LLVM 20.0.0git
LoopVectorizationLegality.cpp
Go to the documentation of this file.
1//===- LoopVectorizationLegality.cpp --------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides loop vectorization legality analysis. Original code
10// resided in LoopVectorize.cpp for a long time.
11//
12// At this point, it is implemented as a utility class, not as an analysis
13// pass. It should be easy to create an analysis pass around it if there
14// is a need (but D45420 needs to happen first).
15//
16
18#include "llvm/Analysis/Loads.h"
29
30using namespace llvm;
31using namespace PatternMatch;
32
33#define LV_NAME "loop-vectorize"
34#define DEBUG_TYPE LV_NAME
35
36static cl::opt<bool>
37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38 cl::desc("Enable if-conversion during vectorization."));
39
40static cl::opt<bool>
41AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden,
42 cl::desc("Enable recognition of non-constant strided "
43 "pointer induction variables."));
44
45namespace llvm {
47 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
48 cl::desc("Allow enabling loop hints to reorder "
49 "FP operations during vectorization."));
50} // namespace llvm
51
52// TODO: Move size-based thresholds out of legality checking, make cost based
53// decisions instead of hard thresholds.
55 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
56 cl::desc("The maximum number of SCEV checks allowed."));
57
59 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
60 cl::desc("The maximum number of SCEV checks allowed with a "
61 "vectorize(enable) pragma"));
62
65 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
67 cl::desc("Control whether the compiler can use scalable vectors to "
68 "vectorize a loop"),
71 "Scalable vectorization is disabled."),
74 "Scalable vectorization is available and favored when the "
75 "cost is inconclusive."),
78 "Scalable vectorization is available and favored when the "
79 "cost is inconclusive.")));
80
81/// Maximum vectorization interleave count.
82static const unsigned MaxInterleaveFactor = 16;
83
84namespace llvm {
85
86bool LoopVectorizeHints::Hint::validate(unsigned Val) {
87 switch (Kind) {
88 case HK_WIDTH:
90 case HK_INTERLEAVE:
91 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
92 case HK_FORCE:
93 return (Val <= 1);
94 case HK_ISVECTORIZED:
95 case HK_PREDICATE:
96 case HK_SCALABLE:
97 return (Val == 0 || Val == 1);
98 }
99 return false;
100}
101
103 bool InterleaveOnlyWhenForced,
106 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
107 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
108 Force("vectorize.enable", FK_Undefined, HK_FORCE),
109 IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
110 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
111 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
112 TheLoop(L), ORE(ORE) {
113 // Populate values with existing loop metadata.
114 getHintsFromMetadata();
115
116 // force-vector-interleave overrides DisableInterleaving.
119
120 // If the metadata doesn't explicitly specify whether to enable scalable
121 // vectorization, then decide based on the following criteria (increasing
122 // level of priority):
123 // - Target default
124 // - Metadata width
125 // - Force option (always overrides)
127 if (TTI)
130
131 if (Width.Value)
132 // If the width is set, but the metadata says nothing about the scalable
133 // property, then assume it concerns only a fixed-width UserVF.
134 // If width is not set, the flag takes precedence.
135 Scalable.Value = SK_FixedWidthOnly;
136 }
137
138 // If the flag is set to force any use of scalable vectors, override the loop
139 // hints.
140 if (ForceScalableVectorization.getValue() !=
142 Scalable.Value = ForceScalableVectorization.getValue();
143
144 // Scalable vectorization is disabled if no preference is specified.
146 Scalable.Value = SK_FixedWidthOnly;
147
148 if (IsVectorized.Value != 1)
149 // If the vectorization width and interleaving count are both 1 then
150 // consider the loop to have been already vectorized because there's
151 // nothing more that we can do.
152 IsVectorized.Value =
154 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
155 << "LV: Interleaving disabled by the pass manager\n");
156}
157
159 LLVMContext &Context = TheLoop->getHeader()->getContext();
160
161 MDNode *IsVectorizedMD = MDNode::get(
162 Context,
163 {MDString::get(Context, "llvm.loop.isvectorized"),
164 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
165 MDNode *LoopID = TheLoop->getLoopID();
166 MDNode *NewLoopID =
167 makePostTransformationMetadata(Context, LoopID,
168 {Twine(Prefix(), "vectorize.").str(),
169 Twine(Prefix(), "interleave.").str()},
170 {IsVectorizedMD});
171 TheLoop->setLoopID(NewLoopID);
172
173 // Update internal cache.
174 IsVectorized.Value = 1;
175}
176
178 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
180 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
182 return false;
183 }
184
185 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
186 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
188 return false;
189 }
190
191 if (getIsVectorized() == 1) {
192 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
193 // FIXME: Add interleave.disable metadata. This will allow
194 // vectorize.disable to be used without disabling the pass and errors
195 // to differentiate between disabled vectorization and a width of 1.
196 ORE.emit([&]() {
198 "AllDisabled", L->getStartLoc(),
199 L->getHeader())
200 << "loop not vectorized: vectorization and interleaving are "
201 "explicitly disabled, or the loop has already been "
202 "vectorized";
203 });
204 return false;
205 }
206
207 return true;
208}
209
211 using namespace ore;
212
213 ORE.emit([&]() {
214 if (Force.Value == LoopVectorizeHints::FK_Disabled)
215 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
216 TheLoop->getStartLoc(),
217 TheLoop->getHeader())
218 << "loop not vectorized: vectorization is explicitly disabled";
219
220 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", TheLoop->getStartLoc(),
221 TheLoop->getHeader());
222 R << "loop not vectorized";
223 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
224 R << " (Force=" << NV("Force", true);
225 if (Width.Value != 0)
226 R << ", Vector Width=" << NV("VectorWidth", getWidth());
227 if (getInterleave() != 0)
228 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
229 R << ")";
230 }
231 return R;
232 });
233}
234
237 return LV_NAME;
239 return LV_NAME;
241 return LV_NAME;
243}
244
246 // Allow the vectorizer to change the order of operations if enabling
247 // loop hints are provided
248 ElementCount EC = getWidth();
249 return HintsAllowReordering &&
251 EC.getKnownMinValue() > 1);
252}
253
254void LoopVectorizeHints::getHintsFromMetadata() {
255 MDNode *LoopID = TheLoop->getLoopID();
256 if (!LoopID)
257 return;
258
259 // First operand should refer to the loop id itself.
260 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
261 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
262
263 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
264 const MDString *S = nullptr;
266
267 // The expected hint is either a MDString or a MDNode with the first
268 // operand a MDString.
269 if (const MDNode *MD = dyn_cast<MDNode>(MDO)) {
270 if (!MD || MD->getNumOperands() == 0)
271 continue;
272 S = dyn_cast<MDString>(MD->getOperand(0));
273 for (unsigned Idx = 1; Idx < MD->getNumOperands(); ++Idx)
274 Args.push_back(MD->getOperand(Idx));
275 } else {
276 S = dyn_cast<MDString>(MDO);
277 assert(Args.size() == 0 && "too many arguments for MDString");
278 }
279
280 if (!S)
281 continue;
282
283 // Check if the hint starts with the loop metadata prefix.
284 StringRef Name = S->getString();
285 if (Args.size() == 1)
286 setHint(Name, Args[0]);
287 }
288}
289
290void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
291 if (!Name.starts_with(Prefix()))
292 return;
293 Name = Name.substr(Prefix().size(), StringRef::npos);
294
295 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
296 if (!C)
297 return;
298 unsigned Val = C->getZExtValue();
299
300 Hint *Hints[] = {&Width, &Interleave, &Force,
301 &IsVectorized, &Predicate, &Scalable};
302 for (auto *H : Hints) {
303 if (Name == H->Name) {
304 if (H->validate(Val))
305 H->Value = Val;
306 else
307 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
308 break;
309 }
310 }
311}
312
313// Return true if the inner loop \p Lp is uniform with regard to the outer loop
314// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
315// executing the inner loop will execute the same iterations). This check is
316// very constrained for now but it will be relaxed in the future. \p Lp is
317// considered uniform if it meets all the following conditions:
318// 1) it has a canonical IV (starting from 0 and with stride 1),
319// 2) its latch terminator is a conditional branch and,
320// 3) its latch condition is a compare instruction whose operands are the
321// canonical IV and an OuterLp invariant.
