
1754 if (Blend->isNormalized())
1760 unsigned StartIndex = 0;
1761 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1766 if (Mask->getNumUsers() == 1 && !
match(Mask,
m_False())) {
1773 OperandsWithMask.
push_back(Blend->getIncomingValue(StartIndex));
1775 for (
unsigned I = 0;
I != Blend->getNumIncomingValues(); ++
I) {
1776 if (
I == StartIndex)
1778 OperandsWithMask.
push_back(Blend->getIncomingValue(
I));
1779 OperandsWithMask.
push_back(Blend->getMask(
I));
1784 OperandsWithMask, Blend->getDebugLoc());
1785 NewBlend->insertBefore(&R);
1787 VPValue *DeadMask = Blend->getMask(StartIndex);
1789 Blend->eraseFromParent();
1794 if (NewBlend->getNumOperands() == 3 &&
1796 VPValue *Inc0 = NewBlend->getOperand(0);
1797 VPValue *Inc1 = NewBlend->getOperand(1);
1798 VPValue *OldMask = NewBlend->getOperand(2);
1799 NewBlend->setOperand(0, Inc1);
1800 NewBlend->setOperand(1, Inc0);
1801 NewBlend->setOperand(2, NewMask);
1828 APInt MaxVal = AlignedTC - 1;
1831 unsigned NewBitWidth =
1837 bool MadeChange =
false;
1846 if (!WideIV || !WideIV->isCanonical() ||
1847 WideIV->hasMoreThanOneUniqueUser() ||
1848 NewIVTy == WideIV->getScalarType())
1853 VPUser *SingleUser = WideIV->getSingleUser();
1862 WideIV->setStartValue(NewStart);
1864 WideIV->setStepValue(NewStep);
1870 Cmp->setOperand(1, NewBTC);
1884 return any_of(
Cond->getDefiningRecipe()->operands(), [&Plan, BestVF, BestUF,
1886 return isConditionTrueViaVFAndUF(C, Plan, BestVF, BestUF, PSE);
1899 const SCEV *VectorTripCount =
1904 "Trip count SCEV must be computable");
1925 auto *Term = &ExitingVPBB->
back();
1938 for (
unsigned Part = 0; Part < UF; ++Part) {
1946 Extracts[Part] = Ext;
1958 match(Phi->getBackedgeValue(),
1960 assert(Index &&
"Expected index from ActiveLaneMask instruction");
1973 "Expected one VPActiveLaneMaskPHIRecipe for each unroll part");
1980 "Expected incoming values of Phi to be ActiveLaneMasks");
1985 EntryALM->setOperand(2, ALMMultiplier);
1986 LoopALM->setOperand(2, ALMMultiplier);
1990 ExtractFromALM(EntryALM, EntryExtracts);
1995 ExtractFromALM(LoopALM, LoopExtracts);
1997 Not->setOperand(0, LoopExtracts[0]);
2000 for (
unsigned Part = 0; Part < UF; ++Part) {
2001 Phis[Part]->setStartValue(EntryExtracts[Part]);
2002 Phis[Part]->setBackedgeValue(LoopExtracts[Part]);
2015 auto *Term = &ExitingVPBB->
back();
2022 const SCEV *VectorTripCount =
2028 "Trip count SCEV must be computable");
2053 if (auto *R = dyn_cast<VPWidenIntOrFpInductionRecipe>(&Phi))
2054 return R->isCanonical();
2055 return isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe,
2056 VPFirstOrderRecurrencePHIRecipe, VPPhi>(&Phi);
2062 R->getScalarType());
2064 HeaderR.eraseFromParent();
2068 HeaderR.getVPSingleValue()->replaceAllUsesWith(Phi->getIncomingValue(0));
2069 HeaderR.eraseFromParent();
2079 B->setParent(
nullptr);
2088 if (Exits.
size() != 1) {
2090 "BranchOnTwoConds needs 2 remaining exits");
2092 Term->getOperand(0));
2101 Term->setOperand(1, Plan.
getTrue());
2106 {}, {}, Term->getDebugLoc());
2110 Term->eraseFromParent();
2137 R.getVPSingleValue()->replaceAllUsesWith(Trunc);
2147 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
2148 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
2157 assert(Plan.
getUF() == BestUF &&
"BestUF must match the Plan's UF");
2172 auto TryToPushSinkCandidate = [&](
VPRecipeBase *SinkCandidate) {
2175 if (SinkCandidate == Previous)
2179 !Seen.
insert(SinkCandidate).second ||
2192 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
2195 "only recipes with a single defined value expected");
2210 if (SinkCandidate == FOR)
2213 SinkCandidate->moveAfter(Previous);
2214 Previous = SinkCandidate;
2232 for (
VPUser *U : FOR->users()) {
2238 [&VPDT, HoistPoint](
VPUser *U) {
2239 auto *R = cast<VPRecipeBase>(U);
2240 return HoistPoint == R ||
2241 VPDT.properlyDominates(HoistPoint, R);
2243 "HoistPoint must dominate all users of FOR");
2245 auto NeedsHoisting = [HoistPoint, &VPDT,
2247 VPRecipeBase *HoistCandidate = HoistCandidateV->getDefiningRecipe();
2248 if (!HoistCandidate)
2253 HoistCandidate->
getRegion() == EnclosingLoopRegion) &&
2254 "CFG in VPlan should still be flat, without replicate regions");
2256 if (!Visited.
insert(HoistCandidate).second)
2268 return HoistCandidate;
2277 for (
unsigned I = 0;
I != HoistCandidates.
size(); ++
I) {
2280 "only recipes with a single defined value expected");
2292 if (
auto *R = NeedsHoisting(
Op)) {
2295 if (R->getNumDefinedValues() != 1)
2309 HoistCandidate->moveBefore(*HoistPoint->
getParent(),
2328 VPRecipeBase *Previous = FOR->getBackedgeValue()->getDefiningRecipe();
2331 while (
auto *PrevPhi =
2333 assert(PrevPhi->getParent() == FOR->getParent());
2335 Previous = PrevPhi->getBackedgeValue()->getDefiningRecipe();
2353 {FOR, FOR->getBackedgeValue()});
2355 FOR->replaceAllUsesWith(RecurSplice);
2358 RecurSplice->setOperand(0, FOR);
2364 for (
VPUser *U : RecurSplice->users()) {
2375 B.createNaryOp(Instruction::Sub, {LastActiveLane, One});
2376 VPValue *PenultimateLastIter =
2378 {PenultimateIndex, FOR->getBackedgeValue()});
2383 VPValue *Sel =
B.createSelect(Cmp, LastPrevIter, PenultimateLastIter);
2396 RecurKind RK = PhiR->getRecurrenceKind();
2403 RecWithFlags->dropPoisonGeneratingFlags();
2409struct VPCSEDenseMapInfo :
public DenseMapInfo<VPSingleDefRecipe *> {
2411 return Def == getEmptyKey() || Def == getTombstoneKey();
2422 return GEP->getSourceElementType();
2425 .Case<VPVectorPointerRecipe, VPWidenGEPRecipe>(
2426 [](
auto *
I) {
return I->getSourceElementType(); })
2427 .
Default([](
auto *) {
return nullptr; });
2431 static bool canHandle(
const VPSingleDefRecipe *Def) {
2440 if (!
C || (!
