79#include "llvm/IR/IntrinsicsAArch64.h"
80#include "llvm/IR/IntrinsicsAMDGPU.h"
81#include "llvm/IR/IntrinsicsWebAssembly.h"
114#define DEBUG_TYPE "isel"
122 cl::desc(
"Insert the experimental `assertalign` node."),
127 cl::desc(
"Generate low-precision inline sequences "
128 "for some float libcalls"),
134 cl::desc(
"Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
155 const SDValue *Parts,
unsigned NumParts,
158 std::optional<CallingConv::ID> CC);
167 unsigned NumParts,
MVT PartVT,
EVT ValueVT,
const Value *V,
169 std::optional<CallingConv::ID> CC = std::nullopt,
170 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
174 PartVT, ValueVT, CC))
181 assert(NumParts > 0 &&
"No parts to assemble!");
192 unsigned RoundBits = PartBits * RoundParts;
193 EVT RoundVT = RoundBits == ValueBits ?
199 if (RoundParts > 2) {
203 PartVT, HalfVT, V, InChain);
214 if (RoundParts < NumParts) {
216 unsigned OddParts = NumParts - RoundParts;
219 OddVT, V, InChain, CC);
235 assert(ValueVT ==
EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
246 !PartVT.
isVector() &&
"Unexpected split");
258 if (PartEVT == ValueVT)
262 ValueVT.
bitsLT(PartEVT)) {
275 if (ValueVT.
bitsLT(PartEVT)) {
280 Val = DAG.
getNode(*AssertOp,
DL, PartEVT, Val,
295 llvm::Attribute::StrictFP)) {
297 DAG.
getVTList(ValueVT, MVT::Other), InChain, Val,
309 if (PartEVT == MVT::x86mmx && ValueVT.
isInteger() &&
310 ValueVT.
bitsLT(PartEVT)) {
319 const Twine &ErrMsg) {
322 return Ctx.emitError(ErrMsg);
325 if (CI->isInlineAsm()) {
327 *CI, ErrMsg +
", possible invalid constraint for vector type"));
330 return Ctx.emitError(
I, ErrMsg);
339 const SDValue *Parts,
unsigned NumParts,
342 std::optional<CallingConv::ID> CallConv) {
344 assert(NumParts > 0 &&
"No parts to assemble!");
345 const bool IsABIRegCopy = CallConv.has_value();
354 unsigned NumIntermediates;
359 *DAG.
getContext(), *CallConv, ValueVT, IntermediateVT,
360 NumIntermediates, RegisterVT);
364 NumIntermediates, RegisterVT);
367 assert(NumRegs == NumParts &&
"Part count doesn't match vector breakdown!");
369 assert(RegisterVT == PartVT &&
"Part type doesn't match vector breakdown!");
372 "Part type sizes don't match!");
376 if (NumIntermediates == NumParts) {
379 for (
unsigned i = 0; i != NumParts; ++i)
381 V, InChain, CallConv);
382 }
else if (NumParts > 0) {
385 assert(NumParts % NumIntermediates == 0 &&
386 "Must expand into a divisible number of parts!");
387 unsigned Factor = NumParts / NumIntermediates;
388 for (
unsigned i = 0; i != NumIntermediates; ++i)
390 IntermediateVT, V, InChain, CallConv);
405 DL, BuiltVectorTy,
Ops);
411 if (PartEVT == ValueVT)
427 "Cannot narrow, it would be a lossy transformation");
433 if (PartEVT == ValueVT)
458 }
else if (ValueVT.
bitsLT(PartEVT)) {
467 *DAG.
getContext(), V,
"non-trivial scalar-to-vector conversion");
498 std::optional<CallingConv::ID> CallConv);
505 unsigned NumParts,
MVT PartVT,
const Value *V,
506 std::optional<CallingConv::ID> CallConv = std::nullopt,
520 unsigned OrigNumParts = NumParts;
522 "Copying to an illegal type!");
528 EVT PartEVT = PartVT;
529 if (PartEVT == ValueVT) {
530 assert(NumParts == 1 &&
"No-op copy with multiple parts!");
539 assert(NumParts == 1 &&
"Do not know what to promote to!");
550 "Unknown mismatch!");
552 Val = DAG.
getNode(ExtendKind,
DL, ValueVT, Val);
553 if (PartVT == MVT::x86mmx)
558 assert(NumParts == 1 && PartEVT != ValueVT);
564 "Unknown mismatch!");
567 if (PartVT == MVT::x86mmx)
574 "Failed to tile the value with PartVT!");
577 if (PartEVT != ValueVT) {
579 "scalar-to-vector conversion failed");
588 if (NumParts & (NumParts - 1)) {
591 "Do not know what to expand to!");
593 unsigned RoundBits = RoundParts * PartBits;
594 unsigned OddParts = NumParts - RoundParts;
603 std::reverse(Parts + RoundParts, Parts + NumParts);
605 NumParts = RoundParts;
617 for (
unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618 for (
unsigned i = 0; i < NumParts; i += StepSize) {
619 unsigned ThisBits = StepSize * PartBits / 2;
622 SDValue &Part1 = Parts[i+StepSize/2];
629 if (ThisBits == PartBits && ThisVT != PartVT) {
637 std::reverse(Parts, Parts + OrigNumParts);
659 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661 "Cannot widen to illegal type");
665 }
else if (PartEVT != ValueEVT) {
680 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
691 std::optional<CallingConv::ID> CallConv) {
695 const bool IsABIRegCopy = CallConv.has_value();
698 EVT PartEVT = PartVT;
699 if (PartEVT == ValueVT) {
745 "lossy conversion of vector to scalar type");
760 unsigned NumIntermediates;
764 *DAG.
getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
769 NumIntermediates, RegisterVT);
772 assert(NumRegs == NumParts &&
"Part count doesn't match vector breakdown!");
774 assert(RegisterVT == PartVT &&
"Part type doesn't match vector breakdown!");
777 "Mixing scalable and fixed vectors when copying in parts");
779 std::optional<ElementCount> DestEltCnt;
789 if (ValueVT == BuiltVectorTy) {
813 for (
unsigned i = 0; i != NumIntermediates; ++i) {
828 if (NumParts == NumIntermediates) {
831 for (
unsigned i = 0; i != NumParts; ++i)
833 }
else if (NumParts > 0) {
836 assert(NumIntermediates != 0 &&
"division by zero");
837 assert(NumParts % NumIntermediates == 0 &&
838 "Must expand into a divisible number of parts!");
839 unsigned Factor = NumParts / NumIntermediates;
840 for (
unsigned i = 0; i != NumIntermediates; ++i)
848 if (
I.hasOperandBundlesOtherThan(AllowedBundles)) {
852 for (
unsigned i = 0, e =
I.getNumOperandBundles(); i != e; ++i) {
855 OS << LS << U.getTagName();
858 Twine(
"cannot lower ", Name)
864 EVT valuevt, std::optional<CallingConv::ID> CC)
870 std::optional<CallingConv::ID> CC) {
884 for (
unsigned i = 0; i != NumRegs; ++i)
885 Regs.push_back(Reg + i);
886 RegVTs.push_back(RegisterVT);
888 Reg = Reg.id() + NumRegs;
915 for (
unsigned i = 0; i != NumRegs; ++i) {
921 *Glue =
P.getValue(2);
924 Chain =
P.getValue(1);
952 EVT FromVT(MVT::Other);
956 }
else if (NumSignBits > 1) {
964 assert(FromVT != MVT::Other);
970 RegisterVT, ValueVT, V, Chain,
CallConv);
986 unsigned NumRegs =
Regs.size();
1000 NumParts, RegisterVT, V,
CallConv, ExtendKind);
1006 for (
unsigned i = 0; i != NumRegs; ++i) {
1018 if (NumRegs == 1 || Glue)
1029 Chain = Chains[NumRegs-1];
1035 unsigned MatchingIdx,
const SDLoc &dl,
1037 std::vector<SDValue> &
Ops)
const {
1042 Flag.setMatchingOp(MatchingIdx);
1043 else if (!
Regs.empty() &&
Regs.front().isVirtual()) {
1051 Flag.setRegClass(RC->
getID());
1062 "No 1:1 mapping from clobbers to regs?");
1065 for (
unsigned I = 0, E =
ValueVTs.size();
I != E; ++
I) {
1070 "If we clobbered the stack pointer, MFI should know about it.");
1079 for (
unsigned i = 0; i != NumRegs; ++i) {
1080 assert(Reg <
Regs.size() &&
"Mismatch in # registers expected");
1092 unsigned RegCount = std::get<0>(CountAndVT);
1093 MVT RegisterVT = std::get<1>(CountAndVT);
1111 SL->init(
DAG.getTargetLoweringInfo(), TM,
DAG.getDataLayout());
1113 *
DAG.getMachineFunction().getFunction().getParent());
1118 UnusedArgNodeMap.clear();
1120 PendingExports.clear();
1121 PendingConstrainedFP.clear();
1122 PendingConstrainedFPStrict.clear();
1130 DanglingDebugInfoMap.clear();
1137 if (Pending.
empty())
1143 unsigned i = 0, e = Pending.
size();
1144 for (; i != e; ++i) {
1146 if (Pending[i].
getNode()->getOperand(0) == Root)
1154 if (Pending.
size() == 1)
1181 if (!PendingConstrainedFPStrict.empty()) {
1182 assert(PendingConstrainedFP.empty());
1183 updateRoot(PendingConstrainedFPStrict);
1196 if (!PendingConstrainedFP.empty()) {
1197 assert(PendingConstrainedFPStrict.empty());
1198 updateRoot(PendingConstrainedFP);
1202 return DAG.getRoot();
1210 PendingConstrainedFP.size() +
1211 PendingConstrainedFPStrict.size());
1213 PendingConstrainedFP.end());
1214 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1215 PendingConstrainedFPStrict.end());
1216 PendingConstrainedFP.clear();
1217 PendingConstrainedFPStrict.clear();
1224 PendingExports.append(PendingConstrainedFPStrict.begin(),
1225 PendingConstrainedFPStrict.end());
1226 PendingConstrainedFPStrict.clear();
1227 return updateRoot(PendingExports);
1234 assert(Variable &&
"Missing variable");
1241 <<
"dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1257 if (IsParameter && FINode) {
1259 SDV =
DAG.getFrameIndexDbgValue(Variable,
Expression, FINode->getIndex(),
1260 true,
DL, SDNodeOrder);
1265 FuncArgumentDbgValueKind::Declare,
N);
1268 SDV =
DAG.getDbgValue(Variable,
Expression,
N.getNode(),
N.getResNo(),
1269 true,
DL, SDNodeOrder);
1271 DAG.AddDbgValue(SDV, IsParameter);
1276 FuncArgumentDbgValueKind::Declare,
N)) {
1278 <<
" (could not emit func-arg dbg_value)\n");
1289 for (
auto It = FnVarLocs->locs_begin(&
I), End = FnVarLocs->locs_end(&
I);
1291 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1293 if (It->Values.isKillLocation(It->Expr)) {
1299 It->Values.hasArgList())) {
1302 FnVarLocs->getDILocalVariable(It->VariableID),
1303 It->Expr, Vals.
size() > 1, It->DL, SDNodeOrder);
1316 bool SkipDbgVariableRecords =
DAG.getFunctionVarLocs();
1319 for (
DbgRecord &DR :
I.getDbgRecordRange()) {
1321 assert(DLR->getLabel() &&
"Missing label");
1323 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1324 DAG.AddDbgLabel(SDV);
1328 if (SkipDbgVariableRecords)
1336 if (
FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1338 LLVM_DEBUG(
dbgs() <<
"SelectionDAG visiting dbg_declare: " << DVR
1347 if (Values.
empty()) {
1364 SDNodeOrder, IsVariadic)) {
1375 if (
I.isTerminator()) {
1376 HandlePHINodesInSuccessorBlocks(
I.getParent());
1383 bool NodeInserted =
false;
1384 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1385 MDNode *PCSectionsMD =
I.getMetadata(LLVMContext::MD_pcsections);
1386 MDNode *MMRA =
I.getMetadata(LLVMContext::MD_mmra);
1387 if (PCSectionsMD || MMRA) {
1388 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1389 DAG, [&](
SDNode *) { NodeInserted =
true; });
1399 if (PCSectionsMD || MMRA) {
1400 auto It = NodeMap.find(&
I);
1401 if (It != NodeMap.end()) {
1403 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1405 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1406 }
else if (NodeInserted) {
1409 errs() <<
"warning: loosing !pcsections and/or !mmra metadata ["
1410 <<
I.getModule()->getName() <<
"]\n";
1419void SelectionDAGBuilder::visitPHI(
const PHINode &) {
1429#define HANDLE_INST(NUM, OPCODE, CLASS) \
1430 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1431#include "llvm/IR/Instruction.def"
1443 for (
const Value *V : Values) {
1468 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr,
DL, Order);
1473 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1474 DIVariable *DanglingVariable = DDI.getVariable();
1476 if (DanglingVariable == Variable && Expr->
fragmentsOverlap(DanglingExpr)) {
1478 << printDDI(
nullptr, DDI) <<
"\n");
1484 for (
auto &DDIMI : DanglingDebugInfoMap) {
1485 DanglingDebugInfoVector &DDIV = DDIMI.second;
1489 for (
auto &DDI : DDIV)
1490 if (isMatchingDbgValue(DDI))
1493 erase_if(DDIV, isMatchingDbgValue);
1501 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1502 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1505 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1506 for (
auto &DDI : DDIV) {
1509 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1512 assert(Variable->isValidLocationForIntrinsic(
DL) &&
1513 "Expected inlined-at fields to agree");
1522 if (!EmitFuncArgumentDbgValue(V, Variable, Expr,
DL,
1523 FuncArgumentDbgValueKind::Value, Val)) {
1525 << printDDI(V, DDI) <<
"\n");
1532 <<
"changing SDNodeOrder from " << DbgSDNodeOrder <<
" to "
1533 << ValSDNodeOrder <<
"\n");
1534 SDV = getDbgValue(Val, Variable, Expr,
DL,
1535 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1536 DAG.AddDbgValue(SDV,
false);
1540 <<
" in EmitFuncArgumentDbgValue\n");
1542 LLVM_DEBUG(
dbgs() <<
"Dropping debug info for " << printDDI(V, DDI)
1546 DAG.getConstantDbgValue(Variable, Expr,
Poison,
DL, DbgSDNodeOrder);
1547 DAG.AddDbgValue(SDV,
false);
1554 DanglingDebugInfo &DDI) {
1559 const Value *OrigV = V;
1563 unsigned SDOrder = DDI.getSDNodeOrder();
1567 bool StackValue =
true;
1592 if (!AdditionalValues.
empty())
1602 dbgs() <<
"Salvaged debug location info for:\n " << *Var <<
"\n"
1603 << *OrigV <<
"\nBy stripping back to:\n " << *V <<
"\n");
1611 assert(OrigV &&
"V shouldn't be null");
1613 auto *SDV =
DAG.getConstantDbgValue(Var, Expr,
Poison,
DL, SDNodeOrder);
1614 DAG.AddDbgValue(SDV,
false);
1616 << printDDI(OrigV, DDI) <<
"\n");
1633 unsigned Order,
bool IsVariadic) {
1638 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1643 for (
const Value *V : Values) {
1653 if (CE->getOpcode() == Instruction::IntToPtr) {
1672 N = UnusedArgNodeMap[V];
1677 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1678 FuncArgumentDbgValueKind::Value,
N))
1705 bool IsParamOfFunc =
1713 auto VMI =
FuncInfo.ValueMap.find(V);
1714 if (VMI !=
FuncInfo.ValueMap.end()) {
1719 V->getType(), std::nullopt);
1725 unsigned BitsToDescribe = 0;
1727 BitsToDescribe = *VarSize;
1729 BitsToDescribe = Fragment->SizeInBits;
1732 if (
Offset >= BitsToDescribe)
1735 unsigned RegisterSize = RegAndSize.second;
1736 unsigned FragmentSize = (
Offset + RegisterSize > BitsToDescribe)
1737 ? BitsToDescribe -
Offset
1740 Expr,
Offset, FragmentSize);
1744 Var, *FragmentExpr, RegAndSize.first,
false, DbgLoc, Order);
1745 DAG.AddDbgValue(SDV,
false);
1761 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1762 false, DbgLoc, Order, IsVariadic);
1763 DAG.AddDbgValue(SDV,
false);
1769 for (
auto &Pair : DanglingDebugInfoMap)
1770 for (
auto &DDI : Pair.second)
1781 if (It !=
FuncInfo.ValueMap.end()) {
1785 DAG.getDataLayout(), InReg, Ty,
1802 if (
N.getNode())
return N;
1862 return DAG.getSplatBuildVector(
1865 return DAG.getConstant(*CI,
DL, VT);
1874 getValue(CPA->getAddrDiscriminator()),
1875 getValue(CPA->getDiscriminator()));
1891 visit(CE->getOpcode(), *CE);
1893 assert(N1.
getNode() &&
"visit didn't populate the NodeMap!");
1899 for (
const Use &U :
C->operands()) {
1905 for (
unsigned i = 0, e = Val->
getNumValues(); i != e; ++i)
1906 Constants.push_back(
SDValue(Val, i));
1915 for (
uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) {
1919 for (
unsigned i = 0, e = Val->
getNumValues(); i != e; ++i)
1928 if (
C->getType()->isStructTy() ||
C->getType()->isArrayTy()) {
1930 "Unknown struct or array constant!");
1934 unsigned NumElts = ValueVTs.
size();
1938 for (
unsigned i = 0; i != NumElts; ++i) {
1939 EVT EltVT = ValueVTs[i];
1941 Constants[i] =
DAG.getUNDEF(EltVT);
1952 return DAG.getBlockAddress(BA, VT);
1955 return getValue(Equiv->getGlobalValue());
1960 if (VT == MVT::aarch64svcount) {
1961 assert(
C->isNullValue() &&
"Can only zero this target type!");
1967 assert(
C->isNullValue() &&
"Can only zero this target type!");
1984 for (
unsigned i = 0; i != NumElements; ++i)
2012 return DAG.getFrameIndex(
2020 std::optional<CallingConv::ID> CallConv;
2022 if (CB && !CB->isInlineAsm())
2023 CallConv = CB->getCallingConv();
2026 Inst->getType(), CallConv);
2040void SelectionDAGBuilder::visitCatchPad(
const CatchPadInst &
I) {
2053 if (IsMSVCCXX || IsCoreCLR)
2059 MachineBasicBlock *TargetMBB =
FuncInfo.getMBB(
I.getSuccessor());
2060 FuncInfo.MBB->addSuccessor(TargetMBB);
2067 if (TargetMBB != NextBlock(
FuncInfo.MBB) ||
2076 DAG.getMachineFunction().setHasEHContTarget(
true);
2082 Value *ParentPad =
I.getCatchSwitchParentPad();
2085 SuccessorColor = &
FuncInfo.Fn->getEntryBlock();
2088 assert(SuccessorColor &&
"No parent funclet for catchret!");
2089 MachineBasicBlock *SuccessorColorMBB =
FuncInfo.getMBB(SuccessorColor);
2090 assert(SuccessorColorMBB &&
"No MBB for SuccessorColor!");
2095 DAG.getBasicBlock(SuccessorColorMBB));
2099void SelectionDAGBuilder::visitCleanupPad(
const CleanupPadInst &CPI) {
2105 FuncInfo.MBB->setIsEHFuncletEntry();
2106 FuncInfo.MBB->setIsCleanupFuncletEntry();
2135 UnwindDests.emplace_back(FuncInfo.
getMBB(EHPadBB), Prob);
2141 UnwindDests.emplace_back(FuncInfo.
getMBB(EHPadBB), Prob);
2142 UnwindDests.back().first->setIsEHScopeEntry();
2145 UnwindDests.back().first->setIsEHFuncletEntry();
2149 for (
const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2150 UnwindDests.emplace_back(FuncInfo.
getMBB(CatchPadBB), Prob);
2152 if (IsMSVCCXX || IsCoreCLR)
2153 UnwindDests.back().first->setIsEHFuncletEntry();
2155 UnwindDests.back().first->setIsEHScopeEntry();
2157 NewEHPadBB = CatchSwitch->getUnwindDest();
2163 if (BPI && NewEHPadBB)
2165 EHPadBB = NewEHPadBB;
2172 auto UnwindDest =
I.getUnwindDest();
2173 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
2174 BranchProbability UnwindDestProb =
2179 for (
auto &UnwindDest : UnwindDests) {
2180 UnwindDest.first->setIsEHPad();
2181 addSuccessorWithProb(
FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2183 FuncInfo.MBB->normalizeSuccProbs();
2186 MachineBasicBlock *CleanupPadMBB =
2187 FuncInfo.getMBB(
I.getCleanupPad()->getParent());
2193void SelectionDAGBuilder::visitCatchSwitch(
const CatchSwitchInst &CSI) {
2197void SelectionDAGBuilder::visitRet(
const ReturnInst &
I) {
2198 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
2199 auto &
DL =
DAG.getDataLayout();
2211 if (
I.getParent()->getTerminatingDeoptimizeCall()) {
2228 SmallVector<uint64_t, 4>
Offsets;
2231 unsigned NumValues = ValueVTs.
size();
2234 Align BaseAlign =
DL.getPrefTypeAlign(
I.getOperand(0)->getType());
2235 for (
unsigned i = 0; i != NumValues; ++i) {
2242 if (MemVTs[i] != ValueVTs[i])
2244 Chains[i] =
DAG.getStore(
2252 MVT::Other, Chains);
2253 }
else if (
I.getNumOperands() != 0) {
2256 unsigned NumValues =
Types.size();
2260 const Function *
F =
I.getParent()->getParent();
2263 I.getOperand(0)->getType(),
F->getCallingConv(),
2267 if (
F->getAttributes().hasRetAttr(Attribute::SExt))
2269 else if (
F->getAttributes().hasRetAttr(Attribute::ZExt))
2272 LLVMContext &
Context =
F->getContext();
2273 bool RetInReg =
F->getAttributes().hasRetAttr(Attribute::InReg);
2275 for (
unsigned j = 0;
j != NumValues; ++
j) {
2288 &Parts[0], NumParts, PartVT, &
I, CC, ExtendKind);
2291 ISD::ArgFlagsTy
Flags = ISD::ArgFlagsTy();
2295 if (
I.getOperand(0)->getType()->isPointerTy()) {
2297 Flags.setPointerAddrSpace(
2301 if (NeedsRegBlock) {
2302 Flags.setInConsecutiveRegs();
2303 if (j == NumValues - 1)
2304 Flags.setInConsecutiveRegsLast();
2312 else if (
F->getAttributes().hasRetAttr(Attribute::NoExt))
2315 for (
unsigned i = 0; i < NumParts; ++i) {
2318 VT, Types[j], 0, 0));
2328 const Function *
F =
I.getParent()->getParent();
2330 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2332 ISD::ArgFlagsTy
Flags = ISD::ArgFlagsTy();
2333 Flags.setSwiftError();
2345 bool isVarArg =
DAG.getMachineFunction().getFunction().isVarArg();
2347 DAG.getMachineFunction().getFunction().getCallingConv();
2348 Chain =
DAG.getTargetLoweringInfo().LowerReturn(
2353 "LowerReturn didn't return a valid chain!");
2364 if (V->getType()->isEmptyTy())
2368 if (VMI !=
FuncInfo.ValueMap.end()) {
2370 "Unused value assigned virtual registers!");
2383 if (
FuncInfo.isExportedInst(V))
return;
2395 if (VI->getParent() == FromBB)
2421 const BasicBlock *SrcBB = Src->getBasicBlock();
2422 const BasicBlock *DstBB = Dst->getBasicBlock();
2426 auto SuccSize = std::max<uint32_t>(
succ_size(SrcBB), 1);
2436 Src->addSuccessorWithoutProb(Dst);
2439 Prob = getEdgeProbability(Src, Dst);
2440 Src->addSuccessor(Dst, Prob);
2446 return I->getParent() == BB;
2470 if (CurBB == SwitchBB ||
2476 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2481 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2483 if (TM.Options.NoNaNsFPMath)
2487 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1),
nullptr,
2489 SL->SwitchCases.push_back(CB);
2498 SL->SwitchCases.push_back(CB);
2506 unsigned Depth = 0) {
2515 if (Necessary !=
nullptr) {
2518 if (Necessary->contains(
I))
2537 if (
I.getNumSuccessors() != 2)
2540 if (!