322// This check doesn't take into account the uniformity of other conditions not
323// related to the loop latch because they don't affect the loop uniformity.
324//
325// NOTE: We decided to keep all these checks and its associated documentation
326// together so that we can easily have a picture of the current supported loop
327// nests. However, some of the current checks don't depend on \p OuterLp and
328// would be redundantly executed for each \p Lp if we invoked this function for
329// different candidate outer loops. This is not the case for now because we
330// don't currently have the infrastructure to evaluate multiple candidate outer
331// loops and \p OuterLp will be a fixed parameter while we only support explicit
332// outer loop vectorization. It's also very likely that these checks go away
333// before introducing the aforementioned infrastructure. However, if this is not
334// the case, we should move the \p OuterLp independent checks to a separate
335// function that is only executed once for each \p Lp.
336static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
337 assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
338
339 // If Lp is the outer loop, it's uniform by definition.
340 if (Lp == OuterLp)
341 return true;
342 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
343
344 // 1.
346 if (!IV) {
347 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
348 return false;
349 }
350
351 // 2.
352 BasicBlock *Latch = Lp->getLoopLatch();
353 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
354 if (!LatchBr || LatchBr->isUnconditional()) {
355 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
356 return false;
357 }
358
359 // 3.
360 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
361 if (!LatchCmp) {
363 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
364 return false;
365 }
366
367 Value *CondOp0 = LatchCmp->getOperand(0);
368 Value *CondOp1 = LatchCmp->getOperand(1);
369 Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
370 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
371 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
372 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
373 return false;
374 }
375
376 return true;
377}
378
379// Return true if \p Lp and all its nested loops are uniform with regard to \p
380// OuterLp.
381static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
382 if (!isUniformLoop(Lp, OuterLp))
383 return false;
384
385 // Check if nested loops are uniform.
386 for (Loop *SubLp : *Lp)
387 if (!isUniformLoopNest(SubLp, OuterLp))
388 return false;
389
390 return true;
391}
392
394 if (Ty->isPointerTy())
395 return DL.getIntPtrType(Ty);
396
397 // It is possible that char's or short's overflow when we ask for the loop's
398 // trip count, work around this by changing the type size.
399 if (Ty->getScalarSizeInBits() < 32)
400 return Type::getInt32Ty(Ty->getContext());
401
402 return Ty;
403}
404
405static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
408 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
409 return Ty0;
410 return Ty1;
411}
412
413/// Check that the instruction has outside loop users and is not an
414/// identified reduction variable.
415static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
416 SmallPtrSetImpl<Value *> &AllowedExit) {
417 // Reductions, Inductions and non-header phis are allowed to have exit users. All
418 // other instructions must not have external users.
419 if (!AllowedExit.count(Inst))
420 // Check that all of the users of the loop are inside the BB.
421 for (User *U : Inst->users()) {
422 Instruction *UI = cast<Instruction>(U);
423 // This user may be a reduction exit value.
424 if (!TheLoop->contains(UI)) {
425 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
426 return true;
427 }
428 }
429 return false;
430}
431
432/// Returns true if A and B have same pointer operands or same SCEVs addresses
434 StoreInst *B) {
435 // Compare store
436 if (A == B)
437 return true;
438
439 // Otherwise Compare pointers
440 Value *APtr = A->getPointerOperand();
441 Value *BPtr = B->getPointerOperand();
442 if (APtr == BPtr)
443 return true;
444
445 // Otherwise compare address SCEVs
446 return SE->getSCEV(APtr) == SE->getSCEV(BPtr);
447}
448
450 Value *Ptr) const {
451 // FIXME: Currently, the set of symbolic strides is sometimes queried before
452 // it's collected. This happens from canVectorizeWithIfConvert, when the
453 // pointer is checked to reference consecutive elements suitable for a
454 // masked access.
455 const auto &Strides =
457
458 Function *F = TheLoop->getHeader()->getParent();
459 bool OptForSize = F->hasOptSize() ||
460 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
462 bool CanAddPredicate = !OptForSize;
463 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
464 CanAddPredicate, false).value_or(0);
465 if (Stride == 1 || Stride == -1)
466 return Stride;
467 return 0;
468}
469
471 return LAI->isInvariant(V);
472}
473
474namespace {
475/// A rewriter to build the SCEVs for each of the VF lanes in the expected
476/// vectorized loop, which can then be compared to detect their uniformity. This
477/// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
478/// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
479/// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
480/// uniformity.
481class SCEVAddRecForUniformityRewriter
482 : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
483 /// Multiplier to be applied to the step of AddRecs in TheLoop.
484 unsigned StepMultiplier;
485
486 /// Offset to be added to the AddRecs in TheLoop.
487 unsigned Offset;
488
489 /// Loop for which to rewrite AddRecsFor.
490 Loop *TheLoop;
491
492 /// Is any sub-expressions not analyzable w.r.t. uniformity?
493 bool CannotAnalyze = false;
494
495 bool canAnalyze() const { return !CannotAnalyze; }
496
497public:
498 SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
499 unsigned Offset, Loop *TheLoop)
500 : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
501 TheLoop(TheLoop) {}
502
503 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
504 assert(Expr->getLoop() == TheLoop &&
505 "addrec outside of TheLoop must be invariant and should have been "
506 "handled earlier");
507 // Build a new AddRec by multiplying the step by StepMultiplier and
508 // incrementing the start by Offset * step.
509 Type *Ty = Expr->getType();
510 auto *Step = Expr->getStepRecurrence(SE);
511 if (!SE.isLoopInvariant(Step, TheLoop)) {
512 CannotAnalyze = true;
513 return Expr;
514 }
515 auto *NewStep = SE.getMulExpr(Step, SE.getConstant(Ty, StepMultiplier));
516 auto *ScaledOffset = SE.getMulExpr(Step, SE.getConstant(Ty, Offset));
517 auto *NewStart = SE.getAddExpr(Expr->getStart(), ScaledOffset);
518 return SE.getAddRecExpr(NewStart, NewStep, TheLoop, SCEV::FlagAnyWrap);
519 }
520
521 const SCEV *visit(const SCEV *S) {
522 if (CannotAnalyze || SE.isLoopInvariant(S, TheLoop))
523 return S;
525 }
526
527 const SCEV *visitUnknown(const SCEVUnknown *S) {
528 if (SE.isLoopInvariant(S, TheLoop))
529 return S;
530 // The value could vary across iterations.
531 CannotAnalyze = true;
532 return S;
533 }
534
535 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
536 // Could not analyze the expression.
537 CannotAnalyze = true;
538 return S;
539 }
540
541 static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
542 unsigned StepMultiplier, unsigned Offset,
543 Loop *TheLoop) {
544 /// Bail out if the expression does not contain an UDiv expression.
545 /// Uniform values which are not loop invariant require operations to strip
546 /// out the lowest bits. For now just look for UDivs and use it to avoid
547 /// re-writing UDIV-free expressions for other lanes to limit compile time.
548 if (!SCEVExprContains(S,
549 [](const SCEV *S) { return isa<SCEVUDivExpr>(S); }))
550 return SE.getCouldNotCompute();
551
552 SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
553 TheLoop);
554 const SCEV *Result = Rewriter.visit(S);
555
556 if (Rewriter.canAnalyze())
557 return Result;
558 return SE.getCouldNotCompute();
559 }
560};
561
562} // namespace
563
565 if (isInvariant(V))
566 return true;
567 if (VF.isScalable())
568 return false;
569 if (VF.isScalar())
570 return true;
571
572 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
573 // never considered uniform.
