LLVM 20.0.0git
VPlan.cpp
Go to the documentation of this file.
1//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This is the LLVM vectorization plan. It represents a candidate for
11/// vectorization, allowing to plan and optimize how to vectorize a given loop
12/// before generating LLVM-IR.
13/// The vectorizer uses vectorization plans to estimate the costs of potential
14/// candidates and if profitable to execute the desired plan, generating vector
15/// LLVM-IR code.
16///
17//===----------------------------------------------------------------------===//
18
19#include "VPlan.h"
21#include "VPlanCFG.h"
22#include "VPlanPatternMatch.h"
23#include "VPlanTransforms.h"
24#include "VPlanUtils.h"
26#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/Twine.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CFG.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Value.h"
41#include "llvm/Support/Debug.h"
46#include <cassert>
47#include <string>
48
49using namespace llvm;
50using namespace llvm::VPlanPatternMatch;
51
52namespace llvm {
54}
56
58 "vplan-print-in-dot-format", cl::Hidden,
59 cl::desc("Use dot format instead of plain text when dumping VPlans"));
60
61#define DEBUG_TYPE "loop-vectorize"
62
63#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
65 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
67 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
68 V.print(OS, SlotTracker);
69 return OS;
70}
71#endif
72
74 const ElementCount &VF) const {
75 switch (LaneKind) {
77 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
78 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
79 Builder.getInt32(VF.getKnownMinValue() - Lane));
81 return Builder.getInt32(Lane);
82 }
83 llvm_unreachable("Unknown lane kind");
84}
85
86VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
87 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
88 if (Def)
89 Def->addDefinedValue(this);
90}
91
93 assert(Users.empty() && "trying to delete a VPValue with remaining users");
94 if (Def)
95 Def->removeDefinedValue(this);
96}
97
98#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
100 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
101 R->print(OS, "", SlotTracker);
102 else
104}
105
106void VPValue::dump() const {
107 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
109 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
111 dbgs() << "\n";
112}
113
114void VPDef::dump() const {
115 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
117 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
118 print(dbgs(), "", SlotTracker);
119 dbgs() << "\n";
120}
121#endif
122
124 return cast_or_null<VPRecipeBase>(Def);
125}
126
128 return cast_or_null<VPRecipeBase>(Def);
129}
130
131// Get the top-most entry block of \p Start. This is the entry block of the
132// containing VPlan. This function is templated to support both const and non-const blocks
133template <typename T> static T *getPlanEntry(T *Start) {
134 T *Next = Start;
135 T *Current = Start;
136 while ((Next = Next->getParent()))
137 Current = Next;
138
139 SmallSetVector<T *, 8> WorkList;
140 WorkList.insert(Current);
141
142 for (unsigned i = 0; i < WorkList.size(); i++) {
143 T *Current = WorkList[i];
144 if (Current->getNumPredecessors() == 0)
145 return Current;
146 auto &Predecessors = Current->getPredecessors();
147 WorkList.insert(Predecessors.begin(), Predecessors.end());
148 }
149
150 llvm_unreachable("VPlan without any entry node without predecessors");
151}
152
153VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
154
155const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
156
157/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
159 const VPBlockBase *Block = this;
160 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
161 Block = Region->getEntry();
162 return cast<VPBasicBlock>(Block);
163}
164
166 VPBlockBase *Block = this;
167 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
168 Block = Region->getEntry();
169 return cast<VPBasicBlock>(Block);
170}
171
172void VPBlockBase::setPlan(VPlan *ParentPlan) {
173 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
174 Plan = ParentPlan;
175}
176
177/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
179 const VPBlockBase *Block = this;
180 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
181 Block = Region->getExiting();
182 return cast<VPBasicBlock>(Block);
183}
184
186 VPBlockBase *Block = this;
187 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
188 Block = Region->getExiting();
189 return cast<VPBasicBlock>(Block);
190}
191
193 if (!Successors.empty() || !Parent)
194 return this;
195 assert(Parent->getExiting() == this &&
196 "Block w/o successors not the exiting block of its parent.");
197 return Parent->getEnclosingBlockWithSuccessors();
198}
199
201 if (!Predecessors.empty() || !Parent)
202 return this;
203 assert(Parent->getEntry() == this &&
204 "Block w/o predecessors not the entry of its parent.");
205 return Parent->getEnclosingBlockWithPredecessors();
206}
207
209 iterator It = begin();
210 while (It != end() && It->isPhi())
211 It++;
212 return It;
213}
214
216 ElementCount VF, unsigned UF, LoopInfo *LI,
217 DominatorTree *DT, IRBuilderBase &Builder,
218 InnerLoopVectorizer *ILV, VPlan *Plan,
219 Loop *CurrentParentLoop, Type *CanonicalIVTy)
220 : TTI(TTI), VF(VF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
221 CurrentParentLoop(CurrentParentLoop), LVer(nullptr),
222 TypeAnalysis(CanonicalIVTy) {}
223
225 if (Def->isLiveIn())
226 return Def->getLiveInIRValue();
227
228 if (hasScalarValue(Def, Lane))
229 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
230
231 if (!Lane.isFirstLane() && vputils::isUniformAfterVectorization(Def) &&
233 return Data.VPV2Scalars[Def][0];
234 }
235
237 auto *VecPart = Data.VPV2Vector[Def];
238 if (!VecPart->getType()->isVectorTy()) {
239 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
240 return VecPart;
241 }
242 // TODO: Cache created scalar values.
243 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
244 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
245 // set(Def, Extract, Instance);
246 return Extract;
247}
248
249Value *VPTransformState::get(VPValue *Def, bool NeedsScalar) {
250 if (NeedsScalar) {
251 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
253 (hasScalarValue(Def, VPLane(0)) &&
254 Data.VPV2Scalars[Def].size() == 1)) &&
255 "Trying to access a single scalar per part but has multiple scalars "
256 "per part.");
257 return get(Def, VPLane(0));
258 }
259
260 // If Values have been set for this Def return the one relevant for \p Part.
261 if (hasVectorValue(Def))
262 return Data.VPV2Vector[Def];
263
264 auto GetBroadcastInstrs = [this, Def](Value *V) {
265 bool SafeToHoist = Def->isDefinedOutsideLoopRegions();
266 if (VF.isScalar())
267 return V;
268 // Place the code for broadcasting invariant variables in the new preheader.
270 if (SafeToHoist) {
271 BasicBlock *LoopVectorPreHeader =
273 if (LoopVectorPreHeader)
274 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
275 }
276
277 // Place the code for broadcasting invariant variables in the new preheader.
278 // Broadcast the scalar into all locations in the vector.
279 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
280
281 return Shuf;
282 };
283
284 if (!hasScalarValue(Def, {0})) {
285 assert(Def->isLiveIn() && "expected a live-in");
286 Value *IRV = Def->getLiveInIRValue();
287 Value *B = GetBroadcastInstrs(IRV);
288 set(Def, B);
289 return B;
290 }
291
292 Value *ScalarValue = get(Def, VPLane(0));
293 // If we aren't vectorizing, we can just copy the scalar map values over
294 // to the vector map.
295 if (VF.isScalar()) {
296 set(Def, ScalarValue);
297 return ScalarValue;
298 }
299
300 bool IsUniform = vputils::isUniformAfterVectorization(Def);
301
302 VPLane LastLane(IsUniform ? 0 : VF.getKnownMinValue() - 1);
303 // Check if there is a scalar value for the selected lane.
304 if (!hasScalarValue(Def, LastLane)) {
305 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
306 // VPExpandSCEVRecipes can also be uniform.
308 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
309 "unexpected recipe found to be invariant");
310 IsUniform = true;
311 LastLane = 0;
312 }
313
314 auto *LastInst = cast<Instruction>(get(Def, LastLane));
315 // Set the insert point after the last scalarized instruction or after the
316 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
317 // will directly follow the scalar definitions.
318 auto OldIP = Builder.saveIP();
319 auto NewIP =
320 isa<PHINode>(LastInst)
321 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
322 : std::next(BasicBlock::iterator(LastInst));
323 Builder.SetInsertPoint(&*NewIP);
324
325 // However, if we are vectorizing, we need to construct the vector values.
326 // If the value is known to be uniform after vectorization, we can just
327 // broadcast the scalar value corresponding to lane zero. Otherwise, we
328 // construct the vector values using insertelement instructions. Since the
329 // resulting vectors are stored in State, we will only generate the
330 // insertelements once.