C->first && (
C->second == Instruction::InsertValue ||
2441 C->second == Instruction::ExtractValue)))
2447 return !
Def->mayReadFromMemory();
2451 static unsigned getHashValue(
const VPSingleDefRecipe *Def) {
2452 const VPlan *Plan =
Def->getParent()->getPlan();
2453 VPTypeAnalysis TypeInfo(*Plan);
2456 getGEPSourceElementType(Def), TypeInfo.inferScalarType(Def),
2459 if (RFlags->hasPredicate())
2465 static bool isEqual(
const VPSingleDefRecipe *L,
const VPSingleDefRecipe *R) {
2468 if (
L->getVPDefID() !=
R->getVPDefID() ||
2470 getGEPSourceElementType(L) != getGEPSourceElementType(R) ||
2472 !
equal(
L->operands(),
R->operands()))
2475 "must have valid opcode info for both recipes");
2477 if (LFlags->hasPredicate() &&
2478 LFlags->getPredicate() !=
2484 const VPRegionBlock *RegionL =
L->getRegion();
2485 const VPRegionBlock *RegionR =
R->getRegion();
2488 L->getParent() !=
R->getParent())
2490 const VPlan *Plan =
L->getParent()->getPlan();
2491 VPTypeAnalysis TypeInfo(*Plan);
2492 return TypeInfo.inferScalarType(L) == TypeInfo.inferScalarType(R);
2507 if (!Def || !VPCSEDenseMapInfo::canHandle(Def))
2511 if (!VPDT.
dominates(V->getParent(), VPBB))
2516 Def->replaceAllUsesWith(V);
2535 "Expected vector prehader's successor to be the vector loop region");
2542 return !Op->isDefinedOutsideLoopRegions();
2545 R.moveBefore(*Preheader, Preheader->
end());
2568 VPValue *ResultVPV = R.getVPSingleValue();
2570 unsigned NewResSizeInBits = MinBWs.
lookup(UI);
2571 if (!NewResSizeInBits)
2584 (void)OldResSizeInBits;
2592 VPW->dropPoisonGeneratingFlags();
2594 if (OldResSizeInBits != NewResSizeInBits &&
2599 Ext->insertAfter(&R);
2601 Ext->setOperand(0, ResultVPV);
2602 assert(OldResSizeInBits > NewResSizeInBits &&
"Nothing to shrink?");
2605 "Only ICmps should not need extending the result.");
2615 for (
unsigned Idx = StartIdx; Idx != R.getNumOperands(); ++Idx) {
2616 auto *
Op = R.getOperand(Idx);
2617 unsigned OpSizeInBits =
2619 if (OpSizeInBits == NewResSizeInBits)
2621 assert(OpSizeInBits > NewResSizeInBits &&
"nothing to truncate");
2622 auto [ProcessedIter, IterIsEmpty] = ProcessedTruncs.
try_emplace(
Op);
2624 R.setOperand(Idx, ProcessedIter->second);
2632 Builder.setInsertPoint(&R);
2634 Builder.createWidenCast(Instruction::Trunc,
Op, NewResTy);
2635 ProcessedIter->second = NewOp;
2636 R.setOperand(Idx, NewOp);
2651 assert(VPBB->getNumSuccessors() == 2 &&
2652 "Two successors expected for BranchOnCond");
2653 unsigned RemovedIdx;
2664 "There must be a single edge between VPBB and its successor");
2673 VPBB->back().eraseFromParent();
2735 VPValue *StartV = CanonicalIVPHI->getStartValue();
2737 auto *CanonicalIVIncrement =
2741 CanonicalIVIncrement->dropPoisonGeneratingFlags();
2742 DebugLoc DL = CanonicalIVIncrement->getDebugLoc();
2752 VPValue *TripCount, *IncrementValue;
2757 IncrementValue = CanonicalIVIncrement;
2763 IncrementValue = CanonicalIVPHI;
2767 auto *EntryIncrement = Builder.createOverflowingOp(
2775 {EntryIncrement, TC, ALMMultiplier},
DL,
2776 "active.lane.mask.entry");
2782 LaneMaskPhi->insertAfter(CanonicalIVPHI);
2787 Builder.setInsertPoint(OriginalTerminator);
2788 auto *InLoopIncrement =
2790 {IncrementValue}, {
false,
false},
DL);
2792 {InLoopIncrement, TripCount, ALMMultiplier},
2793 DL,
"active.lane.mask.next");
2798 auto *NotMask = Builder.createNot(ALM,
DL);
2811 auto *FoundWidenCanonicalIVUser =
find_if(
2815 "Must have at most one VPWideCanonicalIVRecipe");
2816 if (FoundWidenCanonicalIVUser !=
2818 auto *WideCanonicalIV =
2820 WideCanonicalIVs.
push_back(WideCanonicalIV);
2828 if (WidenOriginalIV && WidenOriginalIV->isCanonical())
2829 WideCanonicalIVs.
push_back(WidenOriginalIV);
2835 for (
auto *Wide : WideCanonicalIVs) {
2836 for (
VPUser *U : Wide->users()) {
2841 assert(VPI->getOperand(0) == Wide &&
2842 "WidenCanonicalIV must be the first operand of the compare");
2843 assert(!HeaderMask &&
"Multiple header masks found?");
2851 VPlan &Plan,
bool UseActiveLaneMaskForControlFlow,
2854 UseActiveLaneMaskForControlFlow) &&
2855 "DataAndControlFlowWithoutRuntimeCheck implies "
2856 "UseActiveLaneMaskForControlFlow");
2859 auto *FoundWidenCanonicalIVUser =
find_if(
2861 assert(FoundWidenCanonicalIVUser &&
2862 "Must have widened canonical IV when tail folding!");
2864 auto *WideCanonicalIV =
2867 if (UseActiveLaneMaskForControlFlow) {
2877 nullptr,
"active.lane.mask");
2893 template <
typename OpTy>
bool match(OpTy *V)
const {
2904template <
typename Op0_t,
typename Op1_t>
2923 VPValue *Addr, *Mask, *EndPtr;
2926 auto AdjustEndPtr = [&CurRecipe, &EVL](
VPValue *EndPtr) {
2928 EVLEndPtr->insertBefore(&CurRecipe);
2929 EVLEndPtr->setOperand(1, &EVL);
2933 if (
match(&CurRecipe,
2947 LoadR->insertBefore(&CurRecipe);
2949 Intrinsic::experimental_vp_reverse, {LoadR, Plan->
getTrue(), &EVL},
2958 StoredVal, EVL, Mask);
2960 if (
match(&CurRecipe,
2966 Intrinsic::experimental_vp_reverse,
2967 {ReversedVal, Plan->
getTrue(), &EVL},
2971 AdjustEndPtr(EndPtr), NewReverse, EVL,
2976 if (Rdx->isConditional() &&
2981 if (Interleave->getMask() &&
2986 if (
match(&CurRecipe,
2995 Intrinsic::vp_merge, {Mask,
LHS,
RHS, &EVL},
3013 VPValue *HeaderMask =
nullptr, *EVL =
nullptr;
3018 HeaderMask = R.getVPSingleValue();
3030 NewR->insertBefore(R);
3031 for (
auto [Old, New] :
3032 zip_equal(R->definedValues(), NewR->definedValues()))
3033 Old->replaceAllUsesWith(New);
3040 R->eraseFromParent();
3057 "User of VF that we can't transform to EVL.");
3063 [&LoopRegion, &Plan](
VPUser *U) {
3065 m_c_Add(m_Specific(LoopRegion->getCanonicalIV()),
3066 m_Specific(&Plan.getVFxUF()))) ||
3067 isa<VPWidenPointerInductionRecipe>(U);
3069 "Only users of VFxUF should be VPWidenPointerInductionRecipe and the "
3070 "increment of the canonical induction.");
3086 MaxEVL = Builder.createScalarZExtOrTrunc(
3090 Builder.setInsertPoint(Header, Header->getFirstNonPhi());
3091 VPValue *PrevEVL = Builder.createScalarPhi(
3105 Intrinsic::experimental_vp_splice,
3106 {V1, V2, Imm, Plan.
