47#define LV_NAME "loop-vectorize"
48#define DEBUG_TYPE LV_NAME
54 case VPInstructionSC: {
57 if (VPI->getOpcode() == Instruction::Load)
59 return VPI->opcodeMayReadOrWriteFromMemory();
61 case VPInterleaveEVLSC:
64 case VPWidenStoreEVLSC:
72 ->getCalledScalarFunction()
74 case VPWidenIntrinsicSC:
76 case VPCanonicalIVPHISC:
77 case VPBranchOnMaskSC:
79 case VPFirstOrderRecurrencePHISC:
80 case VPReductionPHISC:
81 case VPScalarIVStepsSC:
85 case VPReductionEVLSC:
87 case VPVectorPointerSC:
88 case VPWidenCanonicalIVSC:
91 case VPWidenIntOrFpInductionSC:
92 case VPWidenLoadEVLSC:
95 case VPWidenPointerInductionSC:
100 assert((!
I || !
I->mayWriteToMemory()) &&
101 "underlying instruction may write to memory");
113 case VPInstructionSC:
115 case VPWidenLoadEVLSC:
120 ->mayReadFromMemory();
123 ->getCalledScalarFunction()
124 ->onlyWritesMemory();
125 case VPWidenIntrinsicSC:
127 case VPBranchOnMaskSC:
129 case VPFirstOrderRecurrencePHISC:
130 case VPPredInstPHISC:
131 case VPScalarIVStepsSC:
132 case VPWidenStoreEVLSC:
136 case VPReductionEVLSC:
138 case VPVectorPointerSC:
139 case VPWidenCanonicalIVSC:
142 case VPWidenIntOrFpInductionSC:
144 case VPWidenPointerInductionSC:
149 assert((!
I || !
I->mayReadFromMemory()) &&
150 "underlying instruction may read from memory");
164 case VPFirstOrderRecurrencePHISC:
165 case VPPredInstPHISC:
166 case VPVectorEndPointerSC:
168 case VPInstructionSC: {
175 case VPWidenCallSC: {
179 case VPWidenIntrinsicSC:
182 case VPReductionEVLSC:
184 case VPScalarIVStepsSC:
185 case VPVectorPointerSC:
186 case VPWidenCanonicalIVSC:
189 case VPWidenIntOrFpInductionSC:
191 case VPWidenPointerInductionSC:
196 assert((!
I || !
I->mayHaveSideEffects()) &&
197 "underlying instruction has side-effects");
200 case VPInterleaveEVLSC:
203 case VPWidenLoadEVLSC:
205 case VPWidenStoreEVLSC:
210 "mayHaveSideffects result for ingredient differs from this "
213 case VPReplicateSC: {
215 return R->getUnderlyingInstr()->mayHaveSideEffects();
223 assert(!Parent &&
"Recipe already in some VPBasicBlock");
225 "Insertion position not in any VPBasicBlock");
231 assert(!Parent &&
"Recipe already in some VPBasicBlock");
237 assert(!Parent &&
"Recipe already in some VPBasicBlock");
239 "Insertion position not in any VPBasicBlock");
274 UI = IG->getInsertPos();
276 UI = &WidenMem->getIngredient();
279 if (UI && Ctx.skipCostComputation(UI, VF.
isVector())) {
293 dbgs() <<
"Cost of " << RecipeCost <<
" for VF " << VF <<
": ";
315 assert(OpType == Other.OpType &&
"OpType must match");
317 case OperationType::OverflowingBinOp:
318 WrapFlags.HasNUW &= Other.WrapFlags.HasNUW;
319 WrapFlags.HasNSW &= Other.WrapFlags.HasNSW;
321 case OperationType::Trunc:
325 case OperationType::DisjointOp:
328 case OperationType::PossiblyExactOp:
329 ExactFlags.IsExact &= Other.ExactFlags.IsExact;
331 case OperationType::GEPOp:
334 case OperationType::FPMathOp:
335 case OperationType::FCmp:
336 assert((OpType != OperationType::FCmp ||
337 FCmpFlags.Pred == Other.FCmpFlags.Pred) &&
338 "Cannot drop CmpPredicate");
339 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
340 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
342 case OperationType::NonNegOp:
345 case OperationType::Cmp:
348 case OperationType::ReductionOp:
350 "Cannot change RecurKind");
352 "Cannot change IsOrdered");
354 "Cannot change IsInLoop");
355 getFMFsRef().NoNaNs &= Other.getFMFsRef().NoNaNs;
356 getFMFsRef().NoInfs &= Other.getFMFsRef().NoInfs;
358 case OperationType::Other:
365 assert((OpType == OperationType::FPMathOp || OpType == OperationType::FCmp ||
366 OpType == OperationType::ReductionOp) &&
367 "recipe doesn't have fast math flags");
368 const FastMathFlagsTy &
F = getFMFsRef();
380#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
396template <
unsigned PartOpIdx>
399 if (U.getNumOperands() == PartOpIdx + 1)
400 return U.getOperand(PartOpIdx);
404template <
unsigned PartOpIdx>
423 "Set flags not supported for the provided opcode");
426 "number of operands does not match opcode");
441 case Instruction::Alloca:
442 case Instruction::ExtractValue:
443 case Instruction::Freeze:
444 case Instruction::Load:
461 case Instruction::ICmp:
462 case Instruction::FCmp:
463 case Instruction::ExtractElement:
464 case Instruction::Store:
473 case Instruction::Select:
480 case Instruction::Call:
481 case Instruction::GetElementPtr:
482 case Instruction::PHI:
483 case Instruction::Switch:
501bool VPInstruction::canGenerateScalarForFirstLane()
const {
507 case Instruction::Freeze:
508 case Instruction::ICmp:
509 case Instruction::PHI:
510 case Instruction::Select:
527 IRBuilderBase &Builder = State.
Builder;
546 case Instruction::ExtractElement: {
549 return State.
get(
getOperand(0), VPLane(Idx->getZExtValue()));
554 case Instruction::Freeze: {
558 case Instruction::FCmp:
559 case Instruction::ICmp: {
565 case Instruction::PHI: {
568 case Instruction::Select: {
594 {VIVElem0, ScalarTC},
nullptr, Name);
610 if (!V1->getType()->isVectorTy())
630 "Requested vector length should be an integer.");
636 Builder.
getInt32Ty(), Intrinsic::experimental_get_vector_length,
637 {AVL, VFArg, Builder.getTrue()});
643 assert(Part != 0 &&
"Must have a positive part");
656 VPBasicBlock *SecondVPSucc =
678 for (
unsigned FieldIndex = 0; FieldIndex != StructTy->getNumElements();
702 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
719 ReducedResult,
"bin.rdx");
726 return Builder.
CreateSelect(ReducedResult, NewVal, Start,
"rdx.select");
736 "unexpected recurrence kind for ComputeFindIVResult");
737 for (
unsigned Part = 1; Part <
UF; ++Part)
738 ReducedResult =
createMinMaxOp(Builder, MinMaxKind, ReducedResult,
747 ReducedResult = IsMaxRdx
756 return Builder.
CreateSelect(Cmp, ReducedResult, Start,
"rdx.select");
763 "should be handled by ComputeFindIVResult");
768 for (
unsigned Part = 0; Part < NumOperandsToReduce; ++Part)
771 IRBuilderBase::FastMathFlagGuard FMFG(Builder);
776 Value *ReducedPartRdx = RdxParts[0];
778 ReducedPartRdx = RdxParts[NumOperandsToReduce - 1];
781 for (
unsigned Part = 1; Part < NumOperandsToReduce; ++Part) {
782 Value *RdxPart = RdxParts[Part];
784 ReducedPartRdx =
createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
793 Builder.
CreateBinOp(Opcode, RdxPart, ReducedPartRdx,
"bin.rdx");
807 return ReducedPartRdx;
816 "invalid offset to extract from");
821 assert(
Offset <= 1 &&
"invalid offset to extract from");
835 "can only generate first lane for PtrAdd");
854 "simplified to ExtractElement.");
857 Value *Res =
nullptr;
862 Builder.
CreateMul(RuntimeVF, ConstantInt::get(IdxTy, Idx - 1));
863 Value *VectorIdx = Idx == 1
865 : Builder.
CreateSub(LaneToExtract, VectorStart);
890 Value *Res =
nullptr;
891 for (
int Idx = LastOpIdx; Idx >= 0; --Idx) {
892 Value *TrailingZeros =
923 Intrinsic::experimental_vector_extract_last_active, {VTy},
933 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
936 case Instruction::FNeg:
937 return Ctx.TTI.getArithmeticInstrCost(Opcode, ResultTy, Ctx.CostKind);
938 case Instruction::UDiv:
939 case Instruction::SDiv:
940 case Instruction::SRem:
941 case Instruction::URem:
942 case Instruction::Add:
943 case Instruction::FAdd:
944 case Instruction::Sub:
945 case Instruction::FSub:
946 case Instruction::Mul:
947 case Instruction::FMul:
948 case Instruction::FDiv:
949 case Instruction::FRem:
950 case Instruction::Shl:
951 case Instruction::LShr:
952 case Instruction::AShr:
953 case Instruction::And:
954 case Instruction::Or:
955 case Instruction::Xor: {
963 RHSInfo = Ctx.getOperandInfo(RHS);
974 return Ctx.TTI.getArithmeticInstrCost(
975 Opcode, ResultTy, Ctx.CostKind,
976 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
977 RHSInfo, Operands, CtxI, &Ctx.TLI);
979 case Instruction::Freeze:
981 return Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, ResultTy,
983 case Instruction::ExtractValue:
984 return Ctx.TTI.getInsertExtractValueCost(Instruction::ExtractValue,
986 case Instruction::ICmp:
987 case Instruction::FCmp: {
991 return Ctx.TTI.getCmpSelInstrCost(
993 Ctx.CostKind, {TTI::OK_AnyValue, TTI::OP_None},
994 {TTI::OK_AnyValue, TTI::OP_None}, CtxI);
996 case Instruction::BitCast: {
997 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1002 case Instruction::SExt:
1003 case Instruction::ZExt:
1004 case Instruction::FPToUI:
1005 case Instruction::FPToSI:
1006 case Instruction::FPExt:
1007 case Instruction::PtrToInt:
1008 case Instruction::PtrToAddr:
1009 case Instruction::IntToPtr:
1010 case Instruction::SIToFP:
1011 case Instruction::UIToFP:
1012 case Instruction::Trunc:
1013 case Instruction::FPTrunc:
1014 case Instruction::AddrSpaceCast: {
1029 if (WidenMemoryRecipe ==
nullptr)
1033 if (!WidenMemoryRecipe->isConsecutive())
1035 if (WidenMemoryRecipe->isReverse())
1037 if (WidenMemoryRecipe->isMasked())
1045 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
1047 if (R->getNumUsers() == 0 || R->hasMoreThanOneUniqueUser())
