LLVM 22.0.0git
LoopVectorizationLegality.cpp
Go to the documentation of this file.
1//===- LoopVectorizationLegality.cpp --------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides loop vectorization legality analysis. Original code
10// resided in LoopVectorize.cpp for a long time.
11//
12// At this point, it is implemented as a utility class, not as an analysis
13// pass. It should be easy to create an analysis pass around it if there
14// is a need (but D45420 needs to happen first).
15//
16
19#include "llvm/Analysis/Loads.h"
32
33using namespace llvm;
34using namespace PatternMatch;
35
36#define LV_NAME "loop-vectorize"
37#define DEBUG_TYPE LV_NAME
38
39static cl::opt<bool>
40 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
41 cl::desc("Enable if-conversion during vectorization."));
42
43static cl::opt<bool>
44AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
45 cl::desc("Enable recognition of non-constant strided "
46 "pointer induction variables."));
47
48static cl::opt<bool>
49 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
50 cl::desc("Allow enabling loop hints to reorder "
51 "FP operations during vectorization."));
52
53// TODO: Move size-based thresholds out of legality checking, make cost based
54// decisions instead of hard thresholds.
56 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
57 cl::desc("The maximum number of SCEV checks allowed."));
58
60 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
61 cl::desc("The maximum number of SCEV checks allowed with a "
62 "vectorize(enable) pragma"));
63
66 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
68 cl::desc("Control whether the compiler can use scalable vectors to "
69 "vectorize a loop"),
72 "Scalable vectorization is disabled."),
75 "Scalable vectorization is available and favored when the "
76 "cost is inconclusive."),
79 "Scalable vectorization is available and favored when the "
80 "cost is inconclusive.")));
81
83 "enable-histogram-loop-vectorization", cl::init(false), cl::Hidden,
84 cl::desc("Enables autovectorization of some loops containing histograms"));
85
86/// Maximum vectorization interleave count.
87static const unsigned MaxInterleaveFactor = 16;
88
89namespace llvm {
90
91bool LoopVectorizeHints::Hint::validate(unsigned Val) {
92 switch (Kind) {
93 case HK_WIDTH:
95 case HK_INTERLEAVE:
96 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
97 case HK_FORCE:
98 return (Val <= 1);
99 case HK_ISVECTORIZED:
100 case HK_PREDICATE:
101 case HK_SCALABLE:
102 return (Val == 0 || Val == 1);
103 }
104 return false;
105}
106
108 bool InterleaveOnlyWhenForced,
111 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
112 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
113 Force("vectorize.enable", FK_Undefined, HK_FORCE),
114 IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
115 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
116 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
117 TheLoop(L), ORE(ORE) {
118 // Populate values with existing loop metadata.
119 getHintsFromMetadata();
120
121 // force-vector-interleave overrides DisableInterleaving.
124
125 // If the metadata doesn't explicitly specify whether to enable scalable
126 // vectorization, then decide based on the following criteria (increasing
127 // level of priority):
128 // - Target default
129 // - Metadata width
130 // - Force option (always overrides)
132 if (TTI)
133 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
135
136 if (Width.Value)
137 // If the width is set, but the metadata says nothing about the scalable
138 // property, then assume it concerns only a fixed-width UserVF.
139 // If width is not set, the flag takes precedence.
140 Scalable.Value = SK_FixedWidthOnly;
141 }
142
143 // If the flag is set to force any use of scalable vectors, override the loop
144 // hints.
145 if (ForceScalableVectorization.getValue() !=
147 Scalable.Value = ForceScalableVectorization.getValue();
148
149 // Scalable vectorization is disabled if no preference is specified.
151 Scalable.Value = SK_FixedWidthOnly;
152
153 if (IsVectorized.Value != 1)
154 // If the vectorization width and interleaving count are both 1 then
155 // consider the loop to have been already vectorized because there's
156 // nothing more that we can do.
157 IsVectorized.Value =
159 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
160 << "LV: Interleaving disabled by the pass manager\n");
161}
162
164 LLVMContext &Context = TheLoop->getHeader()->getContext();
165
166 MDNode *IsVectorizedMD = MDNode::get(
167 Context,
168 {MDString::get(Context, "llvm.loop.isvectorized"),
169 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
170 MDNode *LoopID = TheLoop->getLoopID();
171 MDNode *NewLoopID =
172 makePostTransformationMetadata(Context, LoopID,
173 {Twine(Prefix(), "vectorize.").str(),
174 Twine(Prefix(), "interleave.").str()},
175 {IsVectorizedMD});
176 TheLoop->setLoopID(NewLoopID);
177
178 // Update internal cache.
179 IsVectorized.Value = 1;
180}
181
183 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
185 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
187 return false;
188 }
189
190 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
191 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
193 return false;
194 }
195
196 if (getIsVectorized() == 1) {
197 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
198 // FIXME: Add interleave.disable metadata. This will allow
199 // vectorize.disable to be used without disabling the pass and errors
200 // to differentiate between disabled vectorization and a width of 1.
201 ORE.emit([&]() {
203 "AllDisabled", L->getStartLoc(),
204 L->getHeader())
205 << "loop not vectorized: vectorization and interleaving are "
206 "explicitly disabled, or the loop has already been "
207 "vectorized";
208 });
209 return false;
210 }
211
212 return true;
213}
214
216 using namespace ore;
217
218 ORE.emit([&]() {
219 if (Force.Value == LoopVectorizeHints::FK_Disabled)
220 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
221 TheLoop->getStartLoc(),
222 TheLoop->getHeader())
223 << "loop not vectorized: vectorization is explicitly disabled";
224
225 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(),
226 TheLoop->getHeader());
227 R << "loop not vectorized";
228 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
229 R << " (Force=" << NV("Force", true);
230 if (Width.Value != 0)
231 R << ", Vector Width=" << NV("VectorWidth", getWidth());
232 if (getInterleave() != 0)
233 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
234 R << ")";
235 }
236 return R;
237 });
238}
239
249
251 // Allow the vectorizer to change the order of operations if enabling
252 // loop hints are provided
253 ElementCount EC = getWidth();
254 return HintsAllowReordering &&
256 EC.getKnownMinValue() > 1);
257}
258
259void LoopVectorizeHints::getHintsFromMetadata() {
260 MDNode *LoopID = TheLoop->getLoopID();
261 if (!LoopID)
262 return;
263
264 // First operand should refer to the loop id itself.
265 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
266 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
267
268 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
269 const MDString *S = nullptr;
271
272 // The expected hint is either a MDString or a MDNode with the first
273 // operand a MDString.
274 if (const MDNode *MD = dyn_cast<MDNode>(MDO)) {
275 if (!MD || MD->getNumOperands() == 0)
276 continue;
277 S = dyn_cast<MDString>(MD->getOperand(0));
278 for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx)
279 Args.push_back(MD->getOperand(Idx));
280 } else {
281 S = dyn_cast<MDString>(MDO);
282 assert(Args.size() == 0 && "too many arguments for MDString");
283 }
284
285 if (!S)
286 continue;
287
288 // Check if the hint starts with the loop metadata prefix.
289 StringRef Name = S->getString();
290 if (Args.size() == 1)
291 setHint(Name, Args[0]);
292 }
293}
294
295void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
296 if (!Name.consume_front(Prefix()))
297 return;
298
299 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
300 if (!C)
301 return;
302 unsigned Val = C->getZExtValue();
303
304 Hint *Hints[] = {&Width, &Interleave, &Force,
305 &IsVectorized, &Predicate, &Scalable};
306 for (auto *H : Hints) {
307 if (Name == H->Name) {
308 if (H->validate(Val))
309 H->Value = Val;
310 else
311 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
312 break;
313 }
314 }
315}
316
317// Return true if the inner loop \p Lp is uniform with regard to the outer loop
318// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
319// executing the inner loop will execute the same iterations). This check is
320// very constrained for now but it will be relaxed in the future. \p Lp is
321// considered uniform if it meets all the following conditions:
322// 1) it has a canonical IV (starting from 0 and with stride 1),
323// 2) its latch terminator is a conditional branch and,
324// 3) its latch condition is a compare instruction whose operands are the
325// canonical IV and an OuterLp invariant.
326// This check doesn't take into account the uniformity of other conditions not
327// related to the loop latch because they don't affect the loop uniformity.
328//
329// NOTE: We decided to keep all these checks and its associated documentation
330// together so that we can easily have a picture of the current supported loop
331// nests. However, some of the current checks don't depend on \p OuterLp and
332// would be redundantly executed for each \p Lp if we invoked this function for
333// different candidate outer loops. This is not the case for now because we
334// don't currently have the infrastructure to evaluate multiple candidate outer
335// loops and \p OuterLp will be a fixed parameter while we only support explicit
336// outer loop vectorization. It's also very likely that these checks go away
337// before introducing the aforementioned infrastructure. However, if this is not
338// the case, we should move the \p OuterLp independent checks to a separate
339// function that is only executed once for each \p Lp.
340static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
341 assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
342
343 // If Lp is the outer loop, it's uniform by definition.
344 if (Lp == OuterLp)
345 return true;
346 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
347
348 // 1.
350 if (!IV) {
351 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
352 return false;
353 }
354
355 // 2.
356 BasicBlock *Latch = Lp->getLoopLatch();
357 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
358 if (!LatchBr || LatchBr->isUnconditional()) {
359 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
360 return false;
361 }
362
363 // 3.
364 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
365 if (!LatchCmp) {
367 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
368 return false;
369 }
370
371 Value *CondOp0 = LatchCmp->getOperand(0);
372 Value *CondOp1 = LatchCmp->getOperand(1);
373 Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
374 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
375 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
376 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
377 return false;
378 }
379
380 return true;
381}
382
383// Return true if \p Lp and all its nested loops are uniform with regard to \p
384// OuterLp.
385static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
386 if (!isUniformLoop(Lp, OuterLp))
387 return false;
388
389 // Check if nested loops are uniform.
390 for (Loop *SubLp : *Lp)
391 if (!isUniformLoopNest(SubLp, OuterLp))
392 return false;
393
394 return true;
395}
396
398 assert(Ty->isIntOrPtrTy() && "Expected integer or pointer type");
399
400 if (Ty->isPointerTy())
401 return DL.getIntPtrType(Ty->getContext(), Ty->getPointerAddressSpace());
402
403 // It is possible that char's or short's overflow when we ask for the loop's
404 // trip count, work around this by changing the type size.