574 auto *SE = PSE.getSE();
575 if (!SE->isSCEVable(V->getType()))
576 return false;
577 const SCEV *S = SE->getSCEV(V);
578
579 // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
580 // lane 0 matches the expressions for all other lanes.
581 unsigned FixedVF = VF.getKnownMinValue();
582 const SCEV *FirstLaneExpr =
583 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, 0, TheLoop);
584 if (isa<SCEVCouldNotCompute>(FirstLaneExpr))
585 return false;
586
587 // Make sure the expressions for lanes FixedVF-1..1 match the expression for
588 // lane 0. We check lanes in reverse order for compile-time, as frequently
589 // checking the last lane is sufficient to rule out uniformity.
590 return all_of(reverse(seq<unsigned>(1, FixedVF)), [&](unsigned I) {
591 const SCEV *IthLaneExpr =
592 SCEVAddRecForUniformityRewriter::rewrite(S, *SE, FixedVF, I, TheLoop);
593 return FirstLaneExpr == IthLaneExpr;
594 });
595}
596
598 ElementCount VF) const {
600 if (!Ptr)
601 return false;
602 // Note: There's nothing inherent which prevents predicated loads and
603 // stores from being uniform. The current lowering simply doesn't handle
604 // it; in particular, the cost model distinguishes scatter/gather from
605 // scalar w/predication, and we currently rely on the scalar path.
606 return isUniform(Ptr, VF) && !blockNeedsPredication(I.getParent());
607}
608
609bool LoopVectorizationLegality::canVectorizeOuterLoop() {
610 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
611 // Store the result and return it at the end instead of exiting early, in case
612 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
613 bool Result = true;
614 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
615
616 for (BasicBlock *BB : TheLoop->blocks()) {
617 // Check whether the BB terminator is a BranchInst. Any other terminator is
618 // not supported yet.
619 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
620 if (!Br) {
621 reportVectorizationFailure("Unsupported basic block terminator",
622 "loop control flow is not understood by vectorizer",
623 "CFGNotUnderstood", ORE, TheLoop);
624 if (DoExtraAnalysis)
625 Result = false;
626 else
627 return false;
628 }
629
630 // Check whether the BranchInst is a supported one. Only unconditional
631 // branches, conditional branches with an outer loop invariant condition or
632 // backedges are supported.
633 // FIXME: We skip these checks when VPlan predication is enabled as we
634 // want to allow divergent branches. This whole check will be removed
635 // once VPlan predication is on by default.
636 if (Br && Br->isConditional() &&
637 !TheLoop->isLoopInvariant(Br->getCondition()) &&
638 !LI->isLoopHeader(Br->getSuccessor(0)) &&
639 !LI->isLoopHeader(Br->getSuccessor(1))) {
640 reportVectorizationFailure("Unsupported conditional branch",
641 "loop control flow is not understood by vectorizer",
642 "CFGNotUnderstood", ORE, TheLoop);
643 if (DoExtraAnalysis)
644 Result = false;
645 else
646 return false;
647 }
648 }
649
650 // Check whether inner loops are uniform. At this point, we only support
651 // simple outer loops scenarios with uniform nested loops.
652 if (!isUniformLoopNest(TheLoop /*loop nest*/,
653 TheLoop /*context outer loop*/)) {
654 reportVectorizationFailure("Outer loop contains divergent loops",
655 "loop control flow is not understood by vectorizer",
656 "CFGNotUnderstood", ORE, TheLoop);
657 if (DoExtraAnalysis)
658 Result = false;
659 else
660 return false;
661 }
662
663 // Check whether we are able to set up outer loop induction.
664 if (!setupOuterLoopInductions()) {
665 reportVectorizationFailure("Unsupported outer loop Phi(s)",
666 "Unsupported outer loop Phi(s)",
667 "UnsupportedPhi", ORE, TheLoop);
668 if (DoExtraAnalysis)
669 Result = false;
670 else
671 return false;
672 }
673
674 return Result;
675}
676
677void LoopVectorizationLegality::addInductionPhi(
678 PHINode *Phi, const InductionDescriptor &ID,
679 SmallPtrSetImpl<Value *> &AllowedExit) {
680 Inductions[Phi] = ID;
681
682 // In case this induction also comes with casts that we know we can ignore
683 // in the vectorized loop body, record them here. All casts could be recorded
684 // here for ignoring, but suffices to record only the first (as it is the
685 // only one that may bw used outside the cast sequence).
686 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
687 if (!Casts.empty())
688 InductionCastsToIgnore.insert(*Casts.begin());
689
690 Type *PhiTy = Phi->getType();
691 const DataLayout &DL = Phi->getDataLayout();
692
693 // Get the widest type.
694 if (!PhiTy->isFloatingPointTy()) {
695 if (!WidestIndTy)
696 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
697 else
698 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
699 }
700
701 // Int inductions are special because we only allow one IV.
702 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
703 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
704 isa<Constant>(ID.getStartValue()) &&
705 cast<Constant>(ID.getStartValue())->isNullValue()) {
706
707 // Use the phi node with the widest type as induction. Use the last
708 // one if there are multiple (no good reason for doing this other
709 // than it is expedient). We've checked that it begins at zero and
710 // steps by one, so this is a canonical induction variable.
711 if (!PrimaryInduction || PhiTy == WidestIndTy)
712 PrimaryInduction = Phi;
713 }
714
715 // Both the PHI node itself, and the "post-increment" value feeding
716 // back into the PHI node may have external users.
717 // We can allow those uses, except if the SCEVs we have for them rely
718 // on predicates that only hold within the loop, since allowing the exit
719 // currently means re-using this SCEV outside the loop (see PR33706 for more
720 // details).
721 if (PSE.getPredicate().isAlwaysTrue()) {
722 AllowedExit.insert(Phi);
723 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
724 }
725
726 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
727}
728
729bool LoopVectorizationLegality::setupOuterLoopInductions() {
730 BasicBlock *Header = TheLoop->getHeader();
731
732 // Returns true if a given Phi is a supported induction.
733 auto IsSupportedPhi = [&](PHINode &Phi) -> bool {
735 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
737 addInductionPhi(&Phi, ID, AllowedExit);
738 return true;
739 }
740 // Bail out for any Phi in the outer loop header that is not a supported
741 // induction.
743 dbgs() << "LV: Found unsupported PHI for outer loop vectorization.\n");
744 return false;
745 };
746
747 return llvm::all_of(Header->phis(), IsSupportedPhi);
748}
749
750/// Checks if a function is scalarizable according to the TLI, in
751/// the sense that it should be vectorized and then expanded in
752/// multiple scalar calls. This is represented in the
753/// TLI via mappings that do not specify a vector name, as in the
754/// following example:
755///
756/// const VecDesc VecIntrinsics[] = {
757/// {"llvm.phx.abs.i32", "", 4}
758/// };
759static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
760 const StringRef ScalarName = CI.getCalledFunction()->getName();
761 bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
762 // Check that all known VFs are not associated to a vector
763 // function, i.e. the vector name is emty.
764 if (Scalarize) {
765 ElementCount WidestFixedVF, WidestScalableVF;
766 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
768 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
769 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
771 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
772 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
773 assert((WidestScalableVF.isZero() || !Scalarize) &&
774 "Caller may decide to scalarize a variant using a scalable VF");
775 }
776 return Scalarize;
777}
778
779bool LoopVectorizationLegality::canVectorizeInstrs() {
780 BasicBlock *Header = TheLoop->getHeader();
781
782 // For each block in the loop.
783 for (BasicBlock *BB : TheLoop->blocks()) {
784 // Scan the instructions in the block and look for hazards.
785 for (Instruction &I : *BB) {
786 if (auto *Phi = dyn_cast<PHINode>(&I)) {
787 Type *PhiTy = Phi->getType();
788 // Check that this PHI type is allowed.
