47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
54 case VPInstructionSC: {
57 if (VPI->getOpcode() == Instruction::Load)
59 return VPI->opcodeMayReadOrWriteFromMemory();
61 case VPInterleaveEVLSC:
64 case VPWidenStoreEVLSC:
72 ->getCalledScalarFunction()
74 case VPWidenIntrinsicSC:
76 case VPCanonicalIVPHISC:
77 case VPBranchOnMaskSC:
79 case VPFirstOrderRecurrencePHISC:
80 case VPReductionPHISC:
81 case VPScalarIVStepsSC:
85 case VPReductionEVLSC:
87 case VPVectorPointerSC:
88 case VPWidenCanonicalIVSC:
91 case VPWidenIntOrFpInductionSC:
92 case VPWidenLoadEVLSC:
95 case VPWidenPointerInductionSC:
100 assert((!
I || !
I->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
113 case VPInstructionSC:
115 case VPWidenLoadEVLSC:
120 ->mayReadFromMemory();
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
127 case VPBranchOnMaskSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
136 case VPReductionEVLSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
142 case VPWidenIntOrFpInductionSC:
144 case VPWidenPointerInductionSC:
149 assert((!
I || !
I->mayReadFromMemory()) &&
150 "underlying instruction may read from memory");
164 case VPFirstOrderRecurrencePHISC:
165 case VPPredInstPHISC:
166 case VPVectorEndPointerSC:
168 case VPInstructionSC: {
175 case VPWidenCallSC: {
179 case VPWidenIntrinsicSC:
182 case VPReductionEVLSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
189 case VPWidenIntOrFpInductionSC:
191 case VPWidenPointerInductionSC:
196 assert((!
I || !
I->mayHaveSideEffects()) &&
197 "underlying instruction has side-effects");
200 case VPInterleaveEVLSC:
203 case VPWidenLoadEVLSC:
205 case VPWidenStoreEVLSC:
210 "mayHaveSideffects result for ingredient differs from this "
213 case VPReplicateSC: {
215 return R->getUnderlyingInstr()->mayHaveSideEffects();
223 assert(!Parent &&
"Recipe already in some VPBasicBlock");
225 "Insertion position not in any VPBasicBlock");
231 assert(!Parent &&
"Recipe already in some VPBasicBlock");
237 assert(!Parent &&
"Recipe already in some VPBasicBlock");
239 "Insertion position not in any VPBasicBlock");
274 UI = IG->getInsertPos();
276 UI = &WidenMem->getIngredient();
279 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
293 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
315 assert(OpType == Other.OpType &&
"OpType must match");
317 case OperationType::OverflowingBinOp:
318 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
319 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
321 case OperationType::Trunc:
325 case OperationType::DisjointOp:
328 case OperationType::PossiblyExactOp:
329 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
331 case OperationType::GEPOp:
334 case OperationType::FPMathOp:
335 case OperationType::FCmp:
336 assert((OpType != OperationType::FCmp ||
337 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
338 "Cannot drop CmpPredicate");
339 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
340 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
342 case OperationType::NonNegOp:
345 case OperationType::Cmp:
348 case OperationType::ReductionOp:
350 "Cannot change RecurKind");
352 "Cannot change IsOrdered");
354 "Cannot change IsInLoop");
355 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
356 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
358 case OperationType::Other:
365 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp ||
366 OpType == OperationType::ReductionOp) &&
367 "recipe doesn't have fast math flags");
368 const FastMathFlagsTy &
F = getFMFsRef();
380#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
396template <
unsigned PartOpIdx>
399 if (U.getNumOperands() == PartOpIdx + 1)
400 return U.getOperand(PartOpIdx);
404template <
unsigned PartOpIdx>
423 "Set flags not supported for the provided opcode");
426 "number of operands does not match opcode");
441 case Instruction::Alloca:
442 case Instruction::ExtractValue:
443 case Instruction::Freeze:
444 case Instruction::Load:
461 case Instruction::ICmp:
462 case Instruction::FCmp:
463 case Instruction::ExtractElement:
464 case Instruction::Store:
473 case Instruction::Select:
480 case Instruction::Call:
481 case Instruction::GetElementPtr:
482 case Instruction::PHI:
483 case Instruction::Switch:
501bool VPInstruction::canGenerateScalarForFirstLane()
const {
507 case Instruction::Freeze:
508 case Instruction::ICmp:
509 case Instruction::PHI:
510 case Instruction::Select:
527 IRBuilderBase &Builder = State.
Builder;
546 case Instruction::ExtractElement: {
549 unsigned IdxToExtract =
557 case Instruction::Freeze: {
561 case Instruction::FCmp:
562 case Instruction::ICmp: {
568 case Instruction::PHI: {
571 case Instruction::Select: {
597 {VIVElem0, ScalarTC},
nullptr, Name);
613 if (!V1->getType()->isVectorTy())
633 "Requested vector length should be an integer.");
639 Builder.
getInt32Ty(), Intrinsic::experimental_get_vector_length,
640 {AVL, VFArg, Builder.getTrue()});
646 assert(Part != 0 &&
"Must have a positive part");
659 VPBasicBlock *SecondVPSucc =
681 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
705 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
724 ReducedPartRdx,
"bin.rdx");
733 RecurKind RK = PhiR->getRecurrenceKind();
735 "Unexpected reduction kind");
736 assert(!PhiR->isInLoop() &&
737 "In-loop FindLastIV reduction is not supported yet");
749 for (
unsigned Part = 1; Part <
UF; ++Part)
750 ReducedPartRdx =
createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
767 return Builder.
