LLVM 20.0.0git
VirtRegMap.cpp
Go to the documentation of this file.
1//===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the VirtRegMap class.
10//
11// It also contains implementations of the Spiller interface, which, given a
12// virtual register map and a machine function, eliminates all virtual
13// references by replacing them with physical register references - adding spill
14// code as necessary.
15//
16//===----------------------------------------------------------------------===//
17
20#include "llvm/ADT/Statistic.h"
38#include "llvm/Config/llvm-config.h"
39#include "llvm/MC/LaneBitmask.h"
40#include "llvm/Pass.h"
42#include "llvm/Support/Debug.h"
44#include <cassert>
45#include <iterator>
46#include <utility>
47
48using namespace llvm;
49
50#define DEBUG_TYPE "regalloc"
51
52STATISTIC(NumSpillSlots, "Number of spill slots allocated");
53STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
54
55//===----------------------------------------------------------------------===//
56// VirtRegMap implementation
57//===----------------------------------------------------------------------===//
58
59char VirtRegMap::ID = 0;
60
61INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
62
63bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
64 MRI = &mf.getRegInfo();
65 TII = mf.getSubtarget().getInstrInfo();
66 TRI = mf.getSubtarget().getRegisterInfo();
67 MF = &mf;
68
69 Virt2PhysMap.clear();
70 Virt2StackSlotMap.clear();
71 Virt2SplitMap.clear();
72 Virt2ShapeMap.clear();
73
74 grow();
75 return false;
76}
77
79 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
80 Virt2PhysMap.resize(NumRegs);
81 Virt2StackSlotMap.resize(NumRegs);
82 Virt2SplitMap.resize(NumRegs);
83}
84
86 assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
87 assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
88 "attempt to assign physical register to already mapped "
89 "virtual register");
90 assert(!getRegInfo().isReserved(physReg) &&
91 "Attempt to map virtReg to a reserved physReg");
92 Virt2PhysMap[virtReg.id()] = physReg;
93}
94
95unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
96 unsigned Size = TRI->getSpillSize(*RC);
97 Align Alignment = TRI->getSpillAlign(*RC);
98 // Set preferred alignment if we are still able to realign the stack
99 auto &ST = MF->getSubtarget();
100 Align CurrentAlign = ST.getFrameLowering()->getStackAlign();
101 if (Alignment > CurrentAlign && !ST.getRegisterInfo()->canRealignStack(*MF)) {
102 Alignment = CurrentAlign;
103 }
104 int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
105 ++NumSpillSlots;
106 return SS;
107}
108
110 Register Hint = MRI->getSimpleHint(VirtReg);
111 if (!Hint.isValid())
112 return false;
113 if (Hint.isVirtual())
114 Hint = getPhys(Hint);
115 return Register(getPhys(VirtReg)) == Hint;
116}
117
119 std::pair<unsigned, Register> Hint = MRI->getRegAllocationHint(VirtReg);
120 if (Hint.second.isPhysical())
121 return true;
122 if (Hint.second.isVirtual())
123 return hasPhys(Hint.second);
124 return false;
125}
126
128 assert(virtReg.isVirtual());
129 assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
130 "attempt to assign stack slot to already spilled register");
131 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
132 return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
133}
134
136 assert(virtReg.isVirtual());
137 assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
138 "attempt to assign stack slot to already spilled register");
139 assert((SS >= 0 ||
140 (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
141 "illegal fixed frame index");
142 Virt2StackSlotMap[virtReg.id()] = SS;
143}
144
146 OS << "********** REGISTER MAP **********\n";
147 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
149 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
150 OS << '[' << printReg(Reg, TRI) << " -> "
151 << printReg(Virt2PhysMap[Reg], TRI) << "] "
152 << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
153 }
154 }
155
156 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
158 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
159 OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
160 << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
161 }
162 }
163 OS << '\n';
164}
165
166#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
168 print(dbgs());
169}
170#endif
171
172//===----------------------------------------------------------------------===//
173// VirtRegRewriter
174//===----------------------------------------------------------------------===//
175//
176// The VirtRegRewriter is the last of the register allocator passes.
177// It rewrites virtual registers to physical registers as specified in the
178// VirtRegMap analysis. It also updates live-in information on basic blocks
179// according to LiveIntervals.