331 Value *VectorValue = nullptr;
332 if (IsUniform) {
333 VectorValue = GetBroadcastInstrs(ScalarValue);
334 set(Def, VectorValue);
335 } else {
336 // Initialize packing with insertelements to start from undef.
337 assert(!VF.isScalable() && "VF is assumed to be non scalable.");
338 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
339 set(Def, Undef);
340 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
342 VectorValue = get(Def);
343 }
344 Builder.restoreIP(OldIP);
345 return VectorValue;
346}
347
349 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
350 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
351}
352
354 const Instruction *Orig) {
355 // If the loop was versioned with memchecks, add the corresponding no-alias
356 // metadata.
357 if (LVer && isa<LoadInst, StoreInst>(Orig))
358 LVer->annotateInstWithNoAlias(To, Orig);
359}
360
362 // No source instruction to transfer metadata from?
363 if (!From)
364 return;
365
366 if (Instruction *ToI = dyn_cast<Instruction>(To)) {
368 addNewMetadata(ToI, From);
369 }
370}
371
373 const DILocation *DIL = DL;
374 // When a FSDiscriminator is enabled, we don't need to add the multiply
375 // factors to the discriminators.
376 if (DIL &&
378 ->getParent()
381 // FIXME: For scalable vectors, assume vscale=1.
382 unsigned UF = Plan->getUF();
383 auto NewDIL =
385 if (NewDIL)
387 else
388 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
389 << DIL->getFilename() << " Line: " << DIL->getLine());
390 } else
392}
393
395 const VPLane &Lane) {
396 Value *ScalarInst = get(Def, Lane);
397 Value *VectorValue = get(Def);
398 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
399 Lane.getAsRuntimeExpr(Builder, VF));
400 set(Def, VectorValue);
401}
402
404VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
405 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
406 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
407 BasicBlock *PrevBB = CFG.PrevBB;
408 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
409 PrevBB->getParent(), CFG.ExitBB);
410 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
411
412 return NewBB;
413}
414
416 BasicBlock *NewBB = CFG.VPBB2IRBB[this];
417 // Hook up the new basic block to its predecessors.
418 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
419 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
420 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
421 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
422
423 assert(PredBB && "Predecessor basic-block not found building successor.");
424 auto *PredBBTerminator = PredBB->getTerminator();
425 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
426
427 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
428 if (isa<UnreachableInst>(PredBBTerminator)) {
429 assert(PredVPSuccessors.size() == 1 &&
430 "Predecessor ending w/o branch must have single successor.");
431 DebugLoc DL = PredBBTerminator->getDebugLoc();
432 PredBBTerminator->eraseFromParent();
433 auto *Br = BranchInst::Create(NewBB, PredBB);
434 Br->setDebugLoc(DL);
435 } else if (TermBr && !TermBr->isConditional()) {
436 TermBr->setSuccessor(0, NewBB);
437 } else {
438 // Set each forward successor here when it is created, excluding
439 // backedges. A backward successor is set when the branch is created.
440 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
441 assert((TermBr && (!TermBr->getSuccessor(idx) ||
442 (isa<VPIRBasicBlock>(this) &&
443 TermBr->getSuccessor(idx) == NewBB))) &&
444 "Trying to reset an existing successor block.");
445 TermBr->setSuccessor(idx, NewBB);
446 }
447 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
448 }
449}
450
452 assert(getHierarchicalSuccessors().size() <= 2 &&
453 "VPIRBasicBlock can have at most two successors at the moment!");
454 State->Builder.SetInsertPoint(IRBB->getTerminator());
455 State->CFG.PrevBB = IRBB;
456 State->CFG.VPBB2IRBB[this] = IRBB;
457 executeRecipes(State, IRBB);
458 // Create a branch instruction to terminate IRBB if one was not created yet
459 // and is needed.
460 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
461 auto *Br = State->Builder.CreateBr(IRBB);
462 Br->setOperand(0, nullptr);
463 IRBB->getTerminator()->eraseFromParent();
464 } else {
465 assert(
466 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
467 "other blocks must be terminated by a branch");
468 }
469
470 connectToPredecessors(State->CFG);
471}
472
474 auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
475 for (VPRecipeBase &R : Recipes)
476 NewBlock->appendRecipe(R.clone());
477 return NewBlock;
478}
479
481 bool Replica = bool(State->Lane);
482 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
483
484 auto IsReplicateRegion = [](VPBlockBase *BB) {
485 auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
486 return R && R->isReplicator();
487 };
488
489 // 1. Create an IR basic block.
490 if ((Replica && this == getParent()->getEntry()) ||
491 IsReplicateRegion(getSingleHierarchicalPredecessor())) {
492 // Reuse the previous basic block if the current VPBB is either
493 // * the entry to a replicate region, or
494 // * the exit of a replicate region.
495 State->CFG.VPBB2IRBB[this] = NewBB;
496 } else {
497 NewBB = createEmptyBasicBlock(State->CFG);
498
499 State->Builder.SetInsertPoint(NewBB);
500 // Temporarily terminate with unreachable until CFG is rewired.
501 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
502 // Register NewBB in its loop. In innermost loops its the same for all
503 // BB's.
504 if (State->CurrentParentLoop)
505 State->CurrentParentLoop->addBasicBlockToLoop(NewBB, *State->LI);
506 State->Builder.SetInsertPoint(Terminator);
507
508 State->CFG.PrevBB = NewBB;
509 State->CFG.VPBB2IRBB[this] = NewBB;
510 connectToPredecessors(State->CFG);
511 }
512
513 // 2. Fill the IR basic block with IR instructions.
514 executeRecipes(State, NewBB);
515}
516
518 auto *NewBlock = getPlan()->createVPBasicBlock(getName());
519 for (VPRecipeBase &R : *this)
520 NewBlock->appendRecipe(R.clone());
521 return NewBlock;
522}
523
525 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
526 << " in BB:" << BB->getName() << '\n');
527
528 State->CFG.PrevVPBB = this;
529
530 for (VPRecipeBase &Recipe : Recipes)
531 Recipe.execute(*State);
532
533 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
534}
535
537 assert((SplitAt == end() || SplitAt->getParent() == this) &&
538 "can only split at a position in the same block");
539
541 // Create new empty block after the block to split.
542 auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
544
545 // Finally, move the recipes starting at SplitAt to new block.
546 for (VPRecipeBase &ToMove :
547 make_early_inc_range(make_range(SplitAt, this->end())))
548 ToMove.moveBefore(*SplitBlock, SplitBlock->end());
549
550 return SplitBlock;
551}
552
553/// Return the enclosing loop region for region \p P. The templated version is
554/// used to support both const and non-const block arguments.
555template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
556 if (P && P->isReplicator()) {
557 P = P->getParent();
558 // Multiple loop regions can be nested, but replicate regions can only be
559 // nested inside a loop region or must be outside any other region.
560 assert((!P || !cast<VPRegionBlock>(P)->isReplicator()) &&
561 "unexpected nested replicate regions");
562 }
563 return P;
564}
565
568}
569
572}
573
574static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
575 if (VPBB->empty()) {
576 assert(
577 VPBB->getNumSuccessors() < 2 &&
578 "block with multiple successors doesn't have a recipe as terminator");
579 return false;
580 }
581
582 const VPRecipeBase *R = &VPBB->back();
583 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
586 (void)IsCondBranch;
587
588 if (VPBB->getNumSuccessors() >= 2 ||
589 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
590 assert(IsCondBranch && "block with multiple successors not terminated by "
591 "conditional branch recipe");
592
593 return true;
594 }
595
596 assert(
597 !IsCondBranch &&
598 "block with 0 or 1 successors terminated by conditional branch recipe");
599 return false;
600}
601
603 if (hasConditionalTerminator(this))
604 return &back();
605 return nullptr;
606}
607
609 if (hasConditionalTerminator(this))
610 return &back();
611 return nullptr;
612}
613
615 return getParent() && getParent()->getExitingBasicBlock() == this;
616}
617
618#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
619void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
620 if (getSuccessors().empty()) {
621 O << Indent << "No successors\n";
622 } else {
623 O << Indent << "Successor(s): ";
624 ListSeparator LS;
625 for (auto *Succ : getSuccessors())
626 O << LS << Succ->getName();
627 O << '\n';
628 }
629}
630
631void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
632 VPSlotTracker &SlotTracker) const {
633 O << Indent << getName() << ":\n";
634
635 auto RecipeIndent = Indent + " ";
636 for (const VPRecipeBase &Recipe : *this) {
637 Recipe.print(O, RecipeIndent, SlotTracker);
638 O << '\n';
639 }
640
641 printSuccessors(O, Indent);
642}
643#endif
644
645static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
646
647// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
648// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
649// Remapping of operands must be done separately. Returns a pair with the new
650// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
651// region, return nullptr for the exiting block.
