LLVM 20.0.0git
VPlan.cpp
Go to the documentation of this file.
1//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This is the LLVM vectorization plan. It represents a candidate for
11/// vectorization, allowing to plan and optimize how to vectorize a given loop
12/// before generating LLVM-IR.
13/// The vectorizer uses vectorization plans to estimate the costs of potential
14/// candidates and if profitable to execute the desired plan, generating vector
15/// LLVM-IR code.
16///
17//===----------------------------------------------------------------------===//
18
19#include "VPlan.h"
21#include "VPlanCFG.h"
22#include "VPlanPatternMatch.h"
23#include "VPlanTransforms.h"
24#include "VPlanUtils.h"
26#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/Twine.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CFG.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
41#include "llvm/Support/Debug.h"
46#include <cassert>
47#include <string>
48
49using namespace llvm;
50using namespace llvm::VPlanPatternMatch;
51
52namespace llvm {
54}
56
58 "vplan-print-in-dot-format", cl::Hidden,
59 cl::desc("Use dot format instead of plain text when dumping VPlans"));
60
61#define DEBUG_TYPE "loop-vectorize"
62
63#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
65 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
67 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68 V.print(OS, SlotTracker);
69 return OS;
70}
71#endif
72
74 const ElementCount &VF) const {
75 switch (LaneKind) {
77 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79 Builder.getInt32(VF.getKnownMinValue() - Lane));
81 return Builder.getInt32(Lane);
82 }
83 llvm_unreachable("Unknown lane kind");
84}
85
86VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88 if (Def)
89 Def->addDefinedValue(this);
90}
91
93 assert(Users.empty() && "trying to delete a VPValue with remaining users");
94 if (Def)
95 Def->removeDefinedValue(this);
96}
97
98#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
100 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101 R->print(OS, "", SlotTracker);
102 else
104}
105
106void VPValue::dump() const {
107 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
109 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
111 dbgs() << "\n";
112}
113
114void VPDef::dump() const {
115 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
117 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118 print(dbgs(), "", SlotTracker);
119 dbgs() << "\n";
120}
121#endif
122
124 return cast_or_null<VPRecipeBase>(Def);
125}
126
128 return cast_or_null<VPRecipeBase>(Def);
129}
130
131// Get the top-most entry block of \p Start. This is the entry block of the
132// containing VPlan. This function is templated to support both const and non-const blocks
133template <typename T> static T *getPlanEntry(T *Start) {
134 T *Next = Start;
135 T *Current = Start;
136 while ((Next = Next->getParent()))
137 Current = Next;
138
139 SmallSetVector<T *, 8> WorkList;
140 WorkList.insert(Current);
141
142 for (unsigned i = 0; i < WorkList.size(); i++) {
143 T *Current = WorkList[i];
144 if (Current->getNumPredecessors() == 0)
145 return Current;
146 auto &Predecessors = Current->getPredecessors();
147 WorkList.insert(Predecessors.begin(), Predecessors.end());
148 }
149
150 llvm_unreachable("VPlan without any entry node without predecessors");
151}
152
153VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154
155const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156
157/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
159 const VPBlockBase *Block = this;
160 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161 Block = Region->getEntry();
162 return cast<VPBasicBlock>(Block);
163}
164
166 VPBlockBase *Block = this;
167 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168 Block = Region->getEntry();
169 return cast<VPBasicBlock>(Block);
170}
171
172void VPBlockBase::setPlan(VPlan *ParentPlan) {
173 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
174 Plan = ParentPlan;
175}
176
177/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
179 const VPBlockBase *Block = this;
180 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
181 Block = Region->getExiting();
182 return cast<VPBasicBlock>(Block);
183}
184
186 VPBlockBase *Block = this;
187 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
188 Block = Region->getExiting();
189 return cast<VPBasicBlock>(Block);
190}
191
193 if (!Successors.empty() || !Parent)
194 return this;
195 assert(Parent->getExiting() == this &&
196 "Block w/o successors not the exiting block of its parent.");
197 return Parent->getEnclosingBlockWithSuccessors();
198}
199
201 if (!Predecessors.empty() || !Parent)
202 return this;
203 assert(Parent->getEntry() == this &&
204 "Block w/o predecessors not the entry of its parent.");
205 return Parent->getEnclosingBlockWithPredecessors();
206}
207
210 delete Block;
211}
212
214 iterator It = begin();
215 while (It != end() && It->isPhi())
216 It++;
217 return It;
218}
219
221 ElementCount VF, unsigned UF, LoopInfo *LI,
222 DominatorTree *DT, IRBuilderBase &Builder,
223 InnerLoopVectorizer *ILV, VPlan *Plan,
224 Type *CanonicalIVTy)
225 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
226 LVer(nullptr), TypeAnalysis(CanonicalIVTy) {}
227
229 if (Def->isLiveIn())
230 return Def->getLiveInIRValue();
231
232 if (hasScalarValue(Def, Lane))
233 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
234
235 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
237 return Data.VPV2Scalars[Def][0];
238 }
239
241 auto *VecPart = Data.VPV2Vector[Def];
242 if (!VecPart->getType()->isVectorTy()) {
243 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
244 return VecPart;
245 }
246 // TODO: Cache created scalar values.
247 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
248 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
249 // set(Def, Extract, Instance);
250 return Extract;
251}
252
253Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
254 if (NeedsScalar) {
255 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
257 (hasScalarValue(Def, VPLane(0)) &&
258 Data.VPV2Scalars[Def].size() == 1)) &&
259 "Trying to access a single scalar per part but has multiple scalars "
260 "per part.");
261 return get(Def, VPLane(0));
262 }
263
264 // If Values have been set for this Def return the one relevant for \p Part.
265 if (hasVectorValue(Def))
266 return Data.VPV2Vector[Def];
267
268 auto GetBroadcastInstrs = [this, Def](Value *V) {
269 bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
270 if (VF.isScalar())
271 return V;
272 // Place the code for broadcasting invariant variables in the new preheader.
274 if (SafeToHoist) {
275 BasicBlock *LoopVectorPreHeader =
277 if (LoopVectorPreHeader)
278 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
279 }
280
281 // Place the code for broadcasting invariant variables in the new preheader.
282 // Broadcast the scalar into all locations in the vector.
283 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
284
285 return Shuf;
286 };
287
288 if (!hasScalarValue(Def, {0})) {
289 assert(Def->isLiveIn() && "expected a live-in");
290 Value *IRV = Def->getLiveInIRValue();
291 Value *B = GetBroadcastInstrs(IRV);
292 set(Def, B);
293 return B;
294 }
295
296 Value *ScalarValue = get(Def, VPLane(0));
297 // If we aren't vectorizing, we can just copy the scalar map values over
298 // to the vector map.
299 if (VF.isScalar()) {
300 set(Def, ScalarValue);
301 return ScalarValue;
302 }
303
304 bool IsUniform = vputils::isUniformAfterVectorization(Def);
305
306 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
307 // Check if there is a scalar value for the selected lane.
308 if (!hasScalarValue(Def, LastLane)) {
309 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
310 // VPExpandSCEVRecipes can also be uniform.
312 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
313 "unexpected recipe found to be invariant");
314 IsUniform = true;
315 LastLane = 0;
316 }
317
318 auto *LastInst = cast<Instruction>(get(Def, LastLane));
319 // Set the insert point after the last scalarized instruction or after the
320 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
321 // will directly follow the scalar definitions.
322 auto OldIP = Builder.saveIP();
323 auto NewIP =
324 isa<PHINode>(LastInst)
325 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
326 : std::next(BasicBlock::iterator(LastInst));
327 Builder.SetInsertPoint(&*NewIP);
328
329 // However, if we are vectorizing, we need to construct the vector values.
