28#define DEBUG_TYPE "instcombine"
30STATISTIC(NumDeadStore,
"Number of dead stores eliminated");
31STATISTIC(NumGlobalCopies,
"Number of allocas copied from constant global");
34 "instcombine-max-copied-from-constant-users",
cl::init(300),
35 cl::desc(
"Maximum users to visit in copy from constant transform"),
57 while (!Worklist.
empty()) {
59 if (!Visited.
insert(Elem).second)
64 const auto [
Value, IsOffset] = Elem;
70 if (!LI->isSimple())
return false;
96 if (
Call->isCallee(&U))
99 unsigned DataOpNo =
Call->getDataOperandNo(&U);
100 bool IsArgOperand =
Call->isArgOperand(&U);
103 if (IsArgOperand &&
Call->isInAllocaArgument(DataOpNo))
109 bool NoCapture =
Call->doesNotCapture(DataOpNo);
111 (
Call->onlyReadsMemory() ||
Call->onlyReadsMemory(DataOpNo)))
116 if (
I->isLifetimeStartOrEnd()) {
117 assert(
I->use_empty() &&
"Lifetime markers have no result to use!");
129 if (
MI->isVolatile())
134 if (U.getOperandNo() == 1)
138 if (TheCopy)
return false;
142 if (IsOffset)
return false;
145 if (U.getOperandNo() != 0)
return false;
198 if (
C->getValue().getActiveBits() <= 64) {
236class PointerReplacer {
238 PointerReplacer(InstCombinerImpl &IC, Instruction &Root,
unsigned SrcAS)
239 : IC(IC), Root(Root), FromAS(SrcAS) {}
242 void replacePointer(
Value *V);
246 Value *getReplacement(
Value *V)
const {
return WorkMap.lookup(V); }
248 return I == &Root || UsersToReplace.contains(
I);
251 bool isEqualOrValidAddrSpaceCast(
const Instruction *
I,
252 unsigned FromAS)
const {
256 unsigned ToAS = ASC->getDestAddressSpace();
257 return (FromAS == ToAS) || IC.isValidAddrSpaceCast(FromAS, ToAS);
260 SmallSetVector<Instruction *, 32> UsersToReplace;
261 MapVector<Value *, Value *> WorkMap;
262 InstCombinerImpl &IC;
268bool PointerReplacer::collectUsers() {
270 SmallSetVector<Instruction *, 32> ValuesToRevisit;
272 auto PushUsersToWorklist = [&](
Instruction *Inst) {
273 for (
auto *U : Inst->users())
279 auto TryPushInstOperand = [&](
Instruction *InstOp) {
280 if (!UsersToReplace.contains(InstOp)) {
281 if (!ValuesToRevisit.
insert(InstOp))
288 PushUsersToWorklist(&Root);
289 while (!Worklist.
empty()) {
292 if (
Load->isVolatile())
294 UsersToReplace.insert(Load);
299 bool IsReplaceable =
all_of(
PHI->incoming_values(),
300 [](
Value *V) { return isa<Instruction>(V); });
301 if (IsReplaceable &&
all_of(
PHI->incoming_values(), [&](
Value *V) {
302 return isAvailable(cast<Instruction>(V));
304 UsersToReplace.insert(
PHI);
305 PushUsersToWorklist(
PHI);
312 if (!IsReplaceable || !ValuesToRevisit.