1055 CCH = ComputeCCH(Recipe);
1059 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
1060 Opcode == Instruction::FPExt) {
1066 CCH = ComputeCCH(Recipe);
1074 Opcode, ResultTy, SrcTy, CCH, Ctx.
CostKind,
1077 case Instruction::Select: {
1095 (IsLogicalAnd || IsLogicalOr)) {
1101 SmallVector<const Value *, 2> Operands;
1103 [](
VPValue *
Op) {
return Op->getUnderlyingValue(); }))
1106 IsLogicalOr ? Instruction::Or : Instruction::And, ResultTy,
1107 Ctx.
CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, SI);
1114 llvm::CmpPredicate Pred;
1118 Pred = Cmp->getPredicate();
1121 Instruction::Select, VectorTy, CondTy, Pred, Ctx.
CostKind,
1122 {TTI::OK_AnyValue, TTI::OP_None}, {TTI::OK_AnyValue, TTI::OP_None}, SI);
1138 "Should only generate a vector value or single scalar, not scalars "
1146 case Instruction::Select: {
1149 auto *CondTy = Ctx.Types.inferScalarType(
getOperand(0));
1150 auto *VecTy = Ctx.Types.inferScalarType(
getOperand(1));
1155 return Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VecTy, CondTy, Pred,
1158 case Instruction::ExtractElement:
1168 return Ctx.TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy,
1172 auto *VecTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1173 return Ctx.TTI.getArithmeticReductionCost(
1179 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1186 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1187 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1192 return Ctx.TTI.getCmpSelInstrCost(Instruction::ICmp, ScalarTy,
1199 {PredTy, Type::getInt1Ty(Ctx.LLVMCtx)});
1202 Cost += Ctx.TTI.getArithmeticInstrCost(
1203 Instruction::Xor, PredTy, Ctx.CostKind,
1204 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
1205 {TargetTransformInfo::OK_UniformConstantValue,
1206 TargetTransformInfo::OP_None});
1208 Cost += Ctx.TTI.getArithmeticInstrCost(
1213 Type *ScalarTy = Ctx.Types.inferScalarType(
this);
1217 Intrinsic::experimental_vector_extract_last_active, ScalarTy,
1218 {VecTy, MaskTy, ScalarTy});
1219 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind);
1225 Type *VectorTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
1238 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1245 I32Ty, {Arg0Ty, I32Ty, I1Ty});
1246 return Ctx.TTI.getIntrinsicInstrCost(Attrs, Ctx.CostKind);
1249 assert(VF.
isVector() &&
"Reverse operation must be vector type");
1253 VectorTy, {}, Ctx.CostKind,
1259 return Ctx.TTI.getIndexedVectorInstrCostFromEnd(Instruction::ExtractElement,
1260 VecTy, Ctx.CostKind, 0);
1270 "unexpected VPInstruction witht underlying value");
1278 getOpcode() == Instruction::ExtractElement ||
1291 case Instruction::PHI:
1302 assert(!State.Lane &&
"VPInstruction executing an Lane");
1305 "Set flags not supported for the provided opcode");
1308 Value *GeneratedValue = generate(State);
1311 assert(GeneratedValue &&
"generate must produce a value");
1312 bool GeneratesPerFirstLaneOnly = canGenerateScalarForFirstLane() &&
1317 !GeneratesPerFirstLaneOnly) ||
1318 State.VF.isScalar()) &&
1319 "scalar value but not only first lane defined");
1320 State.set(
this, GeneratedValue,
1321 GeneratesPerFirstLaneOnly);
1328 case Instruction::GetElementPtr:
1329 case Instruction::ExtractElement:
1330 case Instruction::Freeze:
1331 case Instruction::FCmp:
1332 case Instruction::ICmp:
1333 case Instruction::Select:
1334 case Instruction::PHI:
1378 case Instruction::ExtractElement:
1380 case Instruction::PHI:
1382 case Instruction::FCmp:
1383 case Instruction::ICmp:
1384 case Instruction::Select:
1385 case Instruction::Or:
1386 case Instruction::Freeze:
1428 case Instruction::FCmp:
1429 case Instruction::ICmp:
1430 case Instruction::Select:
1441#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1449 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1461 O <<
"combined load";
1464 O <<
"combined store";
1467 O <<
"active lane mask";
1470 O <<
"EXPLICIT-VECTOR-LENGTH";
1473 O <<
"first-order splice";
1476 O <<
"branch-on-cond";
1479 O <<
"branch-on-two-conds";
1482 O <<
"TC > VF ? TC - VF : 0";
1488 O <<
"branch-on-count";
1494 O <<
"buildstructvector";
1500 O <<
"extract-lane";
1503 O <<
"extract-last-lane";
1506 O <<
"extract-last-part";
1509 O <<
"extract-penultimate-element";
1512 O <<
"compute-anyof-result";
1515 O <<
"compute-find-iv-result";
1518 O <<
"compute-reduction-result";
1533 O <<
"first-active-lane";
1536 O <<
"last-active-lane";
1539 O <<
"reduction-start-vector";
1542 O <<
"resume-for-epilogue";
1551 O <<
"extract-last-active";
1568 State.set(
this, Cast,
VPLane(0));
1579 Value *
VScale = State.Builder.CreateVScale(ResultTy);
1580 State.set(
this,
VScale,
true);
1589#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1592 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1598 O <<
"wide-iv-step ";
1602 O <<
"step-vector " << *ResultTy;
1605 O <<
"vscale " << *ResultTy;
1611 O <<
" to " << *ResultTy;
1618 PHINode *NewPhi = State.Builder.CreatePHI(
1619 State.TypeAnalysis.inferScalarType(
this), 2,
getName());
1626 for (
unsigned Idx = 0; Idx != NumIncoming; ++Idx) {
1631 State.set(
this, NewPhi,
VPLane(0));
1634#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1637 O << Indent <<
"EMIT" << (
isSingleScalar() ?
"-SCALAR" :
"") <<
" ";
1652 "PHINodes must be handled by VPIRPhi");
1655 State.Builder.SetInsertPoint(I.getParent(), std::next(I.getIterator()));
1668 "can only update exiting operands to phi nodes");
1679#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1682 O << Indent <<
"IR " << I;
1694 auto *PredVPBB = Pred->getExitingBasicBlock();
1695 BasicBlock *PredBB = State.CFG.VPBB2IRBB[PredVPBB];
1702 if (Phi->getBasicBlockIndex(PredBB) == -1)
1703 Phi->addIncoming(V, PredBB);
1705 Phi->setIncomingValueForBlock(PredBB, V);
1710 State.Builder.SetInsertPoint(Phi->getParent(), std::next(Phi->getIterator()));
1715 assert(R->getNumOperands() == R->getParent()->getNumPredecessors() &&
1716 "Number of phi operands must match number of predecessors");
1717 unsigned Position = R->getParent()->getIndexForPredecessor(IncomingBlock);
1718 R->removeOperand(Position);
1721#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1735#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1741 O <<
" (extra operand" << (
getNumOperands() > 1 ?