CreateSelect(Cmp, ReducedIV, Start,
"rdx.select");
774 "should be handled by ComputeFindIVResult");
779 for (
unsigned Part = 0; Part < NumOperandsToReduce; ++Part)
782 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
787 Value *ReducedPartRdx = RdxParts[0];
789 ReducedPartRdx = RdxParts[NumOperandsToReduce - 1];
792 for (
unsigned Part = 1; Part < NumOperandsToReduce; ++Part) {
793 Value *RdxPart = RdxParts[Part];
795 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
804 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
818 return ReducedPartRdx;
827 "invalid offset to extract from");
832 assert(
Offset <= 1 &&
"invalid offset to extract from");
846 "can only generate first lane for PtrAdd");
866 Value *Res =
nullptr;
871 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
872 Value *VectorIdx = Idx == 1
874 : Builder.
CreateSub(LaneToExtract, VectorStart);
899 Value *Res =
nullptr;
900 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
901 Value *TrailingZeros =
933 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
936 case Instruction::FNeg:
937 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
938 case Instruction::UDiv:
939 case Instruction::SDiv:
940 case Instruction::SRem:
941 case Instruction::URem:
942 case Instruction::Add:
943 case Instruction::FAdd:
944 case Instruction::Sub:
945 case Instruction::FSub:
946 case Instruction::Mul:
947 case Instruction::FMul:
948 case Instruction::FDiv:
949 case Instruction::FRem:
950 case Instruction::Shl:
951 case Instruction::LShr:
952 case Instruction::AShr:
953 case Instruction::And:
954 case Instruction::Or:
955 case Instruction::Xor: {
963 RHSInfo = Ctx.getOperandInfo(RHS);
974 return Ctx.TTI.getArithmeticInstrCost(
975 Opcode, ResultTy, Ctx.CostKind,
976 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
977 RHSInfo, Operands, CtxI, &Ctx.TLI);
979 case Instruction::Freeze:
981 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
983 case Instruction::ExtractValue:
984 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
986 case Instruction::ICmp:
987 case Instruction::FCmp: {
991 return Ctx.TTI.getCmpSelInstrCost(
993 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
994 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
996 case Instruction::BitCast: {
997 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1002 case Instruction::SExt:
1003 case Instruction::ZExt:
1004 case Instruction::FPToUI:
1005 case Instruction::FPToSI:
1006 case Instruction::FPExt:
1007 case Instruction::PtrToInt:
1008 case Instruction::PtrToAddr:
1009 case Instruction::IntToPtr:
1010 case Instruction::SIToFP:
1011 case Instruction::UIToFP:
1012 case Instruction::Trunc:
1013 case Instruction::FPTrunc:
1014 case Instruction::AddrSpaceCast: {
1029 if (WidenMemoryRecipe ==
nullptr)
1033 if (!WidenMemoryRecipe->isConsecutive())
1035 if (WidenMemoryRecipe->isReverse())
1037 if (WidenMemoryRecipe->isMasked())
1045 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
1047 if (R->getNumUsers() == 0 || R->hasMoreThanOneUniqueUser())
1055 CCH = ComputeCCH(Recipe);
1059 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
1060 Opcode == Instruction::FPExt) {
1066 CCH = ComputeCCH(Recipe);
1074 Opcode, ResultTy, SrcTy, CCH, Ctx.
CostKind,
1077 case Instruction::Select: {
1088 (IsLogicalAnd || IsLogicalOr)) {
1094 SmallVector<const Value *, 2> Operands;
1096 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1099 IsLogicalOr ? Instruction::Or : Instruction::And, ResultTy,
1100 Ctx.
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1107 llvm::CmpPredicate Pred;
1111 Pred = Cmp->getPredicate();
1114 Instruction::Select, VectorTy, CondTy, Pred, Ctx.
CostKind,
1115 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1131 "Should only generate a vector value or single scalar, not scalars "
1139 case Instruction::Select: {
1142 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1143 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1148 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1151 case Instruction::ExtractElement:
1161 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1165 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1166 return Ctx.TTI.getArithmeticReductionCost(
1172 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1179 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1180 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1185 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1192 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1195 Cost += Ctx.TTI.getArithmeticInstrCost(
1196 Instruction::Xor, PredTy, Ctx.CostKind,
1197 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1198 {TargetTransformInfo::OK_UniformConstantValue,
1199 TargetTransformInfo::OP_None});
1201 Cost += Ctx.TTI.getArithmeticInstrCost(
1209 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1218 unsigned Multiplier =
1223 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1230 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1231 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1234 assert(VF.