insert(
PHI))
318 for (
unsigned Idx = 0; Idx <
PHI->getNumIncomingValues(); ++Idx) {
325 if (!TrueInst || !FalseInst)
329 UsersToReplace.insert(SI);
330 PushUsersToWorklist(SI);
337 if (!TryPushInstOperand(TrueInst) || !TryPushInstOperand(FalseInst))
344 UsersToReplace.insert(
GEP);
345 PushUsersToWorklist(
GEP);
350 if (!TryPushInstOperand(PtrOp))
353 if (
MI->isVolatile())
355 UsersToReplace.insert(Inst);
356 }
else if (isEqualOrValidAddrSpaceCast(Inst, FromAS)) {
357 UsersToReplace.insert(Inst);
358 PushUsersToWorklist(Inst);
364 LLVM_DEBUG(
dbgs() <<
"Cannot handle pointer user: " << *Inst <<
'\n');
372void PointerReplacer::replacePointer(
Value *V) {
377 SetVector<Instruction *> PostOrderWorklist;
378 SmallPtrSet<Instruction *, 32> Visited;
382 while (!Worklist.
empty()) {
387 if (Visited.
insert(
I).second) {
388 for (
auto *U :
I->users()) {
390 if (UsersToReplace.contains(UserInst) && !Visited.
contains(UserInst))
402 for (Instruction *
I :
reverse(PostOrderWorklist))
406void PointerReplacer::replace(Instruction *
I) {
407 if (getReplacement(
I))
411 auto *
V = getReplacement(
LT->getPointerOperand());
412 assert(V &&
"Operand not replaced");
413 auto *NewI =
new LoadInst(
LT->getType(), V,
"",
LT->isVolatile(),
414 LT->getAlign(),
LT->getOrdering(),
415 LT->getSyncScopeID());
424 WorkMap[NewI] = NewI;
428 Value *
V = WorkMap.lookup(
PHI->getIncomingValue(0));
429 PHI->mutateType(V ?
V->getType() :
PHI->getIncomingValue(0)->getType());
430 for (
unsigned int I = 0;
I <
PHI->getNumIncomingValues(); ++
I) {
431 Value *
V = WorkMap.lookup(
PHI->getIncomingValue(
I));
432 PHI->setIncomingValue(
I, V ? V :
PHI->getIncomingValue(
I));
436 auto *
V = getReplacement(
GEP->getPointerOperand());
437 assert(V &&
"Operand not replaced");
438 SmallVector<Value *, 8> Indices(
GEP->indices());
443 NewI->setNoWrapFlags(
GEP->getNoWrapFlags());
446 Value *TrueValue =
SI->getTrueValue();
447 Value *FalseValue =
SI->getFalseValue();
448 if (
Value *Replacement = getReplacement(TrueValue))
449 TrueValue = Replacement;
450 if (
Value *Replacement = getReplacement(FalseValue))
451 FalseValue = Replacement;
453 SI->getName(),
nullptr, SI);
458 auto *DestV = MemCpy->getRawDest();
459 auto *SrcV = MemCpy->getRawSource();
461 if (
auto *DestReplace = getReplacement(DestV))
463 if (
auto *SrcReplace = getReplacement(SrcV))
468 MemCpy->getIntrinsicID(), DestV, MemCpy->getDestAlign(), SrcV,
469 MemCpy->getSourceAlign(), MemCpy->getLength(), MemCpy->isVolatile());
472 NewI->setAAMetadata(AAMD);
475 WorkMap[MemCpy] = NewI;
477 auto *
V = getReplacement(ASC->getPointerOperand());
478 assert(V &&
"Operand not replaced");
479 assert(isEqualOrValidAddrSpaceCast(
480 ASC,
V->getType()->getPointerAddressSpace()) &&
481 "Invalid address space cast!");
483 if (
V->getType()->getPointerAddressSpace() !=
484 ASC->getType()->getPointerAddressSpace()) {
485 auto *NewI =
new AddrSpaceCastInst(V, ASC->getType(),
"");
517 if (&*FirstInst != &AI) {
524 .getKnownMinValue() != 0) {
547 Value *TheSrc = Copy->getSource();
550 TheSrc, AllocaAlign,
DL, &AI, &
AC, &
DT);
551 if (AllocaAlign <= SourceAlign &&
556 LLVM_DEBUG(
dbgs() <<