330 // If the value is known to be uniform after vectorization, we can just
331 // broadcast the scalar value corresponding to lane zero. Otherwise, we
332 // construct the vector values using insertelement instructions. Since the
333 // resulting vectors are stored in State, we will only generate the
334 // insertelements once.
335 Value *VectorValue = nullptr;
336 if (IsUniform) {
337 VectorValue = GetBroadcastInstrs(ScalarValue);
338 set(Def, VectorValue);
339 } else {
340 // Initialize packing with insertelements to start from undef.
341 assert(!VF.isScalable() && "VF is assumed to be non scalable.");
342 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
343 set(Def, Undef);
344 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
346 VectorValue = get(Def);
347 }
348 Builder.restoreIP(OldIP);
349 return VectorValue;
350}
351
353 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
354 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
355}
356
358 const Instruction *Orig) {
359 // If the loop was versioned with memchecks, add the corresponding no-alias
360 // metadata.
361 if (LVer && isa<LoadInst, StoreInst>(Orig))
362 LVer->annotateInstWithNoAlias(To, Orig);
363}
364
366 // No source instruction to transfer metadata from?
367 if (!From)
368 return;
369
370 if (Instruction *ToI = dyn_cast<Instruction>(To)) {
372 addNewMetadata(ToI, From);
373 }
374}
375
377 const DILocation *DIL = DL;
378 // When a FSDiscriminator is enabled, we don't need to add the multiply
379 // factors to the discriminators.
380 if (DIL &&
382 ->getParent()
385 // FIXME: For scalable vectors, assume vscale=1.
386 unsigned UF = Plan->getUF();
387 auto NewDIL =
389 if (NewDIL)
391 else
392 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
393 << DIL->getFilename() << " Line: " << DIL->getLine());
394 } else
396}
397
399 const VPLane &Lane) {
400 Value *ScalarInst = get(Def, Lane);
401 Value *VectorValue = get(Def);
402 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
403 Lane.getAsRuntimeExpr(Builder, VF));
404 set(Def, VectorValue);
405}
406
408VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
409 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
410 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
411 BasicBlock *PrevBB = CFG.PrevBB;
412 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
413 PrevBB->getParent(), CFG.ExitBB);
414 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
415
416 return NewBB;
417}
418
420 BasicBlock *NewBB = CFG.VPBB2IRBB[this];
421 // Hook up the new basic block to its predecessors.
422 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
423 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
424 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
425 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
426
427 assert(PredBB && "Predecessor basic-block not found building successor.");
428 auto *PredBBTerminator = PredBB->getTerminator();
429 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
430
431 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
432 if (isa<UnreachableInst>(PredBBTerminator)) {
433 assert(PredVPSuccessors.size() == 1 &&
434 "Predecessor ending w/o branch must have single successor.");
435 DebugLoc DL = PredBBTerminator->getDebugLoc();
436 PredBBTerminator->eraseFromParent();
437 auto *Br = BranchInst::Create(NewBB, PredBB);
438 Br->setDebugLoc(DL);
439 } else if (TermBr && !TermBr->isConditional()) {
440 TermBr->setSuccessor(0, NewBB);
441 } else {
442 // Set each forward successor here when it is created, excluding
443 // backedges. A backward successor is set when the branch is created.
444 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
445 assert(
446 (!TermBr->getSuccessor(idx) ||
447 (isa<VPIRBasicBlock>(this) && TermBr->getSuccessor(idx) == NewBB)) &&
448 "Trying to reset an existing successor block.");
449 TermBr->setSuccessor(idx, NewBB);
450 }
451 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
452 }
453}
454
456 assert(getHierarchicalSuccessors().size() <= 2 &&
457 "VPIRBasicBlock can have at most two successors at the moment!");
458 State->Builder.SetInsertPoint(IRBB->getTerminator());
459 State->CFG.PrevBB = IRBB;
460 State->CFG.VPBB2IRBB[this] = IRBB;
461 executeRecipes(State, IRBB);
462 // Create a branch instruction to terminate IRBB if one was not created yet
463 // and is needed.
464 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
465 auto *Br = State->Builder.CreateBr(IRBB);
466 Br->setOperand(0, nullptr);
467 IRBB->getTerminator()->eraseFromParent();
468 } else {
469 assert(
470 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
471 "other blocks must be terminated by a branch");
472 }
473
474 connectToPredecessors(State->CFG);
475}
476
478 bool Replica = bool(State->Lane);
479 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
480
481 auto IsReplicateRegion = [](VPBlockBase *BB) {
482 auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
483 return R && R->isReplicator();
484 };
485
486 // 1. Create an IR basic block.
487 if (this == getPlan()->getVectorPreheader() ||
488 (Replica && this == getParent()->getEntry()) ||
489 IsReplicateRegion(getSingleHierarchicalPredecessor())) {
490 // Reuse the previous basic block if the current VPBB is either
491 // * the vector preheader,
492 // * the entry to a replicate region, or
493 // * the exit of a replicate region.
494 State->CFG.VPBB2IRBB[this] = NewBB;
495 } else {
496 NewBB = createEmptyBasicBlock(State->CFG);
497
498 State->Builder.SetInsertPoint(NewBB);
499 // Temporarily terminate with unreachable until CFG is rewired.
500 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
501 // Register NewBB in its loop. In innermost loops its the same for all
502 // BB's.
503 if (State->CurrentVectorLoop)
504 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
505 State->Builder.SetInsertPoint(Terminator);
506
507 State->CFG.PrevBB = NewBB;
508 State->CFG.VPBB2IRBB[this] = NewBB;
509 connectToPredecessors(State->CFG);
510 }
511
512 // 2. Fill the IR basic block with IR instructions.
513 executeRecipes(State, NewBB);
514}
515
517 for (VPRecipeBase &R : Recipes) {
518 for (auto *Def : R.definedValues())
519 Def->replaceAllUsesWith(NewValue);
520
521 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
522 R.setOperand(I, NewValue);
523 }
524}
525
527 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
528 << " in BB:" << BB->getName() << '\n');
529
530 State->CFG.PrevVPBB = this;
531
532 for (VPRecipeBase &Recipe : Recipes)
533 Recipe.execute(*State);
534
535 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
536}
537
539 assert((SplitAt == end() || SplitAt->getParent() == this) &&
540 "can only split at a position in the same block");
541
543 // Create new empty block after the block to split.
544 auto *SplitBlock = new VPBasicBlock(getName() + ".split");
546
547 // Finally, move the recipes starting at SplitAt to new block.
548 for (VPRecipeBase &ToMove :
549 make_early_inc_range(make_range(SplitAt, this->end())))
550 ToMove.moveBefore(*SplitBlock, SplitBlock->end());
551
552 return SplitBlock;
553}
554
555/// Return the enclosing loop region for region \p P. The templated version is
556/// used to support both const and non-const block arguments.
557template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
558 if (P && P->isReplicator()) {
559 P = P->getParent();
560 assert(!cast<VPRegionBlock>(P)->isReplicator() &&
561 "unexpected nested replicate regions");
562 }
563 return P;
564}
565
568}
569
572}
573
574static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
575 if (VPBB->empty()) {
576 assert(
577 VPBB->getNumSuccessors() < 2 &&
578 "block with multiple successors doesn't have a recipe as terminator");
579 return false;
580 }
581
582 const VPRecipeBase *R = &VPBB->back();
583 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
586 (void)IsCondBranch;
587
588 if (VPBB->getNumSuccessors() >= 2 ||
589 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
590 assert(IsCondBranch && "block with multiple successors not terminated by "
591 "conditional branch recipe");
592
593 return true;
594 }
595
596 assert(
597 !IsCondBranch &&
598 "block with 0 or 1 successors terminated by conditional branch recipe");
599 return false;
600}
601
603 if (hasConditionalTerminator(this))
604 return &back();
605 return nullptr;
606}
607
609 if (hasConditionalTerminator(this))
610 return &back();
611 return nullptr;
612}
613
615 return getParent() && getParent()->getExitingBasicBlock() == this;
616}
617
618#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
619void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
620 if (getSuccessors().empty()) {
621 O << Indent << "No successors\n";
622 } else {
623 O << Indent << "Successor(s): ";
624 ListSeparator LS;
625 for (auto *Succ : getSuccessors())
626 O << LS << Succ->getName();
627 O << '\n';
628 }
629}
630
631void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
632 VPSlotTracker &SlotTracker) const {
633 O << Indent << getName() << ":\n";
634
635 auto RecipeIndent = Indent + " ";
636 for (const VPRecipeBase &Recipe : *this) {
637 Recipe.print(O, RecipeIndent, SlotTracker);
638 O << '\n';
639 }
640
641 printSuccessors(O, Indent);
642}
643#endif
644
645static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
646
647// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
648// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
649// Remapping of operands must be done separately. Returns a pair with the new
650// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
651// region, return nullptr for the exiting block.