getTrue(), PrevEVL, &EVL},
3110 R.getVPSingleValue()->replaceAllUsesWith(VPSplice);
3127 VPValue *EVLMask = Builder.createICmp(
3188 VPlan &Plan,
const std::optional<unsigned> &MaxSafeElements) {
3196 VPValue *StartV = CanonicalIVPHI->getStartValue();
3200 EVLPhi->insertAfter(CanonicalIVPHI);
3201 VPBuilder Builder(Header, Header->getFirstNonPhi());
3204 VPPhi *AVLPhi = Builder.createScalarPhi(
3208 if (MaxSafeElements) {
3218 auto *CanonicalIVIncrement =
3220 Builder.setInsertPoint(CanonicalIVIncrement);
3224 OpVPEVL = Builder.createScalarZExtOrTrunc(
3225 OpVPEVL, CanIVTy, I32Ty, CanonicalIVIncrement->getDebugLoc());
3227 auto *NextEVLIV = Builder.createOverflowingOp(
3228 Instruction::Add, {OpVPEVL, EVLPhi},
3229 {CanonicalIVIncrement->hasNoUnsignedWrap(),
3230 CanonicalIVIncrement->hasNoSignedWrap()},
3231 CanonicalIVIncrement->getDebugLoc(),
"index.evl.next");
3232 EVLPhi->addOperand(NextEVLIV);
3234 VPValue *NextAVL = Builder.createOverflowingOp(
3235 Instruction::Sub, {AVLPhi, OpVPEVL}, {
true,
false},
3244 CanonicalIVPHI->replaceAllUsesWith(EVLPhi);
3245 CanonicalIVIncrement->setOperand(0, CanonicalIVPHI);
3259 assert(!EVLPhi &&
"Found multiple EVL PHIs. Only one expected");
3270 [[maybe_unused]]
bool FoundAVL =
3273 assert(FoundAVL &&
"Didn't find AVL?");
3281 [[maybe_unused]]
bool FoundAVLNext =
3284 assert(FoundAVLNext &&
"Didn't find AVL backedge?");
3295 VPValue *Backedge = CanonicalIV->getIncomingValue(1);
3298 "Unexpected canonical iv");
3304 CanonicalIV->eraseFromParent();
3318 "Expected BranchOnCond with ICmp comparing EVL increment with vector "
3323 LatchExitingBr->setOperand(0,
3335 return R->getRegion() ||
3339 for (
const SCEV *Stride : StridesMap.
values()) {
3342 const APInt *StrideConst;
3365 RewriteMap[StrideV] = PSE.
getSCEV(StrideV);
3372 const SCEV *ScevExpr = ExpSCEV->getSCEV();
3375 if (NewSCEV != ScevExpr) {
3377 ExpSCEV->replaceAllUsesWith(NewExp);
3386 const std::function<
bool(
BasicBlock *)> &BlockNeedsPredication) {
3390 auto CollectPoisonGeneratingInstrsInBackwardSlice([&](
VPRecipeBase *Root) {
3395 while (!Worklist.
empty()) {
3398 if (!Visited.
insert(CurRec).second)
3420 RecWithFlags->isDisjoint()) {
3423 Instruction::Add, {
A,
B}, {
false,
false},
3424 RecWithFlags->getDebugLoc());
3425 New->setUnderlyingValue(RecWithFlags->getUnderlyingValue());
3426 RecWithFlags->replaceAllUsesWith(New);
3427 RecWithFlags->eraseFromParent();
3430 RecWithFlags->dropPoisonGeneratingFlags();
3435 assert((!Instr || !Instr->hasPoisonGeneratingFlags()) &&
3436 "found instruction with poison generating flags not covered by "
3437 "VPRecipeWithIRFlags");
3442 if (
VPRecipeBase *OpDef = Operand->getDefiningRecipe())
3454 Instruction &UnderlyingInstr = WidenRec->getIngredient();
3455 VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe();
3456 if (AddrDef && WidenRec->isConsecutive() &&
3457 BlockNeedsPredication(UnderlyingInstr.
getParent()))
3458 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
3460 VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe();
3464 InterleaveRec->getInterleaveGroup();
3465 bool NeedPredication =
false;
3467 I < NumMembers; ++
I) {
3470 NeedPredication |= BlockNeedsPredication(Member->getParent());
3473 if (NeedPredication)
3474 CollectPoisonGeneratingInstrsInBackwardSlice(AddrDef);
3486 if (InterleaveGroups.empty())
3493 for (
const auto *IG : InterleaveGroups) {
3499 StoredValues.
push_back(StoreR->getStoredValue());
3500 for (
unsigned I = 1;
I < IG->getFactor(); ++
I) {
3507 StoredValues.
push_back(StoreR->getStoredValue());
3511 bool NeedsMaskForGaps =
3512 (IG->requiresScalarEpilogue() && !ScalarEpilogueAllowed) ||
3513 (!StoredValues.
empty() && !IG->isFull());
3525 VPValue *Addr = Start->getAddr();
3534 assert(IG->getIndex(IRInsertPos) != 0 &&
3535 "index of insert position shouldn't be zero");
3539 IG->getIndex(IRInsertPos),
3543 Addr =
B.createNoWrapPtrAdd(InsertPos->getAddr(), OffsetVPV, NW);
3549 if (IG->isReverse()) {
3552 -(int64_t)IG->getFactor(), NW, InsertPos->getDebugLoc());
3553 ReversePtr->insertBefore(InsertPos);
3557 InsertPos->getMask(), NeedsMaskForGaps,
3558 InterleaveMD, InsertPos->getDebugLoc());
3559 VPIG->insertBefore(InsertPos);
3562 for (
unsigned i = 0; i < IG->getFactor(); ++i)
3565 if (!Member->getType()->isVoidTy()) {
3624 AddOp = Instruction::Add;
3625 MulOp = Instruction::Mul;
3627 AddOp =
ID.getInductionOpcode();
3628 MulOp = Instruction::FMul;
3636 Step = Builder.createScalarCast(Instruction::Trunc, Step, Ty,
DL);
3637 Start = Builder.createScalarCast(Instruction::Trunc, Start, Ty,
DL);
3639 Flags.dropPoisonGeneratingFlags();
3648 Init = Builder.createWidenCast(Instruction::UIToFP,
Init, StepTy);
3653 Init = Builder.createNaryOp(MulOp, {
Init, SplatStep}, Flags);
3654 Init = Builder.createNaryOp(AddOp, {SplatStart,
Init}, Flags,
3660 WidePHI->insertBefore(WidenIVR);
3671 Builder.setInsertPoint(R->getParent(), std::next(R->getIterator()));
3675 VF = Builder.createScalarCast(Instruction::CastOps::UIToFP, VF, StepTy,
3678 VF = Builder.createScalarZExtOrTrunc(VF, StepTy,
3681 Inc = Builder.createNaryOp(MulOp, {Step, VF}, Flags);
3688 auto *
Next = Builder.createNaryOp(AddOp, {Prev, Inc}, Flags,
3691 WidePHI->addOperand(
Next);
3719 VPlan *Plan = R->getParent()->getPlan();
3720 VPValue *Start = R->getStartValue();
3721 VPValue *Step = R->getStepValue();
3722 VPValue *VF = R->getVFValue();
3724 assert(R->getInductionDescriptor().getKind() ==
3726 "Not a pointer induction according to InductionDescriptor!");
3729 "Recipe should have been replaced");
3735 VPPhi *ScalarPtrPhi = Builder.createScalarPhi(Start,
DL,
"pointer.phi");
3739 Builder.setInsertPoint(R->getParent(), R->getParent()->getFirstNonPhi());
3742 Offset = Builder.createOverflowingOp(Instruction::Mul, {
Offset, Step});
