LLVM 23.0.0git
SelectionDAGBuilder.cpp
Go to the documentation of this file.
1//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements routines for translating from LLVM IR into SelectionDAG IR.
10//
11//===----------------------------------------------------------------------===//
12
13#include "SelectionDAGBuilder.h"
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/Twine.h"
26#include "llvm/Analysis/Loads.h"
58#include "llvm/IR/Argument.h"
59#include "llvm/IR/Attributes.h"
60#include "llvm/IR/BasicBlock.h"
61#include "llvm/IR/CFG.h"
62#include "llvm/IR/CallingConv.h"
63#include "llvm/IR/Constant.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfo.h"
72#include "llvm/IR/Function.h"
74#include "llvm/IR/InlineAsm.h"
75#include "llvm/IR/InstrTypes.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/IntrinsicsAArch64.h"
80#include "llvm/IR/IntrinsicsAMDGPU.h"
81#include "llvm/IR/IntrinsicsWebAssembly.h"
82#include "llvm/IR/LLVMContext.h"
84#include "llvm/IR/Metadata.h"
85#include "llvm/IR/Module.h"
86#include "llvm/IR/Operator.h"
88#include "llvm/IR/Statepoint.h"
89#include "llvm/IR/Type.h"
90#include "llvm/IR/User.h"
91#include "llvm/IR/Value.h"
92#include "llvm/MC/MCContext.h"
97#include "llvm/Support/Debug.h"
105#include <cstddef>
106#include <limits>
107#include <optional>
108#include <tuple>
109
110using namespace llvm;
111using namespace PatternMatch;
112using namespace SwitchCG;
113
114#define DEBUG_TYPE "isel"
115
116/// LimitFloatPrecision - Generate low-precision inline sequences for
117/// some float libcalls (6, 8 or 12 bits).
118static unsigned LimitFloatPrecision;
119
120static cl::opt<bool>
121 InsertAssertAlign("insert-assert-align", cl::init(true),
122 cl::desc("Insert the experimental `assertalign` node."),
124
126 LimitFPPrecision("limit-float-precision",
127 cl::desc("Generate low-precision inline sequences "
128 "for some float libcalls"),
130 cl::init(0));
131
133 "switch-peel-threshold", cl::Hidden, cl::init(66),
134 cl::desc("Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
136 "optimization"));
137
138// Limit the width of DAG chains. This is important in general to prevent
139// DAG-based analysis from blowing up. For example, alias analysis and
140// load clustering may not complete in reasonable time. It is difficult to
141// recognize and avoid this situation within each individual analysis, and
142// future analyses are likely to have the same behavior. Limiting DAG width is
143// the safe approach and will be especially important with global DAGs.
144//
145// MaxParallelChains default is arbitrarily high to avoid affecting
146// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147// sequence over this should have been converted to llvm.memcpy by the
148// frontend. It is easy to induce this behavior with .ll code such as:
149// %buffer = alloca [4096 x i8]
150// %data = load [4096 x i8]* %argPtr
151// store [4096 x i8] %data, [4096 x i8]* %buffer
152static const unsigned MaxParallelChains = 64;
153
155 const SDValue *Parts, unsigned NumParts,
156 MVT PartVT, EVT ValueVT, const Value *V,
157 SDValue InChain,
158 std::optional<CallingConv::ID> CC);
159
160/// getCopyFromParts - Create a value that contains the specified legal parts
161/// combined into the value they represent. If the parts combine to a type
162/// larger than ValueVT then AssertOp can be used to specify whether the extra
163/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
164/// (ISD::AssertSext).
165static SDValue
166getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
167 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
168 SDValue InChain,
169 std::optional<CallingConv::ID> CC = std::nullopt,
170 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
171 // Let the target assemble the parts if it wants to
172 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
173 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
174 PartVT, ValueVT, CC))
175 return Val;
176
177 if (ValueVT.isVector())
178 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
179 InChain, CC);
180
181 assert(NumParts > 0 && "No parts to assemble!");
182 SDValue Val = Parts[0];
183
184 if (NumParts > 1) {
185 // Assemble the value from multiple parts.
186 if (ValueVT.isInteger()) {
187 unsigned PartBits = PartVT.getSizeInBits();
188 unsigned ValueBits = ValueVT.getSizeInBits();
189
190 // Assemble the power of 2 part.
191 unsigned RoundParts = llvm::bit_floor(NumParts);
192 unsigned RoundBits = PartBits * RoundParts;
193 EVT RoundVT = RoundBits == ValueBits ?
194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
195 SDValue Lo, Hi;
196
197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198
199 if (RoundParts > 2) {
200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V,
201 InChain);
202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2,
203 PartVT, HalfVT, V, InChain);
204 } else {
205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
207 }
208
209 if (DAG.getDataLayout().isBigEndian())
210 std::swap(Lo, Hi);
211
212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213
214 if (RoundParts < NumParts) {
215 // Assemble the trailing non-power-of-2 part.
216 unsigned OddParts = NumParts - RoundParts;
217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
219 OddVT, V, InChain, CC);
220
221 // Combine the round and odd parts.
222 Lo = Val;
223 if (DAG.getDataLayout().isBigEndian())
224 std::swap(Lo, Hi);
225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
227 Hi = DAG.getNode(
228 ISD::SHL, DL, TotalVT, Hi,
229 DAG.getShiftAmountConstant(Lo.getValueSizeInBits(), TotalVT, DL));
230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
232 }
233 } else if (PartVT.isFloatingPoint()) {
234 // FP split into multiple FP parts (for ppcf128)
235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236 "Unexpected split");
237 SDValue Lo, Hi;
238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241 std::swap(Lo, Hi);
242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243 } else {
244 // FP split into integer parts (soft fp)
245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246 !PartVT.isVector() && "Unexpected split");
247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V,
249 InChain, CC);
250 }
251 }
252
253 // There is now one part, held in Val. Correct it to match ValueVT.
254 // PartEVT is the type of the register class that holds the value.
255 // ValueVT is the type of the inline asm operation.
256 EVT PartEVT = Val.getValueType();
257
258 if (PartEVT == ValueVT)
259 return Val;
260
261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262 ValueVT.bitsLT(PartEVT)) {
263 // For an FP value in an integer part, we need to truncate to the right
264 // width first.
265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267 }
268
269 // Handle types that have the same size.
270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272
273 // Handle types with different sizes.
274 if (PartEVT.isInteger() && ValueVT.isInteger()) {
275 if (ValueVT.bitsLT(PartEVT)) {
276 // For a truncate, see if we have any information to
277 // indicate whether the truncated bits will always be
278 // zero or sign-extension.
279 if (AssertOp)
280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281 DAG.getValueType(ValueVT));
282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283 }
284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285 }
286
287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288 // FP_ROUND's are always exact here.
289 if (ValueVT.bitsLT(Val.getValueType())) {
290
291 SDValue NoChange =
293
294 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr(
295 llvm::Attribute::StrictFP)) {
296 return DAG.getNode(ISD::STRICT_FP_ROUND, DL,
297 DAG.getVTList(ValueVT, MVT::Other), InChain, Val,
298 NoChange);
299 }
300
301 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange);
302 }
303
304 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
305 }
306
307 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
308 // then truncating.
309 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
310 ValueVT.bitsLT(PartEVT)) {
311 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313 }
314
315 report_fatal_error("Unknown mismatch in getCopyFromParts!");
316}
317
319 const Twine &ErrMsg) {
321 if (!I)
322 return Ctx.emitError(ErrMsg);
323
324 if (const CallInst *CI = dyn_cast<CallInst>(I))
325 if (CI->isInlineAsm()) {
326 return Ctx.diagnose(DiagnosticInfoInlineAsm(
327 *CI, ErrMsg + ", possible invalid constraint for vector type"));
328 }
329
330 return Ctx.emitError(I, ErrMsg);
331}
332
333/// getCopyFromPartsVector - Create a value that contains the specified legal
334/// parts combined into the value they represent. If the parts combine to a
335/// type larger than ValueVT then AssertOp can be used to specify whether the
336/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
337/// ValueVT (ISD::AssertSext).
339 const SDValue *Parts, unsigned NumParts,
340 MVT PartVT, EVT ValueVT, const Value *V,
341 SDValue InChain,
342 std::optional<CallingConv::ID> CallConv) {
343 assert(ValueVT.isVector() && "Not a vector value");
344 assert(NumParts > 0 && "No parts to assemble!");
345 const bool IsABIRegCopy = CallConv.has_value();
346
347 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
348 SDValue Val = Parts[0];
349
350 // Handle a multi-element vector.
351 if (NumParts > 1) {
352 EVT IntermediateVT;
353 MVT RegisterVT;
354 unsigned NumIntermediates;
355 unsigned NumRegs;
356
357 if (IsABIRegCopy) {
359 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
360 NumIntermediates, RegisterVT);
361 } else {
362 NumRegs =
363 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
364 NumIntermediates, RegisterVT);
365 }
366
367 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
368 NumParts = NumRegs; // Silence a compiler warning.
369 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
370 assert(RegisterVT.getSizeInBits() ==
371 Parts[0].getSimpleValueType().getSizeInBits() &&
372 "Part type sizes don't match!");
373
374 // Assemble the parts into intermediate operands.
375 SmallVector<SDValue, 8> Ops(NumIntermediates);
376 if (NumIntermediates == NumParts) {
377 // If the register was not expanded, truncate or copy the value,
378 // as appropriate.
379 for (unsigned i = 0; i != NumParts; ++i)
380 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT,
381 V, InChain, CallConv);
382 } else if (NumParts > 0) {
383 // If the intermediate type was expanded, build the intermediate
384 // operands from the parts.
385 assert(NumParts % NumIntermediates == 0 &&
386 "Must expand into a divisible number of parts!");
387 unsigned Factor = NumParts / NumIntermediates;
388 for (unsigned i = 0; i != NumIntermediates; ++i)
389 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT,
390 IntermediateVT, V, InChain, CallConv);
391 }
392
393 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
394 // intermediate operands.
395 EVT BuiltVectorTy =
396 IntermediateVT.isVector()
398 *DAG.getContext(), IntermediateVT.getScalarType(),
399 IntermediateVT.getVectorElementCount() * NumParts)
401 IntermediateVT.getScalarType(),
402 NumIntermediates);
403 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
405 DL, BuiltVectorTy, Ops);
406 }
407
408 // There is now one part, held in Val. Correct it to match ValueVT.
409 EVT PartEVT = Val.getValueType();
410
411 if (PartEVT == ValueVT)
412 return Val;
413
414 if (PartEVT.isVector()) {
415 // Vector/Vector bitcast.
416 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
417 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
418
419 // If the parts vector has more elements than the value vector, then we
420 // have a vector widening case (e.g. <2 x float> -> <4 x float>).
421 // Extract the elements we want.
422 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
425 (PartEVT.getVectorElementCount().isScalable() ==
426 ValueVT.getVectorElementCount().isScalable()) &&
427 "Cannot narrow, it would be a lossy transformation");
428 PartEVT =
430 ValueVT.getVectorElementCount());
431 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
432 DAG.getVectorIdxConstant(0, DL));
433 if (PartEVT == ValueVT)
434 return Val;
435 if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
436 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437
438 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441 }
442
443 // Promoted vector extract
444 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
445 }
446
447 // Trivial bitcast if the types are the same size and the destination
448 // vector type is legal.
449 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
450 TLI.isTypeLegal(ValueVT))
451 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452
453 if (ValueVT.getVectorNumElements() != 1) {
454 // Certain ABIs require that vectors are passed as integers. For vectors
455 // are the same size, this is an obvious bitcast.
456 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 } else if (ValueVT.bitsLT(PartEVT)) {
459 const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
460 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
461 // Drop the extra bits.
462 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463 return DAG.getBitcast(ValueVT, Val);
464 }
465
467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468 return DAG.getUNDEF(ValueVT);
469 }
470
471 // Handle cases such as i8 -> <1 x i1>
472 EVT ValueSVT = ValueVT.getVectorElementType();
473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
474 unsigned ValueSize = ValueSVT.getSizeInBits();
475 if (ValueSize == PartEVT.getSizeInBits()) {
476 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
477 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
478 // It's possible a scalar floating point type gets softened to integer and
479 // then promoted to a larger integer. If PartEVT is the larger integer
480 // we need to truncate it and then bitcast to the FP type.
481 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
482 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
483 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
484 Val = DAG.getBitcast(ValueSVT, Val);
485 } else {
486 Val = ValueVT.isFloatingPoint()
487 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
488 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
489 }
490 }
491
492 return DAG.getBuildVector(ValueVT, DL, Val);
493}
494
495static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
496 SDValue Val, SDValue *Parts, unsigned NumParts,
497 MVT PartVT, const Value *V,
498 std::optional<CallingConv::ID> CallConv);
499
500/// getCopyToParts - Create a series of nodes that contain the specified value
501/// split into legal parts. If the parts contain more bits than Val, then, for
502/// integers, ExtendKind can be used to specify how to generate the extra bits.
503static void
505 unsigned NumParts, MVT PartVT, const Value *V,
506 std::optional<CallingConv::ID> CallConv = std::nullopt,
507 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
508 // Let the target split the parts if it wants to
509 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
510 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
511 CallConv))
512 return;
513 EVT ValueVT = Val.getValueType();
514
515 // Handle the vector case separately.
516 if (ValueVT.isVector())
517 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
518 CallConv);
519
520 unsigned OrigNumParts = NumParts;
522 "Copying to an illegal type!");
523
524 if (NumParts == 0)
525 return;
526
527 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
528 EVT PartEVT = PartVT;
529 if (PartEVT == ValueVT) {
530 assert(NumParts == 1 && "No-op copy with multiple parts!");
531 Parts[0] = Val;
532 return;
533 }
534
535 unsigned PartBits = PartVT.getSizeInBits();
536 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
537 // If the parts cover more bits than the value has, promote the value.
538 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
539 assert(NumParts == 1 && "Do not know what to promote to!");
540 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
541 } else {
542 if (ValueVT.isFloatingPoint()) {
543 // FP values need to be bitcast, then extended if they are being put
544 // into a larger container.
545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
546 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
547 }
548 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
549 ValueVT.isInteger() &&
550 "Unknown mismatch!");
551 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
552 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
553 if (PartVT == MVT::x86mmx)
554 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555 }
556 } else if (PartBits == ValueVT.getSizeInBits()) {
557 // Different types of the same size.
558 assert(NumParts == 1 && PartEVT != ValueVT);
559 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
561 // If the parts cover less bits than value has, truncate the value.
562 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
563 ValueVT.isInteger() &&
564 "Unknown mismatch!");
565 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
566 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
567 if (PartVT == MVT::x86mmx)
568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
569 }
570
571 // The value may have changed - recompute ValueVT.
572 ValueVT = Val.getValueType();
573 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
574 "Failed to tile the value with PartVT!");
575
576 if (NumParts == 1) {
577 if (PartEVT != ValueVT) {
579 "scalar-to-vector conversion failed");
580 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
581 }
582
583 Parts[0] = Val;
584 return;
585 }
586
587 // Expand the value into multiple parts.
588 if (NumParts & (NumParts - 1)) {
589 // The number of parts is not a power of 2. Split off and copy the tail.
590 assert(PartVT.isInteger() && ValueVT.isInteger() &&
591 "Do not know what to expand to!");
592 unsigned RoundParts = llvm::bit_floor(NumParts);
593 unsigned RoundBits = RoundParts * PartBits;
594 unsigned OddParts = NumParts - RoundParts;
595 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
596 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
597
598 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
599 CallConv);
600
601 if (DAG.getDataLayout().isBigEndian())
602 // The odd parts were reversed by getCopyToParts - unreverse them.
603 std::reverse(Parts + RoundParts, Parts + NumParts);
604
605 NumParts = RoundParts;
606 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
607 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
608 }
609
610 // The number of parts is a power of 2. Repeatedly bisect the value using
611 // EXTRACT_ELEMENT.
612 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
614 ValueVT.getSizeInBits()),
615 Val);
616
617 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618 for (unsigned i = 0; i < NumParts; i += StepSize) {
619 unsigned ThisBits = StepSize * PartBits / 2;
620 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
621 SDValue &Part0 = Parts[i];
622 SDValue &Part1 = Parts[i+StepSize/2];
623
624 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
625 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
626 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
627 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
628
629 if (ThisBits == PartBits && ThisVT != PartVT) {
630 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
631 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
632 }
633 }
634 }
635
636 if (DAG.getDataLayout().isBigEndian())
637 std::reverse(Parts, Parts + OrigNumParts);
638}
639
641 const SDLoc &DL, EVT PartVT) {
642 if (!PartVT.isVector())
643 return SDValue();
644
645 EVT ValueVT = Val.getValueType();
646 EVT PartEVT = PartVT.getVectorElementType();
647 EVT ValueEVT = ValueVT.getVectorElementType();
648 ElementCount PartNumElts = PartVT.getVectorElementCount();
649 ElementCount ValueNumElts = ValueVT.getVectorElementCount();
650
651 // We only support widening vectors with equivalent element types and
652 // fixed/scalable properties. If a target needs to widen a fixed-length type
653 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
654 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
655 PartNumElts.isScalable() != ValueNumElts.isScalable())
656 return SDValue();
657
658 // Have a try for bf16 because some targets share its ABI with fp16.
659 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661 "Cannot widen to illegal type");
662 Val = DAG.getNode(
664 ValueVT.changeVectorElementType(*DAG.getContext(), MVT::f16), Val);
665 } else if (PartEVT != ValueEVT) {
666 return SDValue();
667 }
668
669 // Widening a scalable vector to another scalable vector is done by inserting
670 // the vector into a larger undef one.
671 if (PartNumElts.isScalable())
672 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
673 Val, DAG.getVectorIdxConstant(0, DL));
674
675 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
676 // undef elements.
678 DAG.ExtractVectorElements(Val, Ops);
679 SDValue EltUndef = DAG.getUNDEF(PartEVT);
680 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
681
682 // FIXME: Use CONCAT for 2x -> 4x.
683 return DAG.getBuildVector(PartVT, DL, Ops);
684}
685
686/// getCopyToPartsVector - Create a series of nodes that contain the specified
687/// value split into legal parts.
688static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
689 SDValue Val, SDValue *Parts, unsigned NumParts,
690 MVT PartVT, const Value *V,
691 std::optional<CallingConv::ID> CallConv) {
692 EVT ValueVT = Val.getValueType();
693 assert(ValueVT.isVector() && "Not a vector");
694 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
695 const bool IsABIRegCopy = CallConv.has_value();
696
697 if (NumParts == 1) {
698 EVT PartEVT = PartVT;
699 if (PartEVT == ValueVT) {
700 // Nothing to do.
701 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
702 // Bitconvert vector->vector case.
703 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
704 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
705 Val = Widened;
706 } else if (PartVT.isVector() &&
708 ValueVT.getVectorElementType()) &&
709 PartEVT.getVectorElementCount() ==
710 ValueVT.getVectorElementCount()) {
711
712 // Promoted vector extract
713 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
714 } else if (PartEVT.isVector() &&
715 PartEVT.getVectorElementType() !=
716 ValueVT.getVectorElementType() &&
717 TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
719 // Combination of widening and promotion.
720 EVT WidenVT =
722 PartVT.getVectorElementCount());
723 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
724 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
725 } else {
726 // Don't extract an integer from a float vector. This can happen if the
727 // FP type gets softened to integer and then promoted. The promotion
728 // prevents it from being picked up by the earlier bitcast case.
729 if (ValueVT.getVectorElementCount().isScalar() &&
730 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
731 // If we reach this condition and PartVT is FP, this means that
732 // ValueVT is also FP and both have a different size, otherwise we
733 // would have bitcasted them. Producing an EXTRACT_VECTOR_ELT here
734 // would be invalid since that would mean the smaller FP type has to
735 // be extended to the larger one.
736 if (PartVT.isFloatingPoint()) {
737 Val = DAG.getBitcast(ValueVT.getScalarType(), Val);
738 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
739 } else
740 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
741 DAG.getVectorIdxConstant(0, DL));
742 } else {
743 uint64_t ValueSize = ValueVT.getFixedSizeInBits();
744 assert(PartVT.getFixedSizeInBits() > ValueSize &&
745 "lossy conversion of vector to scalar type");
746 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
747 Val = DAG.getBitcast(IntermediateType, Val);
748 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
749 }
750 }
751
752 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
753 Parts[0] = Val;
754 return;
755 }
756
757 // Handle a multi-element vector.
758 EVT IntermediateVT;
759 MVT RegisterVT;
760 unsigned NumIntermediates;
761 unsigned NumRegs;
762 if (IsABIRegCopy) {
764 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
765 RegisterVT);
766 } else {
767 NumRegs =
768 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
769 NumIntermediates, RegisterVT);
770 }
771
772 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
773 NumParts = NumRegs; // Silence a compiler warning.
774 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
775
776 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
777 "Mixing scalable and fixed vectors when copying in parts");
778
779 std::optional<ElementCount> DestEltCnt;
780
781 if (IntermediateVT.isVector())
782 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
783 else
784 DestEltCnt = ElementCount::getFixed(NumIntermediates);
785
786 EVT BuiltVectorTy = EVT::getVectorVT(
787 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
788
789 if (ValueVT == BuiltVectorTy) {
790 // Nothing to do.
791 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
792 // Bitconvert vector->vector case.
793 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
794 } else {
795 if (BuiltVectorTy.getVectorElementType().bitsGT(
796 ValueVT.getVectorElementType())) {
797 // Integer promotion.
798 ValueVT = EVT::getVectorVT(*DAG.getContext(),
799 BuiltVectorTy.getVectorElementType(),
800 ValueVT.getVectorElementCount());
801 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
802 }
803
804 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
805 Val = Widened;
806 }
807 }
808
809 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
810
811 // Split the vector into intermediate operands.
812 SmallVector<SDValue, 8> Ops(NumIntermediates);
813 for (unsigned i = 0; i != NumIntermediates; ++i) {
814 if (IntermediateVT.isVector()) {
815 // This does something sensible for scalable vectors - see the
816 // definition of EXTRACT_SUBVECTOR for further details.
817 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
818 Ops[i] =
819 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
820 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
821 } else {
822 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
823 DAG.getVectorIdxConstant(i, DL));
824 }
825 }
826
827 // Split the intermediate operands into legal parts.
828 if (NumParts == NumIntermediates) {
829 // If the register was not expanded, promote or copy the value,
830 // as appropriate.
831 for (unsigned i = 0; i != NumParts; ++i)
832 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
833 } else if (NumParts > 0) {
834 // If the intermediate type was expanded, split each the value into
835 // legal parts.
836 assert(NumIntermediates != 0 && "division by zero");
837 assert(NumParts % NumIntermediates == 0 &&
838 "Must expand into a divisible number of parts!");
839 unsigned Factor = NumParts / NumIntermediates;
840 for (unsigned i = 0; i != NumIntermediates; ++i)
841 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
842 CallConv);
843 }
844}
845
846static void failForInvalidBundles(const CallBase &I, StringRef Name,
847 ArrayRef<uint32_t> AllowedBundles) {
848 if (I.hasOperandBundlesOtherThan(AllowedBundles)) {
849 ListSeparator LS;
850 std::string Error;
852 for (unsigned i = 0, e = I.getNumOperandBundles(); i != e; ++i) {
853 OperandBundleUse U = I.getOperandBundleAt(i);
854 if (!is_contained(AllowedBundles, U.getTagID()))
855 OS << LS << U.getTagName();
856 }
858 Twine("cannot lower ", Name)
859 .concat(Twine(" with arbitrary operand bundles: ", Error)));
860 }
861}
862
864 EVT valuevt, std::optional<CallingConv::ID> CC)
865 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
866 RegCount(1, regs.size()), CallConv(CC) {}
867
869 const DataLayout &DL, Register Reg, Type *Ty,
870 std::optional<CallingConv::ID> CC) {
871 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
872
873 CallConv = CC;
874
875 for (EVT ValueVT : ValueVTs) {
876 unsigned NumRegs =
878 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
879 : TLI.getNumRegisters(Context, ValueVT);
880 MVT RegisterVT =
882 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
883 : TLI.getRegisterType(Context, ValueVT);
884 for (unsigned i = 0; i != NumRegs; ++i)
885 Regs.push_back(Reg + i);
886 RegVTs.push_back(RegisterVT);
887 RegCount.push_back(NumRegs);
888 Reg = Reg.id() + NumRegs;
889 }
890}
891
893 FunctionLoweringInfo &FuncInfo,
894 const SDLoc &dl, SDValue &Chain,
895 SDValue *Glue, const Value *V) const {
896 // A Value with type {} or [0 x %t] needs no registers.
897 if (ValueVTs.empty())
898 return SDValue();
899
900 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
901
902 // Assemble the legal parts into the final values.
903 SmallVector<SDValue, 4> Values(ValueVTs.size());
905 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
906 // Copy the legal parts from the registers.
907 EVT ValueVT = ValueVTs[Value];
908 unsigned NumRegs = RegCount[Value];
909 MVT RegisterVT = isABIMangled()
911 *DAG.getContext(), *CallConv, RegVTs[Value])
912 : RegVTs[Value];
913
914 Parts.resize(NumRegs);
915 for (unsigned i = 0; i != NumRegs; ++i) {
916 SDValue P;
917 if (!Glue) {
918 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
919 } else {
920 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
921 *Glue = P.getValue(2);
922 }
923
924 Chain = P.getValue(1);
925 Parts[i] = P;
926
927 // If the source register was virtual and if we know something about it,
928 // add an assert node.
929 if (!Regs[Part + i].isVirtual() || !RegisterVT.isInteger())
930 continue;
931
933 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
934 if (!LOI)
935 continue;
936
937 unsigned RegSize = RegisterVT.getScalarSizeInBits();
938 unsigned NumSignBits = LOI->NumSignBits;
939 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
940
941 if (NumZeroBits == RegSize) {
942 // The current value is a zero.
943 // Explicitly express that as it would be easier for
944 // optimizations to kick in.
945 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
946 continue;
947 }
948
949 // FIXME: We capture more information than the dag can represent. For
950 // now, just use the tightest assertzext/assertsext possible.
951 bool isSExt;
952 EVT FromVT(MVT::Other);
953 if (NumZeroBits) {
954 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
955 isSExt = false;
956 } else if (NumSignBits > 1) {
957 FromVT =
958 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
959 isSExt = true;
960 } else {
961 continue;
962 }
963 // Add an assertion node.
964 assert(FromVT != MVT::Other);
965 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
966 RegisterVT, P, DAG.getValueType(FromVT));
967 }
968
969 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
970 RegisterVT, ValueVT, V, Chain, CallConv);
971 Part += NumRegs;
972 Parts.clear();
973 }
974
975 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
976}
977
979 const SDLoc &dl, SDValue &Chain, SDValue *Glue,
980 const Value *V,
981 ISD::NodeType PreferredExtendType) const {
982 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
983 ISD::NodeType ExtendKind = PreferredExtendType;
984
985 // Get the list of the values's legal parts.
986 unsigned NumRegs = Regs.size();
987 SmallVector<SDValue, 8> Parts(NumRegs);
988 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
989 unsigned NumParts = RegCount[Value];
990
991 MVT RegisterVT = isABIMangled()
993 *DAG.getContext(), *CallConv, RegVTs[Value])
994 : RegVTs[Value];
995
996 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
997 ExtendKind = ISD::ZERO_EXTEND;
998
999 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
1000 NumParts, RegisterVT, V, CallConv, ExtendKind);
1001 Part += NumParts;
1002 }
1003
1004 // Copy the parts into the registers.