405 if (Ty->getScalarSizeInBits() < 32)
406 return Type::getInt32Ty(Ty->getContext());
407
408 return cast<IntegerType>(Ty);
409}
410
412 Type *Ty1) {
415 return TyA->getScalarSizeInBits() > TyB->getScalarSizeInBits() ? TyA : TyB;
416}
417
418/// Check that the instruction has outside loop users and is not an
419/// identified reduction variable.
420static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
421 SmallPtrSetImpl<Value *> &AllowedExit) {
422 // Reductions, Inductions and non-header phis are allowed to have exit users. All
423 // other instructions must not have external users.
424 if (!AllowedExit.count(Inst))
425 // Check that all of the users of the loop are inside the BB.
426 for (User *U : Inst->users()) {
428 // This user may be a reduction exit value.
429 if (!TheLoop->contains(UI)) {
430 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
431 return true;
432 }
433 }
434 return false;
435}
436
437/// Returns true if A and B have same pointer operands or same SCEVs addresses
439 StoreInst *B) {
440 // Compare store
441 if (A == B)
442 return true;
443
444 // Otherwise Compare pointers
445 Value *APtr = A->getPointerOperand();
446 Value *BPtr = B->getPointerOperand();
447 if (APtr == BPtr)
448 return true;
449
450 // Otherwise compare address SCEVs
451 return SE->getSCEV(APtr) == SE->getSCEV(BPtr);
452}
453
455 Value *Ptr) const {
456 // FIXME: Currently, the set of symbolic strides is sometimes queried before
457 // it's collected. This happens from canVectorizeWithIfConvert, when the
458 // pointer is checked to reference consecutive elements suitable for a
459 // masked access.
460 const auto &Strides =
461 LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
462
463 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, *DT, Strides,
464 AllowRuntimeSCEVChecks, false)
465 .value_or(0);
466 if (Stride == 1 || Stride == -1)
467 return Stride;
468 return 0;
469}
470
472 return LAI->isInvariant(V);
473}
474
475namespace {
476/// A rewriter to build the SCEVs for each of the VF lanes in the expected
477/// vectorized loop, which can then be compared to detect their uniformity. This
478/// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
479/// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
480/// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
481/// uniformity.
482class SCEVAddRecForUniformityRewriter
483 : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
484 /// Multiplier to be applied to the step of AddRecs in TheLoop.
485 unsigned StepMultiplier;
486
487 /// Offset to be added to the AddRecs in TheLoop.
488 unsigned Offset;
489
490 /// Loop for which to rewrite AddRecsFor.
491 Loop *TheLoop;
492
493 /// Is any sub-expressions not analyzable w.r.t. uniformity?
494 bool CannotAnalyze = false;
495
496 bool canAnalyze() const { return !CannotAnalyze; }
497
498public:
499 SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
500 unsigned Offset, Loop *TheLoop)
501 : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
502 TheLoop(TheLoop) {}
503
504 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
505 assert(Expr->getLoop() == TheLoop &&
506 "addrec outside of TheLoop must be invariant and should have been "
507 "handled earlier");
508 // Build a new AddRec by multiplying the step by StepMultiplier and
509 // incrementing the start by Offset * step.
510 Type *Ty = Expr->getType();
511 const SCEV *Step = Expr->getStepRecurrence(SE);
512 if (!SE.isLoopInvariant(Step, TheLoop)) {
513 CannotAnalyze = true;
514 return Expr;
515 }
516 const SCEV *NewStep =
517 SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
518 const SCEV *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
519 const SCEV *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
520 return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
521 }
522
523 const SCEV *visit(const SCEV *S) {
524 if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
525 return S;
527 }
528
529 const SCEV *visitUnknown(const SCEVUnknown *S) {
530 if (SE.isLoopInvariant(S, TheLoop))
531 return S;
532 // The value could vary across iterations.
533 CannotAnalyze = true;
534 return S;
535 }
536
537 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
538 // Could not analyze the expression.
539 CannotAnalyze = true;
540 return S;
541 }
542
543 static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
544 unsigned StepMultiplier, unsigned Offset,
545 Loop *TheLoop) {
546 /// Bail out if the expression does not contain an UDiv expression.
547 /// Uniform values which are not loop invariant require operations to strip
548 /// out the lowest bits. For now just look for UDivs and use it to avoid
549 /// re-writing UDIV-free expressions for other lanes to limit compile time.
550 if (!SCEVExprContains(S,
551 [](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
552 return SE.getCouldNotCompute();
553
554 SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
555 TheLoop);
556 const SCEV *Result = Rewriter.visit(S);
557
558 if (Rewriter.canAnalyze())
559 return Result;
560 return SE.getCouldNotCompute();
561 }
562};
563
564} // namespace
565
567 if (isInvariant(V))
568 return true;
569 if (VF.isScalable())
570 return false;
571 if (VF.isScalar())
572 return true;
573
574 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
575 // never considered uniform.
576 auto *SE = PSE.getSE();
577 if (!SE->isSCEVable(V->getType()))
578 return false;
579 const SCEV *S = SE->getSCEV(V);
580
581 // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
582 // lane 0 matches the expressions for all other lanes.
583 unsigned FixedVF = VF.getKnownMinValue();
584 const SCEV *FirstLaneExpr =
585 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
586 if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
587 return false;
588
589 // Make sure the expressions for lanes FixedVF-1..1 match the expression for
590 // lane 0. We check lanes in reverse order for compile-time, as frequently
591 // checking the last lane is sufficient to rule out uniformity.
592 return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
593 const SCEV *IthLaneExpr =
594 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
595 return FirstLaneExpr == IthLaneExpr;
596 });
597}
598
600 ElementCount VF) const {
602 if (!Ptr)
603 return false;
604 // Note: There's nothing inherent which prevents predicated loads and
605 // stores from being uniform. The current lowering simply doesn't handle
606 // it; in particular, the cost model distinguishes scatter/gather from
607 // scalar w/predication, and we currently rely on the scalar path.
608 return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
609}
610
611bool LoopVectorizationLegality::canVectorizeOuterLoop() {
612 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
613 // Store the result and return it at the end instead of exiting early, in case
614 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
615 bool Result = true;
616 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
617
618 for (BasicBlock *BB : TheLoop->blocks()) {
619 // Check whether the BB terminator is a BranchInst. Any other terminator is
620 // not supported yet.
621 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
622 if (!Br) {
623 reportVectorizationFailure("Unsupported basic block terminator",
624 "loop control flow is not understood by vectorizer",
625 "CFGNotUnderstood", ORE, TheLoop);
626 if (DoExtraAnalysis)
627 Result = false;
628 else
629 return false;
630 }
631
632 // Check whether the BranchInst is a supported one. Only unconditional
633 // branches, conditional branches with an outer loop invariant condition or
634 // backedges are supported.
635 // FIXME: We skip these checks when VPlan predication is enabled as we
636 // want to allow divergent branches. This whole check will be removed
637 // once VPlan predication is on by default.
638 if (Br && Br->isConditional() &&
639 !TheLoop->isLoopInvariant(Br->getCondition()) &&
640 !LI->isLoopHeader(Br->getSuccessor(0)) &&
641 !LI->isLoopHeader(Br->getSuccessor(1))) {
642 reportVectorizationFailure("Unsupported conditional branch",
643 "loop control flow is not understood by vectorizer",
644 "CFGNotUnderstood", ORE, TheLoop);
645 if (DoExtraAnalysis)
646 Result = false;
647 else
648 return false;
649 }
650 }
651
652 // Check whether inner loops are uniform. At this point, we only support
653 // simple outer loops scenarios with uniform nested loops.
654 if (!isUniformLoopNest(TheLoop /*loop nest*/,
655 TheLoop /*context outer loop*/)) {
656 reportVectorizationFailure("Outer loop contains divergent loops",
657 "loop control flow is not understood by vectorizer",
658 "CFGNotUnderstood", ORE, TheLoop);
659 if (DoExtraAnalysis)
660 Result = false;
661 else
662 return false;
663 }
664
665 // Check whether we are able to set up outer loop induction.
666 if (!setupOuterLoopInductions()) {
667 reportVectorizationFailure("Unsupported outer loop Phi(s)",
668 "UnsupportedPhi", ORE, TheLoop);
669 if (DoExtraAnalysis)
670 Result = false;
671 else
672 return false;
673 }
674
675 return Result;
676}
677
678void LoopVectorizationLegality::addInductionPhi(
679 PHINode *Phi, const InductionDescriptor &ID,
680 SmallPtrSetImpl<Value *> &AllowedExit) {
681 Inductions[Phi] = ID;
682
683 // In case this induction also comes with casts that we know we can ignore
684 // in the vectorized loop body, record them here. All casts could be recorded
685 // here for ignoring, but suffices to record only the first (as it is the
686 // only one that may bw used outside the cast sequence).
687 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
688 if (!Casts.empty())
689 InductionCastsToIgnore.insert(*Casts.begin());
690
691 Type *PhiTy = Phi->getType();
692 const DataLayout &DL = Phi->getDataLayout();
693
694 assert((PhiTy->isIntOrPtrTy() || PhiTy->isFloatingPointTy()) &&
695 "Expected int, ptr, or FP induction phi type");
696
697 // Get the widest type.
698 if (PhiTy->isIntOrPtrTy()) {
699 if (!WidestIndTy)
700 WidestIndTy = getInductionIntegerTy(DL, PhiTy);
701 else
702 WidestIndTy = getWiderInductionTy(DL, PhiTy, WidestIndTy);
703 }
704
705 // Int inductions are special because we only allow one IV.
706 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
707 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
708 isa<Constant>(ID.getStartValue()) &&
709 cast<Constant>(ID.getStartValue())->isNullValue()) {
710
711 // Use the phi node with the widest type as induction. Use the last
712 // one if there are multiple (no good reason for doing this other
713 // than it is expedient). We've checked that it begins at zero and
714 // steps by one, so this is a canonical induction variable.
715 if (!PrimaryInduction || PhiTy == WidestIndTy)
716 PrimaryInduction = Phi;
717 }
718
719 // Both the PHI node itself, and the "post-increment" value feeding
720 // back into the PHI node may have external users.