"Found alloca equal to global: " << AI <<
'\n');
569 PointerReplacer PtrReplacer(*
this, AI, SrcAddrSpace);
570 if (PtrReplacer.collectUsers()) {
574 PtrReplacer.replacePointer(TheSrc);
587 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
600 const Twine &Suffix) {
602 "can't fold an atomic load to requested type");
618 "can't fold an atomic store of requested type");
620 Value *Ptr =
SI.getPointerOperand();
622 SI.getAllMetadata(MD);
627 for (
const auto &MDPair : MD) {
628 unsigned ID = MDPair.first;
639 case LLVMContext::MD_dbg:
640 case LLVMContext::MD_DIAssignID:
641 case LLVMContext::MD_tbaa:
642 case LLVMContext::MD_prof:
643 case LLVMContext::MD_fpmath:
644 case LLVMContext::MD_tbaa_struct:
645 case LLVMContext::MD_alias_scope:
646 case LLVMContext::MD_noalias:
647 case LLVMContext::MD_nontemporal:
648 case LLVMContext::MD_mem_parallel_loop_access:
649 case LLVMContext::MD_access_group:
653 case LLVMContext::MD_invariant_load:
654 case LLVMContext::MD_nonnull:
655 case LLVMContext::MD_noundef:
656 case LLVMContext::MD_range:
657 case LLVMContext::MD_align:
658 case LLVMContext::MD_dereferenceable:
659 case LLVMContext::MD_dereferenceable_or_null:
689 if (!Load.isUnordered())
692 if (Load.use_empty())
696 if (Load.getPointerOperand()->isSwiftError())
702 if (Load.hasOneUse()) {
705 Type *LoadTy = Load.getType();
708 if (BC->getType()->isX86_AMXTy())
713 Type *DestTy = CastUser->getDestTy();
737 if (!
T->isAggregateType())
744 auto NumElements = ST->getNumElements();
745 if (NumElements == 1) {
750 NewLoad->
copyMetadata(LI, LLVMContext::MD_invariant_load);
758 auto *SL =
DL.getStructLayout(ST);
760 if (SL->hasPadding())
765 auto *IdxType =
DL.getIndexType(Addr->getType());
768 for (
unsigned i = 0; i < NumElements; i++) {
773 ST->getElementType(i), Ptr,
779 L->copyMetadata(LI, LLVMContext::MD_invariant_load);
788 auto *ET = AT->getElementType();
789 auto NumElements = AT->getNumElements();
790 if (NumElements == 1) {
810 auto *Zero = ConstantInt::get(IdxType, 0);
814 for (
uint64_t i = 0; i < NumElements; i++) {
815 Value *Indices[2] = {
817 ConstantInt::get(IdxType, i),
823 EltAlign, Name +
".unpack");
849 P =
P->stripPointerCasts();
866 if (GA->isInterposable())
875 std::optional<TypeSize> AllocSize = AI->getAllocationSize(
DL);
876 if (!AllocSize || AllocSize->isScalable() ||
877 AllocSize->getFixedValue() > MaxSize)
883 if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
886 uint64_t InitSize =
DL.getTypeAllocSize(GV->getValueType());
887 if (InitSize > MaxSize)
893 }
while (!Worklist.
empty());
937 Idx = FirstNZIdx(GEPI);
951 if (!AllocTy || !AllocTy->
isSized())
954 uint64_t TyAllocSize =
DL.getTypeAllocSize(AllocTy).getFixedValue();
960 auto IsAllNonNegative = [&]() {
961 for (
unsigned i = Idx+1, e = GEPI->
getNumOperands(); i != e; ++i) {
995 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
1008 auto *Ptr =
SI.getPointerOperand();
1010 Ptr = GEPI->getOperand(0);
1017 const Value *GEPI0 = GEPI->getOperand(0);
1029Value *InstCombinerImpl::simplifyNonNullOperand(
Value *V,
1030 bool HasDereferenceable,
1034 return Sel->getOperand(2);
1037 return Sel->getOperand(1);
1040 if (!