789 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
790 !PhiTy->isPointerTy()) {
791 reportVectorizationFailure("Found a non-int non-pointer PHI",
792 "loop control flow is not understood by vectorizer",
793 "CFGNotUnderstood", ORE, TheLoop);
794 return false;
795 }
796
797 // If this PHINode is not in the header block, then we know that we
798 // can convert it to select during if-conversion. No need to check if
799 // the PHIs in this block are induction or reduction variables.
800 if (BB != Header) {
801 // Non-header phi nodes that have outside uses can be vectorized. Add
802 // them to the list of allowed exits.
803 // Unsafe cyclic dependencies with header phis are identified during
804 // legalization for reduction, induction and fixed order
805 // recurrences.
806 AllowedExit.insert(&I);
807 continue;
808 }
809
810 // We only allow if-converted PHIs with exactly two incoming values.
811 if (Phi->getNumIncomingValues() != 2) {
812 reportVectorizationFailure("Found an invalid PHI",
813 "loop control flow is not understood by vectorizer",
814 "CFGNotUnderstood", ORE, TheLoop, Phi);
815 return false;
816 }
817
819 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
820 DT, PSE.getSE())) {
821 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
822 AllowedExit.insert(RedDes.getLoopExitInstr());
823 Reductions[Phi] = RedDes;
824 continue;
825 }
826
827 // We prevent matching non-constant strided pointer IVS to preserve
828 // historical vectorizer behavior after a generalization of the
829 // IVDescriptor code. The intent is to remove this check, but we
830 // have to fix issues around code quality for such loops first.
831 auto IsDisallowedStridedPointerInduction =
832 [](const InductionDescriptor &ID) {
834 return false;
835 return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
836 ID.getConstIntStepValue() == nullptr;
837 };
838
839 // TODO: Instead of recording the AllowedExit, it would be good to
840 // record the complementary set: NotAllowedExit. These include (but may
841 // not be limited to):
842 // 1. Reduction phis as they represent the one-before-last value, which
843 // is not available when vectorized
844 // 2. Induction phis and increment when SCEV predicates cannot be used
845 // outside the loop - see addInductionPhi
846 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
847 // outside the loop - see call to hasOutsideLoopUser in the non-phi
848 // handling below
849 // 4. FixedOrderRecurrence phis that can possibly be handled by
850 // extraction.
851 // By recording these, we can then reason about ways to vectorize each
852 // of these NotAllowedExit.
854 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID) &&
855 !IsDisallowedStridedPointerInduction(ID)) {
856 addInductionPhi(Phi, ID, AllowedExit);
857 Requirements->addExactFPMathInst(ID.getExactFPMathInst());
858 continue;
859 }
860
861 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
862 AllowedExit.insert(Phi);
863 FixedOrderRecurrences.insert(Phi);
864 continue;
865 }
866
867 // As a last resort, coerce the PHI to a AddRec expression
868 // and re-try classifying it a an induction PHI.
869 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true) &&
870 !IsDisallowedStridedPointerInduction(ID)) {
871 addInductionPhi(Phi, ID, AllowedExit);
872 continue;
873 }
874
875 reportVectorizationFailure("Found an unidentified PHI",
876 "value that could not be identified as "
877 "reduction is used outside the loop",
878 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
879 return false;
880 } // end of PHI handling
881
882 // We handle calls that:
883 // * Are debug info intrinsics.
884 // * Have a mapping to an IR intrinsic.
885 // * Have a vector version available.
886 auto *CI = dyn_cast<CallInst>(&I);
887
888 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
889 !isa<DbgInfoIntrinsic>(CI) &&
890 !(CI->getCalledFunction() && TLI &&
891 (!VFDatabase::getMappings(*CI).empty() ||
892 isTLIScalarize(*TLI, *CI)))) {
893 // If the call is a recognized math libary call, it is likely that
894 // we can vectorize it given loosened floating-point constraints.
896 bool IsMathLibCall =
897 TLI && CI->getCalledFunction() &&
898 CI->getType()->isFloatingPointTy() &&
899 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
900 TLI->hasOptimizedCodeGen(Func);
901
902 if (IsMathLibCall) {
903 // TODO: Ideally, we should not use clang-specific language here,
904 // but it's hard to provide meaningful yet generic advice.
905 // Also, should this be guarded by allowExtraAnalysis() and/or be part
906 // of the returned info from isFunctionVectorizable()?
908 "Found a non-intrinsic callsite",
909 "library call cannot be vectorized. "
910 "Try compiling with -fno-math-errno, -ffast-math, "
911 "or similar flags",
912 "CantVectorizeLibcall", ORE, TheLoop, CI);
913 } else {
914 reportVectorizationFailure("Found a non-intrinsic callsite",
915 "call instruction cannot be vectorized",
916 "CantVectorizeLibcall", ORE, TheLoop, CI);
917 }
918 return false;
919 }
920
921 // Some intrinsics have scalar arguments and should be same in order for
922 // them to be vectorized (i.e. loop invariant).
923 if (CI) {
924 auto *SE = PSE.getSE();
925 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
926 for (unsigned Idx = 0; Idx < CI->arg_size(); ++Idx)
928 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(Idx)),
929 TheLoop)) {
930 reportVectorizationFailure("Found unvectorizable intrinsic",
931 "intrinsic instruction cannot be vectorized",
932 "CantVectorizeIntrinsic", ORE, TheLoop, CI);
933 return false;
934 }
935 }
936 }
937
938 // If we found a vectorized variant of a function, note that so LV can
939 // make better decisions about maximum VF.
940 if (CI && !VFDatabase::getMappings(*CI).empty())
941 VecCallVariantsFound = true;
942
943 // Check that the instruction return type is vectorizable.
944 // Also, we can't vectorize extractelement instructions.
945 if ((!VectorType::isValidElementType(I.getType()) &&
946 !I.getType()->isVoidTy()) ||
947 isa<ExtractElementInst>(I)) {
948 reportVectorizationFailure("Found unvectorizable type",
949 "instruction return type cannot be vectorized",
950 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
951 return false;
952 }
953
954 // Check that the stored type is vectorizable.
955 if (auto *ST = dyn_cast<StoreInst>(&I)) {
956 Type *T = ST->getValueOperand()->getType();
958 reportVectorizationFailure("Store instruction cannot be vectorized",
959 "store instruction cannot be vectorized",
960 "CantVectorizeStore", ORE, TheLoop, ST);
961 return false;
962 }
963
964 // For nontemporal stores, check that a nontemporal vector version is
965 // supported on the target.
966 if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
967 // Arbitrarily try a vector of 2 elements.
968 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
969 assert(VecTy && "did not find vectorized version of stored type");
970 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
972 "nontemporal store instruction cannot be vectorized",
973 "nontemporal store instruction cannot be vectorized",
974 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
975 return false;
976 }
977 }
978
979 } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
980 if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
981 // For nontemporal loads, check that a nontemporal vector version is
982 // supported on the target (arbitrarily try a vector of 2 elements).
983 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
984 assert(VecTy && "did not find vectorized version of load type");
985 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
987 "nontemporal load instruction cannot be vectorized",
988 "nontemporal load instruction cannot be vectorized",
989 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
990 return false;
991 }
992 }
993
994 // FP instructions can allow unsafe algebra, thus vectorizable by
995 // non-IEEE-754 compliant SIMD units.
996 // This applies to floating-point math operations and calls, not memory
997 // operations, shuffles, or casts, as they don't change precision or
998 // semantics.
999 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
1000 !I.isFast()) {
1001 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1002 Hints->setPotentiallyUnsafe();
1003 }
1004
1005 // Reduction instructions are allowed to have exit users.
1006 // All other instructions must not have external users.
1007 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
1008 // We can safely vectorize loops where instructions within the loop are
1009 // used outside the loop only if the SCEV predicates within the loop is
1010 // same as outside the loop. Allowing the exit means reusing the SCEV
1011 // outside the loop.