1005 SmallVector<SDValue, 8> Chains(NumRegs);
1006 for (unsigned i = 0; i != NumRegs; ++i) {
1007 SDValue Part;
1008 if (!Glue) {
1009 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
1010 } else {
1011 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
1012 *Glue = Part.getValue(1);
1013 }
1014
1015 Chains[i] = Part.getValue(0);
1016 }
1017
1018 if (NumRegs == 1 || Glue)
1019 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
1020 // flagged to it. That is the CopyToReg nodes and the user are considered
1021 // a single scheduling unit. If we create a TokenFactor and return it as
1022 // chain, then the TokenFactor is both a predecessor (operand) of the
1023 // user as well as a successor (the TF operands are flagged to the user).
1024 // c1, f1 = CopyToReg
1025 // c2, f2 = CopyToReg
1026 // c3 = TokenFactor c1, c2
1027 // ...
1028 // = op c3, ..., f2
1029 Chain = Chains[NumRegs-1];
1030 else
1031 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
1032}
1033
1035 unsigned MatchingIdx, const SDLoc &dl,
1036 SelectionDAG &DAG,
1037 std::vector<SDValue> &Ops) const {
1038 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1039
1040 InlineAsm::Flag Flag(Code, Regs.size());
1041 if (HasMatching)
1042 Flag.setMatchingOp(MatchingIdx);
1043 else if (!Regs.empty() && Regs.front().isVirtual()) {
1044 // Put the register class of the virtual registers in the flag word. That
1045 // way, later passes can recompute register class constraints for inline
1046 // assembly as well as normal instructions.
1047 // Don't do this for tied operands that can use the regclass information
1048 // from the def.
1050 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1051 Flag.setRegClass(RC->getID());
1052 }
1053
1054 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1055 Ops.push_back(Res);
1056
1057 if (Code == InlineAsm::Kind::Clobber) {
1058 // Clobbers should always have a 1:1 mapping with registers, and may
1059 // reference registers that have illegal (e.g. vector) types. Hence, we
1060 // shouldn't try to apply any sort of splitting logic to them.
1061 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1062 "No 1:1 mapping from clobbers to regs?");
1064 (void)SP;
1065 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1066 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1067 assert(
1068 (Regs[I] != SP ||
1070 "If we clobbered the stack pointer, MFI should know about it.");
1071 }
1072 return;
1073 }
1074
1075 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1076 MVT RegisterVT = RegVTs[Value];
1077 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1078 RegisterVT);
1079 for (unsigned i = 0; i != NumRegs; ++i) {
1080 assert(Reg < Regs.size() && "Mismatch in # registers expected");
1081 Register TheReg = Regs[Reg++];
1082 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1083 }
1084 }
1085}
1086
1090 unsigned I = 0;
1091 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1092 unsigned RegCount = std::get<0>(CountAndVT);
1093 MVT RegisterVT = std::get<1>(CountAndVT);
1094 TypeSize RegisterSize = RegisterVT.getSizeInBits();
1095 for (unsigned E = I + RegCount; I != E; ++I)
1096 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1097 }
1098 return OutVec;
1099}
1100
1102 AssumptionCache *ac, const TargetLibraryInfo *li,
1103 const TargetTransformInfo &TTI) {
1104 BatchAA = aa;
1105 AC = ac;
1106 GFI = gfi;
1107 LibInfo = li;
1108 Context = DAG.getContext();
1109 LPadToCallSiteMap.clear();
1110 this->TTI = &TTI;
1111 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1112 AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1113 *DAG.getMachineFunction().getFunction().getParent());
1114}
1115
1117 NodeMap.clear();
1118 UnusedArgNodeMap.clear();
1119 PendingLoads.clear();
1120 PendingExports.clear();
1121 PendingConstrainedFP.clear();
1122 PendingConstrainedFPStrict.clear();
1123 CurInst = nullptr;
1124 HasTailCall = false;
1125 SDNodeOrder = LowestSDNodeOrder;
1126 StatepointLowering.clear();
1127}
1128
1130 DanglingDebugInfoMap.clear();
1131}
1132
1133// Update DAG root to include dependencies on Pending chains.
1134SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1135 SDValue Root = DAG.getRoot();
1136
1137 if (Pending.empty())
1138 return Root;
1139
1140 // Add current root to PendingChains, unless we already indirectly
1141 // depend on it.
1142 if (Root.getOpcode() != ISD::EntryToken) {
1143 unsigned i = 0, e = Pending.size();
1144 for (; i != e; ++i) {
1145 assert(Pending[i].getNode()->getNumOperands() > 1);
1146 if (Pending[i].getNode()->getOperand(0) == Root)
1147 break; // Don't add the root if we already indirectly depend on it.
1148 }
1149
1150 if (i == e)
1151 Pending.push_back(Root);
1152 }
1153
1154 if (Pending.size() == 1)
1155 Root = Pending[0];
1156 else
1157 Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1158
1159 DAG.setRoot(Root);
1160 Pending.clear();
1161 return Root;
1162}
1163
1167
1169 // If the new exception behavior differs from that of the pending
1170 // ones, chain up them and update the root.
1171 switch (EB) {
1174 // Floating-point exceptions produced by such operations are not intended
1175 // to be observed, so the sequence of these operations does not need to be
1176 // preserved.
1177 //
1178 // They however must not be mixed with the instructions that have strict
1179 // exception behavior. Placing an operation with 'ebIgnore' behavior between
1180 // 'ebStrict' operations could distort the observed exception behavior.
1181 if (!PendingConstrainedFPStrict.empty()) {
1182 assert(PendingConstrainedFP.empty());
1183 updateRoot(PendingConstrainedFPStrict);
1184 }
1185 break;
1187 // Floating-point exception produced by these operations may be observed, so
1188 // they must be correctly chained. If trapping on FP exceptions is
1189 // disabled, the exceptions can be observed only by functions that read
1190 // exception flags, like 'llvm.get_fpenv' or 'fetestexcept'. It means that
1191 // the order of operations is not significant between barriers.
1192 //
1193 // If trapping is enabled, each operation becomes an implicit observation
1194 // point, so the operations must be sequenced according their original
1195 // source order.
1196 if (!PendingConstrainedFP.empty()) {
1197 assert(PendingConstrainedFPStrict.empty());
1198 updateRoot(PendingConstrainedFP);
1199 }
1200 // TODO: Add support for trapping-enabled scenarios.
1201 }
1202 return DAG.getRoot();
1203}
1204
1206 // Chain up all pending constrained intrinsics together with all
1207 // pending loads, by simply appending them to PendingLoads and
1208 // then calling getMemoryRoot().
1209 PendingLoads.reserve(PendingLoads.size() +
1210 PendingConstrainedFP.size() +
1211 PendingConstrainedFPStrict.size());
1212 PendingLoads.append(PendingConstrainedFP.begin(),
1213 PendingConstrainedFP.end());
1214 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1215 PendingConstrainedFPStrict.end());
1216 PendingConstrainedFP.clear();
1217 PendingConstrainedFPStrict.clear();
1218 return getMemoryRoot();
1219}
1220
1222 // We need to emit pending fpexcept.strict constrained intrinsics,
1223 // so append them to the PendingExports list.
1224 PendingExports.append(PendingConstrainedFPStrict.begin(),
1225 PendingConstrainedFPStrict.end());
1226 PendingConstrainedFPStrict.clear();
1227 return updateRoot(PendingExports);
1228}
1229
1231 DILocalVariable *Variable,
1233 DebugLoc DL) {
1234 assert(Variable && "Missing variable");
1235
1236 // Check if address has undef value.
1237 if (!Address || isa<UndefValue>(Address) ||
1238 (Address->use_empty() && !isa<Argument>(Address))) {
1239 LLVM_DEBUG(
1240 dbgs()
1241 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1242 return;
1243 }
1244
1245 bool IsParameter = Variable->isParameter() || isa<Argument>(Address);
1246
1247 SDValue &N = NodeMap[Address];
1248 if (!N.getNode() && isa<Argument>(Address))
1249 // Check unused arguments map.
1250 N = UnusedArgNodeMap[Address];
1251 SDDbgValue *SDV;
1252 if (N.getNode()) {
1253 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
1254 Address = BCI->getOperand(0);
1255 // Parameters are handled specially.
1256 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
1257 if (IsParameter && FINode) {
1258 // Byval parameter. We have a frame index at this point.
1259 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
1260 /*IsIndirect*/ true, DL, SDNodeOrder);
1261 } else if (isa<Argument>(Address)) {
1262 // Address is an argument, so try to emit its dbg value using
1263 // virtual register info from the FuncInfo.ValueMap.
1264 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1265 FuncArgumentDbgValueKind::Declare, N);
1266 return;
1267 } else {
1268 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
1269 true, DL, SDNodeOrder);
1270 }
1271 DAG.AddDbgValue(SDV, IsParameter);
1272 } else {
1273 // If Address is an argument then try to emit its dbg value using
1274 // virtual register info from the FuncInfo.ValueMap.
1275 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL,
1276 FuncArgumentDbgValueKind::Declare, N)) {
1277 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info"
1278 << " (could not emit func-arg dbg_value)\n");
1279 }
1280 }
1281}
1282
1284 // Add SDDbgValue nodes for any var locs here. Do so before updating
1285 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1286 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1287 // Add SDDbgValue nodes for any var locs here. Do so before updating
1288 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1289 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1290 It != End; ++It) {
1291 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1292 dropDanglingDebugInfo(Var, It->Expr);
1293 if (It->Values.isKillLocation(It->Expr)) {
1294 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1295 continue;
1296 }
1297 SmallVector<Value *> Values(It->Values.location_ops());
1298 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1299 It->Values.hasArgList())) {
1300 SmallVector<Value *, 4> Vals(It->Values.location_ops());
1302 FnVarLocs->getDILocalVariable(It->VariableID),
1303 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder);
1304 }
1305 }
1306 }
1307
1308 // We must skip DbgVariableRecords if they've already been processed above as
1309 // we have just emitted the debug values resulting from assignment tracking
1310 // analysis, making any existing DbgVariableRecords redundant (and probably
1311 // less correct). We still need to process DbgLabelRecords. This does sink
1312 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't
1313 // be important as it does so deterministcally and ordering between
1314 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR
1315 // printing).
1316 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs();
1317 // Is there is any debug-info attached to this instruction, in the form of
1318 // DbgRecord non-instruction debug-info records.
1319 for (DbgRecord &DR : I.getDbgRecordRange()) {
1320 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1321 assert(DLR->getLabel() && "Missing label");
1322 SDDbgLabel *SDV =
1323 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1324 DAG.AddDbgLabel(SDV);
1325 continue;
1326 }
1327
1328 if (SkipDbgVariableRecords)
1329 continue;
1331 DILocalVariable *Variable = DVR.getVariable();
1334
1336 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1337 continue;
1338 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR
1339 << "\n");
1341 DVR.getDebugLoc());
1342 continue;
1343 }
1344
1345 // A DbgVariableRecord with no locations is a kill location.
1347 if (Values.empty()) {
1349 SDNodeOrder);
1350 continue;
1351 }
1352
1353 // A DbgVariableRecord with an undef or absent location is also a kill
1354 // location.
1355 if (llvm::any_of(Values,
1356 [](Value *V) { return !V || isa<UndefValue>(V); })) {
1358 SDNodeOrder);
1359 continue;
1360 }
1361
1362 bool IsVariadic = DVR.hasArgList();
1363 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(),
1364 SDNodeOrder, IsVariadic)) {
1365 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic,
1366 DVR.getDebugLoc(), SDNodeOrder);
1367 }
1368 }
1369}
1370
1372 visitDbgInfo(I);
1373
1374 // Set up outgoing PHI node register values before emitting the terminator.
1375 if (I.isTerminator()) {
1376 HandlePHINodesInSuccessorBlocks(I.getParent());
1377 }
1378
1379 ++SDNodeOrder;
1380 CurInst = &I;
1381
1382 // Set inserted listener only if required.
1383 bool NodeInserted = false;
1384 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1385 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1386 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra);
1387 if (PCSectionsMD || MMRA) {
1388 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1389 DAG, [&](SDNode *) { NodeInserted = true; });
1390 }
1391
1392 visit(I.getOpcode(), I);
1393
1394 if (!I.isTerminator() && !HasTailCall &&
1395 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1397
1398 // Handle metadata.
1399 if (PCSectionsMD || MMRA) {
1400 auto It = NodeMap.find(&I);
1401 if (It != NodeMap.end()) {
1402 if (PCSectionsMD)
1403 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1404 if (MMRA)
1405 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1406 } else if (NodeInserted) {
1407 // This should not happen; if it does, don't let it go unnoticed so we can
1408 // fix it. Relevant visit*() function is probably missing a setValue().
1409 errs() << "warning: loosing !pcsections and/or !mmra metadata ["
1410 << I.getModule()->getName() << "]\n";
1411 LLVM_DEBUG(I.dump());
1412 assert(false);
1413 }
1414 }
1415
1416 CurInst = nullptr;
1417}
1418
1419void SelectionDAGBuilder::visitPHI(const PHINode &) {
1420 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1421}
1422
1423void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1424 // Note: this doesn't use InstVisitor, because it has to work with
1425 // ConstantExpr's in addition to instructions.
1426 switch (Opcode) {
1427 default: llvm_unreachable("Unknown instruction type encountered!");
1428 // Build the switch statement using the Instruction.def file.
1429#define HANDLE_INST(NUM, OPCODE, CLASS) \
1430 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1431#include "llvm/IR/Instruction.def"
1432 }
1433}
1434
1436 DILocalVariable *Variable,
1437 DebugLoc DL, unsigned Order,
1440 // For variadic dbg_values we will now insert poison.
1441 // FIXME: We can potentially recover these!
1443 for (const Value *V : Values) {
1444 auto *Poison = PoisonValue::get(V->getType());
1446 }
1447 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1448 /*IsIndirect=*/false, DL, Order,
1449 /*IsVariadic=*/true);
1450 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1451 return true;
1452}
1453
1455 DILocalVariable *Var,
1456 DIExpression *Expr,
1457 bool IsVariadic, DebugLoc DL,
1458 unsigned Order) {
1459 if (IsVariadic) {
1460 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr);
1461 return;
1462 }
1463 // TODO: Dangling debug info will eventually either be resolved or produce
1464 // a poison DBG_VALUE. However in the resolution case, a gap may appear
1465 // between the original dbg.value location and its resolved DBG_VALUE,
1466 // which we should ideally fill with an extra poison DBG_VALUE.
1467 assert(Values.size() == 1);
1468 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order);
1469}
1470
1472 const DIExpression *Expr) {
1473 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1474 DIVariable *DanglingVariable = DDI.getVariable();
1475 DIExpression *DanglingExpr = DDI.getExpression();
1476 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1477 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for "
1478 << printDDI(nullptr, DDI) << "\n");
1479 return true;
1480 }
1481 return false;
1482 };
1483
1484 for (auto &DDIMI : DanglingDebugInfoMap) {
1485 DanglingDebugInfoVector &DDIV = DDIMI.second;
1486
1487 // If debug info is to be dropped, run it through final checks to see
1488 // whether it can be salvaged.
1489 for (auto &DDI : DDIV)
1490 if (isMatchingDbgValue(DDI))
1491 salvageUnresolvedDbgValue(DDIMI.first, DDI);
1492
1493 erase_if(DDIV, isMatchingDbgValue);
1494 }
1495}
1496
1497// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1498// generate the debug data structures now that we've seen its definition.
1500 SDValue Val) {
1501 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1502 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1503 return;
1504
1505 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1506 for (auto &DDI : DDIV) {
1507 DebugLoc DL = DDI.getDebugLoc();
1508 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1509 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1510 DILocalVariable *Variable = DDI.getVariable();
1511 DIExpression *Expr = DDI.getExpression();
1512 assert(Variable->isValidLocationForIntrinsic(DL) &&
1513 "Expected inlined-at fields to agree");
1514 SDDbgValue *SDV;
1515 if (Val.getNode()) {
1516 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1517 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1518 // we couldn't resolve it directly when examining the DbgValue intrinsic
1519 // in the first place we should not be more successful here). Unless we
1520 // have some test case that prove this to be correct we should avoid
1521 // calling EmitFuncArgumentDbgValue here.
1522 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1523 FuncArgumentDbgValueKind::Value, Val)) {
1524 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for "
1525 << printDDI(V, DDI) << "\n");
1526 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1527 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1528 // inserted after the definition of Val when emitting the instructions
1529 // after ISel. An alternative could be to teach
1530 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1531 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1532 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1533 << ValSDNodeOrder << "\n");
1534 SDV = getDbgValue(Val, Variable, Expr, DL,
1535 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1536 DAG.AddDbgValue(SDV, false);
1537 } else
1538 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1539 << printDDI(V, DDI)
1540 << " in EmitFuncArgumentDbgValue\n");
1541 } else {
1542 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI)
1543 << "\n");
1544 auto Poison = PoisonValue::get(V->getType());
1545 auto SDV =
1546 DAG.getConstantDbgValue(Variable, Expr, Poison, DL, DbgSDNodeOrder);
1547 DAG.AddDbgValue(SDV, false);
1548 }
1549 }
1550 DDIV.clear();
1551}
1552
1554 DanglingDebugInfo &DDI) {
1555 // TODO: For the variadic implementation, instead of only checking the fail
1556 // state of `handleDebugValue`, we need know specifically which values were
1557 // invalid, so that we attempt to salvage only those values when processing
1558 // a DIArgList.
1559 const Value *OrigV = V;
1560 DILocalVariable *Var = DDI.getVariable();
1561 DIExpression *Expr = DDI.getExpression();
1562 DebugLoc DL = DDI.getDebugLoc();
1563 unsigned SDOrder = DDI.getSDNodeOrder();
1564
1565 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1566 // that DW_OP_stack_value is desired.
1567 bool StackValue = true;
1568
1569 // Can this Value can be encoded without any further work?
1570 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1571 return;
1572
1573 // Attempt to salvage back through as many instructions as possible. Bail if
1574 // a non-instruction is seen, such as a constant expression or global
1575 // variable. FIXME: Further work could recover those too.
1576 while (isa<Instruction>(V)) {
1577 const Instruction &VAsInst = *cast<const Instruction>(V);
1578 // Temporary "0", awaiting real implementation.
1580 SmallVector<Value *, 4> AdditionalValues;
1581 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst),
1582 Expr->getNumLocationOperands(), Ops,
1583 AdditionalValues);
1584 // If we cannot salvage any further, and haven't yet found a suitable debug
1585 // expression, bail out.
1586 if (!V)
1587 break;
1588
1589 // TODO: If AdditionalValues isn't empty, then the salvage can only be
1590 // represented with a DBG_VALUE_LIST, so we give up. When we have support
1591 // here for variadic dbg_values, remove that condition.
1592 if (!AdditionalValues.empty())
1593 break;
1594
1595 // New value and expr now represent this debuginfo.
1596 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1597
1598 // Some kind of simplification occurred: check whether the operand of the
1599 // salvaged debug expression can be encoded in this DAG.
1600 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1601 LLVM_DEBUG(
1602 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n"
1603 << *OrigV << "\nBy stripping back to:\n " << *V << "\n");
1604 return;
1605 }
1606 }
1607
1608 // This was the final opportunity to salvage this debug information, and it
1609 // couldn't be done. Place a poison DBG_VALUE at this location to terminate
1610 // any earlier variable location.
1611 assert(OrigV && "V shouldn't be null");
1612 auto *Poison = PoisonValue::get(OrigV->getType());
1613 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Poison, DL, SDNodeOrder);
1614 DAG.AddDbgValue(SDV, false);
1615 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n "
1616 << printDDI(OrigV, DDI) << "\n");
1617}
1618
1620 DIExpression *Expr,
1621 DebugLoc DbgLoc,
1622 unsigned Order) {
1626 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1627 /*IsVariadic*/ false);
1628}
1629
1631 DILocalVariable *Var,
1632 DIExpression *Expr, DebugLoc DbgLoc,
1633 unsigned Order, bool IsVariadic) {
1634 if (Values.empty())
1635 return true;
1636
1637 // Filter EntryValue locations out early.
1638 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1639 return true;
1640
1641 SmallVector<SDDbgOperand> LocationOps;
1642 SmallVector<SDNode *> Dependencies;
1643 for (const Value *V : Values) {
1644 // Constant value.
1647 LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1648 continue;
1649 }
1650
1651 // Look through IntToPtr constants.
1652 if (auto *CE = dyn_cast<ConstantExpr>(V))
1653 if (CE->getOpcode() == Instruction::IntToPtr) {
1654 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1655 continue;
1656 }
1657
1658 // If the Value is a frame index, we can create a FrameIndex debug value
1659 // without relying on the DAG at all.
1660 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1661 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1662 if (SI != FuncInfo.StaticAllocaMap.end()) {
1663 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1664 continue;
1665 }
1666 }
1667
1668 // Do not use getValue() in here; we don't want to generate code at
1669 // this point if it hasn't been done yet.
1670 SDValue N = NodeMap[V];
1671 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1672 N = UnusedArgNodeMap[V];
1673
1674 if (N.getNode()) {
1675 // Only emit func arg dbg value for non-variadic dbg.values for now.
1676 if (!IsVariadic &&
1677 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1678 FuncArgumentDbgValueKind::Value, N))
1679 return true;
1680 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1681 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1682 // describe stack slot locations.
1683 //
1684 // Consider "int x = 0; int *px = &x;". There are two kinds of
1685 // interesting debug values here after optimization:
1686 //
1687 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
1688 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1689 //
1690 // Both describe the direct values of their associated variables.
1691 Dependencies.push_back(N.getNode());
1692 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1693 continue;
1694 }
1695 LocationOps.emplace_back(
1696 SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1697 continue;
1698 }
1699
1700 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1701 // Special rules apply for the first dbg.values of parameter variables in a
1702 // function. Identify them by the fact they reference Argument Values, that
1703 // they're parameters, and they are parameters of the current function. We
1704 // need to let them dangle until they get an SDNode.
1705 bool IsParamOfFunc =
1706 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1707 if (IsParamOfFunc)
1708 return false;
1709
1710 // The value is not used in this block yet (or it would have an SDNode).
1711 // We still want the value to appear for the user if possible -- if it has
1712 // an associated VReg, we can refer to that instead.
1713 auto VMI = FuncInfo.ValueMap.find(V);
1714 if (VMI != FuncInfo.ValueMap.end()) {
1715 Register Reg = VMI->second;
1716 // If this is a PHI node, it may be split up into several MI PHI nodes
1717 // (in FunctionLoweringInfo::set).
1718 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1719 V->getType(), std::nullopt);
1720 if (RFV.occupiesMultipleRegs()) {
1721 // FIXME: We could potentially support variadic dbg_values here.
1722 if (IsVariadic)
1723 return false;
1724 unsigned Offset = 0;
1725 unsigned BitsToDescribe = 0;
1726 if (auto VarSize = Var->getSizeInBits())
1727 BitsToDescribe = *VarSize;
1728 if (auto Fragment = Expr->getFragmentInfo())
1729 BitsToDescribe = Fragment->SizeInBits;
1730 for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1731 // Bail out if all bits are described already.
1732 if (Offset >= BitsToDescribe)
1733 break;
1734 // TODO: handle scalable vectors.
1735 unsigned RegisterSize = RegAndSize.second;
1736 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1737 ? BitsToDescribe - Offset
1738 : RegisterSize;
1739 auto FragmentExpr = DIExpression::createFragmentExpression(
1740 Expr, Offset, FragmentSize);
1741 if (!FragmentExpr)
1742 continue;
1743 SDDbgValue *SDV = DAG.getVRegDbgValue(
1744 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order);
1745 DAG.AddDbgValue(SDV, false);
1746 Offset += RegisterSize;
1747 }
1748 return true;
1749 }
1750 // We can use simple vreg locations for variadic dbg_values as well.
1751 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1752 continue;
1753 }
1754 // We failed to create a SDDbgOperand for V.
1755 return false;
1756 }
1757
1758 // We have created a SDDbgOperand for each Value in Values.
1759 assert(!LocationOps.empty());
1760 SDDbgValue *SDV =
1761 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1762 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic);
1763 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1764 return true;
1765}
1766
1768 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1769 for (auto &Pair : DanglingDebugInfoMap)
1770 for (auto &DDI : Pair.second)
1771 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI);
1773}
1774
1775/// getCopyFromRegs - If there was virtual register allocated for the value V
1776/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1779 SDValue Result;
1780
1781 if (It != FuncInfo.ValueMap.end()) {
1782 Register InReg = It->second;
1783
1784 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1785 DAG.getDataLayout(), InReg, Ty,
1786 std::nullopt); // This is not an ABI copy.
1787 SDValue Chain = DAG.getEntryNode();
1788 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1789 V);
1790 resolveDanglingDebugInfo(V, Result);
1791 }
1792
1793 return Result;
1794}
1795
1796/// getValue - Return an SDValue for the given Value.
1798 // If we already have an SDValue for this value, use it. It's important
1799 // to do this first, so that we don't create a CopyFromReg if we already
1800 // have a regular SDValue.
1801 SDValue &N = NodeMap[V];
1802 if (N.getNode()) return N;
1803
1804 // If there's a virtual register allocated and initialized for this
1805 // value, use it.
1806 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1807 return copyFromReg;
1808
1809 // Otherwise create a new SDValue and remember it.
1810 SDValue Val = getValueImpl(V);
1811 NodeMap[V] = Val;
1813 return Val;
1814}
1815
1816/// getNonRegisterValue - Return an SDValue for the given Value, but
1817/// don't look in FuncInfo.ValueMap for a virtual register.
1819 // If we already have an SDValue for this value, use it.
1820 SDValue &N = NodeMap[V];
1821 if (N.getNode()) {
1822 if (isIntOrFPConstant(N)) {
1823 // Remove the debug location from the node as the node is about to be used
1824 // in a location which may differ from the original debug location. This
1825 // is relevant to Constant and ConstantFP nodes because they can appear
1826 // as constant expressions inside PHI nodes.
1827 N->setDebugLoc(DebugLoc());
1828 }
1829 return N;
1830 }
1831
1832 // Otherwise create a new SDValue and remember it.
1833 SDValue Val = getValueImpl(V);
1834 NodeMap[V] = Val;
1836 return Val;
1837}
1838
1839/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1840/// Create an SDValue for the given value.
1842 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1843
1844 if (const Constant *C = dyn_cast<Constant>(V)) {
1845 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1846
1847 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1848 SDLoc DL = getCurSDLoc();
1849
1850 // DAG.getConstant() may attempt to legalise the vector constant which can
1851 // significantly change the combines applied to the DAG. To reduce the
1852 // divergence when enabling ConstantInt based vectors we try to construct
1853 // the DAG in the same way as shufflevector based splats. TODO: The
1854 // divergence sometimes leads to better optimisations. Ideally we should
1855 // prevent DAG.getConstant() from legalising too early but there are some
1856 // degradations preventing this.
1857 if (VT.isScalableVector())
1858 return DAG.getNode(
1859 ISD::SPLAT_VECTOR, DL, VT,
1860 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1861 if (VT.isFixedLengthVector())
1862 return DAG.getSplatBuildVector(
1863 VT, DL,
1864 DAG.getConstant(CI->getValue(), DL, VT.getVectorElementType()));
1865 return DAG.getConstant(*CI, DL, VT);
1866 }
1867
1868 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1869 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1870
1871 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(C)) {
1872 return DAG.getNode(ISD::PtrAuthGlobalAddress, getCurSDLoc(), VT,
1873 getValue(CPA->getPointer()), getValue(CPA->getKey()),
1874 getValue(CPA->getAddrDiscriminator()),
1875 getValue(CPA->getDiscriminator()));
1876 }
1877
1879 return DAG.getConstant(0, getCurSDLoc(), VT);
1880
1881 if (match(C, m_VScale()))
1882 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1883
1884 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1885 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1886
1887 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1888 return isa<PoisonValue>(C) ? DAG.getPOISON(VT) : DAG.getUNDEF(VT);
1889
1890 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1891 visit(CE->getOpcode(), *CE);
1892 SDValue N1 = NodeMap[V];
1893 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1894 return N1;
1895 }
1896
1898 SmallVector<SDValue, 4> Constants;
1899 for (const Use &U : C->operands()) {
1900 SDNode *Val = getValue(U).getNode();
1901 // If the operand is an empty aggregate, there are no values.