3743 VPValue *PtrAdd = Builder.createNaryOp(
3745 R->replaceAllUsesWith(PtrAdd);
3750 VF = Builder.createScalarZExtOrTrunc(VF, StepTy, TypeInfo.
inferScalarType(VF),
3752 VPValue *Inc = Builder.createOverflowingOp(Instruction::Mul, {Step, VF});
3755 Builder.createPtrAdd(ScalarPtrPhi, Inc,
DL,
"ptr.ind");
3764 if (!R->isReplicator())
3768 R->dissolveToCFGLoop();
3789 assert(Br->getNumOperands() == 2 &&
3790 "BranchOnTwoConds must have exactly 2 conditions");
3794 assert(Successors.size() == 3 &&
3795 "BranchOnTwoConds must have exactly 3 successors");
3800 VPValue *Cond0 = Br->getOperand(0);
3801 VPValue *Cond1 = Br->getOperand(1);
3806 !BrOnTwoCondsBB->
getParent() &&
"regions must already be dissolved");
3819 Br->eraseFromParent();
3842 WidenIVR->replaceAllUsesWith(PtrAdd);
3855 for (
unsigned I = 1;
I != Blend->getNumIncomingValues(); ++
I)
3856 Select = Builder.createSelect(Blend->getMask(
I),
3857 Blend->getIncomingValue(
I),
Select,
3858 R.getDebugLoc(),
"predphi");
3859 Blend->replaceAllUsesWith(
Select);
3874 for (
VPValue *
Op : LastActiveL->operands()) {
3875 VPValue *NotMask = Builder.createNot(
Op, LastActiveL->getDebugLoc());
3880 VPValue *FirstInactiveLane = Builder.createNaryOp(
3882 LastActiveL->getDebugLoc(),
"first.inactive.lane");
3887 VPValue *LastLane = Builder.createNaryOp(
3888 Instruction::Sub, {FirstInactiveLane, One},
3889 LastActiveL->getDebugLoc(),
"last.active.lane");
3900 DebugLoc DL = BranchOnCountInst->getDebugLoc();
3903 ToRemove.push_back(BranchOnCountInst);
3918 ? Instruction::UIToFP
3919 : Instruction::Trunc;
3920 VectorStep = Builder.createWidenCast(CastOp, VectorStep, IVTy);
3926 Builder.createWidenCast(Instruction::Trunc, ScalarStep, IVTy);
3931 Flags = {VPI->getFastMathFlags()};
3936 MulOpc, {VectorStep, ScalarStep}, Flags, R.getDebugLoc());
3938 VPI->replaceAllUsesWith(VectorStep);
3944 R->eraseFromParent();
3957 "unsupported early exit VPBB");
3968 "Terminator must be be BranchOnCond");
3969 VPValue *CondOfEarlyExitingVPBB =
3971 auto *CondToEarlyExit = TrueSucc == EarlyExitVPBB
3972 ? CondOfEarlyExitingVPBB
3973 : Builder.createNot(CondOfEarlyExitingVPBB);
3987 VPBuilder EarlyExitB(VectorEarlyExitVPBB);
3992 unsigned EarlyExitIdx = ExitIRI->getNumOperands() - 1;
3993 if (ExitIRI->getNumOperands() != 1) {
3996 ExitIRI->extractLastLaneOfLastPartOfFirstOperand(MiddleBuilder);
3999 VPValue *IncomingFromEarlyExit = ExitIRI->getOperand(EarlyExitIdx);
4008 ExitIRI->
setOperand(EarlyExitIdx, IncomingFromEarlyExit);
4018 "Unexpected terminator");
4019 auto *IsLatchExitTaken =
4021 LatchExitingBranch->getOperand(1));
4023 DebugLoc LatchDL = LatchExitingBranch->getDebugLoc();
4024 LatchExitingBranch->eraseFromParent();
4026 Builder.setInsertPoint(LatchVPBB);
4028 {IsEarlyExitTaken, IsLatchExitTaken}, LatchDL);
4030 LatchVPBB->
setSuccessors({VectorEarlyExitVPBB, MiddleVPBB, HeaderVPBB});
4041 Type *RedTy = Ctx.Types.inferScalarType(Red);
4042 VPValue *VecOp = Red->getVecOp();
4045 auto IsExtendedRedValidAndClampRange =
4057 if (Red->isPartialReduction()) {
4062 ExtRedCost = Ctx.TTI.getPartialReductionCost(
4063 Opcode, SrcTy,
nullptr, RedTy, VF, ExtKind,
4066 ExtRedCost = Ctx.TTI.getExtendedReductionCost(
4067 Opcode, ExtOpc == Instruction::CastOps::ZExt, RedTy, SrcVecTy,
4068 Red->getFastMathFlags(),
CostKind);
4070 return ExtRedCost.
isValid() && ExtRedCost < ExtCost + RedCost;
4078 IsExtendedRedValidAndClampRange(
4081 Ctx.Types.inferScalarType(
A)))
4099 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4102 Type *RedTy = Ctx.Types.inferScalarType(Red);
4105 auto IsMulAccValidAndClampRange =
4112 Ext0 ? Ctx.Types.inferScalarType(Ext0->getOperand(0)) : RedTy;
4115 if (Red->isPartialReduction()) {
4117 Ext1 ? Ctx.Types.inferScalarType(Ext1->getOperand(0)) :
nullptr;
4120 MulAccCost = Ctx.TTI.getPartialReductionCost(
4121 Opcode, SrcTy, SrcTy2, RedTy, VF,
4131 if (Ext0 && Ext1 && Ext0->getOpcode() != Ext1->getOpcode())
4135 !Ext0 || Ext0->getOpcode() == Instruction::CastOps::ZExt;
4137 MulAccCost = Ctx.TTI.getMulAccReductionCost(IsZExt, Opcode, RedTy,
4145 ExtCost += Ext0->computeCost(VF, Ctx);
4147 ExtCost += Ext1->computeCost(VF, Ctx);
4149 ExtCost += OuterExt->computeCost(VF, Ctx);
4151 return MulAccCost.
isValid() &&
4152 MulAccCost < ExtCost + MulCost + RedCost;
4157 VPValue *VecOp = Red->getVecOp();
4191 Builder.createWidenCast(Instruction::CastOps::Trunc, ValB, NarrowTy);
4192 Type *WideTy = Ctx.Types.inferScalarType(ExtA);
4193 ValB = ExtB = Builder.createWidenCast(ExtOpc, Trunc, WideTy);
4194 Mul->setOperand(1, ExtB);
4204 ExtendAndReplaceConstantOp(RecipeA, RecipeB,
B,
Mul);
4209 IsMulAccValidAndClampRange(
Mul, RecipeA, RecipeB,
nullptr)) {
4216 if (!