1012 if (PSE.getPredicate().isAlwaysTrue()) {
1013 AllowedExit.insert(&I);
1014 continue;
1015 }
1016 reportVectorizationFailure("Value cannot be used outside the loop",
1017 "value cannot be used outside the loop",
1018 "ValueUsedOutsideLoop", ORE, TheLoop, &I);
1019 return false;
1020 }
1021 } // next instr.
1022 }
1023
1024 if (!PrimaryInduction) {
1025 if (Inductions.empty()) {
1026 reportVectorizationFailure("Did not find one integer induction var",
1027 "loop induction variable could not be identified",
1028 "NoInductionVariable", ORE, TheLoop);
1029 return false;
1030 }
1031 if (!WidestIndTy) {
1032 reportVectorizationFailure("Did not find one integer induction var",
1033 "integer loop induction variable could not be identified",
1034 "NoIntegerInductionVariable", ORE, TheLoop);
1035 return false;
1036 }
1037 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1038 }
1039
1040 // Now we know the widest induction type, check if our found induction
1041 // is the same size. If it's not, unset it here and InnerLoopVectorizer
1042 // will create another.
1043 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
1044 PrimaryInduction = nullptr;
1045
1046 return true;
1047}
1048
1049bool LoopVectorizationLegality::canVectorizeMemory() {
1050 LAI = &LAIs.getInfo(*TheLoop);
1051 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
1052 if (LAR) {
1053 ORE->emit([&]() {
1054 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
1055 "loop not vectorized: ", *LAR);
1056 });
1057 }
1058
1059 if (!LAI->canVectorizeMemory())
1060 return false;
1061
1063 reportVectorizationFailure("We don't allow storing to uniform addresses",
1064 "write to a loop invariant address could not "
1065 "be vectorized",
1066 "CantVectorizeStoreToLoopInvariantAddress", ORE,
1067 TheLoop);
1068 return false;
1069 }
1070
1071 // We can vectorize stores to invariant address when final reduction value is
1072 // guaranteed to be stored at the end of the loop. Also, if decision to
1073 // vectorize loop is made, runtime checks are added so as to make sure that
1074 // invariant address won't alias with any other objects.
1075 if (!LAI->getStoresToInvariantAddresses().empty()) {
1076 // For each invariant address, check if last stored value is unconditional
1077 // and the address is not calculated inside the loop.
1078 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1080 continue;
1081
1082 if (blockNeedsPredication(SI->getParent())) {
1084 "We don't allow storing to uniform addresses",
1085 "write of conditional recurring variant value to a loop "
1086 "invariant address could not be vectorized",
1087 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1088 return false;
1089 }
1090
1091 // Invariant address should be defined outside of loop. LICM pass usually
1092 // makes sure it happens, but in rare cases it does not, we do not want
1093 // to overcomplicate vectorization to support this case.
1094 if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
1095 if (TheLoop->contains(Ptr)) {
1097 "Invariant address is calculated inside the loop",
1098 "write to a loop invariant address could not "
1099 "be vectorized",
1100 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1101 return false;
1102 }
1103 }
1104 }
1105
1107 // For each invariant address, check its last stored value is the result
1108 // of one of our reductions.
1109 //
1110 // We do not check if dependence with loads exists because that is already
1111 // checked via hasLoadStoreDependenceInvolvingLoopInvariantAddress.
1112 ScalarEvolution *SE = PSE.getSE();
1113 SmallVector<StoreInst *, 4> UnhandledStores;
1114 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1116 // Earlier stores to this address are effectively deadcode.
1117 // With opaque pointers it is possible for one pointer to be used with
1118 // different sizes of stored values:
1119 // store i32 0, ptr %x
1120 // store i8 0, ptr %x
1121 // The latest store doesn't complitely overwrite the first one in the
1122 // example. That is why we have to make sure that types of stored
1123 // values are same.
1124 // TODO: Check that bitwidth of unhandled store is smaller then the
1125 // one that overwrites it and add a test.
1126 erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
1127 return storeToSameAddress(SE, SI, I) &&
1128 I->getValueOperand()->getType() ==
1129 SI->getValueOperand()->getType();
1130 });
1131 continue;
1132 }
1133 UnhandledStores.push_back(SI);
1134 }
1135
1136 bool IsOK = UnhandledStores.empty();
1137 // TODO: we should also validate against InvariantMemSets.
1138 if (!IsOK) {
1140 "We don't allow storing to uniform addresses",
1141 "write to a loop invariant address could not "
1142 "be vectorized",
1143 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1144 return false;
1145 }
1146 }
1147 }
1148
1149 PSE.addPredicate(LAI->getPSE().getPredicate());
1150 return true;
1151}
1152
1154 bool EnableStrictReductions) {
1155
1156 // First check if there is any ExactFP math or if we allow reassociations
1157 if (!Requirements->getExactFPInst() || Hints->allowReordering())
1158 return true;
1159
1160 // If the above is false, we have ExactFPMath & do not allow reordering.
1161 // If the EnableStrictReductions flag is set, first check if we have any
1162 // Exact FP induction vars, which we cannot vectorize.
1163 if (!EnableStrictReductions ||
1164 any_of(getInductionVars(), [&](auto &Induction) -> bool {
1165 InductionDescriptor IndDesc = Induction.second;
1166 return IndDesc.getExactFPMathInst();
1167 }))
1168 return false;
1169
1170 // We can now only vectorize if all reductions with Exact FP math also
1171 // have the isOrdered flag set, which indicates that we can move the
1172 // reduction operations in-loop.
1173 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1174 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1175 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1176 }));
1177}
1178
1180 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1181 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1182 return RdxDesc.IntermediateStore == SI;
1183 });
1184}
1185
1187 return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1188 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1189 if (!RdxDesc.IntermediateStore)
1190 return false;
1191
1192 ScalarEvolution *SE = PSE.getSE();
1193 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1194 return V == InvariantAddress ||
1195 SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1196 });
1197}
1198
1200 Value *In0 = const_cast<Value *>(V);
1201 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1202 if (!PN)
1203 return false;
1204
1205 return Inductions.count(PN);
1206}
1207
1208const InductionDescriptor *
1210 if (!isInductionPhi(Phi))
1211 return nullptr;
1212 auto &ID = getInductionVars().find(Phi)->second;
1213 if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1215 return &ID;
1216 return nullptr;
1217}
1218
1219const InductionDescriptor *
1221 if (!isInductionPhi(Phi))
1222 return nullptr;
1223 auto &ID = getInductionVars().find(Phi)->second;
1225 return &ID;
1226 return nullptr;
1227}
1228
1230 const Value *V) const {
1231 auto *Inst = dyn_cast<Instruction>(V);
1232 return (Inst && InductionCastsToIgnore.count(Inst));
1233}
1234
1237}
1238
1240 const PHINode *Phi) const {
1241 return FixedOrderRecurrences.count(Phi);
1242}
1243
1245 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1246}
1247
1248bool LoopVectorizationLegality::blockCanBePredicated(
1249 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1250 SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
1251 for (Instruction &I : *BB) {
1252 // We can predicate blocks with calls to assume, as long as we drop them in
1253 // case we flatten the CFG via predication.
1254 if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1255 MaskedOp.insert(&I);
1256 continue;
1257 }
1258
1259 // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1260 // TODO: there might be cases that it should block the vectorization. Let's
1261 // ignore those for now.
1262 if (isa<NoAliasScopeDeclInst>(&I))
1263 continue;
1264
1265 // We can allow masked calls if there's at least one vector variant, even
1266 // if we end up scalarizing due to the cost model calculations.
1267 // TODO: Allow other calls if they have appropriate attributes... readonly
1268 // and argmemonly?
1269 if (CallInst *CI = dyn_cast<CallInst>(&I))
1271 MaskedOp.insert(CI);
1272 continue;
1273 }
1274
1275 // Loads are handled via masking (or speculated if safe to do so.)