I.isConditional())
2552 if (BPI !=
nullptr) {
2558 std::optional<bool> Likely;
2561 else if (BPI->
isEdgeHot(
I.getParent(), IfFalse))
2565 if (
Opc == (*Likely ? Instruction::And : Instruction::Or))
2577 if (CostThresh <= 0)
2598 Value *BrCond =
I.getCondition();
2599 auto ShouldCountInsn = [&RhsDeps, &BrCond](
const Instruction *Ins) {
2600 for (
const auto *U : Ins->users()) {
2603 if (UIns != BrCond && !RhsDeps.
contains(UIns))
2616 for (
unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2618 for (
const auto &InsPair : RhsDeps) {
2619 if (!ShouldCountInsn(InsPair.first)) {
2620 ToDrop = InsPair.first;
2624 if (ToDrop ==
nullptr)
2626 RhsDeps.erase(ToDrop);
2629 for (
const auto &InsPair : RhsDeps) {
2634 CostOfIncluding +=
TTI->getInstructionCost(
2637 if (CostOfIncluding > CostThresh)
2663 const Value *BOpOp0, *BOpOp1;
2677 if (BOpc == Instruction::And)
2678 BOpc = Instruction::Or;
2679 else if (BOpc == Instruction::Or)
2680 BOpc = Instruction::And;
2686 bool BOpIsInOrAndTree = BOpc && BOpc ==
Opc && BOp->
hasOneUse();
2691 TProb, FProb, InvertCond);
2701 if (
Opc == Instruction::Or) {
2722 auto NewTrueProb = TProb / 2;
2723 auto NewFalseProb = TProb / 2 + FProb;
2726 NewFalseProb, InvertCond);
2733 Probs[1], InvertCond);
2735 assert(
Opc == Instruction::And &&
"Unknown merge op!");
2755 auto NewTrueProb = TProb + FProb / 2;
2756 auto NewFalseProb = FProb / 2;
2759 NewFalseProb, InvertCond);
2766 Probs[1], InvertCond);
2775 if (Cases.size() != 2)
return true;
2779 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2780 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2781 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2782 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2788 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2789 Cases[0].CC == Cases[1].CC &&
2792 if (Cases[0].CC ==
ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2794 if (Cases[0].CC ==
ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2801void SelectionDAGBuilder::visitBr(
const BranchInst &
I) {
2807 if (
I.isUnconditional()) {
2813 if (Succ0MBB != NextBlock(BrMBB) ||
2826 const Value *CondVal =
I.getCondition();
2827 MachineBasicBlock *Succ1MBB =
FuncInfo.getMBB(
I.getSuccessor(1));
2846 bool IsUnpredictable =
I.hasMetadata(LLVMContext::MD_unpredictable);
2848 if (!
DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2851 const Value *BOp0, *BOp1;
2854 Opcode = Instruction::And;
2856 Opcode = Instruction::Or;
2863 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2864 Opcode, BOp0, BOp1))) {
2866 getEdgeProbability(BrMBB, Succ0MBB),
2867 getEdgeProbability(BrMBB, Succ1MBB),
2872 assert(
SL->SwitchCases[0].ThisBB == BrMBB &&
"Unexpected lowering!");
2876 for (
unsigned i = 1, e =
SL->SwitchCases.size(); i != e; ++i) {
2883 SL->SwitchCases.erase(
SL->SwitchCases.begin());
2889 for (
unsigned i = 1, e =
SL->SwitchCases.size(); i != e; ++i)
2890 FuncInfo.MF->erase(
SL->SwitchCases[i].ThisBB);
2892 SL->SwitchCases.clear();
2898 nullptr, Succ0MBB, Succ1MBB, BrMBB,
getCurSDLoc(),
2919 if (CB.
TrueBB != NextBlock(SwitchBB)) {
2926 auto &TLI =
DAG.getTargetLoweringInfo();
2950 Cond =
DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.
CC);
2962 Cond =
DAG.getSetCC(dl, MVT::i1, CmpOp,
DAG.getConstant(
High, dl, VT),
2966 VT, CmpOp,
DAG.getConstant(
Low, dl, VT));
2967 Cond =
DAG.getSetCC(dl, MVT::i1, SUB,
2982 if (CB.
TrueBB == NextBlock(SwitchBB)) {
2998 BrCond =
DAG.getNode(
ISD::BR, dl, MVT::Other, BrCond,
3001 DAG.setRoot(BrCond);
3007 assert(JT.
SL &&
"Should set SDLoc for SelectionDAG!");
3008 assert(JT.
Reg &&
"Should lower JT Header first!");
3009 EVT PTy =
DAG.getTargetLoweringInfo().getJumpTableRegTy(
DAG.getDataLayout());
3013 Index.getValue(1), Table, Index);
3014 DAG.setRoot(BrJumpTable);
3022 assert(JT.
SL &&
"Should set SDLoc for SelectionDAG!");
3029 DAG.getConstant(JTH.
First, dl, VT));
3044 JT.
Reg = JumpTableReg;
3052 Sub.getValueType()),
3056 MVT::Other, CopyTo, CMP,
3060 if (JT.
MBB != NextBlock(SwitchBB))
3061 BrCond =
DAG.getNode(
ISD::BR, dl, MVT::Other, BrCond,
3062 DAG.getBasicBlock(JT.
MBB));
3064 DAG.setRoot(BrCond);
3067 if (JT.
MBB != NextBlock(SwitchBB))
3069 DAG.getBasicBlock(JT.
MBB)));
3071 DAG.setRoot(CopyTo);
3094 if (PtrTy != PtrMemTy)
3110 auto &
DL =
DAG.getDataLayout();
3119 SDValue StackSlotPtr =
DAG.getFrameIndex(FI, PtrTy);
3126 PtrMemTy, dl,
DAG.getEntryNode(), StackSlotPtr,
3139 assert(GuardCheckFn &&
"Guard check function is null");
3150 Entry.IsInReg =
true;
3151 Args.push_back(Entry);
3157 getValue(GuardCheckFn), std::move(Args));
3159 std::pair<SDValue, SDValue> Result = TLI.
LowerCallTo(CLI);
3160 DAG.setRoot(Result.second);
3172 Guard =
DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3178 Guard =
DAG.getPOISON(PtrMemTy);
3220 auto &
DL =
DAG.getDataLayout();
3228 SDValue StackSlotPtr =
DAG.getFrameIndex(FI, PtrTy);
3234 PtrMemTy, dl,
DAG.getEntryNode(), StackSlotPtr,
3249 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3250 Entry.IsInReg =
true;
3251 Args.push_back(Entry);
3257 getValue(GuardCheckFn), std::move(Args));
3263 Chain = TLI.
makeLibCall(
DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3286 DAG.getNode(
ISD::SUB, dl, VT, SwitchOp,
DAG.getConstant(
B.First, dl, VT));
3290 bool UsePtrType =
false;
3314 if (!
B.FallthroughUnreachable)
3315 addSuccessorWithProb(SwitchBB,
B.Default,
B.DefaultProb);
3316 addSuccessorWithProb(SwitchBB,
MBB,
B.Prob);
3320 if (!
B.FallthroughUnreachable) {
3329 DAG.getBasicBlock(
B.Default));
3333 if (
MBB != NextBlock(SwitchBB))
3351 if (PopCount == 1) {
3358 }
else if (PopCount == BB.
Range) {
3366 DAG.getConstant(1, dl, VT), ShiftOp);
3370 VT, SwitchVal,
DAG.getConstant(
B.Mask, dl, VT));
3377 addSuccessorWithProb(SwitchBB,
B.TargetBB,
B.ExtraProb);
3379 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3387 Cmp,
DAG.getBasicBlock(
B.TargetBB));
3390 if (NextMBB != NextBlock(SwitchBB))
3391 BrAnd =
DAG.getNode(
ISD::BR, dl, MVT::Other, BrAnd,
3392 DAG.getBasicBlock(NextMBB));
3397void SelectionDAGBuilder::visitInvoke(
const InvokeInst &
I) {
3415 const Value *Callee(
I.getCalledOperand());
3418 visitInlineAsm(
I, EHPadBB);
3423 case Intrinsic::donothing:
3425 case Intrinsic::seh_try_begin:
3426 case Intrinsic::seh_scope_begin:
3427 case Intrinsic::seh_try_end:
3428 case Intrinsic::seh_scope_end:
3434 case Intrinsic::experimental_patchpoint_void:
3435 case Intrinsic::experimental_patchpoint:
3436 visitPatchpoint(
I, EHPadBB);
3438 case Intrinsic::experimental_gc_statepoint:
3444 case Intrinsic::wasm_throw: {
3446 std::array<SDValue, 4>
Ops = {
3457 case Intrinsic::wasm_rethrow: {
3458 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3459 std::array<SDValue, 2>
Ops = {
3468 }
else if (
I.hasDeoptState()) {
3489 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
3490 BranchProbability EHPadBBProb =
3496 addSuccessorWithProb(InvokeMBB, Return);
3497 for (
auto &UnwindDest : UnwindDests) {
3498 UnwindDest.first->setIsEHPad();
3499 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3505 DAG.getBasicBlock(Return)));
3514void SelectionDAGBuilder::visitCallBrIntrinsic(
const CallBrInst &
I) {
3515 TargetLowering::IntrinsicInfo
Info;
3516 assert(!
DAG.getTargetLoweringInfo().getTgtMemIntrinsic(
3517 Info,
I,
DAG.getMachineFunction(),
I.getIntrinsicID()) &&
3518 "Intrinsic touches memory");
3520 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(
I);
3523 getTargetIntrinsicOperands(
I, HasChain, OnlyLoad);
3524 SDVTList VTs = getTargetIntrinsicVTList(
I, HasChain);
3528 getTargetNonMemIntrinsicNode(*
I.getType(), HasChain,
Ops, VTs);
3529 Result = handleTargetIntrinsicRet(
I, HasChain, OnlyLoad, Result);
3534void SelectionDAGBuilder::visitCallBr(
const CallBrInst &
I) {
3535 MachineBasicBlock *CallBrMBB =
FuncInfo.MBB;
3537 if (
I.isInlineAsm()) {
3544 assert(!
I.hasOperandBundles() &&
3545 "Can't have operand bundles for intrinsics");
3546 visitCallBrIntrinsic(
I);
3551 SmallPtrSet<BasicBlock *, 8> Dests;
3552 Dests.
insert(
I.getDefaultDest());
3562 if (
I.isInlineAsm()) {
3563 for (BasicBlock *Dest :
I.getIndirectDests()) {
3565 Target->setIsInlineAsmBrIndirectTarget();
3571 Target->setLabelMustBeEmitted();
3573 if (Dests.
insert(Dest).second)
3582 DAG.getBasicBlock(Return)));
3585void SelectionDAGBuilder::visitResume(
const ResumeInst &RI) {
3586 llvm_unreachable(
"SelectionDAGBuilder shouldn't visit resume instructions!");
3589void SelectionDAGBuilder::visitLandingPad(
const LandingPadInst &LP) {
3591 "Call to landingpad not in landing pad!");
3595 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3611 assert(ValueVTs.
size() == 2 &&
"Only two-valued landingpads are supported");
3616 if (
FuncInfo.ExceptionPointerVirtReg) {
3617 Ops[0] =
DAG.getZExtOrTrunc(
3618 DAG.getCopyFromReg(
DAG.getEntryNode(), dl,
3625 Ops[1] =
DAG.getZExtOrTrunc(
3626 DAG.getCopyFromReg(
DAG.getEntryNode(), dl,
3633 DAG.getVTList(ValueVTs),
Ops);
3641 if (JTB.first.HeaderBB ==
First)
3642 JTB.first.HeaderBB =
Last;
3655 for (
unsigned i = 0, e =
I.getNumSuccessors(); i != e; ++i) {
3657 bool Inserted =
Done.insert(BB).second;
3662 addSuccessorWithProb(IndirectBrMBB, Succ);
3672 if (!
I.shouldLowerToTrap(
DAG.getTarget().Options.TrapUnreachable,
3673 DAG.getTarget().Options.NoTrapAfterNoreturn))
3679void SelectionDAGBuilder::visitUnary(
const User &
I,
unsigned Opcode) {
3682 Flags.copyFMF(*FPOp);
3690void SelectionDAGBuilder::visitBinary(
const User &
I,
unsigned Opcode) {
3693 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3694 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3697 Flags.setExact(ExactOp->isExact());
3699 Flags.setDisjoint(DisjointOp->isDisjoint());
3701 Flags.copyFMF(*FPOp);
3710void SelectionDAGBuilder::visitShift(
const User &
I,
unsigned Opcode) {
3714 EVT ShiftTy =
DAG.getTargetLoweringInfo().getShiftAmountTy(
3719 if (!
I.getType()->isVectorTy() && Op2.
getValueType() != ShiftTy) {
3721 "Unexpected shift type");
3731 if (
const OverflowingBinaryOperator *OFBinOp =
3733 nuw = OFBinOp->hasNoUnsignedWrap();
3734 nsw = OFBinOp->hasNoSignedWrap();
3736 if (
const PossiblyExactOperator *ExactOp =
3738 exact = ExactOp->isExact();
3741 Flags.setExact(exact);
3742 Flags.setNoSignedWrap(nsw);
3743 Flags.setNoUnsignedWrap(nuw);
3749void SelectionDAGBuilder::visitSDiv(
const User &
I) {
3760void SelectionDAGBuilder::visitICmp(
const ICmpInst &
I) {
3766 auto &TLI =
DAG.getTargetLoweringInfo();
3779 Flags.setSameSign(
I.hasSameSign());
3780 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
3782 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3787void SelectionDAGBuilder::visitFCmp(
const FCmpInst &
I) {
3794 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3798 Flags.copyFMF(*FPMO);
3799 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
3801 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3810 return isa<SelectInst>(V);
3814void SelectionDAGBuilder::visitSelect(
const User &
I) {
3818 unsigned NumValues = ValueVTs.
size();
3819 if (NumValues == 0)
return;
3829 bool IsUnaryAbs =
false;
3830 bool Negate =
false;
3834 Flags.copyFMF(*FPOp);
3836 Flags.setUnpredictable(
3841 EVT VT = ValueVTs[0];
3842 LLVMContext &Ctx = *
DAG.getContext();
3843 auto &TLI =
DAG.getTargetLoweringInfo();
3853 bool UseScalarMinMax = VT.
isVector() &&
3862 switch (SPR.Flavor) {
3868 switch (SPR.NaNBehavior) {
3881 switch (SPR.NaNBehavior) {
3925 for (
unsigned i = 0; i != NumValues; ++i) {
3931 Values[i] =
DAG.getNegative(Values[i], dl, VT);
3934 for (
unsigned i = 0; i != NumValues; ++i) {
3938 Values[i] =
DAG.getNode(
3945 DAG.getVTList(ValueVTs), Values));
3948void SelectionDAGBuilder::visitTrunc(
const User &
I) {
3951 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3955 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap());
3956 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap());
3962void SelectionDAGBuilder::visitZExt(
const User &
I) {
3966 auto &TLI =
DAG.getTargetLoweringInfo();
3971 Flags.setNonNeg(PNI->hasNonNeg());
3976 if (
Flags.hasNonNeg() &&
3985void SelectionDAGBuilder::visitSExt(
const User &
I) {
3989 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3994void SelectionDAGBuilder::visitFPTrunc(
const User &
I) {
4000 Flags.copyFMF(*FPOp);
4001 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4004 DAG.getTargetConstant(
4009void SelectionDAGBuilder::visitFPExt(
const User &
I) {
4012 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4016 Flags.copyFMF(*FPOp);
4020void SelectionDAGBuilder::visitFPToUI(
const User &
I) {
4023 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4028void SelectionDAGBuilder::visitFPToSI(
const User &
I) {
4031 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4036void SelectionDAGBuilder::visitUIToFP(
const User &
I) {
4039 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4043 Flags.setNonNeg(PNI->hasNonNeg());
4048void SelectionDAGBuilder::visitSIToFP(
const User &
I) {
4051 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4056void SelectionDAGBuilder::visitPtrToAddr(
const User &
I) {
4059 const auto &TLI =
DAG.getTargetLoweringInfo();
4067void SelectionDAGBuilder::visitPtrToInt(
const User &
I) {
4071 auto &TLI =
DAG.getTargetLoweringInfo();
4072 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4081void SelectionDAGBuilder::visitIntToPtr(
const User &
I) {
4085 auto &TLI =
DAG.getTargetLoweringInfo();
4093void SelectionDAGBuilder::visitBitCast(
const User &
I) {
4096 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4101 if (DestVT !=
N.getValueType())
4109 setValue(&
I,
DAG.getConstant(
C->getValue(), dl, DestVT,
false,
4115void SelectionDAGBuilder::visitAddrSpaceCast(
const User &
I) {
4116 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4117 const Value *SV =
I.getOperand(0);
4122 unsigned DestAS =
I.getType()->getPointerAddressSpace();
4124 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
4130void SelectionDAGBuilder::visitInsertElement(
const User &
I) {
4131 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4138 InVec, InVal, InIdx));
4141void SelectionDAGBuilder::visitExtractElement(
const User &
I) {
4142 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4151void SelectionDAGBuilder::visitShuffleVector(
const User &
I) {
4156 Mask = SVI->getShuffleMask();
4160 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4168 DAG.getVectorIdxConstant(0,
DL));
4179 unsigned MaskNumElts =
Mask.size();
4181 if (SrcNumElts == MaskNumElts) {
4187 if (SrcNumElts < MaskNumElts) {
4191 if (MaskNumElts % SrcNumElts == 0) {
4195 unsigned NumConcat = MaskNumElts / SrcNumElts;
4196 bool IsConcat =
true;
4197 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4198 for (
unsigned i = 0; i != MaskNumElts; ++i) {
4204 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4205 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4206 ConcatSrcs[i / SrcNumElts] != (
int)(Idx / SrcNumElts))) {
4211 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4218 for (
auto Src : ConcatSrcs) {
4231 unsigned PaddedMaskNumElts =
alignTo(MaskNumElts, SrcNumElts);
4232 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4248 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4249 for (
unsigned i = 0; i != MaskNumElts; ++i) {
4251 if (Idx >= (
int)SrcNumElts)
4252 Idx -= SrcNumElts - PaddedMaskNumElts;
4260 if (MaskNumElts != PaddedMaskNumElts)
4262 DAG.getVectorIdxConstant(0,
DL));
4268 assert(SrcNumElts > MaskNumElts);
4272 int StartIdx[2] = {-1, -1};
4273 bool CanExtract =
true;
4274 for (
int Idx : Mask) {
4279 if (Idx >= (
int)SrcNumElts) {
4287 int NewStartIdx =
alignDown(Idx, MaskNumElts);
4288 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4289 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4293 StartIdx[Input] = NewStartIdx;
4296 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4302 for (
unsigned Input = 0; Input < 2; ++Input) {
4303 SDValue &Src = Input == 0 ? Src1 : Src2;
4304 if (StartIdx[Input] < 0)
4305 Src =
DAG.getUNDEF(VT);
4308 DAG.getVectorIdxConstant(StartIdx[Input],
DL));
4313 SmallVector<int, 8> MappedOps(Mask);
4314 for (
int &Idx : MappedOps) {
4315 if (Idx >= (
int)SrcNumElts)
4316 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4321 setValue(&
I,
DAG.getVectorShuffle(VT,
DL, Src1, Src2, MappedOps));
4330 for (
int Idx : Mask) {
4334 Res =
DAG.getUNDEF(EltVT);
4336 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4337 if (Idx >= (
int)SrcNumElts) Idx -= SrcNumElts;
4340 DAG.getVectorIdxConstant(Idx,
DL));
4350 ArrayRef<unsigned> Indices =
I.getIndices();
4351 const Value *Op0 =
I.getOperand(0);
4353 Type *AggTy =
I.getType();
4360 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4366 unsigned NumAggValues = AggValueVTs.
size();
4367 unsigned NumValValues = ValValueVTs.
size();
4371 if (!NumAggValues) {
4379 for (; i != LinearIndex; ++i)
4380 Values[i] = IntoUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4385 for (; i != LinearIndex + NumValValues; ++i)
4386 Values[i] = FromUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4390 for (; i != NumAggValues; ++i)
4391 Values[i] = IntoUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4395 DAG.getVTList(AggValueVTs), Values));
4399 ArrayRef<unsigned> Indices =
I.getIndices();
4400 const Value *Op0 =
I.getOperand(0);
4402 Type *ValTy =
I.getType();
4407 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4411 unsigned NumValValues = ValValueVTs.
size();
4414 if (!NumValValues) {
4423 for (
unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4424 Values[i - LinearIndex] =
4430 DAG.getVTList(ValValueVTs), Values));
4433void SelectionDAGBuilder::visitGetElementPtr(
const User &
I) {
4434 Value *Op0 =
I.getOperand(0);
4440 auto &TLI =
DAG.getTargetLoweringInfo();
4445 bool IsVectorGEP =
I.getType()->isVectorTy();
4446 ElementCount VectorElementCount =
4452 const Value *Idx = GTI.getOperand();
4453 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4458 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(
Field);
4468 N =
DAG.getMemBasePlusOffset(
4469 N,
DAG.getConstant(
Offset, dl,
N.getValueType()), dl, Flags);
4475 unsigned IdxSize =
DAG.getDataLayout().getIndexSizeInBits(AS);
4477 TypeSize ElementSize =
4478 GTI.getSequentialElementStride(
DAG.getDataLayout());
4483 bool ElementScalable = ElementSize.
isScalable();
4489 C =
C->getSplatValue();
4492 if (CI && CI->isZero())
4494 if (CI && !ElementScalable) {
4495 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4498 if (
N.getValueType().isVector())
4499 OffsVal =
DAG.getConstant(
4502 OffsVal =
DAG.getConstant(Offs, dl, IdxTy);
4509 Flags.setNoUnsignedWrap(
true);
4512 OffsVal =
DAG.getSExtOrTrunc(OffsVal, dl,
N.getValueType());
4514 N =
DAG.getMemBasePlusOffset(
N, OffsVal, dl, Flags);
4522 if (
N.getValueType().isVector()) {
4524 VectorElementCount);
4525 IdxN =
DAG.getSplat(VT, dl, IdxN);
4529 N =
DAG.getSplat(VT, dl,
N);
4535 IdxN =
DAG.getSExtOrTrunc(IdxN, dl,
N.getValueType());
4537 SDNodeFlags ScaleFlags;
4546 if (ElementScalable) {
4547 EVT VScaleTy =
N.getValueType().getScalarType();
4550 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4551 if (
N.getValueType().isVector())
4552 VScale =
DAG.getSplatVector(
N.getValueType(), dl, VScale);
4553 IdxN =
DAG.getNode(
ISD::MUL, dl,
N.getValueType(), IdxN, VScale,
4558 if (ElementMul != 1) {
4559 if (ElementMul.isPowerOf2()) {
4560 unsigned Amt = ElementMul.logBase2();
4563 DAG.getShiftAmountConstant(Amt,
N.getValueType(), dl),
4566 SDValue Scale =
DAG.getConstant(ElementMul.getZExtValue(), dl,
4568 IdxN =
DAG.getNode(
ISD::MUL, dl,
N.getValueType(), IdxN, Scale,
4578 SDNodeFlags AddFlags;
4582 N =
DAG.getMemBasePlusOffset(
N, IdxN, dl, AddFlags);
4586 if (IsVectorGEP && !