Sub && IsMulAccValidAndClampRange(
Mul,
nullptr,
nullptr,
nullptr))
4233 ExtendAndReplaceConstantOp(Ext0, Ext1,
B,
Mul);
4242 (Ext->getOpcode() == Ext0->getOpcode() || Ext0 == Ext1) &&
4243 Ext0->getOpcode() == Ext1->getOpcode() &&
4244 IsMulAccValidAndClampRange(
Mul, Ext0, Ext1, Ext) &&
Mul->hasOneUse()) {
4246 Ext0->getOpcode(), Ext0->getOperand(0), Ext->getResultType(),
nullptr,
4247 *Ext0, *Ext0, Ext0->getDebugLoc());
4248 NewExt0->insertBefore(Ext0);
4253 Ext->getResultType(),
nullptr, *Ext1,
4254 *Ext1, Ext1->getDebugLoc());
4257 Mul->setOperand(0, NewExt0);
4258 Mul->setOperand(1, NewExt1);
4259 Red->setOperand(1,
Mul);
4272 auto IP = std::next(Red->getIterator());
4273 auto *VPBB = Red->getParent();
4283 Red->replaceAllUsesWith(AbstractR);
4313 for (
VPValue *VPV : VPValues) {
4322 if (
User->usesScalars(VPV))
4325 HoistPoint = HoistBlock->
begin();
4329 "All users must be in the vector preheader or dominated by it");
4334 VPV->replaceUsesWithIf(Broadcast,
4335 [VPV, Broadcast](
VPUser &U,
unsigned Idx) {
4336 return Broadcast != &U && !U.usesScalars(VPV);
4353 if (RepR->isPredicated() || !RepR->isSingleScalar() ||
4354 RepR->getOpcode() != Instruction::Load)
4357 VPValue *Addr = RepR->getOperand(0);
4360 if (!
Loc.AATags.Scope)
4365 if (R.mayWriteToMemory()) {
4367 if (!
Loc || !
Loc->AATags.Scope || !
Loc->AATags.NoAlias)
4375 for (
auto &[LoadRecipe, LoadLoc] : CandidateLoads) {
4379 const AAMDNodes &LoadAA = LoadLoc.AATags;
4395 return CommonMetadata;
4398template <
unsigned Opcode>
4403 static_assert(Opcode == Instruction::Load || Opcode == Instruction::Store,
4404 "Only Load and Store opcodes supported");
4405 constexpr bool IsLoad = (Opcode == Instruction::Load);
4415 if (!RepR || RepR->getOpcode() != Opcode || !RepR->isPredicated())
4419 VPValue *Addr = RepR->getOperand(IsLoad ? 0 : 1);
4422 RecipesByAddress[AddrSCEV].push_back(RepR);
4429 return TypeInfo.
inferScalarType(IsLoad ? Recipe : Recipe->getOperand(0));
4431 for (
auto &[Addr, Recipes] : RecipesByAddress) {
4432 if (Recipes.size() < 2)
4440 VPValue *MaskI = RecipeI->getMask();
4441 Type *TypeI = GetLoadStoreValueType(RecipeI);
4447 bool HasComplementaryMask =
false;
4452 VPValue *MaskJ = RecipeJ->getMask();
4453 Type *TypeJ = GetLoadStoreValueType(RecipeJ);
4454 if (TypeI == TypeJ) {
4464 if (HasComplementaryMask) {
4465 assert(Group.
size() >= 2 &&
"must have at least 2 entries");
4475template <
typename InstType>
4495 for (
auto &Group :
Groups) {
4520 LoadWithMinAlign->getUnderlyingInstr(), {EarliestLoad->getOperand(0)},
4521 false,
nullptr, *EarliestLoad,
4524 UnpredicatedLoad->insertBefore(EarliestLoad);
4528 Load->replaceAllUsesWith(UnpredicatedLoad);
4529 Load->eraseFromParent();
4539 if (!StoreLoc || !StoreLoc->AATags.Scope)
4545 StoresToSink.
end());
4549 SinkStoreInfo SinkInfo(StoresToSinkSet, *StoresToSink[0], PSE, L, TypeInfo);
4564 for (
auto &Group :
Groups) {
4581 VPValue *SelectedValue = Group[0]->getOperand(0);
4584 for (
unsigned I = 1;
I < Group.size(); ++
I) {
4585 VPValue *Mask = Group[
I]->getMask();
4587 SelectedValue = Builder.createSelect(Mask,
Value, SelectedValue,
4595 auto *UnpredicatedStore =
4597 {SelectedValue, LastStore->getOperand(1)},
4599 nullptr, *LastStore, CommonMetadata);
4600 UnpredicatedStore->insertBefore(*InsertBB, LastStore->
getIterator());
4604 Store->eraseFromParent();
4611 assert(Plan.
hasVF(BestVF) &&
"BestVF is not available in Plan");
4612 assert(Plan.
hasUF(BestUF) &&
"BestUF is not available in Plan");
4646 auto *TCMO = Builder.createNaryOp(
4674 auto UsesVectorOrInsideReplicateRegion = [DefR, LoopRegion](
VPUser *U) {
4676 return !U->usesScalars(DefR) || ParentRegion != LoopRegion;
4683 none_of(DefR->users(), UsesVectorOrInsideReplicateRegion))
4693 DefR->replaceUsesWithIf(
4694 BuildVector, [BuildVector, &UsesVectorOrInsideReplicateRegion](
4696 return &U != BuildVector && UsesVectorOrInsideReplicateRegion(&U);
4710 for (
VPValue *Def : R.definedValues()) {
4723 auto IsCandidateUnpackUser = [Def](
VPUser *U) {
4725 return U->usesScalars(Def) &&
4728 if (
none_of(Def->users(), IsCandidateUnpackUser))
4735 Unpack->insertAfter(&R);
4736 Def->replaceUsesWithIf(Unpack,
4737 [&IsCandidateUnpackUser](
VPUser &U,
unsigned) {
4738 return IsCandidateUnpackUser(&U);
4748 bool RequiresScalarEpilogue) {
4768 if (TailByMasking) {
4769 TC = Builder.createNaryOp(
4771 {TC, Builder.createNaryOp(Instruction::Sub,
4782 Builder.createNaryOp(Instruction::URem, {TC, Step},
4791 if (RequiresScalarEpilogue) {
4793 "requiring scalar epilogue is not supported with fail folding");