180//
181namespace {
182
183class VirtRegRewriter : public MachineFunctionPass {
184 MachineFunction *MF = nullptr;
185 const TargetRegisterInfo *TRI = nullptr;
186 const TargetInstrInfo *TII = nullptr;
187 MachineRegisterInfo *MRI = nullptr;
188 SlotIndexes *Indexes = nullptr;
189 LiveIntervals *LIS = nullptr;
190 VirtRegMap *VRM = nullptr;
191 LiveDebugVariables *DebugVars = nullptr;
192 DenseSet<Register> RewriteRegs;
193 bool ClearVirtRegs;
194
195 void rewrite();
196 void addMBBLiveIns();
197 bool readsUndefSubreg(const MachineOperand &MO) const;
198 void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const;
199 void handleIdentityCopy(MachineInstr &MI);
200 void expandCopyBundle(MachineInstr &MI) const;
201 bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;
202
203public:
204 static char ID;
205 VirtRegRewriter(bool ClearVirtRegs_ = true) :
207 ClearVirtRegs(ClearVirtRegs_) {}
208
209 void getAnalysisUsage(AnalysisUsage &AU) const override;
210
211 bool runOnMachineFunction(MachineFunction&) override;
212
213 MachineFunctionProperties getSetProperties() const override {
214 if (ClearVirtRegs) {
216 MachineFunctionProperties::Property::NoVRegs);
217 }
218
220 }
221};
222
223} // end anonymous namespace
224
225char VirtRegRewriter::ID = 0;
226
227char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
228
229INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
230 "Virtual Register Rewriter", false, false)
237 "Virtual Register Rewriter", false, false)
238
239void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
240 AU.setPreservesCFG();
241 AU.addRequired<LiveIntervalsWrapperPass>();
242 AU.addPreserved<LiveIntervalsWrapperPass>();
243 AU.addRequired<SlotIndexesWrapperPass>();
244 AU.addPreserved<SlotIndexesWrapperPass>();
245 AU.addRequired<LiveDebugVariables>();
246 AU.addRequired<LiveStacks>();
247 AU.addPreserved<LiveStacks>();
248 AU.addRequired<VirtRegMap>();
249
250 if (!ClearVirtRegs)
251 AU.addPreserved<LiveDebugVariables>();
252
254}
255
256bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
257 MF = &fn;
259 TII = MF->getSubtarget().getInstrInfo();
260 MRI = &MF->getRegInfo();
261 Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI();
262 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
263 VRM = &getAnalysis<VirtRegMap>();
264 DebugVars = &getAnalysis<LiveDebugVariables>();
265 LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
266 << "********** Function: " << MF->getName() << '\n');
267 LLVM_DEBUG(VRM->dump());
268
269 // Add kill flags while we still have virtual registers.
270 LIS->addKillFlags(VRM);
271
272 // Live-in lists on basic blocks are required for physregs.
273 addMBBLiveIns();
274
275 // Rewrite virtual registers.
276 rewrite();
277
278 if (ClearVirtRegs) {
279 // Write out new DBG_VALUE instructions.
280
281 // We only do this if ClearVirtRegs is specified since this should be the
282 // final run of the pass and we don't want to emit them multiple times.
283 DebugVars->emitDebugValues(VRM);
284
285 // All machine operands and other references to virtual registers have been
286 // replaced. Remove the virtual registers and release all the transient data.
287 VRM->clearAllVirt();
288 MRI->clearVirtRegs();
289 }
290
291 return true;
292}
293
294void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
295 MCRegister PhysReg) const {
296 assert(!LI.empty());
297 assert(LI.hasSubRanges());
298
299 using SubRangeIteratorPair =
300 std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
301
305 for (const LiveInterval::SubRange &SR : LI.subranges()) {
306 SubRanges.push_back(std::make_pair(&SR, SR.begin()));
307 if (!First.isValid() || SR.segments.front().start < First)
308 First = SR.segments.front().start;
309 if (!Last.isValid() || SR.segments.back().end > Last)
310 Last = SR.segments.back().end;
311 }
312
313 // Check all mbb start positions between First and Last while
314 // simultaneously advancing an iterator for each subrange.
316 MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
317 SlotIndex MBBBegin = MBBI->first;
318 // Advance all subrange iterators so that their end position is just
319 // behind MBBBegin (or the iterator is at the end).
