LLVM 19.0.0git
YAMLTraits.h
Go to the documentation of this file.
1//===- llvm/Support/YAMLTraits.h --------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_SUPPORT_YAMLTRAITS_H
10#define LLVM_SUPPORT_YAMLTRAITS_H
11
12#include "llvm/ADT/ArrayRef.h"
13#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/StringMap.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/Twine.h"
21#include "llvm/Support/Endian.h"
22#include "llvm/Support/SMLoc.h"
26#include <cassert>
27#include <map>
28#include <memory>
29#include <new>
30#include <optional>
31#include <string>
32#include <system_error>
33#include <type_traits>
34#include <vector>
35
36namespace llvm {
37
38class VersionTuple;
39
40namespace yaml {
41
42enum class NodeKind : uint8_t {
43 Scalar,
44 Map,
46};
47
48struct EmptyContext {};
49
50/// This class should be specialized by any type that needs to be converted
51/// to/from a YAML mapping. For example:
52///
53/// struct MappingTraits<MyStruct> {
54/// static void mapping(IO &io, MyStruct &s) {
55/// io.mapRequired("name", s.name);
56/// io.mapRequired("size", s.size);
57/// io.mapOptional("age", s.age);
58/// }
59/// };
60template<class T>
61struct MappingTraits {
62 // Must provide:
63 // static void mapping(IO &io, T &fields);
64 // Optionally may provide:
65 // static std::string validate(IO &io, T &fields);
66 // static void enumInput(IO &io, T &value);
67 //
68 // The optional flow flag will cause generated YAML to use a flow mapping
69 // (e.g. { a: 0, b: 1 }):
70 // static const bool flow = true;
71};
72
73/// This class is similar to MappingTraits<T> but allows you to pass in
74/// additional context for each map operation. For example:
75///
76/// struct MappingContextTraits<MyStruct, MyContext> {
77/// static void mapping(IO &io, MyStruct &s, MyContext &c) {
78/// io.mapRequired("name", s.name);
79/// io.mapRequired("size", s.size);
80/// io.mapOptional("age", s.age);
81/// ++c.TimesMapped;
82/// }
83/// };
84template <class T, class Context> struct MappingContextTraits {
85 // Must provide:
86 // static void mapping(IO &io, T &fields, Context &Ctx);
87 // Optionally may provide:
88 // static std::string validate(IO &io, T &fields, Context &Ctx);
89 //
90 // The optional flow flag will cause generated YAML to use a flow mapping
91 // (e.g. { a: 0, b: 1 }):
92 // static const bool flow = true;
93};
94
95/// This class should be specialized by any integral type that converts
96/// to/from a YAML scalar where there is a one-to-one mapping between
97/// in-memory values and a string in YAML. For example:
98///
99/// struct ScalarEnumerationTraits<Colors> {
100/// static void enumeration(IO &io, Colors &value) {
101/// io.enumCase(value, "red", cRed);
102/// io.enumCase(value, "blue", cBlue);
103/// io.enumCase(value, "green", cGreen);
104/// }
105/// };
106template <typename T, typename Enable = void> struct ScalarEnumerationTraits {
107 // Must provide:
108 // static void enumeration(IO &io, T &value);
109};
110
111/// This class should be specialized by any integer type that is a union
112/// of bit values and the YAML representation is a flow sequence of
113/// strings. For example:
114///
115/// struct ScalarBitSetTraits<MyFlags> {
116/// static void bitset(IO &io, MyFlags &value) {
117/// io.bitSetCase(value, "big", flagBig);
118/// io.bitSetCase(value, "flat", flagFlat);
119/// io.bitSetCase(value, "round", flagRound);
120/// }
121/// };
122template <typename T, typename Enable = void> struct ScalarBitSetTraits {
123 // Must provide:
124 // static void bitset(IO &io, T &value);
125};
126
127/// Describe which type of quotes should be used when quoting is necessary.
128/// Some non-printable characters need to be double-quoted, while some others
129/// are fine with simple-quoting, and some don't need any quoting.
130enum class QuotingType { None, Single, Double };
131
132/// This class should be specialized by type that requires custom conversion
133/// to/from a yaml scalar. For example:
134///
135/// template<>
136/// struct ScalarTraits<MyType> {
137/// static void output(const MyType &val, void*, llvm::raw_ostream &out) {
138/// // stream out custom formatting
139/// out << llvm::format("%x", val);
140/// }
141/// static StringRef input(StringRef scalar, void*, MyType &value) {
142/// // parse scalar and set `value`
143/// // return empty string on success, or error string
144/// return StringRef();
145/// }
146/// static QuotingType mustQuote(StringRef) { return QuotingType::Single; }
147/// };
148template <typename T, typename Enable = void> struct ScalarTraits {
149 // Must provide:
150 //
151 // Function to write the value as a string:
152 // static void output(const T &value, void *ctxt, llvm::raw_ostream &out);
153 //
154 // Function to convert a string to a value. Returns the empty
155 // StringRef on success or an error string if string is malformed:
156 // static StringRef input(StringRef scalar, void *ctxt, T &value);
157 //
158 // Function to determine if the value should be quoted.
159 // static QuotingType mustQuote(StringRef);
160};
161
162/// This class should be specialized by type that requires custom conversion
163/// to/from a YAML literal block scalar. For example:
164///
165/// template <>
166/// struct BlockScalarTraits<MyType> {
167/// static void output(const MyType &Value, void*, llvm::raw_ostream &Out)
168/// {
169/// // stream out custom formatting
170/// Out << Value;
171/// }
172/// static StringRef input(StringRef Scalar, void*, MyType &Value) {
173/// // parse scalar and set `value`
174/// // return empty string on success, or error string
175/// return StringRef();
176/// }
177/// };
178template <typename T>
179struct BlockScalarTraits {
180 // Must provide:
181 //
182 // Function to write the value as a string:
183 // static void output(const T &Value, void *ctx, llvm::raw_ostream &Out);
184 //
185 // Function to convert a string to a value. Returns the empty
186 // StringRef on success or an error string if string is malformed:
187 // static StringRef input(StringRef Scalar, void *ctxt, T &Value);
188 //
189 // Optional:
190 // static StringRef inputTag(T &Val, std::string Tag)
191 // static void outputTag(const T &Val, raw_ostream &Out)
192};
193
194/// This class should be specialized by type that requires custom conversion
195/// to/from a YAML scalar with optional tags. For example:
196///
197/// template <>
198/// struct TaggedScalarTraits<MyType> {
199/// static void output(const MyType &Value, void*, llvm::raw_ostream
200/// &ScalarOut, llvm::raw_ostream &TagOut)
201/// {
202/// // stream out custom formatting including optional Tag
203/// Out << Value;
204/// }
205/// static StringRef input(StringRef Scalar, StringRef Tag, void*, MyType
206/// &Value) {
207/// // parse scalar and set `value`
208/// // return empty string on success, or error string
209/// return StringRef();
210/// }
211/// static QuotingType mustQuote(const MyType &Value, StringRef) {
212/// return QuotingType::Single;
213/// }
214/// };
215template <typename T> struct TaggedScalarTraits {
216 // Must provide:
217 //
218 // Function to write the value and tag as strings:
219 // static void output(const T &Value, void *ctx, llvm::raw_ostream &ScalarOut,
220 // llvm::raw_ostream &TagOut);
221 //
222 // Function to convert a string to a value. Returns the empty
223 // StringRef on success or an error string if string is malformed:
224 // static StringRef input(StringRef Scalar, StringRef Tag, void *ctxt, T
225 // &Value);
226 //
227 // Function to determine if the value should be quoted.
228 // static QuotingType mustQuote(const T &Value, StringRef Scalar);
229};
230
231/// This class should be specialized by any type that needs to be converted
232/// to/from a YAML sequence. For example:
233///
234/// template<>
235/// struct SequenceTraits<MyContainer> {
236/// static size_t size(IO &io, MyContainer &seq) {
237/// return seq.size();
238/// }
239/// static MyType& element(IO &, MyContainer &seq, size_t index) {
240/// if ( index >= seq.size() )
241/// seq.resize(index+1);
242/// return seq[index];
243/// }
244/// };
245template<typename T, typename EnableIf = void>
246struct SequenceTraits {
247 // Must provide:
248 // static size_t size(IO &io, T &seq);
249 // static T::value_type& element(IO &io, T &seq, size_t index);
250 //
251 // The following is option and will cause generated YAML to use
252 // a flow sequence (e.g. [a,b,c]).
253 // static const bool flow = true;
254};
255
256/// This class should be specialized by any type for which vectors of that
257/// type need to be converted to/from a YAML sequence.
258template<typename T, typename EnableIf = void>
259struct SequenceElementTraits {
260 // Must provide:
261 // static const bool flow;
262};
263
264/// This class should be specialized by any type that needs to be converted
265/// to/from a list of YAML documents.
266template<typename T>
267struct DocumentListTraits {
268 // Must provide:
269 // static size_t size(IO &io, T &seq);
270 // static T::value_type& element(IO &io, T &seq, size_t index);
271};
272
273/// This class should be specialized by any type that needs to be converted
274/// to/from a YAML mapping in the case where the names of the keys are not known
275/// in advance, e.g. a string map.
276template <typename T>
277struct CustomMappingTraits {
278 // static void inputOne(IO &io, StringRef key, T &elem);
279 // static void output(IO &io, T &elem);
280};
281
282/// This class should be specialized by any type that can be represented as
283/// a scalar, map, or sequence, decided dynamically. For example:
284///
285/// typedef std::unique_ptr<MyBase> MyPoly;
286///
287/// template<>
288/// struct PolymorphicTraits<MyPoly> {
289/// static NodeKind getKind(const MyPoly &poly) {
290/// return poly->getKind();
291/// }
292/// static MyScalar& getAsScalar(MyPoly &poly) {
293/// if (!poly || !isa<MyScalar>(poly))
294/// poly.reset(new MyScalar());
295/// return *cast<MyScalar>(poly.get());
296/// }
297/// // ...