4796 R = Builder.createSelect(IsZero, Step, R);
4799 VPValue *Res = Builder.createNaryOp(
4818 Builder.createElementCount(TCTy, VFEC * Plan.
getUF());
4825 VPValue *RuntimeVF = Builder.createElementCount(TCTy, VFEC);
4829 BC, [&VF](
VPUser &U,
unsigned) {
return !U.usesScalars(&VF); });
4834 VPValue *MulByUF = Builder.createOverflowingOp(
4835 Instruction::Mul, {RuntimeVF, UF}, {
true,
false});
4844 BasicBlock *EntryBB = Entry->getIRBasicBlock();
4852 const SCEV *Expr = ExpSCEV->getSCEV();
4855 ExpandedSCEVs[ExpSCEV->getSCEV()] = Res;
4860 ExpSCEV->eraseFromParent();
4863 "VPExpandSCEVRecipes must be at the beginning of the entry block, "
4864 "after any VPIRInstructions");
4867 auto EI = Entry->begin();
4877 return ExpandedSCEVs;
4893 return Member0Op == OpV;
4895 return !W->getMask() && Member0Op == OpV;
4897 return IR->getInterleaveGroup()->isFull() &&
IR->getVPValue(Idx) == OpV;
4908 if (!InterleaveR || InterleaveR->
getMask())
4911 Type *GroupElementTy =
nullptr;
4915 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
4916 return TypeInfo.inferScalarType(Op) == GroupElementTy;
4923 [&TypeInfo, GroupElementTy](
VPValue *
Op) {
4924 return TypeInfo.inferScalarType(Op) == GroupElementTy;
4933 return IG->getFactor() == VFMin && IG->getNumMembers() == VFMin &&
4934 GroupSize == VectorRegWidth;
4942 return RepR && RepR->isSingleScalar();
4949 auto *R = V->getDefiningRecipe();
4957 for (
unsigned Idx = 0,
E = WideMember0->getNumOperands(); Idx !=
E; ++Idx)
4958 WideMember0->setOperand(
4967 auto *LI =
cast<LoadInst>(LoadGroup->getInterleaveGroup()->getInsertPos());
4969 *LI, LoadGroup->getAddr(), LoadGroup->getMask(),
true,
4970 false, {}, LoadGroup->getDebugLoc());
4971 L->insertBefore(LoadGroup);
4977 assert(RepR->isSingleScalar() &&
4979 "must be a single scalar load");
4980 NarrowedOps.
insert(RepR);
4985 VPValue *PtrOp = WideLoad->getAddr();
4987 PtrOp = VecPtr->getOperand(0);
4992 nullptr, {}, *WideLoad);
4993 N->insertBefore(WideLoad);
5023 if (R.mayWriteToMemory() && !InterleaveR)
5045 if (InterleaveR->getStoredValues().empty())
5050 auto *Member0 = InterleaveR->getStoredValues()[0];
5060 VPRecipeBase *DefR = Op.value()->getDefiningRecipe();
5063 auto *IR = dyn_cast<VPInterleaveRecipe>(DefR);
5064 return IR && IR->getInterleaveGroup()->isFull() &&
5065 IR->getVPValue(Op.index()) == Op.value();
5077 for (
const auto &[
I, V] :
enumerate(InterleaveR->getStoredValues())) {
5079 if (!R || R->getOpcode() != WideMember0->getOpcode() ||
5080 R->getNumOperands() > 2)
5083 [WideMember0, Idx =
I](
const auto &
P) {
5084 const auto &[OpIdx, OpV] = P;
5085 return !canNarrowLoad(WideMember0, OpIdx, OpV, Idx);
5092 if (StoreGroups.
empty())
5098 for (
auto *StoreGroup : StoreGroups) {
5104 *
SI, StoreGroup->getAddr(), Res,
nullptr,
true,
5105 false, {}, StoreGroup->getDebugLoc());
5106 S->insertBefore(StoreGroup);
5107 StoreGroup->eraseFromParent();
5122 Instruction::Mul, {VScale, UF}, {
true,
false});
5126 Inc->setOperand(1, UF);
5145 "must have a BranchOnCond");
5148 if (VF.
isScalable() && VScaleForTuning.has_value())
5149 VectorStep *= *VScaleForTuning;
5150 assert(VectorStep > 0 &&
"trip count should not be zero");
5154 MiddleTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
5167 if (WideIntOrFp && WideIntOrFp->getTruncInst())
5174 if (!WideIntOrFp || !WideIntOrFp->isCanonical()) {
5177 Start, VectorTC, Step);
5200 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
5210 IVEndValues[WideIVR] = EndValue;
5211 ResumePhiR->setOperand(0, EndValue);
5212 ResumePhiR->setName(
"bc.resume.val");
5219 "should only skip truncated wide inductions");
5227 auto *ResumeFromVectorLoop = VectorPhiR->getBackedgeValue();
5229 "Cannot handle loops with uncountable early exits");
5235 "vector.recur.extract");
5237 ResumePhiR->setName(IsFOR ?
"scalar.recur.init" :
"bc.merge.rdx");
5238 ResumePhiR->setOperand(0, ResumeFromVectorLoop);
5247 VPBuilder ScalarPHBuilder(ScalarPHVPBB);
5248 VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
5260 "Cannot handle loops with uncountable early exits");
5333 make_range(MiddleVPBB->getFirstNonPhi(), MiddleVPBB->end()))) {
5347 "vector.recur.extract.for.phi");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file implements a class to represent arbitrary precision integral constant values and operations...
ReachingDefInfo InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static bool isEqual(const Function &Caller, const Function &Callee)
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE)
iv Induction Variable Users
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Legalize the Machine IR a function s Machine IR
static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, ScalarEvolution &SE)
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first DebugLoc that has line number information, given a range of instructions.
This file provides utility analysis objects describing memory locations.
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > & Cond
This is the interface for a metadata-based scoped no-alias analysis.
This file defines generic set operations that may be used on set's of different types,...
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file implements the TypeSwitch template, which mimics a switch() statement whose cases are type ...
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file declares the class VPlanVerifier, which contains utility functions to check the consistency...
This file contains the declarations of the Vectorization Plan base classes:
static const X86InstrFMA3Group Groups[]
static const uint32_t IV[8]
Helper for extra no-alias checks via known-safe recipe and SCEV.
SinkStoreInfo(const SmallPtrSetImpl< VPRecipeBase * > &ExcludeRecipes, VPReplicateRecipe &GroupLeader, PredicatedScalarEvolution &PSE, const Loop &L, VPTypeAnalysis &TypeInfo)
bool shouldSkip(VPRecipeBase &R) const
Return true if R should be skipped during alias checking, either because it's in the exclude set or b...
Class for arbitrary precision integers.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
APInt abs() const
Get the absolute value.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
const T & front() const
front - Get the first element.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class represents a function call, abstracting a target machine's calling convention.
@ ICMP_ULT
unsigned less than
@ ICMP_ULE
unsigned less or equal
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V, bool ImplicitTrunc=false)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
static DebugLoc getCompilerGenerated()
static DebugLoc getUnknown()
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
Utility class for floating point operations which can have information about relaxed accuracy require...
Represents flags for the getelementptr instruction/expression.
GEPNoWrapFlags withoutNoUnsignedWrap() const
static GEPNoWrapFlags none()
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
A struct for saving information about induction variables.
InductionKind
This enum represents the kinds of inductions that we support.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
uint32_t getNumMembers() const
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Represents a single loop in the control flow graph.