721 // We can allow those uses, except if the SCEVs we have for them rely
722 // on predicates that only hold within the loop, since allowing the exit
723 // currently means re-using this SCEV outside the loop (see PR33706 for more
724 // details).
725 if (PSE.getPredicate().isAlwaysTrue()) {
726 AllowedExit.insert(Phi);
727 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
728 }
729
730 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
731}
732
733bool LoopVectorizationLegality::setupOuterLoopInductions() {
734 BasicBlock *Header = TheLoop->getHeader();
735
736 // Returns true if a given Phi is a supported induction.
737 auto IsSupportedPhi = [&](PHINode &Phi) -> bool {
738 InductionDescriptor ID;
739 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
741 addInductionPhi(&Phi, ID, AllowedExit);
742 return true;
743 }
744 // Bail out for any Phi in the outer loop header that is not a supported
745 // induction.
747 dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n");
748 return false;
749 };
750
751 return llvm::all_of(Header->phis(), IsSupportedPhi);
752}
753
754/// Checks if a function is scalarizable according to the TLI, in
755/// the sense that it should be vectorized and then expanded in
756/// multiple scalar calls. This is represented in the
757/// TLI via mappings that do not specify a vector name, as in the
758/// following example:
759///
760/// const VecDesc VecIntrinsics[] = {
761/// {"llvm.phx.abs.i32", "", 4}
762/// };
763static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
764 const StringRef ScalarName = CI.getCalledFunction()->getName();
765 bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
766 // Check that all known VFs are not associated to a vector
767 // function, i.e. the vector name is emty.
768 if (Scalarize) {
769 ElementCount WidestFixedVF, WidestScalableVF;
770 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
772 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
773 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
775 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
776 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
777 assert((WidestScalableVF.isZero() || !Scalarize) &&
778 "Caller may decide to scalarize a variant using a scalable VF");
779 }
780 return Scalarize;
781}
782
783/// Returns true if the call return type `Ty` can be widened by the loop
784/// vectorizer.
785static bool canWidenCallReturnType(Type *Ty) {
786 auto *StructTy = dyn_cast<StructType>(Ty);
787 // TODO: Remove the homogeneous types restriction. This is just an initial
788 // simplification. When we want to support things like the overflow intrinsics
789 // we will have to lift this restriction.
790 if (StructTy && !StructTy->containsHomogeneousTypes())
791 return false;
792 return canVectorizeTy(StructTy);
793}
794
795bool LoopVectorizationLegality::canVectorizeInstrs() {
796 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
797 bool Result = true;
798
799 // For each block in the loop.
800 for (BasicBlock *BB : TheLoop->blocks()) {
801 // Scan the instructions in the block and look for hazards.
802 for (Instruction &I : *BB) {
803 Result &= canVectorizeInstr(I);
804 if (!DoExtraAnalysis && !Result)
805 return false;
806 }
807 }
808
809 if (!PrimaryInduction) {
810 if (Inductions.empty()) {
812 "Did not find one integer induction var",
813 "loop induction variable could not be identified",
814 "NoInductionVariable", ORE, TheLoop);
815 return false;
816 }
817 if (!WidestIndTy) {
819 "Did not find one integer induction var",
820 "integer loop induction variable could not be identified",
821 "NoIntegerInductionVariable", ORE, TheLoop);
822 return false;
823 }
824 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
825 }
826
827 // Now we know the widest induction type, check if our found induction
828 // is the same size. If it's not, unset it here and InnerLoopVectorizer
829 // will create another.
830 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
831 PrimaryInduction = nullptr;
832
833 return Result;
834}
835
836bool LoopVectorizationLegality::canVectorizeInstr(Instruction &I) {
837 BasicBlock *BB = I.getParent();
838 BasicBlock *Header = TheLoop->getHeader();
839
840 if (auto *Phi = dyn_cast<PHINode>(&I)) {
841 Type *PhiTy = Phi->getType();
842 // Check that this PHI type is allowed.
843 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
844 !PhiTy->isPointerTy()) {
846 "Found a non-int non-pointer PHI",
847 "loop control flow is not understood by vectorizer",
848 "CFGNotUnderstood", ORE, TheLoop);
849 return false;
850 }
851
852 // If this PHINode is not in the header block, then we know that we
853 // can convert it to select during if-conversion. No need to check if
854 // the PHIs in this block are induction or reduction variables.
855 if (BB != Header) {
856 // Non-header phi nodes that have outside uses can be vectorized. Add
857 // them to the list of allowed exits.
858 // Unsafe cyclic dependencies with header phis are identified during
859 // legalization for reduction, induction and fixed order
860 // recurrences.
861 AllowedExit.insert(&I);
862 return true;
863 }
864
865 // We only allow if-converted PHIs with exactly two incoming values.
866 if (Phi->getNumIncomingValues() != 2) {
868 "Found an invalid PHI",
869 "loop control flow is not understood by vectorizer",
870 "CFGNotUnderstood", ORE, TheLoop, Phi);
871 return false;
872 }
873
874 RecurrenceDescriptor RedDes;
875 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, DT,
876 PSE.getSE())) {
877 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
878 AllowedExit.insert(RedDes.getLoopExitInstr());
879 Reductions[Phi] = RedDes;
880 return true;
881 }
882
883 // We prevent matching non-constant strided pointer IVS to preserve
884 // historical vectorizer behavior after a generalization of the
885 // IVDescriptor code. The intent is to remove this check, but we
886 // have to fix issues around code quality for such loops first.
887 auto IsDisallowedStridedPointerInduction =
888 [](const InductionDescriptor &ID) {
890 return false;
891 return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
892 ID.getConstIntStepValue() == nullptr;
893 };
894
895 // TODO: Instead of recording the AllowedExit, it would be good to
896 // record the complementary set: NotAllowedExit. These include (but may
897 // not be limited to):
898 // 1. Reduction phis as they represent the one-before-last value, which
899 // is not available when vectorized
900 // 2. Induction phis and increment when SCEV predicates cannot be used
901 // outside the loop - see addInductionPhi
902 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
903 // outside the loop - see call to hasOutsideLoopUser in the non-phi
904 // handling below
905 // 4. FixedOrderRecurrence phis that can possibly be handled by
906 // extraction.
907 // By recording these, we can then reason about ways to vectorize each
908 // of these NotAllowedExit.
909 InductionDescriptor ID;
910 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
911 !IsDisallowedStridedPointerInduction(ID)) {
912 addInductionPhi(Phi, ID, AllowedExit);
913 Requirements->addExactFPMathInst(ID.getExactFPMathInst());
914 return true;
915 }
916
917 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
918 AllowedExit.insert(Phi);
919 FixedOrderRecurrences.insert(Phi);
920 return true;
921 }
922
923 // As a last resort, coerce the PHI to a AddRec expression
924 // and re-try classifying it a an induction PHI.
925 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
926 !IsDisallowedStridedPointerInduction(ID)) {
927 addInductionPhi(Phi, ID, AllowedExit);
928 return true;
929 }
930
931 reportVectorizationFailure("Found an unidentified PHI",
932 "value that could not be identified as "
933 "reduction is used outside the loop",
934 "NonReductionValueUsedOutsideLoop", ORE, TheLoop,
935 Phi);
936 return false;
937 } // end of PHI handling
938
939 // We handle calls that:
940 // * Have a mapping to an IR intrinsic.
941 // * Have a vector version available.
942 auto *CI = dyn_cast<CallInst>(&I);
943
944 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
945 !(CI->getCalledFunction() && TLI &&
946 (!VFDatabase::getMappings(*CI).empty() || isTLIScalarize(*TLI, *CI)))) {
947 // If the call is a recognized math libary call, it is likely that
948 // we can vectorize it given loosened floating-point constraints.
949 LibFunc Func;
950 bool IsMathLibCall =
951 TLI && CI->getCalledFunction() && CI->getType()->isFloatingPointTy() &&
952 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
953 TLI->hasOptimizedCodeGen(Func);
954
955 if (IsMathLibCall) {
956 // TODO: Ideally, we should not use clang-specific language here,
957 // but it's hard to provide meaningful yet generic advice.
958 // Also, should this be guarded by allowExtraAnalysis() and/or be part
959 // of the returned info from isFunctionVectorizable()?
961 "Found a non-intrinsic callsite",
962 "library call cannot be vectorized. "
963 "Try compiling with -fno-math-errno, -ffast-math, "
964 "or similar flags",
965 "CantVectorizeLibcall", ORE, TheLoop, CI);
966 } else {
967 reportVectorizationFailure("Found a non-intrinsic callsite",
968 "call instruction cannot be vectorized",
969 "CantVectorizeLibcall", ORE, TheLoop, CI);
970 }
971 return false;
972 }
973
974 // Some intrinsics have scalar arguments and should be same in order for
975 // them to be vectorized (i.e. loop invariant).
976 if (CI) {
977 auto *SE = PSE.getSE();
978 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
979 for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx)
980 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, Idx, TTI)) {
981 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)), TheLoop)) {
983 "Found unvectorizable intrinsic",
984 "intrinsic instruction cannot be vectorized",
985 "CantVectorizeIntrinsic", ORE, TheLoop, CI);
986 return false;
987 }
988 }
989 }
990
991 // If we found a vectorized variant of a function, note that so LV can
992 // make better decisions about maximum VF.
993 if (CI && !VFDatabase::getMappings(*CI).empty())
994 VecCallVariantsFound = true;
995
996 auto CanWidenInstructionTy = [](Instruction const &Inst) {
997 Type *InstTy = Inst.getType();
998 if (!isa<StructType>(InstTy))
999 return canVectorizeTy(InstTy);
1000
1001 // For now, we only recognize struct values returned from calls where
1002 // all users are extractvalue as vectorizable. All element types of the
1003 // struct must be types that can be widened.
1004 return isa<CallInst>(Inst) && canWidenCallReturnType(InstTy) &&
1005 all_of(Inst.users(), IsaPred<ExtractValueInst>);
1006 };
1007
1008 // Check that the instruction return type is vectorizable.
1009 // We can't vectorize casts from vector type to scalar type.
1010 // Also, we can't vectorize extractelement instructions.
1011 if (!CanWidenInstructionTy(I) ||
1012 (isa<CastInst>(I) &&
1013 !VectorType::isValidElementType(I.getOperand(0)->getType())) ||
1015 reportVectorizationFailure("Found unvectorizable type",
1016 "instruction return type cannot be vectorized",
1017 "CantVectorizeInstructionReturnType", ORE,
1018 TheLoop, &I);
1019 return false;
1020 }
1021
1022 // Check that the stored type is vectorizable.