298/// };
299template <typename T> struct PolymorphicTraits {
300 // Must provide:
301 // static NodeKind getKind(const T &poly);
302 // static scalar_type &getAsScalar(T &poly);
303 // static map_type &getAsMap(T &poly);
304 // static sequence_type &getAsSequence(T &poly);
305};
306
307// Only used for better diagnostics of missing traits
308template <typename T>
309struct MissingTrait;
310
311// Test if ScalarEnumerationTraits<T> is defined on type T.
312template <class T>
313struct has_ScalarEnumerationTraits
314{
315 using Signature_enumeration = void (*)(class IO&, T&);
316
317 template <typename U>
318 static char test(SameType<Signature_enumeration, &U::enumeration>*);
319
320 template <typename U>
321 static double test(...);
322
323 static bool const value =
324 (sizeof(test<ScalarEnumerationTraits<T>>(nullptr)) == 1);
325};
326
327// Test if ScalarBitSetTraits<T> is defined on type T.
328template <class T>
329struct has_ScalarBitSetTraits
330{
331 using Signature_bitset = void (*)(class IO&, T&);
332
333 template <typename U>
334 static char test(SameType<Signature_bitset, &U::bitset>*);
335
336 template <typename U>
337 static double test(...);
338
339 static bool const value = (sizeof(test<ScalarBitSetTraits<T>>(nullptr)) == 1);
340};
341
342// Test if ScalarTraits<T> is defined on type T.
343template <class T>
344struct has_ScalarTraits
345{
346 using Signature_input = StringRef (*)(StringRef, void*, T&);
347 using Signature_output = void (*)(const T&, void*, raw_ostream&);
348 using Signature_mustQuote = QuotingType (*)(StringRef);
349
350 template <typename U>
351 static char test(SameType<Signature_input, &U::input> *,
352 SameType<Signature_output, &U::output> *,
353 SameType<Signature_mustQuote, &U::mustQuote> *);
354
355 template <typename U>
356 static double test(...);
357
358 static bool const value =
359 (sizeof(test<ScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1);
360};
361
362// Test if BlockScalarTraits<T> is defined on type T.
363template <class T>
364struct has_BlockScalarTraits
365{
366 using Signature_input = StringRef (*)(StringRef, void *, T &);
367 using Signature_output = void (*)(const T &, void *, raw_ostream &);
368
369 template <typename U>
370 static char test(SameType<Signature_input, &U::input> *,
371 SameType<Signature_output, &U::output> *);
372
373 template <typename U>
374 static double test(...);
375
376 static bool const value =
377 (sizeof(test<BlockScalarTraits<T>>(nullptr, nullptr)) == 1);
378};
379
380// Test if TaggedScalarTraits<T> is defined on type T.
381template <class T> struct has_TaggedScalarTraits {
382 using Signature_input = StringRef (*)(StringRef, StringRef, void *, T &);
383 using Signature_output = void (*)(const T &, void *, raw_ostream &,
384 raw_ostream &);
385 using Signature_mustQuote = QuotingType (*)(const T &, StringRef);
386
387 template <typename U>
388 static char test(SameType<Signature_input, &U::input> *,
389 SameType<Signature_output, &U::output> *,
390 SameType<Signature_mustQuote, &U::mustQuote> *);
391
392 template <typename U> static double test(...);
393
394 static bool const value =
395 (sizeof(test<TaggedScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1);
396};
397
398// Test if MappingContextTraits<T> is defined on type T.
399template <class T, class Context> struct has_MappingTraits {
400 using Signature_mapping = void (*)(class IO &, T &, Context &);
401
402 template <typename U>
403 static char test(SameType<Signature_mapping, &U::mapping>*);
404
405 template <typename U>
406 static double test(...);
407
408 static bool const value =
409 (sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1);
410};
411
412// Test if MappingTraits<T> is defined on type T.
413template <class T> struct has_MappingTraits<T, EmptyContext> {
414 using Signature_mapping = void (*)(class IO &, T &);
415
416 template <typename U>
417 static char test(SameType<Signature_mapping, &U::mapping> *);
418
419 template <typename U> static double test(...);
420
421 static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1);
422};
423
424// Test if MappingContextTraits<T>::validate() is defined on type T.
425template <class T, class Context> struct has_MappingValidateTraits {
426 using Signature_validate = std::string (*)(class IO &, T &, Context &);
427
428 template <typename U>
429 static char test(SameType<Signature_validate, &U::validate>*);
430
431 template <typename U>
432 static double test(...);
433
434 static bool const value =
435 (sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1);
436};
437
438// Test if MappingTraits<T>::validate() is defined on type T.
439template <class T> struct has_MappingValidateTraits<T, EmptyContext> {
440 using Signature_validate = std::string (*)(class IO &, T &);
441
442 template <typename U>
443 static char test(SameType<Signature_validate, &U::validate> *);
444
445 template <typename U> static double test(...);
446
447 static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1);
448};
449
450// Test if MappingContextTraits<T>::enumInput() is defined on type T.
451template <class T, class Context> struct has_MappingEnumInputTraits {
452 using Signature_validate = void (*)(class IO &, T &);
453
454 template <typename U>
455 static char test(SameType<Signature_validate, &U::enumInput> *);
456
457 template <typename U> static double test(...);
458
459 static bool const value =
460 (sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1);
461};
462
463// Test if MappingTraits<T>::enumInput() is defined on type T.
464template <class T> struct has_MappingEnumInputTraits<T, EmptyContext> {
465 using Signature_validate = void (*)(class IO &, T &);
466
467 template <typename U>
468 static char test(SameType<Signature_validate, &U::enumInput> *);
469
470 template <typename U> static double test(...);
471
472 static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1);
473};
474
475// Test if SequenceTraits<T> is defined on type T.
476template <class T>
477struct has_SequenceMethodTraits
478{
479 using Signature_size = size_t (*)(class IO&, T&);
480
481 template <typename U>
482 static char test(SameType<Signature_size, &U::size>*);
483
484 template <typename U>
485 static double test(...);
486
487 static bool const value = (sizeof(test<SequenceTraits<T>>(nullptr)) == 1);
488};
489
490// Test if CustomMappingTraits<T> is defined on type T.
491template <class T>
492struct has_CustomMappingTraits
493{
494 using Signature_input = void (*)(IO &io, StringRef key, T &v);
495
496 template <typename U>
497 static char test(SameType<Signature_input, &U::inputOne>*);
498
499 template <typename U>
500 static double test(...);
501
502 static bool const value =
503 (sizeof(test<CustomMappingTraits<T>>(nullptr)) == 1);
504};
505
506// has_FlowTraits<int> will cause an error with some compilers because
507// it subclasses int. Using this wrapper only instantiates the
508// real has_FlowTraits only if the template type is a class.
509template <typename T, bool Enabled = std::is_class_v<T>> class has_FlowTraits {
510public:
511 static const bool value = false;
512};
513
514// Some older gcc compilers don't support straight forward tests
515// for members, so test for ambiguity cause by the base and derived
516// classes both defining the member.
517template <class T>
518struct has_FlowTraits<T, true>
519{
520 struct Fallback { bool flow; };
521 struct Derived : T, Fallback { };
522
523 template<typename C>
524 static char (&f(SameType<bool Fallback::*, &C::flow>*))[1];
525
526 template<typename C>
527 static char (&f(...))[2];
528
529 static bool const value = sizeof(f<Derived>(nullptr)) == 2;
530};
531
532// Test if SequenceTraits<T> is defined on type T
533template<typename T>
534struct has_SequenceTraits : public std::integral_constant<bool,
535 has_SequenceMethodTraits<T>::value > { };
536
537// Test if DocumentListTraits<T> is defined on type T
538template <class T>
539struct has_DocumentListTraits
540{
541 using Signature_size = size_t (*)(class IO &, T &);
542
543 template <typename U>
544 static char test(SameType<Signature_size, &U::size>*);
545
546 template <typename U>
547 static double test(...);
548
549 static bool const value = (sizeof(test<DocumentListTraits<T>>(nullptr))==1);
550};
551
552template <class T> struct has_PolymorphicTraits {
553 using Signature_getKind = NodeKind (*)(const T &);
554
555 template <typename U>
556 static char test(SameType<Signature_getKind, &U::getKind> *);
557
558 template <typename U> static double test(...);
559
560 static bool const value = (sizeof(test<PolymorphicTraits<T>>(nullptr)) == 1);
561};
562
563inline bool isNumeric(StringRef S) {
564 const auto skipDigits = [](StringRef Input) {
565 return Input.ltrim("0123456789");
566 };
567
568 // Make S.front() and S.drop_front().front() (if S.front() is [+-]) calls
569 // safe.
570 if (S.empty() || S.equals("+") || S.equals("-"))
571 return false;
572
573 if (S.equals(".nan") || S.equals(".NaN") || S.equals(".NAN"))
574 return true;
575
576 // Infinity and decimal numbers can be prefixed with sign.
577 StringRef Tail = (S.front() == '-' || S.front() == '+') ? S.drop_front() : S;
578
579 // Check for infinity first, because checking for hex and oct numbers is more
580 // expensive.
581 if (Tail.equals(".inf") || Tail.equals(".Inf") || Tail.equals(".INF"))
582 return true;
583
584 // Section 10.3.2 Tag Resolution
585 // YAML 1.2 Specification prohibits Base 8 and Base 16 numbers prefixed with
586 // [-+], so S should be used instead of Tail.
587 if (S.starts_with("0o"))
588 return S.size() > 2 &&
589 S.drop_front(2).find_first_not_of("01234567") == StringRef::npos;
590
591 if (S.starts_with("0x"))
592 return S.size() > 2 && S.drop_front(2).find_first_not_of(
593 "0123456789abcdefABCDEF") == StringRef::npos;
594
595 // Parse float: [-+]? (\. [0-9]+ | [0-9]+ (\. [0-9]* )?) ([eE] [-+]? [0-9]+)?