V->hasOneUse())
1048 if (HasDereferenceable ||
GEP->isInBounds()) {
1049 if (
auto *Res = simplifyNonNullOperand(
GEP->getPointerOperand(),
1050 HasDereferenceable,
Depth + 1)) {
1051 replaceOperand(*
GEP, 0, Res);
1060 for (Use &U :
PHI->incoming_values()) {
1062 if (
auto *Res = simplifyNonNullOperand(
U.get(), HasDereferenceable,
1095 bool IsLoadCSE =
false;
1118 if (
Op->hasOneUse()) {
1141 Alignment,
DL,
SI) &&
1143 Alignment,
DL,
SI)) {
1145 auto MaybeCastedLoadOperand = [&](
Value *
Op) {
1148 Op->getName() +
".cast");
1151 Value *LoadOp1 = MaybeCastedLoadOperand(
SI->getOperand(1));
1155 Value *LoadOp2 = MaybeCastedLoadOperand(
SI->getOperand(2));
1173 if (
Value *V = simplifyNonNullOperand(
Op,
true))
1199 auto *W =
E->getVectorOperand();
1205 if (!CI ||
IV->getNumIndices() != 1 || CI->getZExtValue() != *
IV->idx_begin())
1207 V =
IV->getAggregateOperand();
1213 auto *VT = V->getType();
1216 if (
DL.getTypeStoreSizeInBits(UT) !=
DL.getTypeStoreSizeInBits(VT)) {
1226 for (
const auto *EltT : ST->elements()) {
1227 if (EltT != UT->getElementType())
1257 if (!
SI.isUnordered())
1261 if (
SI.getPointerOperand()->isSwiftError())
1264 Value *V =
SI.getValueOperand();
1268 assert(!BC->getType()->isX86_AMXTy() &&
1269 "store to x86_amx* should not happen!");
1270 V = BC->getOperand(0);
1273 if (V->getType()->isX86_AMXTy())
1298 Value *V =
SI.getValueOperand();
1299 Type *
T = V->getType();
1301 if (!
T->isAggregateType())
1306 unsigned Count = ST->getNumElements();
1316 auto *SL =
DL.getStructLayout(ST);
1318 if (SL->hasPadding())
1321 const auto Align =
SI.getAlign();
1325 auto *Addr =
SI.getPointerOperand();
1327 AddrName +=
".repack";
1329 auto *IdxType =
DL.getIndexType(Addr->getType());
1330 for (
unsigned i = 0; i <
Count; i++) {
1346 auto NumElements = AT->getNumElements();
1347 if (NumElements == 1) {
1361 TypeSize EltSize =
DL.getTypeAllocSize(AT->getElementType());
1362 const auto Align =
SI.getAlign();
1366 auto *Addr =
SI.getPointerOperand();
1368 AddrName +=
".repack";
1371 auto *Zero = ConstantInt::get(IdxType, 0);
1374 for (
uint64_t i = 0; i < NumElements; i++) {
1375 Value *Indices[2] = {
1377 ConstantInt::get(IdxType, i),
1404 if (
A ==
B)
return true;
1424 Value *Val =
SI.getOperand(0);
1425 Value *Ptr =
SI.getOperand(1);
1441 if (!
SI.isUnordered())
return nullptr;
1450 if (
GEP->getOperand(0)->hasOneUse())
1466 for (
unsigned ScanInsts = 6; BBI !=
SI.getParent()->begin() && ScanInsts;
1471 if (BBI->isDebugOrPseudoInst()) {
1478 if (PrevSI->isUnordered() &&
1480 PrevSI->getValueOperand()->getType() ==
1481 SI.getValueOperand()->getType()) {
1498 assert(
SI.isUnordered() &&
"can't eliminate ordering operation");
1508 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1540 if (
Value *V = simplifyNonNullOperand(Ptr,
true))
1552 if (!
