LLVM 20.0.0git
LoopVectorizationPlanner.h
Go to the documentation of this file.
1//===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file provides a LoopVectorizationPlanner class.
11/// InnerLoopVectorizer vectorizes loops which contain only one basic
12/// LoopVectorizationPlanner - drives the vectorization process after having
13/// passed Legality checks.
14/// The planner builds and optimizes the Vectorization Plans which record the
15/// decisions how to vectorize the given loop. In particular, represent the
16/// control-flow of the vectorized version, the replication of instructions that
17/// are to be scalarized, and interleave access groups.
18///
19/// Also provides a VPlan-based builder utility analogous to IRBuilder.
20/// It provides an instruction-level API for generating VPInstructions while
21/// abstracting away the Recipe manipulation details.
22//===----------------------------------------------------------------------===//
23
24#ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25#define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26
27#include "VPlan.h"
28#include "llvm/ADT/SmallSet.h"
30
31namespace llvm {
32
33class LoopInfo;
34class DominatorTree;
35class LoopVectorizationLegality;
36class LoopVectorizationCostModel;
37class PredicatedScalarEvolution;
38class LoopVectorizeHints;
39class OptimizationRemarkEmitter;
40class TargetTransformInfo;
41class TargetLibraryInfo;
42class VPRecipeBuilder;
43
44/// VPlan-based builder utility analogous to IRBuilder.
45class VPBuilder {
46 VPBasicBlock *BB = nullptr;
48
49 /// Insert \p VPI in BB at InsertPt if BB is set.
50 template <typename T> T *tryInsertInstruction(T *R) {
51 if (BB)
52 BB->insert(R, InsertPt);
53 return R;
54 }
55
56 VPInstruction *createInstruction(unsigned Opcode,
58 const Twine &Name = "") {
59 return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name));
60 }
61
62 VPInstruction *createInstruction(unsigned Opcode,
63 std::initializer_list<VPValue *> Operands,
64 DebugLoc DL, const Twine &Name = "") {
65 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
66 }
67
68public:
69 VPBuilder() = default;
70 VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); }
71 VPBuilder(VPRecipeBase *InsertPt) { setInsertPoint(InsertPt); }
73 setInsertPoint(TheBB, IP);
74 }
75
76 /// Clear the insertion point: created instructions will not be inserted into
77 /// a block.
79 BB = nullptr;
80 InsertPt = VPBasicBlock::iterator();
81 }
82
83 VPBasicBlock *getInsertBlock() const { return BB; }
84 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
85
86 /// Create a VPBuilder to insert after \p R.
89 B.setInsertPoint(R->getParent(), std::next(R->getIterator()));
90 return B;
91 }
92
93 /// InsertPoint - A saved insertion point.
95 VPBasicBlock *Block = nullptr;
97
98 public:
99 /// Creates a new insertion point which doesn't point to anything.
100 VPInsertPoint() = default;
101
102 /// Creates a new insertion point at the given location.
104 : Block(InsertBlock), Point(InsertPoint) {}
105
106 /// Returns true if this insert point is set.
107 bool isSet() const { return Block != nullptr; }
108
109 VPBasicBlock *getBlock() const { return Block; }
110 VPBasicBlock::iterator getPoint() const { return Point; }
111 };
112
113 /// Sets the current insert point to a previously-saved location.
115 if (IP.isSet())
116 setInsertPoint(IP.getBlock(), IP.getPoint());
117 else
119 }
120
121 /// This specifies that created VPInstructions should be appended to the end
122 /// of the specified block.
124 assert(TheBB && "Attempting to set a null insert point");
125 BB = TheBB;
126 InsertPt = BB->end();
127 }
128
129 /// This specifies that created instructions should be inserted at the
130 /// specified point.
132 BB = TheBB;
133 InsertPt = IP;
134 }
135
136 /// This specifies that created instructions should be inserted at the
137 /// specified point.
139 BB = IP->getParent();
140 InsertPt = IP->getIterator();
141 }
142
143 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
144 /// its underlying Instruction.