652static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
654 VPBlockBase *Exiting = nullptr;
655 bool InRegion = Entry->getParent();
656 // First, clone blocks reachable from Entry.
657 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
658 VPBlockBase *NewBB = BB->clone();
659 Old2NewVPBlocks[BB] = NewBB;
660 if (InRegion && BB->getNumSuccessors() == 0) {
661 assert(!Exiting && "Multiple exiting blocks?");
662 Exiting = BB;
663 }
664 }
665 assert((!InRegion || Exiting) && "regions must have a single exiting block");
666
667 // Second, update the predecessors & successors of the cloned blocks.
668 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
669 VPBlockBase *NewBB = Old2NewVPBlocks[BB];
671 for (VPBlockBase *Pred : BB->getPredecessors()) {
672 NewPreds.push_back(Old2NewVPBlocks[Pred]);
673 }
674 NewBB->setPredecessors(NewPreds);
676 for (VPBlockBase *Succ : BB->successors()) {
677 NewSuccs.push_back(Old2NewVPBlocks[Succ]);
678 }
679 NewBB->setSuccessors(NewSuccs);
680 }
681
682#if !defined(NDEBUG)
683 // Verify that the order of predecessors and successors matches in the cloned
684 // version.
685 for (const auto &[OldBB, NewBB] :
687 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
688 for (const auto &[OldPred, NewPred] :
689 zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
690 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
691
692 for (const auto &[OldSucc, NewSucc] :
693 zip(OldBB->successors(), NewBB->successors()))
694 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
695 }
696#endif
697
698 return std::make_pair(Old2NewVPBlocks[Entry],
699 Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
700}
701
703 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
704 auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
705 getName(), isReplicator());
706 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
707 Block->setParent(NewRegion);
708 return NewRegion;
709}
710
713 RPOT(Entry);
714
715 if (!isReplicator()) {
716 // Create and register the new vector loop.
717 Loop *PrevLoop = State->CurrentParentLoop;
718 State->CurrentParentLoop = State->LI->AllocateLoop();
719 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
720 Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
721
722 // Insert the new loop into the loop nest and register the new basic blocks
723 // before calling any utilities such as SCEV that require valid LoopInfo.
724 if (ParentLoop)
725 ParentLoop->addChildLoop(State->CurrentParentLoop);
726 else
727 State->LI->addTopLevelLoop(State->CurrentParentLoop);
728
729 // Visit the VPBlocks connected to "this", starting from it.
730 for (VPBlockBase *Block : RPOT) {
731 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
732 Block->execute(State);
733 }
734
735 State->CurrentParentLoop = PrevLoop;
736 return;
737 }
738
739 assert(!State->Lane && "Replicating a Region with non-null instance.");
740
741 // Enter replicating mode.
742 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
743 State->Lane = VPLane(0);
744 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
745 ++Lane) {
747 // Visit the VPBlocks connected to \p this, starting from it.
748 for (VPBlockBase *Block : RPOT) {
749 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
750 Block->execute(State);
751 }
752 }
753
754 // Exit replicating mode.
755 State->Lane.reset();
756}
757
760 for (VPRecipeBase &R : Recipes)
761 Cost += R.cost(VF, Ctx);
762 return Cost;
763}
764
766 if (!isReplicator()) {
768 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
769 Cost += Block->cost(VF, Ctx);
770 InstructionCost BackedgeCost =
771 ForceTargetInstructionCost.getNumOccurrences()
772 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
773 : Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
774 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
775 << ": vector loop backedge\n");
776 Cost += BackedgeCost;
777 return Cost;
778 }
779
780 // Compute the cost of a replicate region. Replicating isn't supported for
781 // scalable vectors, return an invalid cost for them.
782 // TODO: Discard scalable VPlans with replicate recipes earlier after
783 // construction.
784 if (VF.isScalable())
786
787 // First compute the cost of the conditionally executed recipes, followed by
788 // account for the branching cost, except if the mask is a header mask or
789 // uniform condition.
790 using namespace llvm::VPlanPatternMatch;
791 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
792 InstructionCost ThenCost = Then->cost(VF, Ctx);
793
794 // For the scalar case, we may not always execute the original predicated
795 // block, Thus, scale the block's cost by the probability of executing it.
796 if (VF.isScalar())
797 return ThenCost / getReciprocalPredBlockProb();
798
799 return ThenCost;
800}
801
802#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
804 VPSlotTracker &SlotTracker) const {
805 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
806 auto NewIndent = Indent + " ";
807 for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
808 O << '\n';
809 BlockBase->print(O, NewIndent, SlotTracker);
810 }
811 O << Indent << "}\n";
812
813 printSuccessors(O, Indent);
814}
815#endif
816
817VPlan::VPlan(Loop *L) {
818 setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
819 ScalarHeader = createVPIRBasicBlock(L->getHeader());
820}
821
823 VPValue DummyValue;
824
825 for (auto *VPB : CreatedBlocks) {
826 if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
827 // Replace all operands of recipes and all VPValues defined in VPBB with
828 // DummyValue so the block can be deleted.
829 for (VPRecipeBase &R : *VPBB) {
830 for (auto *Def : R.definedValues())
831 Def->replaceAllUsesWith(&DummyValue);
832
833 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
834 R.setOperand(I, &DummyValue);
835 }
836 }
837 delete VPB;
838 }
839 for (VPValue *VPV : VPLiveInsToFree)
840 delete VPV;
841 if (BackedgeTakenCount)
842 delete BackedgeTakenCount;
843}
844
847 bool RequiresScalarEpilogueCheck,
848 bool TailFolded, Loop *TheLoop) {
849 auto Plan = std::make_unique<VPlan>(TheLoop);
850 VPBlockBase *ScalarHeader = Plan->getScalarHeader();
851
852 // Connect entry only to vector preheader initially. Entry will also be
853 // connected to the scalar preheader later, during skeleton creation when
854 // runtime guards are added as needed. Note that when executing the VPlan for
855 // an epilogue vector loop, the original entry block here will be replaced by
856 // a new VPIRBasicBlock wrapping the entry to the epilogue vector loop after
857 // generating code for the main vector loop.
858 VPBasicBlock *VecPreheader = Plan->createVPBasicBlock("vector.ph");
859 VPBlockUtils::connectBlocks(Plan->getEntry(), VecPreheader);
860
861 // Create SCEV and VPValue for the trip count.
862 // We use the symbolic max backedge-taken-count, which works also when
863 // vectorizing loops with uncountable early exits.
864 const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
865 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
866 "Invalid loop count");
867 ScalarEvolution &SE = *PSE.getSE();
868 const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
869 InductionTy, TheLoop);
870 Plan->TripCount =
872
873 // Create VPRegionBlock, with empty header and latch blocks, to be filled
874 // during processing later.
875 VPBasicBlock *HeaderVPBB = Plan->createVPBasicBlock("vector.body");
876 VPBasicBlock *LatchVPBB = Plan->createVPBasicBlock("vector.latch");
877 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
878 auto *TopRegion = Plan->createVPRegionBlock(
879 HeaderVPBB, LatchVPBB, "vector loop", false /*isReplicator*/);
880
881 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
882 VPBasicBlock *MiddleVPBB = Plan->createVPBasicBlock("middle.block");
883 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
884
885 VPBasicBlock *ScalarPH = Plan->createVPBasicBlock("scalar.ph");
886 VPBlockUtils::connectBlocks(ScalarPH, ScalarHeader);
887 if (!RequiresScalarEpilogueCheck) {
888 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
889 return Plan;
890 }
891
892 // If needed, add a check in the middle block to see if we have completed
893 // all of the iterations in the first vector loop. Three cases:
894 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
895 // Thus if tail is to be folded, we know we don't need to run the
896 // remainder and we can set the condition to true.