isVector() &&
"Reverse operation must be vector type");
1238 VectorTy, {}, Ctx.CostKind,
1244 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1245 VecTy, Ctx.CostKind, 0);
1255 "unexpected VPInstruction witht underlying value");
1263 getOpcode() == Instruction::ExtractElement ||
1275 case Instruction::PHI:
1286 assert(!State.Lane &&
"VPInstruction executing an Lane");
1289 "Set flags not supported for the provided opcode");
1292 Value *GeneratedValue = generate(State);
1295 assert(GeneratedValue &&
"generate must produce a value");
1296 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1301 !GeneratesPerFirstLaneOnly) ||
1302 State.VF.isScalar()) &&
1303 "scalar value but not only first lane defined");
1304 State.set(
this, GeneratedValue,
1305 GeneratesPerFirstLaneOnly);
1312 case Instruction::GetElementPtr:
1313 case Instruction::ExtractElement:
1314 case Instruction::Freeze:
1315 case Instruction::FCmp:
1316 case Instruction::ICmp:
1317 case Instruction::Select:
1318 case Instruction::PHI:
1361 case Instruction::ExtractElement:
1363 case Instruction::PHI:
1365 case Instruction::FCmp:
1366 case Instruction::ICmp:
1367 case Instruction::Select:
1368 case Instruction::Or:
1369 case Instruction::Freeze:
1410 case Instruction::FCmp:
1411 case Instruction::ICmp:
1412 case Instruction::Select:
1423#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1431 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1443 O <<
"combined load";
1446 O <<
"combined store";
1449 O <<
"active lane mask";
1452 O <<
"EXPLICIT-VECTOR-LENGTH";
1455 O <<
"first-order splice";
1458 O <<
"branch-on-cond";
1461 O <<
"branch-on-two-conds";
1464 O <<
"TC > VF ? TC - VF : 0";
1470 O <<
"branch-on-count";
1476 O <<
"buildstructvector";
1482 O <<
"extract-lane";
1485 O <<
"extract-last-lane";
1488 O <<
"extract-last-part";
1491 O <<
"extract-penultimate-element";
1494 O <<
"compute-anyof-result";
1497 O <<
"compute-find-iv-result";
1500 O <<
"compute-reduction-result";
1515 O <<
"first-active-lane";
1518 O <<
"last-active-lane";
1521 O <<
"reduction-start-vector";
1524 O <<
"resume-for-epilogue";
1547 State.set(
this, Cast,
VPLane(0));
1558 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1559 State.set(
this,
VScale,
true);
1568#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1571 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1577 O <<
"wide-iv-step ";
1581 O <<
"step-vector " << *ResultTy;
1584 O <<
"vscale " << *ResultTy;
1590 O <<
" to " << *ResultTy;
1597 PHINode *NewPhi = State.Builder.CreatePHI(
1598 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1605 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1610 State.set(
this, NewPhi,
VPLane(0));
1613#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1616 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1631 "PHINodes must be handled by VPIRPhi");
1634 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1647 "can only update exiting operands to phi nodes");
1658#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1661 O << Indent <<
"IR " << I;
1673 auto *PredVPBB = Pred->getExitingBasicBlock();
1674 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1681 if (Phi->getBasicBlockIndex(PredBB) == -1)
1682 Phi->addIncoming(V, PredBB);
1684 Phi->setIncomingValueForBlock(PredBB, V);
1689 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1694 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1695 "Number of phi operands must match number of predecessors");
1696 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1697 R->removeOperand(Position);
1700#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1714#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1720 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1725 std::get<1>(
Op)->printAsOperand(O);
1733 for (
const auto &[Kind,
Node] : Metadata)
1734 I.setMetadata(Kind,
Node);
1739 for (
const auto &[KindA, MDA] : Metadata) {
1740 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1741 if (KindA == KindB && MDA == MDB) {
1747 Metadata = std::move(MetadataIntersection);
1750#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1753 if (Metadata.empty() || !M)
1759 auto [Kind,
Node] = KindNodePair;
1761 "Unexpected unnamed metadata kind");
1762 O <<
"!" << MDNames[Kind] <<
" ";
1770 assert(State.VF.isVector() &&
"not widening");
1771 assert(Variant !=
nullptr &&
"Can't create vector function.");
1782 Arg = State.get(
I.value(),
VPLane(0));
1785 Args.push_back(Arg);
1791 CI->getOperandBundlesAsDefs(OpBundles);
1793 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1796 V->setCallingConv(Variant->getCallingConv());
1798 if (!V->getType()->isVoidTy())
1804 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1805 Variant->getFunctionType()->params(),
1809#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1812 O << Indent <<
"WIDEN-CALL ";
1824 O <<
" @" << CalledFn->
getName() <<
"(";
1830 O <<
" (using library function";
1831 if (Variant->hasName())
1832 O <<
": " << Variant->getName();
1838 assert(State.VF.isVector() &&
"not widening");
1854 Arg = State.get(
I.value(),
VPLane(0));
1860 Args.push_back(Arg);
1864 Module *M = State.Builder.GetInsertBlock()->getModule();
1868 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1873 CI->getOperandBundlesAsDefs(OpBundles);
1875 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1880 if (!V->getType()->isVoidTy())
1896 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1897 auto *V =
Op->getUnderlyingValue();
1900 Arguments.push_back(UI->getArgOperand(Idx));
1909 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1915 : Ctx.Types.inferScalarType(
Op));
1920 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1925 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1947#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1950 O << Indent <<
"WIDEN-INTRINSIC ";
1951 if (ResultTy->isVoidTy()) {
1979 Value *Mask =
nullptr;
1981 Mask = State.get(VPMask);
1984 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
1988 if (Opcode == Instruction::Sub)
1989 IncAmt = Builder.CreateNeg(IncAmt);
1991 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
1993 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
2008 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
2014 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
2027 {PtrTy, IncTy, MaskTy});
2030 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
2031 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
2034#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2037 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
2040 if (Opcode == Instruction::Sub)
2043 assert(Opcode == Instruction::Add);
2055VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2068 case OperationType::OverflowingBinOp:
2069 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2070 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
2071 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2072 case OperationType::Trunc:
2073 return Opcode == Instruction::Trunc;
2074 case OperationType::DisjointOp:
2075 return Opcode == Instruction::Or;
2076 case OperationType::PossiblyExactOp:
2077 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
2078 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
2079 case OperationType::GEPOp:
2080 return Opcode == Instruction::GetElementPtr ||
2083 case OperationType::FPMathOp:
2084 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2085 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2086 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2087 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2088 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2091 case OperationType::FCmp:
2092 return Opcode == Instruction::FCmp;
2093 case OperationType::NonNegOp:
2094 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2095 case OperationType::Cmp:
2096 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2097 case OperationType::ReductionOp:
2099 case OperationType::Other:
2106#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2109 case OperationType::Cmp:
2112 case OperationType::FCmp:
2116 case OperationType::DisjointOp:
2120 case OperationType::PossiblyExactOp:
2124 case OperationType::OverflowingBinOp:
2130 case OperationType::Trunc:
2136 case OperationType::FPMathOp:
2139 case OperationType::GEPOp:
2142 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2147 case OperationType::NonNegOp:
2151 case OperationType::ReductionOp: {
2163 case OperationType::Other:
2171 auto &Builder = State.Builder;
2173 case Instruction::Call:
2174 case Instruction::Br:
2175 case Instruction::PHI:
2176 case Instruction::GetElementPtr:
2178 case Instruction::UDiv:
2179 case Instruction::SDiv:
2180 case Instruction::SRem:
2181 case Instruction::URem:
2182 case Instruction::Add:
2183 case Instruction::FAdd:
2184 case Instruction::Sub:
2185 case Instruction::FSub:
2186 case Instruction::FNeg:
2187 case Instruction::Mul:
2188 case Instruction::FMul:
2189 case Instruction::FDiv:
2190 case Instruction::FRem:
2191 case Instruction::Shl:
2192 case Instruction::LShr:
2193 case Instruction::AShr:
2194 case Instruction::And:
2195 case Instruction::Or:
2196 case Instruction::Xor: {
2200 Ops.push_back(State.get(VPOp));
2202 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2213 case Instruction::ExtractValue: {
2217 Value *Extract = Builder.CreateExtractValue(
Op, CI->getZExtValue());
2218 State.set(
this, Extract);
2221 case Instruction::Freeze: {
2223 Value *Freeze = Builder.CreateFreeze(
Op);
2224 State.set(
this, Freeze);
2227 case Instruction::ICmp:
2228 case Instruction::FCmp: {
2230 bool FCmp = Opcode == Instruction::FCmp;
2246 case Instruction::Select: {
2251 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
2252 State.set(
this, Sel);
2271 State.get(
this)->getType() &&
2272 "inferred type and type from generated instructions do not match");
2279 case Instruction::UDiv:
2280 case Instruction::SDiv:
2281 case Instruction::SRem:
2282 case Instruction::URem:
2287 case Instruction::FNeg:
2288 case Instruction::Add:
2289 case Instruction::FAdd:
2290 case Instruction::Sub:
2291 case Instruction::FSub:
2292 case Instruction::Mul:
2293 case Instruction::FMul:
2294 case Instruction::FDiv:
2295 case Instruction::FRem:
2296 case Instruction::Shl:
2297 case Instruction::LShr:
2298 case Instruction::AShr:
2299 case Instruction::And:
2300 case Instruction::Or:
2301 case Instruction::Xor:
2302 case Instruction::Freeze:
2303 case Instruction::ExtractValue:
2304 case Instruction::ICmp:
2305 case Instruction::FCmp:
2306 case Instruction::Select:
2313#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2316 O << Indent <<
"WIDEN ";
2325 auto &Builder = State.Builder;
2327 assert(State.VF.isVector() &&
"Not vectorizing?");
2332 State.set(
this, Cast);
2349#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2352 O << Indent <<
"WIDEN-CAST ";
2363 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2366#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2371 O <<
" = WIDEN-INDUCTION";
2376 O <<
" (truncated to " << *TI->getType() <<
")";
2390 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2394#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2399 O <<
" = DERIVED-IV ";
2423 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2430 AddOp = Instruction::Add;
2431 MulOp = Instruction::Mul;
2433 AddOp = InductionOpcode;
2434 MulOp = Instruction::FMul;
2444 unsigned StartLane = 0;
2445 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2447 StartLane = State.Lane->getKnownLane();
2448 EndLane = StartLane + 1;
2452 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2457 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2460 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2464 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2466 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2471 ? ConstantInt::get(BaseIVTy, Lane,
false,
2473 : ConstantFP::get(BaseIVTy, Lane);
2474 Value *StartIdx = Builder.CreateBinOp(AddOp, StartIdx0, LaneValue);
2478 "Expected StartIdx to be folded to a constant when VF is not "
2480 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2481 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2486#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2491 O <<
" = SCALAR-STEPS ";
2502 assert(State.VF.isVector() &&
"not widening");
2510 return Op->isDefinedOutsideLoopRegions();
2512 if (AllOperandsAreInvariant) {
2527 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2528 State.set(
this,
Splat);
2536 auto *Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2543 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2550 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2551 "NewGEP is not a pointer vector");
2552 State.set(
this, NewGEP);
2555#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2558 O << Indent <<
"WIDEN-GEP ";
2559 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2561 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2565 O <<
" = getelementptr";
2572 auto &Builder = State.Builder;
2574 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2575 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(
this));
2579 if (IndexTy != RunTimeVF->
getType())
2580 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2582 Value *NumElt = Builder.CreateMul(
2586 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2593 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2596 State.set(
this, ResultPtr,