146 Instruction *Inst = nullptr,
147 const Twine &Name = "") {
148 DebugLoc DL;
149 if (Inst)
150 DL = Inst->getDebugLoc();
151 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
152 NewVPInst->setUnderlyingValue(Inst);
153 return NewVPInst;
154 }
156 DebugLoc DL, const Twine &Name = "") {
157 return createInstruction(Opcode, Operands, DL, Name);
158 }
159 VPInstruction *createNaryOp(unsigned Opcode,
160 std::initializer_list<VPValue *> Operands,
161 std::optional<FastMathFlags> FMFs = {},
162 DebugLoc DL = {}, const Twine &Name = "") {
163 if (FMFs)
164 return tryInsertInstruction(
165 new VPInstruction(Opcode, Operands, *FMFs, DL, Name));
166 return createInstruction(Opcode, Operands, DL, Name);
167 }
168
170 std::initializer_list<VPValue *> Operands,
172 DebugLoc DL = {}, const Twine &Name = "") {
173 return tryInsertInstruction(
174 new VPInstruction(Opcode, Operands, WrapFlags, DL, Name));
175 }
176
178 const Twine &Name = "") {
179 return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
180 }
181
183 const Twine &Name = "") {
184 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
185 }
186
188 const Twine &Name = "") {
189
190 return tryInsertInstruction(new VPInstruction(
191 Instruction::BinaryOps::Or, {LHS, RHS},
192 VPRecipeWithIRFlags::DisjointFlagsTy(false), DL, Name));
193 }
194
196 const Twine &Name = "") {
197 return tryInsertInstruction(
199 }
200
202 DebugLoc DL = {}, const Twine &Name = "",
203 std::optional<FastMathFlags> FMFs = std::nullopt) {
204 auto *Select =
205 FMFs ? new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
206 *FMFs, DL, Name)
207 : new VPInstruction(Instruction::Select, {Cond, TrueVal, FalseVal},
208 DL, Name);
209 return tryInsertInstruction(Select);
210 }
211
212 /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A
213 /// and \p B.
214 /// TODO: add createFCmp when needed.
216 DebugLoc DL = {}, const Twine &Name = "") {
218 Pred <= CmpInst::LAST_ICMP_PREDICATE && "invalid predicate");
219 return tryInsertInstruction(
220 new VPInstruction(Instruction::ICmp, Pred, A, B, DL, Name));
221 }
222
224 const Twine &Name = "") {
225 return tryInsertInstruction(
227 }
229 const Twine &Name = "") {
230 return tryInsertInstruction(
232 }
233
235 FPMathOperator *FPBinOp, VPValue *Start,
236 VPCanonicalIVPHIRecipe *CanonicalIV,
237 VPValue *Step, const Twine &Name = "") {
238 return tryInsertInstruction(
239 new VPDerivedIVRecipe(Kind, FPBinOp, Start, CanonicalIV, Step, Name));
240 }
241
243 Type *ResultTy) {
244 return tryInsertInstruction(new VPScalarCastRecipe(Opcode, Op, ResultTy));
245 }
246
248 Type *ResultTy) {
249 return tryInsertInstruction(new VPWidenCastRecipe(Opcode, Op, ResultTy));
250 }
251
254 FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step) {
255 return tryInsertInstruction(new VPScalarIVStepsRecipe(
256 IV, Step, InductionOpcode,
257 FPBinOp ? FPBinOp->getFastMathFlags() : FastMathFlags()));
258 }
259
260 //===--------------------------------------------------------------------===//
261 // RAII helpers.
262 //===--------------------------------------------------------------------===//
263
264 /// RAII object that stores the current insertion point and restores it when
265 /// the object is destroyed.
267 VPBuilder &Builder;
268 VPBasicBlock *Block;
270
271 public:
273 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
274
277
278 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
279 };
280};
281
282/// TODO: The following VectorizationFactor was pulled out of
283/// LoopVectorizationCostModel class. LV also deals with
284/// VectorizerParams::VectorizationFactor.
285/// We need to streamline them.
286
287/// Information about vectorization costs.
289 /// Vector width with best cost.
291
292 /// Cost of the loop with that width.
294
295 /// Cost of the scalar loop.
297
298 /// The minimum trip count required to make vectorization profitable, e.g. due
299 /// to runtime checks.
301
305
306 /// Width 1 means no vectorization, cost 0 means uncomputed cost.
308 return {ElementCount::getFixed(1), 0, 0};
309 }
310
311 bool operator==(const VectorizationFactor &rhs) const {
312 return Width == rhs.Width && Cost == rhs.Cost;
313 }
314
315 bool operator!=(const VectorizationFactor &rhs) const {
316 return !(*this == rhs);
317 }
318};
319
320/// A class that represents two vectorization factors (initialized with 0 by
321/// default). One for fixed-width vectorization and one for scalable
322/// vectorization. This can be used by the vectorizer to choose from a range of
323/// fixed and/or scalable VFs in order to find the most cost-effective VF to
324/// vectorize with.