652static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
654 VPBlockBase *Exiting = nullptr;
655 bool InRegion = Entry->getParent();
656 // First, clone blocks reachable from Entry.
657 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
658 VPBlockBase *NewBB = BB->clone();
659 Old2NewVPBlocks[BB] = NewBB;
660 if (InRegion && BB->getNumSuccessors() == 0) {
661 assert(!Exiting && "Multiple exiting blocks?");
662 Exiting = BB;
663 }
664 }
665 assert((!InRegion || Exiting) && "regions must have a single exiting block");
666
667 // Second, update the predecessors & successors of the cloned blocks.
668 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
669 VPBlockBase *NewBB = Old2NewVPBlocks[BB];
671 for (VPBlockBase *Pred : BB->getPredecessors()) {
672 NewPreds.push_back(Old2NewVPBlocks[Pred]);
673 }
674 NewBB->setPredecessors(NewPreds);
676 for (VPBlockBase *Succ : BB->successors()) {
677 NewSuccs.push_back(Old2NewVPBlocks[Succ]);
678 }
679 NewBB->setSuccessors(NewSuccs);
680 }
681
682#if !defined(NDEBUG)
683 // Verify that the order of predecessors and successors matches in the cloned
684 // version.
685 for (const auto &[OldBB, NewBB] :
687 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
688 for (const auto &[OldPred, NewPred] :
689 zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
690 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
691
692 for (const auto &[OldSucc, NewSucc] :
693 zip(OldBB->successors(), NewBB->successors()))
694 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
695 }
696#endif
697
698 return std::make_pair(Old2NewVPBlocks[Entry],
699 Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
700}
701
703 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
704 auto *NewRegion =
705 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
706 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
707 Block->setParent(NewRegion);
708 return NewRegion;
709}
710
713 // Drop all references in VPBasicBlocks and replace all uses with
714 // DummyValue.
715 Block->dropAllReferences(NewValue);
716}
717
720 RPOT(Entry);
721
722 if (!isReplicator()) {
723 // Create and register the new vector loop.
724 Loop *PrevLoop = State->CurrentVectorLoop;
725 State->CurrentVectorLoop = State->LI->AllocateLoop();
726 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
727 Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
728
729 // Insert the new loop into the loop nest and register the new basic blocks
730 // before calling any utilities such as SCEV that require valid LoopInfo.
731 if (ParentLoop)
732 ParentLoop->addChildLoop(State->CurrentVectorLoop);
733 else
734 State->LI->addTopLevelLoop(State->CurrentVectorLoop);
735
736 // Visit the VPBlocks connected to "this", starting from it.
737 for (VPBlockBase *Block : RPOT) {
738 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
739 Block->execute(State);
740 }
741
742 State->CurrentVectorLoop = PrevLoop;
743 return;
744 }
745
746 assert(!State->Lane && "Replicating a Region with non-null instance.");
747
748 // Enter replicating mode.
749 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
750 State->Lane = VPLane(0);
751 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
752 ++Lane) {
754 // Visit the VPBlocks connected to \p this, starting from it.
755 for (VPBlockBase *Block : RPOT) {
756 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
757 Block->execute(State);
758 }
759 }
760
761 // Exit replicating mode.
762 State->Lane.reset();
763}
764
767 for (VPRecipeBase &R : Recipes)
768 Cost += R.cost(VF, Ctx);
769 return Cost;
770}
771
773 if (!isReplicator()) {
775 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
776 Cost += Block->cost(VF, Ctx);
777 InstructionCost BackedgeCost =
778 ForceTargetInstructionCost.getNumOccurrences()
779 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
780 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
781 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
782 << ": vector loop backedge\n");
783 Cost += BackedgeCost;
784 return Cost;
785 }
786
787 // Compute the cost of a replicate region. Replicating isn't supported for
788 // scalable vectors, return an invalid cost for them.
789 // TODO: Discard scalable VPlans with replicate recipes earlier after
790 // construction.
791 if (VF.isScalable())
793
794 // First compute the cost of the conditionally executed recipes, followed by
795 // account for the branching cost, except if the mask is a header mask or
796 // uniform condition.
797 using namespace llvm::VPlanPatternMatch;
798 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
799 InstructionCost ThenCost = Then->cost(VF, Ctx);
800
801 // For the scalar case, we may not always execute the original predicated
802 // block, Thus, scale the block's cost by the probability of executing it.
803 if (VF.isScalar())
804 return ThenCost / getReciprocalPredBlockProb();
805
806 return ThenCost;
807}
808
809#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
811 VPSlotTracker &SlotTracker) const {
812 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
813 auto NewIndent = Indent + " ";
814 for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
815 O << '\n';
816 BlockBase->print(O, NewIndent, SlotTracker);
817 }
818 O << Indent << "}\n";
819
820 printSuccessors(O, Indent);
821}
822#endif
823
824VPlan::VPlan(Loop *L) {
825 setEntry(VPIRBasicBlock::fromBasicBlock(L->getLoopPreheader()));
826 ScalarHeader = VPIRBasicBlock::fromBasicBlock(L->getHeader());
827}
828
830 if (Entry) {
831 VPValue DummyValue;
833 Block->dropAllReferences(&DummyValue);
834
836 }
837 for (VPValue *VPV : VPLiveInsToFree)
838 delete VPV;
839 if (BackedgeTakenCount)
840 delete BackedgeTakenCount;
841}
842
844 auto *VPIRBB = new VPIRBasicBlock(IRBB);
845 for (Instruction &I :
846 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
847 VPIRBB->appendRecipe(new VPIRInstruction(I));
848 return VPIRBB;
849}
850
853 bool RequiresScalarEpilogueCheck,
854 bool TailFolded, Loop *TheLoop) {
855 auto Plan = std::make_unique<VPlan>(TheLoop);
856 VPBlockBase *ScalarHeader = Plan->getScalarHeader();
857
858 // Connect entry only to vector preheader initially. Entry will also be
859 // connected to the scalar preheader later, during skeleton creation when
860 // runtime guards are added as needed. Note that when executing the VPlan for
861 // an epilogue vector loop, the original entry block here will be replaced by
862 // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
863 // generating code for the main vector loop.
864 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
865 VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader);
866
867 // Create SCEV and VPValue for the trip count.
868 // We use the symbolic max backedge-taken-count, which works also when
869 // vectorizing loops with uncountable early exits.
870 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
871 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
872 "Invalid loop count");
873 ScalarEvolution &SE = *PSE.getSE();
874 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
875 InductionTy, TheLoop);
876 Plan->TripCount =
878
879 // Create VPRegionBlock, with empty header and latch blocks, to be filled
880 // during processing later.
881 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
882 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
883 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
884 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
885 false /*isReplicator*/);
886
887 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
888 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
889 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
890
891 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
892 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
893 if (!RequiresScalarEpilogueCheck) {
894 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
895 return Plan;
896 }
897
898 // If needed, add a check in the middle block to see if we have completed
899 // all of the iterations in the first vector loop. Three cases:
900 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
901 // Thus if tail is to be folded, we know we don't need to run the
902 // remainder and we can set the condition to true.