N.getValueType().isVector()) {
4588 N =
DAG.getSplat(VT, dl,
N);
4599 N =
DAG.getPtrExtendInReg(
N, dl, PtrMemTy);
4604void SelectionDAGBuilder::visitAlloca(
const AllocaInst &
I) {
4611 Type *Ty =
I.getAllocatedType();
4612 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4613 auto &
DL =
DAG.getDataLayout();
4614 TypeSize TySize =
DL.getTypeAllocSize(Ty);
4615 MaybeAlign Alignment = std::max(
DL.getPrefTypeAlign(Ty),
I.getAlign());
4621 AllocSize =
DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4623 AllocSize =
DAG.getNode(
4625 DAG.getZExtOrTrunc(
DAG.getTypeSize(dl, MVT::i64, TySize), dl, IntPtr));
4630 Align StackAlign =
DAG.getSubtarget().getFrameLowering()->getStackAlign();
4631 if (*Alignment <= StackAlign)
4632 Alignment = std::nullopt;
4634 const uint64_t StackAlignMask = StackAlign.
value() - 1U;
4639 DAG.getConstant(StackAlignMask, dl, IntPtr),
4644 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4648 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4658 return I.getMetadata(LLVMContext::MD_range);
4663 if (std::optional<ConstantRange> CR = CB->getRange())
4667 return std::nullopt;
4672 return CB->getRetNoFPClass();
4676void SelectionDAGBuilder::visitLoad(
const LoadInst &
I) {
4678 return visitAtomicLoad(
I);
4680 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4681 const Value *SV =
I.getOperand(0);
4686 if (Arg->hasSwiftErrorAttr())
4687 return visitLoadFromSwiftError(
I);
4691 if (Alloca->isSwiftError())
4692 return visitLoadFromSwiftError(
I);
4698 Type *Ty =
I.getType();
4702 unsigned NumValues = ValueVTs.
size();
4706 Align Alignment =
I.getAlign();
4707 AAMDNodes AAInfo =
I.getAAMetadata();
4709 bool isVolatile =
I.isVolatile();
4714 bool ConstantMemory =
false;
4721 BatchAA->pointsToConstantMemory(MemoryLocation(
4726 Root =
DAG.getEntryNode();
4727 ConstantMemory =
true;
4731 Root =
DAG.getRoot();
4742 unsigned ChainI = 0;
4743 for (
unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4759 MachinePointerInfo PtrInfo =
4761 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4762 : MachinePointerInfo();
4764 SDValue A =
DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4765 SDValue L =
DAG.getLoad(MemVTs[i], dl, Root,
A, PtrInfo, Alignment,
4766 MMOFlags, AAInfo, Ranges);
4767 Chains[ChainI] =
L.getValue(1);
4769 if (MemVTs[i] != ValueVTs[i])
4770 L =
DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4775 if (!ConstantMemory) {
4785 DAG.getVTList(ValueVTs), Values));
4788void SelectionDAGBuilder::visitStoreToSwiftError(
const StoreInst &
I) {
4789 assert(
DAG.getTargetLoweringInfo().supportSwiftError() &&
4790 "call visitStoreToSwiftError when backend supports swifterror");
4793 SmallVector<uint64_t, 4>
Offsets;
4794 const Value *SrcV =
I.getOperand(0);
4796 SrcV->
getType(), ValueVTs,
nullptr, &Offsets, 0);
4797 assert(ValueVTs.
size() == 1 && Offsets[0] == 0 &&
4798 "expect a single EVT for swifterror");
4807 SDValue(Src.getNode(), Src.getResNo()));
4808 DAG.setRoot(CopyNode);
4811void SelectionDAGBuilder::visitLoadFromSwiftError(
const LoadInst &
I) {
4812 assert(
DAG.getTargetLoweringInfo().supportSwiftError() &&
4813 "call visitLoadFromSwiftError when backend supports swifterror");
4816 !
I.hasMetadata(LLVMContext::MD_nontemporal) &&
4817 !
I.hasMetadata(LLVMContext::MD_invariant_load) &&
4818 "Support volatile, non temporal, invariant for load_from_swift_error");
4820 const Value *SV =
I.getOperand(0);
4821 Type *Ty =
I.getType();
4824 !
BatchAA->pointsToConstantMemory(MemoryLocation(
4826 I.getAAMetadata()))) &&
4827 "load_from_swift_error should not be constant memory");
4830 SmallVector<uint64_t, 4>
Offsets;
4832 ValueVTs,
nullptr, &Offsets, 0);
4833 assert(ValueVTs.
size() == 1 && Offsets[0] == 0 &&
4834 "expect a single EVT for swifterror");
4844void SelectionDAGBuilder::visitStore(
const StoreInst &
I) {
4846 return visitAtomicStore(
I);
4848 const Value *SrcV =
I.getOperand(0);
4849 const Value *PtrV =
I.getOperand(1);
4851 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4856 if (Arg->hasSwiftErrorAttr())
4857 return visitStoreToSwiftError(
I);
4861 if (Alloca->isSwiftError())
4862 return visitStoreToSwiftError(
I);
4869 SrcV->
getType(), ValueVTs, &MemVTs, &Offsets);
4870 unsigned NumValues = ValueVTs.
size();
4883 Align Alignment =
I.getAlign();
4884 AAMDNodes AAInfo =
I.getAAMetadata();
4888 unsigned ChainI = 0;
4889 for (
unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4899 MachinePointerInfo PtrInfo =
4901 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4902 : MachinePointerInfo();
4906 if (MemVTs[i] != ValueVTs[i])
4907 Val =
DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4909 DAG.getStore(Root, dl, Val,
Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4910 Chains[ChainI] = St;
4916 DAG.setRoot(StoreNode);
4919void SelectionDAGBuilder::visitMaskedStore(
const CallInst &
I,
4920 bool IsCompressing) {
4923 Value *Src0Operand =
I.getArgOperand(0);
4924 Value *PtrOperand =
I.getArgOperand(1);
4925 Value *MaskOperand =
I.getArgOperand(2);
4926 Align Alignment =
I.getParamAlign(1).valueOrOne();
4936 if (
I.hasMetadata(LLVMContext::MD_nontemporal))
4939 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
4940 MachinePointerInfo(PtrOperand), MMOFlags,
4943 const auto &TLI =
DAG.getTargetLoweringInfo();
4946 !IsCompressing &&
TTI->hasConditionalLoadStoreForType(
4947 I.getArgOperand(0)->getType(),
true)
4953 DAG.setRoot(StoreNode);
4983 C =
C->getSplatValue();
4997 if (!
GEP ||
GEP->getParent() != CurBB)
5000 if (
GEP->getNumOperands() != 2)
5003 const Value *BasePtr =
GEP->getPointerOperand();
5004 const Value *IndexVal =
GEP->getOperand(
GEP->getNumOperands() - 1);
5010 TypeSize ScaleVal =
DL.getTypeAllocSize(
GEP->getResultElementType());
5015 if (ScaleVal != 1 &&
5027void SelectionDAGBuilder::visitMaskedScatter(
const CallInst &
I) {
5031 const Value *Ptr =
I.getArgOperand(1);
5035 Align Alignment =
I.getParamAlign(1).valueOrOne();
5036 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5045 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5055 EVT IdxVT =
Index.getValueType();
5063 SDValue Scatter =
DAG.getMaskedScatter(
DAG.getVTList(MVT::Other), VT, sdl,
5065 DAG.setRoot(Scatter);
5069void SelectionDAGBuilder::visitMaskedLoad(
const CallInst &
I,
bool IsExpanding) {
5072 Value *PtrOperand =
I.getArgOperand(0);
5073 Value *MaskOperand =
I.getArgOperand(1);
5074 Value *Src0Operand =
I.getArgOperand(2);
5075 Align Alignment =
I.getParamAlign(0).valueOrOne();
5083 AAMDNodes AAInfo =
I.getAAMetadata();
5090 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
5093 if (
I.hasMetadata(LLVMContext::MD_nontemporal))
5095 if (
I.hasMetadata(LLVMContext::MD_invariant_load))
5098 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5099 MachinePointerInfo(PtrOperand), MMOFlags,
5102 const auto &TLI =
DAG.getTargetLoweringInfo();
5109 TTI->hasConditionalLoadStoreForType(Src0Operand->
getType(),
5114 DAG.getMaskedLoad(VT, sdl, InChain, Ptr,
Offset, Mask, Src0, VT, MMO,
5121void SelectionDAGBuilder::visitMaskedGather(
const CallInst &
I) {
5125 const Value *Ptr =
I.getArgOperand(0);
5129 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5131 Align Alignment =
I.getParamAlign(0).valueOrOne();
5142 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5154 EVT IdxVT =
Index.getValueType();
5163 DAG.getMaskedGather(
DAG.getVTList(VT, MVT::Other), VT, sdl,
Ops, MMO,
5179 SDVTList VTs =
DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5181 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5184 MachineFunction &MF =
DAG.getMachineFunction();
5186 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5187 DAG.getEVTAlign(MemVT), AAMDNodes(),
nullptr, SSID, SuccessOrdering,
5191 dl, MemVT, VTs, InChain,
5199 DAG.setRoot(OutChain);
5202void SelectionDAGBuilder::visitAtomicRMW(
const AtomicRMWInst &
I) {
5205 switch (
I.getOperation()) {
5247 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5250 MachineFunction &MF =
DAG.getMachineFunction();
5252 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5253 DAG.getEVTAlign(MemVT), AAMDNodes(),
nullptr, SSID, Ordering);
5256 DAG.getAtomic(NT, dl, MemVT, InChain,
5263 DAG.setRoot(OutChain);
5266void SelectionDAGBuilder::visitFence(
const FenceInst &
I) {
5268 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5271 Ops[1] =
DAG.getTargetConstant((
unsigned)
I.getOrdering(), dl,
5273 Ops[2] =
DAG.getTargetConstant(
I.getSyncScopeID(), dl,
5280void SelectionDAGBuilder::visitAtomicLoad(
const LoadInst &
I) {
5287 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5298 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5299 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5300 I.getAlign(), AAMDNodes(), Ranges, SSID, Order);
5310 L =
DAG.getPtrExtOrTrunc(L, dl, VT);
5313 DAG.setRoot(OutChain);
5316void SelectionDAGBuilder::visitAtomicStore(
const StoreInst &
I) {
5324 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5334 MachineFunction &MF =
DAG.getMachineFunction();
5336 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5337 I.getAlign(), AAMDNodes(),
nullptr, SSID, Ordering);
5341 Val =
DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5348 DAG.setRoot(OutChain);
5356std::pair<bool, bool>
5357SelectionDAGBuilder::getTargetIntrinsicCallProperties(
const CallBase &
I) {
5359 bool HasChain = !
F->doesNotAccessMemory();
5361 HasChain &&
F->onlyReadsMemory() &&
F->willReturn() &&
F->doesNotThrow();
5363 return {HasChain, OnlyLoad};
5367 const CallBase &
I,
bool HasChain,
bool OnlyLoad,
5369 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5376 Ops.push_back(
DAG.getRoot());
5389 for (
unsigned i = 0, e =
I.arg_size(); i != e; ++i) {
5390 const Value *Arg =
I.getArgOperand(i);
5391 if (!
I.paramHasAttr(i, Attribute::ImmArg)) {
5399 assert(CI->getBitWidth() <= 64 &&
5400 "large intrinsic immediates not handled");
5401 Ops.push_back(
DAG.getTargetConstant(*CI, SDLoc(), VT));
5408 if (std::optional<OperandBundleUse> Bundle =
5410 auto *Sym = Bundle->Inputs[0].get();
5413 Ops.push_back(SDSym);
5416 if (std::optional<OperandBundleUse> Bundle =
5418 Value *Token = Bundle->Inputs[0].get();
5420 assert(
Ops.back().getValueType() != MVT::Glue &&
5421 "Did not expect another glue node here.");
5424 Ops.push_back(ConvControlToken);
5432 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5440 return DAG.getVTList(ValueVTs);
5444SDValue SelectionDAGBuilder::getTargetNonMemIntrinsicNode(
5467 if (
I.getType()->isVoidTy())
5482void SelectionDAGBuilder::visitTargetIntrinsic(
const CallInst &
I,
5484 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(
I);
5487 TargetLowering::IntrinsicInfo
Info;
5488 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5489 bool IsTgtMemIntrinsic =
5493 I, HasChain, OnlyLoad, IsTgtMemIntrinsic ? &
Info :
nullptr);
5494 SDVTList VTs = getTargetIntrinsicVTList(
I, HasChain);
5499 Flags.copyFMF(*FPMO);
5500 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
5507 if (IsTgtMemIntrinsic) {
5512 MachinePointerInfo MPI;
5514 MPI = MachinePointerInfo(
Info.ptrVal,
Info.offset);
5515 else if (
Info.fallbackAddressSpace)
5516 MPI = MachinePointerInfo(*
Info.fallbackAddressSpace);
5517 EVT MemVT =
Info.memVT;
5519 if (
Size.hasValue() && !
Size.getValue())
5521 Align Alignment =
Info.align.value_or(
DAG.getEVTAlign(MemVT));
5522 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5523 MPI,
Info.flags,
Size, Alignment,
I.getAAMetadata(),
nullptr,
5528 Result = getTargetNonMemIntrinsicNode(*
I.getType(), HasChain,
Ops, VTs);
5531 Result = handleTargetIntrinsicRet(
I, HasChain, OnlyLoad, Result);
5588 SDValue TwoToFractionalPartOfX;
5665 if (
Op.getValueType() == MVT::f32 &&
5689 if (
Op.getValueType() == MVT::f32 &&
5788 if (
Op.getValueType() == MVT::f32 &&
5872 return DAG.
getNode(
ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5885 if (
Op.getValueType() == MVT::f32 &&
5962 return DAG.
getNode(
ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5973 if (
Op.getValueType() == MVT::f32 &&
5986 bool IsExp10 =
false;
5987 if (
LHS.getValueType() == MVT::f32 &&
RHS.getValueType() == MVT::f32 &&
5991 IsExp10 = LHSC->isExactlyValue(Ten);
6018 unsigned Val = RHSC->getSExtValue();
6047 CurSquare, CurSquare);
6052 if (RHSC->getSExtValue() < 0)
6066 EVT VT =
LHS.getValueType();
6089 if ((ScaleInt > 0 || (Saturating &&
Signed)) &&
6093 Opcode, VT, ScaleInt);
6128 switch (
N.getOpcode()) {
6132 Op.getValueType().getSizeInBits());
6157bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6164 MachineFunction &MF =
DAG.getMachineFunction();
6165 const TargetInstrInfo *
TII =
DAG.getSubtarget().getInstrInfo();
6169 auto MakeVRegDbgValue = [&](
Register Reg, DIExpression *FragExpr,
6174 auto &Inst =
TII->get(TargetOpcode::DBG_INSTR_REF);
6181 auto *NewDIExpr = FragExpr;
6188 return BuildMI(MF,
DL, Inst,
false, MOs, Variable, NewDIExpr);
6191 auto &Inst =
TII->get(TargetOpcode::DBG_VALUE);
6192 return BuildMI(MF,
DL, Inst, Indirect,
Reg, Variable, FragExpr);
6196 if (Kind == FuncArgumentDbgValueKind::Value) {
6201 if (!IsInEntryBlock)
6217 bool VariableIsFunctionInputArg =
Variable->isParameter() &&
6218 !
DL->getInlinedAt();
6220 if (!IsInPrologue && !VariableIsFunctionInputArg)
6254 if (VariableIsFunctionInputArg) {
6256 if (ArgNo >=
FuncInfo.DescribedArgs.size())
6257 FuncInfo.DescribedArgs.resize(ArgNo + 1,
false);
6258 else if (!IsInPrologue &&
FuncInfo.DescribedArgs.test(ArgNo))
6259 return !NodeMap[
V].getNode();
6264 bool IsIndirect =
false;
6265 std::optional<MachineOperand>
Op;
6267 int FI =
FuncInfo.getArgumentFrameIndex(Arg);
6268 if (FI != std::numeric_limits<int>::max())
6272 if (!
Op &&
N.getNode()) {
6275 if (ArgRegsAndSizes.
size() == 1)
6276 Reg = ArgRegsAndSizes.
front().first;
6279 MachineRegisterInfo &RegInfo = MF.
getRegInfo();
6286 IsIndirect =
Kind != FuncArgumentDbgValueKind::Value;
6290 if (!
Op &&
N.getNode()) {
6294 if (FrameIndexSDNode *FINode =
6301 auto splitMultiRegDbgValue =
6314 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6317 if (
Offset >= ExprFragmentSizeInBits)
6321 if (
Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6322 RegFragmentSizeInBits = ExprFragmentSizeInBits -
Offset;
6327 Expr,
Offset, RegFragmentSizeInBits);
6331 if (!FragmentExpr) {
6332 SDDbgValue *SDV =
DAG.getConstantDbgValue(
6334 DAG.AddDbgValue(SDV,
false);
6337 MachineInstr *NewMI = MakeVRegDbgValue(
6338 Reg, *FragmentExpr, Kind != FuncArgumentDbgValueKind::Value);
6339 FuncInfo.ArgDbgValues.push_back(NewMI);
6348 if (VMI !=
FuncInfo.ValueMap.end()) {
6349 const auto &TLI =
DAG.getTargetLoweringInfo();
6350 RegsForValue RFV(
V->getContext(), TLI,
DAG.getDataLayout(), VMI->second,
6351 V->getType(), std::nullopt);
6352 if (RFV.occupiesMultipleRegs())
6353 return splitMultiRegDbgValue(RFV.getRegsAndSizes());
6356 IsIndirect =
Kind != FuncArgumentDbgValueKind::Value;
6357 }
else if (ArgRegsAndSizes.