SI.isUnordered())
1563 if (*PredIter == StoreBB)
1569 if (StoreBB == DestBB || OtherBB == DestBB)
1575 if (!OtherBr || BBI == OtherBB->
begin())
1578 auto OtherStoreIsMergeable = [&](
StoreInst *OtherStore) ->
bool {
1580 OtherStore->getPointerOperand() !=
SI.getPointerOperand())
1583 auto *SIVTy =
SI.getValueOperand()->getType();
1584 auto *OSVTy = OtherStore->getValueOperand()->getType();
1586 SI.hasSameSpecialState(OtherStore);
1595 while (BBI->isDebugOrPseudoInst()) {
1596 if (BBI==OtherBB->
begin())
1603 if (!OtherStoreIsMergeable(OtherStore))
1618 if (OtherStoreIsMergeable(OtherStore))
1623 if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1624 BBI->mayWriteToMemory() || BBI == OtherBB->
begin())
1632 if (
I->mayReadFromMemory() ||
I->mayThrow() ||
I->mayWriteToMemory())
1642 if (MergedVal !=
SI.getValueOperand()) {
1646 Builder.SetInsertPoint(OtherStore);
1656 new StoreInst(MergedVal,
SI.getOperand(1),
SI.isVolatile(),
SI.getAlign(),
1657 SI.getOrdering(),
SI.getSyncScopeID());
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static void addToWorklist(Instruction &I, SmallVector< Instruction *, 4 > &Worklist)
This file provides internal interfaces used to implement the InstCombine.
static StoreInst * combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, Value *V)
Combine a store to a new type.
static Instruction * combineLoadToOperationType(InstCombinerImpl &IC, LoadInst &Load)
Combine loads to match the type of their uses' value after looking through intervening bitcasts.
static Instruction * replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, Instruction &MemI)
static Instruction * simplifyAllocaArraySize(InstCombinerImpl &IC, AllocaInst &AI, DominatorTree &DT)
static bool canSimplifyNullStoreOrGEP(StoreInst &SI)
static bool equivalentAddressValues(Value *A, Value *B)
equivalentAddressValues - Test if A and B will obviously have the same value.
static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, GetElementPtrInst *GEPI, Instruction *MemI, unsigned &Idx)
static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op)
static bool isSupportedAtomicType(Type *Ty)
static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, const DataLayout &DL)
Returns true if V is dereferenceable for size of alloca.
static Instruction * unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI)
static cl::opt< unsigned > MaxCopiedFromConstantUsers("instcombine-max-copied-from-constant-users", cl::init(300), cl::desc("Maximum users to visit in copy from constant transform"), cl::Hidden)
static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI)
Combine stores to match the type of value being stored.
static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI)
static Value * likeBitCastFromVector(InstCombinerImpl &IC, Value *V)
Look for extractelement/insertvalue sequence that acts like a bitcast.
static bool isOnlyCopiedFromConstantMemory(AAResults *AA, AllocaInst *V, MemTransferInst *&TheCopy, SmallVectorImpl< Instruction * > &ToDelete)
isOnlyCopiedFromConstantMemory - Recursively walk the uses of a (derived) pointer to an alloca.
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, const DataLayout &DL)
This file provides the interface for the instcombine pass implementation.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This file implements a map that provides insertion order iteration.
This file defines the SmallString class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static const uint32_t IV[8]
Class for arbitrary precision integers.
This class represents a conversion between pointers from one address space to another.
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
PointerType * getType() const
Overload to return most specific pointer type.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
LLVM_ABI bool hasNPredecessors(unsigned N) const
Return true if this block has exactly N predecessors.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
Conditional or Unconditional Branch instruction.
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
This is the shared class of boolean and integer constants.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
static LLVM_ABI DebugLoc getMergedLocation(DebugLoc LocA, DebugLoc LocB)
When two instructions are combined into a single instruction we also need to combine the original loc...