"s" :
"") <<
": ";
1746 std::get<1>(
Op)->printAsOperand(O);
1754 for (
const auto &[Kind,
Node] : Metadata)
1755 I.setMetadata(Kind,
Node);
1760 for (
const auto &[KindA, MDA] : Metadata) {
1761 for (
const auto &[KindB, MDB] :
Other.Metadata) {
1762 if (KindA == KindB && MDA == MDB) {
1768 Metadata = std::move(MetadataIntersection);
1771#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1774 if (Metadata.empty() || !M)
1780 auto [Kind,
Node] = KindNodePair;
1782 "Unexpected unnamed metadata kind");
1783 O <<
"!" << MDNames[Kind] <<
" ";
1791 assert(State.VF.isVector() &&
"not widening");
1792 assert(Variant !=
nullptr &&
"Can't create vector function.");
1803 Arg = State.get(
I.value(),
VPLane(0));
1806 Args.push_back(Arg);
1812 CI->getOperandBundlesAsDefs(OpBundles);
1814 CallInst *V = State.Builder.CreateCall(Variant, Args, OpBundles);
1817 V->setCallingConv(Variant->getCallingConv());
1819 if (!V->getType()->isVoidTy())
1825 return Ctx.TTI.getCallInstrCost(
nullptr, Variant->getReturnType(),
1826 Variant->getFunctionType()->params(),
1830#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1833 O << Indent <<
"WIDEN-CALL ";
1845 O <<
" @" << CalledFn->
getName() <<
"(";
1851 O <<
" (using library function";
1852 if (Variant->hasName())
1853 O <<
": " << Variant->getName();
1859 assert(State.VF.isVector() &&
"not widening");
1867 for (
auto [Idx, Ty] :
enumerate(ContainedTys)) {
1880 Arg = State.get(
I.value(),
VPLane(0));
1886 Args.push_back(Arg);
1890 Module *M = State.Builder.GetInsertBlock()->getModule();
1894 "Can't retrieve vector intrinsic or vector-predication intrinsics.");
1899 CI->getOperandBundlesAsDefs(OpBundles);
1901 CallInst *V = State.Builder.CreateCall(VectorF, Args, OpBundles);
1906 if (!V->getType()->isVoidTy())
1922 for (
const auto &[Idx,
Op] :
enumerate(Operands)) {
1923 auto *V =
Op->getUnderlyingValue();
1926 Arguments.push_back(UI->getArgOperand(Idx));
1935 Type *ScalarRetTy = Ctx.Types.inferScalarType(&R);
1941 : Ctx.Types.inferScalarType(
Op));
1946 R.hasFastMathFlags() ? R.getFastMathFlags() :
FastMathFlags();
1951 return Ctx.TTI.getIntrinsicInstrCost(CostAttrs, Ctx.CostKind);
1973#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1976 O << Indent <<
"WIDEN-INTRINSIC ";
1977 if (ResultTy->isVoidTy()) {
2005 Value *Mask =
nullptr;
2007 Mask = State.get(VPMask);
2010 Builder.CreateVectorSplat(VTy->
getElementCount(), Builder.getInt1(1));
2014 if (Opcode == Instruction::Sub)
2015 IncAmt = Builder.CreateNeg(IncAmt);
2017 assert(Opcode == Instruction::Add &&
"only add or sub supported for now");
2019 State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
2034 Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
2040 Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy, Ctx.CostKind);
2050 {PtrTy, IncTy, MaskTy});
2053 return Ctx.TTI.getIntrinsicInstrCost(ICA, Ctx.CostKind) + MulCost +
2054 Ctx.TTI.getArithmeticInstrCost(Opcode, VTy, Ctx.CostKind);
2057#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2060 O << Indent <<
"WIDEN-HISTOGRAM buckets: ";
2063 if (Opcode == Instruction::Sub)
2066 assert(Opcode == Instruction::Add);
2078VPIRFlags::FastMathFlagsTy::FastMathFlagsTy(
const FastMathFlags &FMF) {
2091 case OperationType::OverflowingBinOp:
2092 return Opcode == Instruction::Add || Opcode == Instruction::Sub ||
2093 Opcode == Instruction::Mul || Opcode == Instruction::Shl ||
2094 Opcode == VPInstruction::VPInstruction::CanonicalIVIncrementForPart;
2095 case OperationType::Trunc:
2096 return Opcode == Instruction::Trunc;
2097 case OperationType::DisjointOp:
2098 return Opcode == Instruction::Or;
2099 case OperationType::PossiblyExactOp:
2100 return Opcode == Instruction::AShr || Opcode == Instruction::LShr ||
2101 Opcode == Instruction::UDiv || Opcode == Instruction::SDiv;
2102 case OperationType::GEPOp:
2103 return Opcode == Instruction::GetElementPtr ||
2106 case OperationType::FPMathOp:
2107 return Opcode == Instruction::Call || Opcode == Instruction::FAdd ||
2108 Opcode == Instruction::FMul || Opcode == Instruction::FSub ||
2109 Opcode == Instruction::FNeg || Opcode == Instruction::FDiv ||
2110 Opcode == Instruction::FRem || Opcode == Instruction::FPExt ||
2111 Opcode == Instruction::FPTrunc || Opcode == Instruction::Select ||
2114 case OperationType::FCmp:
2115 return Opcode == Instruction::FCmp;
2116 case OperationType::NonNegOp:
2117 return Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP;
2118 case OperationType::Cmp:
2119 return Opcode == Instruction::FCmp || Opcode == Instruction::ICmp;
2120 case OperationType::ReductionOp:
2123 case OperationType::Other:
2130#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2133 case OperationType::Cmp:
2136 case OperationType::FCmp:
2140 case OperationType::DisjointOp:
2144 case OperationType::PossiblyExactOp:
2148 case OperationType::OverflowingBinOp:
2154 case OperationType::Trunc:
2160 case OperationType::FPMathOp:
2163 case OperationType::GEPOp:
2166 else if (
GEPFlags.hasNoUnsignedSignedWrap())
2171 case OperationType::NonNegOp:
2175 case OperationType::ReductionOp: {
2224 case OperationType::Other:
2232 auto &Builder = State.Builder;
2234 case Instruction::Call:
2235 case Instruction::Br:
2236 case Instruction::PHI:
2237 case Instruction::GetElementPtr:
2239 case Instruction::UDiv:
2240 case Instruction::SDiv:
2241 case Instruction::SRem:
2242 case Instruction::URem:
2243 case Instruction::Add:
2244 case Instruction::FAdd:
2245 case Instruction::Sub:
2246 case Instruction::FSub:
2247 case Instruction::FNeg:
2248 case Instruction::Mul:
2249 case Instruction::FMul:
2250 case Instruction::FDiv:
2251 case Instruction::FRem:
2252 case Instruction::Shl:
2253 case Instruction::LShr:
2254 case Instruction::AShr:
2255 case Instruction::And:
2256 case Instruction::Or:
2257 case Instruction::Xor: {
2261 Ops.push_back(State.get(VPOp));
2263 Value *V = Builder.CreateNAryOp(Opcode,
Ops);
2274 case Instruction::ExtractValue: {
2277 Value *Extract = Builder.CreateExtractValue(
2279 State.set(
this, Extract);
2282 case Instruction::Freeze: {
2284 Value *Freeze = Builder.CreateFreeze(
Op);
2285 State.set(
this, Freeze);
2288 case Instruction::ICmp:
2289 case Instruction::FCmp: {
2291 bool FCmp = Opcode == Instruction::FCmp;
2307 case Instruction::Select: {
2312 Value *Sel = State.Builder.CreateSelect(
Cond, Op0, Op1);
2313 State.set(
this, Sel);
2332 State.get(
this)->getType() &&
2333 "inferred type and type from generated instructions do not match");
2340 case Instruction::UDiv:
2341 case Instruction::SDiv:
2342 case Instruction::SRem:
2343 case Instruction::URem:
2348 case Instruction::FNeg:
2349 case Instruction::Add:
2350 case Instruction::FAdd:
2351 case Instruction::Sub:
2352 case Instruction::FSub:
2353 case Instruction::Mul:
2354 case Instruction::FMul:
2355 case Instruction::FDiv:
2356 case Instruction::FRem:
2357 case Instruction::Shl:
2358 case Instruction::LShr:
2359 case Instruction::AShr:
2360 case Instruction::And:
2361 case Instruction::Or:
2362 case Instruction::Xor:
2363 case Instruction::Freeze:
2364 case Instruction::ExtractValue:
2365 case Instruction::ICmp:
2366 case Instruction::FCmp:
2367 case Instruction::Select:
2374#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2377 O << Indent <<
"WIDEN ";
2386 auto &Builder = State.Builder;
2388 assert(State.VF.isVector() &&
"Not vectorizing?");
2393 State.set(
this, Cast);
2410#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2413 O << Indent <<
"WIDEN-CAST ";
2424 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
2427#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2432 O <<
" = WIDEN-INDUCTION";
2437 O <<
" (truncated to " << *TI->getType() <<
")";
2447 return StartC && StartC->isZero() && StepC && StepC->isOne() &&
2452 assert(!State.Lane &&
"VPDerivedIVRecipe being replicated.");
2457 State.Builder.setFastMathFlags(FPBinOp->getFastMathFlags());
2465 State.set(
this, DerivedIV,
VPLane(0));
2468#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2473 O <<
" = DERIVED-IV ";
2497 assert(BaseIVTy == Step->
getType() &&
"Types of BaseIV and Step must match!");
2504 AddOp = Instruction::Add;
2505 MulOp = Instruction::Mul;
2507 AddOp = InductionOpcode;
2508 MulOp = Instruction::FMul;
2518 unsigned StartLane = 0;
2519 unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2521 StartLane = State.Lane->getKnownLane();
2522 EndLane = StartLane + 1;
2526 StartIdx0 = ConstantInt::get(IntStepTy, 0);
2531 Builder.CreateMul(StartIdx0, ConstantInt::get(StartIdx0->
getType(),
2534 StartIdx0 = Builder.CreateSExtOrTrunc(StartIdx0, IntStepTy);
2538 StartIdx0 = Builder.CreateSIToFP(StartIdx0, BaseIVTy);
2540 for (
unsigned Lane = StartLane; Lane < EndLane; ++Lane) {
2545 ? ConstantInt::get(BaseIVTy, Lane,
false,
2547 : ConstantFP::get(BaseIVTy, Lane);
2548 Value *StartIdx = Builder.CreateBinOp(AddOp, StartIdx0, LaneValue);
2552 "Expected StartIdx to be folded to a constant when VF is not "
2554 auto *
Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2555 auto *
Add = Builder.CreateBinOp(AddOp, BaseIV,
Mul);
2560#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2565 O <<
" = SCALAR-STEPS ";
2576 assert(State.VF.isVector() &&
"not widening");
2584 return Op->isDefinedOutsideLoopRegions();
2586 if (AllOperandsAreInvariant) {
2601 Value *
Splat = State.Builder.CreateVectorSplat(State.VF, NewGEP);
2602 State.set(
this,
Splat);
2610 auto *Ptr = State.get(
getOperand(0), isPointerLoopInvariant());
2617 Indices.
push_back(State.get(Operand, isIndexLoopInvariant(
I - 1)));
2624 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
2625 "NewGEP is not a pointer vector");
2626 State.set(
this, NewGEP);
2629#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2632 O << Indent <<
"WIDEN-GEP ";
2633 O << (isPointerLoopInvariant() ?
"Inv" :
"Var");
2635 O <<
"[" << (isIndexLoopInvariant(
I) ?