897 // 2) If we require a scalar epilogue, there is no conditional branch as
898 // we unconditionally branch to the scalar preheader. Do nothing.
899 // 3) Otherwise, construct a runtime check.
900 BasicBlock *IRExitBlock = TheLoop->getUniqueLatchExitBlock();
901 auto *VPExitBlock = Plan->createVPIRBasicBlock(IRExitBlock);
902 // The connection order corresponds to the operands of the conditional branch.
903 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
904 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
905
906 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
907 // Here we use the same DebugLoc as the scalar loop latch terminator instead
908 // of the corresponding compare because they may have ended up with
909 // different line numbers and we want to avoid awkward line stepping while
910 // debugging. Eg. if the compare has got a line number inside the loop.
911 VPBuilder Builder(MiddleVPBB);
912 VPValue *Cmp =
913 TailFolded
915 IntegerType::getInt1Ty(TripCount->getType()->getContext())))
916 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
918 ScalarLatchTerm->getDebugLoc(), "cmp.n");
919 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
920 ScalarLatchTerm->getDebugLoc());
921 return Plan;
922}
923
924void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
925 VPTransformState &State) {
926 Type *TCTy = TripCountV->getType();
927 // Check if the backedge taken count is needed, and if so build it.
928 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
930 auto *TCMO = Builder.CreateSub(TripCountV, ConstantInt::get(TCTy, 1),
931 "trip.count.minus.1");
932 BackedgeTakenCount->setUnderlyingValue(TCMO);
933 }
934
935 VectorTripCount.setUnderlyingValue(VectorTripCountV);
936
938 // FIXME: Model VF * UF computation completely in VPlan.
939 assert((!getVectorLoopRegion() || VFxUF.getNumUsers()) &&
940 "VFxUF expected to always have users");
941 unsigned UF = getUF();
942 if (VF.getNumUsers()) {
943 Value *RuntimeVF = getRuntimeVF(Builder, TCTy, State.VF);
944 VF.setUnderlyingValue(RuntimeVF);
945 VFxUF.setUnderlyingValue(
946 UF > 1 ? Builder.CreateMul(RuntimeVF, ConstantInt::get(TCTy, UF))
947 : RuntimeVF);
948 } else {
949 VFxUF.setUnderlyingValue(createStepForVF(Builder, TCTy, State.VF, UF));
950 }
951}
952
953/// Generate the code inside the preheader and body of the vectorized loop.
954/// Assumes a single pre-header basic-block was created for this. Introduce
955/// additional basic-blocks as needed, and fill them all.
957 // Initialize CFG state.
958 State->CFG.PrevVPBB = nullptr;
959 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
960
961 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
962 BasicBlock *VectorPreHeader = State->CFG.PrevBB;
963 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
964 State->CFG.DTU.applyUpdates(
965 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
966
967 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
968 << ", UF=" << getUF() << '\n');
969 setName("Final VPlan");
970 LLVM_DEBUG(dump());
971
972 // Disconnect the middle block from its single successor (the scalar loop
973 // header) in both the CFG and DT. The branch will be recreated during VPlan
974 // execution.
975 BasicBlock *MiddleBB = State->CFG.ExitBB;
976 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
977 auto *BrInst = new UnreachableInst(MiddleBB->getContext());
978 BrInst->insertBefore(MiddleBB->getTerminator());
979 MiddleBB->getTerminator()->eraseFromParent();
980 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
981 // Disconnect scalar preheader and scalar header, as the dominator tree edge
982 // will be updated as part of VPlan execution. This allows keeping the DTU
983 // logic generic during VPlan execution.
984 State->CFG.DTU.applyUpdates(
985 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
986
988 Entry);
989 // Generate code for the VPlan, in parts of the vector skeleton, loop body and
990 // successor blocks including the middle, exit and scalar preheader blocks.
991 for (VPBlockBase *Block : RPOT)
992 Block->execute(State);
993
994 State->CFG.DTU.flush();
995
996 auto *LoopRegion = getVectorLoopRegion();
997 if (!LoopRegion)
998 return;
999
1000 VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock();
1001 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1002
1003 // Fix the latch value of canonical, reduction and first-order recurrences
1004 // phis in the vector loop.
1005 VPBasicBlock *Header = LoopRegion->getEntryBasicBlock();
1006 for (VPRecipeBase &R : Header->phis()) {
1007 // Skip phi-like recipes that generate their backedege values themselves.
1008 if (isa<VPWidenPHIRecipe>(&R))
1009 continue;
1010
1011 if (isa<VPWidenInductionRecipe>(&R)) {
1012 PHINode *Phi = nullptr;
1013 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1014 Phi = cast<PHINode>(State->get(R.getVPSingleValue()));
1015 } else {
1016 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1017 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1018 "recipe generating only scalars should have been replaced");
1019 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi));
1020 Phi = cast<PHINode>(GEP->getPointerOperand());
1021 }
1022
1023 Phi->setIncomingBlock(1, VectorLatchBB);
1024
1025 // Move the last step to the end of the latch block. This ensures
1026 // consistent placement of all induction updates.
1027 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1028 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1029
1030 // Use the steps for the last part as backedge value for the induction.
1031 if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(&R))
1032 Inc->setOperand(0, State->get(IV->getLastUnrolledPartOperand()));
1033 continue;
1034 }
1035
1036 auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1037 bool NeedsScalar = isa<VPScalarPHIRecipe>(PhiR) ||
1038 (isa<VPReductionPHIRecipe>(PhiR) &&
1039 cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1040 Value *Phi = State->get(PhiR, NeedsScalar);
1041 Value *Val = State->get(PhiR->getBackedgeValue(), NeedsScalar);
1042 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1043 }
1044}
1045
1047 // For now only return the cost of the vector loop region, ignoring any other
1048 // blocks, like the preheader or middle blocks.
1049 return getVectorLoopRegion()->cost(VF, Ctx);
1050}
1051
1053 // TODO: Cache if possible.
1054 for (VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1055 if (auto *R = dyn_cast<VPRegionBlock>(B))
1056 return R->isReplicator() ? nullptr : R;
1057 return nullptr;
1058}
1059
1061 for (const VPBlockBase *B : vp_depth_first_shallow(getEntry()))
1062 if (auto *R = dyn_cast<VPRegionBlock>(B))
1063 return R->isReplicator() ? nullptr : R;
1064 return nullptr;
1065}
1066
1067#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1070
1071 if (VF.getNumUsers() > 0) {
1072 O << "\nLive-in ";
1073 VF.printAsOperand(O, SlotTracker);
1074 O << " = VF";
1075 }
1076
1077 if (VFxUF.getNumUsers() > 0) {
1078 O << "\nLive-in ";
1079 VFxUF.printAsOperand(O, SlotTracker);
1080 O << " = VF * UF";
1081 }
1082
1083 if (VectorTripCount.getNumUsers() > 0) {
1084 O << "\nLive-in ";
1085 VectorTripCount.printAsOperand(O, SlotTracker);
1086 O << " = vector-trip-count";
1087 }
1088
1089 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1090 O << "\nLive-in ";
1091 BackedgeTakenCount->printAsOperand(O, SlotTracker);
1092 O << " = backedge-taken count";
1093 }
1094
1095 O << "\n";
1096 if (TripCount->isLiveIn())
1097 O << "Live-in ";
1098 TripCount->printAsOperand(O, SlotTracker);
1099 O << " = original trip-count";
1100 O << "\n";
1101}
1102
1106
1107 O << "VPlan '" << getName() << "' {";
1108
1109 printLiveIns(O);
1110
1112 RPOT(getEntry());
1113 for (const VPBlockBase *Block : RPOT) {
1114 O << '\n';
1115 Block->print(O, "", SlotTracker);
1116 }
1117
1118 O << "}\n";
1119}
1120
1121std::string VPlan::getName() const {
1122 std::string Out;
1123 raw_string_ostream RSO(Out);
1124 RSO << Name << " for ";
1125 if (!VFs.empty()) {
1126 RSO << "VF={" << VFs[0];
1127 for (ElementCount VF : drop_begin(VFs))
1128 RSO << "," << VF;
1129 RSO << "},";
1130 }
1131
1132 if (UFs.empty()) {
1133 RSO << "UF>=1";
1134 } else {
1135 RSO << "UF={" << UFs[0];
1136 for (unsigned UF : drop_begin(UFs))
1137 RSO << "," << UF;
1138 RSO << "}";
1139 }
1140
1141 return Out;
1142}
1143
1146 VPlanPrinter Printer(O, *this);
1147 Printer.dump();
1148}
1149
1151void VPlan::dump() const { print(dbgs()); }
1152#endif
1153
1154static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1155 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1156 // Update the operands of all cloned recipes starting at NewEntry. This
1157 // traverses all reachable blocks. This is done in two steps, to handle cycles
1158 // in PHI recipes.