size() > 1) {
6360 return splitMultiRegDbgValue(ArgRegsAndSizes);
6368 "Expected inlined-at fields to agree");
6369 MachineInstr *NewMI =
nullptr;
6372 NewMI = MakeVRegDbgValue(
Op->getReg(), Expr, IsIndirect);
6374 NewMI =
BuildMI(MF,
DL,
TII->get(TargetOpcode::DBG_VALUE),
true, *
Op,
6378 FuncInfo.ArgDbgValues.push_back(NewMI);
6387 unsigned DbgSDNodeOrder) {
6399 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6400 false, dl, DbgSDNodeOrder);
6402 return DAG.getDbgValue(Variable, Expr,
N.getNode(),
N.getResNo(),
6403 false, dl, DbgSDNodeOrder);
6408 case Intrinsic::smul_fix:
6410 case Intrinsic::umul_fix:
6412 case Intrinsic::smul_fix_sat:
6414 case Intrinsic::umul_fix_sat:
6416 case Intrinsic::sdiv_fix:
6418 case Intrinsic::udiv_fix:
6420 case Intrinsic::sdiv_fix_sat:
6422 case Intrinsic::udiv_fix_sat:
6435 "expected call_preallocated_setup Value");
6436 for (
const auto *U : PreallocatedSetup->
users()) {
6438 const Function *Fn = UseCall->getCalledFunction();
6439 if (!Fn || Fn->
getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6449bool SelectionDAGBuilder::visitEntryValueDbgValue(
6459 auto ArgIt =
FuncInfo.ValueMap.find(Arg);
6460 if (ArgIt ==
FuncInfo.ValueMap.end()) {
6462 dbgs() <<
"Dropping dbg.value: expression is entry_value but "
6463 "couldn't find an associated register for the Argument\n");
6466 Register ArgVReg = ArgIt->getSecond();
6468 for (
auto [PhysReg, VirtReg] :
FuncInfo.RegInfo->liveins())
6469 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6470 SDDbgValue *SDV =
DAG.getVRegDbgValue(
6471 Variable, Expr, PhysReg,
false , DbgLoc, SDNodeOrder);
6472 DAG.AddDbgValue(SDV,
false );
6475 LLVM_DEBUG(
dbgs() <<
"Dropping dbg.value: expression is entry_value but "
6476 "couldn't find a physical register\n");
6481void SelectionDAGBuilder::visitConvergenceControl(
const CallInst &
I,
6484 switch (Intrinsic) {
6485 case Intrinsic::experimental_convergence_anchor:
6488 case Intrinsic::experimental_convergence_entry:
6491 case Intrinsic::experimental_convergence_loop: {
6493 auto *Token = Bundle->Inputs[0].get();
6501void SelectionDAGBuilder::visitVectorHistogram(
const CallInst &
I,
6502 unsigned IntrinsicID) {
6505 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6506 "Tried to lower unsupported histogram type");
6512 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6513 DataLayout TargetDL =
DAG.getDataLayout();
6515 Align Alignment =
DAG.getEVTAlign(VT);
6528 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
6529 MachinePointerInfo(AS),
6540 EVT IdxVT =
Index.getValueType();
6547 SDValue ID =
DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6550 SDValue Histogram =
DAG.getMaskedHistogram(
DAG.getVTList(MVT::Other), VT, sdl,
6554 DAG.setRoot(Histogram);
6557void SelectionDAGBuilder::visitVectorExtractLastActive(
const CallInst &
I,
6559 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active &&
6560 "Tried lowering invalid vector extract last");
6562 const DataLayout &Layout =
DAG.getDataLayout();
6566 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6576 EVT BoolVT =
Mask.getValueType().getScalarType();
6578 Result =
DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru);
6585void SelectionDAGBuilder::visitIntrinsicCall(
const CallInst &
I,
6587 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6594 Flags.copyFMF(*FPOp);
6596 switch (Intrinsic) {
6599 visitTargetIntrinsic(
I, Intrinsic);
6601 case Intrinsic::vscale: {
6606 case Intrinsic::vastart: visitVAStart(
I);
return;
6607 case Intrinsic::vaend: visitVAEnd(
I);
return;
6608 case Intrinsic::vacopy: visitVACopy(
I);
return;
6609 case Intrinsic::returnaddress:
6614 case Intrinsic::addressofreturnaddress:
6619 case Intrinsic::sponentry:
6624 case Intrinsic::frameaddress:
6629 case Intrinsic::read_volatile_register:
6630 case Intrinsic::read_register: {
6631 Value *
Reg =
I.getArgOperand(0);
6637 DAG.getVTList(VT, MVT::Other), Chain,
RegName);
6642 case Intrinsic::write_register: {
6643 Value *
Reg =
I.getArgOperand(0);
6644 Value *RegValue =
I.getArgOperand(1);
6652 case Intrinsic::memcpy:
6653 case Intrinsic::memcpy_inline: {
6659 "memcpy_inline needs constant size");
6661 Align DstAlign = MCI.getDestAlign().valueOrOne();
6662 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6663 Align Alignment = std::min(DstAlign, SrcAlign);
6664 bool isVol = MCI.isVolatile();
6668 SDValue MC =
DAG.getMemcpy(Root, sdl, Dst, Src,
Size, Alignment, isVol,
6669 MCI.isForceInlined(), &
I, std::nullopt,
6670 MachinePointerInfo(
I.getArgOperand(0)),
6671 MachinePointerInfo(
I.getArgOperand(1)),
6673 updateDAGForMaybeTailCall(MC);
6676 case Intrinsic::memset:
6677 case Intrinsic::memset_inline: {
6683 "memset_inline needs constant size");
6685 Align DstAlign = MSII.getDestAlign().valueOrOne();
6686 bool isVol = MSII.isVolatile();
6689 Root, sdl, Dst, Value,
Size, DstAlign, isVol, MSII.isForceInlined(),
6690 &
I, MachinePointerInfo(
I.getArgOperand(0)),
I.getAAMetadata());
6691 updateDAGForMaybeTailCall(MC);
6694 case Intrinsic::memmove: {
6700 Align DstAlign = MMI.getDestAlign().valueOrOne();
6701 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6702 Align Alignment = std::min(DstAlign, SrcAlign);
6703 bool isVol = MMI.isVolatile();
6707 SDValue MM =
DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &
I,
6709 MachinePointerInfo(
I.getArgOperand(0)),
6710 MachinePointerInfo(
I.getArgOperand(1)),
6712 updateDAGForMaybeTailCall(MM);
6715 case Intrinsic::memcpy_element_unordered_atomic: {
6721 Type *LengthTy =
MI.getLength()->getType();
6722 unsigned ElemSz =
MI.getElementSizeInBytes();
6726 isTC, MachinePointerInfo(
MI.getRawDest()),
6727 MachinePointerInfo(
MI.getRawSource()));
6728 updateDAGForMaybeTailCall(MC);
6731 case Intrinsic::memmove_element_unordered_atomic: {
6737 Type *LengthTy =
MI.getLength()->getType();
6738 unsigned ElemSz =
MI.getElementSizeInBytes();
6742 isTC, MachinePointerInfo(
MI.getRawDest()),
6743 MachinePointerInfo(
MI.getRawSource()));
6744 updateDAGForMaybeTailCall(MC);
6747 case Intrinsic::memset_element_unordered_atomic: {
6753 Type *LengthTy =
MI.getLength()->getType();
6754 unsigned ElemSz =
MI.getElementSizeInBytes();
6758 isTC, MachinePointerInfo(
MI.getRawDest()));
6759 updateDAGForMaybeTailCall(MC);
6762 case Intrinsic::call_preallocated_setup: {
6764 SDValue SrcValue =
DAG.getSrcValue(PreallocatedCall);
6771 case Intrinsic::call_preallocated_arg: {
6773 SDValue SrcValue =
DAG.getSrcValue(PreallocatedCall);
6787 case Intrinsic::eh_typeid_for: {
6790 unsigned TypeID =
DAG.getMachineFunction().getTypeIDFor(GV);
6791 Res =
DAG.getConstant(
TypeID, sdl, MVT::i32);
6796 case Intrinsic::eh_return_i32:
6797 case Intrinsic::eh_return_i64:
6798 DAG.getMachineFunction().setCallsEHReturn(
true);
6805 case Intrinsic::eh_unwind_init:
6806 DAG.getMachineFunction().setCallsUnwindInit(
true);
6808 case Intrinsic::eh_dwarf_cfa:
6813 case Intrinsic::eh_sjlj_callsite: {
6815 assert(
FuncInfo.getCurrentCallSite() == 0 &&
"Overlapping call sites!");
6820 case Intrinsic::eh_sjlj_functioncontext: {
6822 MachineFrameInfo &MFI =
DAG.getMachineFunction().getFrameInfo();
6825 int FI =
FuncInfo.StaticAllocaMap[FnCtx];
6829 case Intrinsic::eh_sjlj_setjmp: {
6834 DAG.getVTList(MVT::i32, MVT::Other),
Ops);
6836 DAG.setRoot(
Op.getValue(1));
6839 case Intrinsic::eh_sjlj_longjmp:
6843 case Intrinsic::eh_sjlj_setup_dispatch:
6847 case Intrinsic::masked_gather:
6848 visitMaskedGather(
I);
6850 case Intrinsic::masked_load:
6853 case Intrinsic::masked_scatter:
6854 visitMaskedScatter(
I);
6856 case Intrinsic::masked_store:
6857 visitMaskedStore(
I);
6859 case Intrinsic::masked_expandload:
6860 visitMaskedLoad(
I,
true );
6862 case Intrinsic::masked_compressstore:
6863 visitMaskedStore(
I,
true );
6865 case Intrinsic::powi:
6869 case Intrinsic::log:
6872 case Intrinsic::log2:
6876 case Intrinsic::log10:
6880 case Intrinsic::exp:
6883 case Intrinsic::exp2:
6887 case Intrinsic::pow:
6891 case Intrinsic::sqrt:
6892 case Intrinsic::fabs:
6893 case Intrinsic::sin:
6894 case Intrinsic::cos:
6895 case Intrinsic::tan:
6896 case Intrinsic::asin:
6897 case Intrinsic::acos:
6898 case Intrinsic::atan:
6899 case Intrinsic::sinh:
6900 case Intrinsic::cosh:
6901 case Intrinsic::tanh:
6902 case Intrinsic::exp10:
6903 case Intrinsic::floor:
6904 case Intrinsic::ceil:
6905 case Intrinsic::trunc:
6906 case Intrinsic::rint:
6907 case Intrinsic::nearbyint:
6908 case Intrinsic::round:
6909 case Intrinsic::roundeven:
6910 case Intrinsic::canonicalize: {
6913 switch (Intrinsic) {
6915 case Intrinsic::sqrt: Opcode =
ISD::FSQRT;
break;
6916 case Intrinsic::fabs: Opcode =
ISD::FABS;
break;
6917 case Intrinsic::sin: Opcode =
ISD::FSIN;
break;
6918 case Intrinsic::cos: Opcode =
ISD::FCOS;
break;
6919 case Intrinsic::tan: Opcode =
ISD::FTAN;
break;
6920 case Intrinsic::asin: Opcode =
ISD::FASIN;
break;
6921 case Intrinsic::acos: Opcode =
ISD::FACOS;
break;
6922 case Intrinsic::atan: Opcode =
ISD::FATAN;
break;
6923 case Intrinsic::sinh: Opcode =
ISD::FSINH;
break;
6924 case Intrinsic::cosh: Opcode =
ISD::FCOSH;
break;
6925 case Intrinsic::tanh: Opcode =
ISD::FTANH;
break;
6926 case Intrinsic::exp10: Opcode =
ISD::FEXP10;
break;
6927 case Intrinsic::floor: Opcode =
ISD::FFLOOR;
break;
6928 case Intrinsic::ceil: Opcode =
ISD::FCEIL;
break;
6929 case Intrinsic::trunc: Opcode =
ISD::FTRUNC;
break;
6930 case Intrinsic::rint: Opcode =
ISD::FRINT;
break;
6932 case Intrinsic::round: Opcode =
ISD::FROUND;
break;
6939 getValue(
I.getArgOperand(0)).getValueType(),
6943 case Intrinsic::atan2:
6945 getValue(
I.getArgOperand(0)).getValueType(),
6949 case Intrinsic::lround:
6950 case Intrinsic::llround:
6951 case Intrinsic::lrint:
6952 case Intrinsic::llrint: {
6955 switch (Intrinsic) {
6957 case Intrinsic::lround: Opcode =
ISD::LROUND;
break;
6959 case Intrinsic::lrint: Opcode =
ISD::LRINT;
break;
6960 case Intrinsic::llrint: Opcode =
ISD::LLRINT;
break;
6969 case Intrinsic::minnum:
6971 getValue(
I.getArgOperand(0)).getValueType(),
6975 case Intrinsic::maxnum:
6977 getValue(
I.getArgOperand(0)).getValueType(),
6981 case Intrinsic::minimum:
6983 getValue(
I.getArgOperand(0)).getValueType(),
6987 case Intrinsic::maximum:
6989 getValue(
I.getArgOperand(0)).getValueType(),
6993 case Intrinsic::minimumnum:
6995 getValue(
I.getArgOperand(0)).getValueType(),
6999 case Intrinsic::maximumnum:
7001 getValue(
I.getArgOperand(0)).getValueType(),
7005 case Intrinsic::copysign:
7007 getValue(
I.getArgOperand(0)).getValueType(),
7011 case Intrinsic::ldexp:
7013 getValue(
I.getArgOperand(0)).getValueType(),
7017 case Intrinsic::modf:
7018 case Intrinsic::sincos:
7019 case Intrinsic::sincospi:
7020 case Intrinsic::frexp: {
7022 switch (Intrinsic) {
7025 case Intrinsic::sincos:
7028 case Intrinsic::sincospi:
7031 case Intrinsic::modf:
7034 case Intrinsic::frexp:
7040 SDVTList VTs =
DAG.getVTList(ValueVTs);
7042 &
I,
DAG.getNode(Opcode, sdl, VTs,
getValue(
I.getArgOperand(0)), Flags));
7045 case Intrinsic::arithmetic_fence: {
7047 getValue(
I.getArgOperand(0)).getValueType(),
7051 case Intrinsic::fma:
7057#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
7058 case Intrinsic::INTRINSIC:
7059#include "llvm/IR/ConstrainedOps.def"
7062#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7063#include "llvm/IR/VPIntrinsics.def"
7066 case Intrinsic::fptrunc_round: {
7070 std::optional<RoundingMode> RoundMode =
7078 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
7083 DAG.getTargetConstant((
int)*RoundMode, sdl, MVT::i32));
7088 case Intrinsic::fmuladd: {
7093 getValue(
I.getArgOperand(0)).getValueType(),
7100 getValue(
I.getArgOperand(0)).getValueType(),
7116 case Intrinsic::convert_to_fp16:
7120 DAG.getTargetConstant(0, sdl,
7123 case Intrinsic::convert_from_fp16:
7129 case Intrinsic::fptosi_sat: {
7136 case Intrinsic::fptoui_sat: {
7143 case Intrinsic::set_rounding:
7149 case Intrinsic::is_fpclass: {
7150 const DataLayout DLayout =
DAG.getDataLayout();
7152 EVT ArgVT = TLI.
getValueType(DLayout,
I.getArgOperand(0)->getType());
7155 MachineFunction &MF =
DAG.getMachineFunction();
7159 Flags.setNoFPExcept(
7160 !
F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7176 case Intrinsic::get_fpenv: {
7177 const DataLayout DLayout =
DAG.getDataLayout();
7179 Align TempAlign =
DAG.getEVTAlign(EnvVT);
7194 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
7197 Chain =
DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7198 Res =
DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7204 case Intrinsic::set_fpenv: {
7205 const DataLayout DLayout =
DAG.getDataLayout();
7208 Align TempAlign =
DAG.getEVTAlign(EnvVT);
7221 Chain =
DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7223 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
7226 Chain =
DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7231 case Intrinsic::reset_fpenv:
7234 case Intrinsic::get_fpmode:
7243 case Intrinsic::set_fpmode:
7248 case Intrinsic::reset_fpmode: {
7253 case Intrinsic::pcmarker: {
7258 case Intrinsic::readcyclecounter: {
7261 DAG.getVTList(MVT::i64, MVT::Other),
Op);
7266 case Intrinsic::readsteadycounter: {
7269 DAG.getVTList(MVT::i64, MVT::Other),
Op);
7274 case Intrinsic::bitreverse:
7276 getValue(
I.getArgOperand(0)).getValueType(),
7279 case Intrinsic::bswap:
7281 getValue(
I.getArgOperand(0)).getValueType(),
7284 case Intrinsic::cttz: {
7292 case Intrinsic::ctlz: {
7300 case Intrinsic::ctpop: {
7306 case Intrinsic::fshl:
7307 case Intrinsic::fshr: {
7308 bool IsFSHL =
Intrinsic == Intrinsic::fshl;
7312 EVT VT =
X.getValueType();
7323 case Intrinsic::clmul: {
7329 case Intrinsic::sadd_sat: {
7335 case Intrinsic::uadd_sat: {
7341 case Intrinsic::ssub_sat: {
7347 case Intrinsic::usub_sat: {
7353 case Intrinsic::sshl_sat:
7354 case Intrinsic::ushl_sat: {
7358 EVT ShiftTy =
DAG.getTargetLoweringInfo().getShiftAmountTy(
7363 if (!
I.getType()->isVectorTy() && Op2.
getValueType() != ShiftTy) {
7366 "Unexpected shift type");
7375 case Intrinsic::smul_fix:
7376 case Intrinsic::umul_fix:
7377 case Intrinsic::smul_fix_sat:
7378 case Intrinsic::umul_fix_sat: {
7386 case Intrinsic::sdiv_fix:
7387 case Intrinsic::udiv_fix:
7388 case Intrinsic::sdiv_fix_sat:
7389 case Intrinsic::udiv_fix_sat: {
7394 Op1, Op2, Op3,
DAG, TLI));
7397 case Intrinsic::smax: {
7403 case Intrinsic::smin: {
7409 case Intrinsic::umax: {
7415 case Intrinsic::umin: {
7421 case Intrinsic::abs: {
7427 case Intrinsic::scmp: {
7434 case Intrinsic::ucmp: {
7441 case Intrinsic::stackaddress:
7442 case Intrinsic::stacksave: {
7447 Res =
DAG.getNode(SDOpcode, sdl,
DAG.getVTList(VT, MVT::Other),
Op);
7452 case Intrinsic::stackrestore:
7456 case Intrinsic::get_dynamic_area_offset: {
7465 case Intrinsic::stackguard: {
7466 MachineFunction &MF =
DAG.getMachineFunction();
7472 Res =
DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7476 LLVMContext &Ctx = *
DAG.getContext();
7477 Ctx.
diagnose(DiagnosticInfoGeneric(
"unable to lower stackguard"));
7484 MachinePointerInfo(
Global, 0), Align,
7493 case Intrinsic::stackprotector: {
7495 MachineFunction &MF =
DAG.getMachineFunction();
7515 Chain, sdl, Src, FIN,
7522 case Intrinsic::objectsize:
7525 case Intrinsic::is_constant:
7528 case Intrinsic::annotation:
7529 case Intrinsic::ptr_annotation:
7530 case Intrinsic::launder_invariant_group:
7531 case Intrinsic::strip_invariant_group:
7536 case Intrinsic::type_test:
7537 case Intrinsic::public_type_test:
7541 case Intrinsic::assume:
7542 case Intrinsic::experimental_noalias_scope_decl:
7543 case Intrinsic::var_annotation:
7544 case Intrinsic::sideeffect:
7549 case Intrinsic::codeview_annotation: {
7551 MachineFunction &MF =
DAG.getMachineFunction();
7560 case Intrinsic::init_trampoline: {
7568 Ops[4] =
DAG.getSrcValue(
I.getArgOperand(0));
7576 case Intrinsic::adjust_trampoline:
7581 case Intrinsic::gcroot: {
7582 assert(
DAG.getMachineFunction().getFunction().hasGC() &&
7583 "only valid in functions with gc specified, enforced by Verifier");
7585 const Value *Alloca =
I.getArgOperand(0)->stripPointerCasts();
7592 case Intrinsic::gcread:
7593 case Intrinsic::gcwrite:
7595 case Intrinsic::get_rounding:
7601 case Intrinsic::expect:
7602 case Intrinsic::expect_with_probability:
7608 case Intrinsic::ubsantrap:
7609 case Intrinsic::debugtrap:
7610 case Intrinsic::trap: {
7611 StringRef TrapFuncName =
7612 I.getAttributes().getFnAttr(
"trap-func-name").getValueAsString();
7613 if (TrapFuncName.
empty()) {
7614 switch (Intrinsic) {
7615 case Intrinsic::trap:
7618 case Intrinsic::debugtrap:
7621 case Intrinsic::ubsantrap:
7624 DAG.getTargetConstant(
7630 DAG.addNoMergeSiteInfo(
DAG.getRoot().getNode(),
7631 I.hasFnAttr(Attribute::NoMerge));
7635 if (Intrinsic == Intrinsic::ubsantrap) {
7636 Value *Arg =
I.getArgOperand(0);
7640 TargetLowering::CallLoweringInfo CLI(
DAG);
7641 CLI.setDebugLoc(sdl).setChain(
getRoot()).setLibCallee(
7643 DAG.getExternalSymbol(TrapFuncName.
data(),
7646 CLI.NoMerge =
I.hasFnAttr(Attribute::NoMerge);
7652 case Intrinsic::allow_runtime_check:
7653 case Intrinsic::allow_ubsan_check:
7657 case Intrinsic::uadd_with_overflow:
7658 case Intrinsic::sadd_with_overflow:
7659 case Intrinsic::usub_with_overflow:
7660 case Intrinsic::ssub_with_overflow:
7661 case Intrinsic::umul_with_overflow:
7662 case Intrinsic::smul_with_overflow: {
7664 switch (Intrinsic) {
7666 case Intrinsic::uadd_with_overflow:
Op =
ISD::UADDO;
break;
7667 case Intrinsic::sadd_with_overflow:
Op =
ISD::SADDO;
break;
7668 case Intrinsic::usub_with_overflow:
Op =
ISD::USUBO;
break;
7669 case Intrinsic::ssub_with_overflow:
Op =
ISD::SSUBO;
break;
7670 case Intrinsic::umul_with_overflow:
Op =
ISD::UMULO;
break;
7671 case Intrinsic::smul_with_overflow:
Op =
ISD::SMULO;
break;
7679 SDVTList VTs =
DAG.getVTList(ResultVT, OverflowVT);
7683 case Intrinsic::prefetch: {
7698 std::nullopt, Flags);
7704 DAG.setRoot(Result);
7707 case Intrinsic::lifetime_start:
7708 case Intrinsic::lifetime_end: {
7709 bool IsStart = (
Intrinsic == Intrinsic::lifetime_start);
7715 if (!LifetimeObject)
7720 auto SI =
FuncInfo.StaticAllocaMap.find(LifetimeObject);
7721 if (SI ==
FuncInfo.StaticAllocaMap.end())
7725 Res =
DAG.getLifetimeNode(IsStart, sdl,
getRoot(), FrameIndex);
7729 case Intrinsic::pseudoprobe: {
7737 case Intrinsic::invariant_start:
7742 case Intrinsic::invariant_end:
7745 case Intrinsic::clear_cache: {
7750 {InputChain, StartVal, EndVal});
7755 case Intrinsic::donothing:
7756 case Intrinsic::seh_try_begin:
7757 case Intrinsic::seh_scope_begin:
7758 case Intrinsic::seh_try_end:
7759 case Intrinsic::seh_scope_end:
7762 case Intrinsic::experimental_stackmap:
7765 case Intrinsic::experimental_patchpoint_void:
7766 case Intrinsic::experimental_patchpoint:
7769 case Intrinsic::experimental_gc_statepoint:
7772 case Intrinsic::experimental_gc_result:
7775 case Intrinsic::experimental_gc_relocate:
7778 case Intrinsic::instrprof_cover:
7780 case Intrinsic::instrprof_increment:
7782 case Intrinsic::instrprof_timestamp:
7784 case Intrinsic::instrprof_value_profile:
7786 case Intrinsic::instrprof_mcdc_parameters:
7788 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7790 case Intrinsic::localescape: {
7791 MachineFunction &MF =
DAG.getMachineFunction();
7792 const TargetInstrInfo *
TII =
DAG.getSubtarget().getInstrInfo();
7796 for (
unsigned Idx = 0,
E =
I.arg_size(); Idx <
E; ++Idx) {
7802 "can only escape static allocas");
7807 TII->get(TargetOpcode::LOCAL_ESCAPE))
7815 case Intrinsic::localrecover: {
7817 MachineFunction &MF =
DAG.getMachineFunction();
7823 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7827 Value *
FP =
I.getArgOperand(1);
7833 SDValue OffsetSym =
DAG.getMCSymbol(FrameAllocSym, PtrVT);
7838 SDValue Add =
DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7844 case Intrinsic::fake_use: {
7845 Value *
V =
I.getArgOperand(0);
7850 auto FakeUseValue = [&]() ->
SDValue {
7864 if (!FakeUseValue || FakeUseValue.isUndef())
7867 Ops[1] = FakeUseValue;
7876 case Intrinsic::reloc_none: {
7881 DAG.getTargetExternalSymbol(
7887 case Intrinsic::eh_exceptionpointer:
7888 case Intrinsic::eh_exceptioncode: {
7894 SDValue N =
DAG.getCopyFromReg(
DAG.getEntryNode(), sdl, VReg, PtrVT);
7895 if (Intrinsic == Intrinsic::eh_exceptioncode)
7896 N =
DAG.getZExtOrTrunc(
N, sdl, MVT::i32);
7900 case Intrinsic::xray_customevent: {
7903 const auto &Triple =
DAG.getTarget().getTargetTriple();
7912 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
7914 Ops.push_back(LogEntryVal);
7915 Ops.push_back(StrSizeVal);
7916 Ops.push_back(Chain);
7922 MachineSDNode *MN =
DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7925 DAG.setRoot(patchableNode);
7929 case Intrinsic::xray_typedevent: {
7932 const auto &Triple =
DAG.getTarget().getTargetTriple();
7944 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
7946 Ops.push_back(LogTypeId);
7947 Ops.push_back(LogEntryVal);
7948 Ops.push_back(StrSizeVal);
7949 Ops.push_back(Chain);
7955 MachineSDNode *MN =
DAG.getMachineNode(
7956 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys,
Ops);
7958 DAG.setRoot(patchableNode);
7962 case Intrinsic::experimental_deoptimize:
7965 case Intrinsic::stepvector:
7968 case Intrinsic::vector_reduce_fadd:
7969 case Intrinsic::vector_reduce_fmul:
7970 case Intrinsic::vector_reduce_add:
7971 case Intrinsic::vector_reduce_mul:
7972 case Intrinsic::vector_reduce_and:
7973 case Intrinsic::vector_reduce_or:
7974 case Intrinsic::vector_reduce_xor:
7975 case Intrinsic::vector_reduce_smax:
7976 case Intrinsic::vector_reduce_smin:
7977 case Intrinsic::vector_reduce_umax:
7978 case Intrinsic::vector_reduce_umin:
7979 case Intrinsic::vector_reduce_fmax:
7980 case Intrinsic::vector_reduce_fmin:
7981 case Intrinsic::vector_reduce_fmaximum:
7982 case Intrinsic::vector_reduce_fminimum:
7983 visitVectorReduce(
I, Intrinsic);
7986 case Intrinsic::icall_branch_funnel: {
7992 I.getArgOperand(1),
Offset,
DAG.getDataLayout()));
7995 "llvm.icall.branch.funnel operand must be a GlobalValue");
7996 Ops.push_back(
DAG.getTargetGlobalAddress(
Base, sdl, MVT::i64, 0));
7998 struct BranchFunnelTarget {
8004 for (
unsigned Op = 1,
N =
I.arg_size();
Op !=
N;
Op += 2) {
8007 if (ElemBase !=
Base)
8009 "to the same GlobalValue");
8015 "llvm.icall.branch.funnel operand must be a GlobalValue");
8021 [](
const BranchFunnelTarget &
T1,
const BranchFunnelTarget &T2) {
8022 return T1.Offset < T2.Offset;
8025 for (
auto &
T : Targets) {
8026 Ops.push_back(
DAG.getTargetConstant(
T.Offset, sdl, MVT::i32));
8027 Ops.push_back(
T.Target);
8030 Ops.push_back(
DAG.getRoot());
8031 SDValue N(
DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
8040 case Intrinsic::wasm_landingpad_index:
8046 case Intrinsic::aarch64_settag:
8047 case Intrinsic::aarch64_settag_zero: {
8048 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
8049 bool ZeroMemory =
Intrinsic == Intrinsic::aarch64_settag_zero;
8052 getValue(
I.getArgOperand(1)), MachinePointerInfo(
I.getArgOperand(0)),
8058 case Intrinsic::amdgcn_cs_chain: {
8063 Type *RetTy =
I.getType();
8073 for (
unsigned Idx : {2, 3, 1}) {
8074 TargetLowering::ArgListEntry Arg(
getValue(
I.getOperand(Idx)),
8076 Arg.setAttributes(&
I, Idx);
8077 Args.push_back(Arg);
8080 assert(Args[0].IsInReg &&
"SGPR args should be marked inreg");
8081 assert(!Args[1].IsInReg &&
"VGPR args should not be marked inreg");
8082 Args[2].IsInReg =
true;
8085 for (
unsigned Idx = 4; Idx <
I.arg_size(); ++Idx) {
8086 TargetLowering::ArgListEntry Arg(
getValue(
I.getOperand(Idx)),
8088 Arg.setAttributes(&
I, Idx);
8089 Args.push_back(Arg);
8092 TargetLowering::CallLoweringInfo CLI(
DAG);
8095 .setCallee(CC, RetTy, Callee, std::move(Args))
8098 .setConvergent(
I.isConvergent());
8100 std::pair<SDValue, SDValue>
Result =
8104 "Should've lowered as tail call");
8109 case Intrinsic::amdgcn_call_whole_wave: {
8111 bool isTailCall =
I.isTailCall();
8114 for (
unsigned Idx = 1; Idx <
I.arg_size(); ++Idx) {
8115 TargetLowering::ArgListEntry Arg(
getValue(
I.getArgOperand(Idx)),
8116 I.getArgOperand(Idx)->getType());
8117 Arg.setAttributes(&
I, Idx);
8124 Args.push_back(Arg);
8129 auto *Token = Bundle->Inputs[0].get();
8130 ConvControlToken =
getValue(Token);
8133 TargetLowering::CallLoweringInfo CLI(
DAG);
8137 getValue(
I.getArgOperand(0)), std::move(Args))
8141 .setConvergent(
I.isConvergent())
8142 .setConvergenceControlToken(ConvControlToken);
8145 std::pair<SDValue, SDValue>
Result =
8148 if (
Result.first.getNode())
8152 case Intrinsic::ptrmask: {
8168 auto HighOnes =
DAG.getNode(
8169 ISD::SHL, sdl, PtrVT,
DAG.getAllOnesConstant(sdl, PtrVT),
8170 DAG.getShiftAmountConstant(
Mask.getValueType().getFixedSizeInBits(),
8173 DAG.getZExtOrTrunc(Mask, sdl, PtrVT), HighOnes);
8174 }
else if (
Mask.getValueType() != PtrVT)
8175 Mask =
DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8181 case Intrinsic::threadlocal_address: {
8185 case Intrinsic::get_active_lane_mask: {
8189 EVT ElementVT =
Index.getValueType();
8200 SDValue VectorIndex =
DAG.getSplat(VecTy, sdl, Index);
8201 SDValue VectorTripCount =
DAG.getSplat(VecTy, sdl, TripCount);
8202 SDValue VectorStep =
DAG.getStepVector(sdl, VecTy);
8205 SDValue SetCC =
DAG.getSetCC(sdl, CCVT, VectorInduction,
8210 case Intrinsic::experimental_get_vector_length: {
8212 "Expected positive VF");
8217 EVT CountVT =
Count.getValueType();
8220 visitTargetIntrinsic(
I, Intrinsic);
8229 if (CountVT.