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
LLVM_ABI bool isInBounds() const
Determine whether the GEP has the inbounds flag.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
Type * getSourceElementType() const
AllocaInst * CreateAlloca(Type *Ty, unsigned AddrSpace, Value *ArraySize=nullptr, const Twine &Name="")
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
LLVM_ABI Value * CreateTypeSize(Type *Ty, TypeSize Size)
Create an expression which evaluates to the number of units in Size at runtime.
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
StoreInst * CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align, bool isVolatile=false)
Value * CreateInBoundsPtrAdd(Value *Ptr, Value *Offset, const Twine &Name="")
LLVM_ABI CallInst * CreateMemTransferInst(Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, Value *Size, bool isVolatile=false, const AAMDNodes &AAInfo=AAMDNodes())
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Instruction * visitLoadInst(LoadInst &LI)
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitStoreInst(StoreInst &SI)
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; }...
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
bool removeInstructionsBeforeUnreachable(Instruction &I)
LoadInst * combineLoadToNewType(LoadInst &LI, Type *NewTy, const Twine &Suffix="")
Helper to combine a load to a new type.
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitAllocaInst(AllocaInst &AI)
const DataLayout & getDataLayout() const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI bool isLifetimeStartOrEnd() const LLVM_READONLY
Return true if the instruction is a llvm.lifetime.start or llvm.lifetime.end marker.
LLVM_ABI void mergeDIAssignID(ArrayRef< const Instruction * > SourceInstructions)
Merge the DIAssignID metadata from this instruction and those attached to instructions in SourceInstr...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
An instruction for reading from memory.
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
void setAlignment(Align Align)
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
Align getAlign() const
Return the alignment of the access that is being performed.
This class wraps the llvm.memcpy/memmove intrinsics.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PointerIntPair - This class implements a pair of a pointer and small integer.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
bool contains(const_arg_type key) const
Check if the SetVector contains the given key.
bool insert(const value_type &X)
Insert a new element into the SetVector.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Value * getValueOperand()
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getZero()
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
auto m_Undef()
Match an arbitrary undef constant.
initializer< Ty > init(const Ty &Val)
LLVM_ABI bool isAvailable()
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source)
Copy the metadata from the source instruction to the destination (the replacement for the source inst...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI Value * FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan=DefMaxInstsToScan, BatchAAResults *AA=nullptr, bool *IsLoadCSE=nullptr, unsigned *NumScanedInst=nullptr)
Scan backwards to see if we have the value of the given load available locally within a small number ...
auto reverse(ContainerTy &&C)
LLVM_ABI Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to ensure that the alignment of V is at least PrefAlign bytes.
bool isModSet(const ModRefInfo MRI)
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, Instruction *ScanFrom, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if we know that executing a load from this value cannot trap.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
FunctionAddr VTableAddr Count
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
LLVM_ABI Value * simplifyLoadInst(LoadInst *LI, Value *PtrOp, const SimplifyQuery &Q)
Given a load instruction and its pointer operand, fold the result or return null.
LLVM_ABI void combineMetadataForCSE(Instruction *K, const Instruction *J, bool DoesKMove)
Combine the metadata of two instructions so that K can replace J.
void replace(R &&Range, const T &OldValue, const T &NewValue)
Provide wrappers to std::replace which take ranges instead of having to pass begin/end explicitly.
DWARFExpression::Operation Op
PredIterator< BasicBlock, Value::user_iterator > pred_iterator
ArrayRef(const T &OneElt) -> ArrayRef< T >
auto pred_begin(const MachineBasicBlock *BB)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
LLVM_ABI AAMDNodes merge(const AAMDNodes &Other) const
Given two sets of AAMDNodes applying to potentially different locations, determine the best AAMDNodes...
This struct is a compact representation of a valid (non-zero power of two) alignment.
bool isNonNegative() const
Returns true if this value is known to be non-negative.