1276 if (auto *LI = dyn_cast<LoadInst>(&I)) {
1277 if (!SafePtrs.count(LI->getPointerOperand()))
1278 MaskedOp.insert(LI);
1279 continue;
1280 }
1281
1282 // Predicated store requires some form of masking:
1283 // 1) masked store HW instruction,
1284 // 2) emulation via load-blend-store (only if safe and legal to do so,
1285 // be aware on the race conditions), or
1286 // 3) element-by-element predicate check and scalar store.
1287 if (auto *SI = dyn_cast<StoreInst>(&I)) {
1288 MaskedOp.insert(SI);
1289 continue;
1290 }
1291
1292 if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1293 return false;
1294 }
1295
1296 return true;
1297}
1298
1299bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1300 if (!EnableIfConversion) {
1301 reportVectorizationFailure("If-conversion is disabled",
1302 "if-conversion is disabled",
1303 "IfConversionDisabled",
1304 ORE, TheLoop);
1305 return false;
1306 }
1307
1308 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1309
1310 // A list of pointers which are known to be dereferenceable within scope of
1311 // the loop body for each iteration of the loop which executes. That is,
1312 // the memory pointed to can be dereferenced (with the access size implied by
1313 // the value's type) unconditionally within the loop header without
1314 // introducing a new fault.
1315 SmallPtrSet<Value *, 8> SafePointers;
1316
1317 // Collect safe addresses.
1318 for (BasicBlock *BB : TheLoop->blocks()) {
1319 if (!blockNeedsPredication(BB)) {
1320 for (Instruction &I : *BB)
1321 if (auto *Ptr = getLoadStorePointerOperand(&I))
1322 SafePointers.insert(Ptr);
1323 continue;
1324 }
1325
1326 // For a block which requires predication, a address may be safe to access
1327 // in the loop w/o predication if we can prove dereferenceability facts
1328 // sufficient to ensure it'll never fault within the loop. For the moment,
1329 // we restrict this to loads; stores are more complicated due to
1330 // concurrency restrictions.
1331 ScalarEvolution &SE = *PSE.getSE();
1332 for (Instruction &I : *BB) {
1333 LoadInst *LI = dyn_cast<LoadInst>(&I);
1334 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1335 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC))
1336 SafePointers.insert(LI->getPointerOperand());
1337 }
1338 }
1339
1340 // Collect the blocks that need predication.
1341 for (BasicBlock *BB : TheLoop->blocks()) {
1342 // We don't support switch statements inside loops.
1343 if (!isa<BranchInst>(BB->getTerminator())) {
1344 reportVectorizationFailure("Loop contains a switch statement",
1345 "loop contains a switch statement",
1346 "LoopContainsSwitch", ORE, TheLoop,
1347 BB->getTerminator());
1348 return false;
1349 }
1350
1351 // We must be able to predicate all blocks that need to be predicated.
1352 if (blockNeedsPredication(BB) &&
1353 !blockCanBePredicated(BB, SafePointers, MaskedOp)) {
1355 "Control flow cannot be substituted for a select",
1356 "control flow cannot be substituted for a select", "NoCFGForSelect",
1357 ORE, TheLoop, BB->getTerminator());
1358 return false;
1359 }
1360 }
1361
1362 // We can if-convert this loop.
1363 return true;
1364}
1365
1366// Helper function to canVectorizeLoopNestCFG.
1367bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1368 bool UseVPlanNativePath) {
1369 assert((UseVPlanNativePath || Lp->isInnermost()) &&
1370 "VPlan-native path is not enabled.");
1371
1372 // TODO: ORE should be improved to show more accurate information when an
1373 // outer loop can't be vectorized because a nested loop is not understood or
1374 // legal. Something like: "outer_loop_location: loop not vectorized:
1375 // (inner_loop_location) loop control flow is not understood by vectorizer".
1376
1377 // Store the result and return it at the end instead of exiting early, in case
1378 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1379 bool Result = true;
1380 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1381
1382 // We must have a loop in canonical form. Loops with indirectbr in them cannot
1383 // be canonicalized.
1384 if (!Lp->getLoopPreheader()) {
1385 reportVectorizationFailure("Loop doesn't have a legal pre-header",
1386 "loop control flow is not understood by vectorizer",
1387 "CFGNotUnderstood", ORE, TheLoop);
1388 if (DoExtraAnalysis)
1389 Result = false;
1390 else
1391 return false;
1392 }
1393
1394 // We must have a single backedge.
1395 if (Lp->getNumBackEdges() != 1) {
1396 reportVectorizationFailure("The loop must have a single backedge",
1397 "loop control flow is not understood by vectorizer",
1398 "CFGNotUnderstood", ORE, TheLoop);
1399 if (DoExtraAnalysis)
1400 Result = false;
1401 else
1402 return false;
1403 }
1404
1405 return Result;
1406}
1407
1408bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1409 Loop *Lp, bool UseVPlanNativePath) {
1410 // Store the result and return it at the end instead of exiting early, in case
1411 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1412 bool Result = true;
1413 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1414 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1415 if (DoExtraAnalysis)
1416 Result = false;
1417 else
1418 return false;
1419 }
1420
1421 // Recursively check whether the loop control flow of nested loops is
1422 // understood.
1423 for (Loop *SubLp : *Lp)
1424 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1425 if (DoExtraAnalysis)
1426 Result = false;
1427 else
1428 return false;
1429 }
1430
1431 return Result;
1432}
1433
1434bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1435 // Store the result and return it at the end instead of exiting early, in case
1436 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1437 bool Result = true;
1438
1439 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1440 // Check whether the loop-related control flow in the loop nest is expected by
1441 // vectorizer.
1442 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1443 if (DoExtraAnalysis)
1444 Result = false;
1445 else
1446 return false;
1447 }
1448
1449 // We need to have a loop header.
1450 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1451 << '\n');
1452
1453 // Specific checks for outer loops. We skip the remaining legal checks at this
1454 // point because they don't support outer loops.
1455 if (!TheLoop->isInnermost()) {
1456 assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1457
1458 if (!canVectorizeOuterLoop()) {
1459 reportVectorizationFailure("Unsupported outer loop",
1460 "unsupported outer loop",
1461 "UnsupportedOuterLoop",
1462 ORE, TheLoop);
1463 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1464 // outer loops.
1465 return false;
1466 }
1467
1468 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1469 return Result;
1470 }
1471
1472 assert(TheLoop->isInnermost() && "Inner loop expected.");
1473 // Check if we can if-convert non-single-bb loops.
1474 unsigned NumBlocks = TheLoop->getNumBlocks();
1475 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1476 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1477 if (DoExtraAnalysis)
1478 Result = false;
1479 else
1480 return false;
1481 }
1482
1483 // Check if we can vectorize the instructions and CFG in this loop.
1484 if (!canVectorizeInstrs()) {
1485 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1486 if (DoExtraAnalysis)
1487 Result = false;
1488 else
1489 return false;
1490 }
1491
1492 // Go over each instruction and look at memory deps.
1493 if (!canVectorizeMemory()) {
1494 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1495 if (DoExtraAnalysis)
1496 Result = false;
1497 else
1498 return false;
1499 }
1500
1501 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
1502 reportVectorizationFailure("could not determine number of loop iterations",
1503 "could not determine number of loop iterations",
1504 "CantComputeNumberOfIterations", ORE, TheLoop);
1505 if (DoExtraAnalysis)
1506 Result = false;
1507 else
1508 return false;
1509 }
1510
1511 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1513 ? " (with a runtime bound check)"
1514 : "")
1515 << "!\n");
1516
1517 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1518 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1519 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1520
1521 if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1522 reportVectorizationFailure("Too many SCEV checks needed",
1523 "Too many SCEV assumptions need to be made and checked at runtime",
1524 "TooManySCEVRunTimeChecks", ORE, TheLoop);
1525 if (DoExtraAnalysis)
1526 Result = false;
1527 else
1528 return false;
1529 }
1530
1531 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1532 // we can vectorize, and at this point we don't have any other mem analysis
1533 // which may limit our maximum vectorization factor, so just return true with
1534 // no restrictions.