328
330 : FixedVF(ElementCount::getFixed(0)),
331 ScalableVF(ElementCount::getScalable(0)) {}
333 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
334 }
339 "Invalid scalable properties");
340 }
341
343
344 /// \return true if either fixed- or scalable VF is non-zero.
345 explicit operator bool() const { return FixedVF || ScalableVF; }
346
347 /// \return true if either fixed- or scalable VF is a valid vector VF.
348 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
349};
350
351/// Planner drives the vectorization process after having passed
352/// Legality checks.
354 /// The loop that we evaluate.
355 Loop *OrigLoop;
356
357 /// Loop Info analysis.
358 LoopInfo *LI;
359
360 /// The dominator tree.
361 DominatorTree *DT;
362
363 /// Target Library Info.
364 const TargetLibraryInfo *TLI;
365
366 /// Target Transform Info.
368
369 /// The legality analysis.
371
372 /// The profitability analysis.
374
375 /// The interleaved access analysis.
377
379
380 const LoopVectorizeHints &Hints;
381
383
385
386 /// Profitable vector factors.
388
389 /// A builder used to construct the current plan.
390 VPBuilder Builder;
391
392 /// Computes the cost of \p Plan for vectorization factor \p VF.
393 ///
394 /// The current implementation requires access to the
395 /// LoopVectorizationLegality to handle inductions and reductions, which is
396 /// why it is kept separate from the VPlan-only cost infrastructure.
397 ///
398 /// TODO: Move to VPlan::cost once the use of LoopVectorizationLegality has
399 /// been retired.
400 InstructionCost cost(VPlan &Plan, ElementCount VF) const;
401
402 /// Precompute costs for certain instructions using the legacy cost model. The
403 /// function is used to bring up the VPlan-based cost model to initially avoid
404 /// taking different decisions due to inaccuracies in the legacy cost model.
405 InstructionCost precomputeCosts(VPlan &Plan, ElementCount VF,
406 VPCostContext &CostCtx) const;
407
408public:
410 Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
415 : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM),
416 IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {}
417
418 /// Build VPlans for the specified \p UserVF and \p UserIC if they are
419 /// non-zero or all applicable candidate VFs otherwise. If vectorization and
420 /// interleaving should be avoided up-front, no plans are generated.
421 void plan(ElementCount UserVF, unsigned UserIC);
422
423 /// Use the VPlan-native path to plan how to best vectorize, return the best
424 /// VF and its cost.
426
427 /// Return the VPlan for \p VF. At the moment, there is always a single VPlan
428 /// for each VF.
429 VPlan &getPlanFor(ElementCount VF) const;
430
431 /// Compute and return the most profitable vectorization factor. Also collect
432 /// all profitable VFs in ProfitableVFs.
434
435 /// Generate the IR code for the vectorized loop captured in VPlan \p BestPlan
436 /// according to the best selected \p VF and \p UF.
437 ///
438 /// TODO: \p VectorizingEpilogue indicates if the executed VPlan is for the
439 /// epilogue vector loop. It should be removed once the re-use issue has been
440 /// fixed.
441 /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop
442 /// to re-use expansion results generated during main plan execution.
443 ///
444 /// Returns a mapping of SCEVs to their expanded IR values.
445 /// Note that this is a temporary workaround needed due to the current
446 /// epilogue handling.
448 executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
450 bool VectorizingEpilogue,
451 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr);
452
453#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
454 void printPlans(raw_ostream &O);
455#endif
456
457 /// Look through the existing plans and return true if we have one with
458 /// vectorization factor \p VF.
460 return any_of(VPlans,
461 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
462 }
463
464 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
465 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
466 /// returned value holds for the entire \p Range.
467 static bool
468 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
469 VFRange &Range);
470
471 /// \return The most profitable vectorization factor and the cost of that VF
472 /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
473 /// epilogue vectorization is not supported for the loop.
475 selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
476
477 /// Emit remarks for recipes with invalid costs in the available VPlans.
479
480protected:
481 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
482 /// according to the information gathered by Legal when it checked if it is
483 /// legal to vectorize the loop.
484 void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
485
486private:
487 /// Build a VPlan according to the information gathered by Legal. \return a
488 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
489 /// exclusive, possibly decreasing \p Range.End.
490 VPlanPtr buildVPlan(VFRange &Range);
491
492 /// Build a VPlan using VPRecipes according to the information gather by
493 /// Legal. This method is only used for the legacy inner loop vectorizer.