"Inv" :
"Var") <<
"]";
2639 O <<
" = getelementptr";
2646 auto &Builder = State.Builder;
2648 const DataLayout &DL = Builder.GetInsertBlock()->getDataLayout();
2649 Type *IndexTy = DL.getIndexType(State.TypeAnalysis.inferScalarType(
this));
2653 if (IndexTy != RunTimeVF->
getType())
2654 RunTimeVF = Builder.CreateZExtOrTrunc(RunTimeVF, IndexTy);
2656 Value *NumElt = Builder.CreateMul(
2660 Value *LastLane = Builder.CreateSub(RunTimeVF, ConstantInt::get(IndexTy, 1));
2667 ResultPtr = Builder.CreateGEP(IndexedTy, ResultPtr, LastLane,
"",
2670 State.set(
this, ResultPtr,
true);
2673#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2678 O <<
" = vector-end-pointer";
2685 auto &Builder = State.Builder;
2687 "Expected prior simplification of recipe without offset");
2692 State.set(
this, ResultPtr,
true);
2695#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2700 O <<
" = vector-pointer";
2713 Type *ResultTy =
toVectorTy(Ctx.Types.inferScalarType(
this), VF);
2716 Ctx.TTI.getCmpSelInstrCost(Instruction::Select, ResultTy, CmpTy,
2720#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2723 O << Indent <<
"BLEND ";
2745 assert(!State.Lane &&
"Reduction being replicated.");
2748 "In-loop AnyOf reductions aren't currently supported");
2754 Value *NewCond = State.get(
Cond, State.VF.isScalar());
2759 if (State.VF.isVector())
2760 Start = State.Builder.CreateVectorSplat(VecTy->
getElementCount(), Start);
2762 Value *
Select = State.Builder.CreateSelect(NewCond, NewVecOp, Start);
2769 if (State.VF.isVector())
2773 NewRed = State.Builder.CreateBinOp(
2775 PrevInChain, NewVecOp);
2776 PrevInChain = NewRed;
2777 NextInChain = NewRed;
2781 NewRed = State.Builder.CreateIntrinsic(
2782 PrevInChain->
getType(), Intrinsic::vector_partial_reduce_add,
2783 {PrevInChain, NewVecOp},
nullptr,
"partial.reduce");
2784 PrevInChain = NewRed;
2785 NextInChain = NewRed;
2788 "The reduction must either be ordered, partial or in-loop");
2792 NextInChain =
createMinMaxOp(State.Builder, Kind, NewRed, PrevInChain);
2794 NextInChain = State.Builder.CreateBinOp(
2796 PrevInChain, NewRed);
2802 assert(!State.Lane &&
"Reduction being replicated.");
2804 auto &Builder = State.Builder;
2816 Mask = State.get(CondOp);
2818 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
2828 NewRed = Builder.CreateBinOp(
2832 State.set(
this, NewRed,
true);
2838 Type *ElementTy = Ctx.Types.inferScalarType(
this);
2842 std::optional<FastMathFlags> OptionalFMF =
2851 CondCost = Ctx.TTI.getCmpSelInstrCost(Instruction::Select, VectorTy,
2852 CondTy, Pred, Ctx.CostKind);
2854 return CondCost + Ctx.TTI.getPartialReductionCost(
2855 Opcode, ElementTy, ElementTy, ElementTy, VF,
2865 "Any-of reduction not implemented in VPlan-based cost model currently.");
2871 return Ctx.TTI.getMinMaxReductionCost(Id, VectorTy,
FMFs, Ctx.CostKind);
2876 return Ctx.TTI.getArithmeticReductionCost(Opcode, VectorTy, OptionalFMF,
2880VPExpressionRecipe::VPExpressionRecipe(
2881 ExpressionTypes ExpressionType,
2884 ExpressionRecipes(ExpressionRecipes),
ExpressionType(ExpressionType) {
2885 assert(!ExpressionRecipes.empty() &&
"Nothing to combine?");
2889 "expression cannot contain recipes with side-effects");
2893 for (
auto *R : ExpressionRecipes)
2894 ExpressionRecipesAsSetOfUsers.
insert(R);
2900 if (R != ExpressionRecipes.back() &&
2901 any_of(
R->users(), [&ExpressionRecipesAsSetOfUsers](
VPUser *U) {
2902 return !ExpressionRecipesAsSetOfUsers.contains(U);
2907 R->replaceUsesWithIf(CopyForExtUsers, [&ExpressionRecipesAsSetOfUsers](
2909 return !ExpressionRecipesAsSetOfUsers.contains(&U);
2914 R->removeFromParent();
2921 for (
auto *R : ExpressionRecipes) {
2922 for (
const auto &[Idx,
Op] :
enumerate(
R->operands())) {
2923 auto *
Def =
Op->getDefiningRecipe();
2924 if (Def && ExpressionRecipesAsSetOfUsers.contains(Def))
2933 for (
auto *R : ExpressionRecipes)
2934 for (
auto const &[LiveIn, Tmp] :
zip(operands(), LiveInPlaceholders))
2935 R->replaceUsesOfWith(LiveIn, Tmp);
2939 for (
auto *R : ExpressionRecipes)
2942 if (!R->getParent())
2943 R->insertBefore(
this);
2946 LiveInPlaceholders[Idx]->replaceAllUsesWith(
Op);
2949 ExpressionRecipes.clear();
2954 Type *RedTy = Ctx.Types.inferScalarType(
this);
2958 "VPExpressionRecipe only supports integer types currently.");
2961 switch (ExpressionType) {
2962 case ExpressionTypes::ExtendedReduction: {
2968 ->isPartialReduction()
2969 ? Ctx.TTI.getPartialReductionCost(
2970 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
nullptr,
2975 : Ctx.TTI.getExtendedReductionCost(
2976 Opcode, ExtR->getOpcode() == Instruction::ZExt, RedTy,
2977 SrcVecTy, std::nullopt, Ctx.CostKind);
2979 case ExpressionTypes::MulAccReduction:
2980 return Ctx.TTI.getMulAccReductionCost(
false, Opcode, RedTy, SrcVecTy,
2983 case ExpressionTypes::ExtNegatedMulAccReduction:
2984 assert(Opcode == Instruction::Add &&
"Unexpected opcode");
2985 Opcode = Instruction::Sub;
2987 case ExpressionTypes::ExtMulAccReduction: {
2989 if (RedR->isPartialReduction()) {
2993 return Ctx.TTI.getPartialReductionCost(
2994 Opcode, Ctx.Types.inferScalarType(
getOperand(0)),
2995 Ctx.Types.inferScalarType(
getOperand(1)), RedTy, VF,
2997 Ext0R->getOpcode()),
2999 Ext1R->getOpcode()),
3000 Mul->getOpcode(), Ctx.CostKind);
3002 return Ctx.TTI.getMulAccReductionCost(
3005 Opcode, RedTy, SrcVecTy, Ctx.CostKind);
3013 return R->mayReadFromMemory() || R->mayWriteToMemory();
3021 "expression cannot contain recipes with side-effects");
3029 return RR && !RR->isPartialReduction();
3032#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3036 O << Indent <<
"EXPRESSION ";
3042 switch (ExpressionType) {
3043 case ExpressionTypes::ExtendedReduction: {
3045 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3052 << *Ext0->getResultType();
3053 if (Red->isConditional()) {
3060 case ExpressionTypes::ExtNegatedMulAccReduction: {
3062 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3072 << *Ext0->getResultType() <<
"), (";
3076 << *Ext1->getResultType() <<
")";
3077 if (Red->isConditional()) {
3084 case ExpressionTypes::MulAccReduction:
3085 case ExpressionTypes::ExtMulAccReduction: {
3087 O <<
" + " << (Red->isPartialReduction() ?
"partial." :
"") <<
"reduce.";
3092 bool IsExtended = ExpressionType == ExpressionTypes::ExtMulAccReduction;
3094 : ExpressionRecipes[0]);
3102 << *Ext0->getResultType() <<
"), (";
3110 << *Ext1->getResultType() <<
")";
3112 if (Red->isConditional()) {
3125 O << Indent <<
"PARTIAL-REDUCE ";
3127 O << Indent <<
"REDUCE ";
3147 O << Indent <<
"REDUCE ";
3175 assert((!Instr->getType()->isAggregateType() ||
3177 "Expected vectorizable or non-aggregate type.");
3180 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3184 Cloned->
setName(Instr->getName() +
".cloned");
3185 Type *ResultTy = State.TypeAnalysis.inferScalarType(RepRecipe);
3189 if (ResultTy != Cloned->
getType())
3200 State.setDebugLocFrom(
DL);
3205 auto InputLane = Lane;
3209 Cloned->
setOperand(
I.index(), State.get(Operand, InputLane));
3213 State.Builder.Insert(Cloned);
3215 State.set(RepRecipe, Cloned, Lane);
3219 State.AC->registerAssumption(
II);
3225 [](
VPValue *
Op) { return Op->isDefinedOutsideLoopRegions(); })) &&
3226 "Expected a recipe is either within a region or all of its operands "
3227 "are defined outside the vectorized region.");
3234 assert(IsSingleScalar &&
"VPReplicateRecipes outside replicate regions "
3235 "must have already been unrolled");
3241 "uniform recipe shouldn't be predicated");
3242 assert(!State.VF.isScalable() &&
"Can't scalarize a scalable vector");
3247 State.Lane->isFirstLane()
3250 State.set(
this, State.packScalarIntoVectorizedValue(
this, WideValue,
3286 while (!WorkList.
empty()) {
3288 if (!Cur || !Seen.
insert(Cur).second)
3296 return Seen.contains(
3297 Blend->getIncomingValue(I)->getDefiningRecipe());
3301 for (
VPUser *U : Cur->users()) {
3303 if (InterleaveR->getAddr() == Cur)
3306 if (RepR->getOpcode() == Instruction::Load &&
3307 RepR->getOperand(0) == Cur)
3309 if (RepR->getOpcode() == Instruction::Store &&
3310 RepR->getOperand(1) == Cur)
3314 if (MemR->getAddr() == Cur && MemR->isConsecutive())
3335 Ctx.SkipCostComputation.insert(UI);
3341 case Instruction::Alloca:
3344 return Ctx.TTI.getArithmeticInstrCost(
3345 Instruction::Mul, Ctx.Types.inferScalarType(
this), Ctx.CostKind);
3346 case Instruction::GetElementPtr:
3352 case Instruction::Call: {
3358 for (
const VPValue *ArgOp : ArgOps)
3359 Tys.
push_back(Ctx.Types.inferScalarType(ArgOp));
3361 if (CalledFn->isIntrinsic())
3364 switch (CalledFn->getIntrinsicID()) {
3365 case Intrinsic::assume:
3366 case Intrinsic::lifetime_end:
3367 case Intrinsic::lifetime_start:
3368 case Intrinsic::sideeffect:
3369 case Intrinsic::pseudoprobe:
3370 case Intrinsic::experimental_noalias_scope_decl: {
3373 "scalarizing intrinsic should be free");
3380 Type *ResultTy = Ctx.Types.inferScalarType(
this);
3382 Ctx.TTI.getCallInstrCost(CalledFn, ResultTy, Tys, Ctx.CostKind);
3384 if (CalledFn->isIntrinsic())
3385 ScalarCallCost = std::min(
3389 return ScalarCallCost;
3393 Ctx.getScalarizationOverhead(ResultTy, ArgOps, VF);
3395 case Instruction::Add:
3396 case Instruction::Sub:
3397 case Instruction::FAdd:
3398 case Instruction::FSub:
3399 case Instruction::Mul:
3400 case Instruction::FMul:
3401 case Instruction::FDiv:
3402 case Instruction::FRem:
3403 case Instruction::Shl:
3404 case Instruction::LShr:
3405 case Instruction::AShr:
3406 case Instruction::And:
3407 case Instruction::Or:
3408 case Instruction::Xor:
3409 case Instruction::ICmp:
3410 case Instruction::FCmp:
3414 case Instruction::SDiv:
3415 case Instruction::UDiv:
3416 case Instruction::SRem:
3417 case Instruction::URem: {
3430 return Ctx.skipCostComputation(
3432 PredR->getOperand(0)->getUnderlyingValue()),
3438 Ctx.getScalarizationOverhead(Ctx.Types.inferScalarType(
this),
3447 Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
3451 ScalarCost /= Ctx.getPredBlockCostDivisor(UI->
getParent());
3454 case Instruction::Load:
3455 case Instruction::Store: {
3462 bool IsLoad = UI->
getOpcode() == Instruction::Load;