1023 if (auto *ST = dyn_cast<StoreInst>(&I)) {
1024 Type *T = ST->getValueOperand()->getType();
1026 reportVectorizationFailure("Store instruction cannot be vectorized",
1027 "CantVectorizeStore", ORE, TheLoop, ST);
1028 return false;
1029 }
1030
1031 // For nontemporal stores, check that a nontemporal vector version is
1032 // supported on the target.
1033 if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
1034 // Arbitrarily try a vector of 2 elements.
1035 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
1036 assert(VecTy && "did not find vectorized version of stored type");
1037 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
1039 "nontemporal store instruction cannot be vectorized",
1040 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
1041 return false;
1042 }
1043 }
1044
1045 } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
1046 if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
1047 // For nontemporal loads, check that a nontemporal vector version is
1048 // supported on the target (arbitrarily try a vector of 2 elements).
1049 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
1050 assert(VecTy && "did not find vectorized version of load type");
1051 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
1053 "nontemporal load instruction cannot be vectorized",
1054 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
1055 return false;
1056 }
1057 }
1058
1059 // FP instructions can allow unsafe algebra, thus vectorizable by
1060 // non-IEEE-754 compliant SIMD units.
1061 // This applies to floating-point math operations and calls, not memory
1062 // operations, shuffles, or casts, as they don't change precision or
1063 // semantics.
1064 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
1065 !I.isFast()) {
1066 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1067 Hints->setPotentiallyUnsafe();
1068 }
1069
1070 // Reduction instructions are allowed to have exit users.
1071 // All other instructions must not have external users.
1072 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
1073 // We can safely vectorize loops where instructions within the loop are
1074 // used outside the loop only if the SCEV predicates within the loop is
1075 // same as outside the loop. Allowing the exit means reusing the SCEV
1076 // outside the loop.
1077 if (PSE.getPredicate().isAlwaysTrue()) {
1078 AllowedExit.insert(&I);
1079 return true;
1080 }
1081 reportVectorizationFailure("Value cannot be used outside the loop",
1082 "ValueUsedOutsideLoop", ORE, TheLoop, &I);
1083 return false;
1084 }
1085
1086 return true;
1087}
1088
1089/// Find histogram operations that match high-level code in loops:
1090/// \code
1091/// buckets[indices[i]]+=step;
1092/// \endcode
1093///
1094/// It matches a pattern starting from \p HSt, which Stores to the 'buckets'
1095/// array the computed histogram. It uses a BinOp to sum all counts, storing
1096/// them using a loop-variant index Load from the 'indices' input array.
1097///
1098/// On successful matches it updates the STATISTIC 'HistogramsDetected',
1099/// regardless of hardware support. When there is support, it additionally
1100/// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers
1101/// used to update histogram in \p HistogramPtrs.
1102static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop,
1103 const PredicatedScalarEvolution &PSE,
1104 SmallVectorImpl<HistogramInfo> &Histograms) {
1105
1106 // Store value must come from a Binary Operation.
1107 Instruction *HPtrInstr = nullptr;
1108 BinaryOperator *HBinOp = nullptr;
1109 if (!match(HSt, m_Store(m_BinOp(HBinOp), m_Instruction(HPtrInstr))))
1110 return false;
1111
1112 // BinOp must be an Add or a Sub modifying the bucket value by a
1113 // loop invariant amount.
1114 // FIXME: We assume the loop invariant term is on the RHS.
1115 // Fine for an immediate/constant, but maybe not a generic value?
1116 Value *HIncVal = nullptr;
1117 if (!match(HBinOp, m_Add(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))) &&
1118 !match(HBinOp, m_Sub(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))))
1119 return false;
1120
1121 // Make sure the increment value is loop invariant.
1122 if (!TheLoop->isLoopInvariant(HIncVal))
1123 return false;
1124
1125 // The address to store is calculated through a GEP Instruction.
1127 if (!GEP)
1128 return false;
1129
1130 // Restrict address calculation to constant indices except for the last term.
1131 Value *HIdx = nullptr;
1132 for (Value *Index : GEP->indices()) {
1133 if (HIdx)
1134 return false;
1135 if (!isa<ConstantInt>(Index))
1136 HIdx = Index;
1137 }
1138
1139 if (!HIdx)
1140 return false;
1141
1142 // Check that the index is calculated by loading from another array. Ignore
1143 // any extensions.
1144 // FIXME: Support indices from other sources than a linear load from memory?
1145 // We're currently trying to match an operation looping over an array
1146 // of indices, but there could be additional levels of indirection
1147 // in place, or possibly some additional calculation to form the index
1148 // from the loaded data.
1149 Value *VPtrVal;
1150 if (!match(HIdx, m_ZExtOrSExtOrSelf(m_Load(m_Value(VPtrVal)))))
1151 return false;
1152
1153 // Make sure the index address varies in this loop, not an outer loop.
1154 const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(VPtrVal));
1155 if (!AR || AR->getLoop() != TheLoop)
1156 return false;
1157
1158 // Ensure we'll have the same mask by checking that all parts of the histogram
1159 // (gather load, update, scatter store) are in the same block.
1160 LoadInst *IndexedLoad = cast<LoadInst>(HBinOp->getOperand(0));
1161 BasicBlock *LdBB = IndexedLoad->getParent();
1162 if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent())
1163 return false;
1164
1165 LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n");
1166
1167 // Store the operations that make up the histogram.
1168 Histograms.emplace_back(IndexedLoad, HBinOp, HSt);
1169 return true;
1170}
1171
1172bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() {
1173 // For now, we only support an IndirectUnsafe dependency that calculates
1174 // a histogram
1176 return false;
1177
1178 // Find a single IndirectUnsafe dependency.
1179 const MemoryDepChecker::Dependence *IUDep = nullptr;
1180 const MemoryDepChecker &DepChecker = LAI->getDepChecker();
1181 const auto *Deps = DepChecker.getDependences();
1182 // If there were too many dependences, LAA abandons recording them. We can't
1183 // proceed safely if we don't know what the dependences are.
1184 if (!Deps)
1185 return false;
1186
1187 for (const MemoryDepChecker::Dependence &Dep : *Deps) {
1188 // Ignore dependencies that are either known to be safe or can be
1189 // checked at runtime.
1192 continue;
1193
1194 // We're only interested in IndirectUnsafe dependencies here, where the
1195 // address might come from a load from memory. We also only want to handle
1196 // one such dependency, at least for now.
1197 if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep)
1198 return false;
1199
1200 IUDep = &Dep;
1201 }
1202 if (!IUDep)
1203 return false;
1204
1205 // For now only normal loads and stores are supported.
1206 LoadInst *LI = dyn_cast<LoadInst>(IUDep->getSource(DepChecker));
1207 StoreInst *SI = dyn_cast<StoreInst>(IUDep->getDestination(DepChecker));
1208
1209 if (!LI || !SI)
1210 return false;
1211
1212 LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n");
1213 return findHistogram(LI, SI, TheLoop, LAI->getPSE(), Histograms);
1214}
1215
1216bool LoopVectorizationLegality::canVectorizeMemory() {
1217 LAI = &LAIs.getInfo(*TheLoop);
1218 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
1219 if (LAR) {
1220 ORE->emit([&]() {
1221 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
1222 "loop not vectorized: ", *LAR);
1223 });
1224 }
1225
1226 if (!LAI->canVectorizeMemory()) {
1229 "Cannot vectorize unsafe dependencies in uncountable exit loop with "
1230 "side effects",
1231 "CantVectorizeUnsafeDependencyForEELoopWithSideEffects", ORE,
1232 TheLoop);
1233 return false;
1234 }
1235
1236 return canVectorizeIndirectUnsafeDependences();
1237 }
1238
1239 if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) {
1240 reportVectorizationFailure("We don't allow storing to uniform addresses",
1241 "write to a loop invariant address could not "
1242 "be vectorized",
1243 "CantVectorizeStoreToLoopInvariantAddress", ORE,
1244 TheLoop);
1245 return false;
1246 }
1247
1248 // We can vectorize stores to invariant address when final reduction value is
1249 // guaranteed to be stored at the end of the loop. Also, if decision to
1250 // vectorize loop is made, runtime checks are added so as to make sure that
1251 // invariant address won't alias with any other objects.
1252 if (!LAI->getStoresToInvariantAddresses().empty()) {
1253 // For each invariant address, check if last stored value is unconditional
1254 // and the address is not calculated inside the loop.
1255 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1257 continue;
1258
1259 if (blockNeedsPredication(SI->getParent())) {
1261 "We don't allow storing to uniform addresses",
1262 "write of conditional recurring variant value to a loop "
1263 "invariant address could not be vectorized",
1264 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1265 return false;
1266 }
1267
1268 // Invariant address should be defined outside of loop. LICM pass usually
1269 // makes sure it happens, but in rare cases it does not, we do not want
1270 // to overcomplicate vectorization to support this case.
1271 if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
1272 if (TheLoop->contains(Ptr)) {
1274 "Invariant address is calculated inside the loop",
1275 "write to a loop invariant address could not "
1276 "be vectorized",
1277 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1278 return false;
1279 }
1280 }
1281 }
1282
1283 if (LAI->hasStoreStoreDependenceInvolvingLoopInvariantAddress()) {
1284 // For each invariant address, check its last stored value is the result
1285 // of one of our reductions.
1286 //
1287 // We do not check if dependence with loads exists because that is already
1288 // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress.
1289 ScalarEvolution *SE = PSE.getSE();
1290 SmallVector<StoreInst *, 4> UnhandledStores;
1291 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1293 // Earlier stores to this address are effectively deadcode.
1294 // With opaque pointers it is possible for one pointer to be used with
1295 // different sizes of stored values:
1296 // store i32 0, ptr %x
1297 // store i8 0, ptr %x
1298 // The latest store doesn't complitely overwrite the first one in the
1299 // example. That is why we have to make sure that types of stored
1300 // values are same.
1301 // TODO: Check that bitwidth of unhandled store is smaller then the
1302 // one that overwrites it and add a test.