320 LaneBitmask LaneMask;
321 for (auto &RangeIterPair : SubRanges) {
322 const LiveInterval::SubRange *SR = RangeIterPair.first;
323 LiveInterval::const_iterator &SRI = RangeIterPair.second;
324 while (SRI != SR->end() && SRI->end <= MBBBegin)
325 ++SRI;
326 if (SRI == SR->end())
327 continue;
328 if (SRI->start <= MBBBegin)
329 LaneMask |= SR->LaneMask;
330 }
331 if (LaneMask.none())
332 continue;
333 MachineBasicBlock *MBB = MBBI->second;
334 MBB->addLiveIn(PhysReg, LaneMask);
335 }
336}
337
338// Compute MBB live-in lists from virtual register live ranges and their
339// assignments.
340void VirtRegRewriter::addMBBLiveIns() {
341 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
343 if (MRI->reg_nodbg_empty(VirtReg))
344 continue;
345 LiveInterval &LI = LIS->getInterval(VirtReg);
346 if (LI.empty() || LIS->intervalIsInOneMBB(LI))
347 continue;
348 // This is a virtual register that is live across basic blocks. Its
349 // assigned PhysReg must be marked as live-in to those blocks.
350 Register PhysReg = VRM->getPhys(VirtReg);
351 if (PhysReg == VirtRegMap::NO_PHYS_REG) {
352 // There may be no physical register assigned if only some register
353 // classes were already allocated.
354 assert(!ClearVirtRegs && "Unmapped virtual register");
355 continue;
356 }
357
358 if (LI.hasSubRanges()) {
359 addLiveInsForSubRanges(LI, PhysReg);
360 } else {
361 // Go over MBB begin positions and see if we have segments covering them.
362 // The following works because segments and the MBBIndex list are both
363 // sorted by slot indexes.
365 for (const auto &Seg : LI) {
366 I = Indexes->getMBBLowerBound(I, Seg.start);
367 for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
368 MachineBasicBlock *MBB = I->second;
369 MBB->addLiveIn(PhysReg);
370 }
371 }
372 }
373 }
374
375 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
376 // each MBB's LiveIns set before calling addLiveIn on them.
377 for (MachineBasicBlock &MBB : *MF)
379}
380
381/// Returns true if the given machine operand \p MO only reads undefined lanes.
382/// The function only works for use operands with a subregister set.
383bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
384 // Shortcut if the operand is already marked undef.
385 if (MO.isUndef())
386 return true;
387
388 Register Reg = MO.getReg();
389 const LiveInterval &LI = LIS->getInterval(Reg);
390 const MachineInstr &MI = *MO.getParent();
391 SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
392 // This code is only meant to handle reading undefined subregisters which
393 // we couldn't properly detect before.
394 assert(LI.liveAt(BaseIndex) &&
395 "Reads of completely dead register should be marked undef already");
396 unsigned SubRegIdx = MO.getSubReg();
397 assert(SubRegIdx != 0 && LI.hasSubRanges());
398 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
399 // See if any of the relevant subregister liveranges is defined at this point.
400 for (const LiveInterval::SubRange &SR : LI.subranges()) {
401 if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
402 return false;
403 }
404 return true;
405}
406
407void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) {
408 if (!MI.isIdentityCopy())
409 return;
410 LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
411 ++NumIdCopies;
412
413 Register DstReg = MI.getOperand(0).getReg();
414
415 // We may have deferred allocation of the virtual register, and the rewrite
416 // regs code doesn't handle the liveness update.
417 if (DstReg.isVirtual())
418 return;
419
420 RewriteRegs.insert(DstReg);
421
422 // Copies like:
423 // %r0 = COPY undef %r0
424 // %al = COPY %al, implicit-def %eax
425 // give us additional liveness information: The target (super-)register
426 // must not be valid before this point. Replace the COPY with a KILL
427 // instruction to maintain this information.
428 if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
429 MI.setDesc(TII->get(TargetOpcode::KILL));
430 LLVM_DEBUG(dbgs() << " replace by: " << MI);
431 return;
432 }
433
434 if (Indexes)
436 MI.eraseFromBundle();
437 LLVM_DEBUG(dbgs() << " deleted.\n");
438}
439
440/// The liverange splitting logic sometimes produces bundles of copies when
441/// subregisters are involved. Expand these into a sequence of copy instructions
442/// after processing the last in the bundle. Does not update LiveIntervals
443/// which we shouldn't need for this instruction anymore.
444void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
445 if (!MI.isCopy() && !MI.isKill())
446 return;
447
448 if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
450
451 // Only do this when the complete bundle is made out of COPYs and KILLs.