true);
2599#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2604 O <<
" = vector-end-pointer";
2611 auto &Builder = State.Builder;
2613 "Expected prior simplification of recipe without offset");
2618 State.set(
this, ResultPtr,
true);
2621#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2626 O <<
" = vector-pointer";
2639 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2642 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2646#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2649 O << Indent <<
"BLEND ";
2671 assert(!State.Lane &&
"Reduction being replicated.");
2674 "In-loop AnyOf reductions aren't currently supported");
2680 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2685 if (State.VF.isVector())
2686 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2688 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2695 if (State.VF.isVector())
2699 NewRed = State.Builder.CreateBinOp(
2701 PrevInChain, NewVecOp);
2702 PrevInChain = NewRed;
2703 NextInChain = NewRed;
2707 NewRed = State.Builder.CreateIntrinsic(
2708 PrevInChain->
getType(), Intrinsic::vector_partial_reduce_add,
2709 {PrevInChain, NewVecOp},
nullptr,
"partial.reduce");
2710 PrevInChain = NewRed;
2711 NextInChain = NewRed;
2714 "The reduction must either be ordered, partial or in-loop");
2718 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2720 NextInChain = State.Builder.CreateBinOp(
2722 PrevInChain, NewRed);
2728 assert(!State.Lane &&
"Reduction being replicated.");
2730 auto &Builder = State.Builder;
2742 Mask = State.get(CondOp);
2744 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2754 NewRed = Builder.CreateBinOp(
2758 State.set(
this, NewRed,
true);
2764 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2768 std::optional<FastMathFlags> OptionalFMF =
2777 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2778 CondTy, Pred, Ctx.CostKind);
2780 return CondCost + Ctx.TTI.getPartialReductionCost(
2781 Opcode, ElementTy, ElementTy, ElementTy, VF,
2791 "Any-of reduction not implemented in VPlan-based cost model currently.");
2797 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2802 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2806VPExpressionRecipe::VPExpressionRecipe(
2807 ExpressionTypes ExpressionType,
2810 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2811 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2815 "expression cannot contain recipes with side-effects");
2819 for (
auto *R : ExpressionRecipes)
2820 ExpressionRecipesAsSetOfUsers.
insert(R);
2826 if (R != ExpressionRecipes.back() &&
2827 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2828 return !ExpressionRecipesAsSetOfUsers.contains(U);
2833 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2835 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2840 R->removeFromParent();
2847 for (
auto *R : ExpressionRecipes) {
2848 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2849 auto *
Def =
Op->getDefiningRecipe();
2850 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2859 for (
auto *R : ExpressionRecipes)
2860 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2861 R->replaceUsesOfWith(LiveIn, Tmp);
2865 for (
auto *R : ExpressionRecipes)
2868 if (!R->getParent())
2869 R->insertBefore(
this);
2872 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2875 ExpressionRecipes.clear();
2880 Type *RedTy = Ctx.Types.inferScalarType(
this);
2884 "VPExpressionRecipe only supports integer types currently.");
2887 switch (ExpressionType) {
2888 case ExpressionTypes::ExtendedReduction: {
2894 ->isPartialReduction()
2895 ? Ctx.TTI.getPartialReductionCost(
2896 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2901 : Ctx.TTI.getExtendedReductionCost(
2902 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2903 SrcVecTy, std::nullopt, Ctx.CostKind);
2905 case ExpressionTypes::MulAccReduction:
2906 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2909 case ExpressionTypes::ExtNegatedMulAccReduction:
2910 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2911 Opcode = Instruction::Sub;
2913 case ExpressionTypes::ExtMulAccReduction: {
2915 if (RedR->isPartialReduction()) {
2919 return Ctx.TTI.getPartialReductionCost(
2920 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2921 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2923 Ext0R->getOpcode()),
2925 Ext1R->getOpcode()),
2926 Mul->getOpcode(), Ctx.CostKind);
2928 return Ctx.TTI.getMulAccReductionCost(
2931 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
2939 return R->mayReadFromMemory() || R->mayWriteToMemory();
2947 "expression cannot contain recipes with side-effects");
2955 return RR && !RR->isPartialReduction();
2958#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2962 O << Indent <<
"EXPRESSION ";
2968 switch (ExpressionType) {
2969 case ExpressionTypes::ExtendedReduction: {
2971 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2978 << *Ext0->getResultType();
2979 if (Red->isConditional()) {
2986 case ExpressionTypes::ExtNegatedMulAccReduction: {
2988 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
2998 << *Ext0->getResultType() <<
"), (";
3002 << *Ext1->getResultType() <<
")";
3003 if (Red->isConditional()) {
3010 case ExpressionTypes::MulAccReduction:
3011 case ExpressionTypes::ExtMulAccReduction: {
3013 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3018 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
3020 : ExpressionRecipes[0]);
3028 << *Ext0->getResultType() <<
"), (";
3036 << *Ext1->getResultType() <<
")";
3038 if (Red->isConditional()) {
3051 O << Indent <<
"PARTIAL-REDUCE ";
3053 O << Indent <<
"REDUCE ";
3073 O << Indent <<
"REDUCE ";
3101 assert((!Instr->getType()->isAggregateType() ||
3103 "Expected vectorizable or non-aggregate type.");
3106 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3110 Cloned->
setName(Instr->getName() +
".cloned");
3111 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3115 if (ResultTy != Cloned->
getType())
3126 State.setDebugLocFrom(
DL);
3131 auto InputLane = Lane;
3135 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3139 State.Builder.Insert(Cloned);
3141 State.set(RepRecipe, Cloned, Lane);
3145 State.AC->registerAssumption(
II);
3151 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3152 "Expected a recipe is either within a region or all of its operands "
3153 "are defined outside the vectorized region.");
3160 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3161 "must have already been unrolled");
3167 "uniform recipe shouldn't be predicated");
3168 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3173 State.Lane->isFirstLane()
3176 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3212 while (!WorkList.