1303 erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
1304 return storeToSameAddress(SE, SI, I) &&
1305 I->getValueOperand()->getType() ==
1306 SI->getValueOperand()->getType();
1307 });
1308 continue;
1309 }
1310 UnhandledStores.push_back(SI);
1311 }
1312
1313 bool IsOK = UnhandledStores.empty();
1314 // TODO: we should also validate against InvariantMemSets.
1315 if (!IsOK) {
1317 "We don't allow storing to uniform addresses",
1318 "write to a loop invariant address could not "
1319 "be vectorized",
1320 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1321 return false;
1322 }
1323 }
1324 }
1325
1326 PSE.addPredicate(LAI->getPSE().getPredicate());
1327 return true;
1328}
1329
1331 bool EnableStrictReductions) {
1332
1333 // First check if there is any ExactFP math or if we allow reassociations
1334 if (!Requirements->getExactFPInst() || Hints->allowReordering())
1335 return true;
1336
1337 // If the above is false, we have ExactFPMath & do not allow reordering.
1338 // If the EnableStrictReductions flag is set, first check if we have any
1339 // Exact FP induction vars, which we cannot vectorize.
1340 if (!EnableStrictReductions ||
1341 any_of(getInductionVars(), [&](auto &Induction) -> bool {
1342 InductionDescriptor IndDesc = Induction.second;
1343 return IndDesc.getExactFPMathInst();
1344 }))
1345 return false;
1346
1347 // We can now only vectorize if all reductions with Exact FP math also
1348 // have the isOrdered flag set, which indicates that we can move the
1349 // reduction operations in-loop.
1350 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1351 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1352 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1353 }));
1354}
1355
1357 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1358 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1359 return RdxDesc.IntermediateStore == SI;
1360 });
1361}
1362
1364 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1365 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1366 if (!RdxDesc.IntermediateStore)
1367 return false;
1368
1369 ScalarEvolution *SE = PSE.getSE();
1370 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1371 return V == InvariantAddress ||
1372 SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1373 });
1374}
1375
1377 Value *In0 = const_cast<Value *>(V);
1379 if (!PN)
1380 return false;
1381
1382 return Inductions.count(PN);
1383}
1384
1385const InductionDescriptor *
1387 if (!isInductionPhi(Phi))
1388 return nullptr;
1389 auto &ID = getInductionVars().find(Phi)->second;
1390 if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1392 return &ID;
1393 return nullptr;
1394}
1395
1396const InductionDescriptor *
1398 if (!isInductionPhi(Phi))
1399 return nullptr;
1400 auto &ID = getInductionVars().find(Phi)->second;
1402 return &ID;
1403 return nullptr;
1404}
1405
1407 const Value *V) const {
1408 auto *Inst = dyn_cast<Instruction>(V);
1409 return (Inst && InductionCastsToIgnore.count(Inst));
1410}
1411
1415
1417 const PHINode *Phi) const {
1418 return FixedOrderRecurrences.count(Phi);
1419}
1420
1422 // When vectorizing early exits, create predicates for the latch block only.
1423 // The early exiting block must be a direct predecessor of the latch at the
1424 // moment.
1425 BasicBlock *Latch = TheLoop->getLoopLatch();
1427 assert(
1429 "Uncountable exiting block must be a direct predecessor of latch");
1430 return BB == Latch;
1431 }
1432 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1433}
1434
1435bool LoopVectorizationLegality::blockCanBePredicated(
1436 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1437 SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
1438 for (Instruction &I : *BB) {
1439 // We can predicate blocks with calls to assume, as long as we drop them in
1440 // case we flatten the CFG via predication.
1442 MaskedOp.insert(&I);
1443 continue;
1444 }
1445
1446 // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1447 // TODO: there might be cases that it should block the vectorization. Let's
1448 // ignore those for now.
1450 continue;
1451
1452 // We can allow masked calls if there's at least one vector variant, even
1453 // if we end up scalarizing due to the cost model calculations.
1454 // TODO: Allow other calls if they have appropriate attributes... readonly
1455 // and argmemonly?
1456 if (CallInst *CI = dyn_cast<CallInst>(&I))
1458 MaskedOp.insert(CI);
1459 continue;
1460 }
1461
1462 // Loads are handled via masking (or speculated if safe to do so.)
1463 if (auto *LI = dyn_cast<LoadInst>(&I)) {
1464 if (!SafePtrs.count(LI->getPointerOperand()))
1465 MaskedOp.insert(LI);
1466 continue;
1467 }
1468
1469 // Predicated store requires some form of masking:
1470 // 1) masked store HW instruction,
1471 // 2) emulation via load-blend-store (only if safe and legal to do so,
1472 // be aware on the race conditions), or
1473 // 3) element-by-element predicate check and scalar store.
1474 if (auto *SI = dyn_cast<StoreInst>(&I)) {
1475 MaskedOp.insert(SI);
1476 continue;
1477 }
1478
1479 if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1480 return false;
1481 }
1482
1483 return true;
1484}
1485
1486bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1487 if (!EnableIfConversion) {
1488 reportVectorizationFailure("If-conversion is disabled",
1489 "IfConversionDisabled", ORE, TheLoop);
1490 return false;
1491 }
1492
1493 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1494
1495 // A list of pointers which are known to be dereferenceable within scope of
1496 // the loop body for each iteration of the loop which executes. That is,
1497 // the memory pointed to can be dereferenced (with the access size implied by
1498 // the value's type) unconditionally within the loop header without
1499 // introducing a new fault.
1500 SmallPtrSet<Value *, 8> SafePointers;
1501
1502 // Collect safe addresses.
1503 for (BasicBlock *BB : TheLoop->blocks()) {
1504 if (!blockNeedsPredication(BB)) {
1505 for (Instruction &I : *BB)
1506 if (auto *Ptr = getLoadStorePointerOperand(&I))
1507 SafePointers.insert(Ptr);
1508 continue;
1509 }
1510
1511 // For a block which requires predication, a address may be safe to access
1512 // in the loop w/o predication if we can prove dereferenceability facts
1513 // sufficient to ensure it'll never fault within the loop. For the moment,
1514 // we restrict this to loads; stores are more complicated due to
1515 // concurrency restrictions.
1516 ScalarEvolution &SE = *PSE.getSE();
1518 for (Instruction &I : *BB) {
1519 LoadInst *LI = dyn_cast<LoadInst>(&I);
1520
1521 // Make sure we can execute all computations feeding into Ptr in the loop
1522 // w/o triggering UB and that none of the out-of-loop operands are poison.
1523 // We do not need to check if operations inside the loop can produce
1524 // poison due to flags (e.g. due to an inbounds GEP going out of bounds),
1525 // because flags will be dropped when executing them unconditionally.
1526 // TODO: Results could be improved by considering poison-propagation
1527 // properties of visited ops.
1528 auto CanSpeculatePointerOp = [this](Value *Ptr) {
1529 SmallVector<Value *> Worklist = {Ptr};
1530 SmallPtrSet<Value *, 4> Visited;
1531 while (!Worklist.empty()) {
1532 Value *CurrV = Worklist.pop_back_val();
1533 if (!Visited.insert(CurrV).second)
1534 continue;
1535
1536 auto *CurrI = dyn_cast<Instruction>(CurrV);
1537 if (!CurrI || !TheLoop->contains(CurrI)) {
1538 // If operands from outside the loop may be poison then Ptr may also
1539 // be poison.
1540 if (!isGuaranteedNotToBePoison(CurrV, AC,
1541 TheLoop->getLoopPredecessor()
1542 ->getTerminator()
1543 ->getIterator(),
1544 DT))
1545 return false;
1546 continue;
1547 }
1548
1549 // A loaded value may be poison, independent of any flags.
1550 if (isa<LoadInst>(CurrI) && !isGuaranteedNotToBePoison(CurrV, AC))
1551 return false;
1552
1553 // For other ops, assume poison can only be introduced via flags,
1554 // which can be dropped.
1555 if (!isa<PHINode>(CurrI) && !isSafeToSpeculativelyExecute(CurrI))
1556 return false;
1557 append_range(Worklist, CurrI->operands());
1558 }
1559 return true;
1560 };
1561 // Pass the Predicates pointer to isDereferenceableAndAlignedInLoop so
1562 // that it will consider loops that need guarding by SCEV checks. The
1563 // vectoriser will generate these checks if we decide to vectorise.
1564 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1565 CanSpeculatePointerOp(LI->getPointerOperand()) &&
1566 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC,
1567 &Predicates))
1568 SafePointers.insert(LI->getPointerOperand());
1569 Predicates.clear();
1570 }
1571 }
1572
1573 // Collect the blocks that need predication.
1574 for (BasicBlock *BB : TheLoop->blocks()) {
1575 // We support only branches and switch statements as terminators inside the
1576 // loop.
1577 if (isa<SwitchInst>(BB->getTerminator())) {
1578 if (TheLoop->isLoopExiting(BB)) {
1579 reportVectorizationFailure("Loop contains an unsupported switch",
1580 "LoopContainsUnsupportedSwitch", ORE,
1581 TheLoop, BB->getTerminator());
1582 return false;
1583 }
1584 } else if (!isa<BranchInst>(BB->getTerminator())) {
1585 reportVectorizationFailure("Loop contains an unsupported terminator",
1586 "LoopContainsUnsupportedTerminator", ORE,
1587 TheLoop, BB->getTerminator());
1588 return false;
1589 }
1590
1591 // We must be able to predicate all blocks that need to be predicated.
1592 if (blockNeedsPredication(BB) &&
1593 !blockCanBePredicated(BB, SafePointers, MaskedOp)) {
1595 "Control flow cannot be substituted for a select", "NoCFGForSelect",
1596 ORE, TheLoop, BB->getTerminator());
1597 return false;
1598 }
1599 }
1600
1601 // We can if-convert this loop.
1602 return true;
1603}
1604
1605// Helper function to canVectorizeLoopNestCFG.
1606bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1607 bool UseVPlanNativePath) {
1608 assert((UseVPlanNativePath || Lp->isInnermost()) &&
1609 "VPlan-native path is not enabled.");
1610
1611 // TODO: ORE should be improved to show more accurate information when an
1612 // outer loop can't be vectorized because a nested loop is not understood or
1613 // legal. Something like: "outer_loop_location: loop not vectorized:
1614 // (inner_loop_location) loop control flow is not understood by vectorizer".