1902 if (!Val) continue;
1903 // Add each leaf value from the operand to the Constants list
1904 // to form a flattened list of all the values.
1905 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1906 Constants.push_back(SDValue(Val, i));
1907 }
1908
1909 return DAG.getMergeValues(Constants, getCurSDLoc());
1910 }
1911
1912 if (const ConstantDataSequential *CDS =
1915 for (uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) {
1916 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1917 // Add each leaf value from the operand to the Constants list
1918 // to form a flattened list of all the values.
1919 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1920 Ops.push_back(SDValue(Val, i));
1921 }
1922
1923 if (isa<ArrayType>(CDS->getType()))
1924 return DAG.getMergeValues(Ops, getCurSDLoc());
1925 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1926 }
1927
1928 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1930 "Unknown struct or array constant!");
1931
1932 SmallVector<EVT, 4> ValueVTs;
1933 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1934 unsigned NumElts = ValueVTs.size();
1935 if (NumElts == 0)
1936 return SDValue(); // empty struct
1937 SmallVector<SDValue, 4> Constants(NumElts);
1938 for (unsigned i = 0; i != NumElts; ++i) {
1939 EVT EltVT = ValueVTs[i];
1940 if (isa<UndefValue>(C))
1941 Constants[i] = DAG.getUNDEF(EltVT);
1942 else if (EltVT.isFloatingPoint())
1943 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1944 else
1945 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1946 }
1947
1948 return DAG.getMergeValues(Constants, getCurSDLoc());
1949 }
1950
1951 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1952 return DAG.getBlockAddress(BA, VT);
1953
1954 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1955 return getValue(Equiv->getGlobalValue());
1956
1957 if (const auto *NC = dyn_cast<NoCFIValue>(C))
1958 return getValue(NC->getGlobalValue());
1959
1960 if (VT == MVT::aarch64svcount) {
1961 assert(C->isNullValue() && "Can only zero this target type!");
1962 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT,
1963 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1));
1964 }
1965
1966 if (VT.isRISCVVectorTuple()) {
1967 assert(C->isNullValue() && "Can only zero this target type!");
1968 return DAG.getNode(
1970 DAG.getNode(
1972 EVT::getVectorVT(*DAG.getContext(), MVT::i8,
1973 VT.getSizeInBits().getKnownMinValue() / 8, true),
1974 DAG.getConstant(0, getCurSDLoc(), MVT::getIntegerVT(8))));
1975 }
1976
1977 VectorType *VecTy = cast<VectorType>(V->getType());
1978
1979 // Now that we know the number and type of the elements, get that number of
1980 // elements into the Ops array based on what kind of constant it is.
1981 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1983 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1984 for (unsigned i = 0; i != NumElements; ++i)
1985 Ops.push_back(getValue(CV->getOperand(i)));
1986
1987 return DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1988 }
1989
1991 EVT EltVT =
1992 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1993
1994 SDValue Op;
1995 if (EltVT.isFloatingPoint())
1996 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1997 else
1998 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1999
2000 return DAG.getSplat(VT, getCurSDLoc(), Op);
2001 }
2002
2003 llvm_unreachable("Unknown vector constant");
2004 }
2005
2006 // If this is a static alloca, generate it as the frameindex instead of
2007 // computation.
2008 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
2010 FuncInfo.StaticAllocaMap.find(AI);
2011 if (SI != FuncInfo.StaticAllocaMap.end())
2012 return DAG.getFrameIndex(
2013 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
2014 }
2015
2016 // If this is an instruction which fast-isel has deferred, select it now.
2017 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2018 Register InReg = FuncInfo.InitializeRegForValue(Inst);
2019
2020 std::optional<CallingConv::ID> CallConv;
2021 auto *CB = dyn_cast<CallBase>(Inst);
2022 if (CB && !CB->isInlineAsm())
2023 CallConv = CB->getCallingConv();
2024
2025 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
2026 Inst->getType(), CallConv);
2027 SDValue Chain = DAG.getEntryNode();
2028 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
2029 }
2030
2031 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
2032 return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
2033
2034 if (const auto *BB = dyn_cast<BasicBlock>(V))
2035 return DAG.getBasicBlock(FuncInfo.getMBB(BB));
2036
2037 llvm_unreachable("Can't get register for value!");
2038}
2039
2040void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
2042 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
2043 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
2044 bool IsSEH = isAsynchronousEHPersonality(Pers);
2045 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
2046 if (IsSEH) {
2047 // For SEH, EHCont Guard needs to know that this catchpad is a target.
2048 CatchPadMBB->setIsEHContTarget(true);
2050 } else
2051 CatchPadMBB->setIsEHScopeEntry();
2052 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
2053 if (IsMSVCCXX || IsCoreCLR)
2054 CatchPadMBB->setIsEHFuncletEntry();
2055}
2056
2057void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
2058 // Update machine-CFG edge.
2059 MachineBasicBlock *TargetMBB = FuncInfo.getMBB(I.getSuccessor());
2060 FuncInfo.MBB->addSuccessor(TargetMBB);
2061
2062 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2063 bool IsSEH = isAsynchronousEHPersonality(Pers);
2064 if (IsSEH) {
2065 // If this is not a fall-through branch or optimizations are switched off,
2066 // emit the branch.
2067 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
2068 TM.getOptLevel() == CodeGenOptLevel::None)
2069 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2070 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
2071 return;
2072 }
2073
2074 // For non-SEH, EHCont Guard needs to know that this catchret is a target.
2075 TargetMBB->setIsEHContTarget(true);
2076 DAG.getMachineFunction().setHasEHContTarget(true);
2077
2078 // Figure out the funclet membership for the catchret's successor.
2079 // This will be used by the FuncletLayout pass to determine how to order the
2080 // BB's.
2081 // A 'catchret' returns to the outer scope's color.
2082 Value *ParentPad = I.getCatchSwitchParentPad();
2083 const BasicBlock *SuccessorColor;
2084 if (isa<ConstantTokenNone>(ParentPad))
2085 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
2086 else
2087 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
2088 assert(SuccessorColor && "No parent funclet for catchret!");
2089 MachineBasicBlock *SuccessorColorMBB = FuncInfo.getMBB(SuccessorColor);
2090 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
2091
2092 // Create the terminator node.
2093 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
2094 getControlRoot(), DAG.getBasicBlock(TargetMBB),
2095 DAG.getBasicBlock(SuccessorColorMBB));
2096 DAG.setRoot(Ret);
2097}
2098
2099void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
2100 // Don't emit any special code for the cleanuppad instruction. It just marks
2101 // the start of an EH scope/funclet.
2102 FuncInfo.MBB->setIsEHScopeEntry();
2103 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
2104 if (Pers != EHPersonality::Wasm_CXX) {
2105 FuncInfo.MBB->setIsEHFuncletEntry();
2106 FuncInfo.MBB->setIsCleanupFuncletEntry();
2107 }
2108}
2109
2110/// When an invoke or a cleanupret unwinds to the next EH pad, there are
2111/// many places it could ultimately go. In the IR, we have a single unwind
2112/// destination, but in the machine CFG, we enumerate all the possible blocks.
2113/// This function skips over imaginary basic blocks that hold catchswitch
2114/// instructions, and finds all the "real" machine
2115/// basic block destinations. As those destinations may not be successors of
2116/// EHPadBB, here we also calculate the edge probability to those destinations.
2117/// The passed-in Prob is the edge probability to EHPadBB.
2119 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
2120 BranchProbability Prob,
2121 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2122 &UnwindDests) {
2123 EHPersonality Personality =
2125 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2126 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2127 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2128 bool IsSEH = isAsynchronousEHPersonality(Personality);
2129
2130 while (EHPadBB) {
2132 BasicBlock *NewEHPadBB = nullptr;
2133 if (isa<LandingPadInst>(Pad)) {
2134 // Stop on landingpads. They are not funclets.
2135 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2136 break;
2137 } else if (isa<CleanupPadInst>(Pad)) {
2138 // Stop on cleanup pads. Cleanups are always funclet entries for all known
2139 // personalities except Wasm. And in Wasm this becomes a catch_all(_ref),
2140 // which always catches an exception.
2141 UnwindDests.emplace_back(FuncInfo.getMBB(EHPadBB), Prob);
2142 UnwindDests.back().first->setIsEHScopeEntry();
2143 // In Wasm, EH scopes are not funclets
2144 if (!IsWasmCXX)
2145 UnwindDests.back().first->setIsEHFuncletEntry();
2146 break;
2147 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2148 // Add the catchpad handlers to the possible destinations.
2149 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2150 UnwindDests.emplace_back(FuncInfo.getMBB(CatchPadBB), Prob);
2151 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2152 if (IsMSVCCXX || IsCoreCLR)
2153 UnwindDests.back().first->setIsEHFuncletEntry();
2154 if (!IsSEH)
2155 UnwindDests.back().first->setIsEHScopeEntry();
2156 }
2157 NewEHPadBB = CatchSwitch->getUnwindDest();
2158 } else {
2159 continue;
2160 }
2161
2162 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2163 if (BPI && NewEHPadBB)
2164 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2165 EHPadBB = NewEHPadBB;
2166 }
2167}
2168
2169void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
2170 // Update successor info.
2172 auto UnwindDest = I.getUnwindDest();
2173 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2174 BranchProbability UnwindDestProb =
2175 (BPI && UnwindDest)
2176 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
2178 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
2179 for (auto &UnwindDest : UnwindDests) {
2180 UnwindDest.first->setIsEHPad();
2181 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2182 }
2183 FuncInfo.MBB->normalizeSuccProbs();
2184
2185 // Create the terminator node.
2186 MachineBasicBlock *CleanupPadMBB =
2187 FuncInfo.getMBB(I.getCleanupPad()->getParent());
2188 SDValue Ret = DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other,
2189 getControlRoot(), DAG.getBasicBlock(CleanupPadMBB));
2190 DAG.setRoot(Ret);
2191}
2192
2193void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2194 report_fatal_error("visitCatchSwitch not yet implemented!");
2195}
2196
2197void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2198 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2199 auto &DL = DAG.getDataLayout();
2200 SDValue Chain = getControlRoot();
2203
2204 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2205 // lower
2206 //
2207 // %val = call <ty> @llvm.experimental.deoptimize()
2208 // ret <ty> %val
2209 //
2210 // differently.
2211 if (I.getParent()->getTerminatingDeoptimizeCall()) {
2213 return;
2214 }
2215
2216 if (!FuncInfo.CanLowerReturn) {
2217 Register DemoteReg = FuncInfo.DemoteRegister;
2218
2219 // Emit a store of the return value through the virtual register.
2220 // Leave Outs empty so that LowerReturn won't try to load return
2221 // registers the usual way.
2222 MVT PtrValueVT = TLI.getPointerTy(DL, DL.getAllocaAddrSpace());
2223 SDValue RetPtr =
2224 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVT);
2225 SDValue RetOp = getValue(I.getOperand(0));
2226
2227 SmallVector<EVT, 4> ValueVTs, MemVTs;
2228 SmallVector<uint64_t, 4> Offsets;
2229 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2230 &Offsets, 0);
2231 unsigned NumValues = ValueVTs.size();
2232
2233 SmallVector<SDValue, 4> Chains(NumValues);
2234 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2235 for (unsigned i = 0; i != NumValues; ++i) {
2236 // An aggregate return value cannot wrap around the address space, so
2237 // offsets to its parts don't wrap either.
2238 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2239 TypeSize::getFixed(Offsets[i]));
2240
2241 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2242 if (MemVTs[i] != ValueVTs[i])
2243 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2244 Chains[i] = DAG.getStore(
2245 Chain, getCurSDLoc(), Val,
2246 // FIXME: better loc info would be nice.
2247 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2248 commonAlignment(BaseAlign, Offsets[i]));
2249 }
2250
2251 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2252 MVT::Other, Chains);
2253 } else if (I.getNumOperands() != 0) {
2255 ComputeValueTypes(DL, I.getOperand(0)->getType(), Types);
2256 unsigned NumValues = Types.size();
2257 if (NumValues) {
2258 SDValue RetOp = getValue(I.getOperand(0));
2259
2260 const Function *F = I.getParent()->getParent();
2261
2262 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2263 I.getOperand(0)->getType(), F->getCallingConv(),
2264 /*IsVarArg*/ false, DL);
2265
2266 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2267 if (F->getAttributes().hasRetAttr(Attribute::SExt))
2268 ExtendKind = ISD::SIGN_EXTEND;
2269 else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2270 ExtendKind = ISD::ZERO_EXTEND;
2271
2272 LLVMContext &Context = F->getContext();
2273 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2274
2275 for (unsigned j = 0; j != NumValues; ++j) {
2276 EVT VT = TLI.getValueType(DL, Types[j]);
2277
2278 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2279 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2280
2281 CallingConv::ID CC = F->getCallingConv();
2282
2283 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2284 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2285 SmallVector<SDValue, 4> Parts(NumParts);
2287 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2288 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2289
2290 // 'inreg' on function refers to return value
2291 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2292 if (RetInReg)
2293 Flags.setInReg();
2294
2295 if (I.getOperand(0)->getType()->isPointerTy()) {
2296 Flags.setPointer();
2297 Flags.setPointerAddrSpace(
2298 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2299 }
2300
2301 if (NeedsRegBlock) {
2302 Flags.setInConsecutiveRegs();
2303 if (j == NumValues - 1)
2304 Flags.setInConsecutiveRegsLast();
2305 }
2306
2307 // Propagate extension type if any
2308 if (ExtendKind == ISD::SIGN_EXTEND)
2309 Flags.setSExt();
2310 else if (ExtendKind == ISD::ZERO_EXTEND)
2311 Flags.setZExt();
2312 else if (F->getAttributes().hasRetAttr(Attribute::NoExt))
2313 Flags.setNoExt();
2314
2315 for (unsigned i = 0; i < NumParts; ++i) {
2316 Outs.push_back(ISD::OutputArg(Flags,
2317 Parts[i].getValueType().getSimpleVT(),
2318 VT, Types[j], 0, 0));
2319 OutVals.push_back(Parts[i]);
2320 }
2321 }
2322 }
2323 }
2324
2325 // Push in swifterror virtual register as the last element of Outs. This makes
2326 // sure swifterror virtual register will be returned in the swifterror
2327 // physical register.
2328 const Function *F = I.getParent()->getParent();
2329 if (TLI.supportSwiftError() &&
2330 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2331 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2332 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2333 Flags.setSwiftError();
2334 Outs.push_back(ISD::OutputArg(Flags, /*vt=*/TLI.getPointerTy(DL),
2335 /*argvt=*/EVT(TLI.getPointerTy(DL)),
2336 PointerType::getUnqual(*DAG.getContext()),
2337 /*origidx=*/1, /*partOffs=*/0));
2338 // Create SDNode for the swifterror virtual register.
2339 OutVals.push_back(
2340 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2341 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2342 EVT(TLI.getPointerTy(DL))));
2343 }
2344
2345 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2346 CallingConv::ID CallConv =
2347 DAG.getMachineFunction().getFunction().getCallingConv();
2348 Chain = DAG.getTargetLoweringInfo().LowerReturn(
2349 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2350
2351 // Verify that the target's LowerReturn behaved as expected.
2352 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2353 "LowerReturn didn't return a valid chain!");
2354
2355 // Update the DAG with the new chain value resulting from return lowering.
2356 DAG.setRoot(Chain);
2357}
2358
2359/// CopyToExportRegsIfNeeded - If the given value has virtual registers
2360/// created for it, emit nodes to copy the value into the virtual
2361/// registers.
2363 // Skip empty types
2364 if (V->getType()->isEmptyTy())
2365 return;
2366
2368 if (VMI != FuncInfo.ValueMap.end()) {
2369 assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2370 "Unused value assigned virtual registers!");
2371 CopyValueToVirtualRegister(V, VMI->second);
2372 }
2373}
2374
2375/// ExportFromCurrentBlock - If this condition isn't known to be exported from
2376/// the current basic block, add it to ValueMap now so that we'll get a
2377/// CopyTo/FromReg.
2379 // No need to export constants.
2380 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2381
2382 // Already exported?
2383 if (FuncInfo.isExportedInst(V)) return;
2384
2385 Register Reg = FuncInfo.InitializeRegForValue(V);
2387}
2388
2390 const BasicBlock *FromBB) {
2391 // The operands of the setcc have to be in this block. We don't know
2392 // how to export them from some other block.
2393 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2394 // Can export from current BB.
2395 if (VI->getParent() == FromBB)
2396 return true;
2397
2398 // Is already exported, noop.
2399 return FuncInfo.isExportedInst(V);
2400 }
2401
2402 // If this is an argument, we can export it if the BB is the entry block or
2403 // if it is already exported.
2404 if (isa<Argument>(V)) {
2405 if (FromBB->isEntryBlock())
2406 return true;
2407
2408 // Otherwise, can only export this if it is already exported.
2409 return FuncInfo.isExportedInst(V);
2410 }
2411
2412 // Otherwise, constants can always be exported.
2413 return true;
2414}
2415
2416/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2418SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2419 const MachineBasicBlock *Dst) const {
2421 const BasicBlock *SrcBB = Src->getBasicBlock();
2422 const BasicBlock *DstBB = Dst->getBasicBlock();
2423 if (!BPI) {
2424 // If BPI is not available, set the default probability as 1 / N, where N is
2425 // the number of successors.
2426 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2427 return BranchProbability(1, SuccSize);
2428 }
2429 return BPI->getEdgeProbability(SrcBB, DstBB);
2430}
2431
2432void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2433 MachineBasicBlock *Dst,
2434 BranchProbability Prob) {
2435 if (!FuncInfo.BPI)
2436 Src->addSuccessorWithoutProb(Dst);
2437 else {
2438 if (Prob.isUnknown())
2439 Prob = getEdgeProbability(Src, Dst);
2440 Src->addSuccessor(Dst, Prob);
2441 }
2442}
2443
2444static bool InBlock(const Value *V, const BasicBlock *BB) {
2445 if (const Instruction *I = dyn_cast<Instruction>(V))
2446 return I->getParent() == BB;
2447 return true;
2448}
2449
2450/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2451/// This function emits a branch and is used at the leaves of an OR or an
2452/// AND operator tree.
2453void
2456 MachineBasicBlock *FBB,
2457 MachineBasicBlock *CurBB,
2458 MachineBasicBlock *SwitchBB,
2459 BranchProbability TProb,
2460 BranchProbability FProb,
2461 bool InvertCond) {
2462 const BasicBlock *BB = CurBB->getBasicBlock();
2463
2464 // If the leaf of the tree is a comparison, merge the condition into
2465 // the caseblock.
2466 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2467 // The operands of the cmp have to be in this block. We don't know
2468 // how to export them from some other block. If this is the first block
2469 // of the sequence, no exporting is needed.
2470 if (CurBB == SwitchBB ||
2471 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2472 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2473 ISD::CondCode Condition;
2474 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2475 ICmpInst::Predicate Pred =
2476 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2477 Condition = getICmpCondCode(Pred);
2478 } else {
2479 const FCmpInst *FC = cast<FCmpInst>(Cond);
2480 FCmpInst::Predicate Pred =
2481 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2482 Condition = getFCmpCondCode(Pred);
2483 if (TM.Options.NoNaNsFPMath)
2484 Condition = getFCmpCodeWithoutNaN(Condition);
2485 }
2486
2487 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2488 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2489 SL->SwitchCases.push_back(CB);
2490 return;
2491 }
2492 }
2493
2494 // Create a CaseBlock record representing this branch.
2495 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2496 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2497 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2498 SL->SwitchCases.push_back(CB);
2499}
2500
2501// Collect dependencies on V recursively. This is used for the cost analysis in
2502// `shouldKeepJumpConditionsTogether`.
2506 unsigned Depth = 0) {
2507 // Return false if we have an incomplete count.
2509 return false;
2510
2511 auto *I = dyn_cast<Instruction>(V);
2512 if (I == nullptr)
2513 return true;
2514
2515 if (Necessary != nullptr) {
2516 // This instruction is necessary for the other side of the condition so
2517 // don't count it.
2518 if (Necessary->contains(I))
2519 return true;
2520 }
2521
2522 // Already added this dep.
2523 if (!Deps->try_emplace(I, false).second)
2524 return true;
2525
2526 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx)
2527 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary,
2528 Depth + 1))
2529 return false;
2530 return true;
2531}
2532
2535 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs,
2537 if (I.getNumSuccessors() != 2)
2538 return false;
2539
2540 if (!I.isConditional())
2541 return false;
2542
2543 if (Params.BaseCost < 0)
2544 return false;
2545
2546 // Baseline cost.
2547 InstructionCost CostThresh = Params.BaseCost;
2548
2549 BranchProbabilityInfo *BPI = nullptr;
2550 if (Params.LikelyBias || Params.UnlikelyBias)
2551 BPI = FuncInfo.BPI;
2552 if (BPI != nullptr) {
2553 // See if we are either likely to get an early out or compute both lhs/rhs
2554 // of the condition.
2555 BasicBlock *IfFalse = I.getSuccessor(0);
2556 BasicBlock *IfTrue = I.getSuccessor(1);
2557
2558 std::optional<bool> Likely;
2559 if (BPI->isEdgeHot(I.getParent(), IfTrue))
2560 Likely = true;
2561 else if (BPI->isEdgeHot(I.getParent(), IfFalse))
2562 Likely = false;
2563
2564 if (Likely) {
2565 if (Opc == (*Likely ? Instruction::And : Instruction::Or))
2566 // Its likely we will have to compute both lhs and rhs of condition
2567 CostThresh += Params.LikelyBias;
2568 else {
2569 if (Params.UnlikelyBias < 0)
2570 return false;
2571 // Its likely we will get an early out.
2572 CostThresh -= Params.UnlikelyBias;
2573 }
2574 }
2575 }
2576
2577 if (CostThresh <= 0)
2578 return false;
2579
2580 // Collect "all" instructions that lhs condition is dependent on.
2581 // Use map for stable iteration (to avoid non-determanism of iteration of
2582 // SmallPtrSet). The `bool` value is just a dummy.
2584 collectInstructionDeps(&LhsDeps, Lhs);
2585 // Collect "all" instructions that rhs condition is dependent on AND are
2586 // dependencies of lhs. This gives us an estimate on which instructions we
2587 // stand to save by splitting the condition.
2588 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps))
2589 return false;
2590 // Add the compare instruction itself unless its a dependency on the LHS.
2591 if (const auto *RhsI = dyn_cast<Instruction>(Rhs))
2592 if (!LhsDeps.contains(RhsI))
2593 RhsDeps.try_emplace(RhsI, false);
2594
2595 InstructionCost CostOfIncluding = 0;
2596 // See if this instruction will need to computed independently of whether RHS
2597 // is.
2598 Value *BrCond = I.getCondition();
2599 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) {
2600 for (const auto *U : Ins->users()) {
2601 // If user is independent of RHS calculation we don't need to count it.
2602 if (auto *UIns = dyn_cast<Instruction>(U))
2603 if (UIns != BrCond && !RhsDeps.contains(UIns))
2604 return false;
2605 }
2606 return true;
2607 };
2608
2609 // Prune instructions from RHS Deps that are dependencies of unrelated
2610 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly
2611 // arbitrary and just meant to cap the how much time we spend in the pruning
2612 // loop. Its highly unlikely to come into affect.
2613 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth;
2614 // Stop after a certain point. No incorrectness from including too many
2615 // instructions.
2616 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2617 const Instruction *ToDrop = nullptr;
2618 for (const auto &InsPair : RhsDeps) {
2619 if (!ShouldCountInsn(InsPair.first)) {
2620 ToDrop = InsPair.first;
2621 break;
2622 }
2623 }
2624 if (ToDrop == nullptr)
2625 break;
2626 RhsDeps.erase(ToDrop);
2627 }
2628
2629 for (const auto &InsPair : RhsDeps) {
2630 // Finally accumulate latency that we can only attribute to computing the
2631 // RHS condition. Use latency because we are essentially trying to calculate
2632 // the cost of the dependency chain.
2633 // Possible TODO: We could try to estimate ILP and make this more precise.
2634 CostOfIncluding += TTI->getInstructionCost(
2635 InsPair.first, TargetTransformInfo::TCK_Latency);
2636
2637 if (CostOfIncluding > CostThresh)
2638 return false;
2639 }
2640 return true;
2641}
2642
2645 MachineBasicBlock *FBB,
2646 MachineBasicBlock *CurBB,
2647 MachineBasicBlock *SwitchBB,
2649 BranchProbability TProb,
2650 BranchProbability FProb,
2651 bool InvertCond) {
2652 // Skip over not part of the tree and remember to invert op and operands at
2653 // next level.
2654 Value *NotCond;
2655 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2656 InBlock(NotCond, CurBB->getBasicBlock())) {
2657 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2658 !InvertCond);
2659 return;
2660 }
2661
2663 const Value *BOpOp0, *BOpOp1;
2664 // Compute the effective opcode for Cond, taking into account whether it needs
2665 // to be inverted, e.g.
2666 // and (not (or A, B)), C
2667 // gets lowered as
2668 // and (and (not A, not B), C)
2670 if (BOp) {
2671 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2672 ? Instruction::And
2673 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2674 ? Instruction::Or
2676 if (InvertCond) {
2677 if (BOpc == Instruction::And)
2678 BOpc = Instruction::Or;
2679 else if (BOpc == Instruction::Or)
2680 BOpc = Instruction::And;
2681 }
2682 }
2683
2684 // If this node is not part of the or/and tree, emit it as a branch.
2685 // Note that all nodes in the tree should have same opcode.
2686 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2687 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2688 !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2689 !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2690 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2691 TProb, FProb, InvertCond);
2692 return;
2693 }
2694
2695 // Create TmpBB after CurBB.
2696 MachineFunction::iterator BBI(CurBB);
2697 MachineFunction &MF = DAG.getMachineFunction();
2699 CurBB->getParent()->insert(++BBI, TmpBB);
2700
2701 if (Opc == Instruction::Or) {
2702 // Codegen X | Y as:
2703 // BB1:
2704 // jmp_if_X TBB
2705 // jmp TmpBB
2706 // TmpBB:
2707 // jmp_if_Y TBB
2708 // jmp FBB
2709 //
2710
2711 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2712 // The requirement is that
2713 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2714 // = TrueProb for original BB.
2715 // Assuming the original probabilities are A and B, one choice is to set
2716 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2717 // A/(1+B) and 2B/(1+B). This choice assumes that
2718 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2719 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2720 // TmpBB, but the math is more complicated.
2721
2722 auto NewTrueProb = TProb / 2;
2723 auto NewFalseProb = TProb / 2 + FProb;
2724 // Emit the LHS condition.
2725 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2726 NewFalseProb, InvertCond);
2727
2728 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2729 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2731 // Emit the RHS condition into TmpBB.
2732 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2733 Probs[1], InvertCond);
2734 } else {
2735 assert(Opc == Instruction::And && "Unknown merge op!");
2736 // Codegen X & Y as:
2737 // BB1:
2738 // jmp_if_X TmpBB
2739 // jmp FBB
2740 // TmpBB:
2741 // jmp_if_Y TBB
2742 // jmp FBB
2743 //
2744 // This requires creation of TmpBB after CurBB.
2745
2746 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2747 // The requirement is that
2748 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2749 // = FalseProb for original BB.