empty()) {
3214 if (!Cur || !Seen.
insert(Cur).second)
3222 return Seen.contains(
3223 Blend->getIncomingValue(I)->getDefiningRecipe());
3227 for (
VPUser *U : Cur->users()) {
3229 if (InterleaveR->getAddr() == Cur)
3232 if (RepR->getOpcode() == Instruction::Load &&
3233 RepR->getOperand(0) == Cur)
3235 if (RepR->getOpcode() == Instruction::Store &&
3236 RepR->getOperand(1) == Cur)
3240 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3261 Ctx.SkipCostComputation.insert(UI);
3267 case Instruction::Alloca:
3270 return Ctx.TTI.getArithmeticInstrCost(
3271 Instruction::Mul, Ctx.Types.inferScalarType(
this), Ctx.CostKind);
3272 case Instruction::GetElementPtr:
3278 case Instruction::Call: {
3284 for (
const VPValue *ArgOp : ArgOps)
3285 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3287 if (CalledFn->isIntrinsic())
3290 switch (CalledFn->getIntrinsicID()) {
3291 case Intrinsic::assume:
3292 case Intrinsic::lifetime_end:
3293 case Intrinsic::lifetime_start:
3294 case Intrinsic::sideeffect:
3295 case Intrinsic::pseudoprobe:
3296 case Intrinsic::experimental_noalias_scope_decl: {
3299 "scalarizing intrinsic should be free");
3306 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3308 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3310 if (CalledFn->isIntrinsic())
3311 ScalarCallCost = std::min(
3315 return ScalarCallCost;
3319 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3321 case Instruction::Add:
3322 case Instruction::Sub:
3323 case Instruction::FAdd:
3324 case Instruction::FSub:
3325 case Instruction::Mul:
3326 case Instruction::FMul:
3327 case Instruction::FDiv:
3328 case Instruction::FRem:
3329 case Instruction::Shl:
3330 case Instruction::LShr:
3331 case Instruction::AShr:
3332 case Instruction::And:
3333 case Instruction::Or:
3334 case Instruction::Xor:
3335 case Instruction::ICmp:
3336 case Instruction::FCmp:
3340 case Instruction::SDiv:
3341 case Instruction::UDiv:
3342 case Instruction::SRem:
3343 case Instruction::URem: {
3350 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3359 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3363 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->
getParent());
3366 case Instruction::Load:
3367 case Instruction::Store: {
3374 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3380 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3381 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3386 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3389 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3390 bool UsedByLoadStoreAddress =
3394 Ctx.TTI.getAddressComputationCost(
3395 PtrTy, UsedByLoadStoreAddress ?
nullptr : Ctx.PSE.getSE(), PtrSCEV,
3406 if (!UsedByLoadStoreAddress) {
3407 bool EfficientVectorLoadStore =
3408 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3409 if (!(IsLoad && !PreferVectorizedAddressing) &&
3410 !(!IsLoad && EfficientVectorLoadStore))
3413 if (!EfficientVectorLoadStore)
3414 ResultTy = Ctx.Types.inferScalarType(
this);
3418 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3420 case Instruction::SExt:
3421 case Instruction::ZExt:
3422 case Instruction::FPToUI:
3423 case Instruction::FPToSI:
3424 case Instruction::FPExt:
3425 case Instruction::PtrToInt:
3426 case Instruction::PtrToAddr:
3427 case Instruction::IntToPtr:
3428 case Instruction::SIToFP:
3429 case Instruction::UIToFP:
3430 case Instruction::Trunc:
3431 case Instruction::FPTrunc:
3432 case Instruction::AddrSpaceCast: {
3437 case Instruction::ExtractValue:
3438 case Instruction::InsertValue:
3439 return Ctx.TTI.getInsertExtractValueCost(
getOpcode(), Ctx.CostKind);
3442 return Ctx.getLegacyCost(UI, VF);
3445#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3448 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3457 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3475 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3478 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3482 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3484 "Expected to replace unreachable terminator with conditional branch.");
3486 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3487 CondBr->setSuccessor(0,
nullptr);
3488 CurrentTerminator->eraseFromParent();
3500 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3505 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3507 "operand must be VPReplicateRecipe");
3518 "Packed operands must generate an insertelement or insertvalue");
3526 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3529 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3530 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3532 if (State.hasVectorValue(
this))
3533 State.reset(
this, VPhi);
3535 State.set(
this, VPhi);
3543 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3544 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3547 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3548 if (State.hasScalarValue(
this, *State.Lane))
3549 State.reset(
this, Phi, *State.Lane);
3551 State.set(
this, Phi, *State.Lane);
3554 State.reset(
getOperand(0), Phi, *State.Lane);
3558#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3561 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3572 ->getAddressSpace();
3575 : Instruction::Store;
3582 "Inconsecutive memory access should not have the order.");
3595 : Intrinsic::vp_scatter;
3596 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3598 Ctx.TTI.getMemIntrinsicInstrCost(
3607 : Intrinsic::masked_store;
3608 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3614 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3625 auto &Builder = State.Builder;
3626 Value *Mask =
nullptr;
3627 if (
auto *VPMask =
getMask()) {
3630 Mask = State.get(VPMask);
3632 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3638 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3639 "wide.masked.gather");
3642 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3645 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3648 State.set(
this, NewLI);
3651#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3654 O << Indent <<
"WIDEN ";
3666 Value *AllTrueMask =
3667 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3668 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3669 {Operand, AllTrueMask, EVL},
nullptr, Name);
3677 auto &Builder = State.Builder;
3681 Value *Mask =
nullptr;
3683 Mask = State.get(VPMask);