903 // 2) If we require a scalar epilogue, there is no conditional branch as
904 // we unconditionally branch to the scalar preheader. Do nothing.
905 // 3) Otherwise, construct a runtime check.
906 BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
907 auto *VPExitBlock = VPIRBasicBlock::fromBasicBlock(IRExitBlock);
908 // The connection order corresponds to the operands of the conditional branch.
909 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
910 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
911
912 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
913 // Here we use the same DebugLoc as the scalar loop latch terminator instead
914 // of the corresponding compare because they may have ended up with
915 // different line numbers and we want to avoid awkward line stepping while
916 // debugging. Eg. if the compare has got a line number inside the loop.
917 VPBuilder Builder(MiddleVPBB);
918 VPValue *Cmp =
919 TailFolded
921 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
922 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
924 ScalarLatchTerm->getDebugLoc(), "cmp.n");
925 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
926 ScalarLatchTerm->getDebugLoc());
927 return Plan;
928}
929
930void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
931 VPTransformState &State) {
932 Type *TCTy = TripCountV->getType();
933 // Check if the backedge taken count is needed, and if so build it.
934 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
936 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
937 "trip.count.minus.1");
938 BackedgeTakenCount->setUnderlyingValue(TCMO);
939 }
940
941 VectorTripCount.setUnderlyingValue(VectorTripCountV);
942
944 // FIXME: Model VF * UF computation completely in VPlan.
945 assert(VFxUF.getNumUsers() && "VFxUF expected to always have users");
946 unsigned UF = getUF();
947 if (VF.getNumUsers()) {
948 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
949 VF.setUnderlyingValue(RuntimeVF);
950 VFxUF.setUnderlyingValue(
951 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
952 : RuntimeVF);
953 } else {
954 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
955 }
956}
957
958/// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
959/// VPBB are moved to the end of the newly created VPIRBasicBlock. VPBB must
960/// have a single predecessor, which is rewired to the new VPIRBasicBlock. All
961/// successors of VPBB, if any, are rewired to the new VPIRBasicBlock.
964 for (auto &R : make_early_inc_range(*VPBB)) {
965 assert(!R.isPhi() && "Tried to move phi recipe to end of block");
966 R.moveBefore(*IRVPBB, IRVPBB->end());
967 }
968
970
971 delete VPBB;
972}
973
974/// Generate the code inside the preheader and body of the vectorized loop.
975/// Assumes a single pre-header basic-block was created for this. Introduce
976/// additional basic-blocks as needed, and fill them all.
978 // Initialize CFG state.
979 State->CFG.PrevVPBB = nullptr;
980 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
981 BasicBlock *VectorPreHeader = State->CFG.PrevBB;
982 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
983
984 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
985 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
986 State->CFG.DTU.applyUpdates(
987 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
988
989 // Replace regular VPBB's for the vector preheader, middle and scalar
990 // preheader blocks with VPIRBasicBlocks wrapping their IR blocks. The IR
991 // blocks are created during skeleton creation, so we can only create the
992 // VPIRBasicBlocks now during VPlan execution rather than earlier during VPlan
993 // construction.
994 BasicBlock *MiddleBB = State->CFG.ExitBB;
995 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
996 replaceVPBBWithIRVPBB(getVectorPreheader(), VectorPreHeader);
997 replaceVPBBWithIRVPBB(getMiddleBlock(), MiddleBB);
998 replaceVPBBWithIRVPBB(getScalarPreheader(), ScalarPh);
999
1000 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
1001 << ", UF=" << getUF() << '\n');
1002 setName("Final VPlan");
1003 LLVM_DEBUG(dump());
1004
1005 // Disconnect the middle block from its single successor (the scalar loop
1006 // header) in both the CFG and DT. The branch will be recreated during VPlan
1007 // execution.
1008 auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1009 BrInst->insertBefore(MiddleBB->getTerminator());
1010 MiddleBB->getTerminator()->eraseFromParent();
1011 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1012 // Disconnect scalar preheader and scalar header, as the dominator tree edge
1013 // will be updated as part of VPlan execution. This allows keeping the DTU
1014 // logic generic during VPlan execution.
1015 State->CFG.DTU.applyUpdates(
1016 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
1017
1019 Entry);
1020 // Generate code for the VPlan, in parts of the vector skeleton, loop body and
1021 // successor blocks including the middle, exit and scalar preheader blocks.
1022 for (VPBlockBase *Block : RPOT)
1023 Block->execute(State);
1024
1025 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1026 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1027
1028 // Fix the latch value of canonical, reduction and first-order recurrences
1029 // phis in the vector loop.
1030 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1031 for (VPRecipeBase &R : Header->phis()) {
1032 // Skip phi-like recipes that generate their backedege values themselves.
1033 if (isa<VPWidenPHIRecipe>(&R))
1034 continue;
1035
1036 if (isa<VPWidenInductionRecipe>(&R)) {
1037 PHINode *Phi = nullptr;
1038 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1039 Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1040 } else {
1041 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1042 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1043 "recipe generating only scalars should have been replaced");
1044 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1045 Phi = cast<PHINode>(GEP->getPointerOperand());
1046 }
1047
1048 Phi->setIncomingBlock(1, VectorLatchBB);
1049
1050 // Move the last step to the end of the latch block. This ensures
1051 // consistent placement of all induction updates.
1052 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1053 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1054
1055 // Use the steps for the last part as backedge value for the induction.
1056 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1057 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1058 continue;
1059 }
1060
1061 auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1062 bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1063 (isa<VPReductionPHIRecipe>(PhiR) &&
1064 cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1065 Value *Phi = State->get(PhiR, NeedsScalar);
1066 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1067 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1068 }
1069
1070 State->CFG.DTU.flush();
1071}
1072
1074 // For now only return the cost of the vector loop region, ignoring any other
1075 // blocks, like the preheader or middle blocks.
1076 return getVectorLoopRegion()->cost(VF, Ctx);
1077}
1078
1080 // TODO: Cache if possible.
1081 for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1082 if (auto *R = dyn_cast<VPRegionBlock>(B))
1083 return R;
1084 return nullptr;
1085}
1086
1088 for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1089 if (auto *R = dyn_cast<VPRegionBlock>(B))
1090 return R;
1091 return nullptr;
1092}
1093
1094#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1097
1098 if (VF.getNumUsers() > 0) {
1099 O << "\nLive-in ";
1100 VF.printAsOperand(O, SlotTracker);
1101 O << " = VF";
1102 }
1103
1104 if (VFxUF.getNumUsers() > 0) {
1105 O << "\nLive-in ";
1106 VFxUF.printAsOperand(O, SlotTracker);
1107 O << " = VF * UF";
1108 }
1109
1110 if (VectorTripCount.getNumUsers() > 0) {
1111 O << "\nLive-in ";
1112 VectorTripCount.printAsOperand(O, SlotTracker);
1113 O << " = vector-trip-count";
1114 }
1115
1116 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1117 O << "\nLive-in ";
1118 BackedgeTakenCount->printAsOperand(O, SlotTracker);
1119 O << " = backedge-taken count";
1120 }
1121
1122 O << "\n";
1123 if (TripCount->isLiveIn())
1124 O << "Live-in ";
1125 TripCount->printAsOperand(O, SlotTracker);
1126 O << " = original trip-count";
1127 O << "\n";
1128}
1129
1133
1134 O << "VPlan '" << getName() << "' {";
1135
1136 printLiveIns(O);
1137
1139 RPOT(getEntry());
1140 for (const VPBlockBase *Block : RPOT) {
1141 O << '\n';
1142 Block->print(O, "", SlotTracker);
1143 }
1144
1145 O << "}\n";
1146}
1147
1148std::string VPlan::getName() const {
1149 std::string Out;
1150 raw_string_ostream RSO(Out);
1151 RSO << Name << " for ";
1152 if (!VFs.empty()) {
1153 RSO << "VF={" << VFs[0];
1154 for (ElementCount VF : drop_begin(VFs))
1155 RSO << "," << VF;
1156 RSO << "},";
1157 }
1158
1159 if (UFs.empty()) {
1160 RSO << "UF>=1";
1161 } else {
1162 RSO << "UF={" << UFs[0];
1163 for (unsigned UF : drop_begin(UFs))
1164 RSO << "," << UF;
1165 RSO << "}";
1166 }
1167
1168 return Out;
1169}
1170
1173 VPlanPrinter Printer(O, *this);
1174 Printer.dump();
1175}
1176
1178void VPlan::dump() const { print(dbgs()); }
1179#endif
1180
1181static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1182 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1183 // Update the operands of all cloned recipes starting at NewEntry. This
1184 // traverses all reachable blocks. This is done in two steps, to handle cycles
1185 // in PHI recipes.