3468 Type *ValTy = Ctx.Types.inferScalarType(IsLoad ?
this :
getOperand(0));
3469 Type *ScalarPtrTy = Ctx.Types.inferScalarType(PtrOp);
3474 UI->
getOpcode(), ValTy, Alignment, AS, Ctx.CostKind, OpInfo);
3477 bool PreferVectorizedAddressing = Ctx.TTI.prefersVectorizedAddressing();
3478 bool UsedByLoadStoreAddress =
3482 Ctx.TTI.getAddressComputationCost(
3483 PtrTy, UsedByLoadStoreAddress ?
nullptr : Ctx.PSE.getSE(), PtrSCEV,
3494 if (!UsedByLoadStoreAddress) {
3495 bool EfficientVectorLoadStore =
3496 Ctx.TTI.supportsEfficientVectorElementLoadStore();
3497 if (!(IsLoad && !PreferVectorizedAddressing) &&
3498 !(!IsLoad && EfficientVectorLoadStore))
3501 if (!EfficientVectorLoadStore)
3502 ResultTy = Ctx.Types.inferScalarType(
this);
3506 Ctx.getScalarizationOverhead(ResultTy, OpsToScalarize, VF,
true);
3508 case Instruction::SExt:
3509 case Instruction::ZExt:
3510 case Instruction::FPToUI:
3511 case Instruction::FPToSI:
3512 case Instruction::FPExt:
3513 case Instruction::PtrToInt:
3514 case Instruction::PtrToAddr:
3515 case Instruction::IntToPtr:
3516 case Instruction::SIToFP:
3517 case Instruction::UIToFP:
3518 case Instruction::Trunc:
3519 case Instruction::FPTrunc:
3520 case Instruction::AddrSpaceCast: {
3525 case Instruction::ExtractValue:
3526 case Instruction::InsertValue:
3527 return Ctx.TTI.getInsertExtractValueCost(
getOpcode(), Ctx.CostKind);
3530 return Ctx.getLegacyCost(UI, VF);
3533#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3536 O << Indent << (IsSingleScalar ?
"CLONE " :
"REPLICATE ");
3545 O <<
"@" << CB->getCalledFunction()->getName() <<
"(";
3563 assert(State.Lane &&
"Branch on Mask works only on single instance.");
3566 Value *ConditionBit = State.get(BlockInMask, *State.Lane);
3570 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
3572 "Expected to replace unreachable terminator with conditional branch.");
3574 State.Builder.CreateCondBr(ConditionBit, State.CFG.PrevBB,
nullptr);
3575 CondBr->setSuccessor(0,
nullptr);
3576 CurrentTerminator->eraseFromParent();
3588 assert(State.Lane &&
"Predicated instruction PHI works per instance.");
3593 assert(PredicatingBB &&
"Predicated block has no single predecessor.");
3595 "operand must be VPReplicateRecipe");
3606 "Packed operands must generate an insertelement or insertvalue");
3614 for (
unsigned I = 0;
I < StructTy->getNumContainedTypes() - 1;
I++)
3617 PHINode *VPhi = State.Builder.CreatePHI(VecI->getType(), 2);
3618 VPhi->
addIncoming(VecI->getOperand(0), PredicatingBB);
3620 if (State.hasVectorValue(
this))
3621 State.reset(
this, VPhi);
3623 State.set(
this, VPhi);
3631 Type *PredInstType = State.TypeAnalysis.inferScalarType(
getOperand(0));
3632 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
3635 Phi->addIncoming(ScalarPredInst, PredicatedBB);
3636 if (State.hasScalarValue(
this, *State.Lane))
3637 State.reset(
this, Phi, *State.Lane);
3639 State.set(
this, Phi, *State.Lane);
3642 State.reset(
getOperand(0), Phi, *State.Lane);
3646#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3649 O << Indent <<
"PHI-PREDICATED-INSTRUCTION ";
3660 ->getAddressSpace();
3663 : Instruction::Store;
3670 "Inconsecutive memory access should not have the order.");
3683 : Intrinsic::vp_scatter;
3684 return Ctx.TTI.getAddressComputationCost(PtrTy,
nullptr,
nullptr,
3686 Ctx.TTI.getMemIntrinsicInstrCost(
3695 : Intrinsic::masked_store;
3696 Cost += Ctx.TTI.getMemIntrinsicInstrCost(
3702 Cost += Ctx.TTI.getMemoryOpCost(Opcode, Ty,
Alignment, AS, Ctx.CostKind,
3713 auto &Builder = State.Builder;
3714 Value *Mask =
nullptr;
3715 if (
auto *VPMask =
getMask()) {
3718 Mask = State.get(VPMask);
3720 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3726 NewLI = Builder.CreateMaskedGather(DataTy, Addr,
Alignment, Mask,
nullptr,
3727 "wide.masked.gather");
3730 Builder.CreateMaskedLoad(DataTy, Addr,
Alignment, Mask,
3733 NewLI = Builder.CreateAlignedLoad(DataTy, Addr,
Alignment,
"wide.load");
3736 State.set(
this, NewLI);
3739#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3742 O << Indent <<
"WIDEN ";
3754 Value *AllTrueMask =
3755 Builder.CreateVectorSplat(ValTy->getElementCount(), Builder.getTrue());
3756 return Builder.CreateIntrinsic(ValTy, Intrinsic::experimental_vp_reverse,
3757 {Operand, AllTrueMask, EVL},
nullptr, Name);
3765 auto &Builder = State.Builder;
3769 Value *Mask =
nullptr;
3771 Mask = State.get(VPMask);
3775 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3780 Builder.CreateIntrinsic(DataTy, Intrinsic::vp_gather, {Addr, Mask, EVL},
3781 nullptr,
"wide.masked.gather");
3783 NewLI = Builder.CreateIntrinsic(DataTy, Intrinsic::vp_load,
3784 {Addr, Mask, EVL},
nullptr,
"vp.op.load");
3790 State.set(
this, Res);
3805 ->getAddressSpace();
3806 return Ctx.TTI.getMemIntrinsicInstrCost(
3811#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3814 O << Indent <<
"WIDEN ";
3825 auto &Builder = State.Builder;
3827 Value *Mask =
nullptr;
3828 if (
auto *VPMask =
getMask()) {
3831 Mask = State.get(VPMask);
3833 Mask = Builder.CreateVectorReverse(Mask,
"reverse");
3836 Value *StoredVal = State.get(StoredVPValue);
3840 NewSI = Builder.CreateMaskedScatter(StoredVal, Addr,
Alignment, Mask);
3842 NewSI = Builder.CreateMaskedStore(StoredVal, Addr,
Alignment, Mask);
3844 NewSI = Builder.CreateAlignedStore(StoredVal, Addr,
Alignment);
3848#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3851 O << Indent <<
"WIDEN store ";
3860 auto &Builder = State.Builder;
3863 Value *StoredVal = State.get(StoredValue);
3865 Value *Mask =
nullptr;
3867 Mask = State.get(VPMask);
3871 Mask = Builder.CreateVectorSplat(State.VF, Builder.getTrue());
3874 if (CreateScatter) {
3876 Intrinsic::vp_scatter,
3877 {StoredVal, Addr, Mask, EVL});
3880 Intrinsic::vp_store,
3881 {StoredVal, Addr, Mask, EVL});
3900 ->getAddressSpace();
3901 return Ctx.TTI.getMemIntrinsicInstrCost(
3906#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3909 O << Indent <<
"WIDEN vp.store ";
3917 auto VF = DstVTy->getElementCount();
3919 assert(VF == SrcVecTy->getElementCount() &&
"Vector dimensions do not match");
3920 Type *SrcElemTy = SrcVecTy->getElementType();
3921 Type *DstElemTy = DstVTy->getElementType();
3922 assert((
DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) &&
3923 "Vector elements must have same size");
3927 return Builder.CreateBitOrPointerCast(V, DstVTy);
3934 "Only one type should be a pointer type");
3936 "Only one type should be a floating point type");
3940 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3941 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3947 const Twine &Name) {
3948 unsigned Factor = Vals.