452 MachineBasicBlock &MBB = *MI.getParent();
454 std::next(MI.getReverseIterator()), E = MBB.instr_rend();
455 I != E && I->isBundledWithSucc(); ++I) {
456 if (!I->isCopy() && !I->isKill())
457 return;
458 MIs.push_back(&*I);
459 }
460 MachineInstr *FirstMI = MIs.back();
461
462 auto anyRegsAlias = [](const MachineInstr *Dst,
464 const TargetRegisterInfo *TRI) {
465 for (const MachineInstr *Src : Srcs)
466 if (Src != Dst)
467 if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
468 Src->getOperand(1).getReg()))
469 return true;
470 return false;
471 };
472
473 // If any of the destination registers in the bundle of copies alias any of
474 // the source registers, try to schedule the instructions to avoid any
475 // clobbering.
476 for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
477 for (int I = E; I--; )
478 if (!anyRegsAlias(MIs[I], ArrayRef(MIs).take_front(E), TRI)) {
479 if (I + 1 != E)
480 std::swap(MIs[I], MIs[E - 1]);
481 --E;
482 }
483 if (PrevE == E) {
484 MF->getFunction().getContext().emitError(
485 "register rewriting failed: cycle in copy bundle");
486 break;
487 }
488 }
489
490 MachineInstr *BundleStart = FirstMI;
491 for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
492 // If instruction is in the middle of the bundle, move it before the
493 // bundle starts, otherwise, just unbundle it. When we get to the last
494 // instruction, the bundle will have been completely undone.
495 if (BundledMI != BundleStart) {
496 BundledMI->removeFromBundle();
497 MBB.insert(BundleStart, BundledMI);
498 } else if (BundledMI->isBundledWithSucc()) {
499 BundledMI->unbundleFromSucc();
500 BundleStart = &*std::next(BundledMI->getIterator());
501 }
502
503 if (Indexes && BundledMI != FirstMI)
504 Indexes->insertMachineInstrInMaps(*BundledMI);
505 }
506 }
507}
508
509/// Check whether (part of) \p SuperPhysReg is live through \p MI.
510/// \pre \p MI defines a subregister of a virtual register that
511/// has been assigned to \p SuperPhysReg.
512bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
513 MCRegister SuperPhysReg) const {
514 SlotIndex MIIndex = LIS->getInstructionIndex(MI);
515 SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
516 SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
517 for (MCRegUnit Unit : TRI->regunits(SuperPhysReg)) {
518 const LiveRange &UnitRange = LIS->getRegUnit(Unit);
519 // If the regunit is live both before and after MI,
520 // we assume it is live through.
521 // Generally speaking, this is not true, because something like
522 // "RU = op RU" would match that description.
523 // However, we know that we are trying to assess whether
524 // a def of a virtual reg, vreg, is live at the same time of RU.
525 // If we are in the "RU = op RU" situation, that means that vreg
526 // is defined at the same time as RU (i.e., "vreg, RU = op RU").
527 // Thus, vreg and RU interferes and vreg cannot be assigned to
528 // SuperPhysReg. Therefore, this situation cannot happen.
529 if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
530 return true;
531 }
532 return false;
533}
534
535void VirtRegRewriter::rewrite() {
536 bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
537 SmallVector<Register, 8> SuperDeads;
538 SmallVector<Register, 8> SuperDefs;
539 SmallVector<Register, 8> SuperKills;
540
541 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
542 MBBI != MBBE; ++MBBI) {
543 LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
545 for (MachineOperand &MO : MI.operands()) {
546 // Make sure MRI knows about registers clobbered by regmasks.
547 if (MO.isRegMask())
548 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
549
550 if (!MO.isReg() || !MO.getReg().isVirtual())
551 continue;
552 Register VirtReg = MO.getReg();
553 MCRegister PhysReg = VRM->getPhys(VirtReg);
554 if (PhysReg == VirtRegMap::NO_PHYS_REG)
555 continue;
556
557 assert(Register(PhysReg).isPhysical());
558
559 RewriteRegs.insert(PhysReg);
560 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
561
562 // Preserve semantics of sub-register operands.
563 unsigned SubReg = MO.getSubReg();
564 if (SubReg != 0) {
565 if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
566 // A virtual register kill refers to the whole register, so we may
567 // have to add implicit killed operands for the super-register. A
568 // partial redef always kills and redefines the super-register.
569 if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
570 (MO.isDef() && subRegLiveThrough(MI, PhysReg)))
571 SuperKills.push_back(PhysReg);
572
573 if (MO.isDef()) {
574 // Also add implicit defs for the super-register.