2750 // Assuming the original probabilities are A and B, one choice is to set
2751 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2752 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2753 // TrueProb for BB1 * FalseProb for TmpBB.
2754
2755 auto NewTrueProb = TProb + FProb / 2;
2756 auto NewFalseProb = FProb / 2;
2757 // Emit the LHS condition.
2758 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2759 NewFalseProb, InvertCond);
2760
2761 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2762 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2764 // Emit the RHS condition into TmpBB.
2765 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2766 Probs[1], InvertCond);
2767 }
2768}
2769
2770/// If the set of cases should be emitted as a series of branches, return true.
2771/// If we should emit this as a bunch of and/or'd together conditions, return
2772/// false.
2773bool
2774SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2775 if (Cases.size() != 2) return true;
2776
2777 // If this is two comparisons of the same values or'd or and'd together, they
2778 // will get folded into a single comparison, so don't emit two blocks.
2779 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2780 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2781 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2782 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2783 return false;
2784 }
2785
2786 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2787 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2788 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2789 Cases[0].CC == Cases[1].CC &&
2790 isa<Constant>(Cases[0].CmpRHS) &&
2791 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2792 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2793 return false;
2794 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2795 return false;
2796 }
2797
2798 return true;
2799}
2800
2801void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2803
2804 // Update machine-CFG edges.
2805 MachineBasicBlock *Succ0MBB = FuncInfo.getMBB(I.getSuccessor(0));
2806
2807 if (I.isUnconditional()) {
2808 // Update machine-CFG edges.
2809 BrMBB->addSuccessor(Succ0MBB);
2810
2811 // If this is not a fall-through branch or optimizations are switched off,
2812 // emit the branch.
2813 if (Succ0MBB != NextBlock(BrMBB) ||
2815 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2816 getControlRoot(), DAG.getBasicBlock(Succ0MBB));
2817 setValue(&I, Br);
2818 DAG.setRoot(Br);
2819 }
2820
2821 return;
2822 }
2823
2824 // If this condition is one of the special cases we handle, do special stuff
2825 // now.
2826 const Value *CondVal = I.getCondition();
2827 MachineBasicBlock *Succ1MBB = FuncInfo.getMBB(I.getSuccessor(1));
2828
2829 // If this is a series of conditions that are or'd or and'd together, emit
2830 // this as a sequence of branches instead of setcc's with and/or operations.
2831 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2832 // unpredictable branches, and vector extracts because those jumps are likely
2833 // expensive for any target), this should improve performance.
2834 // For example, instead of something like:
2835 // cmp A, B
2836 // C = seteq
2837 // cmp D, E
2838 // F = setle
2839 // or C, F
2840 // jnz foo
2841 // Emit:
2842 // cmp A, B
2843 // je foo
2844 // cmp D, E
2845 // jle foo
2846 bool IsUnpredictable = I.hasMetadata(LLVMContext::MD_unpredictable);
2847 const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2848 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2849 BOp->hasOneUse() && !IsUnpredictable) {
2850 Value *Vec;
2851 const Value *BOp0, *BOp1;
2853 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2854 Opcode = Instruction::And;
2855 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2856 Opcode = Instruction::Or;
2857
2858 if (Opcode &&
2859 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2860 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) &&
2862 FuncInfo, I, Opcode, BOp0, BOp1,
2863 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2864 Opcode, BOp0, BOp1))) {
2865 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2866 getEdgeProbability(BrMBB, Succ0MBB),
2867 getEdgeProbability(BrMBB, Succ1MBB),
2868 /*InvertCond=*/false);
2869 // If the compares in later blocks need to use values not currently
2870 // exported from this block, export them now. This block should always
2871 // be the first entry.
2872 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2873
2874 // Allow some cases to be rejected.
2875 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2876 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2877 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2878 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2879 }
2880
2881 // Emit the branch for this block.
2882 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2883 SL->SwitchCases.erase(SL->SwitchCases.begin());
2884 return;
2885 }
2886
2887 // Okay, we decided not to do this, remove any inserted MBB's and clear
2888 // SwitchCases.
2889 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2890 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2891
2892 SL->SwitchCases.clear();
2893 }
2894 }
2895
2896 // Create a CaseBlock record representing this branch.
2897 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2898 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc(),
2900 IsUnpredictable);
2901
2902 // Use visitSwitchCase to actually insert the fast branch sequence for this
2903 // cond branch.
2904 visitSwitchCase(CB, BrMBB);
2905}
2906
2907/// visitSwitchCase - Emits the necessary code to represent a single node in
2908/// the binary search tree resulting from lowering a switch instruction.
2910 MachineBasicBlock *SwitchBB) {
2911 SDValue Cond;
2912 SDValue CondLHS = getValue(CB.CmpLHS);
2913 SDLoc dl = CB.DL;
2914
2915 if (CB.CC == ISD::SETTRUE) {
2916 // Branch or fall through to TrueBB.
2917 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2918 SwitchBB->normalizeSuccProbs();
2919 if (CB.TrueBB != NextBlock(SwitchBB)) {
2920 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2921 DAG.getBasicBlock(CB.TrueBB)));
2922 }
2923 return;
2924 }
2925
2926 auto &TLI = DAG.getTargetLoweringInfo();
2927 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2928
2929 // Build the setcc now.
2930 if (!CB.CmpMHS) {
2931 // Fold "(X == true)" to X and "(X == false)" to !X to
2932 // handle common cases produced by branch lowering.
2933 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2934 CB.CC == ISD::SETEQ)
2935 Cond = CondLHS;
2936 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2937 CB.CC == ISD::SETEQ) {
2938 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2939 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2940 } else {
2941 SDValue CondRHS = getValue(CB.CmpRHS);
2942
2943 // If a pointer's DAG type is larger than its memory type then the DAG
2944 // values are zero-extended. This breaks signed comparisons so truncate
2945 // back to the underlying type before doing the compare.
2946 if (CondLHS.getValueType() != MemVT) {
2947 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2948 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2949 }
2950 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2951 }
2952 } else {
2953 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2954
2955 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2956 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2957
2958 SDValue CmpOp = getValue(CB.CmpMHS);
2959 EVT VT = CmpOp.getValueType();
2960
2961 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2962 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2963 ISD::SETLE);
2964 } else {
2965 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2966 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2967 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2968 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2969 }
2970 }
2971
2972 // Update successor info
2973 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2974 // TrueBB and FalseBB are always different unless the incoming IR is
2975 // degenerate. This only happens when running llc on weird IR.
2976 if (CB.TrueBB != CB.FalseBB)
2977 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2978 SwitchBB->normalizeSuccProbs();
2979
2980 // If the lhs block is the next block, invert the condition so that we can
2981 // fall through to the lhs instead of the rhs block.
2982 if (CB.TrueBB == NextBlock(SwitchBB)) {
2983 std::swap(CB.TrueBB, CB.FalseBB);
2984 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2985 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2986 }
2987
2988 SDNodeFlags Flags;
2990 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
2991 Cond, DAG.getBasicBlock(CB.TrueBB), Flags);
2992
2993 setValue(CurInst, BrCond);
2994
2995 // Insert the false branch. Do this even if it's a fall through branch,
2996 // this makes it easier to do DAG optimizations which require inverting
2997 // the branch condition.
2998 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2999 DAG.getBasicBlock(CB.FalseBB));
3000
3001 DAG.setRoot(BrCond);
3002}
3003
3004/// visitJumpTable - Emit JumpTable node in the current MBB
3006 // Emit the code for the jump table
3007 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3008 assert(JT.Reg && "Should lower JT Header first!");
3009 EVT PTy = DAG.getTargetLoweringInfo().getJumpTableRegTy(DAG.getDataLayout());
3010 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy);
3011 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
3012 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
3013 Index.getValue(1), Table, Index);
3014 DAG.setRoot(BrJumpTable);
3015}
3016
3017/// visitJumpTableHeader - This function emits necessary code to produce index
3018/// in the JumpTable from switch case.
3020 JumpTableHeader &JTH,
3021 MachineBasicBlock *SwitchBB) {
3022 assert(JT.SL && "Should set SDLoc for SelectionDAG!");
3023 const SDLoc &dl = *JT.SL;
3024
3025 // Subtract the lowest switch case value from the value being switched on.
3026 SDValue SwitchOp = getValue(JTH.SValue);
3027 EVT VT = SwitchOp.getValueType();
3028 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
3029 DAG.getConstant(JTH.First, dl, VT));
3030
3031 // The SDNode we just created, which holds the value being switched on minus
3032 // the smallest case value, needs to be copied to a virtual register so it
3033 // can be used as an index into the jump table in a subsequent basic block.
3034 // This value may be smaller or larger than the target's pointer type, and
3035 // therefore require extension or truncating.
3036 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3037 SwitchOp =
3038 DAG.getZExtOrTrunc(Sub, dl, TLI.getJumpTableRegTy(DAG.getDataLayout()));
3039
3040 Register JumpTableReg =
3041 FuncInfo.CreateReg(TLI.getJumpTableRegTy(DAG.getDataLayout()));
3042 SDValue CopyTo =
3043 DAG.getCopyToReg(getControlRoot(), dl, JumpTableReg, SwitchOp);
3044 JT.Reg = JumpTableReg;
3045
3046 if (!JTH.FallthroughUnreachable) {
3047 // Emit the range check for the jump table, and branch to the default block
3048 // for the switch statement if the value being switched on exceeds the
3049 // largest case in the switch.
3050 SDValue CMP = DAG.getSetCC(
3051 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3052 Sub.getValueType()),
3053 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
3054
3055 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
3056 MVT::Other, CopyTo, CMP,
3057 DAG.getBasicBlock(JT.Default));
3058
3059 // Avoid emitting unnecessary branches to the next block.
3060 if (JT.MBB != NextBlock(SwitchBB))
3061 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3062 DAG.getBasicBlock(JT.MBB));
3063
3064 DAG.setRoot(BrCond);
3065 } else {
3066 // Avoid emitting unnecessary branches to the next block.
3067 if (JT.MBB != NextBlock(SwitchBB))
3068 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3069 DAG.getBasicBlock(JT.MBB)));
3070 else
3071 DAG.setRoot(CopyTo);
3072 }
3073}
3074
3075/// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
3076/// variable if there exists one.
3078 SDValue &Chain) {
3079 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3080 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
3081 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
3085 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
3086 if (Global) {
3087 MachinePointerInfo MPInfo(Global);
3091 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
3092 DAG.setNodeMemRefs(Node, {MemRef});
3093 }
3094 if (PtrTy != PtrMemTy)
3095 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
3096 return SDValue(Node, 0);
3097}
3098
3099/// Codegen a new tail for a stack protector check ParentMBB which has had its
3100/// tail spliced into a stack protector check success bb.
3101///
3102/// For a high level explanation of how this fits into the stack protector
3103/// generation see the comment on the declaration of class
3104/// StackProtectorDescriptor.
3106 MachineBasicBlock *ParentBB) {
3107
3108 // First create the loads to the guard/stack slot for the comparison.
3109 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3110 auto &DL = DAG.getDataLayout();
3111 EVT PtrTy = TLI.getFrameIndexTy(DL);
3112 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3113
3114 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3115 int FI = MFI.getStackProtectorIndex();
3116
3117 SDValue Guard;
3118 SDLoc dl = getCurSDLoc();
3119 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3120 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3121 Align Align = DL.getPrefTypeAlign(
3122 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3123
3124 // Generate code to load the content of the guard slot.
3125 SDValue GuardVal = DAG.getLoad(
3126 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3127 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3129
3130 if (TLI.useStackGuardXorFP())
3131 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3132
3133 // If we're using function-based instrumentation, call the guard check
3134 // function
3136 // Get the guard check function from the target and verify it exists since
3137 // we're using function-based instrumentation
3138 const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M);
3139 assert(GuardCheckFn && "Guard check function is null");
3140
3141 // The target provides a guard check function to validate the guard value.
3142 // Generate a call to that function with the content of the guard slot as
3143 // argument.
3144 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3145 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3146
3148 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3149 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3150 Entry.IsInReg = true;
3151 Args.push_back(Entry);
3152
3155 .setChain(DAG.getEntryNode())
3156 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3157 getValue(GuardCheckFn), std::move(Args));
3158
3159 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
3160 DAG.setRoot(Result.second);
3161 return;
3162 }
3163
3164 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3165 // Otherwise, emit a volatile load to retrieve the stack guard value.
3166 SDValue Chain = DAG.getEntryNode();
3167 if (TLI.useLoadStackGuardNode(M)) {
3168 Guard = getLoadStackGuard(DAG, dl, Chain);
3169 } else {
3170 if (const Value *IRGuard = TLI.getSDagStackGuard(M)) {
3171 SDValue GuardPtr = getValue(IRGuard);
3172 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3173 MachinePointerInfo(IRGuard, 0), Align,
3175 } else {
3176 LLVMContext &Ctx = *DAG.getContext();
3177 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
3178 Guard = DAG.getPOISON(PtrMemTy);
3179 }
3180 }
3181
3182 // Perform the comparison via a getsetcc.
3183 SDValue Cmp = DAG.getSetCC(
3184 dl, TLI.getSetCCResultType(DL, *DAG.getContext(), Guard.getValueType()),
3185 Guard, GuardVal, ISD::SETNE);
3186
3187 // If the guard/stackslot do not equal, branch to failure MBB.
3188 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, MVT::Other, getControlRoot(),
3189 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
3190 // Otherwise branch to success MBB.
3191 SDValue Br = DAG.getNode(ISD::BR, dl,
3192 MVT::Other, BrCond,
3193 DAG.getBasicBlock(SPD.getSuccessMBB()));
3194
3195 DAG.setRoot(Br);
3196}
3197
3198/// Codegen the failure basic block for a stack protector check.
3199///
3200/// A failure stack protector machine basic block consists simply of a call to
3201/// __stack_chk_fail().
3202///
3203/// For a high level explanation of how this fits into the stack protector
3204/// generation see the comment on the declaration of class
3205/// StackProtectorDescriptor.
3208
3209 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3210 MachineBasicBlock *ParentBB = SPD.getParentMBB();
3211 const Module &M = *ParentBB->getParent()->getFunction().getParent();
3212 SDValue Chain;
3213
3214 // For -Oz builds with a guard check function, we use function-based
3215 // instrumentation. Otherwise, if we have a guard check function, we call it
3216 // in the failure block.
3217 auto *GuardCheckFn = TLI.getSSPStackGuardCheck(M);
3218 if (GuardCheckFn && !SPD.shouldEmitFunctionBasedCheckStackProtector()) {
3219 // First create the loads to the guard/stack slot for the comparison.
3220 auto &DL = DAG.getDataLayout();
3221 EVT PtrTy = TLI.getFrameIndexTy(DL);
3222 EVT PtrMemTy = TLI.getPointerMemTy(DL, DL.getAllocaAddrSpace());
3223
3224 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3225 int FI = MFI.getStackProtectorIndex();
3226
3227 SDLoc dl = getCurSDLoc();
3228 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
3229 Align Align = DL.getPrefTypeAlign(
3230 PointerType::get(M.getContext(), DL.getAllocaAddrSpace()));
3231
3232 // Generate code to load the content of the guard slot.
3233 SDValue GuardVal = DAG.getLoad(
3234 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
3235 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
3237
3238 if (TLI.useStackGuardXorFP())
3239 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
3240
3241 // The target provides a guard check function to validate the guard value.
3242 // Generate a call to that function with the content of the guard slot as
3243 // argument.
3244 FunctionType *FnTy = GuardCheckFn->getFunctionType();
3245 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3246
3248 TargetLowering::ArgListEntry Entry(GuardVal, FnTy->getParamType(0));
3249 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3250 Entry.IsInReg = true;
3251 Args.push_back(Entry);
3252
3255 .setChain(DAG.getEntryNode())
3256 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
3257 getValue(GuardCheckFn), std::move(Args));
3258
3259 Chain = TLI.LowerCallTo(CLI).second;
3260 } else {
3262 CallOptions.setDiscardResult(true);
3263 Chain = TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3264 {}, CallOptions, getCurSDLoc())
3265 .second;
3266 }
3267
3268 // Emit a trap instruction if we are required to do so.
3269 const TargetOptions &TargetOpts = DAG.getTarget().Options;
3270 if (TargetOpts.TrapUnreachable && !TargetOpts.NoTrapAfterNoreturn)
3271 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
3272
3273 DAG.setRoot(Chain);
3274}
3275
3276/// visitBitTestHeader - This function emits necessary code to produce value
3277/// suitable for "bit tests"
3279 MachineBasicBlock *SwitchBB) {
3280 SDLoc dl = getCurSDLoc();
3281
3282 // Subtract the minimum value.
3283 SDValue SwitchOp = getValue(B.SValue);
3284 EVT VT = SwitchOp.getValueType();
3285 SDValue RangeSub =
3286 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
3287
3288 // Determine the type of the test operands.
3289 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3290 bool UsePtrType = false;
3291 if (!TLI.isTypeLegal(VT)) {
3292 UsePtrType = true;
3293 } else {
3294 for (const BitTestCase &Case : B.Cases)
3295 if (!isUIntN(VT.getSizeInBits(), Case.Mask)) {
3296 // Switch table case range are encoded into series of masks.
3297 // Just use pointer type, it's guaranteed to fit.
3298 UsePtrType = true;
3299 break;
3300 }
3301 }
3302 SDValue Sub = RangeSub;
3303 if (UsePtrType) {
3304 VT = TLI.getPointerTy(DAG.getDataLayout());
3305 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
3306 }
3307
3308 B.RegVT = VT.getSimpleVT();
3309 B.Reg = FuncInfo.CreateReg(B.RegVT);
3310 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
3311
3312 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
3313
3314 if (!B.FallthroughUnreachable)
3315 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
3316 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
3317 SwitchBB->normalizeSuccProbs();
3318
3319 SDValue Root = CopyTo;
3320 if (!B.FallthroughUnreachable) {
3321 // Conditional branch to the default block.
3322 SDValue RangeCmp = DAG.getSetCC(dl,
3323 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
3324 RangeSub.getValueType()),
3325 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
3326 ISD::SETUGT);
3327
3328 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3329 DAG.getBasicBlock(B.Default));
3330 }
3331
3332 // Avoid emitting unnecessary branches to the next block.
3333 if (MBB != NextBlock(SwitchBB))
3334 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
3335
3336 DAG.setRoot(Root);
3337}
3338
3339/// visitBitTestCase - this function produces one "bit test"
3341 MachineBasicBlock *NextMBB,
3342 BranchProbability BranchProbToNext,
3343 Register Reg, BitTestCase &B,
3344 MachineBasicBlock *SwitchBB) {
3345 SDLoc dl = getCurSDLoc();
3346 MVT VT = BB.RegVT;
3347 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
3348 SDValue Cmp;
3349 unsigned PopCount = llvm::popcount(B.Mask);
3350 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3351 if (PopCount == 1) {
3352 // Testing for a single bit; just compare the shift count with what it
3353 // would need to be to shift a 1 bit in that position.
3354 Cmp = DAG.getSetCC(
3355 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3356 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
3357 ISD::SETEQ);
3358 } else if (PopCount == BB.Range) {
3359 // There is only one zero bit in the range, test for it directly.
3360 Cmp = DAG.getSetCC(
3361 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3362 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
3363 } else {
3364 // Make desired shift
3365 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
3366 DAG.getConstant(1, dl, VT), ShiftOp);
3367
3368 // Emit bit tests and jumps
3369 SDValue AndOp = DAG.getNode(ISD::AND, dl,
3370 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
3371 Cmp = DAG.getSetCC(
3372 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
3373 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
3374 }
3375
3376 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
3377 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
3378 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
3379 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3380 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
3381 // one as they are relative probabilities (and thus work more like weights),
3382 // and hence we need to normalize them to let the sum of them become one.
3383 SwitchBB->normalizeSuccProbs();
3384
3385 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
3386 MVT::Other, getControlRoot(),
3387 Cmp, DAG.getBasicBlock(B.TargetBB));
3388
3389 // Avoid emitting unnecessary branches to the next block.
3390 if (NextMBB != NextBlock(SwitchBB))
3391 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3392 DAG.getBasicBlock(NextMBB));
3393
3394 DAG.setRoot(BrAnd);
3395}
3396
3397void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3398 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3399
3400 // Retrieve successors. Look through artificial IR level blocks like
3401 // catchswitch for successors.
3402 MachineBasicBlock *Return = FuncInfo.getMBB(I.getSuccessor(0));
3403 const BasicBlock *EHPadBB = I.getSuccessor(1);
3404 MachineBasicBlock *EHPadMBB = FuncInfo.getMBB(EHPadBB);
3405
3406 // Deopt and ptrauth bundles are lowered in helper functions, and we don't
3407 // have to do anything here to lower funclet bundles.
3408 failForInvalidBundles(I, "invokes",
3414
3415 const Value *Callee(I.getCalledOperand());
3416 const Function *Fn = dyn_cast<Function>(Callee);
3417 if (isa<InlineAsm>(Callee))
3418 visitInlineAsm(I, EHPadBB);
3419 else if (Fn && Fn->isIntrinsic()) {
3420 switch (Fn->getIntrinsicID()) {
3421 default:
3422 llvm_unreachable("Cannot invoke this intrinsic");
3423 case Intrinsic::donothing:
3424 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3425 case Intrinsic::seh_try_begin:
3426 case Intrinsic::seh_scope_begin:
3427 case Intrinsic::seh_try_end:
3428 case Intrinsic::seh_scope_end:
3429 if (EHPadMBB)
3430 // a block referenced by EH table
3431 // so dtor-funclet not removed by opts
3432 EHPadMBB->setMachineBlockAddressTaken();
3433 break;
3434 case Intrinsic::experimental_patchpoint_void:
3435 case Intrinsic::experimental_patchpoint:
3436 visitPatchpoint(I, EHPadBB);
3437 break;
3438 case Intrinsic::experimental_gc_statepoint:
3440 break;
3441 // wasm_throw, wasm_rethrow: This is usually done in visitTargetIntrinsic,
3442 // but these intrinsics are special because they can be invoked, so we
3443 // manually lower it to a DAG node here.
3444 case Intrinsic::wasm_throw: {
3446 std::array<SDValue, 4> Ops = {
3447 getControlRoot(), // inchain for the terminator node
3448 DAG.getTargetConstant(Intrinsic::wasm_throw, getCurSDLoc(),
3450 getValue(I.getArgOperand(0)), // tag
3451 getValue(I.getArgOperand(1)) // thrown value
3452 };
3453 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3454 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3455 break;
3456 }
3457 case Intrinsic::wasm_rethrow: {
3458 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3459 std::array<SDValue, 2> Ops = {
3460 getControlRoot(), // inchain for the terminator node
3461 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3462 TLI.getPointerTy(DAG.getDataLayout()))};
3463 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3464 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3465 break;
3466 }
3467 }
3468 } else if (I.hasDeoptState()) {
3469 // Currently we do not lower any intrinsic calls with deopt operand bundles.
3470 // Eventually we will support lowering the @llvm.experimental.deoptimize
3471 // intrinsic, and right now there are no plans to support other intrinsics
3472 // with deopt state.
3473 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3474 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
3476 } else {
3477 LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3478 }
3479
3480 // If the value of the invoke is used outside of its defining block, make it
3481 // available as a virtual register.
3482 // We already took care of the exported value for the statepoint instruction
3483 // during call to the LowerStatepoint.
3484 if (!isa<GCStatepointInst>(I)) {
3486 }
3487
3489 BranchProbabilityInfo *BPI = FuncInfo.BPI;
3490 BranchProbability EHPadBBProb =
3491 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3493 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3494
3495 // Update successor info.
3496 addSuccessorWithProb(InvokeMBB, Return);
3497 for (auto &UnwindDest : UnwindDests) {
3498 UnwindDest.first->setIsEHPad();
3499 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3500 }
3501 InvokeMBB->normalizeSuccProbs();
3502
3503 // Drop into normal successor.
3504 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3505 DAG.getBasicBlock(Return)));
3506}
3507
3508/// The intrinsics currently supported by callbr are implicit control flow
3509/// intrinsics such as amdgcn.kill.
3510/// - they should be called (no "dontcall-" attributes)
3511/// - they do not touch memory on the target (= !TLI.getTgtMemIntrinsic())
3512/// - they do not need custom argument handling (no
3513/// TLI.CollectTargetIntrinsicOperands())
3514void SelectionDAGBuilder::visitCallBrIntrinsic(const CallBrInst &I) {
3515 TargetLowering::IntrinsicInfo Info;
3516 assert(!DAG.getTargetLoweringInfo().getTgtMemIntrinsic(
3517 Info, I, DAG.getMachineFunction(), I.getIntrinsicID()) &&
3518 "Intrinsic touches memory");
3519
3520 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
3521
3523 getTargetIntrinsicOperands(I, HasChain, OnlyLoad);
3524 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
3525
3526 // Create the node.
3527 SDValue Result =
3528 getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
3529 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
3530
3531 setValue(&I, Result);
3532}
3533
3534void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3535 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3536
3537 if (I.isInlineAsm()) {
3538 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3539 // have to do anything here to lower funclet bundles.
3540 failForInvalidBundles(I, "callbrs",
3542 visitInlineAsm(I);
3543 } else {
3544 assert(!I.hasOperandBundles() &&
3545 "Can't have operand bundles for intrinsics");
3546 visitCallBrIntrinsic(I);
3547 }
3549
3550 // Retrieve successors.
3551 SmallPtrSet<BasicBlock *, 8> Dests;
3552 Dests.insert(I.getDefaultDest());
3553 MachineBasicBlock *Return = FuncInfo.getMBB(I.getDefaultDest());
3554
3555 // Update successor info.
3556 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3557 // TODO: For most of the cases where there is an intrinsic callbr, we're
3558 // having exactly one indirect target, which will be unreachable. As soon as
3559 // this changes, we might need to enhance
3560 // Target->setIsInlineAsmBrIndirectTarget or add something similar for
3561 // intrinsic indirect branches.
3562 if (I.isInlineAsm()) {
3563 for (BasicBlock *Dest : I.getIndirectDests()) {
3564 MachineBasicBlock *Target = FuncInfo.getMBB(Dest);
3565 Target->setIsInlineAsmBrIndirectTarget();
3566 // If we introduce a type of asm goto statement that is permitted to use
3567 // an indirect call instruction to jump to its labels, then we should add
3568 // a call to Target->setMachineBlockAddressTaken() here, to mark the
3569 // target block as requiring a BTI.
3570
3571 Target->setLabelMustBeEmitted();
3572 // Don't add duplicate machine successors.
3573 if (Dests.insert(Dest).second)
3574 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3575 }
3576 }
3577 CallBrMBB->normalizeSuccProbs();
3578
3579 // Drop into default successor.
3580 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3581 MVT::Other, getControlRoot(),
3582 DAG.getBasicBlock(Return)));
3583}
3584
3585void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3586 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3587}
3588
3589void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3590 assert(FuncInfo.MBB->isEHPad() &&
3591 "Call to landingpad not in landing pad!");
3592
3593 // If there aren't registers to copy the values into (e.g., during SjLj
3594 // exceptions), then don't bother to create these DAG nodes.
3595 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3596 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3597 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3598 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3599 return;
3600
3601 // If landingpad's return type is token type, we don't create DAG nodes
3602 // for its exception pointer and selector value. The extraction of exception
3603 // pointer or selector value from token type landingpads is not currently
3604 // supported.
3605 if (LP.getType()->isTokenTy())
3606 return;
3607
3608 SmallVector<EVT, 2> ValueVTs;
3609 SDLoc dl = getCurSDLoc();
3610 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3611 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3612
3613 // Get the two live-in registers as SDValues. The physregs have already been
3614 // copied into virtual registers.