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
This class implements a map that also provides access to all stored values in a deterministic order.
ValueT lookup(const KeyT &Key) const
Representation for a specific memory location.
AAMDNodes AATags
The metadata nodes which describes the aliasing of the location (each member is null if that kind of ...
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
RegionT * getParent() const
Get the parent of the Region.
This class uses information about analyze scalars to rewrite expressions in canonical form.
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
static const SCEV * rewrite(const SCEV *Scev, ScalarEvolution &SE, ValueToSCEVMapTy &Map)
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
static LLVM_ABI bool mayAliasInScopes(const MDNode *Scopes, const MDNode *NoAlias)
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Provides information about what library functions are available for the current target.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize get(ScalarTy Quantity, bool Scalable)
This class implements a switch-like dispatch statement for a value of 'T' using dyn_cast functionalit...
TypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
A recipe for generating the active lane mask for the vector loop that is used to predicate the vector...
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
RecipeListTy::iterator iterator
Instruction iterators...
iterator begin()
Recipe iterator methods.
iterator_range< iterator > phis()
Returns an iterator range over the PHI-like recipes in the block.
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
VPRegionBlock * getEnclosingLoopRegion()
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
const VPRecipeBase & back() const
A recipe for vectorizing a phi-node as a sequence of mask-based select instructions.
VPValue * getMask(unsigned Idx) const
Return mask number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void setMask(unsigned Idx, VPValue *V)
Set mask number Idx to V.
bool isNormalized() const
A normalized blend is one that has an odd number of operands, whereby the first operand does not have...
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
void setSuccessors(ArrayRef< VPBlockBase * > NewSuccs)
Set each VPBasicBlock in NewSuccss as successor of this VPBlockBase.
VPRegionBlock * getParent()
const VPBasicBlock * getExitingBasicBlock() const
size_t getNumSuccessors() const
size_t getNumPredecessors() const
void setPredecessors(ArrayRef< VPBlockBase * > NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
const VPBlocksTy & getPredecessors() const
const std::string & getName() const
void clearSuccessors()
Remove all the successors of this block.
VPBlockBase * getSinglePredecessor() const
const VPBasicBlock * getEntryBasicBlock() const
void setParent(VPRegionBlock *P)
VPBlockBase * getSingleHierarchicalPredecessor()
VPBlockBase * getSingleSuccessor() const
const VPBlocksTy & getSuccessors() const
static auto blocksOnly(const T &Range)
Return an iterator range over Range which only includes BlockTy blocks.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To, VPBlockBase *BlockPtr)
Inserts BlockPtr on the edge between From and To.
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBases IfTrue and IfFalse after BlockPtr.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
A recipe for generating conditional branches on the bits of a mask.
RAII object that stores the current insertion point and restores it when the object is destroyed.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createScalarZExtOrTrunc(VPValue *Op, Type *ResultTy, Type *SrcTy, DebugLoc DL)
VPValue * createElementCount(Type *Ty, ElementCount EC)
VPInstruction * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, DebugLoc DL, const VPIRFlags &Flags={}, const VPIRMetadata &Metadata={})
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPInstruction * createOverflowingOp(unsigned Opcode, ArrayRef< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags={false, false}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPIRValue *Start, VPValue *Current, VPValue *Step, const Twine &Name="")
Convert the input value Current to the corresponding value of an induction with Start and Step values...
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
Canonical scalar induction phi of the vector loop.
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
ArrayRef< VPRecipeValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
bool properlyDominates(const VPRecipeBase *A, const VPRecipeBase *B)
A recipe for generating the phi node for the current index of elements, adjusted in accordance with E...
A recipe to combine multiple recipes into a single 'expression' recipe, which should be considered a ...
A special type of VPBasicBlock that wraps an existing IR basic block.
BasicBlock * getIRBasicBlock() const
Class to record and manage LLVM IR flags.
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
This is a concrete Recipe that models a single VPlan-level instruction.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ExtractPenultimateElement
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
A recipe for interleaved memory operations with vector-predication intrinsics.
VPInterleaveRecipe is a recipe for transforming an interleave group of load or stores into one wide l...
VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when control converges back from ...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
VPRegionBlock * getRegion()
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Helper class to create VPRecipies from IR instructions.
VPRecipeBase * getRecipe(Instruction *I)
Return the recipe created for given ingredient.
A recipe to represent inloop reduction operations with vector-predication intrinsics,...
A recipe to represent inloop, ordered or partial reduction operations.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
const VPBlockBase * getEntry() const
Type * getCanonicalIVType()
Return the type of the canonical IV for loop regions.
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
void setExiting(VPBlockBase *ExitingBlock)
Set ExitingBlock as the exiting VPBlockBase of this VPRegionBlock.
VPCanonicalIVPHIRecipe * getCanonicalIV()
Returns the canonical induction recipe of the region.
const VPBlockBase * getExiting() const
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
bool isSingleScalar() const
VPValue * getMask()
Return the mask of a predicated VPReplicateRecipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
VPSingleDefRecipe * clone() override=0
Clone the current recipe.
An analysis for type-inference for VPValues.
LLVMContext & getContext()
Return the LLVMContext used by the analysis.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void setOperand(unsigned I, VPValue *New)
VPValue * getOperand(unsigned N) const
void addOperand(VPValue *Operand)
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void setUnderlyingValue(Value *Val)
void replaceAllUsesWith(VPValue *New)
unsigned getNumUsers() const
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
A recipe to compute a pointer to the last element of each part of a widened memory access for widened...
A Recipe for widening the canonical induction variable of the vector loop.
VPWidenCastRecipe is a recipe to create vector cast instructions.
Instruction::CastOps getOpcode() const
A recipe for handling GEP instructions.
Base class for widened induction (VPWidenIntOrFpInductionRecipe and VPWidenPointerInductionRecipe),...
VPIRValue * getStartValue() const
Returns the start value of the induction.
PHINode * getPHINode() const
VPValue * getStepValue()
Returns the step value of the induction.
const InductionDescriptor & getInductionDescriptor() const
Returns the induction descriptor for the recipe.
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
VPIRValue * getStartValue() const
Returns the start value of the induction.
VPValue * getSplatVFValue() const
If the recipe has been unrolled, return the VPValue for the induction increment, otherwise return nul...
VPValue * getLastUnrolledPartOperand()
Returns the VPValue representing the value of this induction at the last unrolled part,...
A recipe for widening vector intrinsics.
A common base class for widening memory operations.
A recipe for widened phis.
VPWidenRecipe is a recipe for producing a widened instruction using the opcode and operands of the re...
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
VPIRValue * getLiveIn(Value *V) const
Return the live-in VPIRValue for V, if there is one or nullptr otherwise.
bool hasVF(ElementCount VF) const
LLVMContext & getContext() const
VPBasicBlock * getEntry()
bool hasScalableVF() const
VPValue & getVFxUF()
Returns VF * UF of the vector loop region.
VPValue & getVF()
Returns the VF of the vector loop region.
VPValue * getTripCount() const
The trip count of the original loop.
VPValue * getOrCreateBackedgeTakenCount()
The backedge taken count of the original loop.
VPIRValue * getFalse()
Return a VPIRValue wrapping i1 false.