3687 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3692 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3693 nullptr,
"wide.masked.gather");
3695 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3696 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3702 State.set(
this, Res);
3717 ->getAddressSpace();
3718 return Ctx.TTI.getMemIntrinsicInstrCost(
3723#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3726 O << Indent <<
"WIDEN ";
3737 auto &Builder = State.Builder;
3739 Value *Mask =
nullptr;
3740 if (
auto *VPMask =
getMask()) {
3743 Mask = State.get(VPMask);
3745 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3748 Value *StoredVal = State.get(StoredVPValue);
3752 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3754 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3756 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3760#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3763 O << Indent <<
"WIDEN store ";
3772 auto &Builder = State.Builder;
3775 Value *StoredVal = State.get(StoredValue);
3777 Value *Mask =
nullptr;
3779 Mask = State.get(VPMask);
3783 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3786 if (CreateScatter) {
3788 Intrinsic::vp_scatter,
3789 {StoredVal, Addr, Mask, EVL});
3792 Intrinsic::vp_store,
3793 {StoredVal, Addr, Mask, EVL});
3812 ->getAddressSpace();
3813 return Ctx.TTI.getMemIntrinsicInstrCost(
3818#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3821 O << Indent <<
"WIDEN vp.store ";
3829 auto VF = DstVTy->getElementCount();
3831 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3832 Type *SrcElemTy = SrcVecTy->getElementType();
3833 Type *DstElemTy = DstVTy->getElementType();
3834 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3835 "Vector elements must have same size");
3839 return Builder.CreateBitOrPointerCast(V, DstVTy);
3846 "Only one type should be a pointer type");
3848 "Only one type should be a floating point type");
3852 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3853 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3859 const Twine &Name) {
3860 unsigned Factor = Vals.
size();
3861 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3865 for (
Value *Val : Vals)
3866 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3871 if (VecTy->isScalableTy()) {
3872 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3873 return Builder.CreateVectorInterleave(Vals, Name);
3880 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3881 return Builder.CreateShuffleVector(
3914 assert(!State.Lane &&
"Interleave group being replicated.");
3916 "Masking gaps for scalable vectors is not yet supported.");
3922 unsigned InterleaveFactor = Group->
getFactor();
3929 auto CreateGroupMask = [&BlockInMask, &State,
3930 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
3931 if (State.VF.isScalable()) {
3932 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
3933 assert(InterleaveFactor <= 8 &&
3934 "Unsupported deinterleave factor for scalable vectors");
3935 auto *ResBlockInMask = State.get(BlockInMask);
3943 Value *ResBlockInMask = State.get(BlockInMask);
3944 Value *ShuffledMask = State.Builder.CreateShuffleVector(
3947 "interleaved.mask");
3948 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
3949 ShuffledMask, MaskForGaps)
3953 const DataLayout &DL = Instr->getDataLayout();
3956 Value *MaskForGaps =
nullptr;
3960 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
3964 if (BlockInMask || MaskForGaps) {
3965 Value *GroupMask = CreateGroupMask(MaskForGaps);
3967 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
3969 PoisonVec,
"wide.masked.vec");
3971 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
3978 if (VecTy->isScalableTy()) {
3981 assert(InterleaveFactor <= 8 &&
3982 "Unsupported deinterleave factor for scalable vectors");
3983 NewLoad = State.Builder.CreateIntrinsic(
3986 nullptr,
"strided.vec");
3989 auto CreateStridedVector = [&InterleaveFactor, &State,
3990 &NewLoad](
unsigned Index) ->
Value * {
3991 assert(Index < InterleaveFactor &&
"Illegal group index");
3992 if (State.VF.isScalable())
3993 return State.Builder.CreateExtractValue(NewLoad, Index);
3999 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
4003 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4010 Value *StridedVec = CreateStridedVector(
I);
4013 if (Member->getType() != ScalarTy) {
4020 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
4022 State.set(VPDefs[J], StridedVec);
4032 Value *MaskForGaps =
4035 "Mismatch between NeedsMaskForGaps and MaskForGaps");
4039 unsigned StoredIdx = 0;
4040 for (
unsigned i = 0; i < InterleaveFactor; i++) {
4042 "Fail to get a member from an interleaved store group");
4052 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4056 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
4060 if (StoredVec->
getType() != SubVT)
4069 if (BlockInMask || MaskForGaps) {
4070 Value *GroupMask = CreateGroupMask(MaskForGaps);
4071 NewStoreInstr = State.Builder.CreateMaskedStore(
4072 IVec, ResAddr, Group->
getAlign(), GroupMask);
4075 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
4082#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4086 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4087 IG->getInsertPos()->printAsOperand(O,
false);
4097 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4098 if (!IG->getMember(i))
4101 O <<
"\n" << Indent <<
" store ";
4103 O <<
" to index " << i;
4105 O <<
"\n" << Indent <<
" ";
4107 O <<
" = load from index " << i;
4115 assert(!State.Lane &&
"Interleave group being replicated.");
4116 assert(State.VF.isScalable() &&
4117 "Only support scalable VF for EVL tail-folding.");
4119 "Masking gaps for scalable vectors is not yet supported.");
4125 unsigned InterleaveFactor = Group->
getFactor();
4126 assert(InterleaveFactor <= 8 &&
4127 "Unsupported deinterleave/interleave factor for scalable vectors");
4134 Value *InterleaveEVL = State.Builder.CreateMul(
4135 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4139 Value *GroupMask =
nullptr;
4145 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4150 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4151 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4162 NewLoad = State.Builder.CreateIntrinsic(
4165 nullptr,
"strided.vec");
4167 const DataLayout &DL = Instr->getDataLayout();
4168 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4174 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4176 if (Member->getType() != ScalarTy) {