596 S = Tail;
597
598 // Handle cases when the number starts with '.' and hence needs at least one
599 // digit after dot (as opposed by number which has digits before the dot), but
600 // doesn't have one.
601 if (S.starts_with(".") &&
602 (S.equals(".") ||
603 (S.size() > 1 && std::strchr("0123456789", S[1]) == nullptr)))
604 return false;
605
606 if (S.starts_with("E") || S.starts_with("e"))
607 return false;
608
609 enum ParseState {
610 Default,
611 FoundDot,
612 FoundExponent,
613 };
614 ParseState State = Default;
615
616 S = skipDigits(S);
617
618 // Accept decimal integer.
619 if (S.empty())
620 return true;
621
622 if (S.front() == '.') {
623 State = FoundDot;
624 S = S.drop_front();
625 } else if (S.front() == 'e' || S.front() == 'E') {
626 State = FoundExponent;
627 S = S.drop_front();
628 } else {
629 return false;
630 }
631
632 if (State == FoundDot) {
633 S = skipDigits(S);
634 if (S.empty())
635 return true;
636
637 if (S.front() == 'e' || S.front() == 'E') {
638 State = FoundExponent;
639 S = S.drop_front();
640 } else {
641 return false;
642 }
643 }
644
645 assert(State == FoundExponent && "Should have found exponent at this point.");
646 if (S.empty())
647 return false;
648
649 if (S.front() == '+' || S.front() == '-') {
650 S = S.drop_front();
651 if (S.empty())
652 return false;
653 }
654
655 return skipDigits(S).empty();
656}
657
658inline bool isNull(StringRef S) {
659 return S.equals("null") || S.equals("Null") || S.equals("NULL") ||
660 S.equals("~");
661}
662
663inline bool isBool(StringRef S) {
664 // FIXME: using parseBool is causing multiple tests to fail.
665 return S.equals("true") || S.equals("True") || S.equals("TRUE") ||
666 S.equals("false") || S.equals("False") || S.equals("FALSE");
667}
668
669// 5.1. Character Set
670// The allowed character range explicitly excludes the C0 control block #x0-#x1F
671// (except for TAB #x9, LF #xA, and CR #xD which are allowed), DEL #x7F, the C1
672// control block #x80-#x9F (except for NEL #x85 which is allowed), the surrogate
673// block #xD800-#xDFFF, #xFFFE, and #xFFFF.
674inline QuotingType needsQuotes(StringRef S) {
675 if (S.empty())
676 return QuotingType::Single;
677
678 QuotingType MaxQuotingNeeded = QuotingType::None;
679 if (isSpace(static_cast<unsigned char>(S.front())) ||
680 isSpace(static_cast<unsigned char>(S.back())))
681 MaxQuotingNeeded = QuotingType::Single;
682 if (isNull(S))
683 MaxQuotingNeeded = QuotingType::Single;
684 if (isBool(S))
685 MaxQuotingNeeded = QuotingType::Single;
686 if (isNumeric(S))
687 MaxQuotingNeeded = QuotingType::Single;
688
689 // 7.3.3 Plain Style
690 // Plain scalars must not begin with most indicators, as this would cause
691 // ambiguity with other YAML constructs.
692 if (std::strchr(R"(-?:\,[]{}#&*!|>'"%@`)", S[0]) != nullptr)
693 MaxQuotingNeeded = QuotingType::Single;
694
695 for (unsigned char C : S) {
696 // Alphanum is safe.
697 if (isAlnum(C))
698 continue;
699
700 switch (C) {
701 // Safe scalar characters.
702 case '_':
703 case '-':
704 case '^':
705 case '.':
706 case ',':
707 case ' ':
708 // TAB (0x9) is allowed in unquoted strings.
709 case 0x9:
710 continue;
711 // LF(0xA) and CR(0xD) may delimit values and so require at least single
712 // quotes. LLVM YAML parser cannot handle single quoted multiline so use
713 // double quoting to produce valid YAML.
714 case 0xA:
715 case 0xD:
716 return QuotingType::Double;
717 // DEL (0x7F) are excluded from the allowed character range.
718 case 0x7F:
719 return QuotingType::Double;
720 // Forward slash is allowed to be unquoted, but we quote it anyway. We have
721 // many tests that use FileCheck against YAML output, and this output often
722 // contains paths. If we quote backslashes but not forward slashes then
723 // paths will come out either quoted or unquoted depending on which platform
724 // the test is run on, making FileCheck comparisons difficult.
725 case '/':
726 default: {
727 // C0 control block (0x0 - 0x1F) is excluded from the allowed character
728 // range.
729 if (C <= 0x1F)
730 return QuotingType::Double;
731
732 // Always double quote UTF-8.
733 if ((C & 0x80) != 0)
734 return QuotingType::Double;
735
736 // The character is not safe, at least simple quoting needed.
737 MaxQuotingNeeded = QuotingType::Single;
738 }
739 }
740 }
741
742 return MaxQuotingNeeded;
743}
744
745template <typename T, typename Context>
746struct missingTraits
747 : public std::integral_constant<bool,
748 !has_ScalarEnumerationTraits<T>::value &&
749 !has_ScalarBitSetTraits<T>::value &&
750 !has_ScalarTraits<T>::value &&
751 !has_BlockScalarTraits<T>::value &&
752 !has_TaggedScalarTraits<T>::value &&
753 !has_MappingTraits<T, Context>::value &&
754 !has_SequenceTraits<T>::value &&
755 !has_CustomMappingTraits<T>::value &&
756 !has_DocumentListTraits<T>::value &&
757 !has_PolymorphicTraits<T>::value> {};
758
759template <typename T, typename Context>
760struct validatedMappingTraits
761 : public std::integral_constant<
762 bool, has_MappingTraits<T, Context>::value &&
763 has_MappingValidateTraits<T, Context>::value> {};
764
765template <typename T, typename Context>
766struct unvalidatedMappingTraits
767 : public std::integral_constant<
768 bool, has_MappingTraits<T, Context>::value &&
769 !has_MappingValidateTraits<T, Context>::value> {};
770
771// Base class for Input and Output.
772class IO {
773public:
774 IO(void *Ctxt = nullptr);
775 virtual ~IO();
776
777 virtual bool outputting() const = 0;
778
779 virtual unsigned beginSequence() = 0;
780 virtual bool preflightElement(unsigned, void *&) = 0;
781 virtual void postflightElement(void*) = 0;
782 virtual void endSequence() = 0;
783 virtual bool canElideEmptySequence() = 0;
784
785 virtual unsigned beginFlowSequence() = 0;
786 virtual bool preflightFlowElement(unsigned, void *&) = 0;
787 virtual void postflightFlowElement(void*) = 0;
788 virtual void endFlowSequence() = 0;
789
790 virtual bool mapTag(StringRef Tag, bool Default=false) = 0;
791 virtual void beginMapping() = 0;
792 virtual void endMapping() = 0;
793 virtual bool preflightKey(const char*, bool, bool, bool &, void *&) = 0;
794 virtual void postflightKey(void*) = 0;
795 virtual std::vector<StringRef> keys() = 0;
796
797 virtual void beginFlowMapping() = 0;
798 virtual void endFlowMapping() = 0;
799
800 virtual void beginEnumScalar() = 0;
801 virtual bool matchEnumScalar(const char*, bool) = 0;
802 virtual bool matchEnumFallback() = 0;
803 virtual void endEnumScalar() = 0;
804
805 virtual bool beginBitSetScalar(bool &) = 0;
806 virtual bool bitSetMatch(const char*, bool) = 0;
807 virtual void endBitSetScalar() = 0;
808
809 virtual void scalarString(StringRef &, QuotingType) = 0;
810 virtual void blockScalarString(StringRef &) = 0;
811 virtual void scalarTag(std::string &) = 0;
812
813 virtual NodeKind getNodeKind() = 0;
814
815 virtual void setError(const Twine &) = 0;
816 virtual void setAllowUnknownKeys(bool Allow);
817
818 template <typename T>
819 void enumCase(T &Val, const char* Str, const T ConstVal) {
820 if ( matchEnumScalar(Str, outputting() && Val == ConstVal) ) {
821 Val = ConstVal;
822 }
823 }
824
825 // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
826 template <typename T>
827 void enumCase(T &Val, const char* Str, const uint32_t ConstVal) {
828 if ( matchEnumScalar(Str, outputting() && Val == static_cast<T>(ConstVal)) ) {
829 Val = ConstVal;
830 }
831 }
832
833 template <typename FBT, typename T>
834 void enumFallback(T &Val) {
835 if (matchEnumFallback()) {
836 EmptyContext Context;
837 // FIXME: Force integral conversion to allow strong typedefs to convert.