1615
1616 // Store the result and return it at the end instead of exiting early, in case
1617 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1618 bool Result = true;
1619 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1620
1621 // We must have a loop in canonical form. Loops with indirectbr in them cannot
1622 // be canonicalized.
1623 if (!Lp->getLoopPreheader()) {
1624 reportVectorizationFailure("Loop doesn't have a legal pre-header",
1625 "loop control flow is not understood by vectorizer",
1626 "CFGNotUnderstood", ORE, TheLoop);
1627 if (DoExtraAnalysis)
1628 Result = false;
1629 else
1630 return false;
1631 }
1632
1633 // We must have a single backedge.
1634 if (Lp->getNumBackEdges() != 1) {
1635 reportVectorizationFailure("The loop must have a single backedge",
1636 "loop control flow is not understood by vectorizer",
1637 "CFGNotUnderstood", ORE, TheLoop);
1638 if (DoExtraAnalysis)
1639 Result = false;
1640 else
1641 return false;
1642 }
1643
1644 // The latch must be terminated by a BranchInst.
1645 BasicBlock *Latch = Lp->getLoopLatch();
1646 if (Latch && !isa<BranchInst>(Latch->getTerminator())) {
1648 "The loop latch terminator is not a BranchInst",
1649 "loop control flow is not understood by vectorizer", "CFGNotUnderstood",
1650 ORE, TheLoop);
1651 if (DoExtraAnalysis)
1652 Result = false;
1653 else
1654 return false;
1655 }
1656
1657 return Result;
1658}
1659
1660bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1661 Loop *Lp, bool UseVPlanNativePath) {
1662 // Store the result and return it at the end instead of exiting early, in case
1663 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1664 bool Result = true;
1665 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1666 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1667 if (DoExtraAnalysis)
1668 Result = false;
1669 else
1670 return false;
1671 }
1672
1673 // Recursively check whether the loop control flow of nested loops is
1674 // understood.
1675 for (Loop *SubLp : *Lp)
1676 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1677 if (DoExtraAnalysis)
1678 Result = false;
1679 else
1680 return false;
1681 }
1682
1683 return Result;
1684}
1685
1686bool LoopVectorizationLegality::isVectorizableEarlyExitLoop() {
1687 BasicBlock *LatchBB = TheLoop->getLoopLatch();
1688 if (!LatchBB) {
1689 reportVectorizationFailure("Loop does not have a latch",
1690 "Cannot vectorize early exit loop",
1691 "NoLatchEarlyExit", ORE, TheLoop);
1692 return false;
1693 }
1694
1695 if (Reductions.size() || FixedOrderRecurrences.size()) {
1697 "Found reductions or recurrences in early-exit loop",
1698 "Cannot vectorize early exit loop with reductions or recurrences",
1699 "RecurrencesInEarlyExitLoop", ORE, TheLoop);
1700 return false;
1701 }
1702
1703 SmallVector<BasicBlock *, 8> ExitingBlocks;
1704 TheLoop->getExitingBlocks(ExitingBlocks);
1705
1706 // Keep a record of all the exiting blocks.
1708 BasicBlock *SingleUncountableExitingBlock = nullptr;
1709 for (BasicBlock *BB : ExitingBlocks) {
1710 const SCEV *EC =
1711 PSE.getSE()->getPredicatedExitCount(TheLoop, BB, &Predicates);
1712 if (isa<SCEVCouldNotCompute>(EC)) {
1713 if (size(successors(BB)) != 2) {
1715 "Early exiting block does not have exactly two successors",
1716 "Incorrect number of successors from early exiting block",
1717 "EarlyExitTooManySuccessors", ORE, TheLoop);
1718 return false;
1719 }
1720
1721 if (SingleUncountableExitingBlock) {
1723 "Loop has too many uncountable exits",
1724 "Cannot vectorize early exit loop with more than one early exit",
1725 "TooManyUncountableEarlyExits", ORE, TheLoop);
1726 return false;
1727 }
1728
1729 SingleUncountableExitingBlock = BB;
1730 } else
1731 CountableExitingBlocks.push_back(BB);
1732 }
1733 // We can safely ignore the predicates here because when vectorizing the loop
1734 // the PredicatatedScalarEvolution class will keep track of all predicates
1735 // for each exiting block anyway. This happens when calling
1736 // PSE.getSymbolicMaxBackedgeTakenCount() below.
1737 Predicates.clear();
1738
1739 if (!SingleUncountableExitingBlock) {
1740 LLVM_DEBUG(dbgs() << "LV: Cound not find any uncountable exits");
1741 return false;
1742 }
1743
1744 // The only supported early exit loops so far are ones where the early
1745 // exiting block is a unique predecessor of the latch block.
1746 BasicBlock *LatchPredBB = LatchBB->getUniquePredecessor();
1747 if (LatchPredBB != SingleUncountableExitingBlock) {
1748 reportVectorizationFailure("Early exit is not the latch predecessor",
1749 "Cannot vectorize early exit loop",
1750 "EarlyExitNotLatchPredecessor", ORE, TheLoop);
1751 return false;
1752 }
1753
1754 // The latch block must have a countable exit.
1756 PSE.getSE()->getPredicatedExitCount(TheLoop, LatchBB, &Predicates))) {
1758 "Cannot determine exact exit count for latch block",
1759 "Cannot vectorize early exit loop",
1760 "UnknownLatchExitCountEarlyExitLoop", ORE, TheLoop);
1761 return false;
1762 }
1763 assert(llvm::is_contained(CountableExitingBlocks, LatchBB) &&
1764 "Latch block not found in list of countable exits!");
1765
1766 // Check to see if there are instructions that could potentially generate
1767 // exceptions or have side-effects.
1768 auto IsSafeOperation = [](Instruction *I) -> bool {
1769 switch (I->getOpcode()) {
1770 case Instruction::Load:
1771 case Instruction::Store:
1772 case Instruction::PHI:
1773 case Instruction::Br:
1774 // These are checked separately.
1775 return true;
1776 default:
1778 }
1779 };
1780
1781 bool HasSideEffects = false;
1782 for (auto *BB : TheLoop->blocks())
1783 for (auto &I : *BB) {
1784 if (I.mayWriteToMemory()) {
1785 if (isa<StoreInst>(&I) && cast<StoreInst>(&I)->isSimple()) {
1786 HasSideEffects = true;
1787 continue;
1788 }
1789
1790 // We don't support complex writes to memory.
1792 "Complex writes to memory unsupported in early exit loops",
1793 "Cannot vectorize early exit loop with complex writes to memory",
1794 "WritesInEarlyExitLoop", ORE, TheLoop);
1795 return false;
1796 }
1797
1798 if (!IsSafeOperation(&I)) {
1799 reportVectorizationFailure("Early exit loop contains operations that "
1800 "cannot be speculatively executed",
1801 "UnsafeOperationsEarlyExitLoop", ORE,
1802 TheLoop);
1803 return false;
1804 }
1805 }
1806
1807 // The vectoriser cannot handle loads that occur after the early exit block.
1808 assert(LatchBB->getUniquePredecessor() == SingleUncountableExitingBlock &&
1809 "Expected latch predecessor to be the early exiting block");
1810
1811 SmallVector<LoadInst *, 4> NonDerefLoads;
1812 // TODO: Handle loops that may fault.
1813 if (!HasSideEffects) {
1814 // Read-only loop.
1815 Predicates.clear();
1816 if (!isReadOnlyLoop(TheLoop, PSE.getSE(), DT, AC, NonDerefLoads,
1817 &Predicates)) {
1819 "Loop may fault", "Cannot vectorize non-read-only early exit loop",
1820 "NonReadOnlyEarlyExitLoop", ORE, TheLoop);
1821 return false;
1822 }
1823 } else if (!canUncountableExitConditionLoadBeMoved(
1824 SingleUncountableExitingBlock))
1825 return false;
1826
1827 // Check non-dereferenceable loads if any.
1828 for (LoadInst *LI : NonDerefLoads) {
1829 // Only support unit-stride access for now.
1830 int Stride = isConsecutivePtr(LI->getType(), LI->getPointerOperand());
1831 if (Stride != 1) {
1833 "Loop contains potentially faulting strided load",
1834 "Cannot vectorize early exit loop with "
1835 "strided fault-only-first load",
1836 "EarlyExitLoopWithStridedFaultOnlyFirstLoad", ORE, TheLoop);
1837 return false;
1838 }
1839 PotentiallyFaultingLoads.insert(LI);
1840 LLVM_DEBUG(dbgs() << "LV: Found potentially faulting load: " << *LI
1841 << "\n");
1842 }
1843
1844 [[maybe_unused]] const SCEV *SymbolicMaxBTC =
1845 PSE.getSymbolicMaxBackedgeTakenCount();
1846 // Since we have an exact exit count for the latch and the early exit
1847 // dominates the latch, then this should guarantee a computed SCEV value.
1848 assert(!isa<SCEVCouldNotCompute>(SymbolicMaxBTC) &&
1849 "Failed to get symbolic expression for backedge taken count");
1850 LLVM_DEBUG(dbgs() << "LV: Found an early exit loop with symbolic max "
1851 "backedge taken count: "
1852 << *SymbolicMaxBTC << '\n');
1853 UncountableExitingBB = SingleUncountableExitingBlock;
1854 UncountableExitWithSideEffects = HasSideEffects;
1855 return true;
1856}
1857
1858bool LoopVectorizationLegality::canUncountableExitConditionLoadBeMoved(
1859 BasicBlock *ExitingBlock) {
1860 // Try to find a load in the critical path for the uncountable exit condition.
1861 // This is currently matching about the simplest form we can, expecting
1862 // only one in-loop load, the result of which is directly compared against
1863 // a loop-invariant value.
1864 // FIXME: We're insisting on a single use for now, because otherwise we will
1865 // need to make PHI nodes for other users. That can be done once the initial
1866 // transform code lands.
1867 auto *Br = cast<BranchInst>(ExitingBlock->getTerminator());
1868
1869 using namespace llvm::PatternMatch;
1870 Instruction *L = nullptr;
1871 Value *Ptr = nullptr;
1872 Value *R = nullptr;
1873 if (!match(Br->getCondition(),
1875 m_Value(R))))) {
1877 "Early exit loop with store but no supported condition load",
1878 "NoConditionLoadForEarlyExitLoop", ORE, TheLoop);
1879 return false;
1880 }
1881
1882 // FIXME: Don't rely on operand ordering for the comparison.