1535 return Result;
1536}
1537
1539
1540 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1541
1542 SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1543
1544 for (const auto &Reduction : getReductionVars())
1545 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1546
1547 // TODO: handle non-reduction outside users when tail is folded by masking.
1548 for (auto *AE : AllowedExit) {
1549 // Check that all users of allowed exit values are inside the loop or
1550 // are the live-out of a reduction.
1551 if (ReductionLiveOuts.count(AE))
1552 continue;
1553 for (User *U : AE->users()) {
1554 Instruction *UI = cast<Instruction>(U);
1555 if (TheLoop->contains(UI))
1556 continue;
1557 LLVM_DEBUG(
1558 dbgs()
1559 << "LV: Cannot fold tail by masking, loop has an outside user for "
1560 << *UI << "\n");
1561 return false;
1562 }
1563 }
1564
1565 for (const auto &Entry : getInductionVars()) {
1566 PHINode *OrigPhi = Entry.first;
1567 for (User *U : OrigPhi->users()) {
1568 auto *UI = cast<Instruction>(U);
1569 if (!TheLoop->contains(UI)) {
1570 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an "
1571 "outside user for "
1572 << *UI << "\n");
1573 return false;
1574 }
1575 }
1576 }
1577
1578 // The list of pointers that we can safely read and write to remains empty.
1579 SmallPtrSet<Value *, 8> SafePointers;
1580
1581 // Check all blocks for predication, including those that ordinarily do not
1582 // need predication such as the header block.
1584 for (BasicBlock *BB : TheLoop->blocks()) {
1585 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp)) {
1586 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking.\n");
1587 return false;
1588 }
1589 }
1590
1591 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1592
1593 return true;
1594}
1595
1597 // The list of pointers that we can safely read and write to remains empty.
1598 SmallPtrSet<Value *, 8> SafePointers;
1599
1600 // Mark all blocks for predication, including those that ordinarily do not
1601 // need predication such as the header block.
1602 for (BasicBlock *BB : TheLoop->blocks()) {
1603 [[maybe_unused]] bool R = blockCanBePredicated(BB, SafePointers, MaskedOp);
1604 assert(R && "Must be able to predicate block when tail-folding.");
1605 }
1606}
1607
1608} // namespace llvm
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:686
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
std::string Name
#define DEBUG_TYPE
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:512
loop Loop Strength Reduction
static cl::opt< LoopVectorizeHints::ScalableForceKind > ForceScalableVectorization("scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), cl::Hidden, cl::desc("Control whether the compiler can use scalable vectors to " "vectorize a loop"), cl::values(clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", "Scalable vectorization is disabled."), clEnumValN(LoopVectorizeHints::SK_PreferScalable, "preferred", "Scalable vectorization is available and favored when the " "cost is inconclusive."), clEnumValN(LoopVectorizeHints::SK_PreferScalable, "on", "Scalable vectorization is available and favored when the " "cost is inconclusive.")))
#define LV_NAME
static cl::opt< unsigned > PragmaVectorizeSCEVCheckThreshold("pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed with a " "vectorize(enable) pragma"))
static const unsigned MaxInterleaveFactor
Maximum vectorization interleave count.
static cl::opt< bool > AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(false), cl::Hidden, cl::desc("Enable recognition of non-constant strided " "pointer induction variables."))
static cl::opt< unsigned > VectorizeSCEVCheckThreshold("vectorize-scev-check-threshold", cl::init(16), cl::Hidden, cl::desc("The maximum number of SCEV checks allowed."))
static cl::opt< bool > EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, cl::desc("Enable if-conversion during vectorization."))
This file defines the LoopVectorizationLegality class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define H(x, y, z)
Definition: MD5.cpp:57
if(VerifyEach)
static bool rewrite(Function &F)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This pass exposes codegen information to IR-level passes.
Virtual Register Rewriter
Definition: VirtRegMap.cpp:237
static const uint32_t IV[8]
Definition: blake3_impl.h:78
Class for arbitrary precision integers.
Definition: APInt.h:78
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:209
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:229
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1465
This class represents a function call, abstracting a target machine's calling convention.
static ConstantAsMetadata * get(Constant *C)
Definition: Metadata.h:528
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
static constexpr ElementCount getScalable(ScalarTy MinVal)
Definition: TypeSize.h:314
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition: TypeSize.h:311
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:322
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:692
A struct for saving information about induction variables.
@ IK_FpInduction
Floating point induction variable.
@ IK_PtrInduction
Pointer induction var. Step = C.
@ IK_IntInduction
Integer induction variable. Step = C.
static bool isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr=nullptr, SmallVectorImpl< Instruction * > *CastsToIgnore=nullptr)
Returns true if Phi is an induction in the loop L.
Instruction * getExactFPMathInst()
Returns floating-point induction operator that does not allow reassociation (transforming the inducti...
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:174
Value * getPointerOperand()
Definition: Instructions.h:253
const LoopAccessInfo & getInfo(Loop &L)
ArrayRef< StoreInst * > getStoresToInvariantAddresses() const
Return the list of stores to invariant addresses.
const OptimizationRemarkAnalysis * getReport() const
The diagnostics report generated for the analysis.
const RuntimePointerChecking * getRuntimePointerChecking() const
bool canVectorizeMemory() const
Return true we can analyze the memory accesses in the loop and there are no memory dependence cycles.
bool isInvariant(Value *V) const
Returns true if value V is loop invariant.
bool hasLoadStoreDependenceInvolvingLoopInvariantAddress() const
Return true if the loop has memory dependence involving a load and a store to an invariant address,...
const PredicatedScalarEvolution & getPSE() const
Used to add runtime SCEV checks.
static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, DominatorTree *DT)
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
const DenseMap< Value *, const SCEV * > & getSymbolicStrides() const
If an access has a symbolic strides, this maps the pointer value to the stride symbol.
bool hasStoreStoreDependenceInvolvingLoopInvariantAddress() const
Return true if the loop has memory dependence involving two stores to an invariant address,...
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
unsigned getNumBlocks() const
Get the number of blocks in this loop in constant time.
unsigned getNumBackEdges() const
Calculate the number of back edges to the loop header.
BlockT * getHeader() const
iterator_range< block_iterator > blocks() const
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
bool isLoopHeader(const BlockT *BB) const
bool isInvariantStoreOfReduction(StoreInst *SI)
Returns True if given store is a final invariant store of one of the reductions found in the loop.
bool isInvariantAddressOfReduction(Value *V)
Returns True if given address is invariant and is used to store recurrent expression.
bool blockNeedsPredication(BasicBlock *BB) const
Return true if the block BB needs to be predicated in order for the loop to be vectorized.
bool canVectorize(bool UseVPlanNativePath)
Returns true if it is legal to vectorize this loop.
int isConsecutivePtr(Type *AccessTy, Value *Ptr) const
Check if this pointer is consecutive when vectorizing.
bool canVectorizeFPMath(bool EnableStrictReductions)
Returns true if it is legal to vectorize the FP math operations in this loop.
bool isFixedOrderRecurrence(const PHINode *Phi) const
Returns True if Phi is a fixed-order recurrence in this loop.
const InductionDescriptor * getPointerInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is pointer induction.
const InductionDescriptor * getIntOrFpInductionDescriptor(PHINode *Phi) const
Returns a pointer to the induction descriptor, if Phi is an integer or floating point induction.
bool isInductionPhi(const Value *V) const
Returns True if V is a Phi node of an induction variable in this loop.
bool isUniform(Value *V, ElementCount VF) const
Returns true if value V is uniform across VF lanes, when VF is provided, and otherwise if V is invari...
const InductionList & getInductionVars() const
Returns the induction variables found in the loop.
bool isInvariant(Value *V) const
Returns true if V is invariant across all loop iterations according to SCEV.