1187 OldDeepRPOT(Entry);
1189 NewDeepRPOT(NewEntry);
1190 // First, collect all mappings from old to new VPValues defined by cloned
1191 // recipes.
1192 for (const auto &[OldBB, NewBB] :
1193 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1194 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1195 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1196 "blocks must have the same number of recipes");
1197 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1198 assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1199 "recipes must have the same number of operands");
1200 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1201 "recipes must define the same number of operands");
1202 for (const auto &[OldV, NewV] :
1203 zip(OldR.definedValues(), NewR.definedValues()))
1204 Old2NewVPValues[OldV] = NewV;
1205 }
1206 }
1207
1208 // Update all operands to use cloned VPValues.
1209 for (VPBasicBlock *NewBB :
1210 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1211 for (VPRecipeBase &NewR : *NewBB)
1212 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1213 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1214 NewR.setOperand(I, NewOp);
1215 }
1216 }
1217}
1218
1220 // Clone blocks.
1221 const auto &[NewEntry, __] = cloneFrom(Entry);
1222
1223 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1224 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1225 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1226 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1227 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1228 }));
1229 // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1230 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1231 DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1232 for (VPValue *OldLiveIn : VPLiveInsToFree) {
1233 Old2NewVPValues[OldLiveIn] =
1234 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1235 }
1236 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1237 Old2NewVPValues[&VF] = &NewPlan->VF;
1238 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1239 if (BackedgeTakenCount) {
1240 NewPlan->BackedgeTakenCount = new VPValue();
1241 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1242 }
1243 assert(TripCount && "trip count must be set");
1244 if (TripCount->isLiveIn())
1245 Old2NewVPValues[TripCount] =
1246 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1247 // else NewTripCount will be created and inserted into Old2NewVPValues when
1248 // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1249
1250 remapOperands(Entry, NewEntry, Old2NewVPValues);
1251
1252 // Initialize remaining fields of cloned VPlan.
1253 NewPlan->VFs = VFs;
1254 NewPlan->UFs = UFs;
1255 // TODO: Adjust names.
1256 NewPlan->Name = Name;
1257 assert(Old2NewVPValues.contains(TripCount) &&
1258 "TripCount must have been added to Old2NewVPValues");
1259 NewPlan->TripCount = Old2NewVPValues[TripCount];
1260 return NewPlan;
1261}
1262
1263#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1264
1265Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1266 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1267 Twine(getOrCreateBID(Block));
1268}
1269
1270Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1271 const std::string &Name = Block->getName();
1272 if (!Name.empty())
1273 return Name;
1274 return "VPB" + Twine(getOrCreateBID(Block));
1275}
1276
1278 Depth = 1;
1279 bumpIndent(0);
1280 OS << "digraph VPlan {\n";
1281 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1282 if (!Plan.getName().empty())
1283 OS << "\\n" << DOT::EscapeString(Plan.getName());
1284
1285 {
1286 // Print live-ins.
1287 std::string Str;
1288 raw_string_ostream SS(Str);
1289 Plan.printLiveIns(SS);
1291 StringRef(Str).rtrim('\n').split(Lines, "\n");
1292 for (auto Line : Lines)
1293 OS << DOT::EscapeString(Line.str()) << "\\n";
1294 }
1295
1296 OS << "\"]\n";
1297 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1298 OS << "edge [fontname=Courier, fontsize=30]\n";
1299 OS << "compound=true\n";
1300
1302 dumpBlock(Block);
1303
1304 OS << "}\n";
1305}
1306
1307void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1308 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1309 dumpBasicBlock(BasicBlock);
1310 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1311 dumpRegion(Region);
1312 else
1313 llvm_unreachable("Unsupported kind of VPBlock.");
1314}
1315
1316void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1317 bool Hidden, const Twine &Label) {
1318 // Due to "dot" we print an edge between two regions as an edge between the
1319 // exiting basic block and the entry basic of the respective regions.
1320 const VPBlockBase *Tail = From->getExitingBasicBlock();
1321 const VPBlockBase *Head = To->getEntryBasicBlock();
1322 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1323 OS << " [ label=\"" << Label << '\"';
1324 if (Tail != From)
1325 OS << " ltail=" << getUID(From);
1326 if (Head != To)
1327 OS << " lhead=" << getUID(To);
1328 if (Hidden)
1329 OS << "; splines=none";
1330 OS << "]\n";
1331}
1332
1333void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1334 auto &Successors = Block->getSuccessors();
1335 if (Successors.size() == 1)
1336 drawEdge(Block, Successors.front(), false, "");
1337 else if (Successors.size() == 2) {
1338 drawEdge(Block, Successors.front(), false, "T");
1339 drawEdge(Block, Successors.back(), false, "F");
1340 } else {
1341 unsigned SuccessorNumber = 0;
1342 for (auto *Successor : Successors)
1343 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1344 }
1345}
1346
1347void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1348 // Implement dot-formatted dump by performing plain-text dump into the
1349 // temporary storage followed by some post-processing.
1350 OS << Indent << getUID(BasicBlock) << " [label =\n";
1351 bumpIndent(1);
1352 std::string Str;
1354 // Use no indentation as we need to wrap the lines into quotes ourselves.
1355 BasicBlock->print(SS, "", SlotTracker);
1356
1357 // We need to process each line of the output separately, so split
1358 // single-string plain-text dump.
1360 StringRef(Str).rtrim('\n').split(Lines, "\n");
1361
1362 auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1363 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1364 };
1365
1366 // Don't need the "+" after the last line.
1367 for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1368 EmitLine(Line, " +\n");
1369 EmitLine(Lines.back(), "\n");
1370
1371 bumpIndent(-1);
1372 OS << Indent << "]\n";
1373
1375}
1376
1377void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1378 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1379 bumpIndent(1);
1380 OS << Indent << "fontname=Courier\n"
1381 << Indent << "label=\""
1382 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1383 << DOT::EscapeString(Region->getName()) << "\"\n";
1384 // Dump the blocks of the region.
1385 assert(Region->getEntry() && "Region contains no inner blocks.");
1387 dumpBlock(Block);
1388 bumpIndent(-1);
1389 OS << Indent << "}\n";
1391}
1392
1394 if (auto *Inst = dyn_cast<Instruction>(V)) {
1395 if (!Inst->getType()->isVoidTy()) {
1396 Inst->printAsOperand(O, false);
1397 O << " = ";
1398 }
1399 O << Inst->getOpcodeName() << " ";
1400 unsigned E = Inst->getNumOperands();
1401 if (E > 0) {
1402 Inst->getOperand(0)->printAsOperand(O, false);
1403 for (unsigned I = 1; I < E; ++I)
1404 Inst->getOperand(I)->printAsOperand(O << ", ", false);
1405 }
1406 } else // !Inst
1407 V->printAsOperand(O, false);
1408}
1409
1410#endif
1411
1413 return !hasDefiningRecipe() ||
1414 !getDefiningRecipe()->getParent()->getEnclosingLoopRegion();
1415}
1416
1418 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1419}
1420
1422 VPValue *New,
1423 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1424 // Note that this early exit is required for correctness; the implementation
1425 // below relies on the number of users for this VPValue to decrease, which
1426 // isn't the case if this == New.