size();
3949 assert(Factor > 1 &&
"Tried to interleave invalid number of vectors");
3953 for (
Value *Val : Vals)
3954 assert(Val->getType() == VecTy &&
"Tried to interleave mismatched types");
3959 if (VecTy->isScalableTy()) {
3960 assert(Factor <= 8 &&
"Unsupported interleave factor for scalable vectors");
3961 return Builder.CreateVectorInterleave(Vals, Name);
3968 const unsigned NumElts = VecTy->getElementCount().getFixedValue();
3969 return Builder.CreateShuffleVector(
4002 assert(!State.Lane &&
"Interleave group being replicated.");
4004 "Masking gaps for scalable vectors is not yet supported.");
4010 unsigned InterleaveFactor = Group->
getFactor();
4017 auto CreateGroupMask = [&BlockInMask, &State,
4018 &InterleaveFactor](
Value *MaskForGaps) ->
Value * {
4019 if (State.VF.isScalable()) {
4020 assert(!MaskForGaps &&
"Interleaved groups with gaps are not supported.");
4021 assert(InterleaveFactor <= 8 &&
4022 "Unsupported deinterleave factor for scalable vectors");
4023 auto *ResBlockInMask = State.get(BlockInMask);
4031 Value *ResBlockInMask = State.get(BlockInMask);
4032 Value *ShuffledMask = State.Builder.CreateShuffleVector(
4035 "interleaved.mask");
4036 return MaskForGaps ? State.Builder.CreateBinOp(Instruction::And,
4037 ShuffledMask, MaskForGaps)
4041 const DataLayout &DL = Instr->getDataLayout();
4044 Value *MaskForGaps =
nullptr;
4048 assert(MaskForGaps &&
"Mask for Gaps is required but it is null");
4052 if (BlockInMask || MaskForGaps) {
4053 Value *GroupMask = CreateGroupMask(MaskForGaps);
4055 NewLoad = State.Builder.CreateMaskedLoad(VecTy, ResAddr,
4057 PoisonVec,
"wide.masked.vec");
4059 NewLoad = State.Builder.CreateAlignedLoad(VecTy, ResAddr,
4066 if (VecTy->isScalableTy()) {
4069 assert(InterleaveFactor <= 8 &&
4070 "Unsupported deinterleave factor for scalable vectors");
4071 NewLoad = State.Builder.CreateIntrinsic(
4074 nullptr,
"strided.vec");
4077 auto CreateStridedVector = [&InterleaveFactor, &State,
4078 &NewLoad](
unsigned Index) ->
Value * {
4079 assert(Index < InterleaveFactor &&
"Illegal group index");
4080 if (State.VF.isScalable())
4081 return State.Builder.CreateExtractValue(NewLoad, Index);
4087 return State.Builder.CreateShuffleVector(NewLoad, StrideMask,
4091 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4098 Value *StridedVec = CreateStridedVector(
I);
4101 if (Member->getType() != ScalarTy) {
4108 StridedVec = State.Builder.CreateVectorReverse(StridedVec,
"reverse");
4110 State.set(VPDefs[J], StridedVec);
4120 Value *MaskForGaps =
4123 "Mismatch between NeedsMaskForGaps and MaskForGaps");
4127 unsigned StoredIdx = 0;
4128 for (
unsigned i = 0; i < InterleaveFactor; i++) {
4130 "Fail to get a member from an interleaved store group");
4140 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4144 StoredVec = State.Builder.CreateVectorReverse(StoredVec,
"reverse");
4148 if (StoredVec->
getType() != SubVT)
4157 if (BlockInMask || MaskForGaps) {
4158 Value *GroupMask = CreateGroupMask(MaskForGaps);
4159 NewStoreInstr = State.Builder.CreateMaskedStore(
4160 IVec, ResAddr, Group->
getAlign(), GroupMask);
4163 State.Builder.CreateAlignedStore(IVec, ResAddr, Group->
getAlign());
4170#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4174 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4175 IG->getInsertPos()->printAsOperand(O,
false);
4185 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4186 if (!IG->getMember(i))
4189 O <<
"\n" << Indent <<
" store ";
4191 O <<
" to index " << i;
4193 O <<
"\n" << Indent <<
" ";
4195 O <<
" = load from index " << i;
4203 assert(!State.Lane &&
"Interleave group being replicated.");
4204 assert(State.VF.isScalable() &&
4205 "Only support scalable VF for EVL tail-folding.");
4207 "Masking gaps for scalable vectors is not yet supported.");
4213 unsigned InterleaveFactor = Group->
getFactor();
4214 assert(InterleaveFactor <= 8 &&
4215 "Unsupported deinterleave/interleave factor for scalable vectors");
4222 Value *InterleaveEVL = State.Builder.CreateMul(
4223 EVL, ConstantInt::get(EVL->
getType(), InterleaveFactor),
"interleave.evl",
4227 Value *GroupMask =
nullptr;
4233 State.Builder.CreateVectorSplat(WideVF, State.Builder.getTrue());
4238 CallInst *NewLoad = State.Builder.CreateIntrinsic(
4239 VecTy, Intrinsic::vp_load, {ResAddr, GroupMask, InterleaveEVL},
nullptr,
4250 NewLoad = State.Builder.CreateIntrinsic(
4253 nullptr,
"strided.vec");
4255 const DataLayout &DL = Instr->getDataLayout();
4256 for (
unsigned I = 0, J = 0;
I < InterleaveFactor; ++
I) {
4262 Value *StridedVec = State.Builder.CreateExtractValue(NewLoad,
I);
4264 if (Member->getType() != ScalarTy) {
4282 const DataLayout &DL = Instr->getDataLayout();
4283 for (
unsigned I = 0, StoredIdx = 0;
I < InterleaveFactor;
I++) {
4291 Value *StoredVec = State.get(StoredValues[StoredIdx]);
4293 if (StoredVec->
getType() != SubVT)
4303 State.Builder.CreateIntrinsic(
Type::getVoidTy(Ctx), Intrinsic::vp_store,
4304 {IVec, ResAddr, GroupMask, InterleaveEVL});
4313#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4317 O << Indent <<
"INTERLEAVE-GROUP with factor " << IG->getFactor() <<
" at ";
4318 IG->getInsertPos()->printAsOperand(O,
false);
4329 for (
unsigned i = 0; i < IG->getFactor(); ++i) {
4330 if (!IG->getMember(i))
4333 O <<
"\n" << Indent <<
" vp.store ";
4335 O <<
" to index " << i;
4337 O <<
"\n" << Indent <<
" ";
4339 O <<
" = vp.load from index " << i;
4350 unsigned InsertPosIdx = 0;
4351 for (
unsigned Idx = 0; IG->getFactor(); ++Idx)
4352 if (
auto *Member = IG->getMember(Idx)) {
4353 if (Member == InsertPos)
4357 Type *ValTy = Ctx.Types.inferScalarType(
4362 ->getAddressSpace();
4364 unsigned InterleaveFactor = IG->getFactor();
4369 for (
unsigned IF = 0; IF < InterleaveFactor; IF++)
4370 if (IG->getMember(IF))
4375 InsertPos->
getOpcode(), WideVecTy, IG->getFactor(), Indices,
4376 IG->getAlign(), AS, Ctx.CostKind,
getMask(), NeedsMaskForGaps);
4378 if (!IG->isReverse())
4381 return Cost + IG->getNumMembers() *
4383 VectorTy, VectorTy, {}, Ctx.CostKind,
4387#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4390 O << Indent <<
"EMIT ";
4392 O <<
" = CANONICAL-INDUCTION ";
4402#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4406 "unexpected number of operands");
4407 O << Indent <<
"EMIT ";
4409 O <<
" = WIDEN-POINTER-INDUCTION ";
4425 O << Indent <<
"EMIT ";
4427 O <<
" = EXPAND SCEV " << *Expr;
4434 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
4438 : Builder.CreateVectorSplat(VF, CanonicalIV,
"broadcast");
4441 VStep = Builder.CreateVectorSplat(VF, VStep);
4443 Builder.CreateAdd(VStep, Builder.CreateStepVector(VStep->
getType()));
4445 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep,
"vec.iv");
4446 State.set(
this, CanonicalVectorIV);
4449#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4452 O << Indent <<
"EMIT ";
4454 O <<
" = WIDEN-CANONICAL-INDUCTION ";
4460 auto &Builder = State.Builder;
4464 Type *VecTy = State.VF.isScalar()
4465 ? VectorInit->getType()
4469 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4470 if (State.VF.isVector()) {
4472 auto *One = ConstantInt::get(IdxTy, 1);
4475 auto *RuntimeVF =
getRuntimeVF(Builder, IdxTy, State.VF);
4476 auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4477 VectorInit = Builder.CreateInsertElement(
4483 Phi->insertBefore(State.CFG.PrevBB->getFirstInsertionPt());
4484 Phi->addIncoming(VectorInit, VectorPH);
4485 State.set(
this, Phi);
4492 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4497#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4500 O << Indent <<
"FIRST-ORDER-RECURRENCE-PHI ";
4517 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4518 bool ScalarPHI = State.VF.isScalar() ||
isInLoop();
4519 Value *StartV = State.get(StartVPV, ScalarPHI);
4523 assert(State.CurrentParentLoop->getHeader() == HeaderBB &&
4524 "recipe must be in the vector loop header");
4529 Phi->addIncoming(StartV, VectorPH);
4532#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4535 O << Indent <<
"WIDEN-REDUCTION-PHI ";
4548 Instruction *VecPhi = State.Builder.CreatePHI(VecTy, 2, Name);
4549 State.set(
this, VecPhi);
4554 return Ctx.TTI.getCFInstrCost(Instruction::PHI, Ctx.CostKind);
4557#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4560 O << Indent <<
"WIDEN-PHI ";
4570 State.CFG.VPBB2IRBB.at(
getParent()->getCFGPredecessor(0));
4573 State.Builder.CreatePHI(StartMask->
getType(), 2,
"active.lane.mask");
4574 Phi->addIncoming(StartMask, VectorPH);
4575 State.set(
this, Phi);
4578#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4581 O << Indent <<
"ACTIVE-LANE-MASK-PHI ";
4589#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4592 O << Indent <<
"EXPLICIT-VECTOR-LENGTH-BASED-IV-PHI ";
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static MCDisassembler::DecodeStatus addOperand(MCInst &Inst, const MCOperand &Opnd)
AMDGPU Lower Kernel Arguments
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static std::pair< Value *, APInt > getMask(Value *WideMask, unsigned Factor, ElementCount LeafValueEC)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file provides a LoopVectorizationPlanner class.
static const SCEV * getAddressAccessSCEV(Value *Ptr, PredicatedScalarEvolution &PSE, const Loop *TheLoop)
Gets the address access SCEV for Ptr, if it should be used for cost modeling according to isAddressSC...
static bool isOrdered(const Instruction *I)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
This file contains the declarations of different VPlan-related auxiliary helpers.
static Instruction * createReverseEVL(IRBuilderBase &Builder, Value *Operand, Value *EVL, const Twine &Name)
Use all-true mask for reverse rather than actual mask, as it avoids a dependence w/o affecting the re...
static Value * interleaveVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vals, const Twine &Name)
Return a vector containing interleaved elements from multiple smaller input vectors.
static InstructionCost getCostForIntrinsics(Intrinsic::ID ID, ArrayRef< const VPValue * > Operands, const VPRecipeWithIRFlags &R, ElementCount VF, VPCostContext &Ctx)
Compute the cost for the intrinsic ID with Operands, produced by R.
static Value * createBitOrPointerCast(IRBuilderBase &Builder, Value *V, VectorType *DstVTy, const DataLayout &DL)
SmallVector< Value *, 2 > VectorParts
static bool isUsedByLoadStoreAddress(const VPUser *V)
Returns true if V is used as part of the address of another load or store.
static void scalarizeInstruction(const Instruction *Instr, VPReplicateRecipe *RepRecipe, const VPLane &Lane, VPTransformState &State)
A helper function to scalarize a single Instruction in the innermost loop.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
This file contains the declarations of the Vectorization Plan base classes:
static const uint32_t IV[8]
void printAsOperand(OutputBuffer &OB, Prec P=Prec::Default, bool StrictlyWorse=false) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
static LLVM_ABI StringRef getPredicateName(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantInt * getSigned(IntegerType *Ty, int64_t V, bool ImplicitTrunc=false)
Return a ConstantInt with the specified value for the specified type.
This is an important base class in LLVM.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
constexpr bool isVector() const
One or more elements.
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
constexpr bool isScalar() const
Exactly one element.
Convenience struct for specifying and reasoning about fast-math flags.