1883 if (!TheLoop->isLoopInvariant(R)) {
1885 "Early exit loop with store but no supported condition load",
1886 "NoConditionLoadForEarlyExitLoop", ORE, TheLoop);
1887 return false;
1888 }
1889
1890 // Make sure that the load address is not loop invariant; we want an
1891 // address calculation that we can rotate to the next vector iteration.
1892 const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(Ptr));
1893 if (!AR || AR->getLoop() != TheLoop || !AR->isAffine()) {
1895 "Uncountable exit condition depends on load with an address that is "
1896 "not an add recurrence in the loop",
1897 "EarlyExitLoadInvariantAddress", ORE, TheLoop);
1898 return false;
1899 }
1900
1901 // FIXME: Support gathers after first-faulting load support lands.
1903 LoadInst *Load = cast<LoadInst>(L);
1904 if (!isDereferenceableAndAlignedInLoop(Load, TheLoop, *PSE.getSE(), *DT, AC,
1905 &Predicates)) {
1907 "Loop may fault",
1908 "Cannot vectorize potentially faulting early exit loop",
1909 "PotentiallyFaultingEarlyExitLoop", ORE, TheLoop);
1910 return false;
1911 }
1912
1913 ICFLoopSafetyInfo SafetyInfo;
1914 SafetyInfo.computeLoopSafetyInfo(TheLoop);
1915 // We need to know that load will be executed before we can hoist a
1916 // copy out to run just before the first iteration.
1917 if (!SafetyInfo.isGuaranteedToExecute(*Load, DT, TheLoop)) {
1919 "Load for uncountable exit not guaranteed to execute",
1920 "ConditionalUncountableExitLoad", ORE, TheLoop);
1921 return false;
1922 }
1923
1924 // Prohibit any potential aliasing with any instruction in the loop which
1925 // might store to memory.
1926 // FIXME: Relax this constraint where possible.
1927 for (auto *BB : TheLoop->blocks()) {
1928 for (auto &I : *BB) {
1929 if (&I == Load)
1930 continue;
1931
1932 if (I.mayWriteToMemory()) {
1933 if (auto *SI = dyn_cast<StoreInst>(&I)) {
1934 AliasResult AR = AA->alias(Ptr, SI->getPointerOperand());
1935 if (AR == AliasResult::NoAlias)
1936 continue;
1937 }
1938
1940 "Cannot determine whether critical uncountable exit load address "
1941 "does not alias with a memory write",
1942 "CantVectorizeAliasWithCriticalUncountableExitLoad", ORE, TheLoop);
1943 return false;
1944 }
1945 }
1946 }
1947
1948 return true;
1949}
1950
1951bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1952 // Store the result and return it at the end instead of exiting early, in case
1953 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1954 bool Result = true;
1955
1956 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1957 // Check whether the loop-related control flow in the loop nest is expected by
1958 // vectorizer.
1959 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1960 if (DoExtraAnalysis) {
1961 LLVM_DEBUG(dbgs() << "LV: legality check failed: loop nest");
1962 Result = false;
1963 } else {
1964 return false;
1965 }
1966 }
1967
1968 // We need to have a loop header.
1969 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1970 << '\n');
1971
1972 // Specific checks for outer loops. We skip the remaining legal checks at this
1973 // point because they don't support outer loops.
1974 if (!TheLoop->isInnermost()) {
1975 assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1976
1977 if (!canVectorizeOuterLoop()) {
1978 reportVectorizationFailure("Unsupported outer loop",
1979 "UnsupportedOuterLoop", ORE, TheLoop);
1980 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1981 // outer loops.
1982 return false;
1983 }
1984
1985 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1986 return Result;
1987 }
1988
1989 assert(TheLoop->isInnermost() && "Inner loop expected.");
1990 // Check if we can if-convert non-single-bb loops.
1991 unsigned NumBlocks = TheLoop->getNumBlocks();
1992 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1993 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1994 if (DoExtraAnalysis)
1995 Result = false;
1996 else
1997 return false;
1998 }
1999
2000 // Check if we can vectorize the instructions and CFG in this loop.
2001 if (!canVectorizeInstrs()) {
2002 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2003 if (DoExtraAnalysis)
2004 Result = false;
2005 else
2006 return false;
2007 }
2008
2009 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
2010 if (TheLoop->getExitingBlock()) {
2011 reportVectorizationFailure("Cannot vectorize uncountable loop",
2012 "UnsupportedUncountableLoop", ORE, TheLoop);
2013 if (DoExtraAnalysis)
2014 Result = false;
2015 else
2016 return false;
2017 } else {
2018 if (!isVectorizableEarlyExitLoop()) {
2021 "Must be false without vectorizable early-exit loop");
2022 if (DoExtraAnalysis)
2023 Result = false;
2024 else
2025 return false;
2026 }
2027 }
2028 }
2029
2030 // Go over each instruction and look at memory deps.
2031 if (!canVectorizeMemory()) {
2032 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2033 if (DoExtraAnalysis)
2034 Result = false;
2035 else
2036 return false;
2037 }
2038
2039 // Bail out for state-changing loops with uncountable exits for now.
2040 if (UncountableExitWithSideEffects) {
2042 "Writes to memory unsupported in early exit loops",
2043 "Cannot vectorize early exit loop with writes to memory",
2044 "WritesInEarlyExitLoop", ORE, TheLoop);
2045 return false;
2046 }
2047
2048 if (Result) {
2049 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
2050 << (LAI->getRuntimePointerChecking()->Need
2051 ? " (with a runtime bound check)"
2052 : "")
2053 << "!\n");
2054 }
2055
2056 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
2057 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
2058 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
2059
2060 if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
2061 LLVM_DEBUG(dbgs() << "LV: Vectorization not profitable "
2062 "due to SCEVThreshold");
2063 reportVectorizationFailure("Too many SCEV checks needed",
2064 "Too many SCEV assumptions need to be made and checked at runtime",
2065 "TooManySCEVRunTimeChecks", ORE, TheLoop);
2066 if (DoExtraAnalysis)
2067 Result = false;
2068 else
2069 return false;
2070 }
2071
2072 // Okay! We've done all the tests. If any have failed, return false. Otherwise
2073 // we can vectorize, and at this point we don't have any other mem analysis
2074 // which may limit our maximum vectorization factor, so just return true with
2075 // no restrictions.
2076 return Result;
2077}
2078
2080 // The only loops we can vectorize without a scalar epilogue, are loops with
2081 // a bottom-test and a single exiting block. We'd have to handle the fact
2082 // that not every instruction executes on the last iteration. This will
2083 // require a lane mask which varies through the vector loop body. (TODO)
2084 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
2085 LLVM_DEBUG(
2086 dbgs()
2087 << "LV: Cannot fold tail by masking. Requires a singe latch exit\n");
2088 return false;
2089 }
2090
2091 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
2092
2093 SmallPtrSet<const Value *, 8> ReductionLiveOuts;
2094
2095 for (const auto &Reduction : getReductionVars())
2096 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
2097
2098 // TODO: handle non-reduction outside users when tail is folded by masking.
2099 for (auto *AE : AllowedExit) {
2100 // Check that all users of allowed exit values are inside the loop or
2101 // are the live-out of a reduction.
2102 if (ReductionLiveOuts.count(AE))
2103 continue;
2104 for (User *U : AE->users()) {
2106 if (TheLoop->contains(UI))
2107 continue;
2108 LLVM_DEBUG(
2109 dbgs()
2110 << "LV: Cannot fold tail by masking, loop has an outside user for "
2111 << *UI << "\n");
2112 return false;
2113 }
2114 }
2115
2116 for (const auto &Entry : getInductionVars()) {
2117 PHINode *OrigPhi = Entry.first;
2118 for (User *U : OrigPhi->users()) {
2119 auto *UI = cast<Instruction>(U);
2120 if (!TheLoop->contains(UI)) {
2121 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an "
2122 "outside user for "
2123 << *UI << "\n");
2124 return false;
2125 }
2126 }
2127 }
2128
2129 // The list of pointers that we can safely read and write to remains empty.
2130 SmallPtrSet<Value *, 8> SafePointers;
2131
2132 // Check all blocks for predication, including those that ordinarily do not
2133 // need predication such as the header block.
2135 for (BasicBlock *BB : TheLoop->blocks()) {
2136 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) {
2137 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n");
2138 return false;
2139 }
2140 }
2141
2142 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
2143
2144 return true;
2145}
2146
2148 // The list of pointers that we can safely read and write to remains empty.
2149 SmallPtrSet<Value *, 8> SafePointers;
2150
2151 // Mark all blocks for predication, including those that ordinarily do not
2152 // need predication such as the header block.
2153 for (BasicBlock *BB : TheLoop->blocks()) {
2154 [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp);
2155 assert(R && "Must be able to predicate block when tail-folding.");
2156 }
2157}
2158
2159} // namespace llvm
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
#define DEBUG_TYPE
Hexagon Common GEP
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
static cl::opt< LoopVectorizeHints::ScalableForceKind > ForceScalableVectorization("scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), cl::Hidden, cl::desc("Control whether the compiler can use scalable vectors to " "vectorize a loop"), cl::values(clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", "Scalable vectorization is disabled."), clEnumValN(LoopVectorizeHints::SK_PreferScalable, "preferred", "Scalable vectorization is available and favored when the " "cost is inconclusive."), clEnumValN(LoopVectorizeHints::SK_PreferScalable, "on", "Scalable vectorization is available and favored when the " "cost is inconclusive.")))
#define LV_NAME
static cl::opt< unsigned > PragmaVectorizeSCEVCheckThreshold("pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed with a " "vectorize(enable) pragma"))
static cl::opt< bool > HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, cl::desc("Allow enabling loop hints to reorder " "FP operations during vectorization."))
static const unsigned MaxInterleaveFactor
Maximum vectorization interleave count.
static cl::opt< bool > AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden, cl::desc("Enable recognition of non-constant strided " "pointer induction variables."))
static cl::opt< unsigned > VectorizeSCEVCheckThreshold("vectorize-scev-check-threshold", cl::init(16), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed."))
static cl::opt< bool > EnableHistogramVectorization("enable-histogram-loop-vectorization", cl::init(false), cl::Hidden, cl::desc("Enables autovectorization of some loops containing histograms"))
static cl::opt< bool > EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, cl::desc("Enable if-conversion during vectorization."))