494 /// \p Range's largest included VF is restricted to the maximum VF the
495 /// returned VPlan is valid for. If no VPlan can be built for the input range,
496 /// set the largest included VF to the maximum VF for which no plan could be
497 /// built.
498 VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range);
499
500 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
501 /// according to the information gathered by Legal when it checked if it is
502 /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
503 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
504
505 // Adjust the recipes for reductions. For in-loop reductions the chain of
506 // instructions leading from the loop exit instr to the phi need to be
507 // converted to reductions, with one operand being vector and the other being
508 // the scalar reduction chain. For other reductions, a select is introduced
509 // between the phi and users outside the vector region when folding the tail.
510 void adjustRecipesForReductions(VPlanPtr &Plan,
511 VPRecipeBuilder &RecipeBuilder,
512 ElementCount MinVF);
513
514#ifndef NDEBUG
515 /// \return The most profitable vectorization factor for the available VPlans
516 /// and the cost of that VF.
517 /// This is now only used to verify the decisions by the new VPlan-based
518 /// cost-model and will be retired once the VPlan-based cost-model is
519 /// stabilized.
520 VectorizationFactor selectVectorizationFactor();
521#endif
522
523 /// Returns true if the per-lane cost of VectorizationFactor A is lower than
524 /// that of B.
525 bool isMoreProfitable(const VectorizationFactor &A,
526 const VectorizationFactor &B) const;
527
528 /// Returns true if the per-lane cost of VectorizationFactor A is lower than
529 /// that of B in the context of vectorizing a loop with known \p MaxTripCount.
530 bool isMoreProfitable(const VectorizationFactor &A,
531 const VectorizationFactor &B,
532 const unsigned MaxTripCount) const;
533
534 /// Determines if we have the infrastructure to vectorize the loop and its
535 /// epilogue, assuming the main loop is vectorized by \p VF.
536 bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
537};
538
539} // namespace llvm
540
541#endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
std::string Name
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
mir Rename Register Operands
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallSet class.
This file contains the declarations of the Vectorization Plan base classes:
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
@ FIRST_ICMP_PREDICATE
Definition: InstrTypes.h:704
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
constexpr bool isVector() const
One or more elements.
Definition: TypeSize.h:326
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:311
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:205
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Definition: Operator.h:338
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags none()
InductionKind
This enum represents the kinds of inductions that we support.
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:622
LoopVectorizationCostModel - estimates the expected speedups due to vectorization.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Planner drives the vectorization process after having passed Legality checks.
VectorizationFactor selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC)
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition: VPlan.cpp:1639
LoopVectorizationPlanner(Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal, LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI, PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints, OptimizationRemarkEmitter *ORE)
VectorizationFactor planInVPlanNativePath(ElementCount UserVF)
Use the VPlan-native path to plan how to best vectorize, return the best VF and its cost.
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition: VPlan.cpp:1627
VectorizationFactor computeBestVF()
Compute and return the most profitable vectorization factor.
void emitInvalidCostRemarks(OptimizationRemarkEmitter *ORE)
Emit remarks for recipes with invalid costs in the available VPlans.
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition: VPlan.cpp:1608
void printPlans(raw_ostream &O)
Definition: VPlan.cpp:1653
void plan(ElementCount UserVF, unsigned UserIC)
Build VPlans for the specified UserVF and UserIC if they are non-zero or all applicable candidate VFs...
DenseMap< const SCEV *, Value * > executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, InnerLoopVectorizer &LB, DominatorTree *DT, bool VectorizingEpilogue, const DenseMap< const SCEV *, Value * > *ExpandedSCEVs=nullptr)
Generate the IR code for the vectorized loop captured in VPlan BestPlan according to the best selecte...
bool hasPlanWithVF(ElementCount VF) const
Look through the existing plans and return true if we have one with vectorization factor VF.
Utility class for getting and setting loop vectorizer hints in the form of loop metadata.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
The optimization diagnostic interface.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:3470
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:3494
iterator end()
Definition: VPlan.h:3504
void insert(VPRecipeBase *Recipe, iterator InsertPt)
Definition: VPlan.h:3533
RAII object that stores the current insertion point and restores it when the object is destroyed.
InsertPointGuard(const InsertPointGuard &)=delete
InsertPointGuard & operator=(const InsertPointGuard &)=delete
InsertPoint - A saved insertion point.
VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
Creates a new insertion point at the given location.
VPBasicBlock::iterator getPoint() const
VPInsertPoint()=default
Creates a new insertion point which doesn't point to anything.
bool isSet() const
Returns true if this insert point is set.