838 FBT Res = static_cast<typename FBT::BaseType>(Val);
839 yamlize(*this, Res, true, Context);
840 Val = static_cast<T>(static_cast<typename FBT::BaseType>(Res));
841 }
842 }
843
844 template <typename T>
845 void bitSetCase(T &Val, const char* Str, const T ConstVal) {
846 if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) {
847 Val = static_cast<T>(Val | ConstVal);
848 }
849 }
850
851 // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF
852 template <typename T>
853 void bitSetCase(T &Val, const char* Str, const uint32_t ConstVal) {
854 if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) {
855 Val = static_cast<T>(Val | ConstVal);
856 }
857 }
858
859 template <typename T>
860 void maskedBitSetCase(T &Val, const char *Str, T ConstVal, T Mask) {
861 if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal))
862 Val = Val | ConstVal;
863 }
864
865 template <typename T>
866 void maskedBitSetCase(T &Val, const char *Str, uint32_t ConstVal,
867 uint32_t Mask) {
868 if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal))
869 Val = Val | ConstVal;
870 }
871
872 void *getContext() const;
873 void setContext(void *);
874
875 template <typename T> void mapRequired(const char *Key, T &Val) {
876 EmptyContext Ctx;
877 this->processKey(Key, Val, true, Ctx);
878 }
879
880 template <typename T, typename Context>
881 void mapRequired(const char *Key, T &Val, Context &Ctx) {
882 this->processKey(Key, Val, true, Ctx);
883 }
884
885 template <typename T> void mapOptional(const char *Key, T &Val) {
886 EmptyContext Ctx;
887 mapOptionalWithContext(Key, Val, Ctx);
888 }
889
890 template <typename T, typename DefaultT>
891 void mapOptional(const char *Key, T &Val, const DefaultT &Default) {
892 EmptyContext Ctx;
893 mapOptionalWithContext(Key, Val, Default, Ctx);
894 }
895
896 template <typename T, typename Context>
897 std::enable_if_t<has_SequenceTraits<T>::value, void>
898 mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) {
899 // omit key/value instead of outputting empty sequence
900 if (this->canElideEmptySequence() && !(Val.begin() != Val.end()))
901 return;
902 this->processKey(Key, Val, false, Ctx);
903 }
904
905 template <typename T, typename Context>
906 void mapOptionalWithContext(const char *Key, std::optional<T> &Val,
907 Context &Ctx) {
908 this->processKeyWithDefault(Key, Val, std::optional<T>(),
909 /*Required=*/false, Ctx);
910 }
911
912 template <typename T, typename Context>
913 std::enable_if_t<!has_SequenceTraits<T>::value, void>
914 mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) {
915 this->processKey(Key, Val, false, Ctx);
916 }
917
918 template <typename T, typename Context, typename DefaultT>
919 void mapOptionalWithContext(const char *Key, T &Val, const DefaultT &Default,
920 Context &Ctx) {
921 static_assert(std::is_convertible<DefaultT, T>::value,
922 "Default type must be implicitly convertible to value type!");
923 this->processKeyWithDefault(Key, Val, static_cast<const T &>(Default),
924 false, Ctx);
925 }
926
927private:
928 template <typename T, typename Context>
929 void processKeyWithDefault(const char *Key, std::optional<T> &Val,
930 const std::optional<T> &DefaultValue,
931 bool Required, Context &Ctx);
932
933 template <typename T, typename Context>
934 void processKeyWithDefault(const char *Key, T &Val, const T &DefaultValue,
935 bool Required, Context &Ctx) {
936 void *SaveInfo;
937 bool UseDefault;
938 const bool sameAsDefault = outputting() && Val == DefaultValue;
939 if ( this->preflightKey(Key, Required, sameAsDefault, UseDefault,
940 SaveInfo) ) {
941 yamlize(*this, Val, Required, Ctx);
942 this->postflightKey(SaveInfo);
943 }
944 else {
945 if ( UseDefault )
946 Val = DefaultValue;
947 }
948 }
949
950 template <typename T, typename Context>
951 void processKey(const char *Key, T &Val, bool Required, Context &Ctx) {
952 void *SaveInfo;
953 bool UseDefault;
954 if ( this->preflightKey(Key, Required, false, UseDefault, SaveInfo) ) {
955 yamlize(*this, Val, Required, Ctx);
956 this->postflightKey(SaveInfo);
957 }
958 }
959
960private:
961 void *Ctxt;
962};
963
964namespace detail {
965
966template <typename T, typename Context>
967void doMapping(IO &io, T &Val, Context &Ctx) {
968 MappingContextTraits<T, Context>::mapping(io, Val, Ctx);
969}
970
971template <typename T> void doMapping(IO &io, T &Val, EmptyContext &Ctx) {
972 MappingTraits<T>::mapping(io, Val);
973}
974
975} // end namespace detail
976
977template <typename T>
978std::enable_if_t<has_ScalarEnumerationTraits<T>::value, void>
979yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
980 io.beginEnumScalar();
981 ScalarEnumerationTraits<T>::enumeration(io, Val);
982 io.endEnumScalar();
983}
984
985template <typename T>
986std::enable_if_t<has_ScalarBitSetTraits<T>::value, void>
987yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
988 bool DoClear;
989 if ( io.beginBitSetScalar(DoClear) ) {
990 if ( DoClear )
991 Val = T();
992 ScalarBitSetTraits<T>::bitset(io, Val);
993 io.endBitSetScalar();
994 }
995}
996
997template <typename T>
998std::enable_if_t<has_ScalarTraits<T>::value, void> yamlize(IO &io, T &Val, bool,
999 EmptyContext &Ctx) {
1000 if ( io.outputting() ) {
1001 SmallString<128> Storage;
1002 raw_svector_ostream Buffer(Storage);
1003 ScalarTraits<T>::output(Val, io.getContext(), Buffer);
1004 StringRef Str = Buffer.str();
1005 io.scalarString(Str, ScalarTraits<T>::mustQuote(Str));
1006 }
1007 else {
1008 StringRef Str;
1009 io.scalarString(Str, ScalarTraits<T>::mustQuote(Str));
1010 StringRef Result = ScalarTraits<T>::input(Str, io.getContext(), Val);
1011 if ( !Result.empty() ) {
1012 io.setError(Twine(Result));
1013 }
1014 }
1015}
1016
1017template <typename T>
1018std::enable_if_t<has_BlockScalarTraits<T>::value, void>
1019yamlize(IO &YamlIO, T &Val, bool, EmptyContext &Ctx) {
1020 if (YamlIO.outputting()) {
1021 std::string Storage;
1022 raw_string_ostream Buffer(Storage);
1023 BlockScalarTraits<T>::output(Val, YamlIO.getContext(), Buffer);
1024 StringRef Str = Buffer.str();
1025 YamlIO.blockScalarString(Str);
1026 } else {
1027 StringRef Str;
1028 YamlIO.blockScalarString(Str);
1029 StringRef Result =
1030 BlockScalarTraits<T>::input(Str, YamlIO.getContext(), Val);
1031 if (!Result.empty())
1032 YamlIO.setError(Twine(Result));
1033 }
1034}
1035
1036template <typename T>
1037std::enable_if_t<has_TaggedScalarTraits<T>::value, void>
1038yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
1039 if (io.outputting()) {
1040 std::string ScalarStorage, TagStorage;
1041 raw_string_ostream ScalarBuffer(ScalarStorage), TagBuffer(TagStorage);
1042 TaggedScalarTraits<T>::output(Val, io.getContext(), ScalarBuffer,
1043 TagBuffer);
1044 io.scalarTag(TagBuffer.str());
1045 StringRef ScalarStr = ScalarBuffer.str();
1046 io.scalarString(ScalarStr,
1047 TaggedScalarTraits<T>::mustQuote(Val, ScalarStr));
1048 } else {
1049 std::string Tag;
1050 io.scalarTag(Tag);
1051 StringRef Str;
1052 io.scalarString(Str, QuotingType::None);
1053 StringRef Result =
1054 TaggedScalarTraits<T>::input(Str, Tag, io.getContext(), Val);
1055 if (!Result.empty()) {
1056 io.setError(Twine(Result));
1057 }
1058 }
1059}
1060
1061namespace detail {
1062
1063template <typename T, typename Context>
1064std::string doValidate(IO &io, T &Val, Context &Ctx) {
1065 return MappingContextTraits<T, Context>::validate(io, Val, Ctx);
1066}
1067
1068template <typename T> std::string doValidate(IO &io, T &Val, EmptyContext &) {
1069 return MappingTraits<T>::validate(io, Val);
1070}
1071
1072} // namespace detail
1073
1074template <typename T, typename Context>
1075std::enable_if_t<validatedMappingTraits<T, Context>::value, void>
1076yamlize(IO &io, T &Val, bool, Context &Ctx) {
1077 if (has_FlowTraits<MappingTraits<T>>::value)
1078 io.beginFlowMapping();
1079 else
1080 io.beginMapping();
1081 if (io.outputting()) {
1082 std::string Err = detail::doValidate(io, Val, Ctx);
1083 if (!Err.empty()) {
1084 errs() << Err << "\n";
1085 assert(Err.empty() && "invalid struct trying to be written as yaml");
1086 }
1087 }
1088 detail::doMapping(io, Val, Ctx);
1089 if (!io.outputting()) {
1090 std::string Err = detail::doValidate(io, Val, Ctx);
1091 if (!Err.empty())
1092 io.setError(Err);
1093 }
1094 if (has_FlowTraits<MappingTraits<T>>::value)
1095 io.endFlowMapping();
1096 else
1097 io.endMapping();
1098}
1099
1100template <typename T, typename Context>
1101std::enable_if_t<!has_MappingEnumInputTraits<T, Context>::value, bool>
1102yamlizeMappingEnumInput(IO &io, T &Val) {
1103 return false;
1104}
1105
1106template <typename T, typename Context>
1107std::enable_if_t<has_MappingEnumInputTraits<T, Context>::value, bool>
1108yamlizeMappingEnumInput(IO &io, T &Val) {
1109 if (io.outputting())
1110 return false;
1111
1112 io.beginEnumScalar();
1113 MappingTraits<T>::enumInput(io, Val);
1114 bool Matched = !io.matchEnumFallback();
1115 io.endEnumScalar();
1116 return Matched;
1117}
1118
1119template <typename T, typename Context>
1120std::enable_if_t<unvalidatedMappingTraits<T, Context>::value, void>
1121yamlize(IO &io, T &Val, bool, Context &Ctx) {
1122 if (yamlizeMappingEnumInput<T, Context>(io, Val))
1123 return;
1124 if (has_FlowTraits<MappingTraits<T>>::value) {
1125 io.beginFlowMapping();
1126 detail::doMapping(io, Val, Ctx);
1127 io.endFlowMapping();
1128 } else {
1129 io.beginMapping();
1130 detail::doMapping(io, Val, Ctx);
1131 io.endMapping();
1132 }
1133}
1134
1135template <typename T>