1427 if (this == New)
1428 return;
1429
1430 for (unsigned J = 0; J < getNumUsers();) {
1431 VPUser *User = Users[J];
1432 bool RemovedUser = false;
1433 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1434 if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1435 continue;
1436
1437 RemovedUser = true;
1438 User->setOperand(I, New);
1439 }
1440 // If a user got removed after updating the current user, the next user to
1441 // update will be moved to the current position, so we only need to
1442 // increment the index if the number of users did not change.
1443 if (!RemovedUser)
1444 J++;
1445 }
1446}
1447
1448#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1450 OS << Tracker.getOrCreateName(this);
1451}
1452
1454 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1455 Op->printAsOperand(O, SlotTracker);
1456 });
1457}
1458#endif
1459
1460void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1461 Old2NewTy &Old2New,
1462 InterleavedAccessInfo &IAI) {
1464 RPOT(Region->getEntry());
1465 for (VPBlockBase *Base : RPOT) {
1466 visitBlock(Base, Old2New, IAI);
1467 }
1468}
1469
1470void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1471 InterleavedAccessInfo &IAI) {
1472 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1473 for (VPRecipeBase &VPI : *VPBB) {
1474 if (isa<VPWidenPHIRecipe>(&VPI))
1475 continue;
1476 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1477 auto *VPInst = cast<VPInstruction>(&VPI);
1478
1479 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1480 if (!Inst)
1481 continue;
1482 auto *IG = IAI.getInterleaveGroup(Inst);
1483 if (!IG)
1484 continue;
1485
1486 auto NewIGIter = Old2New.find(IG);
1487 if (NewIGIter == Old2New.end())
1488 Old2New[IG] = new InterleaveGroup<VPInstruction>(
1489 IG->getFactor(), IG->isReverse(), IG->getAlign());
1490
1491 if (Inst == IG->getInsertPos())
1492 Old2New[IG]->setInsertPos(VPInst);
1493
1494 InterleaveGroupMap[VPInst] = Old2New[IG];
1495 InterleaveGroupMap[VPInst]->insertMember(
1496 VPInst, IG->getIndex(Inst),
1497 Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1498 : IG->getFactor()));
1499 }
1500 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1501 visitRegion(Region, Old2New, IAI);
1502 else
1503 llvm_unreachable("Unsupported kind of VPBlock.");
1504}
1505
1507 InterleavedAccessInfo &IAI) {
1508 Old2NewTy Old2New;
1509 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1510}
1511
1512void VPSlotTracker::assignName(const VPValue *V) {
1513 assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1514 auto *UV = V->getUnderlyingValue();
1515 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1516 if (!UV && !(VPI && !VPI->getName().empty())) {
1517 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1518 NextSlot++;
1519 return;
1520 }
1521
1522 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1523 // appending ".Number" to the name if there are multiple uses.
1524 std::string Name;
1525 if (UV) {
1527 UV->printAsOperand(S, false);
1528 } else
1529 Name = VPI->getName();
1530
1531 assert(!Name.empty() && "Name cannot be empty.");
1532 StringRef Prefix = UV ? "ir<" : "vp<%";
1533 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1534
1535 // First assign the base name for V.
1536 const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1537 // Integer or FP constants with different types will result in he same string
1538 // due to stripping types.
1539 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1540 return;
1541
1542 // If it is already used by C > 0 other VPValues, increase the version counter
1543 // C and use it for V.
1544 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1545 if (!UseInserted) {
1546 C->second++;
1547 A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1548 }
1549}
1550
1551void VPSlotTracker::assignNames(const VPlan &Plan) {
1552 if (Plan.VF.getNumUsers() > 0)
1553 assignName(&Plan.VF);
1554 if (Plan.VFxUF.getNumUsers() > 0)
1555 assignName(&Plan.VFxUF);
1556 assignName(&Plan.VectorTripCount);
1557 if (Plan.BackedgeTakenCount)
1558 assignName(Plan.BackedgeTakenCount);
1559 for (VPValue *LI : Plan.VPLiveInsToFree)
1560 assignName(LI);
1561
1564 for (const VPBasicBlock *VPBB :
1565 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1566 assignNames(VPBB);
1567}
1568
1569void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1570 for (const VPRecipeBase &Recipe : *VPBB)
1571 for (VPValue *Def : Recipe.definedValues())
1572 assignName(Def);
1573}
1574
1575std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1576 std::string Name = VPValue2Name.lookup(V);
1577 if (!Name.empty())
1578 return Name;
1579
1580 // If no name was assigned, no VPlan was provided when creating the slot
1581 // tracker or it is not reachable from the provided VPlan. This can happen,
1582 // e.g. when trying to print a recipe that has not been inserted into a VPlan
1583 // in a debugger.
1584 // TODO: Update VPSlotTracker constructor to assign names to recipes &
1585 // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1586 // here.
1587 const VPRecipeBase *DefR = V->getDefiningRecipe();
1588 (void)DefR;
1589 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1590 "VPValue defined by a recipe in a VPlan?");
1591
1592 // Use the underlying value's name, if there is one.
1593 if (auto *UV = V->getUnderlyingValue()) {
1594 std::string Name;
1596 UV->printAsOperand(S, false);
1597 return (Twine("ir<") + Name + ">").str();
1598 }
1599
1600 return "<badref>";
1601}
1602
1604 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1605 assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1606 bool PredicateAtRangeStart = Predicate(Range.Start);
1607
1608 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1609 if (Predicate(TmpVF) != PredicateAtRangeStart) {
1610 Range.End = TmpVF;
1611 break;
1612 }
1613
1614 return PredicateAtRangeStart;
1615}
1616
1617/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1618/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1619/// of VF's starting at a given VF and extending it as much as possible. Each
1620/// vectorization decision can potentially shorten this sub-range during
1621/// buildVPlan().
1623 ElementCount MaxVF) {
1624 auto MaxVFTimes2 = MaxVF * 2;
1625 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1626 VFRange SubRange = {VF, MaxVFTimes2};
1627 auto Plan = buildVPlan(SubRange);
1629 VPlans.push_back(std::move(Plan));
1630 VF = SubRange.End;
1631 }
1632}
1633
1635 assert(count_if(VPlans,
1636 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1637 1 &&
1638 "Multiple VPlans for VF.");
1639
1640 for (const VPlanPtr &Plan : VPlans) {
1641 if (Plan->hasVF(VF))
1642 return *Plan.get();
1643 }
1644 llvm_unreachable("No plan found!");
1645}
1646
1647#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1649 if (VPlans.empty()) {
1650 O << "LV: No VPlans built.\n";
1651 return;
1652 }
1653 for (const auto &Plan : VPlans)
1655 Plan->printDOT(O);
1656 else
1657 Plan->print(O);
1658}
1659#endif
1660
1663 if (!V->isLiveIn())
1664 return {};
1665
1666 return TTI::getOperandInfo(V->getLiveInIRValue());
1667}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:622
dxil pretty DXIL Metadata Pretty Printer
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
std::string Name
Flatten the CFG
static void dumpEdges(CFGMST< Edge, BBInfo > &MST, GCOVFunction &GF)
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
iv Induction Variable Users
Definition: IVUsers.cpp:48
This file provides a LoopVectorizationPlanner class.