3615 SDValue Ops[2];
3616 if (FuncInfo.ExceptionPointerVirtReg) {
3617 Ops[0] = DAG.getZExtOrTrunc(
3618 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3619 FuncInfo.ExceptionPointerVirtReg,
3620 TLI.getPointerTy(DAG.getDataLayout())),
3621 dl, ValueVTs[0]);
3622 } else {
3623 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3624 }
3625 Ops[1] = DAG.getZExtOrTrunc(
3626 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3627 FuncInfo.ExceptionSelectorVirtReg,
3628 TLI.getPointerTy(DAG.getDataLayout())),
3629 dl, ValueVTs[1]);
3630
3631 // Merge into one.
3632 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3633 DAG.getVTList(ValueVTs), Ops);
3634 setValue(&LP, Res);
3635}
3636
3639 // Update JTCases.
3640 for (JumpTableBlock &JTB : SL->JTCases)
3641 if (JTB.first.HeaderBB == First)
3642 JTB.first.HeaderBB = Last;
3643
3644 // Update BitTestCases.
3645 for (BitTestBlock &BTB : SL->BitTestCases)
3646 if (BTB.Parent == First)
3647 BTB.Parent = Last;
3648}
3649
3650void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3651 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3652
3653 // Update machine-CFG edges with unique successors.
3655 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3656 BasicBlock *BB = I.getSuccessor(i);
3657 bool Inserted = Done.insert(BB).second;
3658 if (!Inserted)
3659 continue;
3660
3661 MachineBasicBlock *Succ = FuncInfo.getMBB(BB);
3662 addSuccessorWithProb(IndirectBrMBB, Succ);
3663 }
3664 IndirectBrMBB->normalizeSuccProbs();
3665
3667 MVT::Other, getControlRoot(),
3668 getValue(I.getAddress())));
3669}
3670
3671void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3672 if (!I.shouldLowerToTrap(DAG.getTarget().Options.TrapUnreachable,
3673 DAG.getTarget().Options.NoTrapAfterNoreturn))
3674 return;
3675
3676 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3677}
3678
3679void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3680 SDNodeFlags Flags;
3681 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3682 Flags.copyFMF(*FPOp);
3683
3684 SDValue Op = getValue(I.getOperand(0));
3685 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3686 Op, Flags);
3687 setValue(&I, UnNodeValue);
3688}
3689
3690void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3691 SDNodeFlags Flags;
3692 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3693 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3694 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3695 }
3696 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3697 Flags.setExact(ExactOp->isExact());
3698 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I))
3699 Flags.setDisjoint(DisjointOp->isDisjoint());
3700 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3701 Flags.copyFMF(*FPOp);
3702
3703 SDValue Op1 = getValue(I.getOperand(0));
3704 SDValue Op2 = getValue(I.getOperand(1));
3705 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3706 Op1, Op2, Flags);
3707 setValue(&I, BinNodeValue);
3708}
3709
3710void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3711 SDValue Op1 = getValue(I.getOperand(0));
3712 SDValue Op2 = getValue(I.getOperand(1));
3713
3714 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3715 Op1.getValueType(), DAG.getDataLayout());
3716
3717 // Coerce the shift amount to the right type if we can. This exposes the
3718 // truncate or zext to optimization early.
3719 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3721 "Unexpected shift type");
3722 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3723 }
3724
3725 bool nuw = false;
3726 bool nsw = false;
3727 bool exact = false;
3728
3729 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3730
3731 if (const OverflowingBinaryOperator *OFBinOp =
3733 nuw = OFBinOp->hasNoUnsignedWrap();
3734 nsw = OFBinOp->hasNoSignedWrap();
3735 }
3736 if (const PossiblyExactOperator *ExactOp =
3738 exact = ExactOp->isExact();
3739 }
3740 SDNodeFlags Flags;
3741 Flags.setExact(exact);
3742 Flags.setNoSignedWrap(nsw);
3743 Flags.setNoUnsignedWrap(nuw);
3744 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3745 Flags);
3746 setValue(&I, Res);
3747}
3748
3749void SelectionDAGBuilder::visitSDiv(const User &I) {
3750 SDValue Op1 = getValue(I.getOperand(0));
3751 SDValue Op2 = getValue(I.getOperand(1));
3752
3753 SDNodeFlags Flags;
3754 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3755 cast<PossiblyExactOperator>(&I)->isExact());
3756 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3757 Op2, Flags));
3758}
3759
3760void SelectionDAGBuilder::visitICmp(const ICmpInst &I) {
3761 ICmpInst::Predicate predicate = I.getPredicate();
3762 SDValue Op1 = getValue(I.getOperand(0));
3763 SDValue Op2 = getValue(I.getOperand(1));
3764 ISD::CondCode Opcode = getICmpCondCode(predicate);
3765
3766 auto &TLI = DAG.getTargetLoweringInfo();
3767 EVT MemVT =
3768 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3769
3770 // If a pointer's DAG type is larger than its memory type then the DAG values
3771 // are zero-extended. This breaks signed comparisons so truncate back to the
3772 // underlying type before doing the compare.
3773 if (Op1.getValueType() != MemVT) {
3774 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3775 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3776 }
3777
3778 SDNodeFlags Flags;
3779 Flags.setSameSign(I.hasSameSign());
3780 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3781
3782 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3783 I.getType());
3784 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3785}
3786
3787void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) {
3788 FCmpInst::Predicate predicate = I.getPredicate();
3789 SDValue Op1 = getValue(I.getOperand(0));
3790 SDValue Op2 = getValue(I.getOperand(1));
3791
3792 ISD::CondCode Condition = getFCmpCondCode(predicate);
3793 auto *FPMO = cast<FPMathOperator>(&I);
3794 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3795 Condition = getFCmpCodeWithoutNaN(Condition);
3796
3797 SDNodeFlags Flags;
3798 Flags.copyFMF(*FPMO);
3799 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3800
3801 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3802 I.getType());
3803 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3804}
3805
3806// Check if the condition of the select has one use or two users that are both
3807// selects with the same condition.
3808static bool hasOnlySelectUsers(const Value *Cond) {
3809 return llvm::all_of(Cond->users(), [](const Value *V) {
3810 return isa<SelectInst>(V);
3811 });
3812}
3813
3814void SelectionDAGBuilder::visitSelect(const User &I) {
3815 SmallVector<EVT, 4> ValueVTs;
3816 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3817 ValueVTs);
3818 unsigned NumValues = ValueVTs.size();
3819 if (NumValues == 0) return;
3820
3821 SmallVector<SDValue, 4> Values(NumValues);
3822 SDValue Cond = getValue(I.getOperand(0));
3823 SDValue LHSVal = getValue(I.getOperand(1));
3824 SDValue RHSVal = getValue(I.getOperand(2));
3825 SmallVector<SDValue, 1> BaseOps(1, Cond);
3827 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3828
3829 bool IsUnaryAbs = false;
3830 bool Negate = false;
3831
3832 SDNodeFlags Flags;
3833 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3834 Flags.copyFMF(*FPOp);
3835
3836 Flags.setUnpredictable(
3837 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3838
3839 // Min/max matching is only viable if all output VTs are the same.
3840 if (all_equal(ValueVTs)) {
3841 EVT VT = ValueVTs[0];
3842 LLVMContext &Ctx = *DAG.getContext();
3843 auto &TLI = DAG.getTargetLoweringInfo();
3844
3845 // We care about the legality of the operation after it has been type
3846 // legalized.
3847 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3848 VT = TLI.getTypeToTransformTo(Ctx, VT);
3849
3850 // If the vselect is legal, assume we want to leave this as a vector setcc +
3851 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3852 // min/max is legal on the scalar type.
3853 bool UseScalarMinMax = VT.isVector() &&
3855
3856 // ValueTracking's select pattern matching does not account for -0.0,
3857 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3858 // -0.0 is less than +0.0.
3859 const Value *LHS, *RHS;
3860 auto SPR = matchSelectPattern(&I, LHS, RHS);
3862 switch (SPR.Flavor) {
3863 case SPF_UMAX: Opc = ISD::UMAX; break;
3864 case SPF_UMIN: Opc = ISD::UMIN; break;
3865 case SPF_SMAX: Opc = ISD::SMAX; break;
3866 case SPF_SMIN: Opc = ISD::SMIN; break;
3867 case SPF_FMINNUM:
3868 switch (SPR.NaNBehavior) {
3869 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3870 case SPNB_RETURNS_NAN: break;
3871 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3872 case SPNB_RETURNS_ANY:
3874 (UseScalarMinMax &&
3876 Opc = ISD::FMINNUM;
3877 break;
3878 }
3879 break;
3880 case SPF_FMAXNUM:
3881 switch (SPR.NaNBehavior) {
3882 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3883 case SPNB_RETURNS_NAN: break;
3884 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3885 case SPNB_RETURNS_ANY:
3887 (UseScalarMinMax &&
3889 Opc = ISD::FMAXNUM;
3890 break;
3891 }
3892 break;
3893 case SPF_NABS:
3894 Negate = true;
3895 [[fallthrough]];
3896 case SPF_ABS:
3897 IsUnaryAbs = true;
3898 Opc = ISD::ABS;
3899 break;
3900 default: break;
3901 }
3902
3903 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3904 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3905 (UseScalarMinMax &&
3907 // If the underlying comparison instruction is used by any other
3908 // instruction, the consumed instructions won't be destroyed, so it is
3909 // not profitable to convert to a min/max.
3911 OpCode = Opc;
3912 LHSVal = getValue(LHS);
3913 RHSVal = getValue(RHS);
3914 BaseOps.clear();
3915 }
3916
3917 if (IsUnaryAbs) {
3918 OpCode = Opc;
3919 LHSVal = getValue(LHS);
3920 BaseOps.clear();
3921 }
3922 }
3923
3924 if (IsUnaryAbs) {
3925 for (unsigned i = 0; i != NumValues; ++i) {
3926 SDLoc dl = getCurSDLoc();
3927 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3928 Values[i] =
3929 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3930 if (Negate)
3931 Values[i] = DAG.getNegative(Values[i], dl, VT);
3932 }
3933 } else {
3934 for (unsigned i = 0; i != NumValues; ++i) {
3935 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3936 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3937 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3938 Values[i] = DAG.getNode(
3939 OpCode, getCurSDLoc(),
3940 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3941 }
3942 }
3943
3945 DAG.getVTList(ValueVTs), Values));
3946}
3947
3948void SelectionDAGBuilder::visitTrunc(const User &I) {
3949 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3950 SDValue N = getValue(I.getOperand(0));
3951 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3952 I.getType());
3953 SDNodeFlags Flags;
3954 if (auto *Trunc = dyn_cast<TruncInst>(&I)) {
3955 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap());
3956 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap());
3957 }
3958
3959 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N, Flags));
3960}
3961
3962void SelectionDAGBuilder::visitZExt(const User &I) {
3963 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3964 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3965 SDValue N = getValue(I.getOperand(0));
3966 auto &TLI = DAG.getTargetLoweringInfo();
3967 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3968
3969 SDNodeFlags Flags;
3970 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
3971 Flags.setNonNeg(PNI->hasNonNeg());
3972
3973 // Eagerly use nonneg information to canonicalize towards sign_extend if
3974 // that is the target's preference.
3975 // TODO: Let the target do this later.
3976 if (Flags.hasNonNeg() &&
3977 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) {
3978 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3979 return;
3980 }
3981
3982 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags));
3983}
3984
3985void SelectionDAGBuilder::visitSExt(const User &I) {
3986 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3987 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3988 SDValue N = getValue(I.getOperand(0));
3989 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3990 I.getType());
3991 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3992}
3993
3994void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3995 // FPTrunc is never a no-op cast, no need to check
3996 SDValue N = getValue(I.getOperand(0));
3997 SDLoc dl = getCurSDLoc();
3998 SDNodeFlags Flags;
3999 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
4000 Flags.copyFMF(*FPOp);
4001 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4002 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4003 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
4004 DAG.getTargetConstant(
4005 0, dl, TLI.getPointerTy(DAG.getDataLayout())),
4006 Flags));
4007}
4008
4009void SelectionDAGBuilder::visitFPExt(const User &I) {
4010 // FPExt is never a no-op cast, no need to check
4011 SDValue N = getValue(I.getOperand(0));
4012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4013 I.getType());
4014 SDNodeFlags Flags;
4015 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
4016 Flags.copyFMF(*FPOp);
4017 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N, Flags));
4018}
4019
4020void SelectionDAGBuilder::visitFPToUI(const User &I) {
4021 // FPToUI is never a no-op cast, no need to check
4022 SDValue N = getValue(I.getOperand(0));
4023 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4024 I.getType());
4025 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
4026}
4027
4028void SelectionDAGBuilder::visitFPToSI(const User &I) {
4029 // FPToSI is never a no-op cast, no need to check
4030 SDValue N = getValue(I.getOperand(0));
4031 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4032 I.getType());
4033 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
4034}
4035
4036void SelectionDAGBuilder::visitUIToFP(const User &I) {
4037 // UIToFP is never a no-op cast, no need to check
4038 SDValue N = getValue(I.getOperand(0));
4039 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4040 I.getType());
4041 SDNodeFlags Flags;
4042 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I))
4043 Flags.setNonNeg(PNI->hasNonNeg());
4044
4045 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags));
4046}
4047
4048void SelectionDAGBuilder::visitSIToFP(const User &I) {
4049 // SIToFP is never a no-op cast, no need to check
4050 SDValue N = getValue(I.getOperand(0));
4051 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4052 I.getType());
4053 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
4054}
4055
4056void SelectionDAGBuilder::visitPtrToAddr(const User &I) {
4057 SDValue N = getValue(I.getOperand(0));
4058 // By definition the type of the ptrtoaddr must be equal to the address type.
4059 const auto &TLI = DAG.getTargetLoweringInfo();
4060 EVT AddrVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4061 // The address width must be smaller or equal to the pointer representation
4062 // width, so we lower ptrtoaddr as a truncate (possibly folded to a no-op).
4063 N = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), AddrVT, N);
4064 setValue(&I, N);
4065}
4066
4067void SelectionDAGBuilder::visitPtrToInt(const User &I) {
4068 // What to do depends on the size of the integer and the size of the pointer.
4069 // We can either truncate, zero extend, or no-op, accordingly.
4070 SDValue N = getValue(I.getOperand(0));
4071 auto &TLI = DAG.getTargetLoweringInfo();
4072 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4073 I.getType());
4074 EVT PtrMemVT =
4075 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
4076 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4077 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
4078 setValue(&I, N);
4079}
4080
4081void SelectionDAGBuilder::visitIntToPtr(const User &I) {
4082 // What to do depends on the size of the integer and the size of the pointer.
4083 // We can either truncate, zero extend, or no-op, accordingly.
4084 SDValue N = getValue(I.getOperand(0));
4085 auto &TLI = DAG.getTargetLoweringInfo();
4086 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4087 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4088 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
4089 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
4090 setValue(&I, N);
4091}
4092
4093void SelectionDAGBuilder::visitBitCast(const User &I) {
4094 SDValue N = getValue(I.getOperand(0));
4095 SDLoc dl = getCurSDLoc();
4096 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
4097 I.getType());
4098
4099 // BitCast assures us that source and destination are the same size so this is
4100 // either a BITCAST or a no-op.
4101 if (DestVT != N.getValueType())
4102 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
4103 DestVT, N)); // convert types.
4104 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
4105 // might fold any kind of constant expression to an integer constant and that
4106 // is not what we are looking for. Only recognize a bitcast of a genuine
4107 // constant integer as an opaque constant.
4108 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
4109 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
4110 /*isOpaque*/true));
4111 else
4112 setValue(&I, N); // noop cast.
4113}
4114
4115void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
4116 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4117 const Value *SV = I.getOperand(0);
4118 SDValue N = getValue(SV);
4119 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4120
4121 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
4122 unsigned DestAS = I.getType()->getPointerAddressSpace();
4123
4124 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
4125 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
4126
4127 setValue(&I, N);
4128}
4129
4130void SelectionDAGBuilder::visitInsertElement(const User &I) {
4131 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4132 SDValue InVec = getValue(I.getOperand(0));
4133 SDValue InVal = getValue(I.getOperand(1));
4134 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
4135 TLI.getVectorIdxTy(DAG.getDataLayout()));
4137 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4138 InVec, InVal, InIdx));
4139}
4140
4141void SelectionDAGBuilder::visitExtractElement(const User &I) {
4142 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4143 SDValue InVec = getValue(I.getOperand(0));
4144 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
4145 TLI.getVectorIdxTy(DAG.getDataLayout()));
4147 TLI.getValueType(DAG.getDataLayout(), I.getType()),
4148 InVec, InIdx));
4149}
4150
4151void SelectionDAGBuilder::visitShuffleVector(const User &I) {
4152 SDValue Src1 = getValue(I.getOperand(0));
4153 SDValue Src2 = getValue(I.getOperand(1));
4154 ArrayRef<int> Mask;
4155 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
4156 Mask = SVI->getShuffleMask();
4157 else
4158 Mask = cast<ConstantExpr>(I).getShuffleMask();
4159 SDLoc DL = getCurSDLoc();
4160 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4161 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4162 EVT SrcVT = Src1.getValueType();
4163
4164 if (all_of(Mask, equal_to(0)) && VT.isScalableVector()) {
4165 // Canonical splat form of first element of first input vector.
4166 SDValue FirstElt =
4167 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
4168 DAG.getVectorIdxConstant(0, DL));
4169 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
4170 return;
4171 }
4172
4173 // For now, we only handle splats for scalable vectors.
4174 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
4175 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
4176 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
4177
4178 unsigned SrcNumElts = SrcVT.getVectorNumElements();
4179 unsigned MaskNumElts = Mask.size();
4180
4181 if (SrcNumElts == MaskNumElts) {
4182 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
4183 return;
4184 }
4185
4186 // Normalize the shuffle vector since mask and vector length don't match.
4187 if (SrcNumElts < MaskNumElts) {
4188 // Mask is longer than the source vectors. We can use concatenate vector to
4189 // make the mask and vectors lengths match.
4190
4191 if (MaskNumElts % SrcNumElts == 0) {
4192 // Mask length is a multiple of the source vector length.
4193 // Check if the shuffle is some kind of concatenation of the input
4194 // vectors.
4195 unsigned NumConcat = MaskNumElts / SrcNumElts;
4196 bool IsConcat = true;
4197 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4198 for (unsigned i = 0; i != MaskNumElts; ++i) {
4199 int Idx = Mask[i];
4200 if (Idx < 0)
4201 continue;
4202 // Ensure the indices in each SrcVT sized piece are sequential and that
4203 // the same source is used for the whole piece.
4204 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4205 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4206 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
4207 IsConcat = false;
4208 break;
4209 }
4210 // Remember which source this index came from.
4211 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4212 }
4213
4214 // The shuffle is concatenating multiple vectors together. Just emit
4215 // a CONCAT_VECTORS operation.
4216 if (IsConcat) {
4217 SmallVector<SDValue, 8> ConcatOps;
4218 for (auto Src : ConcatSrcs) {
4219 if (Src < 0)
4220 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
4221 else if (Src == 0)
4222 ConcatOps.push_back(Src1);
4223 else
4224 ConcatOps.push_back(Src2);
4225 }
4226 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
4227 return;
4228 }
4229 }
4230
4231 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
4232 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4233 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
4234 PaddedMaskNumElts);
4235
4236 // Pad both vectors with undefs to make them the same length as the mask.
4237 SDValue UndefVal = DAG.getUNDEF(SrcVT);
4238
4239 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
4240 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
4241 MOps1[0] = Src1;
4242 MOps2[0] = Src2;
4243
4244 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
4245 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
4246
4247 // Readjust mask for new input vector length.
4248 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4249 for (unsigned i = 0; i != MaskNumElts; ++i) {
4250 int Idx = Mask[i];
4251 if (Idx >= (int)SrcNumElts)
4252 Idx -= SrcNumElts - PaddedMaskNumElts;
4253 MappedOps[i] = Idx;
4254 }
4255
4256 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
4257
4258 // If the concatenated vector was padded, extract a subvector with the
4259 // correct number of elements.
4260 if (MaskNumElts != PaddedMaskNumElts)
4261 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
4262 DAG.getVectorIdxConstant(0, DL));
4263
4264 setValue(&I, Result);
4265 return;
4266 }
4267
4268 assert(SrcNumElts > MaskNumElts);
4269
4270 // Analyze the access pattern of the vector to see if we can extract
4271 // two subvectors and do the shuffle.
4272 int StartIdx[2] = {-1, -1}; // StartIdx to extract from
4273 bool CanExtract = true;
4274 for (int Idx : Mask) {
4275 unsigned Input = 0;
4276 if (Idx < 0)
4277 continue;
4278
4279 if (Idx >= (int)SrcNumElts) {
4280 Input = 1;
4281 Idx -= SrcNumElts;
4282 }
4283
4284 // If all the indices come from the same MaskNumElts sized portion of
4285 // the sources we can use extract. Also make sure the extract wouldn't
4286 // extract past the end of the source.
4287 int NewStartIdx = alignDown(Idx, MaskNumElts);
4288 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4289 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4290 CanExtract = false;
4291 // Make sure we always update StartIdx as we use it to track if all
4292 // elements are undef.
4293 StartIdx[Input] = NewStartIdx;
4294 }
4295
4296 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4297 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
4298 return;
4299 }
4300 if (CanExtract) {
4301 // Extract appropriate subvector and generate a vector shuffle
4302 for (unsigned Input = 0; Input < 2; ++Input) {
4303 SDValue &Src = Input == 0 ? Src1 : Src2;
4304 if (StartIdx[Input] < 0)
4305 Src = DAG.getUNDEF(VT);
4306 else {
4307 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
4308 DAG.getVectorIdxConstant(StartIdx[Input], DL));
4309 }
4310 }
4311
4312 // Calculate new mask.
4313 SmallVector<int, 8> MappedOps(Mask);
4314 for (int &Idx : MappedOps) {
4315 if (Idx >= (int)SrcNumElts)
4316 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4317 else if (Idx >= 0)
4318 Idx -= StartIdx[0];
4319 }
4320
4321 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
4322 return;
4323 }
4324
4325 // We can't use either concat vectors or extract subvectors so fall back to
4326 // replacing the shuffle with extract and build vector.
4327 // to insert and build vector.
4328 EVT EltVT = VT.getVectorElementType();
4330 for (int Idx : Mask) {
4331 SDValue Res;
4332
4333 if (Idx < 0) {
4334 Res = DAG.getUNDEF(EltVT);
4335 } else {
4336 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4337 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
4338
4339 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
4340 DAG.getVectorIdxConstant(Idx, DL));
4341 }
4342
4343 Ops.push_back(Res);
4344 }
4345
4346 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
4347}
4348
4349void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
4350 ArrayRef<unsigned> Indices = I.getIndices();
4351 const Value *Op0 = I.getOperand(0);
4352 const Value *Op1 = I.getOperand(1);
4353 Type *AggTy = I.getType();
4354 Type *ValTy = Op1->getType();
4355 bool IntoUndef = isa<UndefValue>(Op0);
4356 bool FromUndef = isa<UndefValue>(Op1);
4357
4358 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4359
4360 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4361 SmallVector<EVT, 4> AggValueVTs;
4362 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
4363 SmallVector<EVT, 4> ValValueVTs;
4364 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4365
4366 unsigned NumAggValues = AggValueVTs.size();
4367 unsigned NumValValues = ValValueVTs.size();
4368 SmallVector<SDValue, 4> Values(NumAggValues);
4369
4370 // Ignore an insertvalue that produces an empty object
4371 if (!NumAggValues) {
4372 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4373 return;
4374 }
4375
4376 SDValue Agg = getValue(Op0);
4377 unsigned i = 0;
4378 // Copy the beginning value(s) from the original aggregate.
4379 for (; i != LinearIndex; ++i)
4380 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4381 SDValue(Agg.getNode(), Agg.getResNo() + i);
4382 // Copy values from the inserted value(s).
4383 if (NumValValues) {
4384 SDValue Val = getValue(Op1);
4385 for (; i != LinearIndex + NumValValues; ++i)
4386 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4387 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
4388 }
4389 // Copy remaining value(s) from the original aggregate.
4390 for (; i != NumAggValues; ++i)
4391 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
4392 SDValue(Agg.getNode(), Agg.getResNo() + i);
4393
4395 DAG.getVTList(AggValueVTs), Values));
4396}
4397
4398void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
4399 ArrayRef<unsigned> Indices = I.getIndices();
4400 const Value *Op0 = I.getOperand(0);
4401 Type *AggTy = Op0->getType();
4402 Type *ValTy = I.getType();
4403 bool OutOfUndef = isa<UndefValue>(Op0);
4404
4405 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
4406
4407 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4408 SmallVector<EVT, 4> ValValueVTs;
4409 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
4410
4411 unsigned NumValValues = ValValueVTs.size();
4412
4413 // Ignore a extractvalue that produces an empty object
4414 if (!NumValValues) {
4415 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
4416 return;
4417 }
4418
4419 SmallVector<SDValue, 4> Values(NumValValues);
4420
4421 SDValue Agg = getValue(Op0);
4422 // Copy out the selected value(s).
4423 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4424 Values[i - LinearIndex] =
4425 OutOfUndef ?
4426 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
4427 SDValue(Agg.getNode(), Agg.getResNo() + i);
4428
4430 DAG.getVTList(ValValueVTs), Values));
4431}
4432
4433void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
4434 Value *Op0 = I.getOperand(0);
4435 // Note that the pointer operand may be a vector of pointers. Take the scalar
4436 // element which holds a pointer.
4437 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
4438 SDValue N = getValue(Op0);
4439 SDLoc dl = getCurSDLoc();
4440 auto &TLI = DAG.getTargetLoweringInfo();
4441 GEPNoWrapFlags NW = cast<GEPOperator>(I).getNoWrapFlags();
4442
4443 // For a vector GEP, keep the prefix scalar as long as possible, then
4444 // convert any scalars encountered after the first vector operand to vectors.
4445 bool IsVectorGEP = I.getType()->isVectorTy();
4446 ElementCount VectorElementCount =
4447 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
4449
4451 GTI != E; ++GTI) {
4452 const Value *Idx = GTI.getOperand();
4453 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4454 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
4455 if (Field) {
4456 // N = N + Offset
4457 uint64_t Offset =
4458 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
4459
4460 // In an inbounds GEP with an offset that is nonnegative even when
4461 // interpreted as signed, assume there is no unsigned overflow.
4462 SDNodeFlags Flags;
4463 if (NW.hasNoUnsignedWrap() ||
4464 (int64_t(Offset) >= 0 && NW.hasNoUnsignedSignedWrap()))
4466 Flags.setInBounds(NW.isInBounds());
4467
4468 N = DAG.getMemBasePlusOffset(
4469 N, DAG.getConstant(Offset, dl, N.getValueType()), dl, Flags);
4470 }
4471 } else {
4472 // IdxSize is the width of the arithmetic according to IR semantics.
4473 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
4474 // (and fix up the result later).
4475 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4476 MVT IdxTy = MVT::getIntegerVT(IdxSize);
4477 TypeSize ElementSize =
4478 GTI.getSequentialElementStride(DAG.getDataLayout());
4479 // We intentionally mask away the high bits here; ElementSize may not
4480 // fit in IdxTy.
4481 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue(),
4482 /*isSigned=*/false, /*implicitTrunc=*/true);
4483 bool ElementScalable = ElementSize.isScalable();
4484
4485 // If this is a scalar constant or a splat vector of constants,
4486 // handle it quickly.