bitsLT(VT)) {
8234 SDValue MaxEVL =
DAG.getElementCount(sdl, CountVT,
8244 case Intrinsic::vector_partial_reduce_add: {
8252 case Intrinsic::vector_partial_reduce_fadd: {
8260 case Intrinsic::experimental_cttz_elts: {
8263 EVT OpVT =
Op.getValueType();
8266 visitTargetIntrinsic(
I, Intrinsic);
8282 ConstantRange VScaleRange(1,
true);
8311 case Intrinsic::vector_insert: {
8319 if (
Index.getValueType() != VectorIdxTy)
8320 Index =
DAG.getVectorIdxConstant(
Index->getAsZExtVal(), sdl);
8327 case Intrinsic::vector_extract: {
8335 if (
Index.getValueType() != VectorIdxTy)
8336 Index =
DAG.getVectorIdxConstant(
Index->getAsZExtVal(), sdl);
8342 case Intrinsic::experimental_vector_match: {
8348 EVT ResVT =
Mask.getValueType();
8354 visitTargetIntrinsic(
I, Intrinsic);
8358 SDValue Ret =
DAG.getConstant(0, sdl, ResVT);
8360 for (
unsigned i = 0; i < SearchSize; ++i) {
8363 DAG.getVectorIdxConstant(i, sdl));
8366 Ret =
DAG.getNode(
ISD::OR, sdl, ResVT, Ret, Cmp);
8372 case Intrinsic::vector_reverse:
8373 visitVectorReverse(
I);
8375 case Intrinsic::vector_splice_left:
8376 case Intrinsic::vector_splice_right:
8377 visitVectorSplice(
I);
8379 case Intrinsic::callbr_landingpad:
8380 visitCallBrLandingPad(
I);
8382 case Intrinsic::vector_interleave2:
8383 visitVectorInterleave(
I, 2);
8385 case Intrinsic::vector_interleave3:
8386 visitVectorInterleave(
I, 3);
8388 case Intrinsic::vector_interleave4:
8389 visitVectorInterleave(
I, 4);
8391 case Intrinsic::vector_interleave5:
8392 visitVectorInterleave(
I, 5);
8394 case Intrinsic::vector_interleave6:
8395 visitVectorInterleave(
I, 6);
8397 case Intrinsic::vector_interleave7:
8398 visitVectorInterleave(
I, 7);
8400 case Intrinsic::vector_interleave8:
8401 visitVectorInterleave(
I, 8);
8403 case Intrinsic::vector_deinterleave2:
8404 visitVectorDeinterleave(
I, 2);
8406 case Intrinsic::vector_deinterleave3:
8407 visitVectorDeinterleave(
I, 3);
8409 case Intrinsic::vector_deinterleave4:
8410 visitVectorDeinterleave(
I, 4);
8412 case Intrinsic::vector_deinterleave5:
8413 visitVectorDeinterleave(
I, 5);
8415 case Intrinsic::vector_deinterleave6:
8416 visitVectorDeinterleave(
I, 6);
8418 case Intrinsic::vector_deinterleave7:
8419 visitVectorDeinterleave(
I, 7);
8421 case Intrinsic::vector_deinterleave8:
8422 visitVectorDeinterleave(
I, 8);
8424 case Intrinsic::experimental_vector_compress:
8426 getValue(
I.getArgOperand(0)).getValueType(),
8431 case Intrinsic::experimental_convergence_anchor:
8432 case Intrinsic::experimental_convergence_entry:
8433 case Intrinsic::experimental_convergence_loop:
8434 visitConvergenceControl(
I, Intrinsic);
8436 case Intrinsic::experimental_vector_histogram_add: {
8437 visitVectorHistogram(
I, Intrinsic);
8440 case Intrinsic::experimental_vector_extract_last_active: {
8441 visitVectorExtractLastActive(
I, Intrinsic);
8444 case Intrinsic::loop_dependence_war_mask:
8449 DAG.getConstant(0, sdl, MVT::i64)));
8451 case Intrinsic::loop_dependence_raw_mask:
8456 DAG.getConstant(0, sdl, MVT::i64)));
8461void SelectionDAGBuilder::pushFPOpOutChain(
SDValue Result,
8477 PendingConstrainedFP.push_back(OutChain);
8480 PendingConstrainedFPStrict.push_back(OutChain);
8485void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8499 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8501 SDVTList VTs =
DAG.getVTList(VT, MVT::Other);
8505 Flags.setNoFPExcept(
true);
8508 Flags.copyFMF(*FPOp);
8513#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8514 case Intrinsic::INTRINSIC: \
8515 Opcode = ISD::STRICT_##DAGN; \
8517#include "llvm/IR/ConstrainedOps.def"
8518 case Intrinsic::experimental_constrained_fmuladd: {
8525 pushFPOpOutChain(
Mul, EB);
8548 if (TM.Options.NoNaNsFPMath)
8556 pushFPOpOutChain(Result, EB);
8563 std::optional<unsigned> ResOPC;
8565 case Intrinsic::vp_ctlz: {
8567 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8570 case Intrinsic::vp_cttz: {
8572 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8575 case Intrinsic::vp_cttz_elts: {
8577 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8580#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8581 case Intrinsic::VPID: \
8582 ResOPC = ISD::VPSD; \
8584#include "llvm/IR/VPIntrinsics.def"
8589 "Inconsistency: no SDNode available for this VPIntrinsic!");
8591 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8592 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8594 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8595 : ISD::VP_REDUCE_FMUL;
8601void SelectionDAGBuilder::visitVPLoad(
8613 Alignment =
DAG.getEVTAlign(VT);
8616 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8617 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8620 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8621 MachinePointerInfo(PtrOperand), MMOFlags,
8623 LD =
DAG.getLoadVP(VT,
DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8630void SelectionDAGBuilder::visitVPLoadFF(
8633 assert(OpValues.
size() == 3 &&
"Unexpected number of operands");
8643 Alignment =
DAG.getEVTAlign(VT);
8646 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8647 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8650 LD =
DAG.getLoadFFVP(VT,
DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8655 setValue(&VPIntrin,
DAG.getMergeValues({LD.getValue(0), Trunc},
DL));
8658void SelectionDAGBuilder::visitVPGather(
8662 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8674 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8676 *Alignment, AAInfo, Ranges);
8686 EVT IdxVT =
Index.getValueType();
8692 LD =
DAG.getGatherVP(
8693 DAG.getVTList(VT, MVT::Other), VT,
DL,
8694 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8700void SelectionDAGBuilder::visitVPStore(
8704 EVT VT = OpValues[0].getValueType();
8709 Alignment =
DAG.getEVTAlign(VT);
8712 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8715 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8716 MachinePointerInfo(PtrOperand), MMOFlags,
8725void SelectionDAGBuilder::visitVPScatter(
8728 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8730 EVT VT = OpValues[0].getValueType();
8740 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8742 *Alignment, AAInfo);
8752 EVT IdxVT =
Index.getValueType();
8758 ST =
DAG.getScatterVP(
DAG.getVTList(MVT::Other), VT,
DL,
8759 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8760 OpValues[2], OpValues[3]},
8766void SelectionDAGBuilder::visitVPStridedLoad(
8778 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8780 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8783 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8785 *Alignment, AAInfo, Ranges);
8787 SDValue LD =
DAG.getStridedLoadVP(VT,
DL, InChain, OpValues[0], OpValues[1],
8788 OpValues[2], OpValues[3], MMO,
8796void SelectionDAGBuilder::visitVPStridedStore(
8800 EVT VT = OpValues[0].getValueType();
8806 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8809 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8811 *Alignment, AAInfo);
8815 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8823void SelectionDAGBuilder::visitVPCmp(
const VPCmpIntrinsic &VPIntrin) {
8824 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8835 if (TM.Options.NoNaNsFPMath)
8848 "Unexpected target EVL type");
8851 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
8854 DAG.getSetCCVP(
DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8857void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8865 return visitVPCmp(*CmpI);
8868 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8870 SDVTList VTs =
DAG.getVTList(ValueVTs);
8876 "Unexpected target EVL type");
8880 for (
unsigned I = 0;
I < VPIntrin.
arg_size(); ++
I) {
8882 if (
I == EVLParamPos)
8889 SDNodeFlags SDFlags;
8897 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8899 case ISD::VP_LOAD_FF:
8900 visitVPLoadFF(VPIntrin, ValueVTs[0], ValueVTs[1], OpValues);
8902 case ISD::VP_GATHER:
8903 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8905 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8906 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8909 visitVPStore(VPIntrin, OpValues);
8911 case ISD::VP_SCATTER:
8912 visitVPScatter(VPIntrin, OpValues);
8914 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8915 visitVPStridedStore(VPIntrin, OpValues);
8917 case ISD::VP_FMULADD: {
8918 assert(OpValues.
size() == 5 &&
"Unexpected number of operands");
8919 SDNodeFlags SDFlags;
8924 setValue(&VPIntrin,
DAG.getNode(ISD::VP_FMA,
DL, VTs, OpValues, SDFlags));
8927 ISD::VP_FMUL,
DL, VTs,
8928 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8930 DAG.getNode(ISD::VP_FADD,
DL, VTs,
8931 {
Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8936 case ISD::VP_IS_FPCLASS: {
8937 const DataLayout DLayout =
DAG.getDataLayout();
8939 auto Constant = OpValues[1]->getAsZExtVal();
8942 {OpValues[0],
Check, OpValues[2], OpValues[3]});
8946 case ISD::VP_INTTOPTR: {
8957 case ISD::VP_PTRTOINT: {
8959 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
8972 case ISD::VP_CTLZ_ZERO_UNDEF:
8974 case ISD::VP_CTTZ_ZERO_UNDEF:
8975 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8976 case ISD::VP_CTTZ_ELTS: {
8978 DAG.getNode(Opcode,
DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8988 MachineFunction &MF =
DAG.getMachineFunction();
8996 unsigned CallSiteIndex =
FuncInfo.getCurrentCallSite();
8997 if (CallSiteIndex) {
9011 assert(BeginLabel &&
"BeginLabel should've been set");
9013 MachineFunction &MF =
DAG.getMachineFunction();
9025 assert(
II &&
"II should've been set");
9036std::pair<SDValue, SDValue>
9050 std::pair<SDValue, SDValue> Result = TLI.
LowerCallTo(CLI);
9053 "Non-null chain expected with non-tail call!");
9054 assert((Result.second.getNode() || !Result.first.getNode()) &&
9055 "Null value expected with tail call!");
9057 if (!Result.second.getNode()) {
9064 PendingExports.clear();
9066 DAG.setRoot(Result.second);
9084 if (!isMustTailCall &&
9085 Caller->getFnAttribute(
"disable-tail-calls").getValueAsBool())
9091 if (
DAG.getTargetLoweringInfo().supportSwiftError() &&
9092 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
9101 bool isTailCall,
bool isMustTailCall,
9104 auto &
DL =
DAG.getDataLayout();
9111 const Value *SwiftErrorVal =
nullptr;
9118 const Value *V = *
I;
9121 if (V->getType()->isEmptyTy())
9126 Entry.setAttributes(&CB,
I - CB.
arg_begin());
9138 Args.push_back(Entry);
9149 Value *V = Bundle->Inputs[0];
9151 Entry.IsCFGuardTarget =
true;
9152 Args.push_back(Entry);
9165 "Target doesn't support calls with kcfi operand bundles.");
9173 auto *Token = Bundle->Inputs[0].get();
9174 ConvControlToken =
getValue(Token);
9185 .
setCallee(RetTy, FTy, Callee, std::move(Args), CB)
9198 "This target doesn't support calls with ptrauth operand bundles.");
9202 std::pair<SDValue, SDValue> Result =
lowerInvokable(CLI, EHPadBB);
9204 if (Result.first.getNode()) {
9219 DAG.setRoot(CopyNode);
9235 LoadTy, Builder.DAG.getDataLayout()))
9236 return Builder.getValue(LoadCst);
9242 bool ConstantMemory =
false;
9245 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) {
9246 Root = Builder.DAG.getEntryNode();
9247 ConstantMemory =
true;
9250 Root = Builder.DAG.getRoot();
9255 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
9258 if (!ConstantMemory)
9259 Builder.PendingLoads.push_back(LoadVal.
getValue(1));
9265void SelectionDAGBuilder::processIntegerCallValue(
const Instruction &
I,
9268 EVT VT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
9279bool SelectionDAGBuilder::visitMemCmpBCmpCall(
const CallInst &
I) {
9280 const Value *
LHS =
I.getArgOperand(0), *
RHS =
I.getArgOperand(1);
9281 const Value *
Size =
I.getArgOperand(2);
9284 EVT CallVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
9290 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9294 if (Res.first.getNode()) {
9295 processIntegerCallValue(
I, Res.first,
true);
9309 auto hasFastLoadsAndCompare = [&](
unsigned NumBits) {
9310 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
9332 switch (NumBitsToCompare) {
9344 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9357 LoadL =
DAG.getBitcast(CmpVT, LoadL);
9358 LoadR =
DAG.getBitcast(CmpVT, LoadR);
9362 processIntegerCallValue(
I, Cmp,
false);
9371bool SelectionDAGBuilder::visitMemChrCall(
const CallInst &
I) {
9372 const Value *Src =
I.getArgOperand(0);
9373 const Value *
Char =
I.getArgOperand(1);
9374 const Value *
Length =
I.getArgOperand(2);
9376 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9377 std::pair<SDValue, SDValue> Res =
9380 MachinePointerInfo(Src));
9381 if (Res.first.getNode()) {
9395bool SelectionDAGBuilder::visitMemPCpyCall(
const CallInst &
I) {
9400 Align DstAlign =
DAG.InferPtrAlign(Dst).valueOrOne();
9401 Align SrcAlign =
DAG.InferPtrAlign(Src).valueOrOne();
9403 Align Alignment = std::min(DstAlign, SrcAlign);
9412 Root, sdl, Dst, Src,
Size, Alignment,
false,
false,
nullptr,
9413 std::nullopt, MachinePointerInfo(
I.getArgOperand(0)),
9414 MachinePointerInfo(
I.getArgOperand(1)),
I.getAAMetadata());
9416 "** memcpy should not be lowered as TailCall in mempcpy context **");
9420 Size =
DAG.getSExtOrTrunc(
Size, sdl, Dst.getValueType());
9433bool SelectionDAGBuilder::visitStrCpyCall(
const CallInst &
I,
bool isStpcpy) {
9434 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9436 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9439 MachinePointerInfo(Arg0), MachinePointerInfo(Arg1), isStpcpy, &
I);
9440 if (Res.first.getNode()) {
9442 DAG.setRoot(Res.second);
9454bool SelectionDAGBuilder::visitStrCmpCall(
const CallInst &
I) {
9455 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9457 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9458 std::pair<SDValue, SDValue> Res =
9461 MachinePointerInfo(Arg0),
9462 MachinePointerInfo(Arg1));
9463 if (Res.first.getNode()) {
9464 processIntegerCallValue(
I, Res.first,
true);
9477bool SelectionDAGBuilder::visitStrLenCall(
const CallInst &
I) {
9478 const Value *Arg0 =
I.getArgOperand(0);
9480 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9483 if (Res.first.getNode()) {
9484 processIntegerCallValue(
I, Res.first,
false);
9497bool SelectionDAGBuilder::visitStrNLenCall(
const CallInst &
I) {
9498 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9500 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9501 std::pair<SDValue, SDValue> Res =
9504 MachinePointerInfo(Arg0));
9505 if (Res.first.getNode()) {
9506 processIntegerCallValue(
I, Res.first,
false);
9519bool SelectionDAGBuilder::visitStrstrCall(
const CallInst &
I) {
9520 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9521 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9525 processIntegerCallValue(
I, Res.first,
false);
9537bool SelectionDAGBuilder::visitUnaryFloatCall(
const CallInst &
I,
9542 if (!
I.onlyReadsMemory() ||
I.isStrictFP())
9559bool SelectionDAGBuilder::visitBinaryFloatCall(
const CallInst &
I,
9564 if (!
I.onlyReadsMemory() ||
I.isStrictFP())
9577void SelectionDAGBuilder::visitCall(
const CallInst &
I) {
9579 if (
I.isInlineAsm()) {
9586 if (Function *
F =
I.getCalledFunction()) {
9587 if (
F->isDeclaration()) {
9589 if (
unsigned IID =
F->getIntrinsicID()) {
9590 visitIntrinsicCall(
I, IID);
9601 if (!
I.isNoBuiltin() && !
F->hasLocalLinkage() &&
F->hasName() &&
9602 LibInfo->getLibFunc(*
F, Func) &&
LibInfo->hasOptimizedCodeGen(Func)) {
9606 if (visitMemCmpBCmpCall(
I))
9609 case LibFunc_copysign:
9610 case LibFunc_copysignf:
9611 case LibFunc_copysignl:
9614 if (
I.onlyReadsMemory()) {
9666 case LibFunc_atan2f:
9667 case LibFunc_atan2l:
9692 case LibFunc_sqrt_finite:
9693 case LibFunc_sqrtf_finite:
9694 case LibFunc_sqrtl_finite:
9711 case LibFunc_exp10f:
9712 case LibFunc_exp10l:
9717 case LibFunc_ldexpf:
9718 case LibFunc_ldexpl:
9722 case LibFunc_strstr:
9723 if (visitStrstrCall(
I))
9726 case LibFunc_memcmp:
9727 if (visitMemCmpBCmpCall(
I))
9730 case LibFunc_mempcpy:
9731 if (visitMemPCpyCall(
I))
9734 case LibFunc_memchr:
9735 if (visitMemChrCall(
I))
9738 case LibFunc_strcpy:
9739 if (visitStrCpyCall(
I,
false))
9742 case LibFunc_stpcpy:
9743 if (visitStrCpyCall(
I,
true))
9746 case LibFunc_strcmp:
9747 if (visitStrCmpCall(
I))
9750 case LibFunc_strlen:
9751 if (visitStrLenCall(
I))
9754 case LibFunc_strnlen:
9755 if (visitStrNLenCall(
I))
9779 if (
I.hasDeoptState())
9796 const Value *Discriminator = PAB->Inputs[1];
9798 assert(
Key->getType()->isIntegerTy(32) &&
"Invalid ptrauth key");
9799 assert(Discriminator->getType()->isIntegerTy(64) &&
9800 "Invalid ptrauth discriminator");
9805 if (CalleeCPA->isKnownCompatibleWith(
Key, Discriminator,
9806 DAG.getDataLayout()))
9846 for (
const auto &Code : Codes)
9861 SDISelAsmOperandInfo &MatchingOpInfo,
9863 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9869 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9871 OpInfo.ConstraintVT);
9872 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9874 MatchingOpInfo.ConstraintVT);
9875 const bool OutOpIsIntOrFP =
9876 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9877 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9878 MatchingOpInfo.ConstraintVT.isFloatingPoint();
9879 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9882 " with a matching output constraint of"
9883 " incompatible type!");
9885 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9892 SDISelAsmOperandInfo &OpInfo,
9905 const Value *OpVal = OpInfo.CallOperandVal;
9923 DL.getPrefTypeAlign(Ty),
false,
9926 Chain = DAG.
getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9929 OpInfo.CallOperand = StackSlot;
9942static std::optional<unsigned>
9944 SDISelAsmOperandInfo &OpInfo,
9945 SDISelAsmOperandInfo &RefOpInfo) {
9956 return std::nullopt;
9960 unsigned AssignedReg;
9963 &
TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9966 return std::nullopt;
9971 const MVT RegVT = *
TRI.legalclasstypes_begin(*RC);
9973 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9982 !
TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9987 if (RegVT.
getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9992 OpInfo.CallOperand =
9994 OpInfo.ConstraintVT = RegVT;
9998 }
else if (RegVT.
isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
10001 OpInfo.CallOperand =
10003 OpInfo.ConstraintVT = VT;
10010 if (OpInfo.isMatchingInputConstraint())
10011 return std::nullopt;
10013 EVT ValueVT = OpInfo.ConstraintVT;
10014 if (OpInfo.ConstraintVT == MVT::Other)
10018 unsigned NumRegs = 1;
10019 if (OpInfo.ConstraintVT != MVT::Other)
10034 I = std::find(
I, RC->
end(), AssignedReg);
10035 if (
I == RC->
end()) {
10038 return {AssignedReg};
10042 for (; NumRegs; --NumRegs, ++
I) {
10043 assert(
I != RC->
end() &&
"Ran out of registers to allocate!");
10048 OpInfo.AssignedRegs =
RegsForValue(Regs, RegVT, ValueVT);
10049 return std::nullopt;
10054 const std::vector<SDValue> &AsmNodeOperands) {
10057 for (; OperandNo; --OperandNo) {
10059 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
10062 (
F.isRegDefKind() ||
F.isRegDefEarlyClobberKind() ||
F.isMemKind()) &&
10063 "Skipped past definitions?");
10064 CurOp +=
F.getNumOperandRegisters() + 1;
10072 unsigned Flags = 0;
10075 explicit ExtraFlags(
const CallBase &
Call) {
10077 if (
IA->hasSideEffects())
10079 if (
IA->isAlignStack())
10086 void update(
const TargetLowering::AsmOperandInfo &OpInfo) {
10102 unsigned get()
const {
return Flags; }
10125void SelectionDAGBuilder::visitInlineAsm(
const CallBase &
Call,
10132 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10134 DAG.getDataLayout(),
DAG.getSubtarget().getRegisterInfo(),
Call);
10138 bool HasSideEffect =
IA->hasSideEffects();
10139 ExtraFlags ExtraInfo(
Call);
10141 for (
auto &
T : TargetConstraints) {
10142 ConstraintOperands.
push_back(SDISelAsmOperandInfo(
T));
10143 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.
back();
10145 if (OpInfo.CallOperandVal)
10146 OpInfo.CallOperand =
getValue(OpInfo.CallOperandVal);
10148 if (!HasSideEffect)
10149 HasSideEffect = OpInfo.hasMemory(TLI);
10161 return emitInlineAsmError(
Call,
"constraint '" + Twine(
T.ConstraintCode) +
10162 "' expects an integer constant "
10165 ExtraInfo.update(
T);
10173 if (EmitEHLabels) {
10174 assert(EHPadBB &&
"InvokeInst must have an EHPadBB");
10178 if (IsCallBr || EmitEHLabels) {
10186 if (EmitEHLabels) {
10187 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
10192 IA->collectAsmStrs(AsmStrs);
10195 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10203 if (OpInfo.hasMatchingInput()) {
10204 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
10235 if (OpInfo.isIndirect &&
isFunction(OpInfo.CallOperand) &&
10238 OpInfo.isIndirect =
false;
10245 !OpInfo.isIndirect) {
10246 assert((OpInfo.isMultipleAlternative ||
10248 "Can only indirectify direct input operands!");
10254 OpInfo.CallOperandVal =
nullptr;
10257 OpInfo.isIndirect =
true;
10263 std::vector<SDValue> AsmNodeOperands;
10264 AsmNodeOperands.push_back(
SDValue());
10265 AsmNodeOperands.push_back(
DAG.getTargetExternalSymbol(
10272 AsmNodeOperands.push_back(
DAG.getMDNode(SrcLoc));
10276 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10281 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10283 SDISelAsmOperandInfo &RefOpInfo =
10284 OpInfo.isMatchingInputConstraint()
10285 ? ConstraintOperands[OpInfo.getMatchedOperand()]
10287 const auto RegError =
10290 const MachineFunction &MF =
DAG.getMachineFunction();
10292 const char *
RegName =
TRI.getName(*RegError);
10293 emitInlineAsmError(
Call,
"register '" + Twine(
RegName) +
10294 "' allocated for constraint '" +
10295 Twine(OpInfo.ConstraintCode) +
10296 "' does not match required type");
10300 auto DetectWriteToReservedRegister = [&]() {
10301 const MachineFunction &MF =
DAG.getMachineFunction();
10306 emitInlineAsmError(
Call,
"write to reserved register '" +
10315 !OpInfo.isMatchingInputConstraint())) &&
10316 "Only address as input operand is allowed.");
10318 switch (OpInfo.Type) {
10324 "Failed to convert memory constraint code to constraint id.");
10328 OpFlags.setMemConstraint(ConstraintID);
10329 AsmNodeOperands.push_back(
DAG.getTargetConstant(OpFlags,
getCurSDLoc(),
10331 AsmNodeOperands.push_back(OpInfo.CallOperand);
10336 if (OpInfo.AssignedRegs.
Regs.empty()) {
10337 emitInlineAsmError(
10338 Call,
"couldn't allocate output register for constraint '" +
10339 Twine(OpInfo.ConstraintCode) +
"'");
10343 if (DetectWriteToReservedRegister())
10357 SDValue InOperandVal = OpInfo.CallOperand;
10359 if (OpInfo.isMatchingInputConstraint()) {
10364 InlineAsm::Flag
Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10365 if (
Flag.isRegDefKind() ||
Flag.isRegDefEarlyClobberKind()) {
10366 if (OpInfo.isIndirect) {
10368 emitInlineAsmError(
Call,
"inline asm not supported yet: "
10369 "don't know how to handle tied "
10370 "indirect register inputs");
10375 MachineFunction &MF =
DAG.getMachineFunction();
10380 MVT RegVT =
R->getSimpleValueType(0);
10381 const TargetRegisterClass *RC =
10384 :
TRI.getMinimalPhysRegClass(TiedReg);
10385 for (
unsigned i = 0, e =
Flag.getNumOperandRegisters(); i != e; ++i)
10388 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.
getValueType());
10392 MatchedRegs.getCopyToRegs(InOperandVal,
DAG, dl, Chain, &Glue, &
Call);
10394 OpInfo.getMatchedOperand(), dl,
DAG,
10399 assert(
Flag.isMemKind() &&
"Unknown matching constraint!");
10400 assert(
Flag.getNumOperandRegisters() == 1 &&
10401 "Unexpected number of operands");
10404 Flag.clearMemConstraint();
10405 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10406 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10408 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10419 std::vector<SDValue>
Ops;
10425 emitInlineAsmError(
Call,
"value out of range for constraint '" +
10426 Twine(OpInfo.ConstraintCode) +
"'");
10430 emitInlineAsmError(
Call,
10431 "invalid operand for inline asm constraint '" +
10432 Twine(OpInfo.ConstraintCode) +
"'");
10438 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10445 assert((OpInfo.isIndirect ||
10447 "Operand must be indirect to be a mem!");
10450 "Memory operands expect pointer values");
10455 "Failed to convert memory constraint code to constraint id.");
10459 ResOpType.setMemConstraint(ConstraintID);
10460 AsmNodeOperands.push_back(
DAG.getTargetConstant(ResOpType,
10463 AsmNodeOperands.push_back(InOperandVal);
10471 "Failed to convert memory constraint code to constraint id.");
10475 SDValue AsmOp = InOperandVal;
10479 AsmOp =
DAG.getTargetGlobalAddress(GA->getGlobal(),
getCurSDLoc(),
10485 ResOpType.setMemConstraint(ConstraintID);
10487 AsmNodeOperands.push_back(
10490 AsmNodeOperands.push_back(AsmOp);
10496 emitInlineAsmError(
Call,
"unknown asm constraint '" +
10497 Twine(OpInfo.ConstraintCode) +
"'");
10502 if (OpInfo.isIndirect) {
10503 emitInlineAsmError(
10504 Call,
"Don't know how to handle indirect register inputs yet "
10505 "for constraint '" +
10506 Twine(OpInfo.ConstraintCode) +
"'");
10511 if (OpInfo.AssignedRegs.
Regs.empty()) {
10512 emitInlineAsmError(
Call,
10513 "couldn't allocate input reg for constraint '" +
10514 Twine(OpInfo.ConstraintCode) +
"'");
10518 if (DetectWriteToReservedRegister())
10527 0, dl,
DAG, AsmNodeOperands);
10533 if (!OpInfo.AssignedRegs.
Regs.empty())
10543 if (Glue.
getNode()) AsmNodeOperands.push_back(Glue);
10547 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10559 ResultTypes = StructResult->elements();
10560 else if (!CallResultType->
isVoidTy())
10561 ResultTypes =
ArrayRef(CallResultType);
10563 auto CurResultType = ResultTypes.
begin();
10564 auto handleRegAssign = [&](
SDValue V) {
10565 assert(CurResultType != ResultTypes.
end() &&
"Unexpected value");
10566 assert((*CurResultType)->isSized() &&
"Unexpected unsized type");
10567 EVT ResultVT = TLI.
getValueType(
DAG.getDataLayout(), *CurResultType);
10579 if (ResultVT !=
V.getValueType() &&
10582 else if (ResultVT !=
V.getValueType() && ResultVT.
isInteger() &&
10583 V.getValueType().isInteger()) {
10589 assert(ResultVT ==
V.getValueType() &&
"Asm result value mismatch!");
10595 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10599 if (OpInfo.AssignedRegs.
Regs.empty())
10602 switch (OpInfo.ConstraintType) {
10606 Chain, &Glue, &
Call);
10618 assert(
false &&
"Unexpected unknown constraint");
10622 if (OpInfo.isIndirect) {
10623 const Value *Ptr = OpInfo.CallOperandVal;
10624 assert(Ptr &&
"Expected value CallOperandVal for indirect asm operand");
10626 MachinePointerInfo(Ptr));
10633 handleRegAssign(V);
10635 handleRegAssign(Val);
10641 if (!ResultValues.
empty()) {
10642 assert(CurResultType == ResultTypes.
end() &&
10643 "Mismatch in number of ResultTypes");
10645 "Mismatch in number of output operands in asm result");
10648 DAG.getVTList(ResultVTs), ResultValues);
10653 if (!OutChains.
empty())
10656 if (EmitEHLabels) {
10661 if (ResultValues.
empty() || HasSideEffect || !OutChains.
empty() || IsCallBr ||
10663 DAG.setRoot(Chain);
10666void SelectionDAGBuilder::emitInlineAsmError(
const CallBase &
Call,
10667 const Twine &Message) {
10668 LLVMContext &Ctx = *
DAG.getContext();
10672 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10676 if (ValueVTs.
empty())
10680 for (
const EVT &VT : ValueVTs)
10681 Ops.push_back(
DAG.getUNDEF(VT));
10686void SelectionDAGBuilder::visitVAStart(
const CallInst &
I) {
10690 DAG.getSrcValue(
I.getArgOperand(0))));
10693void SelectionDAGBuilder::visitVAArg(
const VAArgInst &
I) {
10694 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10695 const DataLayout &
DL =
DAG.getDataLayout();
10699 DL.getABITypeAlign(
I.getType()).value());
10700 DAG.setRoot(
V.getValue(1));
10702 if (
I.getType()->isPointerTy())
10703 V =
DAG.getPtrExtOrTrunc(
10708void SelectionDAGBuilder::visitVAEnd(
const CallInst &
I) {
10712 DAG.getSrcValue(
I.getArgOperand(0))));
10715void SelectionDAGBuilder::visitVACopy(
const CallInst &
I) {
10720 DAG.getSrcValue(
I.getArgOperand(0)),
10721 DAG.getSrcValue(
I.getArgOperand(1))));
10727 std::optional<ConstantRange> CR =
getRange(
I);
10729 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10732 APInt Lo = CR->getUnsignedMin();
10733 if (!
Lo.isMinValue())
10736 APInt Hi = CR->getUnsignedMax();
10737 unsigned Bits = std::max(
Hi.getActiveBits(),
10745 DAG.getValueType(SmallVT));
10746 unsigned NumVals =
Op.getNode()->getNumValues();
10752 Ops.push_back(ZExt);
10753 for (
unsigned I = 1;
I != NumVals; ++
I)
10754 Ops.push_back(
Op.getValue(
I));
10756 return DAG.getMergeValues(
Ops,
SL);
10766 SDValue TestConst =
DAG.getTargetConstant(Classes,
SDLoc(), MVT::i32);
10774 for (
unsigned I = 0, E =
Ops.size();
I != E; ++
I) {
10777 MergeOp, TestConst);
10780 return DAG.getMergeValues(
Ops,
SL);
10791 unsigned ArgIdx,
unsigned NumArgs,
SDValue Callee,
Type *ReturnTy,
10794 Args.reserve(NumArgs);
10798 for (
unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10799 ArgI != ArgE; ++ArgI) {
10800 const Value *V =
Call->getOperand(ArgI);
10802 assert(!V->getType()->isEmptyTy() &&
"Empty type passed to intrinsic.");
10805 Entry.setAttributes(
Call, ArgI);
10806 Args.push_back(Entry);
10811 .
setCallee(
Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10840 for (
unsigned I = StartIdx;
I <
Call.arg_size();
I++) {
10849 Ops.push_back(Builder.getValue(
Call.getArgOperand(
I)));
10855void SelectionDAGBuilder::visitStackmap(
const CallInst &CI) {
10881 Ops.push_back(Chain);
10882 Ops.push_back(InGlue);
10889 assert(
ID.getValueType() == MVT::i64);
10891 DAG.getTargetConstant(
ID->getAsZExtVal(),
DL,
ID.getValueType());
10892 Ops.push_back(IDConst);
10898 Ops.push_back(ShadConst);
10904 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
10908 Chain =
DAG.getCALLSEQ_END(Chain, 0, 0, InGlue,
DL);
10913 DAG.setRoot(Chain);
10916 FuncInfo.MF->getFrameInfo().setHasStackMap();
10920void SelectionDAGBuilder::visitPatchpoint(
const CallBase &CB,
10937 Callee =
DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10940 Callee =
DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10941 SDLoc(SymbolicCallee),
10942 SymbolicCallee->getValueType(0));
10952 "Not enough arguments provided to the patchpoint intrinsic");
10955 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10959 TargetLowering::CallLoweringInfo CLI(
DAG);
10964 SDNode *CallEnd =
Result.second.getNode();
10973 "Expected a callseq node.");
10975 bool HasGlue =
Call->getGluedNode();
11000 Ops.push_back(Callee);
11006 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
11007 Ops.push_back(
DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
11010 Ops.push_back(
DAG.getTargetConstant((
unsigned)CC, dl, MVT::i32));
11015 for (
unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i !=
e; ++i)
11026 if (IsAnyRegCC && HasDef) {
11028 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
11031 assert(ValueVTs.
size() == 1 &&
"Expected only one return value type.");
11036 NodeTys =
DAG.getVTList(ValueVTs);
11038 NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
11055 if (IsAnyRegCC && HasDef) {
11058 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
11064 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
11067void SelectionDAGBuilder::visitVectorReduce(
const CallInst &
I,
11069 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
11072 if (
I.arg_size() > 1)
11077 SDNodeFlags SDFlags;
11081 switch (Intrinsic) {
11082 case Intrinsic::vector_reduce_fadd:
11090 case Intrinsic::vector_reduce_fmul:
11098 case Intrinsic::vector_reduce_add:
11101 case Intrinsic::vector_reduce_mul:
11104 case Intrinsic::vector_reduce_and:
11107 case Intrinsic::vector_reduce_or:
11110 case Intrinsic::vector_reduce_xor:
11113 case Intrinsic::vector_reduce_smax:
11116 case Intrinsic::vector_reduce_smin:
11119 case Intrinsic::vector_reduce_umax:
11122 case Intrinsic::vector_reduce_umin:
11125 case Intrinsic::vector_reduce_fmax:
11128 case Intrinsic::vector_reduce_fmin:
11131 case Intrinsic::vector_reduce_fmaximum:
11134 case Intrinsic::vector_reduce_fminimum:
11148 Attrs.push_back(Attribute::SExt);
11150 Attrs.push_back(Attribute::ZExt);
11152 Attrs.push_back(Attribute::InReg);
11154 return AttributeList::get(CLI.
RetTy->
getContext(), AttributeList::ReturnIndex,
11162std::pair<SDValue, SDValue>
11176 "Only supported for non-aggregate returns");
11179 for (
Type *Ty : RetOrigTys)
11188 RetOrigTys.
swap(OldRetOrigTys);
11189 RetVTs.
swap(OldRetVTs);
11190 Offsets.swap(OldOffsets);
11192 for (
size_t i = 0, e = OldRetVTs.
size(); i != e; ++i) {
11193 EVT RetVT = OldRetVTs[i];
11197 unsigned RegisterVTByteSZ = RegisterVT.
getSizeInBits() / 8;
11198 RetOrigTys.
append(NumRegs, OldRetOrigTys[i]);
11199 RetVTs.
append(NumRegs, RegisterVT);
11200 for (
unsigned j = 0; j != NumRegs; ++j)
11213 int DemoteStackIdx = -100;
11226 ArgListEntry Entry(DemoteStackSlot, StackSlotPtrType);
11227 Entry.IsSRet =
true;
11228 Entry.Alignment = Alignment;
11240 for (
unsigned I = 0, E = RetVTs.
size();
I != E; ++
I) {
11242 if (NeedsRegBlock) {
11243 Flags.setInConsecutiveRegs();
11244 if (
I == RetVTs.
size() - 1)
11245 Flags.setInConsecutiveRegsLast();
11247 EVT VT = RetVTs[
I];
11251 for (
unsigned i = 0; i != NumRegs; ++i) {
11265 CLI.
Ins.push_back(Ret);
11274 if (Arg.IsSwiftError) {
11280 CLI.
Ins.push_back(Ret);
11288 for (
unsigned i = 0, e = Args.size(); i != e; ++i) {
11292 Type *FinalType = Args[i].Ty;
11293 if (Args[i].IsByVal)
11294 FinalType = Args[i].IndirectType;
11297 for (
unsigned Value = 0, NumValues = OrigArgTys.
size();
Value != NumValues;
11300 Type *ArgTy = OrigArgTy;
11301 if (Args[i].Ty != Args[i].OrigTy) {
11302 assert(
Value == 0 &&
"Only supported for non-aggregate arguments");
11303 ArgTy = Args[i].Ty;
11308 Args[i].Node.getResNo() +
Value);
11315 Flags.setOrigAlign(OriginalAlignment);
11320 Flags.setPointer();
11323 if (Args[i].IsZExt)
11325 if (Args[i].IsSExt)
11327 if (Args[i].IsNoExt)
11329 if (Args[i].IsInReg) {
11336 Flags.setHvaStart();
11342 if (Args[i].IsSRet)
11344 if (Args[i].IsSwiftSelf)
11345 Flags.setSwiftSelf();
11346 if (Args[i].IsSwiftAsync)
11347 Flags.setSwiftAsync();
11348 if (Args[i].IsSwiftError)
11349 Flags.setSwiftError();
11350 if (Args[i].IsCFGuardTarget)
11351 Flags.setCFGuardTarget();
11352 if (Args[i].IsByVal)
11354 if (Args[i].IsByRef)
11356 if (Args[i].IsPreallocated) {
11357 Flags.setPreallocated();
11365 if (Args[i].IsInAlloca) {
11366 Flags.setInAlloca();
11375 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11376 unsigned FrameSize =
DL.getTypeAllocSize(Args[i].IndirectType);
11377 Flags.setByValSize(FrameSize);
11380 if (
auto MA = Args[i].Alignment)
11384 }
else if (
auto MA = Args[i].Alignment) {
11387 MemAlign = OriginalAlignment;
11389 Flags.setMemAlign(MemAlign);
11390 if (Args[i].IsNest)
11393 Flags.setInConsecutiveRegs();
11396 unsigned NumParts =
11401 if (Args[i].IsSExt)
11403 else if (Args[i].IsZExt)
11408 if (Args[i].IsReturned && !
Op.getValueType().isVector() &&
11413 Args[i].Ty->getPointerAddressSpace())) &&
11414 RetVTs.
size() == NumValues &&
"unexpected use of 'returned'");
11427 CLI.
RetZExt == Args[i].IsZExt))
11428 Flags.setReturned();
11434 for (
unsigned j = 0; j != NumParts; ++j) {
11440 j * Parts[j].
getValueType().getStoreSize().getKnownMinValue());
11441 if (NumParts > 1 && j == 0)
11445 if (j == NumParts - 1)
11449 CLI.
Outs.push_back(MyFlags);
11450 CLI.
OutVals.push_back(Parts[j]);
11453 if (NeedsRegBlock &&
Value == NumValues - 1)
11454 CLI.
Outs[CLI.
Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11466 "LowerCall didn't return a valid chain!");
11468 "LowerCall emitted a return value for a tail call!");
11470 "LowerCall didn't emit the correct number of values!");
11482 for (
unsigned i = 0, e = CLI.
Ins.size(); i != e; ++i) {
11483 assert(InVals[i].
getNode() &&
"LowerCall emitted a null value!");
11484 assert(
EVT(CLI.
Ins[i].VT) == InVals[i].getValueType() &&
11485 "LowerCall emitted a value with the wrong type!");
11495 unsigned NumValues = RetVTs.
size();
11496 ReturnValues.
resize(NumValues);
11503 for (
unsigned i = 0; i < NumValues; ++i) {
11510 DemoteStackIdx, Offsets[i]),
11512 ReturnValues[i] = L;
11513 Chains[i] = L.getValue(1);
11520 std::optional<ISD::NodeType> AssertOp;
11525 unsigned CurReg = 0;
11526 for (
EVT VT : RetVTs) {
11532 CLI.
DAG, CLI.
DL, &InVals[CurReg], NumRegs, RegisterVT, VT,
nullptr,
11540 if (ReturnValues.
empty())
11546 return std::make_pair(Res, CLI.