1160 OldDeepRPOT(Entry);
1162 NewDeepRPOT(NewEntry);
1163 // First, collect all mappings from old to new VPValues defined by cloned
1164 // recipes.
1165 for (const auto &[OldBB, NewBB] :
1166 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1167 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1168 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1169 "blocks must have the same number of recipes");
1170 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1171 assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1172 "recipes must have the same number of operands");
1173 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1174 "recipes must define the same number of operands");
1175 for (const auto &[OldV, NewV] :
1176 zip(OldR.definedValues(), NewR.definedValues()))
1177 Old2NewVPValues[OldV] = NewV;
1178 }
1179 }
1180
1181 // Update all operands to use cloned VPValues.
1182 for (VPBasicBlock *NewBB :
1183 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1184 for (VPRecipeBase &NewR : *NewBB)
1185 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1186 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1187 NewR.setOperand(I, NewOp);
1188 }
1189 }
1190}
1191
1193 unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
1194 // Clone blocks.
1195 const auto &[NewEntry, __] = cloneFrom(Entry);
1196
1197 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1198 VPIRBasicBlock *NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1199 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1200 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1201 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1202 }));
1203 // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1204 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1205 DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1206 for (VPValue *OldLiveIn : VPLiveInsToFree) {
1207 Old2NewVPValues[OldLiveIn] =
1208 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1209 }
1210 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1211 Old2NewVPValues[&VF] = &NewPlan->VF;
1212 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1213 if (BackedgeTakenCount) {
1214 NewPlan->BackedgeTakenCount = new VPValue();
1215 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1216 }
1217 assert(TripCount && "trip count must be set");
1218 if (TripCount->isLiveIn())
1219 Old2NewVPValues[TripCount] =
1220 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1221 // else NewTripCount will be created and inserted into Old2NewVPValues when
1222 // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1223
1224 remapOperands(Entry, NewEntry, Old2NewVPValues);
1225
1226 // Initialize remaining fields of cloned VPlan.
1227 NewPlan->VFs = VFs;
1228 NewPlan->UFs = UFs;
1229 // TODO: Adjust names.
1230 NewPlan->Name = Name;
1231 assert(Old2NewVPValues.contains(TripCount) &&
1232 "TripCount must have been added to Old2NewVPValues");
1233 NewPlan->TripCount = Old2NewVPValues[TripCount];
1234
1235 // Transfer all cloned blocks (the second half of all current blocks) from
1236 // current to new VPlan.
1237 unsigned NumBlocksAfterCloning = CreatedBlocks.size();
1238 for (unsigned I :
1239 seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
1240 NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
1241 CreatedBlocks.truncate(NumBlocksBeforeCloning);
1242
1243 return NewPlan;
1244}
1245
1247 auto *VPIRBB = new VPIRBasicBlock(IRBB);
1248 CreatedBlocks.push_back(VPIRBB);
1249 return VPIRBB;
1250}
1251
1253 auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
1254 for (Instruction &I :
1255 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
1256 VPIRBB->appendRecipe(new VPIRInstruction(I));
1257 return VPIRBB;
1258}
1259
1260#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1261
1262Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1263 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1264 Twine(getOrCreateBID(Block));
1265}
1266
1267Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1268 const std::string &Name = Block->getName();
1269 if (!Name.empty())
1270 return Name;
1271 return "VPB" + Twine(getOrCreateBID(Block));
1272}
1273
1275 Depth = 1;
1276 bumpIndent(0);
1277 OS << "digraph VPlan {\n";
1278 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1279 if (!Plan.getName().empty())
1280 OS << "\\n" << DOT::EscapeString(Plan.getName());
1281
1282 {
1283 // Print live-ins.
1284 std::string Str;
1285 raw_string_ostream SS(Str);
1286 Plan.printLiveIns(SS);
1288 StringRef(Str).rtrim('\n').split(Lines, "\n");
1289 for (auto Line : Lines)
1290 OS << DOT::EscapeString(Line.str()) << "\\n";
1291 }
1292
1293 OS << "\"]\n";
1294 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1295 OS << "edge [fontname=Courier, fontsize=30]\n";
1296 OS << "compound=true\n";
1297
1299 dumpBlock(Block);
1300
1301 OS << "}\n";
1302}
1303
1304void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1305 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1306 dumpBasicBlock(BasicBlock);
1307 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1308 dumpRegion(Region);
1309 else
1310 llvm_unreachable("Unsupported kind of VPBlock.");
1311}
1312
1313void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1314 bool Hidden, const Twine &Label) {
1315 // Due to "dot" we print an edge between two regions as an edge between the
1316 // exiting basic block and the entry basic of the respective regions.
1317 const VPBlockBase *Tail = From->getExitingBasicBlock();
1318 const VPBlockBase *Head = To->getEntryBasicBlock();
1319 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1320 OS << " [ label=\"" << Label << '\"';
1321 if (Tail != From)
1322 OS << " ltail=" << getUID(From);
1323 if (Head != To)
1324 OS << " lhead=" << getUID(To);
1325 if (Hidden)
1326 OS << "; splines=none";
1327 OS << "]\n";
1328}
1329
1330void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1331 auto &Successors = Block->getSuccessors();
1332 if (Successors.size() == 1)
1333 drawEdge(Block, Successors.front(), false, "");
1334 else if (Successors.size() == 2) {
1335 drawEdge(Block, Successors.front(), false, "T");
1336 drawEdge(Block, Successors.back(), false, "F");
1337 } else {
1338 unsigned SuccessorNumber = 0;
1339 for (auto *Successor : Successors)
1340 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1341 }
1342}
1343
1344void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1345 // Implement dot-formatted dump by performing plain-text dump into the
1346 // temporary storage followed by some post-processing.
1347 OS << Indent << getUID(BasicBlock) << " [label =\n";
1348 bumpIndent(1);
1349 std::string Str;
1351 // Use no indentation as we need to wrap the lines into quotes ourselves.
1352 BasicBlock->print(SS, "", SlotTracker);
1353
1354 // We need to process each line of the output separately, so split
1355 // single-string plain-text dump.
1357 StringRef(Str).rtrim('\n').split(Lines, "\n");
1358
1359 auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1360 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1361 };
1362
1363 // Don't need the "+" after the last line.
1364 for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1365 EmitLine(Line, " +\n");
1366 EmitLine(Lines.back(), "\n");
1367
1368 bumpIndent(-1);
1369 OS << Indent << "]\n";
1370
1372}
1373
1374void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1375 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1376 bumpIndent(1);
1377 OS << Indent << "fontname=Courier\n"
1378 << Indent << "label=\""
1379 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1380 << DOT::EscapeString(Region->getName()) << "\"\n";
1381 // Dump the blocks of the region.
1382 assert(Region->getEntry() && "Region contains no inner blocks.");
1384 dumpBlock(Block);
1385 bumpIndent(-1);
1386 OS << Indent << "}\n";
1388}
1389
1391 if (auto *Inst = dyn_cast<Instruction>(V)) {
1392 if (!Inst->getType()->isVoidTy()) {
1393 Inst->printAsOperand(O, false);
1394 O << " = ";
1395 }
1396 O << Inst->getOpcodeName() << " ";
1397 unsigned E = Inst->getNumOperands();
1398 if (E > 0) {
1399 Inst->getOperand(0)->printAsOperand(O, false);
1400 for (unsigned I = 1; I < E; ++I)
1401 Inst->getOperand(I)->printAsOperand(O << ", ", false);
1402 }
1403 } else // !Inst
1404 V->printAsOperand(O, false);
1405}
1406
1407#endif
1408
1409/// Returns true if there is a vector loop region and \p VPV is defined in a
1410/// loop region.