4487 const auto *C = dyn_cast<Constant>(Idx);
4488 if (C && isa<VectorType>(C->getType()))
4489 C = C->getSplatValue();
4490
4491 const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4492 if (CI && CI->isZero())
4493 continue;
4494 if (CI && !ElementScalable) {
4495 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4496 LLVMContext &Context = *DAG.getContext();
4497 SDValue OffsVal;
4498 if (N.getValueType().isVector())
4499 OffsVal = DAG.getConstant(
4500 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4501 else
4502 OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4503
4504 // In an inbounds GEP with an offset that is nonnegative even when
4505 // interpreted as signed, assume there is no unsigned overflow.
4506 SDNodeFlags Flags;
4507 if (NW.hasNoUnsignedWrap() ||
4508 (Offs.isNonNegative() && NW.hasNoUnsignedSignedWrap()))
4509 Flags.setNoUnsignedWrap(true);
4510 Flags.setInBounds(NW.isInBounds());
4511
4512 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4513
4514 N = DAG.getMemBasePlusOffset(N, OffsVal, dl, Flags);
4515 continue;
4516 }
4517
4518 // N = N + Idx * ElementMul;
4519 SDValue IdxN = getValue(Idx);
4520
4521 if (IdxN.getValueType().isVector() != N.getValueType().isVector()) {
4522 if (N.getValueType().isVector()) {
4523 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4524 VectorElementCount);
4525 IdxN = DAG.getSplat(VT, dl, IdxN);
4526 } else {
4527 EVT VT =
4528 EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4529 N = DAG.getSplat(VT, dl, N);
4530 }
4531 }
4532
4533 // If the index is smaller or larger than intptr_t, truncate or extend
4534 // it.
4535 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4536
4537 SDNodeFlags ScaleFlags;
4538 // The multiplication of an index by the type size does not wrap the
4539 // pointer index type in a signed sense (mul nsw).
4541
4542 // The multiplication of an index by the type size does not wrap the
4543 // pointer index type in an unsigned sense (mul nuw).
4544 ScaleFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4545
4546 if (ElementScalable) {
4547 EVT VScaleTy = N.getValueType().getScalarType();
4548 SDValue VScale = DAG.getNode(
4549 ISD::VSCALE, dl, VScaleTy,
4550 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4551 if (N.getValueType().isVector())
4552 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4553 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale,
4554 ScaleFlags);
4555 } else {
4556 // If this is a multiply by a power of two, turn it into a shl
4557 // immediately. This is a very common case.
4558 if (ElementMul != 1) {
4559 if (ElementMul.isPowerOf2()) {
4560 unsigned Amt = ElementMul.logBase2();
4561 IdxN = DAG.getNode(
4562 ISD::SHL, dl, N.getValueType(), IdxN,
4563 DAG.getShiftAmountConstant(Amt, N.getValueType(), dl),
4564 ScaleFlags);
4565 } else {
4566 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4567 IdxN.getValueType());
4568 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, Scale,
4569 ScaleFlags);
4570 }
4571 }
4572 }
4573
4574 // The successive addition of the current address, truncated to the
4575 // pointer index type and interpreted as an unsigned number, and each
4576 // offset, also interpreted as an unsigned number, does not wrap the
4577 // pointer index type (add nuw).
4578 SDNodeFlags AddFlags;
4579 AddFlags.setNoUnsignedWrap(NW.hasNoUnsignedWrap());
4580 AddFlags.setInBounds(NW.isInBounds());
4581
4582 N = DAG.getMemBasePlusOffset(N, IdxN, dl, AddFlags);
4583 }
4584 }
4585
4586 if (IsVectorGEP && !N.getValueType().isVector()) {
4587 EVT VT = EVT::getVectorVT(*Context, N.getValueType(), VectorElementCount);
4588 N = DAG.getSplat(VT, dl, N);
4589 }
4590
4591 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4592 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4593 if (IsVectorGEP) {
4594 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4595 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4596 }
4597
4598 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4599 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4600
4601 setValue(&I, N);
4602}
4603
4604void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4605 // If this is a fixed sized alloca in the entry block of the function,
4606 // allocate it statically on the stack.
4607 if (FuncInfo.StaticAllocaMap.count(&I))
4608 return; // getValue will auto-populate this.
4609
4610 SDLoc dl = getCurSDLoc();
4611 Type *Ty = I.getAllocatedType();
4612 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4613 auto &DL = DAG.getDataLayout();
4614 TypeSize TySize = DL.getTypeAllocSize(Ty);
4615 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4616
4617 SDValue AllocSize = getValue(I.getArraySize());
4618
4619 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace());
4620 if (AllocSize.getValueType() != IntPtr)
4621 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4622
4623 AllocSize = DAG.getNode(
4624 ISD::MUL, dl, IntPtr, AllocSize,
4625 DAG.getZExtOrTrunc(DAG.getTypeSize(dl, MVT::i64, TySize), dl, IntPtr));
4626
4627 // Handle alignment. If the requested alignment is less than or equal to
4628 // the stack alignment, ignore it. If the size is greater than or equal to
4629 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4630 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4631 if (*Alignment <= StackAlign)
4632 Alignment = std::nullopt;
4633
4634 const uint64_t StackAlignMask = StackAlign.value() - 1U;
4635 // Round the size of the allocation up to the stack alignment size
4636 // by add SA-1 to the size. This doesn't overflow because we're computing
4637 // an address inside an alloca.
4638 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4639 DAG.getConstant(StackAlignMask, dl, IntPtr),
4641
4642 // Mask out the low bits for alignment purposes.
4643 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4644 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4645
4646 SDValue Ops[] = {
4647 getRoot(), AllocSize,
4648 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4649 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4650 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4651 setValue(&I, DSA);
4652 DAG.setRoot(DSA.getValue(1));
4653
4654 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4655}
4656
4657static const MDNode *getRangeMetadata(const Instruction &I) {
4658 return I.getMetadata(LLVMContext::MD_range);
4659}
4660
4661static std::optional<ConstantRange> getRange(const Instruction &I) {
4662 if (const auto *CB = dyn_cast<CallBase>(&I))
4663 if (std::optional<ConstantRange> CR = CB->getRange())
4664 return CR;
4665 if (const MDNode *Range = getRangeMetadata(I))
4667 return std::nullopt;
4668}
4669
4671 if (const auto *CB = dyn_cast<CallBase>(&I))
4672 return CB->getRetNoFPClass();
4673 return fcNone;
4674}
4675
4676void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4677 if (I.isAtomic())
4678 return visitAtomicLoad(I);
4679
4680 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4681 const Value *SV = I.getOperand(0);
4682 if (TLI.supportSwiftError()) {
4683 // Swifterror values can come from either a function parameter with
4684 // swifterror attribute or an alloca with swifterror attribute.
4685 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4686 if (Arg->hasSwiftErrorAttr())
4687 return visitLoadFromSwiftError(I);
4688 }
4689
4690 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4691 if (Alloca->isSwiftError())
4692 return visitLoadFromSwiftError(I);
4693 }
4694 }
4695
4696 SDValue Ptr = getValue(SV);
4697
4698 Type *Ty = I.getType();
4699 SmallVector<EVT, 4> ValueVTs, MemVTs;
4701 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4702 unsigned NumValues = ValueVTs.size();
4703 if (NumValues == 0)
4704 return;
4705
4706 Align Alignment = I.getAlign();
4707 AAMDNodes AAInfo = I.getAAMetadata();
4708 const MDNode *Ranges = getRangeMetadata(I);
4709 bool isVolatile = I.isVolatile();
4710 MachineMemOperand::Flags MMOFlags =
4711 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4712
4713 SDValue Root;
4714 bool ConstantMemory = false;
4715 if (isVolatile)
4716 // Serialize volatile loads with other side effects.
4717 Root = getRoot();
4718 else if (NumValues > MaxParallelChains)
4719 Root = getMemoryRoot();
4720 else if (BatchAA &&
4721 BatchAA->pointsToConstantMemory(MemoryLocation(
4722 SV,
4723 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4724 AAInfo))) {
4725 // Do not serialize (non-volatile) loads of constant memory with anything.
4726 Root = DAG.getEntryNode();
4727 ConstantMemory = true;
4729 } else {
4730 // Do not serialize non-volatile loads against each other.
4731 Root = DAG.getRoot();
4732 }
4733
4734 SDLoc dl = getCurSDLoc();
4735
4736 if (isVolatile)
4737 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4738
4739 SmallVector<SDValue, 4> Values(NumValues);
4740 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4741
4742 unsigned ChainI = 0;
4743 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4744 // Serializing loads here may result in excessive register pressure, and
4745 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4746 // could recover a bit by hoisting nodes upward in the chain by recognizing
4747 // they are side-effect free or do not alias. The optimizer should really
4748 // avoid this case by converting large object/array copies to llvm.memcpy
4749 // (MaxParallelChains should always remain as failsafe).
4750 if (ChainI == MaxParallelChains) {
4751 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4752 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4753 ArrayRef(Chains.data(), ChainI));
4754 Root = Chain;
4755 ChainI = 0;
4756 }
4757
4758 // TODO: MachinePointerInfo only supports a fixed length offset.
4759 MachinePointerInfo PtrInfo =
4760 !Offsets[i].isScalable() || Offsets[i].isZero()
4761 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4762 : MachinePointerInfo();
4763
4764 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4765 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment,
4766 MMOFlags, AAInfo, Ranges);
4767 Chains[ChainI] = L.getValue(1);
4768
4769 if (MemVTs[i] != ValueVTs[i])
4770 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4771
4772 Values[i] = L;
4773 }
4774
4775 if (!ConstantMemory) {
4776 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4777 ArrayRef(Chains.data(), ChainI));
4778 if (isVolatile)
4779 DAG.setRoot(Chain);
4780 else
4781 PendingLoads.push_back(Chain);
4782 }
4783
4784 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4785 DAG.getVTList(ValueVTs), Values));
4786}
4787
4788void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4789 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4790 "call visitStoreToSwiftError when backend supports swifterror");
4791
4792 SmallVector<EVT, 4> ValueVTs;
4793 SmallVector<uint64_t, 4> Offsets;
4794 const Value *SrcV = I.getOperand(0);
4795 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4796 SrcV->getType(), ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4797 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4798 "expect a single EVT for swifterror");
4799
4800 SDValue Src = getValue(SrcV);
4801 // Create a virtual register, then update the virtual register.
4802 Register VReg =
4803 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4804 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4805 // Chain can be getRoot or getControlRoot.
4806 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4807 SDValue(Src.getNode(), Src.getResNo()));
4808 DAG.setRoot(CopyNode);
4809}
4810
4811void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4812 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4813 "call visitLoadFromSwiftError when backend supports swifterror");
4814
4815 assert(!I.isVolatile() &&
4816 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4817 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4818 "Support volatile, non temporal, invariant for load_from_swift_error");
4819
4820 const Value *SV = I.getOperand(0);
4821 Type *Ty = I.getType();
4822 assert(
4823 (!BatchAA ||
4824 !BatchAA->pointsToConstantMemory(MemoryLocation(
4825 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4826 I.getAAMetadata()))) &&
4827 "load_from_swift_error should not be constant memory");
4828
4829 SmallVector<EVT, 4> ValueVTs;
4830 SmallVector<uint64_t, 4> Offsets;
4831 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4832 ValueVTs, /*MemVTs=*/nullptr, &Offsets, 0);
4833 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4834 "expect a single EVT for swifterror");
4835
4836 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4837 SDValue L = DAG.getCopyFromReg(
4838 getRoot(), getCurSDLoc(),
4839 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4840
4841 setValue(&I, L);
4842}
4843
4844void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4845 if (I.isAtomic())
4846 return visitAtomicStore(I);
4847
4848 const Value *SrcV = I.getOperand(0);
4849 const Value *PtrV = I.getOperand(1);
4850
4851 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4852 if (TLI.supportSwiftError()) {
4853 // Swifterror values can come from either a function parameter with
4854 // swifterror attribute or an alloca with swifterror attribute.
4855 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4856 if (Arg->hasSwiftErrorAttr())
4857 return visitStoreToSwiftError(I);
4858 }
4859
4860 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4861 if (Alloca->isSwiftError())
4862 return visitStoreToSwiftError(I);
4863 }
4864 }
4865
4866 SmallVector<EVT, 4> ValueVTs, MemVTs;
4868 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4869 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4870 unsigned NumValues = ValueVTs.size();
4871 if (NumValues == 0)
4872 return;
4873
4874 // Get the lowered operands. Note that we do this after
4875 // checking if NumResults is zero, because with zero results
4876 // the operands won't have values in the map.
4877 SDValue Src = getValue(SrcV);
4878 SDValue Ptr = getValue(PtrV);
4879
4880 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4881 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4882 SDLoc dl = getCurSDLoc();
4883 Align Alignment = I.getAlign();
4884 AAMDNodes AAInfo = I.getAAMetadata();
4885
4886 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4887
4888 unsigned ChainI = 0;
4889 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4890 // See visitLoad comments.
4891 if (ChainI == MaxParallelChains) {
4892 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4893 ArrayRef(Chains.data(), ChainI));
4894 Root = Chain;
4895 ChainI = 0;
4896 }
4897
4898 // TODO: MachinePointerInfo only supports a fixed length offset.
4899 MachinePointerInfo PtrInfo =
4900 !Offsets[i].isScalable() || Offsets[i].isZero()
4901 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4902 : MachinePointerInfo();
4903
4904 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4905 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4906 if (MemVTs[i] != ValueVTs[i])
4907 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4908 SDValue St =
4909 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4910 Chains[ChainI] = St;
4911 }
4912
4913 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4914 ArrayRef(Chains.data(), ChainI));
4915 setValue(&I, StoreNode);
4916 DAG.setRoot(StoreNode);
4917}
4918
4919void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4920 bool IsCompressing) {
4921 SDLoc sdl = getCurSDLoc();
4922
4923 Value *Src0Operand = I.getArgOperand(0);
4924 Value *PtrOperand = I.getArgOperand(1);
4925 Value *MaskOperand = I.getArgOperand(2);
4926 Align Alignment = I.getParamAlign(1).valueOrOne();
4927
4928 SDValue Ptr = getValue(PtrOperand);
4929 SDValue Src0 = getValue(Src0Operand);
4930 SDValue Mask = getValue(MaskOperand);
4931 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4932
4933 EVT VT = Src0.getValueType();
4934
4935 auto MMOFlags = MachineMemOperand::MOStore;
4936 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4938
4939 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4940 MachinePointerInfo(PtrOperand), MMOFlags,
4941 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
4942
4943 const auto &TLI = DAG.getTargetLoweringInfo();
4944
4945 SDValue StoreNode =
4946 !IsCompressing && TTI->hasConditionalLoadStoreForType(
4947 I.getArgOperand(0)->getType(), /*IsStore=*/true)
4948 ? TLI.visitMaskedStore(DAG, sdl, getMemoryRoot(), MMO, Ptr, Src0,
4949 Mask)
4950 : DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask,
4951 VT, MMO, ISD::UNINDEXED, /*Truncating=*/false,
4952 IsCompressing);
4953 DAG.setRoot(StoreNode);
4954 setValue(&I, StoreNode);
4955}
4956
4957// Get a uniform base for the Gather/Scatter intrinsic.
4958// The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4959// We try to represent it as a base pointer + vector of indices.
4960// Usually, the vector of pointers comes from a 'getelementptr' instruction.
4961// The first operand of the GEP may be a single pointer or a vector of pointers
4962// Example:
4963// %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4964// or
4965// %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4966// %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4967//
4968// When the first GEP operand is a single pointer - it is the uniform base we
4969// are looking for. If first operand of the GEP is a splat vector - we
4970// extract the splat value and use it as a uniform base.
4971// In all other cases the function returns 'false'.
4972static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4973 SDValue &Scale, SelectionDAGBuilder *SDB,
4974 const BasicBlock *CurBB, uint64_t ElemSize) {
4975 SelectionDAG& DAG = SDB->DAG;
4976 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4977 const DataLayout &DL = DAG.getDataLayout();
4978
4979 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4980
4981 // Handle splat constant pointer.
4982 if (auto *C = dyn_cast<Constant>(Ptr)) {
4983 C = C->getSplatValue();
4984 if (!C)
4985 return false;
4986
4987 Base = SDB->getValue(C);
4988
4989 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4990 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4991 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4992 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4993 return true;
4994 }
4995
4997 if (!GEP || GEP->getParent() != CurBB)
4998 return false;
4999
5000 if (GEP->getNumOperands() != 2)
5001 return false;
5002
5003 const Value *BasePtr = GEP->getPointerOperand();
5004 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
5005
5006 // Make sure the base is scalar and the index is a vector.
5007 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
5008 return false;
5009
5010 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
5011 if (ScaleVal.isScalable())
5012 return false;
5013
5014 // Target may not support the required addressing mode.
5015 if (ScaleVal != 1 &&
5016 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize))
5017 return false;
5018
5019 Base = SDB->getValue(BasePtr);
5020 Index = SDB->getValue(IndexVal);
5021
5022 Scale =
5023 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
5024 return true;
5025}
5026
5027void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
5028 SDLoc sdl = getCurSDLoc();
5029
5030 // llvm.masked.scatter.*(Src0, Ptrs, Mask)
5031 const Value *Ptr = I.getArgOperand(1);
5032 SDValue Src0 = getValue(I.getArgOperand(0));
5033 SDValue Mask = getValue(I.getArgOperand(2));
5034 EVT VT = Src0.getValueType();
5035 Align Alignment = I.getParamAlign(1).valueOrOne();
5036 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5037
5038 SDValue Base;
5039 SDValue Index;
5040 SDValue Scale;
5041 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5042 I.getParent(), VT.getScalarStoreSize());
5043
5044 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5045 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5046 MachinePointerInfo(AS), MachineMemOperand::MOStore,
5047 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata());
5048 if (!UniformBase) {
5049 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5050 Index = getValue(Ptr);
5051 Scale =
5052 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5053 }
5054
5055 EVT IdxVT = Index.getValueType();
5056 EVT EltTy = IdxVT.getVectorElementType();
5057 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5058 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
5059 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5060 }
5061
5062 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
5063 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
5064 Ops, MMO, ISD::SIGNED_SCALED, false);
5065 DAG.setRoot(Scatter);
5066 setValue(&I, Scatter);
5067}
5068
5069void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
5070 SDLoc sdl = getCurSDLoc();
5071
5072 Value *PtrOperand = I.getArgOperand(0);
5073 Value *MaskOperand = I.getArgOperand(1);
5074 Value *Src0Operand = I.getArgOperand(2);
5075 Align Alignment = I.getParamAlign(0).valueOrOne();
5076
5077 SDValue Ptr = getValue(PtrOperand);
5078 SDValue Src0 = getValue(Src0Operand);
5079 SDValue Mask = getValue(MaskOperand);
5080 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
5081
5082 EVT VT = Src0.getValueType();
5083 AAMDNodes AAInfo = I.getAAMetadata();
5084 const MDNode *Ranges = getRangeMetadata(I);
5085
5086 // Do not serialize masked loads of constant memory with anything.
5087 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
5088 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
5089
5090 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
5091
5092 auto MMOFlags = MachineMemOperand::MOLoad;
5093 if (I.hasMetadata(LLVMContext::MD_nontemporal))
5095 if (I.hasMetadata(LLVMContext::MD_invariant_load))
5097
5098 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5099 MachinePointerInfo(PtrOperand), MMOFlags,
5100 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges);
5101
5102 const auto &TLI = DAG.getTargetLoweringInfo();
5103
5104 // The Load/Res may point to different values and both of them are output
5105 // variables.
5106 SDValue Load;
5107 SDValue Res;
5108 if (!IsExpanding &&
5109 TTI->hasConditionalLoadStoreForType(Src0Operand->getType(),
5110 /*IsStore=*/false))
5111 Res = TLI.visitMaskedLoad(DAG, sdl, InChain, MMO, Load, Ptr, Src0, Mask);
5112 else
5113 Res = Load =
5114 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
5115 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
5116 if (AddToChain)
5117 PendingLoads.push_back(Load.getValue(1));
5118 setValue(&I, Res);
5119}
5120
5121void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
5122 SDLoc sdl = getCurSDLoc();
5123
5124 // @llvm.masked.gather.*(Ptrs, Mask, Src0)
5125 const Value *Ptr = I.getArgOperand(0);
5126 SDValue Src0 = getValue(I.getArgOperand(2));
5127 SDValue Mask = getValue(I.getArgOperand(1));
5128
5129 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5130 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5131 Align Alignment = I.getParamAlign(0).valueOrOne();
5132
5133 const MDNode *Ranges = getRangeMetadata(I);
5134
5135 SDValue Root = DAG.getRoot();
5136 SDValue Base;
5137 SDValue Index;
5138 SDValue Scale;
5139 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
5140 I.getParent(), VT.getScalarStoreSize());
5141 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
5142 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5143 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
5144 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(),
5145 Ranges);
5146
5147 if (!UniformBase) {
5148 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5149 Index = getValue(Ptr);
5150 Scale =
5151 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
5152 }
5153
5154 EVT IdxVT = Index.getValueType();
5155 EVT EltTy = IdxVT.getVectorElementType();
5156 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
5157 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
5158 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
5159 }
5160
5161 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
5162 SDValue Gather =
5163 DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, Ops, MMO,
5165
5166 PendingLoads.push_back(Gather.getValue(1));
5167 setValue(&I, Gather);
5168}
5169
5170void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
5171 SDLoc dl = getCurSDLoc();
5172 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
5173 AtomicOrdering FailureOrdering = I.getFailureOrdering();
5174 SyncScope::ID SSID = I.getSyncScopeID();
5175
5176 SDValue InChain = getRoot();
5177
5178 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
5179 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5180
5181 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5182 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5183
5184 MachineFunction &MF = DAG.getMachineFunction();
5185 MachineMemOperand *MMO = MF.getMachineMemOperand(
5186 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5187 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
5188 FailureOrdering);
5189
5191 dl, MemVT, VTs, InChain,
5192 getValue(I.getPointerOperand()),
5193 getValue(I.getCompareOperand()),
5194 getValue(I.getNewValOperand()), MMO);
5195
5196 SDValue OutChain = L.getValue(2);
5197
5198 setValue(&I, L);
5199 DAG.setRoot(OutChain);
5200}
5201
5202void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
5203 SDLoc dl = getCurSDLoc();
5205 switch (I.getOperation()) {
5206 default: llvm_unreachable("Unknown atomicrmw operation");
5224 break;
5227 break;
5230 break;
5233 break;
5236 break;
5239 break;
5240 }
5241 AtomicOrdering Ordering = I.getOrdering();
5242 SyncScope::ID SSID = I.getSyncScopeID();
5243
5244 SDValue InChain = getRoot();
5245
5246 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
5247 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5248 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
5249
5250 MachineFunction &MF = DAG.getMachineFunction();
5251 MachineMemOperand *MMO = MF.getMachineMemOperand(
5252 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5253 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
5254
5255 SDValue L =
5256 DAG.getAtomic(NT, dl, MemVT, InChain,
5257 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
5258 MMO);
5259
5260 SDValue OutChain = L.getValue(1);
5261
5262 setValue(&I, L);
5263 DAG.setRoot(OutChain);
5264}
5265
5266void SelectionDAGBuilder::visitFence(const FenceInst &I) {
5267 SDLoc dl = getCurSDLoc();
5268 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5269 SDValue Ops[3];
5270 Ops[0] = getRoot();
5271 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
5272 TLI.getFenceOperandTy(DAG.getDataLayout()));
5273 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
5274 TLI.getFenceOperandTy(DAG.getDataLayout()));
5275 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
5276 setValue(&I, N);
5277 DAG.setRoot(N);
5278}
5279
5280void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
5281 SDLoc dl = getCurSDLoc();
5282 AtomicOrdering Order = I.getOrdering();
5283 SyncScope::ID SSID = I.getSyncScopeID();
5284
5285 SDValue InChain = getRoot();
5286
5287 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5288 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5289 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
5290
5291 if (!TLI.supportsUnalignedAtomics() &&
5292 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5293 report_fatal_error("Cannot generate unaligned atomic load");
5294
5295 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
5296
5297 const MDNode *Ranges = getRangeMetadata(I);
5298 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5299 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5300 I.getAlign(), AAMDNodes(), Ranges, SSID, Order);
5301
5302 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
5303
5304 SDValue Ptr = getValue(I.getPointerOperand());
5305 SDValue L =
5306 DAG.getAtomicLoad(ISD::NON_EXTLOAD, dl, MemVT, MemVT, InChain, Ptr, MMO);
5307
5308 SDValue OutChain = L.getValue(1);
5309 if (MemVT != VT)
5310 L = DAG.getPtrExtOrTrunc(L, dl, VT);
5311
5312 setValue(&I, L);
5313 DAG.setRoot(OutChain);
5314}
5315
5316void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
5317 SDLoc dl = getCurSDLoc();
5318
5319 AtomicOrdering Ordering = I.getOrdering();
5320 SyncScope::ID SSID = I.getSyncScopeID();
5321
5322 SDValue InChain = getRoot();
5323
5324 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5325 EVT MemVT =
5326 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
5327
5328 if (!TLI.supportsUnalignedAtomics() &&
5329 I.getAlign().value() < MemVT.getSizeInBits() / 8)
5330 report_fatal_error("Cannot generate unaligned atomic store");
5331
5332 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
5333
5334 MachineFunction &MF = DAG.getMachineFunction();
5335 MachineMemOperand *MMO = MF.getMachineMemOperand(
5336 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
5337 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
5338
5339 SDValue Val = getValue(I.getValueOperand());
5340 if (Val.getValueType() != MemVT)
5341 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5342 SDValue Ptr = getValue(I.getPointerOperand());
5343
5344 SDValue OutChain =
5345 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5346
5347 setValue(&I, OutChain);
5348 DAG.setRoot(OutChain);
5349}
5350
5351/// Check if this intrinsic call depends on the chain (1st return value)
5352/// and if it only *loads* memory.
5353/// Ignore the callsite's attributes. A specific call site may be marked with
5354/// readnone, but the lowering code will expect the chain based on the
5355/// definition.
5356std::pair<bool, bool>
5357SelectionDAGBuilder::getTargetIntrinsicCallProperties(const CallBase &I) {
5358 const Function *F = I.getCalledFunction();
5359 bool HasChain = !F->doesNotAccessMemory();
5360 bool OnlyLoad =
5361 HasChain && F->onlyReadsMemory() && F->willReturn() && F->doesNotThrow();
5362
5363 return {HasChain, OnlyLoad};
5364}
5365
5366SmallVector<SDValue, 8> SelectionDAGBuilder::getTargetIntrinsicOperands(
5367 const CallBase &I, bool HasChain, bool OnlyLoad,
5368 TargetLowering::IntrinsicInfo *TgtMemIntrinsicInfo) {
5369 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5370
5371 // Build the operand list.
5373 if (HasChain) { // If this intrinsic has side-effects, chainify it.
5374 if (OnlyLoad) {
5375 // We don't need to serialize loads against other loads.
5376 Ops.push_back(DAG.getRoot());
5377 } else {
5378 Ops.push_back(getRoot());
5379 }
5380 }
5381
5382 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
5383 if (!TgtMemIntrinsicInfo || TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_VOID ||
5384 TgtMemIntrinsicInfo->opc == ISD::INTRINSIC_W_CHAIN)
5385 Ops.push_back(DAG.getTargetConstant(I.getIntrinsicID(), getCurSDLoc(),
5386 TLI.getPointerTy(DAG.getDataLayout())));
5387
5388 // Add all operands of the call to the operand list.
5389 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
5390 const Value *Arg = I.getArgOperand(i);
5391 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
5392 Ops.push_back(getValue(Arg));
5393 continue;
5394 }
5395
5396 // Use TargetConstant instead of a regular constant for immarg.