LLVM_ABI void print(raw_ostream &O) const
Print fast-math flags to O.
void setAllowContract(bool B=true)
bool noSignedZeros() const
void setAllowReciprocal(bool B=true)
bool allowReciprocal() const
void setNoSignedZeros(bool B=true)
bool allowReassoc() const
Flag queries.
void setNoNaNs(bool B=true)
void setAllowReassoc(bool B=true)
Flag setters.
void setApproxFunc(bool B=true)
void setNoInfs(bool B=true)
bool allowContract() const
Class to represent function types.
Type * getParamType(unsigned i) const
Parameter type accessors.
bool willReturn() const
Determine if the function will return.
bool doesNotThrow() const
Determine if the function cannot unwind.
Type * getReturnType() const
Returns the type of the ret val.
Common base class shared among various IRBuilders.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
IntegerType * getInt1Ty()
Fetch the type representing a single bit.
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
LLVM_ABI Value * CreateVectorSplice(Value *V1, Value *V2, int64_t Imm, const Twine &Name="")
Return a vector splice intrinsic if using scalable vectors, otherwise return a shufflevector.
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateFreeze(Value *V, const Twine &Name="")
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
LLVM_ABI Value * CreateVectorReverse(Value *V, const Twine &Name="")
Return a vector value that contains the vector V reversed.
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
LLVM_ABI CallInst * CreateOrReduce(Value *Src)
Create a vector int OR reduction intrinsic of the source vector.
Value * CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name="", Instruction *MDFrom=nullptr)
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateNot(Value *V, const Twine &Name="")
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateCountTrailingZeroElems(Type *ResTy, Value *Mask, bool ZeroIsPoison=true, const Twine &Name="")
Create a call to llvm.experimental_cttz_elts.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
LLVM_ABI CallInst * CreateIntMaxReduce(Value *Src, bool IsSigned=false)
Create a vector integer max reduction intrinsic of the source vector.
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
LLVM_ABI CallInst * CreateIntMinReduce(Value *Src, bool IsSigned=false)
Create a vector integer min reduction intrinsic of the source vector.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
const char * getOpcodeName() const
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
The group of interleaved loads/stores sharing the same stride and close to each other.
uint32_t getFactor() const
InstTy * getMember(uint32_t Index) const
Get the member with the given index Index.
InstTy * getInsertPos() const
void addMetadata(InstTy *NewInst) const
Add metadata (e.g.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
Information for memory intrinsic cost model.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
static LLVM_ABI unsigned getOpcode(RecurKind Kind)
Returns the opcode corresponding to the RecurrenceKind.
unsigned getOpcode() const
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
This class represents an analyzed expression in the program.
This class provides computation of slot numbers for LLVM Assembly writing.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isVoidTy() const
Return true if this is 'void'.
value_op_iterator value_op_end()
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
value_op_iterator value_op_begin()
void execute(VPTransformState &State) override
Generate the active lane mask phi of the vector loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
RecipeListTy & getRecipeList()
Returns a reference to the list of recipes.
void insert(VPRecipeBase *Recipe, iterator InsertPt)
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
VPValue * getIncomingValue(unsigned Idx) const
Return incoming value number Idx.
unsigned getNumIncomingValues() const
Return the number of incoming values, taking into account when normalized the first incoming value wi...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
const VPBlocksTy & getPredecessors() const
void printAsOperand(raw_ostream &OS, bool PrintType=false) const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPBranchOnMaskRecipe.
void execute(VPTransformState &State) override
Generate the extraction of the appropriate bit from the block mask and the conditional branch.
VPlan-based builder utility analogous to IRBuilder.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
This class augments a recipe with a set of VPValues defined by the recipe.
LLVM_ABI_FOR_TEST void dump() const
Dump the VPDef to stderr (for debugging).
unsigned getNumDefinedValues() const
Returns the number of values defined by the VPDef.
VPValue * getVPSingleValue()
Returns the only VPValue defined by the VPDef.
VPValue * getVPValue(unsigned I)
Returns the VPValue with index I defined by the VPDef.
ArrayRef< VPRecipeValue * > definedValues()
Returns an ArrayRef of the values defined by the VPDef.
unsigned getVPDefID() const
void execute(VPTransformState &State) override
Generate the transformed value of the induction at offset StartValue (1.
VPIRValue * getStartValue() const
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void decompose()
Insert the recipes of the expression back into the VPlan, directly before the current recipe.
bool isSingleScalar() const
Returns true if the result of this VPExpressionRecipe is a single-scalar.
bool mayHaveSideEffects() const
Returns true if this expression contains recipes that may have side effects.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
bool mayReadOrWriteMemory() const
Returns true if this expression contains recipes that may read from or write to memory.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Produce a vectorized histogram operation.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPHistogramRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getMask() const
Return the mask operand if one was provided, or a null pointer if all lanes should be executed uncond...
Class to record and manage LLVM IR flags.
ReductionFlagsTy ReductionFlags
LLVM_ABI_FOR_TEST bool flagsValidForOpcode(unsigned Opcode) const
Returns true if the set flags are valid for Opcode.
CmpInst::Predicate CmpPredicate
void printFlags(raw_ostream &O) const
bool hasFastMathFlags() const
Returns true if the recipe has fast-math flags.
LLVM_ABI_FOR_TEST FastMathFlags getFastMathFlags() const
bool isReductionOrdered() const
CmpInst::Predicate getPredicate() const
bool hasNoSignedWrap() const
void intersectFlags(const VPIRFlags &Other)
Only keep flags also present in Other.
GEPNoWrapFlags getGEPNoWrapFlags() const
bool hasPredicate() const
Returns true if the recipe has a comparison predicate.
DisjointFlagsTy DisjointFlags
bool hasNoUnsignedWrap() const
NonNegFlagsTy NonNegFlags
bool isReductionInLoop() const
void applyFlags(Instruction &I) const
Apply the IR flags to I.
RecurKind getRecurKind() const
Instruction & getInstruction() const
void extractLastLaneOfLastPartOfFirstOperand(VPBuilder &Builder)
Update the recipe's first operand to the last lane of the last part of the operand using Builder.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPIRInstruction.
VPIRInstruction(Instruction &I)
VPIRInstruction::create() should be used to create VPIRInstructions, as subclasses may need to be cre...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the instruction.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPInstruction.
static unsigned getNumOperandsForOpcode(unsigned Opcode)
Return the number of operands determined by the opcode of the VPInstruction.
bool doesGeneratePerAllLanes() const
Returns true if this VPInstruction generates scalar values for all lanes.
@ ExtractLastActive
Extracts the lane from the first operand corresponding to the last active (non-zero) lane in the mask...
@ ExtractLane
Extracts a single lane (first operand) from a set of vector operands.
@ ComputeAnyOfResult
Compute the final result of a AnyOf reduction with select(cmp(),x,y), where one of (x,...
@ WideIVStep
Scale the first operand (vector step) by the second operand (scalar-step).
@ ExtractPenultimateElement
@ ResumeForEpilogue
Explicit user for the resume phi of the canonical induction in the main VPlan, used by the epilogue v...
@ Unpack
Extracts all lanes from its (non-scalable) vector operand.
@ FirstOrderRecurrenceSplice
@ ReductionStartVector
Start vector for reductions with 3 operands: the original start value, the identity value for the red...
@ BuildVector
Creates a fixed-width vector containing all operands.
@ BuildStructVector
Given operands of (the same) struct type, creates a struct of fixed- width vectors each containing a ...
@ VScale
Returns the value for vscale.
@ CanonicalIVIncrementForPart
@ CalculateTripCountMinusVF
bool opcodeMayReadOrWriteFromMemory() const
Returns true if the underlying opcode may read from or write to memory.
LLVM_DUMP_METHOD void dump() const
Print the VPInstruction to dbgs() (for debugging).
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the VPInstruction to O.
StringRef getName() const
Returns the symbolic name assigned to the VPInstruction.
unsigned getOpcode() const
VPInstruction(unsigned Opcode, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags={}, const VPIRMetadata &MD={}, DebugLoc DL=DebugLoc::getUnknown(), const Twine &Name="")
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
bool isVectorToScalar() const
Returns true if this VPInstruction produces a scalar value from a vector, e.g.
bool isSingleScalar() const
Returns true if this VPInstruction's operands are single scalars and the result is also a single scal...
void execute(VPTransformState &State) override
Generate the instruction.
bool usesFirstPartOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first part of operand Op.
bool needsMaskForGaps() const
Return true if the access needs a mask because of the gaps.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this recipe.
Instruction * getInsertPos() const
const InterleaveGroup< Instruction > * getInterleaveGroup() const
VPValue * getMask() const
Return the mask used by this recipe.
ArrayRef< VPValue * > getStoredValues() const
Return the VPValues stored by this interleave group.
VPValue * getAddr() const
Return the address accessed by this recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getNumStoreOperands() const override
Returns the number of stored operands of this interleave group.
void execute(VPTransformState &State) override
Generate the wide load or store, and shuffles.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
static VPLane getLastLaneForVF(const ElementCount &VF)
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset)
static VPLane getFirstLane()
virtual const VPRecipeBase * getAsRecipe() const =0
Return a VPRecipeBase* to the current object.
virtual unsigned getNumIncoming() const
Returns the number of incoming values, also number of incoming blocks.
void removeIncomingValueFor(VPBlockBase *IncomingBlock) const
Removes the incoming value for IncomingBlock, which must be a predecessor.
const VPBasicBlock * getIncomingBlock(unsigned Idx) const
Returns the incoming block with index Idx.
detail::zippy< llvm::detail::zip_first, VPUser::const_operand_range, const_incoming_blocks_range > incoming_values_and_blocks() const
Returns an iterator range over pairs of incoming values and corresponding incoming blocks.
VPValue * getIncomingValue(unsigned Idx) const
Returns the incoming VPValue with index Idx.
void printPhiOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the recipe.
void execute(VPTransformState &State) override
Generates phi nodes for live-outs (from a replicate region) as needed to retain SSA form.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
bool mayReadFromMemory() const
Returns true if the recipe may read from memory.
bool mayHaveSideEffects() const
Returns true if the recipe may have side-effects.
virtual void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPRecipe prints itself, without printing common information, like debug info or metadat...
VPRegionBlock * getRegion()
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override final
Print the recipe, delegating to printRecipe().
bool isPhi() const
Returns true for PHI-like recipes.
bool mayWriteToMemory() const
Returns true if the recipe may write to memory.
virtual InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const
Compute the cost of this recipe either using a recipe's specialized implementation or using the legac...