1411static bool isDefinedInsideLoopRegions(const VPValue *VPV) {
1412 const VPRecipeBase *DefR = VPV->getDefiningRecipe();
1413 return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() ||
1415}
1416
1418 return !isDefinedInsideLoopRegions(this);
1419}
1421 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1422}
1423
1425 VPValue *New,
1426 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1427 // Note that this early exit is required for correctness; the implementation
1428 // below relies on the number of users for this VPValue to decrease, which
1429 // isn't the case if this == New.
1430 if (this == New)
1431 return;
1432
1433 for (unsigned J = 0; J < getNumUsers();) {
1434 VPUser *User = Users[J];
1435 bool RemovedUser = false;
1436 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1437 if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1438 continue;
1439
1440 RemovedUser = true;
1441 User->setOperand(I, New);
1442 }
1443 // If a user got removed after updating the current user, the next user to
1444 // update will be moved to the current position, so we only need to
1445 // increment the index if the number of users did not change.
1446 if (!RemovedUser)
1447 J++;
1448 }
1449}
1450
1451#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453 OS << Tracker.getOrCreateName(this);
1454}
1455
1457 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1458 Op->printAsOperand(O, SlotTracker);
1459 });
1460}
1461#endif
1462
1463void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1464 Old2NewTy &Old2New,
1465 InterleavedAccessInfo &IAI) {
1467 RPOT(Region->getEntry());
1468 for (VPBlockBase *Base : RPOT) {
1469 visitBlock(Base, Old2New, IAI);
1470 }
1471}
1472
1473void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1474 InterleavedAccessInfo &IAI) {
1475 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1476 for (VPRecipeBase &VPI : *VPBB) {
1477 if (isa<VPWidenPHIRecipe>(&VPI))
1478 continue;
1479 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1480 auto *VPInst = cast<VPInstruction>(&VPI);
1481
1482 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1483 if (!Inst)
1484 continue;
1485 auto *IG = IAI.getInterleaveGroup(Inst);
1486 if (!IG)
1487 continue;
1488
1489 auto NewIGIter = Old2New.find(IG);
1490 if (NewIGIter == Old2New.end())
1491 Old2New[IG] = new InterleaveGroup<VPInstruction>(
1492 IG->getFactor(), IG->isReverse(), IG->getAlign());
1493
1494 if (Inst == IG->getInsertPos())
1495 Old2New[IG]->setInsertPos(VPInst);
1496
1497 InterleaveGroupMap[VPInst] = Old2New[IG];
1498 InterleaveGroupMap[VPInst]->insertMember(
1499 VPInst, IG->getIndex(Inst),
1500 Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1501 : IG->getFactor()));
1502 }
1503 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1504 visitRegion(Region, Old2New, IAI);
1505 else
1506 llvm_unreachable("Unsupported kind of VPBlock.");
1507}
1508
1510 InterleavedAccessInfo &IAI) {
1511 Old2NewTy Old2New;
1512 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1513}
1514
1515void VPSlotTracker::assignName(const VPValue *V) {
1516 assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1517 auto *UV = V->getUnderlyingValue();
1518 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1519 if (!UV && !(VPI && !VPI->getName().empty())) {
1520 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1521 NextSlot++;
1522 return;
1523 }
1524
1525 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1526 // appending ".Number" to the name if there are multiple uses.
1527 std::string Name;
1528 if (UV) {
1530 UV->printAsOperand(S, false);
1531 } else
1532 Name = VPI->getName();
1533
1534 assert(!Name.empty() && "Name cannot be empty.");
1535 StringRef Prefix = UV ? "ir<" : "vp<%";
1536 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1537
1538 // First assign the base name for V.
1539 const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1540 // Integer or FP constants with different types will result in he same string
1541 // due to stripping types.
1542 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1543 return;
1544
1545 // If it is already used by C > 0 other VPValues, increase the version counter
1546 // C and use it for V.
1547 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1548 if (!UseInserted) {
1549 C->second++;
1550 A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1551 }
1552}
1553
1554void VPSlotTracker::assignNames(const VPlan &Plan) {
1555 if (Plan.VF.getNumUsers() > 0)
1556 assignName(&Plan.VF);
1557 if (Plan.VFxUF.getNumUsers() > 0)
1558 assignName(&Plan.VFxUF);
1559 assignName(&Plan.VectorTripCount);
1560 if (Plan.BackedgeTakenCount)
1561 assignName(Plan.BackedgeTakenCount);
1562 for (VPValue *LI : Plan.VPLiveInsToFree)
1563 assignName(LI);
1564
1567 for (const VPBasicBlock *VPBB :
1568 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1569 assignNames(VPBB);
1570}
1571
1572void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1573 for (const VPRecipeBase &Recipe : *VPBB)
1574 for (VPValue *Def : Recipe.definedValues())
1575 assignName(Def);
1576}
1577
1578std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1579 std::string Name = VPValue2Name.lookup(V);
1580 if (!Name.empty())
1581 return Name;
1582
1583 // If no name was assigned, no VPlan was provided when creating the slot
1584 // tracker or it is not reachable from the provided VPlan. This can happen,
1585 // e.g. when trying to print a recipe that has not been inserted into a VPlan
1586 // in a debugger.
1587 // TODO: Update VPSlotTracker constructor to assign names to recipes &
1588 // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1589 // here.
1590 const VPRecipeBase *DefR = V->getDefiningRecipe();
1591 (void)DefR;
1592 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1593 "VPValue defined by a recipe in a VPlan?");
1594
1595 // Use the underlying value's name, if there is one.
1596 if (auto *UV = V->getUnderlyingValue()) {
1597 std::string Name;
1599 UV->printAsOperand(S, false);
1600 return (Twine("ir<") + Name + ">").str();
1601 }
1602
1603 return "<badref>";
1604}
1605
1607 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1608 assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1609 bool PredicateAtRangeStart = Predicate(Range.Start);
1610
1611 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1612 if (Predicate(TmpVF) != PredicateAtRangeStart) {
1613 Range.End = TmpVF;
1614 break;
1615 }
1616
1617 return PredicateAtRangeStart;
1618}
1619
1620/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1621/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1622/// of VF's starting at a given VF and extending it as much as possible. Each
1623/// vectorization decision can potentially shorten this sub-range during
1624/// buildVPlan().
1626 ElementCount MaxVF) {
1627 auto MaxVFTimes2 = MaxVF * 2;
1628 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1629 VFRange SubRange = {VF, MaxVFTimes2};
1630 auto Plan = buildVPlan(SubRange);
1632 VPlans.push_back(std::move(Plan));
1633 VF = SubRange.End;
1634 }
1635}
1636
1638 assert(count_if(VPlans,
1639 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1640 1 &&
1641 "Multiple VPlans for VF.");
1642
1643 for (const VPlanPtr &Plan : VPlans) {
1644 if (Plan->hasVF(VF))
1645 return *Plan.get();
1646 }
1647 llvm_unreachable("No plan found!");
1648}
1649
1650#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1652 if (VPlans.empty()) {
1653 O << "LV: No VPlans built.\n";
1654 return;
1655 }
1656 for (const auto &Plan : VPlans)
1658 Plan->printDOT(O);
1659 else
1660 Plan->print(O);
1661}
1662#endif
1663
1666 if (!V->isLiveIn())
1667 return {};
1668
1669 return TTI::getOperandInfo(V->getLiveInIRValue());
1670}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:622
dxil pretty DXIL Metadata Pretty Printer
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
std::string Name
Flatten the CFG
static void dumpEdges(CFGMST< Edge, BBInfo > &MST, GCOVFunction &GF)
Hexagon Common GEP
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
iv Induction Variable Users
Definition: IVUsers.cpp:48
This file provides a LoopVectorizationPlanner class.
cl::opt< unsigned > ForceTargetInstructionCost("force-target-instruction-cost", cl::init(0), cl::Hidden, cl::desc("A flag that overrides the target's expected cost for " "an instruction to a single constant value. Mostly " "useful for getting consistent testing."))
#define I(x, y, z)
Definition: MD5.cpp:58
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static StringRef getName(Value *V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
This file provides utility VPlan to VPlan transformations.
static T * getPlanEntry(T *Start)
Definition: VPlan.cpp:133
static T * getEnclosingLoopRegionForRegion(T *P)
Return the enclosing loop region for region P.
Definition: VPlan.cpp:555
static bool isDefinedInsideLoopRegions(const VPValue *VPV)
Returns true if there is a vector loop region and VPV is defined in a loop region.