4194 const DataLayout &DL = Instr->getDataLayout();
4195 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4203 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4205 if (StoredVec->
getType() != SubVT)
4215 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4216 {IVec, ResAddr, GroupMask, InterleaveEVL});
4225#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4229 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4230 IG->getInsertPos()->printAsOperand(O,
false);
4241 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4242 if (!IG->getMember(i))
4245 O <<
"\n" << Indent <<
" vp.store ";
4247 O <<
" to index " << i;
4249 O <<
"\n" << Indent <<
" ";
4251 O <<
" = vp.load from index " << i;
4262 unsigned InsertPosIdx = 0;
4263 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4264 if (
auto *Member = IG->getMember(Idx)) {
4265 if (Member == InsertPos)
4269 Type *ValTy = Ctx.Types.inferScalarType(
4274 ->getAddressSpace();
4276 unsigned InterleaveFactor = IG->getFactor();
4281 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4282 if (IG->getMember(IF))
4287 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4288 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4290 if (!IG->isReverse())
4293 return Cost + IG->getNumMembers() *
4295 VectorTy, VectorTy, {}, Ctx.CostKind,
4299#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4302 O << Indent <<
"EMIT ";
4304 O <<
" = CANONICAL-INDUCTION ";
4314#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4318 "unexpected number of operands");
4319 O << Indent <<
"EMIT ";
4321 O <<
" = WIDEN-POINTER-INDUCTION ";
4337 O << Indent <<
"EMIT ";
4339 O <<
" = EXPAND SCEV " << *Expr;
4346 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4350 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4353 VStep = Builder.CreateVectorSplat(VF, VStep);
4355 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4357 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4358 State.set(
this, CanonicalVectorIV);
4361#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4364 O << Indent <<
"EMIT ";
4366 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4372 auto &Builder = State.Builder;
4376 Type *VecTy = State.VF.isScalar()
4377 ? VectorInit->getType()
4381 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4382 if (State.VF.isVector()) {
4384 auto *One = ConstantInt::get(IdxTy, 1);
4387 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4388 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4389 VectorInit = Builder.CreateInsertElement(
4395 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4396 Phi->addIncoming(VectorInit, VectorPH);
4397 State.set(
this, Phi);
4404 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4409#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4412 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4429 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4430 bool ScalarPHI = State.VF.isScalar() ||
isInLoop();
4431 Value *StartV = State.get(StartVPV, ScalarPHI);
4435 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4436 "recipe must be in the vector loop header");
4441 Phi->addIncoming(StartV, VectorPH);
4444#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4447 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4460 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4461 State.set(
this, VecPhi);
4464#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4467 O << Indent <<
"WIDEN-PHI ";
4477 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4480 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4481 Phi->addIncoming(StartMask, VectorPH);
4482 State.set(
this, Phi);
4485#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4488 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4496#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4499 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, LoopVectorizationLegality *Legal, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets Address Access SCEV after verifying that the access pattern is loop invariant except the inducti...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V, bool ImplicitTrunc=false)
Return a ConstantInt with the specified value for the specified type.
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This is an important base class in LLVM.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVM_ABI CallInst * CreateIntMaxReduce(Value *Src, bool IsSigned=false)
Create a vector integer max reduction intrinsic of the source vector.
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI CallInst * CreateIntMinReduce(Value *Src, bool IsSigned=false)
Create a vector integer min reduction intrinsic of the source vector.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
ArrayRef< VPRecipeValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
unsigned getVPDefID() const
VPIRValue * getStartValue() const
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Class to record and manage LLVM IR flags.
ReductionFlagsTy ReductionFlags
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
bool isReductionOrdered() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
bool isReductionInLoop() const
void applyFlags(Instruction &I) const
Apply the IR flags to I.
RecurKind getRecurKind() const
Instruction & getInstruction() const
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
static unsigned getNumOperandsForOpcode(unsigned Opcode)
Return the number of operands determined by the opcode of the VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
bool isInLoop() const
Returns true if the reduction is in-loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPIRValue * getStartValue() const
Returns the start value of the induction.
VPValue * getStepValue()
Returns the step value of the induction.
VPIRValue * getStartValue() const
Returns the start value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::Reverse, Op0_t > m_Reverse(const Op0_t &Op0)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
TargetTransformInfo::TargetCostKind CostKind
const TargetTransformInfo & TTI
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
A VPValue representing a live-in from the input IR or a constant.
Value * getValue() const
Returns the underlying IR value.
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
A symbolic live-in VPValue, used for values like vector trip count, VF, and VFxUF.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.