VPlan-based builder utility analogous to IRBuilder.
VPValue * createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B, DebugLoc DL={}, const Twine &Name="")
Create a new ICmp VPInstruction with predicate Pred and operands A and B.
void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP)
This specifies that created instructions should be inserted at the specified point.
void setInsertPoint(VPRecipeBase *IP)
This specifies that created instructions should be inserted at the specified point.
void restoreIP(VPInsertPoint IP)
Sets the current insert point to a previously-saved location.
VPValue * createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPScalarCastRecipe * createScalarCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
VPBasicBlock * getInsertBlock() const
VPBasicBlock::iterator getInsertPoint() const
VPInstruction * createPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL={}, const Twine &Name="")
VPValue * createInBoundsPtrAdd(VPValue *Ptr, VPValue *Offset, DebugLoc DL={}, const Twine &Name="")
VPDerivedIVRecipe * createDerivedIV(InductionDescriptor::InductionKind Kind, FPMathOperator *FPBinOp, VPValue *Start, VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step, const Twine &Name="")
VPBuilder(VPBasicBlock *InsertBB)
static VPBuilder getToInsertAfter(VPRecipeBase *R)
Create a VPBuilder to insert after R.
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, DebugLoc DL, const Twine &Name="")
VPScalarIVStepsRecipe * createScalarIVSteps(Instruction::BinaryOps InductionOpcode, FPMathOperator *FPBinOp, VPValue *IV, VPValue *Step)
VPBuilder(VPRecipeBase *InsertPt)
VPInstruction * createOverflowingOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, VPRecipeWithIRFlags::WrapFlagsTy WrapFlags, DebugLoc DL={}, const Twine &Name="")
VPWidenCastRecipe * createWidenCast(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
VPValue * createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
void clearInsertionPoint()
Clear the insertion point: created instructions will not be inserted into a block.
VPInstruction * createNaryOp(unsigned Opcode, ArrayRef< VPValue * > Operands, Instruction *Inst=nullptr, const Twine &Name="")
Create an N-ary operation with Opcode, Operands and set Inst as its underlying Instruction.
VPValue * createNot(VPValue *Operand, DebugLoc DL={}, const Twine &Name="")
VPBuilder()=default
VPInstruction * createNaryOp(unsigned Opcode, std::initializer_list< VPValue * > Operands, std::optional< FastMathFlags > FMFs={}, DebugLoc DL={}, const Twine &Name="")
VPValue * createLogicalAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL={}, const Twine &Name="")
VPBuilder(VPBasicBlock *TheBB, VPBasicBlock::iterator IP)
VPValue * createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, DebugLoc DL={}, const Twine &Name="", std::optional< FastMathFlags > FMFs=std::nullopt)
void setInsertPoint(VPBasicBlock *TheBB)
This specifies that created VPInstructions should be appended to the end of the specified block.
Canonical scalar induction phi of the vector loop.
Definition: VPlan.h:3162
A recipe for converting the input value IV value to the corresponding value of an IV with different s...
Definition: VPlan.h:3344
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:1197
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:720
VPBasicBlock * getParent()
Definition: VPlan.h:745
Helper class to create VPRecipies from IR instructions.
VPScalarCastRecipe is a recipe to create scalar cast instructions.
Definition: VPlan.h:1581
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition: VPlan.h:3413
void setUnderlyingValue(Value *Val)
Definition: VPlanValue.h:187
VPWidenCastRecipe is a recipe to create vector cast instructions.
Definition: VPlan.h:1529
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:3761
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:144
A class that represents two vectorization factors (initialized with 0 by default).
FixedScalableVFPair(const ElementCount &FixedVF, const ElementCount &ScalableVF)
FixedScalableVFPair(const ElementCount &Max)
static FixedScalableVFPair getNone()
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlan.h:97
Struct to hold various analysis needed for cost computations.
Definition: VPlan.h:688
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
InstructionCost Cost
Cost of the loop with that width.
ElementCount MinProfitableTripCount
The minimum trip count required to make vectorization profitable, e.g.
bool operator==(const VectorizationFactor &rhs) const
ElementCount Width
Vector width with best cost.
InstructionCost ScalarCost
Cost of the scalar loop.
bool operator!=(const VectorizationFactor &rhs) const
static VectorizationFactor Disabled()
Width 1 means no vectorization, cost 0 means uncomputed cost.
VectorizationFactor(ElementCount Width, InstructionCost Cost, InstructionCost ScalarCost)