VPBasicBlock * getParent()
DebugLoc getDebugLoc() const
Returns the debug location of the recipe.
void moveBefore(VPBasicBlock &BB, iplist< VPRecipeBase >::iterator I)
Unlink this recipe and insert into BB before I.
void insertBefore(VPRecipeBase *InsertPos)
Insert an unlinked recipe into a basic block immediately before the specified recipe.
void insertAfter(VPRecipeBase *InsertPos)
Insert an unlinked Recipe into a basic block immediately after the specified Recipe.
iplist< VPRecipeBase >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this recipe, taking into account if the cost computation should be skipped and the...
bool isScalarCast() const
Return true if the recipe is a scalar cast.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
void moveAfter(VPRecipeBase *MovePos)
Unlink this recipe from its current VPBasicBlock and insert it into the VPBasicBlock that MovePos liv...
VPRecipeBase(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
void execute(VPTransformState &State) override
Generate the reduction in the loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getEVL() const
The VPValue of the explicit vector length.
unsigned getVFScaleFactor() const
Get the factor that the VF of this recipe's output should be scaled by, or 1 if it isn't scaled.
bool isInLoop() const
Returns true if the phi is part of an in-loop reduction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool isConditional() const
Return true if the in-loop reduction is conditional.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of VPReductionRecipe.
VPValue * getVecOp() const
The VPValue of the vector value to be reduced.
VPValue * getCondOp() const
The VPValue of the condition for the block.
RecurKind getRecurrenceKind() const
Return the recurrence kind for the in-loop reduction.
bool isPartialReduction() const
Returns true if the reduction outputs a vector with a scaled down VF.
VPValue * getChainOp() const
The VPValue of the scalar Chain being accumulated.
bool isInLoop() const
Returns true if the reduction is in-loop.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the reduction in the loop.
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
VPReplicateRecipe replicates a given instruction producing multiple scalar copies of the original sca...
void execute(VPTransformState &State) override
Generate replicas of the desired Ingredient.
bool isSingleScalar() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPReplicateRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
unsigned getOpcode() const
bool shouldPack() const
Returns true if the recipe is used by a widened recipe via an intervening VPPredInstPHIRecipe.
VPValue * getStepValue() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the scalarized versions of the phi node as needed by their users.
VPSingleDef is a base class for recipes for modeling a sequence of one or more output IR that define ...
Instruction * getUnderlyingInstr()
Returns the underlying instruction.
LLVM_ABI_FOR_TEST LLVM_DUMP_METHOD void dump() const
Print this VPSingleDefRecipe to dbgs() (for debugging).
VPSingleDefRecipe(const unsigned char SC, ArrayRef< VPValue * > Operands, DebugLoc DL=DebugLoc::getUnknown())
This class can be used to assign names to VPValues.
Type * inferScalarType(const VPValue *V)
Infer the type of V. Returns the scalar type of V.
Helper to access the operand that contains the unroll part for this recipe after unrolling.
VPValue * getUnrollPartOperand(const VPUser &U) const
Return the VPValue operand containing the unroll part or null if there is no such operand.
unsigned getUnrollPart(const VPUser &U) const
Return the unroll part.
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
void setOperand(unsigned I, VPValue *New)
unsigned getNumOperands() const
operand_iterator op_begin()
VPValue * getOperand(unsigned N) const
virtual bool usesFirstLaneOnly(const VPValue *Op) const
Returns true if the VPUser only uses the first lane of operand Op.
This is the base class of the VPlan Def/Use graph, used for modeling the data flow into,...
Value * getLiveInIRValue() const
Return the underlying IR value for a VPIRValue.
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Value * getUnderlyingValue() const
Return the underlying Value attached to this VPValue.
void replaceAllUsesWith(VPValue *New)
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
Function * getCalledScalarFunction() const
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCallRecipe.
void execute(VPTransformState &State) override
Produce a widened version of the call instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a canonical vector induction variable of the vector loop, with start = {<Part*VF,...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Type * getResultType() const
Returns the result type of the cast.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce widened copies of the cast.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenCastRecipe.
void execute(VPTransformState &State) override
Generate the gep nodes.
Type * getSourceElementType() const
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the recipe only uses the first lane of operand Op.
VPIRValue * getStartValue() const
Returns the start value of the induction.
VPValue * getStepValue()
Returns the step value of the induction.
VPIRValue * getStartValue() const
Returns the start value of the induction.
TruncInst * getTruncInst()
Returns the first defined value as TruncInst, if it is one or nullptr otherwise.
Type * getScalarType() const
Returns the scalar type of the induction.
bool isCanonical() const
Returns true if the induction is canonical, i.e.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
Intrinsic::ID getVectorIntrinsicID() const
Return the ID of the intrinsic.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
StringRef getIntrinsicName() const
Return to name of the intrinsic as string.
LLVM_ABI_FOR_TEST bool usesFirstLaneOnly(const VPValue *Op) const override
Returns true if the VPUser only uses the first lane of operand Op.
Type * getResultType() const
Return the scalar return type of the intrinsic.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Produce a widened version of the vector intrinsic.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this vector intrinsic.
bool IsMasked
Whether the memory access is masked.
bool Reverse
Whether the consecutive accessed addresses are in reverse order.
bool isConsecutive() const
Return whether the loaded-from / stored-to addresses are consecutive.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenMemoryRecipe.
bool Consecutive
Whether the accessed addresses are consecutive.
VPValue * getMask() const
Return the mask used by this recipe.
Align Alignment
Alignment information for this memory access.
VPValue * getAddr() const
Return the address accessed by this recipe.
bool isReverse() const
Return whether the consecutive loaded/stored addresses are in reverse order.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenPHIRecipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate the phi/select nodes.
bool onlyScalarsGenerated(bool IsScalable)
Returns true if only scalar values will be generated.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenRecipe.
void execute(VPTransformState &State) override
Produce a widened instruction using the opcode and operands of the recipe, processing State....
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVMContext & getContext() const
All values hold a context through their type.
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
const ParentTy * getParent() const
self_iterator getIterator()
typename base_list_type::iterator iterator
iterator erase(iterator where)
pointer remove(iterator &IT)
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Intrinsic::ID getDeinterleaveIntrinsicID(unsigned Factor)
Returns the corresponding llvm.vector.deinterleaveN intrinsic for factor N.
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
bool match(Val *V, const Pattern &P)
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
specific_intval< 1 > m_False()
specific_intval< 1 > m_True()
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::Reverse, Op0_t > m_Reverse(const Op0_t &Op0)
NodeAddr< DefNode * > Def
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
bool isAddressSCEVForCost(const SCEV *Addr, ScalarEvolution &SE, const Loop *L)
Returns true if Addr is an address SCEV that can be passed to TTI::getAddressComputationCost,...
bool onlyFirstPartUsed(const VPValue *Def)
Returns true if only the first part of Def is used.
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
bool onlyScalarValuesUsed(const VPValue *Def)
Returns true if only scalar values of Def are used by all users.
const SCEV * getSCEVExprForVPValue(const VPValue *V, PredicatedScalarEvolution &PSE, const Loop *L=nullptr)
Return the SCEV expression for V.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
auto cast_if_present(const Y &Val)
cast_if_present<X> - Functionally identical to cast, except that a null value is accepted.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
auto cast_or_null(const Y &Val)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
Align getLoadStoreAlignment(const Value *I)
A helper function that returns the alignment of load or store instruction.
bool isa_and_nonnull(const Y &Val)
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
auto dyn_cast_or_null(const Y &Val)
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, const InterleaveGroup< Instruction > &Group)
Create a mask that filters the members of an interleave group where there are gaps.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
auto reverse(ContainerTy &&C)
LLVM_ABI llvm::SmallVector< int, 16 > createReplicatedMask(unsigned ReplicationFactor, unsigned VF)
Create a mask with replicated elements.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
LLVM_ABI bool isVectorIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FMinimumNum
FP min with llvm.minimumnum semantics.
@ FMinimum
FP min with llvm.minimum semantics.
@ FMaxNum
FP max with llvm.maxnum semantics including NaNs.
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ FMaximum
FP max with llvm.maximum semantics.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMinNum
FP min with llvm.minnum semantics including NaNs.
@ Sub
Subtraction of integers.
@ FMaximumNum
FP max with llvm.maximumnum semantics.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
DWARFExpression::Operation Op
Value * createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, int64_t Step)
Return a value for Step multiplied by VF.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Value * emitTransformedIndex(IRBuilderBase &B, Value *Index, Value *StartValue, Value *Step, InductionDescriptor::InductionKind InductionKind, const BinaryOperator *InductionBinOp)
Compute the transformed value of Index at offset StartValue using step StepValue.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
ArrayRef< Type * > getContainedTypes(Type *const &Ty)
Returns the types contained in Ty.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI bool isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Struct to hold various analysis needed for cost computations.
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
TargetTransformInfo::TargetCostKind CostKind
const TargetTransformInfo & TTI
void execute(VPTransformState &State) override
Generate the phi nodes.
InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this first-order recurrence phi recipe.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
An overlay for VPIRInstructions wrapping PHI nodes enabling convenient use cast/dyn_cast/isa and exec...
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
The method which generates the output IR instructions that correspond to this VPRecipe,...
void execute(VPTransformState &State) override
Generate the instruction.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
A pure-virtual common base class for recipes defining a single VPValue and using IR flags.
InstructionCost getCostForRecipeWithOpcode(unsigned Opcode, ElementCount VF, VPCostContext &Ctx) const
Compute the cost for this recipe for VF, using Opcode and Ctx.
VPRecipeWithIRFlags(const unsigned char SC, ArrayRef< VPValue * > Operands, const VPIRFlags &Flags, DebugLoc DL=DebugLoc::getUnknown())
A symbolic live-in VPValue, used for values like vector trip count, VF, and VFxUF.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide load or gather.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenLoadEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
void execute(VPTransformState &State) override
Generate a wide load or gather.
VPValue * getStoredValue() const
Return the address accessed by this recipe.
LLVM_ABI_FOR_TEST void execute(VPTransformState &State) override
Generate the wide store or scatter.
LLVM_ABI_FOR_TEST void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
LLVM_ABI_FOR_TEST InstructionCost computeCost(ElementCount VF, VPCostContext &Ctx) const override
Return the cost of this VPWidenStoreEVLRecipe.
VPValue * getEVL() const
Return the EVL operand.
void execute(VPTransformState &State) override
Generate a wide store or scatter.
void printRecipe(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print the recipe.
VPValue * getStoredValue() const
Return the value stored by this recipe.