This file defines the LoopVectorizationLegality class.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define H(x, y, z)
Definition MD5.cpp:56
#define T
Contains a collection of routines for determining if a given instruction is guaranteed to execute if ...
static bool isSimple(Instruction *I)
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
#define LLVM_DEBUG(...)
Definition Debug.h:114
This pass exposes codegen information to IR-level passes.
Virtual Register Rewriter
static const uint32_t IV[8]
Definition blake3_impl.h:83
Class for arbitrary precision integers.
Definition APInt.h:78
@ NoAlias
The two locations do not alias at all.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
This class represents a function call, abstracting a target machine's calling convention.
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:536
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition TypeSize.h:312
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
bool isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop) const override
Returns true if the instruction in a loop is guaranteed to execute at least once (under the assumptio...
void computeLoopSafetyInfo(const Loop *CurLoop) override
Computes safety information for a loop checks loop body & header for the possibility of may throw exc...
A struct for saving information about induction variables.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
static LLVM_ABI bool isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr=nullptr, SmallVectorImpl< Instruction * > *CastsToIgnore=nullptr)
Returns true if Phi is an induction in the loop L.
Instruction * getExactFPMathInst()
Returns floating-point induction operator that does not allow reassociation (transforming the inducti...
Class to represent integer types.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
const MemoryDepChecker & getDepChecker() const
the Memory Dependence Checker which can determine the loop-independent and loop-carried dependences b...
static LLVM_ABI bool blockNeedsPredication(const BasicBlock *BB, const Loop *TheLoop, const DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
bool isLoopHeader(const BlockT *BB) const
bool isInvariantStoreOfReduction(StoreInst *SI)
Returns True if given store is a final invariant store of one of the reductions found in the loop.
bool isInvariantAddressOfReduction(Value *V)
Returns True if given address is invariant and is used to store recurrent expression.
bool blockNeedsPredication(BasicBlock *BB) const
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
int isConsecutivePtr(Type *AccessTy, Value *Ptr) const
Check if this pointer is consecutive when vectorizing.
bool hasUncountableExitWithSideEffects() const
Returns true if this is an early exit loop with state-changing or potentially-faulting operations and...
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
bool isFixedOrderRecurrence(const PHINode *Phi) const
Returns True if Phi is a fixed-order recurrence in this loop.
const InductionDescriptor * getPointerInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is pointer induction.
const InductionDescriptor * getIntOrFpInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is an integer or floating point induction.
bool isInductionPhi(const Value *V) const
Returns True if V is a Phi node of an induction variable in this loop.
bool isUniform(Value *V, ElementCount VF) const
Returns true if value V is uniform across VF lanes, when VF is provided, and otherwise if V is invari...
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isInvariant(Value *V) const
Returns true if V is invariant across all loop iterations according to SCEV.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool canFoldTailByMasking() const
Return true if we can vectorize this loop while folding its tail by masking.
void prepareToFoldTailByMasking()
Mark all respective loads/stores for masking.
bool hasUncountableEarlyExit() const
Returns true if the loop has exactly one uncountable early exit, i.e.
bool isUniformMemOp(Instruction &I, ElementCount VF) const
A uniform memory op is a load or store which accesses the same memory location on all VF lanes,...
BasicBlock * getUncountableEarlyExitingBlock() const
Returns the uncountable early exiting block, if there is exactly one.
bool isInductionVariable(const Value *V) const
Returns True if V can be considered as an induction variable in this loop.
bool isCastedInductionVariable(const Value *V) const
Returns True if V is a cast that is part of an induction def-use chain, and had been proven to be red...
@ SK_PreferScalable
Vectorize loops using scalable vectors or fixed-width vectors, but favor scalable vectors when the co...
@ SK_FixedWidthOnly
Disables vectorization with scalable vectors.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
LoopVectorizeHints(const Loop *L, bool InterleaveOnlyWhenForced, OptimizationRemarkEmitter &ORE, const TargetTransformInfo *TTI=nullptr)
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition LoopInfo.cpp:61
PHINode * getCanonicalInductionVariable() const
Check to see if the loop has a canonical induction variable: an integer recurrence that starts at 0 a...
Definition LoopInfo.cpp:151
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
Definition LoopInfo.cpp:502
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
ArrayRef< MDOperand > operands() const
Definition Metadata.h:1440
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1569
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1448
Tracking metadata reference owned by Metadata.
Definition Metadata.h:900
A single uniqued string.
Definition Metadata.h:721
LLVM_ABI StringRef getString() const
Definition Metadata.cpp:618
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition Metadata.cpp:608
iterator find(const KeyT &Key)
Definition MapVector.h:149
Checks memory dependences among accesses to the same underlying object to determine whether there vec...
const SmallVectorImpl< Dependence > * getDependences() const
Returns the memory dependences.
Root of the metadata hierarchy.
Definition Metadata.h:64
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
bool allowExtraAnalysis(StringRef PassName) const
Whether we allow for extra compile-time budget to perform more analysis to produce fewer false positi...
Diagnostic information for missed-optimization remarks.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Instruction * getExactFPMathInst() const
Returns 1st non-reassociative FP instruction in the PHI node's use-chain.
static LLVM_ABI bool isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, DominatorTree *DT)
Returns true if Phi is a fixed-order recurrence.
bool hasExactFPMath() const
Returns true if the recurrence has floating-point math that requires precise (ordered) operations.
Instruction * getLoopExitInstr() const
static LLVM_ABI bool isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes, DemandedBits *DB=nullptr, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr, ScalarEvolution *SE=nullptr)
Returns true if Phi is a reduction in TheLoop.
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
StoreInst * IntermediateStore
Reductions may store temporary or final result to an invariant address.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
This visitor recursively visits a SCEV expression and re-writes it.
const SCEV * visit(const SCEV *S)
This class represents an analyzed expression in the program.
The main scalar evolution driver.
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI const SCEV * getCouldNotCompute()
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Value * getPointerOperand()
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
Provides information about what library functions are available for the current target.
void getWidestVF(StringRef ScalarF, ElementCount &FixedVF, ElementCount &ScalableVF) const
Returns the largest vectorization factor used in the list of vector functions.
bool isFunctionVectorizable(StringRef F, const ElementCount &VF) const
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
LLVM_ABI std::string str() const
Return the twine contents as a std::string.
Definition Twine.cpp:17
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:296
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:230
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition Type.h:184
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
Definition Type.h:255
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
Value * getOperand(unsigned i) const
Definition User.h:232
static bool hasMaskedVariant(const CallInst &CI, std::optional< ElementCount > VF=std::nullopt)
Definition VectorUtils.h:85
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition VectorUtils.h:74
LLVM Value Representation.
Definition Value.h:75
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
static LLVM_ABI bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
constexpr bool isZero() const
Definition TypeSize.h:153
const ParentTy * getParent() const
Definition ilist_node.h:34
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
TwoOps_match< ValueOpTy, PointerOpTy, Instruction::Store > m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp)
Matches StoreInst.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
match_combine_or< match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > >, OpTy > m_ZExtOrSExtOrSelf(const OpTy &Op)
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > dyn_extract(Y &&MD)
Extract a Value from Metadata, if any.
Definition Metadata.h:695
Add a small namespace to avoid name clashes with the classes used in the streaming interface.
NodeAddr< PhiNode * > Phi
Definition RDFGraph.h:390
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:316
@ Offset
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1655
LLVM_ABI Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
auto successors(const MachineBasicBlock *BB)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
static bool isUniformLoop(Loop *Lp, Loop *OuterLp)
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
Definition Loads.cpp:420
static bool canWidenCallReturnType(Type *Ty)
Returns true if the call return type Ty can be widened by the loop vectorizer.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:279
static IntegerType * getWiderInductionTy(const DataLayout &DL, Type *Ty0, Type *Ty1)
static IntegerType * getInductionIntegerTy(const DataLayout &DL, Type *Ty)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, SmallPtrSetImpl< Value * > &AllowedExit)
Check that the instruction has outside loop users and is not an identified reduction variable.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, StoreInst *B)
Returns true if A and B have same pointer operands or same SCEVs addresses.
bool canVectorizeTy(Type *Ty)
Returns true if Ty is a valid vector element type, void, or an unpacked literal struct where all elem...
TargetTransformInfo TTI
LLVM_ABI bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI bool isReadOnlyLoop(Loop *L, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, SmallVectorImpl< LoadInst * > &NonDereferenceableAndAlignedLoads, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Returns true if the loop contains read-only memory accesses and doesn't throw.
Definition Loads.cpp:869
LLVM_ABI llvm::MDNode * makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, llvm::ArrayRef< llvm::StringRef > RemovePrefixes, llvm::ArrayRef< llvm::MDNode * > AddAttrs)
Create a new LoopID after the loop has been transformed.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2120
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop, const PredicatedScalarEvolution &PSE, SmallVectorImpl< HistogramInfo > &Histograms)
Find histogram operations that match high-level code in loops:
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI)
Checks if a function is scalarizable according to the TLI, in the sense that it should be vectorized ...
LLVM_ABI bool isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, ScalarEvolution &SE, DominatorTree &DT, AssumptionCache *AC=nullptr, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Return true if we can prove that the given load (which is assumed to be within the specified loop) wo...
Definition Loads.cpp:289
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
Definition Casting.h:866
LLVM_ABI std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DominatorTree &DT, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
bool SCEVExprContains(const SCEV *Root, PredTy Pred)
Return true if any node in Root satisfies the predicate Pred.
Dependece between memory access instructions.
Instruction * getDestination(const MemoryDepChecker &DepChecker) const
Return the destination instruction of the dependence.
Instruction * getSource(const MemoryDepChecker &DepChecker) const
Return the source instruction of the dependence.
static LLVM_ABI VectorizationSafetyStatus isSafeForVectorization(DepType Type)
Dependence types that don't prevent vectorization.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
Collection of parameters shared beetween the Loop Vectorizer and the Loop Access Analysis.
static LLVM_ABI const unsigned MaxVectorWidth
Maximum SIMD width.
static LLVM_ABI bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static LLVM_ABI unsigned VectorizationInterleave
Interleave factor as overridden by the user.