1136std::enable_if_t<has_CustomMappingTraits<T>::value, void>
1137yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
1138 if ( io.outputting() ) {
1139 io.beginMapping();
1140 CustomMappingTraits<T>::output(io, Val);
1141 io.endMapping();
1142 } else {
1143 io.beginMapping();
1144 for (StringRef key : io.keys())
1145 CustomMappingTraits<T>::inputOne(io, key, Val);
1146 io.endMapping();
1147 }
1148}
1149
1150template <typename T>
1151std::enable_if_t<has_PolymorphicTraits<T>::value, void>
1152yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
1153 switch (io.outputting() ? PolymorphicTraits<T>::getKind(Val)
1154 : io.getNodeKind()) {
1155 case NodeKind::Scalar:
1156 return yamlize(io, PolymorphicTraits<T>::getAsScalar(Val), true, Ctx);
1157 case NodeKind::Map:
1158 return yamlize(io, PolymorphicTraits<T>::getAsMap(Val), true, Ctx);
1159 case NodeKind::Sequence:
1160 return yamlize(io, PolymorphicTraits<T>::getAsSequence(Val), true, Ctx);
1161 }
1162}
1163
1164template <typename T>
1165std::enable_if_t<missingTraits<T, EmptyContext>::value, void>
1166yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) {
1167 char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
1168}
1169
1170template <typename T, typename Context>
1171std::enable_if_t<has_SequenceTraits<T>::value, void>
1172yamlize(IO &io, T &Seq, bool, Context &Ctx) {
1173 if ( has_FlowTraits< SequenceTraits<T>>::value ) {
1174 unsigned incnt = io.beginFlowSequence();
1175 unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt;
1176 for(unsigned i=0; i < count; ++i) {
1177 void *SaveInfo;
1178 if ( io.preflightFlowElement(i, SaveInfo) ) {
1179 yamlize(io, SequenceTraits<T>::element(io, Seq, i), true, Ctx);
1180 io.postflightFlowElement(SaveInfo);
1181 }
1182 }
1183 io.endFlowSequence();
1184 }
1185 else {
1186 unsigned incnt = io.beginSequence();
1187 unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt;
1188 for(unsigned i=0; i < count; ++i) {
1189 void *SaveInfo;
1190 if ( io.preflightElement(i, SaveInfo) ) {
1191 yamlize(io, SequenceTraits<T>::element(io, Seq, i), true, Ctx);
1192 io.postflightElement(SaveInfo);
1193 }
1194 }
1195 io.endSequence();
1196 }
1197}
1198
1199template<>
1200struct ScalarTraits<bool> {
1201 static void output(const bool &, void* , raw_ostream &);
1202 static StringRef input(StringRef, void *, bool &);
1203 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1204};
1205
1206template<>
1207struct ScalarTraits<StringRef> {
1208 static void output(const StringRef &, void *, raw_ostream &);
1209 static StringRef input(StringRef, void *, StringRef &);
1210 static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
1211};
1212
1213template<>
1214struct ScalarTraits<std::string> {
1215 static void output(const std::string &, void *, raw_ostream &);
1216 static StringRef input(StringRef, void *, std::string &);
1217 static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
1218};
1219
1220template<>
1221struct ScalarTraits<uint8_t> {
1222 static void output(const uint8_t &, void *, raw_ostream &);
1223 static StringRef input(StringRef, void *, uint8_t &);
1224 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1225};
1226
1227template<>
1228struct ScalarTraits<uint16_t> {
1229 static void output(const uint16_t &, void *, raw_ostream &);
1230 static StringRef input(StringRef, void *, uint16_t &);
1231 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1232};
1233
1234template<>
1235struct ScalarTraits<uint32_t> {
1236 static void output(const uint32_t &, void *, raw_ostream &);
1237 static StringRef input(StringRef, void *, uint32_t &);
1238 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1239};
1240
1241template<>
1242struct ScalarTraits<uint64_t> {
1243 static void output(const uint64_t &, void *, raw_ostream &);
1244 static StringRef input(StringRef, void *, uint64_t &);
1245 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1246};
1247
1248template<>
1249struct ScalarTraits<int8_t> {
1250 static void output(const int8_t &, void *, raw_ostream &);
1251 static StringRef input(StringRef, void *, int8_t &);
1252 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1253};
1254
1255template<>
1256struct ScalarTraits<int16_t> {
1257 static void output(const int16_t &, void *, raw_ostream &);
1258 static StringRef input(StringRef, void *, int16_t &);
1259 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1260};
1261
1262template<>
1263struct ScalarTraits<int32_t> {
1264 static void output(const int32_t &, void *, raw_ostream &);
1265 static StringRef input(StringRef, void *, int32_t &);
1266 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1267};
1268
1269template<>
1270struct ScalarTraits<int64_t> {
1271 static void output(const int64_t &, void *, raw_ostream &);
1272 static StringRef input(StringRef, void *, int64_t &);
1273 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1274};
1275
1276template<>
1277struct ScalarTraits<float> {
1278 static void output(const float &, void *, raw_ostream &);
1279 static StringRef input(StringRef, void *, float &);
1280 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1281};
1282
1283template<>
1284struct ScalarTraits<double> {
1285 static void output(const double &, void *, raw_ostream &);
1286 static StringRef input(StringRef, void *, double &);
1287 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1288};
1289
1290// For endian types, we use existing scalar Traits class for the underlying
1291// type. This way endian aware types are supported whenever the traits are
1292// defined for the underlying type.
1293template <typename value_type, llvm::endianness endian, size_t alignment>
1294struct ScalarTraits<support::detail::packed_endian_specific_integral<
1295 value_type, endian, alignment>,
1296 std::enable_if_t<has_ScalarTraits<value_type>::value>> {
1297 using endian_type =
1298 support::detail::packed_endian_specific_integral<value_type, endian,
1299 alignment>;
1300
1301 static void output(const endian_type &E, void *Ctx, raw_ostream &Stream) {
1302 ScalarTraits<value_type>::output(static_cast<value_type>(E), Ctx, Stream);
1303 }
1304
1305 static StringRef input(StringRef Str, void *Ctx, endian_type &E) {
1306 value_type V;
1307 auto R = ScalarTraits<value_type>::input(Str, Ctx, V);
1308 E = static_cast<endian_type>(V);
1309 return R;
1310 }
1311
1312 static QuotingType mustQuote(StringRef Str) {
1313 return ScalarTraits<value_type>::mustQuote(Str);
1314 }
1315};
1316
1317template <typename value_type, llvm::endianness endian, size_t alignment>
1318struct ScalarEnumerationTraits<
1319 support::detail::packed_endian_specific_integral<value_type, endian,
1320 alignment>,
1321 std::enable_if_t<has_ScalarEnumerationTraits<value_type>::value>> {
1322 using endian_type =
1323 support::detail::packed_endian_specific_integral<value_type, endian,
1324 alignment>;
1325
1326 static void enumeration(IO &io, endian_type &E) {
1327 value_type V = E;
1328 ScalarEnumerationTraits<value_type>::enumeration(io, V);
1329 E = V;
1330 }
1331};
1332
1333template <typename value_type, llvm::endianness endian, size_t alignment>
1334struct ScalarBitSetTraits<
1335 support::detail::packed_endian_specific_integral<value_type, endian,
1336 alignment>,
1337 std::enable_if_t<has_ScalarBitSetTraits<value_type>::value>> {
1338 using endian_type =
1339 support::detail::packed_endian_specific_integral<value_type, endian,
1340 alignment>;
1341 static void bitset(IO &io, endian_type &E) {
1342 value_type V = E;
1343 ScalarBitSetTraits<value_type>::bitset(io, V);
1344 E = V;
1345 }
1346};
1347
1348// Utility for use within MappingTraits<>::mapping() method
1349// to [de]normalize an object for use with YAML conversion.
1350template <typename TNorm, typename TFinal>
1351struct MappingNormalization {
1352 MappingNormalization(IO &i_o, TFinal &Obj)
1353 : io(i_o), BufPtr(nullptr), Result(Obj) {
1354 if ( io.outputting() ) {
1355 BufPtr = new (&Buffer) TNorm(io, Obj);
1356 }
1357 else {
1358 BufPtr = new (&Buffer) TNorm(io);
1359 }
1360 }
1361
1362 ~MappingNormalization() {
1363 if ( ! io.outputting() ) {
1364 Result = BufPtr->denormalize(io);
1365 }
1366 BufPtr->~TNorm();
1367 }
1368
1369 TNorm* operator->() { return BufPtr; }
1370
1371private:
1372 using Storage = AlignedCharArrayUnion<TNorm>;
1373
1374 Storage Buffer;
1375 IO &io;
1376 TNorm *BufPtr;
1377 TFinal &Result;
1378};
1379
1380// Utility for use within MappingTraits<>::mapping() method
1381// to [de]normalize an object for use with YAML conversion.
1382template <typename TNorm, typename TFinal>
1383struct MappingNormalizationHeap {
1384 MappingNormalizationHeap(IO &i_o, TFinal &Obj, BumpPtrAllocator *allocator)
1385 : io(i_o), Result(Obj) {
1386 if ( io.outputting() ) {
1387 BufPtr = new (&Buffer) TNorm(io, Obj);
1388 }
1389 else if (allocator) {
1390 BufPtr = allocator->Allocate<TNorm>();
1391 new (BufPtr) TNorm(io);
1392 } else {
1393 BufPtr = new TNorm(io);
1394 }
1395 }
1396
1397 ~MappingNormalizationHeap() {
1398 if ( io.outputting() ) {
1399 BufPtr->~TNorm();
1400 }
1401 else {
1402 Result = BufPtr->denormalize(io);
1403 }
1404 }
1405
1406 TNorm* operator->() { return BufPtr; }
1407
1408private:
1409 using Storage = AlignedCharArrayUnion<TNorm>;
1410
1411 Storage Buffer;
1412 IO &io;
1413 TNorm *BufPtr = nullptr;
1414 TFinal &Result;
1415};
1416
1417///
1418/// The Input class is used to parse a yaml document into in-memory structs
1419/// and vectors.