575 if (MO.isDead())
576 SuperDeads.push_back(PhysReg);
577 else
578 SuperDefs.push_back(PhysReg);
579 }
580 } else {
581 if (MO.isUse()) {
582 if (readsUndefSubreg(MO))
583 // We need to add an <undef> flag if the subregister is
584 // completely undefined (and we are not adding super-register
585 // defs).
586 MO.setIsUndef(true);
587 } else if (!MO.isDead()) {
588 assert(MO.isDef());
589 }
590 }
591
592 // The def undef and def internal flags only make sense for
593 // sub-register defs, and we are substituting a full physreg. An
594 // implicit killed operand from the SuperKills list will represent the
595 // partial read of the super-register.
596 if (MO.isDef()) {
597 MO.setIsUndef(false);
598 MO.setIsInternalRead(false);
599 }
600
601 // PhysReg operands cannot have subregister indexes.
602 PhysReg = TRI->getSubReg(PhysReg, SubReg);
603 assert(PhysReg.isValid() && "Invalid SubReg for physical register");
604 MO.setSubReg(0);
605 }
606 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
607 // we need the inlining here.
608 MO.setReg(PhysReg);
609 MO.setIsRenamable(true);
610 }
611
612 // Add any missing super-register kills after rewriting the whole
613 // instruction.
614 while (!SuperKills.empty())
615 MI.addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
616
617 while (!SuperDeads.empty())
618 MI.addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
619
620 while (!SuperDefs.empty())
621 MI.addRegisterDefined(SuperDefs.pop_back_val(), TRI);
622
623 LLVM_DEBUG(dbgs() << "> " << MI);
624
625 expandCopyBundle(MI);
626
627 // We can remove identity copies right now.
628 handleIdentityCopy(MI);
629 }
630 }
631
632 if (LIS) {
633 // Don't bother maintaining accurate LiveIntervals for registers which were
634 // already allocated.
635 for (Register PhysReg : RewriteRegs) {
636 for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
637 LIS->removeRegUnit(Unit);
638 }
639 }
640 }
641
642 RewriteRegs.clear();
643}
644
646 return new VirtRegRewriter(ClearVirtRegs);
647}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator MBBI
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:533
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Size
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
A common definition of LaneBitmask for use in TableGen and CodeGen.
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
static bool rewrite(Function &F)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
virtregrewriter
Definition: VirtRegMap.cpp:236
Represent the analysis usage information of a pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
void emitDebugValues(VirtRegMap *VRM)
emitDebugValues - Emit new DBG_VALUE instructions reflecting the changes that happened during registe...
A live range for subregisters.
Definition: LiveInterval.h:694
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
bool hasSubRanges() const
Returns true if subregister liveness information is available.
Definition: LiveInterval.h:810
iterator_range< subrange_iterator > subranges()
Definition: LiveInterval.h:782
void addKillFlags(const VirtRegMap *)
Add kill flags to any instruction that kills a virtual register.
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
LiveRange & getRegUnit(unsigned Unit)
Return the live range for register unit Unit.
LiveInterval & getInterval(Register Reg)
MachineBasicBlock * intervalIsInOneMBB(const LiveInterval &LI) const
If LI is confined to a single basic block, return a pointer to that block.
void removeRegUnit(unsigned Unit)
Remove computed live range for register unit Unit.
This class represents the liveness of a register, stack slot, etc.
Definition: LiveInterval.h:157
bool liveAt(SlotIndex index) const
Definition: LiveInterval.h:401
bool empty() const
Definition: LiveInterval.h:382
iterator end()
Definition: LiveInterval.h:216
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
constexpr bool isValid() const
Definition: MCRegister.h:81
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
void sortUniqueLiveIns()
Sorts and uniques the LiveIns vector.
void print(raw_ostream &OS, const SlotIndexes *=nullptr, bool IsStandalone=true) const
reverse_instr_iterator instr_rend()
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
Instructions::reverse_iterator reverse_instr_iterator
int CreateSpillStackObject(uint64_t Size, Align Alignment)
Create a new statically sized stack object that represents a spill slot, returning a nonnegative iden...
int getObjectIndexBegin() const
Return the minimum frame object index.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineInstr * removeFromBundle()
Unlink this instruction from its basic block and return it without deleting it.