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
#define I(x, y, z)
Definition: MD5.cpp:58
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static StringRef getName(Value *V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
This file provides utility VPlan to VPlan transformations.
static T * getPlanEntry(T *Start)
Definition: VPlan.cpp:133
static T * getEnclosingLoopRegionForRegion(T *P)
Return the enclosing loop region for region P.
Definition: VPlan.cpp:557
static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB)
Replace VPBB with a VPIRBasicBlock wrapping IRBB.
Definition: VPlan.cpp:962
cl::opt< unsigned > ForceTargetInstructionCost
static bool hasConditionalTerminator(const VPBasicBlock *VPBB)
Definition: VPlan.cpp:574
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap< VPValue *, VPValue * > &Old2NewVPValues)
Definition: VPlan.cpp:1181
static std::pair< VPBlockBase *, VPBlockBase * > cloneFrom(VPBlockBase *Entry)
Definition: VPlan.cpp:652
static cl::opt< bool > PrintVPlansInDotFormat("vplan-print-in-dot-format", cl::Hidden, cl::desc("Use dot format instead of plain text when dumping VPlans"))
This file contains the declarations of the Vectorization Plan base classes:
static bool IsCondBranch(unsigned BrOpc)
static const uint32_t IV[8]
Definition: blake3_impl.h:78
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator end()
Definition: BasicBlock.h:461
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:448
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:4901
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:212
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:489
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
size_t size() const
Definition: BasicBlock.h:469
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:866
Debug location.
std::optional< const DILocation * > cloneByMultiplyingDuplicationFactor(unsigned DF) const
Returns a new DILocation with duplication factor DF * current duplication factor encoded in the discr...
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:322
bool shouldEmitDebugInfoForProfiling() const
Returns true if we should emit debug info for profiling.
Definition: Metadata.cpp:1878
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:91
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2503
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2491
UnreachableInst * CreateUnreachable()
Definition: IRBuilder.h:1286
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1152
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:523
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:171
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Definition: IRBuilder.h:217
InsertPoint saveIP() const
Returns the current insert point.
Definition: IRBuilder.h:274
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:483
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1367
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:1138
void restoreIP(InsertPoint IP)
Sets the current insert point to a previously-saved location.
Definition: IRBuilder.h:286
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:177
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1384
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
static InstructionCost getInvalid(CostType Val=0)
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
The group of interleaved loads/stores sharing the same stride and close to each other.
Definition: VectorUtils.h:480
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:622
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
Definition: VectorUtils.h:667
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition: VPlan.cpp:1634
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition: VPlan.cpp:1622
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition: VPlan.cpp:1603
void printPlans(raw_ostream &O)
Definition: VPlan.cpp:1648
void annotateInstWithNoAlias(Instruction *VersionedInst, const Instruction *OrigInst)
Add the noalias annotations to VersionedInst.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
void dump() const
User-friendly dump.
Definition: AsmWriter.cpp:5337
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
BlockT * getEntry() const
Get the entry BasicBlock of the Region.
Definition: RegionInfo.h:320
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
This class provides computation of slot numbers for LLVM Assembly writing.
Definition: AsmWriter.cpp:698
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:700
StringRef rtrim(char Char) const
Return string with consecutive Char characters starting from the right removed.
Definition: StringRef.h:803
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
@ TCK_RecipThroughput
Reciprocal throughput.
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt1Ty(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
This function has undefined behavior.
void setOperand(unsigned i, Value *Val)
Definition: User.h:233
Value * getOperand(unsigned i) const
Definition: User.h:228
unsigned getNumOperands() const
Definition: User.h:250
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:3470
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:3494
void connectToPredecessors(VPTransformState::CFGState &CFG)
Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block generated for this VPBB.
Definition: VPlan.cpp:419
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:477
iterator end()
Definition: VPlan.h:3504
iterator begin()
Recipe iterator methods.
Definition: VPlan.h:3502
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition: VPlan.cpp:765
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition: VPlan.cpp:213
VPRegionBlock * getEnclosingLoopRegion()
Definition: VPlan.cpp:566
void dropAllReferences(VPValue *NewValue) override
Replace all operands of VPUsers in the block with NewValue and also replaces all uses of VPValues def...
Definition: VPlan.cpp:516
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition: VPlan.cpp:538
void executeRecipes(VPTransformState *State, BasicBlock *BB)
Execute the recipes in the IR basic block BB.
Definition: VPlan.cpp:526
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPBsicBlock to O, prefixing all lines with Indent.
Definition: VPlan.cpp:631
bool isExiting() const
Returns true if the block is exiting it's parent region.
Definition: VPlan.cpp:614
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition: VPlan.cpp:602
const VPRecipeBase & back() const
Definition: VPlan.h:3516
bool empty() const
Definition: VPlan.h:3513
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:396
void setSuccessors(ArrayRef< VPBlockBase * > NewSuccs)
Set each VPBasicBlock in NewSuccss as successor of this VPBlockBase.
Definition: VPlan.h:612
VPRegionBlock * getParent()
Definition: VPlan.h:488
const VPBasicBlock * getExitingBasicBlock() const
Definition: VPlan.cpp:178
size_t getNumSuccessors() const
Definition: VPlan.h:534
iterator_range< VPBlockBase ** > successors()
Definition: VPlan.h:516
void printSuccessors(raw_ostream &O, const Twine &Indent) const
Print the successors of this block to O, prefixing all lines with Indent.
Definition: VPlan.cpp:619
void setPredecessors(ArrayRef< VPBlockBase * > NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
Definition: VPlan.h:603
VPBlockBase * getEnclosingBlockWithPredecessors()
Definition: VPlan.cpp:200
const VPBlocksTy & getPredecessors() const
Definition: VPlan.h:519
static void deleteCFG(VPBlockBase *Entry)
Delete all blocks reachable from a given VPBlockBase, inclusive.
Definition: VPlan.cpp:208
VPlan * getPlan()
Definition: VPlan.cpp:153
void setPlan(VPlan *ParentPlan)
Sets the pointer of the plan containing the block.
Definition: VPlan.cpp:172
const VPBlocksTy & getHierarchicalSuccessors()
Definition: VPlan.h:554
VPBlockBase * getEnclosingBlockWithSuccessors()
An Enclosing Block of a block B is any block containing B, including B itself.
Definition: VPlan.cpp:192
const VPBasicBlock * getEntryBasicBlock() const
Definition: VPlan.cpp:158
Helper for GraphTraits specialization that traverses through VPRegionBlocks.
Definition: VPlanCFG.h:115
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
Definition: VPlan.h:4117
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition: VPlan.h:4171
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New)
Reassociate all the blocks connected to Old so that they now point to New.
Definition: VPlan.h:4198
VPlan-based builder utility analogous to IRBuilder.
This class augments a recipe with a set of VPValues defined by the recipe.
Definition: VPlanValue.h:292
void dump() const
Dump the VPDef to stderr (for debugging).
Definition: VPlan.cpp:114
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPDef prints itself.
Recipe to expand a SCEV expression.
Definition: VPlan.h:3128
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition: VPlan.h:3616
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:455
static VPIRBasicBlock * fromBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
Definition: VPlan.cpp:843
A recipe to wrap on original IR instruction not to be modified during execution, execept for PHIs.
Definition: VPlan.h:1382
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:1197
VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI)
Definition: VPlan.cpp:1506
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Definition: VPlan.h:153
Value * getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const
Returns an expression describing the lane index that can be used at runtime.
Definition: VPlan.cpp:73
static VPLane getFirstLane()
Definition: VPlan.h:178
@ ScalableLast
For ScalableLast, Lane is the offset from the start of the last N-element subvector in a scalable vec...
@ First
For First, Lane is the index into the first N elements of a fixed-vector <N x <ElTy>> or a scalable v...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:720
VPBasicBlock * getParent()
Definition: VPlan.h:745
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:3657
VPRegionBlock * clone() override
Clone all blocks in the single-entry single-exit region of the block and their recipes without updati...