Definition: VPlan.cpp:1411
cl::opt< unsigned > ForceTargetInstructionCost
static bool hasConditionalTerminator(const VPBasicBlock *VPBB)
Definition: VPlan.cpp:574
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap< VPValue *, VPValue * > &Old2NewVPValues)
Definition: VPlan.cpp:1154
static std::pair< VPBlockBase *, VPBlockBase * > cloneFrom(VPBlockBase *Entry)
Definition: VPlan.cpp:652
static cl::opt< bool > PrintVPlansInDotFormat("vplan-print-in-dot-format", cl::Hidden, cl::desc("Use dot format instead of plain text when dumping VPlans"))
This file contains the declarations of the Vectorization Plan base classes:
static bool IsCondBranch(unsigned BrOpc)
static const uint32_t IV[8]
Definition: blake3_impl.h:78
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator end()
Definition: BasicBlock.h:461
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:448
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:4901
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:212
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:489
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
size_t size() const
Definition: BasicBlock.h:469
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:866
Debug location.
std::optional< const DILocation * > cloneByMultiplyingDuplicationFactor(unsigned DF) const
Returns a new DILocation with duplication factor DF * current duplication factor encoded in the discr...
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
unsigned size() const
Definition: DenseMap.h:99
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:322
bool shouldEmitDebugInfoForProfiling() const
Returns true if we should emit debug info for profiling.
Definition: Metadata.cpp:1878
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:113
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2510
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2498
UnreachableInst * CreateUnreachable()
Definition: IRBuilder.h:1305
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1153
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:545
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:193
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Definition: IRBuilder.h:239
InsertPoint saveIP() const
Returns the current insert point.
Definition: IRBuilder.h:296
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:505
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1386
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:1157
void restoreIP(InsertPoint IP)
Sets the current insert point to a previously-saved location.
Definition: IRBuilder.h:308
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:199
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1403
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2704
InnerLoopVectorizer vectorizes loops which contain only one basic block to a specified vectorization ...
static InstructionCost getInvalid(CostType Val=0)
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
The group of interleaved loads/stores sharing the same stride and close to each other.
Definition: VectorUtils.h:488
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:630
InterleaveGroup< Instruction > * getInterleaveGroup(const Instruction *Instr) const
Get the interleave group that Instr belongs to.
Definition: VectorUtils.h:675
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getUniqueLatchExitBlock() const
Return the unique exit block for the latch, or null if there are multiple different exit blocks or th...
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition: VPlan.cpp:1637
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition: VPlan.cpp:1625
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition: VPlan.cpp:1606
void printPlans(raw_ostream &O)
Definition: VPlan.cpp:1651
void annotateInstWithNoAlias(Instruction *VersionedInst, const Instruction *OrigInst)
Add the noalias annotations to VersionedInst.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
void dump() const
User-friendly dump.
Definition: AsmWriter.cpp:5337
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
BlockT * getEntry() const
Get the entry BasicBlock of the Region.
Definition: RegionInfo.h:320
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:98
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
This class provides computation of slot numbers for LLVM Assembly writing.
Definition: AsmWriter.cpp:698
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:700
StringRef rtrim(char Char) const
Return string with consecutive Char characters starting from the right removed.
Definition: StringRef.h:803
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
@ TCK_RecipThroughput
Reciprocal throughput.
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt1Ty(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
This function has undefined behavior.
void setOperand(unsigned i, Value *Val)
Definition: User.h:233
Value * getOperand(unsigned i) const
Definition: User.h:228
unsigned getNumOperands() const
Definition: User.h:250
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:3529
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition: VPlan.h:3601
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:3553
void connectToPredecessors(VPTransformState::CFGState &CFG)
Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block generated for this VPBB.
Definition: VPlan.cpp:415
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:480
iterator end()
Definition: VPlan.h:3563
iterator begin()
Recipe iterator methods.
Definition: VPlan.h:3561
VPBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition: VPlan.cpp:517
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition: VPlan.cpp:758
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition: VPlan.cpp:208
VPRegionBlock * getEnclosingLoopRegion()
Definition: VPlan.cpp:566
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition: VPlan.cpp:536
void executeRecipes(VPTransformState *State, BasicBlock *BB)
Execute the recipes in the IR basic block BB.
Definition: VPlan.cpp:524
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPBsicBlock to O, prefixing all lines with Indent.
Definition: VPlan.cpp:631
bool isExiting() const
Returns true if the block is exiting it's parent region.
Definition: VPlan.cpp:614
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition: VPlan.cpp:602
const VPRecipeBase & back() const
Definition: VPlan.h:3575
bool empty() const
Definition: VPlan.h:3572
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:397
void setSuccessors(ArrayRef< VPBlockBase * > NewSuccs)
Set each VPBasicBlock in NewSuccss as successor of this VPBlockBase.
Definition: VPlan.h:613
VPRegionBlock * getParent()
Definition: VPlan.h:489
const VPBasicBlock * getExitingBasicBlock() const
Definition: VPlan.cpp:178
size_t getNumSuccessors() const
Definition: VPlan.h:535
iterator_range< VPBlockBase ** > successors()
Definition: VPlan.h:517
void printSuccessors(raw_ostream &O, const Twine &Indent) const
Print the successors of this block to O, prefixing all lines with Indent.
Definition: VPlan.cpp:619
void setPredecessors(ArrayRef< VPBlockBase * > NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
Definition: VPlan.h:604
VPBlockBase * getEnclosingBlockWithPredecessors()
Definition: VPlan.cpp:200
const VPBlocksTy & getPredecessors() const
Definition: VPlan.h:520
VPlan * getPlan()
Definition: VPlan.cpp:153
void setPlan(VPlan *ParentPlan)
Sets the pointer of the plan containing the block.
Definition: VPlan.cpp:172
const VPBlocksTy & getHierarchicalSuccessors()
Definition: VPlan.h:555
VPBlockBase * getEnclosingBlockWithSuccessors()
An Enclosing Block of a block B is any block containing B, including B itself.
Definition: VPlan.cpp:192
const VPBasicBlock * getEntryBasicBlock() const
Definition: VPlan.cpp:158
Helper for GraphTraits specialization that traverses through VPRegionBlocks.
Definition: VPlanCFG.h:115
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
Definition: VPlan.h:4203
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition: VPlan.h:4257
VPlan-based builder utility analogous to IRBuilder.
This class augments a recipe with a set of VPValues defined by the recipe.
Definition: VPlanValue.h:292
void dump() const
Dump the VPDef to stderr (for debugging).
Definition: VPlan.cpp:114
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPDef prints itself.
Recipe to expand a SCEV expression.
Definition: VPlan.h:3187
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition: VPlan.h:3668
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:451
VPIRBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition: VPlan.cpp:473
A recipe to wrap on original IR instruction not to be modified during execution, execept for PHIs.
Definition: VPlan.h:1380
This is a concrete Recipe that models a single VPlan-level instruction.
Definition: VPlan.h:1192
VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI)
Definition: VPlan.cpp:1509
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Definition: VPlan.h:153
Value * getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const
Returns an expression describing the lane index that can be used at runtime.
Definition: VPlan.cpp:73
static VPLane getFirstLane()
Definition: VPlan.h:178
@ ScalableLast
For ScalableLast, Lane is the offset from the start of the last N-element subvector in a scalable vec...
@ First
For First, Lane is the index into the first N elements of a fixed-vector <N x <ElTy>> or a scalable v...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:714
VPBasicBlock * getParent()
Definition: VPlan.h:739
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:3700
VPRegionBlock * clone() override
Clone all blocks in the single-entry single-exit region of the block and their recipes without updati...
Definition: VPlan.cpp:702
const VPBlockBase * getEntry() const
Definition: VPlan.h:3733
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition: VPlan.h:3765
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of the block.
Definition: VPlan.cpp:765
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPRegionBlock to O (recursively), prefixing all lines with Indent.
Definition: VPlan.cpp:803
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPRegionBlock,...
Definition: VPlan.cpp:711
const VPBlockBase * getExiting() const
Definition: VPlan.h:3745
VPBasicBlock * getPreheaderVPBB()
Returns the pre-header VPBasicBlock of the loop region.
Definition: VPlan.h:3758
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition: VPlan.h:3472
This class can be used to assign names to VPValues.