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
void setIsInternalRead(bool Val=true)
bool readsReg() const
readsReg - Returns true if this operand reads the previous value of its register.
void setIsRenamable(bool Val=true)
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isRegMask() const
isRegMask - Tests if this is a MO_RegisterMask operand.
void setReg(Register Reg)
Change the register this operand corresponds to.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
const uint32_t * getRegMask() const
getRegMask - Returns a bit mask of registers preserved by this RegMask operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register getSimpleHint(Register VReg) const
getSimpleHint - same as getRegAllocationHint except it will only return a target independent hint.
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
std::pair< unsigned, Register > getRegAllocationHint(Register VReg) const
getRegAllocationHint - Return the register allocation hint for the specified virtual register.
unsigned getNumVirtRegs() const
getNumVirtRegs - Return the number of virtual registers created.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
Definition: Register.h:84
constexpr bool isValid() const
Definition: Register.h:116
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
static constexpr bool isPhysicalRegister(unsigned Reg)
Return true if the specified register number is in the physical register namespace.
Definition: Register.h:65
constexpr unsigned id() const
Definition: Register.h:103
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:65
SlotIndex getBoundaryIndex() const
Returns the boundary index for associated with this index.
Definition: SlotIndexes.h:231
SlotIndex getBaseIndex() const
Returns the base index for associated with this index.
Definition: SlotIndexes.h:224
SlotIndexes pass.
Definition: SlotIndexes.h:297
SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late=false)
Insert the given machine instruction into the mapping.
Definition: SlotIndexes.h:531
MBBIndexIterator getMBBLowerBound(MBBIndexIterator Start, SlotIndex Idx) const
Get an iterator pointing to the first IdxMBBPair with SlotIndex greater than or equal to Idx.
Definition: SlotIndexes.h:486
void removeSingleMachineInstrFromMaps(MachineInstr &MI)
Removes a single machine instruction MI from the mapping.
MBBIndexIterator MBBIndexBegin() const
Returns an iterator for the begin of the idx2MBBMap.
Definition: SlotIndexes.h:505
MBBIndexIterator MBBIndexEnd() const
Return an iterator for the end of the idx2MBBMap.
Definition: SlotIndexes.h:510
SmallVectorImpl< IdxMBBPair >::const_iterator MBBIndexIterator
Iterator over the idx2MBBMap (sorted pairs of slot index of basic block begin and basic block)
Definition: SlotIndexes.h:481
bool empty() const
Definition: SmallVector.h:94
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
TargetInstrInfo - Interface to description of machine instruction set.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Align getSpillAlign(const TargetRegisterClass &RC) const
Return the minimum required alignment in bytes for a spill slot for a register of this class.
unsigned getSpillSize(const TargetRegisterClass &RC) const
Return the size in bytes of the stack slot allocated to hold a spilled copy of a register from class ...
const char * getRegClassName(const TargetRegisterClass *Class) const
Returns the name of the register class.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetInstrInfo * getInstrInfo() const
bool hasKnownPreference(Register VirtReg) const
returns true if VirtReg has a known preferred register.
Definition: VirtRegMap.cpp:118
int assignVirt2StackSlot(Register virtReg)
create a mapping for the specifed virtual register to the next available stack slot
Definition: VirtRegMap.cpp:127
void clearAllVirt()
clears all virtual to physical register mappings
Definition: VirtRegMap.h:139
bool hasPreferredPhys(Register VirtReg) const
returns true if VirtReg is assigned to its preferred physreg.
Definition: VirtRegMap.cpp:109
void print(raw_ostream &OS, const Module *M=nullptr) const override
print - Print out the internal state of the pass.
Definition: VirtRegMap.cpp:145
void dump() const
Definition: VirtRegMap.cpp:167
MachineRegisterInfo & getRegInfo() const
Definition: VirtRegMap.h:92
static char ID
Definition: VirtRegMap.h:72
MCRegister getPhys(Register virtReg) const
returns the physical register mapped to the specified virtual register
Definition: VirtRegMap.h:105
bool hasPhys(Register virtReg) const
returns true if the specified virtual register is mapped to a physical register
Definition: VirtRegMap.h:99
void assignVirt2Phys(Register virtReg, MCPhysReg physReg)
creates a mapping for the specified virtual register to the specified physical register
Definition: VirtRegMap.cpp:85
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Reg
All possible values of the reg field in the ModR/M byte.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
char & VirtRegRewriterID
VirtRegRewriter pass.
Definition: VirtRegMap.cpp:227
FunctionPass * createVirtRegRewriter(bool ClearVirtRegs=true)
Definition: VirtRegMap.cpp:645
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
constexpr bool none() const
Definition: LaneBitmask.h:52