1420///
1421/// It works by using YAMLParser to do a syntax parse of the entire yaml
1422/// document, then the Input class builds a graph of HNodes which wraps
1423/// each yaml Node. The extra layer is buffering. The low level yaml
1424/// parser only lets you look at each node once. The buffering layer lets
1425/// you search and interate multiple times. This is necessary because
1426/// the mapRequired() method calls may not be in the same order
1427/// as the keys in the document.
1428///
1429class Input : public IO {
1430public:
1431 // Construct a yaml Input object from a StringRef and optional
1432 // user-data. The DiagHandler can be specified to provide
1433 // alternative error reporting.
1434 Input(StringRef InputContent,
1435 void *Ctxt = nullptr,
1436 SourceMgr::DiagHandlerTy DiagHandler = nullptr,
1437 void *DiagHandlerCtxt = nullptr);
1438 Input(MemoryBufferRef Input,
1439 void *Ctxt = nullptr,
1440 SourceMgr::DiagHandlerTy DiagHandler = nullptr,
1441 void *DiagHandlerCtxt = nullptr);
1442 ~Input() override;
1443
1444 // Check if there was an syntax or semantic error during parsing.
1445 std::error_code error();
1446
1447private:
1448 bool outputting() const override;
1449 bool mapTag(StringRef, bool) override;
1450 void beginMapping() override;
1451 void endMapping() override;
1452 bool preflightKey(const char *, bool, bool, bool &, void *&) override;
1453 void postflightKey(void *) override;
1454 std::vector<StringRef> keys() override;
1455 void beginFlowMapping() override;
1456 void endFlowMapping() override;
1457 unsigned beginSequence() override;
1458 void endSequence() override;
1459 bool preflightElement(unsigned index, void *&) override;
1460 void postflightElement(void *) override;
1461 unsigned beginFlowSequence() override;
1462 bool preflightFlowElement(unsigned , void *&) override;
1463 void postflightFlowElement(void *) override;
1464 void endFlowSequence() override;
1465 void beginEnumScalar() override;
1466 bool matchEnumScalar(const char*, bool) override;
1467 bool matchEnumFallback() override;
1468 void endEnumScalar() override;
1469 bool beginBitSetScalar(bool &) override;
1470 bool bitSetMatch(const char *, bool ) override;
1471 void endBitSetScalar() override;
1472 void scalarString(StringRef &, QuotingType) override;
1473 void blockScalarString(StringRef &) override;
1474 void scalarTag(std::string &) override;
1475 NodeKind getNodeKind() override;
1476 void setError(const Twine &message) override;
1477 bool canElideEmptySequence() override;
1478
1479 class HNode {
1480 public:
1481 HNode(Node *n) : _node(n) {}
1482
1483 static bool classof(const HNode *) { return true; }
1484
1485 Node *_node;
1486 };
1487
1488 class EmptyHNode : public HNode {
1489 public:
1490 EmptyHNode(Node *n) : HNode(n) { }
1491
1492 static bool classof(const HNode *n) { return NullNode::classof(n->_node); }
1493
1494 static bool classof(const EmptyHNode *) { return true; }
1495 };
1496
1497 class ScalarHNode : public HNode {
1498 public:
1499 ScalarHNode(Node *n, StringRef s) : HNode(n), _value(s) { }
1500
1501 StringRef value() const { return _value; }
1502
1503 static bool classof(const HNode *n) {
1504 return ScalarNode::classof(n->_node) ||
1505 BlockScalarNode::classof(n->_node);
1506 }
1507
1508 static bool classof(const ScalarHNode *) { return true; }
1509
1510 protected:
1511 StringRef _value;
1512 };
1513
1514 class MapHNode : public HNode {
1515 public:
1516 MapHNode(Node *n) : HNode(n) { }
1517
1518 static bool classof(const HNode *n) {
1519 return MappingNode::classof(n->_node);
1520 }
1521
1522 static bool classof(const MapHNode *) { return true; }
1523
1524 using NameToNodeAndLoc = StringMap<std::pair<HNode *, SMRange>>;
1525
1526 NameToNodeAndLoc Mapping;
1527 SmallVector<std::string, 6> ValidKeys;
1528 };
1529
1530 class SequenceHNode : public HNode {
1531 public:
1532 SequenceHNode(Node *n) : HNode(n) { }
1533
1534 static bool classof(const HNode *n) {
1535 return SequenceNode::classof(n->_node);
1536 }
1537
1538 static bool classof(const SequenceHNode *) { return true; }
1539
1540 std::vector<HNode *> Entries;
1541 };
1542
1543 Input::HNode *createHNodes(Node *node);
1544 void setError(HNode *hnode, const Twine &message);
1545 void setError(Node *node, const Twine &message);
1546 void setError(const SMRange &Range, const Twine &message);
1547
1548 void reportWarning(HNode *hnode, const Twine &message);
1549 void reportWarning(Node *hnode, const Twine &message);
1550 void reportWarning(const SMRange &Range, const Twine &message);
1551
1552 /// Release memory used by HNodes.
1553 void releaseHNodeBuffers();
1554
1555public:
1556 // These are only used by operator>>. They could be private
1557 // if those templated things could be made friends.
1558 bool setCurrentDocument();
1559 bool nextDocument();
1560
1561 /// Returns the current node that's being parsed by the YAML Parser.
1562 const Node *getCurrentNode() const;
1563
1564 void setAllowUnknownKeys(bool Allow) override;
1565
1566private:
1567 SourceMgr SrcMgr; // must be before Strm
1568 std::unique_ptr<llvm::yaml::Stream> Strm;
1569 HNode *TopNode = nullptr;
1570 std::error_code EC;
1571 BumpPtrAllocator StringAllocator;
1572 SpecificBumpPtrAllocator<EmptyHNode> EmptyHNodeAllocator;
1573 SpecificBumpPtrAllocator<ScalarHNode> ScalarHNodeAllocator;
1574 SpecificBumpPtrAllocator<MapHNode> MapHNodeAllocator;
1575 SpecificBumpPtrAllocator<SequenceHNode> SequenceHNodeAllocator;
1576 document_iterator DocIterator;
1577 llvm::BitVector BitValuesUsed;
1578 HNode *CurrentNode = nullptr;
1579 bool ScalarMatchFound = false;
1580 bool AllowUnknownKeys = false;
1581};
1582
1583///
1584/// The Output class is used to generate a yaml document from in-memory structs
1585/// and vectors.
1586///
1587class Output : public IO {
1588public:
1589 Output(raw_ostream &, void *Ctxt = nullptr, int WrapColumn = 70);
1590 ~Output() override;
1591
1592 /// Set whether or not to output optional values which are equal
1593 /// to the default value. By default, when outputting if you attempt
1594 /// to write a value that is equal to the default, the value gets ignored.
1595 /// Sometimes, it is useful to be able to see these in the resulting YAML
1596 /// anyway.
1597 void setWriteDefaultValues(bool Write) { WriteDefaultValues = Write; }
1598
1599 bool outputting() const override;
1600 bool mapTag(StringRef, bool) override;
1601 void beginMapping() override;
1602 void endMapping() override;
1603 bool preflightKey(const char *key, bool, bool, bool &, void *&) override;
1604 void postflightKey(void *) override;
1605 std::vector<StringRef> keys() override;
1606 void beginFlowMapping() override;
1607 void endFlowMapping() override;
1608 unsigned beginSequence() override;
1609 void endSequence() override;
1610 bool preflightElement(unsigned, void *&) override;
1611 void postflightElement(void *) override;
1612 unsigned beginFlowSequence() override;
1613 bool preflightFlowElement(unsigned, void *&) override;
1614 void postflightFlowElement(void *) override;
1615 void endFlowSequence() override;
1616 void beginEnumScalar() override;
1617 bool matchEnumScalar(const char*, bool) override;
1618 bool matchEnumFallback() override;
1619 void endEnumScalar() override;
1620 bool beginBitSetScalar(bool &) override;
1621 bool bitSetMatch(const char *, bool ) override;
1622 void endBitSetScalar() override;
1623 void scalarString(StringRef &, QuotingType) override;
1624 void blockScalarString(StringRef &) override;
1625 void scalarTag(std::string &) override;
1626 NodeKind getNodeKind() override;
1627 void setError(const Twine &message) override;
1628 bool canElideEmptySequence() override;
1629
1630 // These are only used by operator<<. They could be private
1631 // if that templated operator could be made a friend.
1632 void beginDocuments();
1633 bool preflightDocument(unsigned);
1634 void postflightDocument();
1635 void endDocuments();
1636
1637private:
1638 void output(StringRef s);
1639 void outputUpToEndOfLine(StringRef s);
1640 void newLineCheck(bool EmptySequence = false);
1641 void outputNewLine();
1642 void paddedKey(StringRef key);
1643 void flowKey(StringRef Key);
1644
1645 enum InState {
1646 inSeqFirstElement,
1647 inSeqOtherElement,
1648 inFlowSeqFirstElement,
1649 inFlowSeqOtherElement,
1650 inMapFirstKey,
1651 inMapOtherKey,
1652 inFlowMapFirstKey,
1653 inFlowMapOtherKey
1654 };
1655
1656 static bool inSeqAnyElement(InState State);
1657 static bool inFlowSeqAnyElement(InState State);
1658 static bool inMapAnyKey(InState State);
1659 static bool inFlowMapAnyKey(InState State);
1660
1661 raw_ostream &Out;
1662 int WrapColumn;
1663 SmallVector<InState, 8> StateStack;
1664 int Column = 0;
1665 int ColumnAtFlowStart = 0;
1666 int ColumnAtMapFlowStart = 0;
1667 bool NeedBitValueComma = false;
1668 bool NeedFlowSequenceComma = false;
1669 bool EnumerationMatchFound = false;
1670 bool WriteDefaultValues = false;
1671 StringRef Padding;
1672 StringRef PaddingBeforeContainer;
1673};
1674
1675template <typename T, typename Context>
1676void IO::processKeyWithDefault(const char *Key, std::optional<T> &Val,
1677 const std::optional<T> &DefaultValue,
1678 bool Required, Context &Ctx) {
1679 assert(!DefaultValue && "std::optional<T> shouldn't have a value!");
1680 void *SaveInfo;
1681 bool UseDefault = true;
1682 const bool sameAsDefault = outputting() && !Val;
1683 if (!outputting() && !Val)
1684 Val = T();
1685 if (Val &&
1686 this->preflightKey(Key, Required, sameAsDefault, UseDefault, SaveInfo)) {
1687
1688 // When reading an std::optional<X> key from a YAML description, we allow
1689 // the special "<none>" value, which can be used to specify that no value
1690 // was requested, i.e. the DefaultValue will be assigned. The DefaultValue
1691 // is usually None.