VPRegionBlock * createReplicateRegion(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="")
Create a new replicate region with Entry, Exiting and Name.
auto getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
bool hasUF(unsigned UF) const
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
VPSymbolicValue & getVectorTripCount()
The vector trip count.
VPIRValue * getOrAddLiveIn(Value *V)
Gets the live-in VPIRValue for V or adds a new live-in (if none exists yet) for V.
void setVF(ElementCount VF)
bool isUnrolled() const
Returns true if the VPlan already has been unrolled, i.e.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
void resetTripCount(VPValue *NewTripCount)
Resets the trip count for the VPlan.
VPBasicBlock * getMiddleBlock()
Returns the 'middle' block of the plan, that is the block that selects whether to execute the scalar ...
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
VPIRValue * getTrue()
Return a VPIRValue wrapping i1 true.
bool hasScalarVFOnly() const
VPBasicBlock * getScalarPreheader() const
Return the VPBasicBlock for the preheader of the scalar loop.
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
bool hasScalarTail() const
Returns true if the scalar tail may execute after the vector loop.
VPIRValue * getConstantInt(Type *Ty, uint64_t Val, bool IsSigned=false)
Return a VPIRValue wrapping a ConstantInt with the given type and value.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
iterator_range< user_iterator > users()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_MaskedStore(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
Matches MaskedStore Intrinsic.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
LogicalOp_match< LHS, RHS, Instruction::And > m_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R either in the form of L & R or L ?
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
auto match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
Matches MaskedLoad Intrinsic.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
SpecificCmpClass_match< LHS, RHS, CmpInst > m_SpecificCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
bool match(const SCEV *S, const Pattern &P)
VPInstruction_match< VPInstruction::ExtractLastLane, VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > > m_ExtractLastLaneOfLastPart(const Op0_t &Op0)
AllRecipe_commutative_match< Instruction::And, Op0_t, Op1_t > m_c_BinaryAnd(const Op0_t &Op0, const Op1_t &Op1)
Match a binary AND operation.
AllRecipe_match< Instruction::Or, Op0_t, Op1_t > m_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
Match a binary OR operation.
VPInstruction_match< VPInstruction::AnyOf > m_AnyOf()
AllRecipe_commutative_match< Opcode, Op0_t, Op1_t > m_c_Binary(const Op0_t &Op0, const Op1_t &Op1)
AllRecipe_commutative_match< Instruction::Or, Op0_t, Op1_t > m_c_BinaryOr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::StepVector > m_StepVector()
GEPLikeRecipe_match< Op0_t, Op1_t > m_GetElementPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::BranchOnTwoConds > m_BranchOnTwoConds()
AllRecipe_match< Opcode, Op0_t, Op1_t > m_Binary(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::LastActiveLane, Op0_t > m_LastActiveLane(const Op0_t &Op0)
VPInstruction_match< Instruction::ExtractElement, Op0_t, Op1_t > m_ExtractElement(const Op0_t &Op0, const Op1_t &Op1)
specific_intval< 1 > m_False()
VPDerivedIV_match< Op0_t, Op1_t, Op2_t > m_DerivedIV(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::ExtractLastLane, Op0_t > m_ExtractLastLane(const Op0_t &Op0)
VPInstruction_match< VPInstruction::ActiveLaneMask, Op0_t, Op1_t, Op2_t > m_ActiveLaneMask(const Op0_t &Op0, const Op1_t &Op1, const Op2_t &Op2)
VPInstruction_match< VPInstruction::BranchOnCount > m_BranchOnCount()
specific_intval< 1 > m_True()
VectorEndPointerRecipe_match< Op0_t, Op1_t > m_VecEndPtr(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::ExtractLastPart, Op0_t > m_ExtractLastPart(const Op0_t &Op0)
VPInstruction_match< VPInstruction::Broadcast, Op0_t > m_Broadcast(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::ExplicitVectorLength, Op0_t > m_EVL(const Op0_t &Op0)
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::ExtractPenultimateElement, Op0_t > m_ExtractPenultimateElement(const Op0_t &Op0)
VPInstruction_match< VPInstruction::FirstActiveLane, Op0_t > m_FirstActiveLane(const Op0_t &Op0)
bind_ty< VPInstruction > m_VPInstruction(VPInstruction *&V)
Match a VPInstruction, capturing if we match.
VPInstruction_match< VPInstruction::BranchOnCond > m_BranchOnCond()
VPInstruction_match< VPInstruction::ExtractLane, Op0_t, Op1_t > m_ExtractLane(const Op0_t &Op0, const Op1_t &Op1)
VPInstruction_match< VPInstruction::Reverse, Op0_t > m_Reverse(const Op0_t &Op0)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool isUniformAcrossVFsAndUFs(VPValue *V)
Checks if V is uniform across all VF lanes and UF parts.
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr)
Get or create a VPValue that corresponds to the expansion of Expr.
std::optional< MemoryLocation > getMemoryLocation(const VPRecipeBase &R)
Return a MemoryLocation for R with noalias metadata populated from R, if the recipe is supported and ...
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
bool isHeaderMask(const VPValue *V, const VPlan &Plan)
Return true if V is a header mask in Plan.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
auto min_element(R &&Range)
Provide wrappers to std::min_element which take ranges instead of having to pass begin/end explicitly...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
detail::zippy< detail::zip_first, T, U, Args... > zip_equal(T &&t, U &&u, Args &&...args)
zip iterator that assumes that all iteratees have the same length.
DenseMap< const Value *, const SCEV * > ValueToSCEVMapTy
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
constexpr from_range_t from_range
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
iterator_range< df_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_depth_first_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order while traversing t...
constexpr auto equal_to(T &&Arg)
Functor variant of std::equal_to that can be used as a UnaryPredicate in functional algorithms like a...
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
iterator_range< po_iterator< VPBlockDeepTraversalWrapper< VPBlockBase * > > > vp_post_order_deep(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in post order while traversing through ...
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI_FOR_TEST cl::opt< bool > EnableWideActiveLaneMask
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
bool canConstantBeExtended(const APInt *C, Type *NarrowType, TTI::PartialReductionExtendKind ExtKind)
Check if a constant CI can be safely treated as having been extended from a narrower type with the gi...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
RecurKind
These are the kinds of recurrences that we support.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
FunctionAddr VTableAddr Next
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
DWARFExpression::Operation Op
auto max_element(R &&Range)
Provide wrappers to std::max_element which take ranges instead of having to pass begin/end explicitly...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
RemoveMask_match(const Op0_t &In, Op1_t &Out)
bool match(OpTy *V) const
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * Scope
The tag for alias scope specification (used with noalias).
MDNode * NoAlias
The tag specifying the noalias scope.
This struct is a compact representation of a valid (non-zero power of two) alignment.
An information struct used to provide DenseMap with the various necessary components for a given valu...
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Struct to hold various analysis needed for cost computations.
A recipe for handling first-order recurrence phis.
A VPValue representing a live-in from the input IR or a constant.
Type * getType() const
Returns the type of the underlying IR value.
A symbolic live-in VPValue, used for values like vector trip count, VF, and VFxUF.
A recipe for widening load operations with vector-predication intrinsics, using the address to load f...
A recipe for widening load operations, using the address to load from and an optional mask.
A recipe for widening store operations with vector-predication intrinsics, using the value to store,...
A recipe for widening store operations, using the stored value, the address to store to and an option...