Chain);
11563 if (
N->getNumValues() == 1) {
11571 "Lowering returned the wrong number of results!");
11574 for (
unsigned I = 0, E =
N->getNumValues();
I != E; ++
I)
11588 "Copy from a reg to the same reg!");
11589 assert(!Reg.isPhysical() &&
"Is a physreg");
11595 RegsForValue RFV(V->getContext(), TLI,
DAG.getDataLayout(), Reg, V->getType(),
11600 auto PreferredExtendIt =
FuncInfo.PreferredExtendType.find(V);
11601 if (PreferredExtendIt !=
FuncInfo.PreferredExtendType.end())
11602 ExtendType = PreferredExtendIt->second;
11605 PendingExports.push_back(Chain);
11617 return A->use_empty();
11619 const BasicBlock &Entry =
A->getParent()->front();
11620 for (
const User *U :
A->users())
11629 std::pair<const AllocaInst *, const StoreInst *>>;
11641 enum StaticAllocaInfo {
Unknown, Clobbered, Elidable };
11643 unsigned NumArgs = FuncInfo->
Fn->
arg_size();
11644 StaticAllocas.
reserve(NumArgs * 2);
11646 auto GetInfoIfStaticAlloca = [&](
const Value *V) -> StaticAllocaInfo * {
11649 V = V->stripPointerCasts();
11651 if (!AI || !AI->isStaticAlloca() || !FuncInfo->
StaticAllocaMap.count(AI))
11654 return &Iter.first->second;
11671 if (
I.isDebugOrPseudoInst())
11675 for (
const Use &U :
I.operands()) {
11676 if (StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(U))
11677 *
Info = StaticAllocaInfo::Clobbered;
11683 if (StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(
SI->getValueOperand()))
11684 *
Info = StaticAllocaInfo::Clobbered;
11687 const Value *Dst =
SI->getPointerOperand()->stripPointerCasts();
11688 StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(Dst);
11694 if (*
Info != StaticAllocaInfo::Unknown)
11702 const Value *Val =
SI->getValueOperand()->stripPointerCasts();
11704 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11708 !
DL.typeSizeEqualsStoreSize(Arg->
getType()) ||
11709 ArgCopyElisionCandidates.count(Arg)) {
11710 *
Info = StaticAllocaInfo::Clobbered;
11714 LLVM_DEBUG(
dbgs() <<
"Found argument copy elision candidate: " << *AI
11718 *
Info = StaticAllocaInfo::Elidable;
11719 ArgCopyElisionCandidates.insert({Arg, {AI,
SI}});
11724 if (ArgCopyElisionCandidates.size() == NumArgs)
11748 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11749 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11750 const AllocaInst *AI = ArgCopyIter->second.first;
11751 int FixedIndex = FINode->getIndex();
11753 int OldIndex = AllocaIndex;
11757 dbgs() <<
" argument copy elision failed due to bad fixed stack "
11763 LLVM_DEBUG(
dbgs() <<
" argument copy elision failed: alignment of alloca "
11764 "greater than stack argument alignment ("
11765 <<
DebugStr(RequiredAlignment) <<
" vs "
11773 dbgs() <<
"Eliding argument copy from " << Arg <<
" to " << *AI <<
'\n'
11774 <<
" Replacing frame index " << OldIndex <<
" with " << FixedIndex
11780 AllocaIndex = FixedIndex;
11781 ArgCopyElisionFrameIndexMap.
insert({OldIndex, FixedIndex});
11782 for (
SDValue ArgVal : ArgVals)
11786 const StoreInst *
SI = ArgCopyIter->second.second;
11799void SelectionDAGISel::LowerArguments(
const Function &
F) {
11800 SelectionDAG &DAG =
SDB->DAG;
11801 SDLoc dl =
SDB->getCurSDLoc();
11806 if (
F.hasFnAttribute(Attribute::Naked))
11811 MVT ValueVT =
TLI->getPointerTy(
DL,
DL.getAllocaAddrSpace());
11813 ISD::ArgFlagsTy
Flags;
11815 MVT RegisterVT =
TLI->getRegisterType(*DAG.
getContext(), ValueVT);
11816 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT,
F.getReturnType(),
true,
11826 ArgCopyElisionCandidates);
11829 for (
const Argument &Arg :
F.args()) {
11830 unsigned ArgNo = Arg.getArgNo();
11833 bool isArgValueUsed = !Arg.
use_empty();
11835 if (Arg.hasAttribute(Attribute::ByVal))
11836 FinalType = Arg.getParamByValType();
11837 bool NeedsRegBlock =
TLI->functionArgumentNeedsConsecutiveRegisters(
11838 FinalType,
F.getCallingConv(),
F.isVarArg(),
DL);
11839 for (
unsigned Value = 0, NumValues =
Types.size();
Value != NumValues;
11842 EVT VT =
TLI->getValueType(
DL, ArgTy);
11843 ISD::ArgFlagsTy
Flags;
11846 Flags.setPointer();
11849 if (Arg.hasAttribute(Attribute::ZExt))
11851 if (Arg.hasAttribute(Attribute::SExt))
11853 if (Arg.hasAttribute(Attribute::InReg)) {
11860 Flags.setHvaStart();
11866 if (Arg.hasAttribute(Attribute::StructRet))
11868 if (Arg.hasAttribute(Attribute::SwiftSelf))
11869 Flags.setSwiftSelf();
11870 if (Arg.hasAttribute(Attribute::SwiftAsync))
11871 Flags.setSwiftAsync();
11872 if (Arg.hasAttribute(Attribute::SwiftError))
11873 Flags.setSwiftError();
11874 if (Arg.hasAttribute(Attribute::ByVal))
11876 if (Arg.hasAttribute(Attribute::ByRef))
11878 if (Arg.hasAttribute(Attribute::InAlloca)) {
11879 Flags.setInAlloca();
11887 if (Arg.hasAttribute(Attribute::Preallocated)) {
11888 Flags.setPreallocated();
11900 const Align OriginalAlignment(
11901 TLI->getABIAlignmentForCallingConv(ArgTy,
DL));
11902 Flags.setOrigAlign(OriginalAlignment);
11905 Type *ArgMemTy =
nullptr;
11906 if (
Flags.isByVal() ||
Flags.isInAlloca() ||
Flags.isPreallocated() ||
11909 ArgMemTy = Arg.getPointeeInMemoryValueType();
11911 uint64_t MemSize =
DL.getTypeAllocSize(ArgMemTy);
11916 if (
auto ParamAlign = Arg.getParamStackAlign())
11917 MemAlign = *ParamAlign;
11918 else if ((ParamAlign = Arg.getParamAlign()))
11919 MemAlign = *ParamAlign;
11921 MemAlign =
TLI->getByValTypeAlignment(ArgMemTy,
DL);
11922 if (
Flags.isByRef())
11923 Flags.setByRefSize(MemSize);
11925 Flags.setByValSize(MemSize);
11926 }
else if (
auto ParamAlign = Arg.getParamStackAlign()) {
11927 MemAlign = *ParamAlign;
11929 MemAlign = OriginalAlignment;
11931 Flags.setMemAlign(MemAlign);
11933 if (Arg.hasAttribute(Attribute::Nest))
11936 Flags.setInConsecutiveRegs();
11937 if (ArgCopyElisionCandidates.count(&Arg))
11938 Flags.setCopyElisionCandidate();
11939 if (Arg.hasAttribute(Attribute::Returned))
11940 Flags.setReturned();
11942 MVT RegisterVT =
TLI->getRegisterTypeForCallingConv(
11943 *
CurDAG->getContext(),
F.getCallingConv(), VT);
11944 unsigned NumRegs =
TLI->getNumRegistersForCallingConv(
11945 *
CurDAG->getContext(),
F.getCallingConv(), VT);
11946 for (
unsigned i = 0; i != NumRegs; ++i) {
11950 ISD::InputArg MyFlags(
11951 Flags, RegisterVT, VT, ArgTy, isArgValueUsed, ArgNo,
11953 if (NumRegs > 1 && i == 0)
11954 MyFlags.Flags.setSplit();
11957 MyFlags.Flags.setOrigAlign(
Align(1));
11958 if (i == NumRegs - 1)
11959 MyFlags.Flags.setSplitEnd();
11963 if (NeedsRegBlock &&
Value == NumValues - 1)
11964 Ins[Ins.
size() - 1].Flags.setInConsecutiveRegsLast();
11970 SDValue NewRoot =
TLI->LowerFormalArguments(
11971 DAG.
getRoot(),
F.getCallingConv(),
F.isVarArg(), Ins, dl, DAG, InVals);
11975 "LowerFormalArguments didn't return a valid chain!");
11977 "LowerFormalArguments didn't emit the correct number of values!");
11979 for (
unsigned i = 0, e = Ins.
size(); i != e; ++i) {
11981 "LowerFormalArguments emitted a null value!");
11983 "LowerFormalArguments emitted a value with the wrong type!");
11995 MVT VT =
TLI->getPointerTy(
DL,
DL.getAllocaAddrSpace());
11996 MVT RegVT =
TLI->getRegisterType(*
CurDAG->getContext(), VT);
11997 std::optional<ISD::NodeType> AssertOp;
12000 F.getCallingConv(), AssertOp);
12002 MachineFunction&
MF =
SDB->DAG.getMachineFunction();
12003 MachineRegisterInfo&
RegInfo =
MF.getRegInfo();
12005 RegInfo.createVirtualRegister(
TLI->getRegClassFor(RegVT));
12006 FuncInfo->DemoteRegister = SRetReg;
12008 SDB->DAG.getCopyToReg(NewRoot,
SDB->getCurSDLoc(), SRetReg, ArgValue);
12016 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
12017 for (
const Argument &Arg :
F.args()) {
12021 unsigned NumValues = ValueVTs.
size();
12022 if (NumValues == 0)
12029 if (Ins[i].
Flags.isCopyElisionCandidate()) {
12030 unsigned NumParts = 0;
12031 for (EVT VT : ValueVTs)
12032 NumParts +=
TLI->getNumRegistersForCallingConv(*
CurDAG->getContext(),
12033 F.getCallingConv(), VT);
12037 ArrayRef(&InVals[i], NumParts), ArgHasUses);
12042 bool isSwiftErrorArg =
12043 TLI->supportSwiftError() &&
12044 Arg.hasAttribute(Attribute::SwiftError);
12045 if (!ArgHasUses && !isSwiftErrorArg) {
12046 SDB->setUnusedArgValue(&Arg, InVals[i]);
12049 if (FrameIndexSDNode *FI =
12051 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12054 for (
unsigned Val = 0; Val != NumValues; ++Val) {
12055 EVT VT = ValueVTs[Val];
12056 MVT PartVT =
TLI->getRegisterTypeForCallingConv(*
CurDAG->getContext(),
12057 F.getCallingConv(), VT);
12058 unsigned NumParts =
TLI->getNumRegistersForCallingConv(
12059 *
CurDAG->getContext(),
F.getCallingConv(), VT);
12064 if (ArgHasUses || isSwiftErrorArg) {
12065 std::optional<ISD::NodeType> AssertOp;
12066 if (Arg.hasAttribute(Attribute::SExt))
12068 else if (Arg.hasAttribute(Attribute::ZExt))
12073 NewRoot,
F.getCallingConv(), AssertOp);
12076 if (NoFPClass !=
fcNone) {
12078 static_cast<uint64_t
>(NoFPClass), dl, MVT::i32);
12080 OutVal, SDNoFPClass);
12089 if (ArgValues.
empty())
12093 if (FrameIndexSDNode *FI =
12095 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12098 SDB->getCurSDLoc());
12100 SDB->setValue(&Arg, Res);
12110 if (LoadSDNode *LNode =
12112 if (FrameIndexSDNode *FI =
12114 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12142 FuncInfo->InitializeRegForValue(&Arg);
12143 SDB->CopyToExportRegsIfNeeded(&Arg);
12147 if (!Chains.
empty()) {
12154 assert(i == InVals.
size() &&
"Argument register count mismatch!");
12158 if (!ArgCopyElisionFrameIndexMap.
empty()) {
12159 for (MachineFunction::VariableDbgInfo &VI :
12160 MF->getInStackSlotVariableDbgInfo()) {
12161 auto I = ArgCopyElisionFrameIndexMap.
find(
VI.getStackSlot());
12162 if (
I != ArgCopyElisionFrameIndexMap.
end())
12163 VI.updateStackSlot(
I->second);
12178SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(
const BasicBlock *LLVMBB) {
12179 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12181 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
12187 MachineBasicBlock *SuccMBB =
FuncInfo.getMBB(SuccBB);
12191 if (!SuccsHandled.
insert(SuccMBB).second)
12199 for (
const PHINode &PN : SuccBB->phis()) {
12201 if (PN.use_empty())
12205 if (PN.getType()->isEmptyTy())
12209 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
12214 RegOut =
FuncInfo.CreateRegs(&PN);
12232 "Didn't codegen value into a register!??");
12242 for (EVT VT : ValueVTs) {
12244 for (
unsigned i = 0; i != NumRegisters; ++i)
12246 Reg += NumRegisters;
12266void SelectionDAGBuilder::updateDAGForMaybeTailCall(
SDValue MaybeTC) {
12268 if (MaybeTC.
getNode() !=
nullptr)
12269 DAG.setRoot(MaybeTC);
12274void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W,
Value *
Cond,
12277 MachineFunction *CurMF =
FuncInfo.MF;
12278 MachineBasicBlock *NextMBB =
nullptr;
12283 unsigned Size =
W.LastCluster -
W.FirstCluster + 1;
12285 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
12287 if (
Size == 2 &&
W.MBB == SwitchMBB) {
12295 CaseCluster &
Small = *
W.FirstCluster;
12296 CaseCluster &
Big = *
W.LastCluster;
12300 const APInt &SmallValue =
Small.Low->getValue();
12301 const APInt &BigValue =
Big.Low->getValue();
12304 APInt CommonBit = BigValue ^ SmallValue;
12311 DAG.getConstant(CommonBit,
DL, VT));
12313 DL, MVT::i1,
Or,
DAG.getConstant(BigValue | SmallValue,
DL, VT),
12319 addSuccessorWithProb(SwitchMBB,
Small.MBB,
Small.Prob +
Big.Prob);
12321 addSuccessorWithProb(
12322 SwitchMBB, DefaultMBB,
12326 addSuccessorWithProb(SwitchMBB, DefaultMBB);
12334 DAG.getBasicBlock(DefaultMBB));
12336 DAG.setRoot(BrCond);
12348 [](
const CaseCluster &a,
const CaseCluster &b) {
12349 return a.Prob != b.Prob ?
12351 a.Low->getValue().slt(b.Low->getValue());
12358 if (
I->Prob >
W.LastCluster->Prob)
12360 if (
I->Kind ==
CC_Range &&
I->MBB == NextMBB) {
12368 BranchProbability DefaultProb =
W.DefaultProb;
12369 BranchProbability UnhandledProbs = DefaultProb;
12371 UnhandledProbs +=
I->Prob;
12373 MachineBasicBlock *CurMBB =
W.MBB;
12375 bool FallthroughUnreachable =
false;
12376 MachineBasicBlock *Fallthrough;
12377 if (
I ==
W.LastCluster) {
12379 Fallthrough = DefaultMBB;
12384 CurMF->
insert(BBI, Fallthrough);
12388 UnhandledProbs -=
I->Prob;
12393 JumpTableHeader *JTH = &
SL->JTCases[
I->JTCasesIndex].first;
12394 SwitchCG::JumpTable *JT = &
SL->JTCases[
I->JTCasesIndex].second;
12397 MachineBasicBlock *JumpMBB = JT->
MBB;
12398 CurMF->
insert(BBI, JumpMBB);
12400 auto JumpProb =
I->Prob;
12401 auto FallthroughProb = UnhandledProbs;
12409 if (*SI == DefaultMBB) {
12410 JumpProb += DefaultProb / 2;
12411 FallthroughProb -= DefaultProb / 2;
12429 if (FallthroughUnreachable) {
12436 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12437 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12446 if (CurMBB == SwitchMBB) {
12454 BitTestBlock *BTB = &
SL->BitTestCases[
I->BTCasesIndex];
12457 for (BitTestCase &BTC : BTB->
Cases)
12469 BTB->
Prob += DefaultProb / 2;
12473 if (FallthroughUnreachable)
12477 if (CurMBB == SwitchMBB) {
12484 const Value *
RHS, *
LHS, *MHS;
12486 if (
I->Low ==
I->High) {
12501 if (FallthroughUnreachable)
12505 CaseBlock CB(CC,
LHS,
RHS, MHS,
I->MBB, Fallthrough, CurMBB,
12508 if (CurMBB == SwitchMBB)
12511 SL->SwitchCases.push_back(CB);
12516 CurMBB = Fallthrough;
12520void SelectionDAGBuilder::splitWorkItem(
SwitchWorkList &WorkList,
12521 const SwitchWorkListItem &W,
12524 assert(
W.FirstCluster->Low->getValue().slt(
W.LastCluster->Low->getValue()) &&
12525 "Clusters not sorted?");
12526 assert(
W.LastCluster -
W.FirstCluster + 1 >= 2 &&
"Too small to split!");
12528 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12529 SL->computeSplitWorkItemInfo(W);
12534 assert(PivotCluster >
W.FirstCluster);
12535 assert(PivotCluster <=
W.LastCluster);
12540 const ConstantInt *Pivot = PivotCluster->Low;
12549 MachineBasicBlock *LeftMBB;
12550 if (FirstLeft == LastLeft && FirstLeft->Kind ==
CC_Range &&
12551 FirstLeft->Low ==
W.GE &&
12552 (FirstLeft->High->getValue() + 1LL) == Pivot->
getValue()) {
12553 LeftMBB = FirstLeft->MBB;
12555 LeftMBB =
FuncInfo.MF->CreateMachineBasicBlock(
W.MBB->getBasicBlock());
12556 FuncInfo.MF->insert(BBI, LeftMBB);
12558 {LeftMBB, FirstLeft, LastLeft,
W.GE, Pivot,
W.DefaultProb / 2});
12566 MachineBasicBlock *RightMBB;
12567 if (FirstRight == LastRight && FirstRight->Kind ==
CC_Range &&
12568 W.LT && (FirstRight->High->getValue() + 1ULL) ==
W.LT->getValue()) {
12569 RightMBB = FirstRight->MBB;
12571 RightMBB =
FuncInfo.MF->CreateMachineBasicBlock(
W.MBB->getBasicBlock());
12572 FuncInfo.MF->insert(BBI, RightMBB);
12574 {RightMBB, FirstRight, LastRight, Pivot,
W.LT,
W.DefaultProb / 2});
12580 CaseBlock CB(
ISD::SETLT,
Cond, Pivot,
nullptr, LeftMBB, RightMBB,
W.MBB,
12583 if (
W.MBB == SwitchMBB)
12586 SL->SwitchCases.push_back(CB);
12611 MachineBasicBlock *SwitchMBB =
FuncInfo.MBB;
12619 unsigned PeeledCaseIndex = 0;
12620 bool SwitchPeeled =
false;
12621 for (
unsigned Index = 0;
Index < Clusters.size(); ++
Index) {
12622 CaseCluster &CC = Clusters[
Index];
12623 if (CC.
Prob < TopCaseProb)
12625 TopCaseProb = CC.
Prob;
12626 PeeledCaseIndex =
Index;
12627 SwitchPeeled =
true;
12632 LLVM_DEBUG(
dbgs() <<
"Peeled one top case in switch stmt, prob: "
12633 << TopCaseProb <<
"\n");
12638 MachineBasicBlock *PeeledSwitchMBB =
12640 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12643 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12644 SwitchWorkListItem
W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12645 nullptr,
nullptr, TopCaseProb.
getCompl()};
12646 lowerWorkItem(W,
SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12648 Clusters.erase(PeeledCaseIt);
12649 for (CaseCluster &CC : Clusters) {
12651 dbgs() <<
"Scale the probablity for one cluster, before scaling: "
12652 << CC.
Prob <<
"\n");
12656 PeeledCaseProb = TopCaseProb;
12657 return PeeledSwitchMBB;
12660void SelectionDAGBuilder::visitSwitch(
const SwitchInst &
SI) {
12662 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
12664 Clusters.reserve(
SI.getNumCases());
12665 for (
auto I :
SI.cases()) {
12666 MachineBasicBlock *Succ =
FuncInfo.getMBB(
I.getCaseSuccessor());
12667 const ConstantInt *CaseVal =
I.getCaseValue();
12668 BranchProbability Prob =
12670 : BranchProbability(1,
SI.getNumCases() + 1);
12674 MachineBasicBlock *DefaultMBB =
FuncInfo.getMBB(
SI.getDefaultDest());
12683 MachineBasicBlock *PeeledSwitchMBB =
12684 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12687 MachineBasicBlock *SwitchMBB =
FuncInfo.MBB;
12688 if (Clusters.empty()) {
12689 assert(PeeledSwitchMBB == SwitchMBB);
12691 if (DefaultMBB != NextBlock(SwitchMBB)) {
12698 SL->findJumpTables(Clusters, &SI,
getCurSDLoc(), DefaultMBB,
DAG.getPSI(),
12700 SL->findBitTestClusters(Clusters, &SI);
12703 dbgs() <<
"Case clusters: ";
12704 for (
const CaseCluster &
C : Clusters) {
12710 C.Low->getValue().print(
dbgs(),
true);
12711 if (
C.Low !=
C.High) {
12713 C.High->getValue().print(
dbgs(),
true);
12720 assert(!Clusters.empty());
12724 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12728 DefaultMBB ==
FuncInfo.getMBB(
SI.getDefaultDest()))
12731 {PeeledSwitchMBB,
First,
Last,
nullptr,
nullptr, DefaultProb});
12733 while (!WorkList.
empty()) {
12735 unsigned NumClusters =
W.LastCluster -
W.FirstCluster + 1;
12740 splitWorkItem(WorkList, W,
SI.getCondition(), SwitchMBB);
12744 lowerWorkItem(W,
SI.getCondition(), SwitchMBB, DefaultMBB);
12748void SelectionDAGBuilder::visitStepVector(
const CallInst &
I) {
12749 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12755void SelectionDAGBuilder::visitVectorReverse(
const CallInst &
I) {
12756 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12761 assert(VT ==
V.getValueType() &&
"Malformed vector.reverse!");
12770 SmallVector<int, 8>
Mask;
12772 for (
unsigned i = 0; i != NumElts; ++i)
12773 Mask.push_back(NumElts - 1 - i);
12778void SelectionDAGBuilder::visitVectorDeinterleave(
const CallInst &
I,
12787 EVT OutVT = ValueVTs[0];
12791 for (
unsigned i = 0; i != Factor; ++i) {
12792 assert(ValueVTs[i] == OutVT &&
"Expected VTs to be the same");
12794 DAG.getVectorIdxConstant(OutNumElts * i,
DL));
12800 SDValue Even =
DAG.getVectorShuffle(OutVT,
DL, SubVecs[0], SubVecs[1],
12802 SDValue Odd =
DAG.getVectorShuffle(OutVT,
DL, SubVecs[0], SubVecs[1],
12810 DAG.getVTList(ValueVTs), SubVecs);
12814void SelectionDAGBuilder::visitVectorInterleave(
const CallInst &
I,
12817 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12822 for (
unsigned i = 0; i < Factor; ++i) {
12825 "Expected VTs to be the same");
12843 for (
unsigned i = 0; i < Factor; ++i)
12850void SelectionDAGBuilder::visitFreeze(
const FreezeInst &
I) {
12854 unsigned NumValues = ValueVTs.
size();
12855 if (NumValues == 0)
return;
12860 for (
unsigned i = 0; i != NumValues; ++i)
12865 DAG.getVTList(ValueVTs), Values));
12868void SelectionDAGBuilder::visitVectorSplice(
const CallInst &
I) {
12869 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12876 const bool IsLeft =
I.getIntrinsicID() == Intrinsic::vector_splice_left;
12891 uint64_t Idx = IsLeft ?