1692 bool IsNone = false;
1693 if (!outputting())
1694 if (const auto *Node =
1695 dyn_cast<ScalarNode>(((Input *)this)->getCurrentNode()))
1696 // We use rtrim to ignore possible white spaces that might exist when a
1697 // comment is present on the same line.
1698 IsNone = Node->getRawValue().rtrim(' ') == "<none>";
1699
1700 if (IsNone)
1701 Val = DefaultValue;
1702 else
1703 yamlize(*this, *Val, Required, Ctx);
1704 this->postflightKey(SaveInfo);
1705 } else {
1706 if (UseDefault)
1707 Val = DefaultValue;
1708 }
1709}
1710
1711/// YAML I/O does conversion based on types. But often native data types
1712/// are just a typedef of built in intergral types (e.g. int). But the C++
1713/// type matching system sees through the typedef and all the typedefed types
1714/// look like a built in type. This will cause the generic YAML I/O conversion
1715/// to be used. To provide better control over the YAML conversion, you can
1716/// use this macro instead of typedef. It will create a class with one field
1717/// and automatic conversion operators to and from the base type.
1718/// Based on BOOST_STRONG_TYPEDEF
1719#define LLVM_YAML_STRONG_TYPEDEF(_base, _type) \
1720 struct _type { \
1721 _type() = default; \
1722 _type(const _base v) : value(v) {} \
1723 _type(const _type &v) = default; \
1724 _type &operator=(const _type &rhs) = default; \
1725 _type &operator=(const _base &rhs) { value = rhs; return *this; } \
1726 operator const _base & () const { return value; } \
1727 bool operator==(const _type &rhs) const { return value == rhs.value; } \
1728 bool operator==(const _base &rhs) const { return value == rhs; } \
1729 bool operator<(const _type &rhs) const { return value < rhs.value; } \
1730 _base value; \
1731 using BaseType = _base; \
1732 };
1733
1734///
1735/// Use these types instead of uintXX_t in any mapping to have
1736/// its yaml output formatted as hexadecimal.
1737///
1738LLVM_YAML_STRONG_TYPEDEF(uint8_t, Hex8)
1742
1743template<>
1744struct ScalarTraits<Hex8> {
1745 static void output(const Hex8 &, void *, raw_ostream &);
1746 static StringRef input(StringRef, void *, Hex8 &);
1747 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1748};
1749
1750template<>
1751struct ScalarTraits<Hex16> {
1752 static void output(const Hex16 &, void *, raw_ostream &);
1753 static StringRef input(StringRef, void *, Hex16 &);
1754 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1755};
1756
1757template<>
1758struct ScalarTraits<Hex32> {
1759 static void output(const Hex32 &, void *, raw_ostream &);
1760 static StringRef input(StringRef, void *, Hex32 &);
1761 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1762};
1763
1764template<>
1765struct ScalarTraits<Hex64> {
1766 static void output(const Hex64 &, void *, raw_ostream &);
1767 static StringRef input(StringRef, void *, Hex64 &);
1768 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1769};
1770
1771template <> struct ScalarTraits<VersionTuple> {
1772 static void output(const VersionTuple &Value, void *, llvm::raw_ostream &Out);
1773 static StringRef input(StringRef, void *, VersionTuple &);
1774 static QuotingType mustQuote(StringRef) { return QuotingType::None; }
1775};
1776
1777// Define non-member operator>> so that Input can stream in a document list.
1778template <typename T>
1779inline std::enable_if_t<has_DocumentListTraits<T>::value, Input &>
1780operator>>(Input &yin, T &docList) {
1781 int i = 0;
1782 EmptyContext Ctx;
1783 while ( yin.setCurrentDocument() ) {
1784 yamlize(yin, DocumentListTraits<T>::element(yin, docList, i), true, Ctx);
1785 if ( yin.error() )
1786 return yin;
1787 yin.nextDocument();
1788 ++i;
1789 }
1790 return yin;
1791}
1792
1793// Define non-member operator>> so that Input can stream in a map as a document.
1794template <typename T>
1795inline std::enable_if_t<has_MappingTraits<T, EmptyContext>::value, Input &>
1796operator>>(Input &yin, T &docMap) {
1797 EmptyContext Ctx;
1798 yin.setCurrentDocument();
1799 yamlize(yin, docMap, true, Ctx);
1800 return yin;
1801}
1802
1803// Define non-member operator>> so that Input can stream in a sequence as
1804// a document.
1805template <typename T>
1806inline std::enable_if_t<has_SequenceTraits<T>::value, Input &>
1807operator>>(Input &yin, T &docSeq) {
1808 EmptyContext Ctx;
1809 if (yin.setCurrentDocument())
1810 yamlize(yin, docSeq, true, Ctx);
1811 return yin;
1812}
1813
1814// Define non-member operator>> so that Input can stream in a block scalar.
1815template <typename T>
1816inline std::enable_if_t<has_BlockScalarTraits<T>::value, Input &>
1817operator>>(Input &In, T &Val) {
1818 EmptyContext Ctx;
1819 if (In.setCurrentDocument())
1820 yamlize(In, Val, true, Ctx);
1821 return In;
1822}
1823
1824// Define non-member operator>> so that Input can stream in a string map.
1825template <typename T>
1826inline std::enable_if_t<has_CustomMappingTraits<T>::value, Input &>
1827operator>>(Input &In, T &Val) {
1828 EmptyContext Ctx;
1829 if (In.setCurrentDocument())
1830 yamlize(In, Val, true, Ctx);
1831 return In;
1832}
1833
1834// Define non-member operator>> so that Input can stream in a polymorphic type.
1835template <typename T>
1836inline std::enable_if_t<has_PolymorphicTraits<T>::value, Input &>
1837operator>>(Input &In, T &Val) {
1838 EmptyContext Ctx;
1839 if (In.setCurrentDocument())
1840 yamlize(In, Val, true, Ctx);
1841 return In;
1842}
1843
1844// Provide better error message about types missing a trait specialization
1845template <typename T>
1846inline std::enable_if_t<missingTraits<T, EmptyContext>::value, Input &>
1847operator>>(Input &yin, T &docSeq) {
1848 char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
1849 return yin;
1850}
1851
1852// Define non-member operator<< so that Output can stream out document list.
1853template <typename T>
1854inline std::enable_if_t<has_DocumentListTraits<T>::value, Output &>
1855operator<<(Output &yout, T &docList) {
1856 EmptyContext Ctx;
1857 yout.beginDocuments();
1858 const size_t count = DocumentListTraits<T>::size(yout, docList);
1859 for(size_t i=0; i < count; ++i) {
1860 if ( yout.preflightDocument(i) ) {
1861 yamlize(yout, DocumentListTraits<T>::element(yout, docList, i), true,
1862 Ctx);
1863 yout.postflightDocument();
1864 }
1865 }
1866 yout.endDocuments();
1867 return yout;
1868}
1869
1870// Define non-member operator<< so that Output can stream out a map.
1871template <typename T>
1872inline std::enable_if_t<has_MappingTraits<T, EmptyContext>::value, Output &>
1873operator<<(Output &yout, T &map) {
1874 EmptyContext Ctx;
1875 yout.beginDocuments();
1876 if ( yout.preflightDocument(0) ) {
1877 yamlize(yout, map, true, Ctx);
1878 yout.postflightDocument();
1879 }
1880 yout.endDocuments();
1881 return yout;
1882}
1883
1884// Define non-member operator<< so that Output can stream out a sequence.
1885template <typename T>
1886inline std::enable_if_t<has_SequenceTraits<T>::value, Output &>
1887operator<<(Output &yout, T &seq) {
1888 EmptyContext Ctx;
1889 yout.beginDocuments();
1890 if ( yout.preflightDocument(0) ) {
1891 yamlize(yout, seq, true, Ctx);
1892 yout.postflightDocument();
1893 }
1894 yout.endDocuments();
1895 return yout;
1896}
1897
1898// Define non-member operator<< so that Output can stream out a block scalar.
1899template <typename T>
1900inline std::enable_if_t<has_BlockScalarTraits<T>::value, Output &>
1901operator<<(Output &Out, T &Val) {
1902 EmptyContext Ctx;
1903 Out.beginDocuments();
1904 if (Out.preflightDocument(0)) {
1905 yamlize(Out, Val, true, Ctx);
1906 Out.postflightDocument();
1907 }
1908 Out.endDocuments();
1909 return Out;
1910}
1911
1912// Define non-member operator<< so that Output can stream out a string map.
1913template <typename T>
1914inline std::enable_if_t<has_CustomMappingTraits<T>::value, Output &>
1915operator<<(Output &Out, T &Val) {
1916 EmptyContext Ctx;
1917 Out.beginDocuments();
1918 if (Out.preflightDocument(0)) {
1919 yamlize(Out, Val, true, Ctx);
1920 Out.postflightDocument();
1921 }
1922 Out.endDocuments();
1923 return Out;
1924}
1925
1926// Define non-member operator<< so that Output can stream out a polymorphic
1927// type.