5397 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
5398 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
5399 assert(CI->getBitWidth() <= 64 &&
5400 "large intrinsic immediates not handled");
5401 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
5402 } else {
5403 Ops.push_back(
5404 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
5405 }
5406 }
5407
5408 if (std::optional<OperandBundleUse> Bundle =
5409 I.getOperandBundle(LLVMContext::OB_deactivation_symbol)) {
5410 auto *Sym = Bundle->Inputs[0].get();
5411 SDValue SDSym = getValue(Sym);
5412 SDSym = DAG.getDeactivationSymbol(cast<GlobalValue>(Sym));
5413 Ops.push_back(SDSym);
5414 }
5415
5416 if (std::optional<OperandBundleUse> Bundle =
5417 I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
5418 Value *Token = Bundle->Inputs[0].get();
5419 SDValue ConvControlToken = getValue(Token);
5420 assert(Ops.back().getValueType() != MVT::Glue &&
5421 "Did not expect another glue node here.");
5422 ConvControlToken =
5423 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5424 Ops.push_back(ConvControlToken);
5425 }
5426
5427 return Ops;
5428}
5429
5430SDVTList SelectionDAGBuilder::getTargetIntrinsicVTList(const CallBase &I,
5431 bool HasChain) {
5432 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5433
5434 SmallVector<EVT, 4> ValueVTs;
5435 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
5436
5437 if (HasChain)
5438 ValueVTs.push_back(MVT::Other);
5439
5440 return DAG.getVTList(ValueVTs);
5441}
5442
5443/// Get an INTRINSIC node for a target intrinsic which does not touch memory.
5444SDValue SelectionDAGBuilder::getTargetNonMemIntrinsicNode(
5445 const Type &IntrinsicVT, bool HasChain, ArrayRef<SDValue> Ops,
5446 const SDVTList &VTs) {
5447 if (!HasChain)
5448 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
5449 if (!IntrinsicVT.isVoidTy())
5450 return DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
5451 return DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
5452}
5453
5454/// Set root, convert return type if necessary and check alignment.
5455SDValue SelectionDAGBuilder::handleTargetIntrinsicRet(const CallBase &I,
5456 bool HasChain,
5457 bool OnlyLoad,
5458 SDValue Result) {
5459 if (HasChain) {
5460 SDValue Chain = Result.getValue(Result.getNode()->getNumValues() - 1);
5461 if (OnlyLoad)
5462 PendingLoads.push_back(Chain);
5463 else
5464 DAG.setRoot(Chain);
5465 }
5466
5467 if (I.getType()->isVoidTy())
5468 return Result;
5469
5470 if (MaybeAlign Alignment = I.getRetAlign(); InsertAssertAlign && Alignment) {
5471 // Insert `assertalign` node if there's an alignment.
5472 Result = DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
5473 } else if (!isa<VectorType>(I.getType())) {
5474 Result = lowerRangeToAssertZExt(DAG, I, Result);
5475 }
5476
5477 return Result;
5478}
5479
5480/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
5481/// node.
5482void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
5483 unsigned Intrinsic) {
5484 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(I);
5485
5486 // Info is set by getTgtMemIntrinsic
5487 TargetLowering::IntrinsicInfo Info;
5488 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5489 bool IsTgtMemIntrinsic =
5490 TLI.getTgtMemIntrinsic(Info, I, DAG.getMachineFunction(), Intrinsic);
5491
5492 SmallVector<SDValue, 8> Ops = getTargetIntrinsicOperands(
5493 I, HasChain, OnlyLoad, IsTgtMemIntrinsic ? &Info : nullptr);
5494 SDVTList VTs = getTargetIntrinsicVTList(I, HasChain);
5495
5496 // Propagate fast-math-flags from IR to node(s).
5497 SDNodeFlags Flags;
5498 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
5499 Flags.copyFMF(*FPMO);
5500 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
5501
5502 // Create the node.
5504
5505 // In some cases, custom collection of operands from CallInst I may be needed.
5507 if (IsTgtMemIntrinsic) {
5508 // This is target intrinsic that touches memory
5509 //
5510 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
5511 // didn't yield anything useful.
5512 MachinePointerInfo MPI;
5513 if (Info.ptrVal)
5514 MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
5515 else if (Info.fallbackAddressSpace)
5516 MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
5517 EVT MemVT = Info.memVT;
5518 LocationSize Size = LocationSize::precise(Info.size);
5519 if (Size.hasValue() && !Size.getValue())
5521 Align Alignment = Info.align.value_or(DAG.getEVTAlign(MemVT));
5522 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
5523 MPI, Info.flags, Size, Alignment, I.getAAMetadata(), /*Ranges=*/nullptr,
5524 Info.ssid, Info.order, Info.failureOrder);
5525 Result =
5526 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, MemVT, MMO);
5527 } else {
5528 Result = getTargetNonMemIntrinsicNode(*I.getType(), HasChain, Ops, VTs);
5529 }
5530
5531 Result = handleTargetIntrinsicRet(I, HasChain, OnlyLoad, Result);
5532
5533 setValue(&I, Result);
5534}
5535
5536/// GetSignificand - Get the significand and build it into a floating-point
5537/// number with exponent of 1:
5538///
5539/// Op = (Op & 0x007fffff) | 0x3f800000;
5540///
5541/// where Op is the hexadecimal representation of floating point value.
5543 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5544 DAG.getConstant(0x007fffff, dl, MVT::i32));
5545 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
5546 DAG.getConstant(0x3f800000, dl, MVT::i32));
5547 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5548}
5549
5550/// GetExponent - Get the exponent:
5551///
5552/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5553///
5554/// where Op is the hexadecimal representation of floating point value.
5556 const TargetLowering &TLI, const SDLoc &dl) {
5557 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5558 DAG.getConstant(0x7f800000, dl, MVT::i32));
5559 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
5560 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5561 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5562 DAG.getConstant(127, dl, MVT::i32));
5563 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5564}
5565
5566/// getF32Constant - Get 32-bit floating point constant.
5567static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5568 const SDLoc &dl) {
5569 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5570 MVT::f32);
5571}
5572
5574 SelectionDAG &DAG) {
5575 // TODO: What fast-math-flags should be set on the floating-point nodes?
5576
5577 // IntegerPartOfX = ((int32_t)(t0);
5578 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5579
5580 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
5581 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5582 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5583
5584 // IntegerPartOfX <<= 23;
5585 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5586 DAG.getShiftAmountConstant(23, MVT::i32, dl));
5587
5588 SDValue TwoToFractionalPartOfX;
5589 if (LimitFloatPrecision <= 6) {
5590 // For floating-point precision of 6:
5591 //
5592 // TwoToFractionalPartOfX =
5593 // 0.997535578f +
5594 // (0.735607626f + 0.252464424f * x) * x;
5595 //
5596 // error 0.0144103317, which is 6 bits
5597 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5598 getF32Constant(DAG, 0x3e814304, dl));
5599 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5600 getF32Constant(DAG, 0x3f3c50c8, dl));
5601 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5602 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5603 getF32Constant(DAG, 0x3f7f5e7e, dl));
5604 } else if (LimitFloatPrecision <= 12) {
5605 // For floating-point precision of 12:
5606 //
5607 // TwoToFractionalPartOfX =
5608 // 0.999892986f +
5609 // (0.696457318f +
5610 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
5611 //
5612 // error 0.000107046256, which is 13 to 14 bits
5613 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5614 getF32Constant(DAG, 0x3da235e3, dl));
5615 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5616 getF32Constant(DAG, 0x3e65b8f3, dl));
5617 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5618 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5619 getF32Constant(DAG, 0x3f324b07, dl));
5620 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5621 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5622 getF32Constant(DAG, 0x3f7ff8fd, dl));
5623 } else { // LimitFloatPrecision <= 18
5624 // For floating-point precision of 18:
5625 //
5626 // TwoToFractionalPartOfX =
5627 // 0.999999982f +
5628 // (0.693148872f +
5629 // (0.240227044f +
5630 // (0.554906021e-1f +
5631 // (0.961591928e-2f +
5632 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5633 // error 2.47208000*10^(-7), which is better than 18 bits
5634 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5635 getF32Constant(DAG, 0x3924b03e, dl));
5636 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5637 getF32Constant(DAG, 0x3ab24b87, dl));
5638 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5639 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5640 getF32Constant(DAG, 0x3c1d8c17, dl));
5641 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5642 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5643 getF32Constant(DAG, 0x3d634a1d, dl));
5644 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5645 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5646 getF32Constant(DAG, 0x3e75fe14, dl));
5647 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5648 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5649 getF32Constant(DAG, 0x3f317234, dl));
5650 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5651 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5652 getF32Constant(DAG, 0x3f800000, dl));
5653 }
5654
5655 // Add the exponent into the result in integer domain.
5656 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5657 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5658 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5659}
5660
5661/// expandExp - Lower an exp intrinsic. Handles the special sequences for
5662/// limited-precision mode.
5664 const TargetLowering &TLI, SDNodeFlags Flags) {
5665 if (Op.getValueType() == MVT::f32 &&
5667
5668 // Put the exponent in the right bit position for later addition to the
5669 // final result:
5670 //
5671 // t0 = Op * log2(e)
5672
5673 // TODO: What fast-math-flags should be set here?
5674 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5675 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5676 return getLimitedPrecisionExp2(t0, dl, DAG);
5677 }
5678
5679 // No special expansion.
5680 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5681}
5682
5683/// expandLog - Lower a log intrinsic. Handles the special sequences for
5684/// limited-precision mode.
5686 const TargetLowering &TLI, SDNodeFlags Flags) {
5687 // TODO: What fast-math-flags should be set on the floating-point nodes?
5688
5689 if (Op.getValueType() == MVT::f32 &&
5691 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5692
5693 // Scale the exponent by log(2).
5694 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5695 SDValue LogOfExponent =
5696 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5697 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5698
5699 // Get the significand and build it into a floating-point number with
5700 // exponent of 1.
5701 SDValue X = GetSignificand(DAG, Op1, dl);
5702
5703 SDValue LogOfMantissa;
5704 if (LimitFloatPrecision <= 6) {
5705 // For floating-point precision of 6:
5706 //
5707 // LogofMantissa =
5708 // -1.1609546f +
5709 // (1.4034025f - 0.23903021f * x) * x;
5710 //
5711 // error 0.0034276066, which is better than 8 bits
5712 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5713 getF32Constant(DAG, 0xbe74c456, dl));
5714 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5715 getF32Constant(DAG, 0x3fb3a2b1, dl));
5716 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5717 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5718 getF32Constant(DAG, 0x3f949a29, dl));
5719 } else if (LimitFloatPrecision <= 12) {
5720 // For floating-point precision of 12:
5721 //
5722 // LogOfMantissa =
5723 // -1.7417939f +
5724 // (2.8212026f +
5725 // (-1.4699568f +
5726 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5727 //
5728 // error 0.000061011436, which is 14 bits
5729 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5730 getF32Constant(DAG, 0xbd67b6d6, dl));
5731 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5732 getF32Constant(DAG, 0x3ee4f4b8, dl));
5733 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5734 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5735 getF32Constant(DAG, 0x3fbc278b, dl));
5736 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5737 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5738 getF32Constant(DAG, 0x40348e95, dl));
5739 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5740 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5741 getF32Constant(DAG, 0x3fdef31a, dl));
5742 } else { // LimitFloatPrecision <= 18
5743 // For floating-point precision of 18:
5744 //
5745 // LogOfMantissa =
5746 // -2.1072184f +
5747 // (4.2372794f +
5748 // (-3.7029485f +
5749 // (2.2781945f +
5750 // (-0.87823314f +
5751 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5752 //
5753 // error 0.0000023660568, which is better than 18 bits
5754 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5755 getF32Constant(DAG, 0xbc91e5ac, dl));
5756 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5757 getF32Constant(DAG, 0x3e4350aa, dl));
5758 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5759 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5760 getF32Constant(DAG, 0x3f60d3e3, dl));
5761 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5762 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5763 getF32Constant(DAG, 0x4011cdf0, dl));
5764 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5765 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5766 getF32Constant(DAG, 0x406cfd1c, dl));
5767 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5768 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5769 getF32Constant(DAG, 0x408797cb, dl));
5770 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5771 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5772 getF32Constant(DAG, 0x4006dcab, dl));
5773 }
5774
5775 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5776 }
5777
5778 // No special expansion.
5779 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5780}
5781
5782/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5783/// limited-precision mode.
5785 const TargetLowering &TLI, SDNodeFlags Flags) {
5786 // TODO: What fast-math-flags should be set on the floating-point nodes?
5787
5788 if (Op.getValueType() == MVT::f32 &&
5790 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5791
5792 // Get the exponent.
5793 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5794
5795 // Get the significand and build it into a floating-point number with
5796 // exponent of 1.
5797 SDValue X = GetSignificand(DAG, Op1, dl);
5798
5799 // Different possible minimax approximations of significand in
5800 // floating-point for various degrees of accuracy over [1,2].
5801 SDValue Log2ofMantissa;
5802 if (LimitFloatPrecision <= 6) {
5803 // For floating-point precision of 6:
5804 //
5805 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5806 //
5807 // error 0.0049451742, which is more than 7 bits
5808 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5809 getF32Constant(DAG, 0xbeb08fe0, dl));
5810 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5811 getF32Constant(DAG, 0x40019463, dl));
5812 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5813 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5814 getF32Constant(DAG, 0x3fd6633d, dl));
5815 } else if (LimitFloatPrecision <= 12) {
5816 // For floating-point precision of 12:
5817 //
5818 // Log2ofMantissa =
5819 // -2.51285454f +
5820 // (4.07009056f +
5821 // (-2.12067489f +
5822 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5823 //
5824 // error 0.0000876136000, which is better than 13 bits
5825 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5826 getF32Constant(DAG, 0xbda7262e, dl));
5827 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5828 getF32Constant(DAG, 0x3f25280b, dl));
5829 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5830 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5831 getF32Constant(DAG, 0x4007b923, dl));
5832 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5833 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5834 getF32Constant(DAG, 0x40823e2f, dl));
5835 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5836 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5837 getF32Constant(DAG, 0x4020d29c, dl));
5838 } else { // LimitFloatPrecision <= 18
5839 // For floating-point precision of 18:
5840 //
5841 // Log2ofMantissa =
5842 // -3.0400495f +
5843 // (6.1129976f +
5844 // (-5.3420409f +
5845 // (3.2865683f +
5846 // (-1.2669343f +
5847 // (0.27515199f -
5848 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5849 //
5850 // error 0.0000018516, which is better than 18 bits
5851 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5852 getF32Constant(DAG, 0xbcd2769e, dl));
5853 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5854 getF32Constant(DAG, 0x3e8ce0b9, dl));
5855 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5856 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5857 getF32Constant(DAG, 0x3fa22ae7, dl));
5858 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5859 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5860 getF32Constant(DAG, 0x40525723, dl));
5861 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5862 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5863 getF32Constant(DAG, 0x40aaf200, dl));
5864 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5865 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5866 getF32Constant(DAG, 0x40c39dad, dl));
5867 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5868 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5869 getF32Constant(DAG, 0x4042902c, dl));
5870 }
5871
5872 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5873 }
5874
5875 // No special expansion.
5876 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5877}
5878
5879/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5880/// limited-precision mode.
5882 const TargetLowering &TLI, SDNodeFlags Flags) {
5883 // TODO: What fast-math-flags should be set on the floating-point nodes?
5884
5885 if (Op.getValueType() == MVT::f32 &&
5887 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5888
5889 // Scale the exponent by log10(2) [0.30102999f].
5890 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5891 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5892 getF32Constant(DAG, 0x3e9a209a, dl));
5893
5894 // Get the significand and build it into a floating-point number with
5895 // exponent of 1.
5896 SDValue X = GetSignificand(DAG, Op1, dl);
5897
5898 SDValue Log10ofMantissa;
5899 if (LimitFloatPrecision <= 6) {
5900 // For floating-point precision of 6:
5901 //
5902 // Log10ofMantissa =
5903 // -0.50419619f +
5904 // (0.60948995f - 0.10380950f * x) * x;
5905 //
5906 // error 0.0014886165, which is 6 bits
5907 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5908 getF32Constant(DAG, 0xbdd49a13, dl));
5909 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5910 getF32Constant(DAG, 0x3f1c0789, dl));
5911 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5912 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5913 getF32Constant(DAG, 0x3f011300, dl));
5914 } else if (LimitFloatPrecision <= 12) {
5915 // For floating-point precision of 12:
5916 //
5917 // Log10ofMantissa =
5918 // -0.64831180f +
5919 // (0.91751397f +
5920 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5921 //
5922 // error 0.00019228036, which is better than 12 bits
5923 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5924 getF32Constant(DAG, 0x3d431f31, dl));
5925 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5926 getF32Constant(DAG, 0x3ea21fb2, dl));
5927 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5928 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5929 getF32Constant(DAG, 0x3f6ae232, dl));
5930 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5931 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5932 getF32Constant(DAG, 0x3f25f7c3, dl));
5933 } else { // LimitFloatPrecision <= 18
5934 // For floating-point precision of 18:
5935 //
5936 // Log10ofMantissa =
5937 // -0.84299375f +
5938 // (1.5327582f +
5939 // (-1.0688956f +
5940 // (0.49102474f +
5941 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5942 //
5943 // error 0.0000037995730, which is better than 18 bits
5944 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5945 getF32Constant(DAG, 0x3c5d51ce, dl));
5946 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5947 getF32Constant(DAG, 0x3e00685a, dl));
5948 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5949 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5950 getF32Constant(DAG, 0x3efb6798, dl));
5951 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5952 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5953 getF32Constant(DAG, 0x3f88d192, dl));
5954 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5955 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5956 getF32Constant(DAG, 0x3fc4316c, dl));
5957 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5958 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5959 getF32Constant(DAG, 0x3f57ce70, dl));
5960 }
5961
5962 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5963 }
5964
5965 // No special expansion.
5966 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5967}
5968
5969/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5970/// limited-precision mode.
5972 const TargetLowering &TLI, SDNodeFlags Flags) {
5973 if (Op.getValueType() == MVT::f32 &&
5975 return getLimitedPrecisionExp2(Op, dl, DAG);
5976
5977 // No special expansion.
5978 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5979}
5980
5981/// visitPow - Lower a pow intrinsic. Handles the special sequences for
5982/// limited-precision mode with x == 10.0f.
5984 SelectionDAG &DAG, const TargetLowering &TLI,
5985 SDNodeFlags Flags) {
5986 bool IsExp10 = false;
5987 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5990 APFloat Ten(10.0f);
5991 IsExp10 = LHSC->isExactlyValue(Ten);
5992 }
5993 }
5994
5995 // TODO: What fast-math-flags should be set on the FMUL node?
5996 if (IsExp10) {
5997 // Put the exponent in the right bit position for later addition to the
5998 // final result:
5999 //
6000 // #define LOG2OF10 3.3219281f
6001 // t0 = Op * LOG2OF10;
6002 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
6003 getF32Constant(DAG, 0x40549a78, dl));
6004 return getLimitedPrecisionExp2(t0, dl, DAG);
6005 }
6006
6007 // No special expansion.
6008 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
6009}
6010
6011/// ExpandPowI - Expand a llvm.powi intrinsic.
6013 SelectionDAG &DAG) {
6014 // If RHS is a constant, we can expand this out to a multiplication tree if
6015 // it's beneficial on the target, otherwise we end up lowering to a call to
6016 // __powidf2 (for example).
6018 unsigned Val = RHSC->getSExtValue();
6019
6020 // powi(x, 0) -> 1.0
6021 if (Val == 0)
6022 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
6023
6025 Val, DAG.shouldOptForSize())) {
6026 // Get the exponent as a positive value.
6027 if ((int)Val < 0)
6028 Val = -Val;
6029 // We use the simple binary decomposition method to generate the multiply
6030 // sequence. There are more optimal ways to do this (for example,
6031 // powi(x,15) generates one more multiply than it should), but this has
6032 // the benefit of being both really simple and much better than a libcall.
6033 SDValue Res; // Logically starts equal to 1.0
6034 SDValue CurSquare = LHS;
6035 // TODO: Intrinsics should have fast-math-flags that propagate to these
6036 // nodes.
6037 while (Val) {
6038 if (Val & 1) {
6039 if (Res.getNode())
6040 Res =
6041 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
6042 else
6043 Res = CurSquare; // 1.0*CurSquare.
6044 }
6045
6046 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
6047 CurSquare, CurSquare);
6048 Val >>= 1;
6049 }
6050
6051 // If the original was negative, invert the result, producing 1/(x*x*x).
6052 if (RHSC->getSExtValue() < 0)
6053 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
6054 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
6055 return Res;
6056 }
6057 }
6058
6059 // Otherwise, expand to a libcall.
6060 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
6061}
6062
6063static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
6064 SDValue LHS, SDValue RHS, SDValue Scale,
6065 SelectionDAG &DAG, const TargetLowering &TLI) {
6066 EVT VT = LHS.getValueType();
6067 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
6068 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
6069 LLVMContext &Ctx = *DAG.getContext();
6070
6071 // If the type is legal but the operation isn't, this node might survive all
6072 // the way to operation legalization. If we end up there and we do not have
6073 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
6074 // node.
6075
6076 // Coax the legalizer into expanding the node during type legalization instead
6077 // by bumping the size by one bit. This will force it to Promote, enabling the
6078 // early expansion and avoiding the need to expand later.
6079
6080 // We don't have to do this if Scale is 0; that can always be expanded, unless
6081 // it's a saturating signed operation. Those can experience true integer
6082 // division overflow, a case which we must avoid.
6083
6084 // FIXME: We wouldn't have to do this (or any of the early
6085 // expansion/promotion) if it was possible to expand a libcall of an
6086 // illegal type during operation legalization. But it's not, so things
6087 // get a bit hacky.
6088 unsigned ScaleInt = Scale->getAsZExtVal();
6089 if ((ScaleInt > 0 || (Saturating && Signed)) &&
6090 (TLI.isTypeLegal(VT) ||
6091 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
6093 Opcode, VT, ScaleInt);
6094 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
6095 EVT PromVT;
6096 if (VT.isScalarInteger())
6097 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
6098 else if (VT.isVector()) {
6099 PromVT = VT.getVectorElementType();
6100 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
6101 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
6102 } else
6103 llvm_unreachable("Wrong VT for DIVFIX?");
6104 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
6105 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
6106 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
6107 // For saturating operations, we need to shift up the LHS to get the
6108 // proper saturation width, and then shift down again afterwards.
6109 if (Saturating)
6110 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
6111 DAG.getConstant(1, DL, ShiftTy));
6112 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
6113 if (Saturating)
6114 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
6115 DAG.getConstant(1, DL, ShiftTy));
6116 return DAG.getZExtOrTrunc(Res, DL, VT);
6117 }
6118 }
6119
6120 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
6121}
6122
6123// getUnderlyingArgRegs - Find underlying registers used for a truncated,
6124// bitcasted, or split argument. Returns a list of <Register, size in bits>
6125static void
6126getUnderlyingArgRegs(SmallVectorImpl<std::pair<Register, TypeSize>> &Regs,
6127 const SDValue &N) {
6128 switch (N.getOpcode()) {
6129 case ISD::CopyFromReg: {
6130 SDValue Op = N.getOperand(1);
6131 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
6132 Op.getValueType().getSizeInBits());
6133 return;
6134 }
6135 case ISD::BITCAST:
6136 case ISD::AssertZext:
6137 case ISD::AssertSext:
6138 case ISD::TRUNCATE:
6139 getUnderlyingArgRegs(Regs, N.getOperand(0));
6140 return;
6141 case ISD::BUILD_PAIR:
6142 case ISD::BUILD_VECTOR:
6144 for (SDValue Op : N->op_values())
6145 getUnderlyingArgRegs(Regs, Op);
6146 return;
6147 default:
6148 return;
6149 }
6150}
6151
6152/// If the DbgValueInst is a dbg_value of a function argument, create the
6153/// corresponding DBG_VALUE machine instruction for it now. At the end of
6154/// instruction selection, they will be inserted to the entry BB.
6155/// We don't currently support this for variadic dbg_values, as they shouldn't
6156/// appear for function arguments or in the prologue.
6157bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6158 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
6159 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
6160 const Argument *Arg = dyn_cast<Argument>(V);
6161 if (!Arg)
6162 return false;
6163
6164 MachineFunction &MF = DAG.getMachineFunction();
6165 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6166
6167 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
6168 // we've been asked to pursue.
6169 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
6170 bool Indirect) {
6171 if (Reg.isVirtual() && MF.useDebugInstrRef()) {
6172 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
6173 // pointing at the VReg, which will be patched up later.
6174 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
6176 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
6177 /* isKill */ false, /* isDead */ false,
6178 /* isUndef */ false, /* isEarlyClobber */ false,
6179 /* SubReg */ 0, /* isDebug */ true)});
6180
6181 auto *NewDIExpr = FragExpr;
6182 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
6183 // the DIExpression.
6184 if (Indirect)
6185 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
6187 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
6188 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
6189 } else {
6190 // Create a completely standard DBG_VALUE.
6191 auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
6192 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
6193 }
6194 };
6195
6196 if (Kind == FuncArgumentDbgValueKind::Value) {
6197 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6198 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
6199 // the entry block.
6200 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
6201 if (!IsInEntryBlock)
6202 return false;
6203
6204 // ArgDbgValues are hoisted to the beginning of the entry block. So we
6205 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
6206 // variable that also is a param.
6207 //
6208 // Although, if we are at the top of the entry block already, we can still
6209 // emit using ArgDbgValue. This might catch some situations when the
6210 // dbg.value refers to an argument that isn't used in the entry block, so
6211 // any CopyToReg node would be optimized out and the only way to express
6212 // this DBG_VALUE is by using the physical reg (or FI) as done in this
6213 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
6214 // we should only emit as ArgDbgValue if the Variable is an argument to the
6215 // current function, and the dbg.value intrinsic is found in the entry
6216 // block.
6217 bool VariableIsFunctionInputArg = Variable->isParameter() &&
6218 !DL->getInlinedAt();
6219 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
6220 if (!IsInPrologue && !VariableIsFunctionInputArg)
6221 return false;
6222
6223 // Here we assume that a function argument on IR level only can be used to
6224 // describe one input parameter on source level. If we for example have
6225 // source code like this
6226 //
6227 // struct A { long x, y; };
6228 // void foo(struct A a, long b) {
6229 // ...
6230 // b = a.x;
6231 // ...
6232 // }
6233 //
6234 // and IR like this
6235 //
6236 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
6237 // entry:
6238 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
6239 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
6240 // call void @llvm.dbg.value(metadata i32 %b, "b",
6241 // ...
6242 // call void @llvm.dbg.value(metadata i32 %a1, "b"
6243 // ...
6244 //
6245 // then the last dbg.value is describing a parameter "b" using a value that
6246 // is an argument. But since we already has used %a1 to describe a parameter
6247 // we should not handle that last dbg.value here (that would result in an
6248 // incorrect hoisting of the DBG_VALUE to the function entry).
6249 // Notice that we allow one dbg.value per IR level argument, to accommodate
6250 // for the situation with fragments above.
6251 // If there is no node for the value being handled, we return true to skip
6252 // the normal generation of debug info, as it would kill existing debug
6253 // info for the parameter in case of duplicates.
6254 if (VariableIsFunctionInputArg) {
6255 unsigned ArgNo = Arg->getArgNo();
6256 if (ArgNo >= FuncInfo.DescribedArgs.size())
6257 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
6258 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
6259 return !NodeMap[V].getNode();
6260 FuncInfo.DescribedArgs.set(ArgNo);
6261 }
6262 }
6263
6264 bool IsIndirect = false;
6265 std::optional<MachineOperand> Op;
6266 // Some arguments' frame index is recorded during argument lowering.