Imm : NumElts -
Imm;
12894 SmallVector<int, 8>
Mask;
12895 for (
unsigned i = 0; i < NumElts; ++i)
12896 Mask.push_back(Idx + i);
12924 assert(
MI->getOpcode() == TargetOpcode::COPY &&
12925 "start of copy chain MUST be COPY");
12926 Reg =
MI->getOperand(1).getReg();
12929 assert(
Reg.isVirtual() &&
"expected COPY of virtual register");
12930 MI =
MRI.def_begin(
Reg)->getParent();
12933 if (
MI->getOpcode() == TargetOpcode::COPY) {
12934 assert(
Reg.isVirtual() &&
"expected COPY of virtual register");
12935 Reg =
MI->getOperand(1).getReg();
12936 assert(
Reg.isPhysical() &&
"expected COPY of physical register");
12939 assert(
MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12940 "end of copy chain MUST be INLINEASM_BR");
12950void SelectionDAGBuilder::visitCallBrLandingPad(
const CallInst &
I) {
12956 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12957 const TargetRegisterInfo *
TRI =
DAG.getSubtarget().getRegisterInfo();
12958 MachineRegisterInfo &
MRI =
DAG.getMachineFunction().getRegInfo();
12966 for (
auto &
T : TargetConstraints) {
12967 SDISelAsmOperandInfo OpInfo(
T);
12975 switch (OpInfo.ConstraintType) {
12986 FuncInfo.MBB->addLiveIn(OriginalDef);
12994 ResultVTs.
push_back(OpInfo.ConstraintVT);
13003 ResultVTs.
push_back(OpInfo.ConstraintVT);
13011 DAG.getVTList(ResultVTs), ResultValues);
unsigned const MachineRegisterInfo * MRI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
static Value * getCondition(Instruction *I)
const HexagonInstrInfo * TII
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void getRegistersForValue(MachineFunction &MF, MachineIRBuilder &MIRBuilder, GISelAsmOperandInfo &OpInfo, GISelAsmOperandInfo &RefOpInfo)
Assign virtual/physical registers for the specified register operand.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static const Function * getCalledFunction(const Value *V)
This file provides utility analysis objects describing memory locations.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static bool hasOnlySelectUsers(const Value *Cond)
static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain)
Create a LOAD_STACK_GUARD node, and let it carry the target specific global variable if there exists ...
static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize)
static void failForInvalidBundles(const CallBase &I, StringRef Name, ArrayRef< uint32_t > AllowedBundles)
static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl< SDValue > &Ops, SelectionDAGBuilder &Builder)
Add a stack map intrinsic call's live variable operands to a stackmap or patchpoint target node's ope...
static const unsigned MaxParallelChains
static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
visitPow - Lower a pow intrinsic.
static const CallBase * FindPreallocatedCall(const Value *PreallocatedSetup)
Given a @llvm.call.preallocated.setup, return the corresponding preallocated call.
static cl::opt< unsigned > SwitchPeelThreshold("switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization"))
static cl::opt< bool > InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden)
static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin)
static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, DILocalVariable *Variable, DebugLoc DL, unsigned Order, SmallVectorImpl< Value * > &Values, DIExpression *Expression)
static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector< SDValue > &AsmNodeOperands)
static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG)
Make sure that the output operand OpInfo and its corresponding input operand MatchingOpInfo have comp...
static void findUnwindDestinations(FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl< std::pair< MachineBasicBlock *, BranchProbability > > &UnwindDests)
When an invoke or a cleanupret unwinds to the next EH pad, there are many places it could ultimately ...
static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic)
static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb)
static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp2 - Lower an exp2 intrinsic.
static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl)
getF32Constant - Get 32-bit floating point constant.
static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT)
static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog10 - Lower a log10 intrinsic.
DenseMap< const Argument *, std::pair< const AllocaInst *, const StoreInst * > > ArgCopyElisionMapTy
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv)
getCopyToPartsVector - Create a series of nodes that contain the specified value split into legal par...
static void getUnderlyingArgRegs(SmallVectorImpl< std::pair< Register, TypeSize > > &Regs, const SDValue &N)
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv=std::nullopt, ISD::NodeType ExtendKind=ISD::ANY_EXTEND)
getCopyToParts - Create a series of nodes that contain the specified value split into legal parts.
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder)
static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog2 - Lower a log2 intrinsic.
static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG)
Get a direct memory input to behave well as an indirect operand.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel)
isOnlyUsedInEntryBlock - If the specified argument is only used in the entry block,...
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg)
static bool collectInstructionDeps(SmallMapVector< const Instruction *, bool, 8 > *Deps, const Value *V, SmallMapVector< const Instruction *, bool, 8 > *Necessary=nullptr, unsigned Depth=0)
static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates)
Scan the entry block of the function in FuncInfo for arguments that look like copies into a local all...
static bool isFunction(SDValue Op)
static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl)
GetExponent - Get the exponent:
static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg)
static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG)
ExpandPowI - Expand a llvm.powi intrinsic.
static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog - Lower a log intrinsic.
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC=std::nullopt, std::optional< ISD::NodeType > AssertOp=std::nullopt)
getCopyFromParts - Create a value that contains the specified legal parts combined into the value the...
static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG)
static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl)
GetSignificand - Get the significand and build it into a floating-point number with exponent of 1:
static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp - Lower an exp intrinsic.
static const MDNode * getRangeMetadata(const Instruction &I)
static cl::opt< unsigned, true > LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0))
static void tryToElideArgumentCopy(FunctionLoweringInfo &FuncInfo, SmallVectorImpl< SDValue > &Chains, DenseMap< int, int > &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl< const Instruction * > &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, ArrayRef< SDValue > ArgVals, bool &ArgHasUses)
Try to elide argument copies from memory into a local alloca.
static unsigned LimitFloatPrecision
LimitFloatPrecision - Generate low-precision inline sequences for some float libcalls (6,...
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC)
getCopyFromPartsVector - Create a value that contains the specified legal parts combined into the val...
static bool InBlock(const Value *V, const BasicBlock *BB)
static FPClassTest getNoFPClass(const Instruction &I)
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const uint8_t *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
This file defines the SmallPtrSet class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
uint16_t RegSizeInBits(const MCRegisterInfo &MRI, MCRegister RegNo)
static const fltSemantics & IEEEsingle()
Class for arbitrary precision integers.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
This class represents an incoming formal argument to a Function.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
This class holds the attributes for a particular argument, parameter, function, or return value.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
This class represents a no-op cast from one type to another.
The address of a basic block.
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
static uint32_t getDenominator()
static BranchProbability getOne()
static BranchProbability getUnknown()
uint32_t getNumerator() const
LLVM_ABI uint64_t scale(uint64_t Num) const
Scale a large integer.
BranchProbability getCompl() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
A constant value that is initialized with an expression using other constant values.
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
A signed pointer, in the ptrauth sense.
uint64_t getZExtValue() const
Constant Vector Declarations.
This is an important base class in LLVM.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B)
Check if fragments overlap between a pair of FragmentInfos.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Base class for variables.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
A parsed version of the target data layout string in and methods for querying it.
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
DILocalVariable * getVariable() const
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
LLVM_ABI DILocation * getInlinedAt() const
iterator find(const_arg_type_t< KeyT > Val)
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Diagnostic information for inline asm reporting.
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
Lightweight error class with error context and mandatory checking.
Class representing an expression and its matching format.
This instruction compares its operands according to the predicate given to the constructor.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
bool allowReassoc() const
Flag queries.
An instruction for ordering other memory operations.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
MachineBasicBlock * getMBB(const BasicBlock *BB) const
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
const LiveOutInfo * GetLiveOutRegInfo(Register Reg)
GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the register is a PHI destinat...
MachineBasicBlock * MBB
MBB - The current block.
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Type * getReturnType() const
Data structure describing the variable locations in a function.
const BasicBlock & getEntryBlock() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
check if an attributes is in the list of attributes.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Constant * getPersonalityFn() const
Get the personality function associated with this function.
AttributeList getAttributes() const
Return the attribute list for this Function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Garbage collection metadata for a single function.
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a struct field of array element value into an aggregate value.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
@ MIN_INT_BITS
Minimum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
@ OB_clang_arc_attachedcall
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
A helper class to return the specified delimiter string after the first invocation of operator String...
An instruction for reading from memory.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
LLVM_ABI MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
LLVM_ABI MCSymbol * getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx)
Gets a symbol that will be defined to the final stack offset of a local variable after codegen.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool bitsGE(MVT VT) const
Return true if this has no less bits than VT.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
succ_iterator succ_begin()
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void setIsEHContTarget(bool V=true)
Indicates if this is a target of Windows EH Continuation Guard.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHScopeEntry(bool V=true)
Indicates if this is the entry block of an EH scope, i.e., the block that that used to have a catchpa...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable)
Marks the immutability of an object.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
int getStackProtectorIndex() const
Return the index for the stack protector object.
void setStackProtectorIndex(int I)
void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased)
Set "maybe pointed to by an LLVM IR value" for an object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
void setFunctionContextIndex(int I)
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site)
Map the begin label for a call site.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD)
Record annotations associated with a particular label.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
bool hasEHFunclets() const
void setHasEHContTarget(bool V)
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const
getLiveInPhysReg - If VReg is a live-in virtual register, return the corresponding live-in physical r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
bool contains(const KeyT &Key) const
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
A Module instance is used to store all the information related to an LLVM module.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Holds the information from a dbg_label node through SDISel.
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
DenseMap< const Constant *, Register > ConstantsOut
void addDanglingDebugInfo(SmallVectorImpl< Value * > &Values, DILocalVariable *Var, DIExpression *Expr, bool IsVariadic, DebugLoc DL, unsigned Order)
Register a dbg_value which relies on a Value which we have not yet seen.
void visitDbgInfo(const Instruction &I)
void clearDanglingDebugInfo()
Clear the dangling debug information map.
void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall, bool IsMustTailCall, const BasicBlock *EHPadBB=nullptr, const TargetLowering::PtrAuthInfo *PAI=nullptr)
void clear()
Clear out the current SelectionDAG and the associated state and prepare this SelectionDAGBuilder obje...
void visitBitTestHeader(SwitchCG::BitTestBlock &B, MachineBasicBlock *SwitchBB)
visitBitTestHeader - This function emits necessary code to produce value suitable for "bit tests"
void LowerStatepoint(const GCStatepointInst &I, const BasicBlock *EHPadBB=nullptr)
std::unique_ptr< SDAGSwitchLowering > SL
SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op)
bool HasTailCall
This is set to true if a call in the current block has been translated as a tail call.
bool ShouldEmitAsBranches(const std::vector< SwitchCG::CaseBlock > &Cases)
If the set of cases should be emitted as a series of branches, return true.
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
EmitBranchForMergedCondition - Helper method for FindMergedConditions.
void LowerDeoptimizeCall(const CallInst *CI)
void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB)
SwiftErrorValueTracking & SwiftError
Information about the swifterror values used throughout the function.
SDValue getNonRegisterValue(const Value *V)
getNonRegisterValue - Return an SDValue for the given Value, but don't look in FuncInfo....
const TargetTransformInfo * TTI
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
Map a landing pad to the call site indexes.
SDValue lowerNoFPClassToAssertNoFPClass(SelectionDAG &DAG, const Instruction &I, SDValue Op)
void handleDebugDeclare(Value *Address, DILocalVariable *Variable, DIExpression *Expression, DebugLoc DL)
bool shouldKeepJumpConditionsTogether(const FunctionLoweringInfo &FuncInfo, const BranchInst &I, Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, TargetLoweringBase::CondMergingParams Params) const
StatepointLoweringState StatepointLowering
State used while lowering a statepoint sequence (gc_statepoint, gc_relocate, and gc_result).
void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, BranchProbability BranchProbToNext, Register Reg, SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
bool canTailCall(const CallBase &CB) const
void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, AttributeSet RetAttrs, bool IsPatchPoint)
Populate a CallLowerinInfo (into CLI) based on the properties of the call being lowered.
void CopyValueToVirtualRegister(const Value *V, Register Reg, ISD::NodeType ExtendType=ISD::ANY_EXTEND)
void salvageUnresolvedDbgValue(const Value *V, DanglingDebugInfo &DDI)
For the given dangling debuginfo record, perform last-ditch efforts to resolve the debuginfo to somet...
SmallVector< SDValue, 8 > PendingLoads
Loads are not emitted to the program immediately.
GCFunctionInfo * GFI
Garbage collection metadata for the function.
void init(GCFunctionInfo *gfi, BatchAAResults *BatchAA, AssumptionCache *AC, const TargetLibraryInfo *li, const TargetTransformInfo &TTI)
SDValue getRoot()
Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) items.
void ExportFromCurrentBlock(const Value *V)
ExportFromCurrentBlock - If this condition isn't known to be exported from the current basic block,...
DebugLoc getCurDebugLoc() const
void resolveOrClearDbgInfo()
Evict any dangling debug information, attempting to salvage it first.
std::pair< SDValue, SDValue > lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB=nullptr)
SDValue getMemoryRoot()
Return the current virtual root of the Selection DAG, flushing any PendingLoad items.
void resolveDanglingDebugInfo(const Value *V, SDValue Val)
If we saw an earlier dbg_value referring to V, generate the debug data structures now that we've seen...
SDLoc getCurSDLoc() const
void visit(const Instruction &I)
void dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr)
If we have dangling debug info that describes Variable, or an overlapping part of variable considerin...
SDValue getCopyFromRegs(const Value *V, Type *Ty)
If there was virtual register allocated for the value V emit CopyFromReg of the specified type Ty.
void CopyToExportRegsIfNeeded(const Value *V)
CopyToExportRegsIfNeeded - If the given value has virtual registers created for it,...
void handleKillDebugValue(DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order)
Create a record for a kill location debug intrinsic.
void visitJumpTable(SwitchCG::JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
SDValue getFPOperationRoot(fp::ExceptionBehavior EB)
Return the current virtual root of the Selection DAG, flushing PendingConstrainedFP or PendingConstra...
void visitJumpTableHeader(SwitchCG::JumpTable &JT, SwitchCG::JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
visitJumpTableHeader - This function emits necessary code to produce index in the JumpTable from swit...
void LowerCallSiteWithPtrAuthBundle(const CallBase &CB, const BasicBlock *EHPadBB)
static const unsigned LowestSDNodeOrder
Lowest valid SDNodeOrder.
void LowerDeoptimizingReturn()
FunctionLoweringInfo & FuncInfo
Information about the function as a whole.
void setValue(const Value *V, SDValue NewN)
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
const TargetLibraryInfo * LibInfo
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
Codegen a new tail for a stack protector check ParentMBB which has had its tail spliced into a stack ...
bool handleDebugValue(ArrayRef< const Value * > Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order, bool IsVariadic)
For a given list of Values, attempt to create and record a SDDbgValue in the SelectionDAG.
SDValue getControlRoot()
Similar to getRoot, but instead of flushing all the PendingLoad items, flush all the PendingExports (...
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
When an MBB was split during scheduling, update the references that need to refer to the last resulti...
SDValue getValueImpl(const Value *V)
getValueImpl - Helper function for getValue and getNonRegisterValue.
void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB)
visitSwitchCase - Emits the necessary code to represent a single node in the binary search tree resul...
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
Codegen the failure basic block for a stack protector check.
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
const TargetLowering * TLI
MachineRegisterInfo * RegInfo
std::unique_ptr< SwiftErrorValueTracking > SwiftError
virtual void emitFunctionEntryCode()
std::unique_ptr< SelectionDAGBuilder > SDB
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrnlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, const CallInst *CI) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrstr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, const CallInst *CI) const
Emit target-specific code that performs a strstr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemchr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Src, SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const
Emit target-specific code that performs a memchr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, SDValue Op3, const CallInst *CI) const
Emit target-specific code that performs a memcmp/bcmp, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, MachinePointerInfo Op1PtrInfo, MachinePointerInfo Op2PtrInfo) const
Emit target-specific code that performs a strcmp, in cases where that is faster than a libcall.
virtual SDValue EmitTargetCodeForSetTag(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Addr, SDValue Size, MachinePointerInfo DstPtrInfo, bool ZeroData) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcpy(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, bool isStpcpy, const CallInst *CI) const
Emit target-specific code that performs a strcpy or stpcpy, in cases where that is faster than a libc...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void swap(SmallVectorImpl &RHS)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
MachineBasicBlock * getParentMBB()
bool shouldEmitFunctionBasedCheckStackProtector() const
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Provides information about what library functions are available for the current target.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallBase &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
std::vector< ArgListEntry > ArgListTy
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
unsigned getID() const
Return the register class ID number.
const MCPhysReg * iterator
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
bool isVoidTy() const
Return true if this is 'void'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM_ABI CmpInst::Predicate getPredicate() const
This is the common base class for vector predication intrinsics.
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM_ABI MaybeAlign getPointerAlignment() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ CONVERGENCECTRL_ANCHOR
The llvm.experimental.convergence.* intrinsics.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SET_FPENV
Sets the current floating-point environment.
@ LOOP_DEPENDENCE_RAW_MASK
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ STACKADDRESS
STACKADDRESS - Represents the llvm.stackaddress intrinsic.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ RESET_FPENV
Set floating-point environment to default state.
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ VECTOR_FIND_LAST_ACTIVE
Finds the index of the last active mask element Operands: Mask.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
@ FAKE_USE
FAKE_USE represents a use of the operand but does not do anything.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ CLMUL
Carry-less multiplication operations.
@ INIT_TRAMPOLINE
INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
@ ANNOTATION_LABEL
ANNOTATION_LABEL - Represents a mid basic block label used by annotations.
@ SET_ROUNDING
Set rounding mode.
@ CONVERGENCECTRL_GLUE
This does not correspond to any convergence control intrinsic.
@ SIGN_EXTEND
Conversion operators.
@ PREALLOCATED_SETUP
PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE with the preallocated call Va...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
@ BR
Control flow instructions. These all have token chains.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SSUBO
Same for subtraction.
@ PREALLOCATED_ARG
PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE with the preallocated call Value,...
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ GET_ACTIVE_LANE_MASK
GET_ACTIVE_LANE_MASK - this corrosponds to the llvm.get.active.lane.mask intrinsic.
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ ARITH_FENCE
ARITH_FENCE - This corresponds to a arithmetic fence intrinsic.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ CLEANUPRET
CLEANUPRET - Represents a return from a cleanup block funclet.
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ PtrAuthGlobalAddress
A ptrauth constant.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ VSCALE
VSCALE(IMM) - Returns the runtime scaling factor used to calculate the number of elements within a sc...
@ LOCAL_RECOVER
LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ PATCHPOINT
The llvm.experimental.patchpoint.
@ SMULO
Same for multiplication.
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VECTOR_REVERSE
VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled us...
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ PCMARKER
PCMARKER - This corresponds to the pcmarker intrinsic.
@ INLINEASM_BR
INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ RELOC_NONE
Issue a no-op relocation against a given symbol at the current location.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
@ STRICT_FADD
Constrained versions of the binary floating point operators.
@ STACKMAP
The llvm.experimental.stackmap intrinsic.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ INLINEASM
INLINEASM - Represents an inline asm block.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ BRCOND
BRCOND - Conditional branch.
@ CATCHRET
CATCHRET - Represents a return from a catch block funclet.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ADJUST_TRAMPOLINE
ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
@ LOOP_DEPENDENCE_WAR_MASK
The llvm.loop.dependence.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
std::pair< JumpTableHeader, JumpTable > JumpTableBlock
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
ExceptionBehavior
Exception behavior used for floating point operations.
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebMayTrap
This corresponds to "fpexcept.maytrap".
@ ebIgnore
This corresponds to "fpexcept.ignore".
NodeAddr< FuncNode * > Func
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
auto cast_or_null(const Y &Val)
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
gep_type_iterator gep_type_end(const User *GEP)
constexpr auto equal_to(T &&Arg)
Functor variant of std::equal_to that can be used as a UnaryPredicate in functional algorithms like a...
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
void sort(IteratorTy Start, IteratorTy End)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
auto succ_size(const MachineBasicBlock *BB)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats, return the equivalent code if w...
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
uint64_t getScalarStoreSize() const
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isRISCVVectorTuple() const
Return true if this is a vector value type.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
EVT changeElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInteger() const
Return true if this is an integer or a vector integer type.
void setPointerAddrSpace(unsigned AS)
void setOrigAlign(Align A)
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A lightweight accessor for an operand bundle meant to be passed around by value.
This struct represents the registers (physical or virtual) that a particular set of values is assigne...
SmallVector< std::pair< Register, TypeSize >, 4 > getRegsAndSizes() const
Return a list of registers and their sizes.
SmallVector< unsigned, 4 > RegCount
This list holds the number of registers for each value.
bool isABIMangled() const
SmallVector< EVT, 4 > ValueVTs
The value types of the values, which may not be legal, and may need be promoted or synthesized from o...
SmallVector< Register, 4 > Regs
This list holds the registers assigned to the values.
void AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector< SDValue > &Ops) const
Add this value to the specified inlineasm node operand list.
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr) const
Emit a series of CopyFromReg nodes that copies from this value and returns the result as a ValueVTs v...
SmallVector< MVT, 4 > RegVTs
The value types of the registers.
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr, ISD::NodeType PreferredExtendType=ISD::ANY_EXTEND) const
Emit a series of CopyToReg nodes that copies the specified value into the registers specified by this...
std::optional< CallingConv::ID > CallConv
Records if this value needs to be treated in an ABI dependant manner, different to normal type legali...
bool occupiesMultipleRegs() const
Check if the total RegCount is greater than one.
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setUnpredictable(bool b)
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
A MapVector that performs no allocations if smaller than a certain size.
MachineBasicBlock * Default
BranchProbability DefaultProb
MachineBasicBlock * Parent
bool FallthroughUnreachable
MachineBasicBlock * ThisBB
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
BranchProbability TrueProb
BranchProbability FalseProb
MachineBasicBlock * TrueBB
MachineBasicBlock * FalseBB
SDLoc DL
The debug location of the instruction this CaseBlock was produced from.
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob)
Register Reg
The virtual register containing the index of the jump table entry to jump to.
MachineBasicBlock * Default
The MBB of the default bb, which is a successor of the range check MBB.
unsigned JTI
The JumpTableIndex for this jump table in the function.
MachineBasicBlock * MBB
The MBB into which to emit the code for the indirect jump.
std::optional< SDLoc > SL
The debug location of the instruction this JumpTable was produced from.
This contains information for each constraint that we are lowering.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setDeactivationSymbol(GlobalValue *Sym)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
SmallVector< ISD::InputArg, 32 > Ins
bool IsPostTypeLegalization
SmallVector< SDValue, 4 > InVals
Type * OrigRetTy
Original unlegalized return type.
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setDiscardResult(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)