Definition: VPlan.cpp:702
const VPBlockBase * getEntry() const
Definition: VPlan.h:3696
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition: VPlan.h:3728
void dropAllReferences(VPValue *NewValue) override
Replace all operands of VPUsers in the block with NewValue and also replaces all uses of VPValues def...
Definition: VPlan.cpp:711
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of the block.
Definition: VPlan.cpp:772
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPRegionBlock to O (recursively), prefixing all lines with Indent.
Definition: VPlan.cpp:810
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPRegionBlock,...
Definition: VPlan.cpp:718
const VPBlockBase * getExiting() const
Definition: VPlan.h:3708
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
Definition: VPlan.h:3721
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition: VPlan.h:3413
This class can be used to assign names to VPValues.
Definition: VPlanValue.h:440
std::string getOrCreateName(const VPValue *V) const
Returns the name assigned to V, if there is one, otherwise try to construct one from the underlying v...
Definition: VPlan.cpp:1575
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition: VPlanValue.h:200
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition: VPlan.cpp:1453
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop region.
Definition: VPlan.cpp:1412
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition: VPlan.cpp:123
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:1449
void dump() const
Dump the value to stderr (for debugging).
Definition: VPlan.cpp:106
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition: VPlan.cpp:86
virtual ~VPValue()
Definition: VPlan.cpp:92
void print(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:99
void replaceAllUsesWith(VPValue *New)
Definition: VPlan.cpp:1417
unsigned getNumUsers() const
Definition: VPlanValue.h:111
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition: VPlan.cpp:1421
VPDef * Def
Pointer to the VPDef that defines this VPValue.
Definition: VPlanValue.h:64
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition: VPlan.h:2132
VPlanPrinter prints a given VPlan to a given output stream.
Definition: VPlan.h:4037
LLVM_DUMP_METHOD void dump()
Definition: VPlan.cpp:1277
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:3761
void printDOT(raw_ostream &O) const
Print this VPlan in DOT format to O.
Definition: VPlan.cpp:1172
std::string getName() const
Return a string with the name of the plan and the applicable VFs and UFs.
Definition: VPlan.cpp:1148
void prepareToExecute(Value *TripCount, Value *VectorTripCount, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
Definition: VPlan.cpp:930
VPBasicBlock * getEntry()
Definition: VPlan.h:3870
VPValue & getVectorTripCount()
The vector trip count.
Definition: VPlan.h:3928
VPValue * getTripCount() const
The trip count of the original loop.
Definition: VPlan.h:3907
unsigned getUF() const
Definition: VPlan.h:3959
static VPlanPtr createInitialVPlan(Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header) which cont...
Definition: VPlan.cpp:851
bool hasVF(ElementCount VF)
Definition: VPlan.h:3944
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition: VPlan.cpp:1079
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition: VPlan.cpp:1073
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition: VPlan.h:3977
LLVM_DUMP_METHOD void dump() const
Dump the plan to stderr (for debugging).
Definition: VPlan.cpp:1178
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition: VPlan.cpp:977
void print(raw_ostream &O) const
Print this VPlan to O.
Definition: VPlan.cpp:1131
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition: VPlan.h:3898
void printLiveIns(raw_ostream &O) const
Print the live-ins of this VPlan to O.
Definition: VPlan.cpp:1095
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region.
Definition: VPlan.h:3874
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition: VPlan.cpp:1219
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:218
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:168
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
std::string EscapeString(const std::string &Label)
Definition: GraphWriter.cpp:56
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
BinaryVPInstruction_match< Op0_t, Op1_t, VPInstruction::BranchOnCount > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
UnaryVPInstruction_match< Op0_t, VPInstruction::BranchOnCond > m_BranchOnCond(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
@ SS
Definition: X86.h:212
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
Definition: VPlanUtils.h:39
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
Definition: VPlanUtils.cpp:26
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
Definition: VPlanUtils.cpp:16
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition: STLExtras.h:854
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
auto successors(const MachineBasicBlock *BB)
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition: STLExtras.h:2207
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition: VPlanCFG.h:214
Instruction * propagateMetadata(Instruction *I, ArrayRef< Value * > VL)
Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, MD_nontemporal,...
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr)
cl::opt< bool > EnableFSDiscriminator
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
Definition: VPlan.cpp:53
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:144
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Definition: SmallVector.h:1299
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition: Casting.h:548
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:303
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1945
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
InstructionCost Cost
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
Definition: VPlan.h:92
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlan.h:97
ElementCount End
Definition: VPlan.h:102
Struct to hold various analysis needed for cost computations.
Definition: VPlan.h:688
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
Definition: VPlan.cpp:1662
const TargetTransformInfo & TTI
Definition: VPlan.h:689
Hold state information used when constructing the CFG of the output IR, traversing the VPBasicBlocks ...
Definition: VPlan.h:337
BasicBlock * PrevBB
The previous IR BasicBlock created or used.
Definition: VPlan.h:343
SmallDenseMap< VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
Definition: VPlan.h:351
VPBasicBlock * PrevVPBB
The previous VPBasicBlock visited. Initially set to null.
Definition: VPlan.h:339
BasicBlock * ExitBB
The last IR BasicBlock in the output IR.
Definition: VPlan.h:347
BasicBlock * getPreheaderBBFor(VPRecipeBase *R)
Returns the BasicBlock* mapped to the pre-header of the loop region containing R.
Definition: VPlan.cpp:352
DomTreeUpdater DTU
Updater for the DominatorTree.
Definition: VPlan.h:354
DenseMap< VPValue *, Value * > VPV2Vector
Definition: VPlan.h:254
DenseMap< VPValue *, SmallVector< Value *, 4 > > VPV2Scalars
Definition: VPlan.h:256
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
Definition: VPlan.h:236
bool hasScalarValue(VPValue *Def, VPLane Lane)
Definition: VPlan.h:268
bool hasVectorValue(VPValue *Def)
Definition: VPlan.h:266
LoopInfo * LI
Hold a pointer to LoopInfo to register new basic blocks in the loop.
Definition: VPlan.h:365
VPTransformState(const TargetTransformInfo *TTI, ElementCount VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, IRBuilderBase &Builder, InnerLoopVectorizer *ILV, VPlan *Plan, Type *CanonicalIVTy)
Definition: VPlan.cpp:220
struct llvm::VPTransformState::DataState Data
void addMetadata(Value *To, Instruction *From)
Add metadata from one instruction to another.
Definition: VPlan.cpp:365
void packScalarIntoVectorValue(VPValue *Def, const VPLane &Lane)
Construct the vector value of a scalarized value V one lane at a time.
Definition: VPlan.cpp:398
Value * get(VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition: VPlan.cpp:253
struct llvm::VPTransformState::CFGState CFG
LoopVersioning * LVer
LoopVersioning.
Definition: VPlan.h:384
void addNewMetadata(Instruction *To, const Instruction *Orig)
Add additional metadata to To that was not present on Orig.
Definition: VPlan.cpp:357
std::optional< VPLane > Lane
Hold the index to generate specific scalar instructions.
Definition: VPlan.h:249
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
Definition: VPlan.h:368
VPlan * Plan
Pointer to the VPlan code is generated for.
Definition: VPlan.h:374
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
Definition: VPlan.h:244
Loop * CurrentVectorLoop
The loop object for the current parent region, or nullptr.
Definition: VPlan.h:377
void setDebugLocFrom(DebugLoc DL)
Set the debug location in the builder using the debug location DL.
Definition: VPlan.cpp:376
void set(VPValue *Def, Value *V, bool IsScalar=false)
Set the generated vector Value for a given VPValue, if IsScalar is false.
Definition: VPlan.h:278
void print(raw_ostream &O) const
Definition: VPlan.cpp:1393
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...