Definition: VPlanValue.h:441
std::string getOrCreateName(const VPValue *V) const
Returns the name assigned to V, if there is one, otherwise try to construct one from the underlying v...
Definition: VPlan.cpp:1578
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition: VPlanValue.h:200
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition: VPlan.cpp:1456
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop region.
Definition: VPlan.cpp:1417
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition: VPlan.cpp:123
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:1452
void dump() const
Dump the value to stderr (for debugging).
Definition: VPlan.cpp:106
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition: VPlan.cpp:86
virtual ~VPValue()
Definition: VPlan.cpp:92
void print(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:99
void replaceAllUsesWith(VPValue *New)
Definition: VPlan.cpp:1420
unsigned getNumUsers() const
Definition: VPlanValue.h:111
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition: VPlan.cpp:1424
VPDef * Def
Pointer to the VPDef that defines this VPValue.
Definition: VPlanValue.h:64
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition: VPlan.h:2141
VPlanPrinter prints a given VPlan to a given output stream.
Definition: VPlan.h:4123
LLVM_DUMP_METHOD void dump()
Definition: VPlan.cpp:1274
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:3796
void printDOT(raw_ostream &O) const
Print this VPlan in DOT format to O.
Definition: VPlan.cpp:1145
std::string getName() const
Return a string with the name of the plan and the applicable VFs and UFs.
Definition: VPlan.cpp:1121
void prepareToExecute(Value *TripCount, Value *VectorTripCount, VPTransformState &State)
Prepare the plan for execution, setting up the required live-in values.
Definition: VPlan.cpp:924
VPBasicBlock * getEntry()
Definition: VPlan.h:3909
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
Definition: VPlan.h:4089
VPValue & getVectorTripCount()
The vector trip count.
Definition: VPlan.h:3971
VPValue * getTripCount() const
The trip count of the original loop.
Definition: VPlan.h:3950
unsigned getUF() const
Definition: VPlan.h:4002
static VPlanPtr createInitialVPlan(Type *InductionTy, PredicatedScalarEvolution &PSE, bool RequiresScalarEpilogueCheck, bool TailFolded, Loop *TheLoop)
Create initial VPlan, having an "entry" VPBasicBlock (wrapping original scalar pre-header) which cont...
Definition: VPlan.cpp:845
VPIRBasicBlock * createEmptyVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock wrapping IRBB, but do not create VPIRInstructions wrapping the instructions i...
Definition: VPlan.cpp:1246
bool hasVF(ElementCount VF)
Definition: VPlan.h:3987
VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition: VPlan.cpp:1052
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition: VPlan.cpp:1046
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
Definition: VPlan.h:4079
VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
Definition: VPlan.cpp:1252
VPValue * getOrAddLiveIn(Value *V)
Gets the live-in VPValue for V or adds a new live-in (if none exists yet) for V.
Definition: VPlan.h:4020
LLVM_DUMP_METHOD void dump() const
Dump the plan to stderr (for debugging).
Definition: VPlan.cpp:1151
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition: VPlan.cpp:956
void print(raw_ostream &O) const
Print this VPlan to O.
Definition: VPlan.cpp:1104
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition: VPlan.h:3941
void printLiveIns(raw_ostream &O) const
Print the live-ins of this VPlan to O.
Definition: VPlan.cpp:1068
VPBasicBlock * getVectorPreheader()
Returns the preheader of the vector loop region, if one exists, or null otherwise.
Definition: VPlan.h:3914
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition: VPlan.cpp:1192
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:218
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:168
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
std::string EscapeString(const std::string &Label)
Definition: GraphWriter.cpp:56
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
BinaryVPInstruction_match< Op0_t, Op1_t, VPInstruction::BranchOnCount > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
UnaryVPInstruction_match< Op0_t, VPInstruction::BranchOnCond > m_BranchOnCond(const Op0_t &Op0)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
@ SS
Definition: X86.h:212
bool isUniformAfterVectorization(const VPValue *VPV)
Returns true if VPV is uniform after vectorization.
Definition: VPlanUtils.h:39
VPValue * getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, ScalarEvolution &SE)
Get or create a VPValue that corresponds to the expansion of Expr.
Definition: VPlanUtils.cpp:26
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
Definition: VPlanUtils.cpp:16
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition: STLExtras.h:854
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
auto successors(const MachineBasicBlock *BB)
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition: STLExtras.h:2207
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition: VPlanCFG.h:214
Instruction * propagateMetadata(Instruction *I, ArrayRef< Value * > VL)
Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath, MD_nontemporal,...
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr)
cl::opt< bool > EnableFSDiscriminator
cl::opt< bool > EnableVPlanNativePath("enable-vplan-native-path", cl::Hidden, cl::desc("Enable VPlan-native vectorization path with " "support for outer loop vectorization."))
Definition: VPlan.cpp:53
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:144
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition: Casting.h:548
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:303
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1945
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
InstructionCost Cost
unsigned getReciprocalPredBlockProb()
A helper function that returns the reciprocal of the block probability of predicated blocks.
Definition: VPlan.h:92
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlan.h:97
ElementCount End
Definition: VPlan.h:102
Struct to hold various analysis needed for cost computations.
Definition: VPlan.h:682
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
Definition: VPlan.cpp:1665
const TargetTransformInfo & TTI
Definition: VPlan.h:683
Hold state information used when constructing the CFG of the output IR, traversing the VPBasicBlocks ...
Definition: VPlan.h:338
BasicBlock * PrevBB
The previous IR BasicBlock created or used.
Definition: VPlan.h:344
SmallDenseMap< VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
Definition: VPlan.h:352
VPBasicBlock * PrevVPBB
The previous VPBasicBlock visited. Initially set to null.
Definition: VPlan.h:340
BasicBlock * ExitBB
The last IR BasicBlock in the output IR.
Definition: VPlan.h:348
BasicBlock * getPreheaderBBFor(VPRecipeBase *R)
Returns the BasicBlock* mapped to the pre-header of the loop region containing R.
Definition: VPlan.cpp:348
DomTreeUpdater DTU
Updater for the DominatorTree.
Definition: VPlan.h:355
DenseMap< VPValue *, Value * > VPV2Vector
Definition: VPlan.h:255
DenseMap< VPValue *, SmallVector< Value *, 4 > > VPV2Scalars
Definition: VPlan.h:257
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
Definition: VPlan.h:236
bool hasScalarValue(VPValue *Def, VPLane Lane)
Definition: VPlan.h:269
bool hasVectorValue(VPValue *Def)
Definition: VPlan.h:267
LoopInfo * LI
Hold a pointer to LoopInfo to register new basic blocks in the loop.
Definition: VPlan.h:366
struct llvm::VPTransformState::DataState Data
void addMetadata(Value *To, Instruction *From)
Add metadata from one instruction to another.
Definition: VPlan.cpp:361
void packScalarIntoVectorValue(VPValue *Def, const VPLane &Lane)
Construct the vector value of a scalarized value V one lane at a time.
Definition: VPlan.cpp:394
Value * get(VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition: VPlan.cpp:249
struct llvm::VPTransformState::CFGState CFG
LoopVersioning * LVer
LoopVersioning.
Definition: VPlan.h:385
void addNewMetadata(Instruction *To, const Instruction *Orig)
Add additional metadata to To that was not present on Orig.
Definition: VPlan.cpp:353
std::optional< VPLane > Lane
Hold the index to generate specific scalar instructions.
Definition: VPlan.h:250
VPTransformState(const TargetTransformInfo *TTI, ElementCount VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, IRBuilderBase &Builder, InnerLoopVectorizer *ILV, VPlan *Plan, Loop *CurrentParentLoop, Type *CanonicalIVTy)
Definition: VPlan.cpp:215
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
Definition: VPlan.h:369
VPlan * Plan
Pointer to the VPlan code is generated for.
Definition: VPlan.h:375
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
Definition: VPlan.h:245
void setDebugLocFrom(DebugLoc DL)
Set the debug location in the builder using the debug location DL.
Definition: VPlan.cpp:372
Loop * CurrentParentLoop
The parent loop object for the current scope, or nullptr.
Definition: VPlan.h:378
void set(VPValue *Def, Value *V, bool IsScalar=false)
Set the generated vector Value for a given VPValue, if IsScalar is false.
Definition: VPlan.h:279
void print(raw_ostream &O) const
Definition: VPlan.cpp:1390
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...