1928template <typename T>
1929inline std::enable_if_t<has_PolymorphicTraits<T>::value, Output &>
1930operator<<(Output &Out, T &Val) {
1931 EmptyContext Ctx;
1932 Out.beginDocuments();
1933 if (Out.preflightDocument(0)) {
1934 // FIXME: The parser does not support explicit documents terminated with a
1935 // plain scalar; the end-marker is included as part of the scalar token.
1936 assert(PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && "plain scalar documents are not supported");
1937 yamlize(Out, Val, true, Ctx);
1938 Out.postflightDocument();
1939 }
1940 Out.endDocuments();
1941 return Out;
1942}
1943
1944// Provide better error message about types missing a trait specialization
1945template <typename T>
1946inline std::enable_if_t<missingTraits<T, EmptyContext>::value, Output &>
1947operator<<(Output &yout, T &seq) {
1948 char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)];
1949 return yout;
1950}
1951
1952template <bool B> struct IsFlowSequenceBase {};
1953template <> struct IsFlowSequenceBase<true> { static const bool flow = true; };
1954
1955template <typename T, typename U = void>
1956struct IsResizable : std::false_type {};
1957
1958template <typename T>
1959struct IsResizable<T, std::void_t<decltype(std::declval<T>().resize(0))>>
1960 : public std::true_type {};
1961
1962template <typename T, bool B> struct IsResizableBase {
1963 using type = typename T::value_type;
1964
1965 static type &element(IO &io, T &seq, size_t index) {
1966 if (index >= seq.size())
1967 seq.resize(index + 1);
1968 return seq[index];
1969 }
1970};
1971
1972template <typename T> struct IsResizableBase<T, false> {
1973 using type = typename T::value_type;
1974
1975 static type &element(IO &io, T &seq, size_t index) {
1976 if (index >= seq.size()) {
1977 io.setError(Twine("value sequence extends beyond static size (") +
1978 Twine(seq.size()) + ")");
1979 return seq[0];
1980 }
1981 return seq[index];
1982 }
1983};
1984
1985template <typename T, bool Flow>
1986struct SequenceTraitsImpl
1987 : IsFlowSequenceBase<Flow>, IsResizableBase<T, IsResizable<T>::value> {
1988 static size_t size(IO &io, T &seq) { return seq.size(); }
1989};
1990
1991// Simple helper to check an expression can be used as a bool-valued template
1992// argument.
1993template <bool> struct CheckIsBool { static const bool value = true; };
1994
1995// If T has SequenceElementTraits, then vector<T> and SmallVector<T, N> have
1996// SequenceTraits that do the obvious thing.
1997template <typename T>
1998struct SequenceTraits<
1999 std::vector<T>,
2000 std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
2001 : SequenceTraitsImpl<std::vector<T>, SequenceElementTraits<T>::flow> {};
2002template <typename T, unsigned N>
2003struct SequenceTraits<
2004 SmallVector<T, N>,
2005 std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
2006 : SequenceTraitsImpl<SmallVector<T, N>, SequenceElementTraits<T>::flow> {};
2007template <typename T>
2008struct SequenceTraits<
2009 SmallVectorImpl<T>,
2010 std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
2011 : SequenceTraitsImpl<SmallVectorImpl<T>, SequenceElementTraits<T>::flow> {};
2012template <typename T>
2013struct SequenceTraits<
2015 std::enable_if_t<CheckIsBool<SequenceElementTraits<T>::flow>::value>>
2016 : SequenceTraitsImpl<MutableArrayRef<T>, SequenceElementTraits<T>::flow> {};
2017
2018// Sequences of fundamental types use flow formatting.
2019template <typename T>
2020struct SequenceElementTraits<T, std::enable_if_t<std::is_fundamental_v<T>>> {
2021 static const bool flow = true;
2022};
2023
2024// Sequences of strings use block formatting.
2025template<> struct SequenceElementTraits<std::string> {
2026 static const bool flow = false;
2027};
2028template<> struct SequenceElementTraits<StringRef> {
2029 static const bool flow = false;
2030};
2031template<> struct SequenceElementTraits<std::pair<std::string, std::string>> {
2032 static const bool flow = false;
2033};
2034
2035/// Implementation of CustomMappingTraits for std::map<std::string, T>.
2036template <typename T> struct StdMapStringCustomMappingTraitsImpl {
2037 using map_type = std::map<std::string, T>;
2038
2039 static void inputOne(IO &io, StringRef key, map_type &v) {
2040 io.mapRequired(key.str().c_str(), v[std::string(key)]);
2041 }
2042
2043 static void output(IO &io, map_type &v) {
2044 for (auto &p : v)
2045 io.mapRequired(p.first.c_str(), p.second);
2046 }
2047};
2048
2049} // end namespace yaml
2050} // end namespace llvm
2051
2052#define LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(TYPE, FLOW) \
2053 namespace llvm { \
2054 namespace yaml { \
2055 static_assert( \
2056 !std::is_fundamental_v<TYPE> && !std::is_same_v<TYPE, std::string> && \
2057 !std::is_same_v<TYPE, llvm::StringRef>, \
2058 "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"); \
2059 template <> struct SequenceElementTraits<TYPE> { \
2060 static const bool flow = FLOW; \
2061 }; \
2062 } \
2063 }
2064
2065/// Utility for declaring that a std::vector of a particular type
2066/// should be considered a YAML sequence.
2067#define LLVM_YAML_IS_SEQUENCE_VECTOR(type) \
2068 LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(type, false)
2069
2070/// Utility for declaring that a std::vector of a particular type
2071/// should be considered a YAML flow sequence.
2072#define LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(type) \
2073 LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(type, true)
2074
2075#define LLVM_YAML_DECLARE_MAPPING_TRAITS(Type) \
2076 namespace llvm { \
2077 namespace yaml { \
2078 template <> struct MappingTraits<Type> { \
2079 static void mapping(IO &IO, Type &Obj); \
2080 }; \
2081 } \
2082 }
2083
2084#define LLVM_YAML_DECLARE_ENUM_TRAITS(Type) \
2085 namespace llvm { \
2086 namespace yaml { \
2087 template <> struct ScalarEnumerationTraits<Type> { \
2088 static void enumeration(IO &io, Type &Value); \
2089 }; \
2090 } \
2091 }
2092
2093#define LLVM_YAML_DECLARE_BITSET_TRAITS(Type) \
2094 namespace llvm { \
2095 namespace yaml { \
2096 template <> struct ScalarBitSetTraits<Type> { \
2097 static void bitset(IO &IO, Type &Options); \
2098 }; \
2099 } \
2100 }
2101
2102#define LLVM_YAML_DECLARE_SCALAR_TRAITS(Type, MustQuote) \
2103 namespace llvm { \
2104 namespace yaml { \
2105 template <> struct ScalarTraits<Type> { \
2106 static void output(const Type &Value, void *ctx, raw_ostream &Out); \
2107 static StringRef input(StringRef Scalar, void *ctxt, Type &Value); \
2108 static QuotingType mustQuote(StringRef) { return MustQuote; } \
2109 }; \
2110 } \
2111 }
2112
2113/// Utility for declaring that a std::vector of a particular type
2114/// should be considered a YAML document list.
2115#define LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(_type) \
2116 namespace llvm { \
2117 namespace yaml { \
2118 template <unsigned N> \
2119 struct DocumentListTraits<SmallVector<_type, N>> \
2120 : public SequenceTraitsImpl<SmallVector<_type, N>, false> {}; \
2121 template <> \
2122 struct DocumentListTraits<std::vector<_type>> \
2123 : public SequenceTraitsImpl<std::vector<_type>, false> {}; \
2124 } \
2125 }
2126
2127/// Utility for declaring that std::map<std::string, _type> should be considered
2128/// a YAML map.
2129#define LLVM_YAML_IS_STRING_MAP(_type) \
2130 namespace llvm { \
2131 namespace yaml { \
2132 template <> \
2133 struct CustomMappingTraits<std::map<std::string, _type>> \
2134 : public StdMapStringCustomMappingTraitsImpl<_type> {}; \
2135 } \
2136 }
2137
2138LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex64)
2139LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex32)
2140LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex16)
2141LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(llvm::yaml::Hex8)
2142
2143#endif // LLVM_SUPPORT_YAMLTRAITS_H
This file defines the StringMap class.
This file defines the BumpPtrAllocator interface.
basic Basic Alias true
This file implements the BitVector class.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Given that RA is a live value
@ Default
Definition: DwarfDebug.cpp:87
IO & YamlIO
Definition: ELFYAML.cpp:1289
static void mapOptional(yaml::IO &IO, const char *Key, EndianType &Val, typename EndianType::value_type Default)
Perform an optional yaml-mapping of an endian-aware type EndianType.
#define T
modulo schedule test
LLVMContext & Context
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
#define error(X)
static void DiagHandler(const SMDiagnostic &Diag, void *Context)
Definition: TextStub.cpp:1060
#define LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(type)
#define LLVM_YAML_STRONG_TYPEDEF(_base, _type)
static constexpr size_t npos
Definition: StringRef.h:52
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Sequence
A sequence of states that a pointer may go through in which an objc_retain and objc_release are actua...
Definition: PtrState.h:41
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1689
SourceMgr SrcMgr
Definition: Error.cpp:24
BumpPtrAllocatorImpl BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
Definition: Allocator.h:375
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
Definition: SmallVector.h:1135
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ None
Not a recurrence.
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition: STLExtras.h:1923
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:293
ScaledNumber< DigitsT > operator>>(const ScaledNumber< DigitsT > &L, int16_t Shift)
Definition: ScaledNumber.h:737
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition: Sequence.h:305
@ Default
The result values are uniform if and only if all operands are uniform.
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define N
Determine the kind of a node from its type.