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
bool canFoldTailByMasking() const
Return true if we can vectorize this loop while folding its tail by masking.
void prepareToFoldTailByMasking()
Mark all respective loads/stores for masking.
bool isUniformMemOp(Instruction &I, ElementCount VF) const
A uniform memory op is a load or store which accesses the same memory location on all VF lanes,...
bool isInductionVariable(const Value *V) const
Returns True if V can be considered as an induction variable in this loop.
bool isCastedInductionVariable(const Value *V) const
Returns True if V is a cast that is part of an induction def-use chain, and had been proven to be red...
void addExactFPMathInst(Instruction *I)
Track the 1st floating-point instruction that can not be reassociated.
@ SK_PreferScalable
Vectorize loops using scalable vectors or fixed-width vectors, but favor scalable vectors when the co...
@ SK_FixedWidthOnly
Disables vectorization with scalable vectors.
bool allowVectorization(Function *F, Loop *L, bool VectorizeOnlyWhenForced) const
bool allowReordering() const
When enabling loop hints are provided we allow the vectorizer to change the order of operations that ...
void emitRemarkWithHints() const
Dumps all the hint information.
void setAlreadyVectorized()
Mark the loop L as already vectorized by setting the width to 1.
LoopVectorizeHints(const Loop *L, bool InterleaveOnlyWhenForced, OptimizationRemarkEmitter &ORE, const TargetTransformInfo *TTI=nullptr)
const char * vectorizeAnalysisPassName() const
If hints are provided that force vectorization, use the AlwaysPrint pass name to force the frontend t...
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
DebugLoc getStartLoc() const
Return the debug location of the start of this loop.
Definition: LoopInfo.cpp:632
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
Definition: LoopInfo.cpp:61
void setLoopID(MDNode *LoopID) const
Set the llvm.loop loop id metadata for this loop.
Definition: LoopInfo.cpp:526
PHINode * getCanonicalInductionVariable() const
Check to see if the loop has a canonical induction variable: an integer recurrence that starts at 0 a...
Definition: LoopInfo.cpp:151
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
Definition: LoopInfo.cpp:502
Metadata node.
Definition: Metadata.h:1067
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1428
ArrayRef< MDOperand > operands() const
Definition: Metadata.h:1426
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1541
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1434
Tracking metadata reference owned by Metadata.
Definition: Metadata.h:889
A single uniqued string.
Definition: Metadata.h:720
StringRef getString() const
Definition: Metadata.cpp:610
static MDString * get(LLVMContext &Context, StringRef Str)
Definition: Metadata.cpp:600
size_type count(const KeyT &Key) const
Definition: MapVector.h:165
iterator find(const KeyT &Key)
Definition: MapVector.h:167
bool empty() const
Definition: MapVector.h:79
Root of the metadata hierarchy.
Definition: Metadata.h:62
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
bool allowExtraAnalysis(StringRef PassName) const
Whether we allow for extra compile-time budget to perform more analysis to produce fewer false positi...
void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
const SCEVPredicate & getPredicate() const
const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Definition: IVDescriptors.h:71
Instruction * getExactFPMathInst() const
Returns 1st non-reassociative FP instruction in the PHI node's use-chain.
static bool isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, DominatorTree *DT)
Returns true if Phi is a fixed-order recurrence.
bool hasExactFPMath() const
Returns true if the recurrence has floating-point math that requires precise (ordered) operations.
Instruction * getLoopExitInstr() const
static bool isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes, DemandedBits *DB=nullptr, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr, ScalarEvolution *SE=nullptr)
Returns true if Phi is a reduction in TheLoop.
bool isOrdered() const
Expose an ordered FP reduction to the instance users.
StoreInst * IntermediateStore
Reductions may store temporary or final result to an invariant address.
bool Need
This flag indicates if we need to add the runtime check.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
virtual unsigned getComplexity() const
Returns the estimated complexity of this predicate.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This visitor recursively visits a SCEV expression and re-writes it.
const SCEV * visit(const SCEV *S)
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents an analyzed expression in the program.
The main scalar evolution driver.
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
const SCEV * getCouldNotCompute()
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:323
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:412
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:344
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:479
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:290
Value * getPointerOperand()
Definition: Instructions.h:377
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
static constexpr size_t npos
Definition: StringRef.h:52
Provides information about what library functions are available for the current target.
bool hasOptimizedCodeGen(LibFunc F) const
Tests if the function is both available and a candidate for optimized code generation.
void getWidestVF(StringRef ScalarF, ElementCount &FixedVF, ElementCount &ScalableVF) const
Returns the largest vectorization factor used in the list of vector functions.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
bool isFunctionVectorizable(StringRef F, const ElementCount &VF) const
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
bool isLegalNTLoad(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal load.
bool isLegalNTStore(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal store.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
std::string str() const
Return the twine contents as a std::string.
Definition: Twine.cpp:17
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:265
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:255
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:129
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition: Type.h:185
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
static bool hasMaskedVariant(const CallInst &CI, std::optional< ElementCount > VF=std::nullopt)
Definition: VectorUtils.h:82
static SmallVector< VFInfo, 8 > getMappings(const CallInst &CI)
Retrieve all the VFInfo instances associated to the CallInst CI.
Definition: VectorUtils.h:71
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
iterator_range< user_iterator > users()
Definition: Value.h:421
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Definition: Type.cpp:683
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:232
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:168
constexpr bool isZero() const
Definition: TypeSize.h:156
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:711
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
NodeAddr< PhiNode * > Phi
Definition: RDFGraph.h:390
NodeAddr< FuncNode * > Func
Definition: RDFGraph.h:393
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI)
Returns intrinsic ID for call.
cl::opt< bool > HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, cl::desc("Allow enabling loop hints to reorder " "FP operations during vectorization."))
static Type * getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
static Type * convertPointerToIntegerType(const DataLayout &DL, Type *Ty)
static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp)
bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
static bool isUniformLoop(Loop *Lp, Loop *OuterLp)
bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:291
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
bool isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L, ScalarEvolution &SE, DominatorTree &DT, AssumptionCache *AC=nullptr)
Return true if we can prove that the given load (which is assumed to be within the specified loop) wo...
Definition: Loads.cpp:262
static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, SmallPtrSetImpl< Value * > &AllowedExit)
Check that the instruction has outside loop users and is not an identified reduction variable.
static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, StoreInst *B)
Returns true if A and B have same pointer operands or same SCEVs addresses.
void reportVectorizationFailure(const StringRef DebugMsg, const StringRef OREMsg, const StringRef ORETag, OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I=nullptr)
Reports a vectorization failure: print DebugMsg for debugging purposes along with the corresponding o...
llvm::MDNode * makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID, llvm::ArrayRef< llvm::StringRef > RemovePrefixes, llvm::ArrayRef< llvm::MDNode * > AddAttrs)
Create a new LoopID after the loop has been transformed.
Definition: LoopInfo.cpp:1158
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:2051
bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx)
Identifies if the vector form of the intrinsic has a scalar operand.
static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI)
Checks if a function is scalarizable according to the TLI, in the sense that it should be vectorized ...
bool SCEVExprContains(const SCEV *Root, PredTy Pred)
Return true if any node in Root satisfies the predicate Pred.
An object of this class is returned by queries that could not be answered.
TODO: The following VectorizationFactor was pulled out of LoopVectorizationCostModel class.
Collection of parameters shared beetween the Loop Vectorizer and the Loop Access Analysis.
static const unsigned MaxVectorWidth
Maximum SIMD width.
static bool isInterleaveForced()
True if force-vector-interleave was specified by the user.
static unsigned VectorizationInterleave
Interleave factor as overridden by the user.