6267 int FI = FuncInfo.getArgumentFrameIndex(Arg);
6268 if (FI != std::numeric_limits<int>::max())
6270
6272 if (!Op && N.getNode()) {
6273 getUnderlyingArgRegs(ArgRegsAndSizes, N);
6274 Register Reg;
6275 if (ArgRegsAndSizes.size() == 1)
6276 Reg = ArgRegsAndSizes.front().first;
6277
6278 if (Reg && Reg.isVirtual()) {
6279 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6280 Register PR = RegInfo.getLiveInPhysReg(Reg);
6281 if (PR)
6282 Reg = PR;
6283 }
6284 if (Reg) {
6286 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6287 }
6288 }
6289
6290 if (!Op && N.getNode()) {
6291 // Check if frame index is available.
6292 SDValue LCandidate = peekThroughBitcasts(N);
6293 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
6294 if (FrameIndexSDNode *FINode =
6295 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6296 Op = MachineOperand::CreateFI(FINode->getIndex());
6297 }
6298
6299 if (!Op) {
6300 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
6301 auto splitMultiRegDbgValue =
6302 [&](ArrayRef<std::pair<Register, TypeSize>> SplitRegs) -> bool {
6303 unsigned Offset = 0;
6304 for (const auto &[Reg, RegSizeInBits] : SplitRegs) {
6305 // FIXME: Scalable sizes are not supported in fragment expressions.
6306 if (RegSizeInBits.isScalable())
6307 return false;
6308
6309 // If the expression is already a fragment, the current register
6310 // offset+size might extend beyond the fragment. In this case, only
6311 // the register bits that are inside the fragment are relevant.
6312 int RegFragmentSizeInBits = RegSizeInBits.getFixedValue();
6313 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
6314 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6315 // The register is entirely outside the expression fragment,
6316 // so is irrelevant for debug info.
6317 if (Offset >= ExprFragmentSizeInBits)
6318 break;
6319 // The register is partially outside the expression fragment, only
6320 // the low bits within the fragment are relevant for debug info.
6321 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6322 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
6323 }
6324 }
6325
6326 auto FragmentExpr = DIExpression::createFragmentExpression(
6327 Expr, Offset, RegFragmentSizeInBits);
6328 Offset += RegSizeInBits.getFixedValue();
6329 // If a valid fragment expression cannot be created, the variable's
6330 // correct value cannot be determined and so it is set as poison.
6331 if (!FragmentExpr) {
6332 SDDbgValue *SDV = DAG.getConstantDbgValue(
6333 Variable, Expr, PoisonValue::get(V->getType()), DL, SDNodeOrder);
6334 DAG.AddDbgValue(SDV, false);
6335 continue;
6336 }
6337 MachineInstr *NewMI = MakeVRegDbgValue(
6338 Reg, *FragmentExpr, Kind != FuncArgumentDbgValueKind::Value);
6339 FuncInfo.ArgDbgValues.push_back(NewMI);
6340 }
6341
6342 return true;
6343 };
6344
6345 // Check if ValueMap has reg number.
6347 VMI = FuncInfo.ValueMap.find(V);
6348 if (VMI != FuncInfo.ValueMap.end()) {
6349 const auto &TLI = DAG.getTargetLoweringInfo();
6350 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
6351 V->getType(), std::nullopt);
6352 if (RFV.occupiesMultipleRegs())
6353 return splitMultiRegDbgValue(RFV.getRegsAndSizes());
6354
6355 Op = MachineOperand::CreateReg(VMI->second, false);
6356 IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
6357 } else if (ArgRegsAndSizes.size() > 1) {
6358 // This was split due to the calling convention, and no virtual register
6359 // mapping exists for the value.
6360 return splitMultiRegDbgValue(ArgRegsAndSizes);
6361 }
6362 }
6363
6364 if (!Op)
6365 return false;
6366
6367 assert(Variable->isValidLocationForIntrinsic(DL) &&
6368 "Expected inlined-at fields to agree");
6369 MachineInstr *NewMI = nullptr;
6370
6371 if (Op->isReg())
6372 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
6373 else
6374 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
6375 Variable, Expr);
6376
6377 // Otherwise, use ArgDbgValues.
6378 FuncInfo.ArgDbgValues.push_back(NewMI);
6379 return true;
6380}
6381
6382/// Return the appropriate SDDbgValue based on N.
6383SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
6384 DILocalVariable *Variable,
6385 DIExpression *Expr,
6386 const DebugLoc &dl,
6387 unsigned DbgSDNodeOrder) {
6388 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
6389 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
6390 // stack slot locations.
6391 //
6392 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
6393 // debug values here after optimization:
6394 //
6395 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
6396 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
6397 //
6398 // Both describe the direct values of their associated variables.
6399 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6400 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6401 }
6402 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
6403 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
6404}
6405
6406static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
6407 switch (Intrinsic) {
6408 case Intrinsic::smul_fix:
6409 return ISD::SMULFIX;
6410 case Intrinsic::umul_fix:
6411 return ISD::UMULFIX;
6412 case Intrinsic::smul_fix_sat:
6413 return ISD::SMULFIXSAT;
6414 case Intrinsic::umul_fix_sat:
6415 return ISD::UMULFIXSAT;
6416 case Intrinsic::sdiv_fix:
6417 return ISD::SDIVFIX;
6418 case Intrinsic::udiv_fix:
6419 return ISD::UDIVFIX;
6420 case Intrinsic::sdiv_fix_sat:
6421 return ISD::SDIVFIXSAT;
6422 case Intrinsic::udiv_fix_sat:
6423 return ISD::UDIVFIXSAT;
6424 default:
6425 llvm_unreachable("Unhandled fixed point intrinsic");
6426 }
6427}
6428
6429/// Given a @llvm.call.preallocated.setup, return the corresponding
6430/// preallocated call.
6431static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
6432 assert(cast<CallBase>(PreallocatedSetup)
6434 ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
6435 "expected call_preallocated_setup Value");
6436 for (const auto *U : PreallocatedSetup->users()) {
6437 auto *UseCall = cast<CallBase>(U);
6438 const Function *Fn = UseCall->getCalledFunction();
6439 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6440 return UseCall;
6441 }
6442 }
6443 llvm_unreachable("expected corresponding call to preallocated setup/arg");
6444}
6445
6446/// If DI is a debug value with an EntryValue expression, lower it using the
6447/// corresponding physical register of the associated Argument value
6448/// (guaranteed to exist by the verifier).
6449bool SelectionDAGBuilder::visitEntryValueDbgValue(
6450 ArrayRef<const Value *> Values, DILocalVariable *Variable,
6451 DIExpression *Expr, DebugLoc DbgLoc) {
6452 if (!Expr->isEntryValue() || !hasSingleElement(Values))
6453 return false;
6454
6455 // These properties are guaranteed by the verifier.
6456 const Argument *Arg = cast<Argument>(Values[0]);
6457 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
6458
6459 auto ArgIt = FuncInfo.ValueMap.find(Arg);
6460 if (ArgIt == FuncInfo.ValueMap.end()) {
6461 LLVM_DEBUG(
6462 dbgs() << "Dropping dbg.value: expression is entry_value but "
6463 "couldn't find an associated register for the Argument\n");
6464 return true;
6465 }
6466 Register ArgVReg = ArgIt->getSecond();
6467
6468 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
6469 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6470 SDDbgValue *SDV = DAG.getVRegDbgValue(
6471 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder);
6472 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
6473 return true;
6474 }
6475 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
6476 "couldn't find a physical register\n");
6477 return true;
6478}
6479
6480/// Lower the call to the specified intrinsic function.
6481void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I,
6482 unsigned Intrinsic) {
6483 SDLoc sdl = getCurSDLoc();
6484 switch (Intrinsic) {
6485 case Intrinsic::experimental_convergence_anchor:
6486 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6487 break;
6488 case Intrinsic::experimental_convergence_entry:
6489 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6490 break;
6491 case Intrinsic::experimental_convergence_loop: {
6492 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl);
6493 auto *Token = Bundle->Inputs[0].get();
6494 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6495 getValue(Token)));
6496 break;
6497 }
6498 }
6499}
6500
6501void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I,
6502 unsigned IntrinsicID) {
6503 // For now, we're only lowering an 'add' histogram.
6504 // We can add others later, e.g. saturating adds, min/max.
6505 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6506 "Tried to lower unsupported histogram type");
6507 SDLoc sdl = getCurSDLoc();
6508 Value *Ptr = I.getOperand(0);
6509 SDValue Inc = getValue(I.getOperand(1));
6510 SDValue Mask = getValue(I.getOperand(2));
6511
6512 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6513 DataLayout TargetDL = DAG.getDataLayout();
6514 EVT VT = Inc.getValueType();
6515 Align Alignment = DAG.getEVTAlign(VT);
6516
6517 const MDNode *Ranges = getRangeMetadata(I);
6518
6519 SDValue Root = DAG.getRoot();
6520 SDValue Base;
6521 SDValue Index;
6522 SDValue Scale;
6523 bool UniformBase = getUniformBase(Ptr, Base, Index, Scale, this,
6524 I.getParent(), VT.getScalarStoreSize());
6525
6526 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
6527
6528 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6529 MachinePointerInfo(AS),
6531 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
6532
6533 if (!UniformBase) {
6534 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6535 Index = getValue(Ptr);
6536 Scale =
6537 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
6538 }
6539
6540 EVT IdxVT = Index.getValueType();
6541 EVT EltTy = IdxVT.getVectorElementType();
6542 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
6543 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
6544 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
6545 }
6546
6547 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6548
6549 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID};
6550 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl,
6551 Ops, MMO, ISD::SIGNED_SCALED);
6552
6553 setValue(&I, Histogram);
6554 DAG.setRoot(Histogram);
6555}
6556
6557void SelectionDAGBuilder::visitVectorExtractLastActive(const CallInst &I,
6558 unsigned Intrinsic) {
6559 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active &&
6560 "Tried lowering invalid vector extract last");
6561 SDLoc sdl = getCurSDLoc();
6562 const DataLayout &Layout = DAG.getDataLayout();
6563 SDValue Data = getValue(I.getOperand(0));
6564 SDValue Mask = getValue(I.getOperand(1));
6565
6566 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6567 EVT ResVT = TLI.getValueType(Layout, I.getType());
6568
6569 EVT ExtVT = TLI.getVectorIdxTy(Layout);
6570 SDValue Idx = DAG.getNode(ISD::VECTOR_FIND_LAST_ACTIVE, sdl, ExtVT, Mask);
6571 SDValue Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, ResVT, Data, Idx);
6572
6573 Value *Default = I.getOperand(2);
6575 SDValue PassThru = getValue(Default);
6576 EVT BoolVT = Mask.getValueType().getScalarType();
6577 SDValue AnyActive = DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask);
6578 Result = DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru);
6579 }
6580
6581 setValue(&I, Result);
6582}
6583
6584/// Lower the call to the specified intrinsic function.
6585void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
6586 unsigned Intrinsic) {
6587 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6588 SDLoc sdl = getCurSDLoc();
6589 DebugLoc dl = getCurDebugLoc();
6590 SDValue Res;
6591
6592 SDNodeFlags Flags;
6593 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
6594 Flags.copyFMF(*FPOp);
6595
6596 switch (Intrinsic) {
6597 default:
6598 // By default, turn this into a target intrinsic node.
6599 visitTargetIntrinsic(I, Intrinsic);
6600 return;
6601 case Intrinsic::vscale: {
6602 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6603 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
6604 return;
6605 }
6606 case Intrinsic::vastart: visitVAStart(I); return;
6607 case Intrinsic::vaend: visitVAEnd(I); return;
6608 case Intrinsic::vacopy: visitVACopy(I); return;
6609 case Intrinsic::returnaddress:
6610 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
6611 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6612 getValue(I.getArgOperand(0))));
6613 return;
6614 case Intrinsic::addressofreturnaddress:
6615 setValue(&I,
6616 DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
6617 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6618 return;
6619 case Intrinsic::sponentry:
6620 setValue(&I,
6621 DAG.getNode(ISD::SPONENTRY, sdl,
6622 TLI.getValueType(DAG.getDataLayout(), I.getType())));
6623 return;
6624 case Intrinsic::frameaddress:
6625 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
6626 TLI.getFrameIndexTy(DAG.getDataLayout()),
6627 getValue(I.getArgOperand(0))));
6628 return;
6629 case Intrinsic::read_volatile_register:
6630 case Intrinsic::read_register: {
6631 Value *Reg = I.getArgOperand(0);
6632 SDValue Chain = getRoot();
6634 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6635 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6636 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
6637 DAG.getVTList(VT, MVT::Other), Chain, RegName);
6638 setValue(&I, Res);
6639 DAG.setRoot(Res.getValue(1));
6640 return;
6641 }
6642 case Intrinsic::write_register: {
6643 Value *Reg = I.getArgOperand(0);
6644 Value *RegValue = I.getArgOperand(1);
6645 SDValue Chain = getRoot();
6647 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
6648 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
6649 RegName, getValue(RegValue)));
6650 return;
6651 }
6652 case Intrinsic::memcpy:
6653 case Intrinsic::memcpy_inline: {
6654 const auto &MCI = cast<MemCpyInst>(I);
6655 SDValue Dst = getValue(I.getArgOperand(0));
6656 SDValue Src = getValue(I.getArgOperand(1));
6657 SDValue Size = getValue(I.getArgOperand(2));
6658 assert((!MCI.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6659 "memcpy_inline needs constant size");
6660 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6661 Align DstAlign = MCI.getDestAlign().valueOrOne();
6662 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6663 Align Alignment = std::min(DstAlign, SrcAlign);
6664 bool isVol = MCI.isVolatile();
6665 // FIXME: Support passing different dest/src alignments to the memcpy DAG
6666 // node.
6667 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6668 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol,
6669 MCI.isForceInlined(), &I, std::nullopt,
6670 MachinePointerInfo(I.getArgOperand(0)),
6671 MachinePointerInfo(I.getArgOperand(1)),
6672 I.getAAMetadata(), BatchAA);
6673 updateDAGForMaybeTailCall(MC);
6674 return;
6675 }
6676 case Intrinsic::memset:
6677 case Intrinsic::memset_inline: {
6678 const auto &MSII = cast<MemSetInst>(I);
6679 SDValue Dst = getValue(I.getArgOperand(0));
6680 SDValue Value = getValue(I.getArgOperand(1));
6681 SDValue Size = getValue(I.getArgOperand(2));
6682 assert((!MSII.isForceInlined() || isa<ConstantSDNode>(Size)) &&
6683 "memset_inline needs constant size");
6684 // @llvm.memset defines 0 and 1 to both mean no alignment.
6685 Align DstAlign = MSII.getDestAlign().valueOrOne();
6686 bool isVol = MSII.isVolatile();
6687 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6688 SDValue MC = DAG.getMemset(
6689 Root, sdl, Dst, Value, Size, DstAlign, isVol, MSII.isForceInlined(),
6690 &I, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6691 updateDAGForMaybeTailCall(MC);
6692 return;
6693 }
6694 case Intrinsic::memmove: {
6695 const auto &MMI = cast<MemMoveInst>(I);
6696 SDValue Op1 = getValue(I.getArgOperand(0));
6697 SDValue Op2 = getValue(I.getArgOperand(1));
6698 SDValue Op3 = getValue(I.getArgOperand(2));
6699 // @llvm.memmove defines 0 and 1 to both mean no alignment.
6700 Align DstAlign = MMI.getDestAlign().valueOrOne();
6701 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6702 Align Alignment = std::min(DstAlign, SrcAlign);
6703 bool isVol = MMI.isVolatile();
6704 // FIXME: Support passing different dest/src alignments to the memmove DAG
6705 // node.
6706 SDValue Root = isVol ? getRoot() : getMemoryRoot();
6707 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &I,
6708 /* OverrideTailCall */ std::nullopt,
6709 MachinePointerInfo(I.getArgOperand(0)),
6710 MachinePointerInfo(I.getArgOperand(1)),
6711 I.getAAMetadata(), BatchAA);
6712 updateDAGForMaybeTailCall(MM);
6713 return;
6714 }
6715 case Intrinsic::memcpy_element_unordered_atomic: {
6716 auto &MI = cast<AnyMemCpyInst>(I);
6717 SDValue Dst = getValue(MI.getRawDest());
6718 SDValue Src = getValue(MI.getRawSource());
6719 SDValue Length = getValue(MI.getLength());
6720
6721 Type *LengthTy = MI.getLength()->getType();
6722 unsigned ElemSz = MI.getElementSizeInBytes();
6723 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6724 SDValue MC =
6725 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6726 isTC, MachinePointerInfo(MI.getRawDest()),
6727 MachinePointerInfo(MI.getRawSource()));
6728 updateDAGForMaybeTailCall(MC);
6729 return;
6730 }
6731 case Intrinsic::memmove_element_unordered_atomic: {
6732 auto &MI = cast<AnyMemMoveInst>(I);
6733 SDValue Dst = getValue(MI.getRawDest());
6734 SDValue Src = getValue(MI.getRawSource());
6735 SDValue Length = getValue(MI.getLength());
6736
6737 Type *LengthTy = MI.getLength()->getType();
6738 unsigned ElemSz = MI.getElementSizeInBytes();
6739 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6740 SDValue MC =
6741 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6742 isTC, MachinePointerInfo(MI.getRawDest()),
6743 MachinePointerInfo(MI.getRawSource()));
6744 updateDAGForMaybeTailCall(MC);
6745 return;
6746 }
6747 case Intrinsic::memset_element_unordered_atomic: {
6748 auto &MI = cast<AnyMemSetInst>(I);
6749 SDValue Dst = getValue(MI.getRawDest());
6750 SDValue Val = getValue(MI.getValue());
6751 SDValue Length = getValue(MI.getLength());
6752
6753 Type *LengthTy = MI.getLength()->getType();
6754 unsigned ElemSz = MI.getElementSizeInBytes();
6755 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6756 SDValue MC =
6757 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6758 isTC, MachinePointerInfo(MI.getRawDest()));
6759 updateDAGForMaybeTailCall(MC);
6760 return;
6761 }
6762 case Intrinsic::call_preallocated_setup: {
6763 const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6764 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6765 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6766 getRoot(), SrcValue);
6767 setValue(&I, Res);
6768 DAG.setRoot(Res);
6769 return;
6770 }
6771 case Intrinsic::call_preallocated_arg: {
6772 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6773 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6774 SDValue Ops[3];
6775 Ops[0] = getRoot();
6776 Ops[1] = SrcValue;
6777 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6778 MVT::i32); // arg index
6779 SDValue Res = DAG.getNode(
6781 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6782 setValue(&I, Res);
6783 DAG.setRoot(Res.getValue(1));
6784 return;
6785 }
6786
6787 case Intrinsic::eh_typeid_for: {
6788 // Find the type id for the given typeinfo.
6789 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6790 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6791 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6792 setValue(&I, Res);
6793 return;
6794 }
6795
6796 case Intrinsic::eh_return_i32:
6797 case Intrinsic::eh_return_i64:
6798 DAG.getMachineFunction().setCallsEHReturn(true);
6799 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6800 MVT::Other,
6802 getValue(I.getArgOperand(0)),
6803 getValue(I.getArgOperand(1))));
6804 return;
6805 case Intrinsic::eh_unwind_init:
6806 DAG.getMachineFunction().setCallsUnwindInit(true);
6807 return;
6808 case Intrinsic::eh_dwarf_cfa:
6809 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6810 TLI.getPointerTy(DAG.getDataLayout()),
6811 getValue(I.getArgOperand(0))));
6812 return;
6813 case Intrinsic::eh_sjlj_callsite: {
6814 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6815 assert(FuncInfo.getCurrentCallSite() == 0 && "Overlapping call sites!");
6816
6817 FuncInfo.setCurrentCallSite(CI->getZExtValue());
6818 return;
6819 }
6820 case Intrinsic::eh_sjlj_functioncontext: {
6821 // Get and store the index of the function context.
6822 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6823 AllocaInst *FnCtx =
6824 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6825 int FI = FuncInfo.StaticAllocaMap[FnCtx];
6827 return;
6828 }
6829 case Intrinsic::eh_sjlj_setjmp: {
6830 SDValue Ops[2];
6831 Ops[0] = getRoot();
6832 Ops[1] = getValue(I.getArgOperand(0));
6833 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6834 DAG.getVTList(MVT::i32, MVT::Other), Ops);
6835 setValue(&I, Op.getValue(0));
6836 DAG.setRoot(Op.getValue(1));
6837 return;
6838 }
6839 case Intrinsic::eh_sjlj_longjmp:
6840 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6841 getRoot(), getValue(I.getArgOperand(0))));
6842 return;
6843 case Intrinsic::eh_sjlj_setup_dispatch:
6844 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6845 getRoot()));
6846 return;
6847 case Intrinsic::masked_gather:
6848 visitMaskedGather(I);
6849 return;
6850 case Intrinsic::masked_load:
6851 visitMaskedLoad(I);
6852 return;
6853 case Intrinsic::masked_scatter:
6854 visitMaskedScatter(I);
6855 return;
6856 case Intrinsic::masked_store:
6857 visitMaskedStore(I);
6858 return;
6859 case Intrinsic::masked_expandload:
6860 visitMaskedLoad(I, true /* IsExpanding */);
6861 return;
6862 case Intrinsic::masked_compressstore:
6863 visitMaskedStore(I, true /* IsCompressing */);
6864 return;
6865 case Intrinsic::powi:
6866 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6867 getValue(I.getArgOperand(1)), DAG));
6868 return;
6869 case Intrinsic::log:
6870 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6871 return;
6872 case Intrinsic::log2:
6873 setValue(&I,
6874 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6875 return;
6876 case Intrinsic::log10:
6877 setValue(&I,
6878 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6879 return;
6880 case Intrinsic::exp:
6881 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6882 return;
6883 case Intrinsic::exp2:
6884 setValue(&I,
6885 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6886 return;
6887 case Intrinsic::pow:
6888 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6889 getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6890 return;
6891 case Intrinsic::sqrt:
6892 case Intrinsic::fabs:
6893 case Intrinsic::sin:
6894 case Intrinsic::cos:
6895 case Intrinsic::tan:
6896 case Intrinsic::asin:
6897 case Intrinsic::acos:
6898 case Intrinsic::atan:
6899 case Intrinsic::sinh:
6900 case Intrinsic::cosh:
6901 case Intrinsic::tanh:
6902 case Intrinsic::exp10:
6903 case Intrinsic::floor:
6904 case Intrinsic::ceil:
6905 case Intrinsic::trunc:
6906 case Intrinsic::rint:
6907 case Intrinsic::nearbyint:
6908 case Intrinsic::round:
6909 case Intrinsic::roundeven:
6910 case Intrinsic::canonicalize: {
6911 unsigned Opcode;
6912 // clang-format off
6913 switch (Intrinsic) {
6914 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6915 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6916 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6917 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6918 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6919 case Intrinsic::tan: Opcode = ISD::FTAN; break;
6920 case Intrinsic::asin: Opcode = ISD::FASIN; break;
6921 case Intrinsic::acos: Opcode = ISD::FACOS; break;
6922 case Intrinsic::atan: Opcode = ISD::FATAN; break;
6923 case Intrinsic::sinh: Opcode = ISD::FSINH; break;
6924 case Intrinsic::cosh: Opcode = ISD::FCOSH; break;
6925 case Intrinsic::tanh: Opcode = ISD::FTANH; break;
6926 case Intrinsic::exp10: Opcode = ISD::FEXP10; break;
6927 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6928 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6929 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6930 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6931 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6932 case Intrinsic::round: Opcode = ISD::FROUND; break;
6933 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6934 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6935 }
6936 // clang-format on
6937
6938 setValue(&I, DAG.getNode(Opcode, sdl,
6939 getValue(I.getArgOperand(0)).getValueType(),
6940 getValue(I.getArgOperand(0)), Flags));
6941 return;
6942 }
6943 case Intrinsic::atan2:
6944 setValue(&I, DAG.getNode(ISD::FATAN2, sdl,
6945 getValue(I.getArgOperand(0)).getValueType(),
6946 getValue(I.getArgOperand(0)),
6947 getValue(I.getArgOperand(1)), Flags));
6948 return;
6949 case Intrinsic::lround:
6950 case Intrinsic::llround:
6951 case Intrinsic::lrint:
6952 case Intrinsic::llrint: {
6953 unsigned Opcode;
6954 // clang-format off
6955 switch (Intrinsic) {
6956 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6957 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6958 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6959 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6960 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6961 }
6962 // clang-format on
6963
6964 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6965 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6966 getValue(I.getArgOperand(0))));
6967 return;
6968 }
6969 case Intrinsic::minnum:
6970 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6971 getValue(I.getArgOperand(0)).getValueType(),
6972 getValue(I.getArgOperand(0)),
6973 getValue(I.getArgOperand(1)), Flags));
6974 return;
6975 case Intrinsic::maxnum:
6976 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6977 getValue(I.getArgOperand(0)).getValueType(),
6978 getValue(I.getArgOperand(0)),
6979 getValue(I.getArgOperand(1)), Flags));
6980 return;
6981 case Intrinsic::minimum:
6982 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6983 getValue(I.getArgOperand(0)).getValueType(),
6984 getValue(I.getArgOperand(0)),
6985 getValue(I.getArgOperand(1)), Flags));
6986 return;
6987 case Intrinsic::maximum:
6988 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6989 getValue(I.getArgOperand(0)).getValueType(),
6990 getValue(I.getArgOperand(0)),
6991 getValue(I.getArgOperand(1)), Flags));
6992 return;
6993 case Intrinsic::minimumnum:
6994 setValue(&I, DAG.getNode(ISD::FMINIMUMNUM, sdl,
6995 getValue(I.getArgOperand(0)).getValueType(),
6996 getValue(I.getArgOperand(0)),
6997 getValue(I.getArgOperand(1)), Flags));
6998 return;
6999 case Intrinsic::maximumnum:
7000 setValue(&I, DAG.getNode(ISD::FMAXIMUMNUM, sdl,
7001 getValue(I.getArgOperand(0)).getValueType(),
7002 getValue(I.getArgOperand(0)),
7003 getValue(I.getArgOperand(1)), Flags));
7004 return;
7005 case Intrinsic::copysign:
7006 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
7007 getValue(I.getArgOperand(0)).getValueType(),
7008 getValue(I.getArgOperand(0)),
7009 getValue(I.getArgOperand(1)), Flags));
7010 return;
7011 case Intrinsic::ldexp:
7012 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
7013 getValue(I.getArgOperand(0)).getValueType(),
7014 getValue(I.getArgOperand(0)),
7015 getValue(I.getArgOperand(1)), Flags));
7016 return;
7017 case Intrinsic::modf:
7018 case Intrinsic::sincos:
7019 case Intrinsic::sincospi:
7020 case Intrinsic::frexp: {
7021 unsigned Opcode;
7022 switch (Intrinsic) {
7023 default:
7024 llvm_unreachable("unexpected intrinsic");
7025 case Intrinsic::sincos:
7026 Opcode = ISD::FSINCOS;
7027 break;
7028 case Intrinsic::sincospi:
7029 Opcode = ISD::FSINCOSPI;
7030 break;
7031 case Intrinsic::modf:
7032 Opcode = ISD::FMODF;
7033 break;
7034 case Intrinsic::frexp:
7035 Opcode = ISD::FFREXP;
7036 break;
7037 }
7038 SmallVector<EVT, 2> ValueVTs;
7039 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
7040 SDVTList VTs = DAG.getVTList(ValueVTs);
7041 setValue(
7042 &I, DAG.getNode(Opcode, sdl, VTs, getValue(I.getArgOperand(0)), Flags));
7043 return;
7044 }
7045 case Intrinsic::arithmetic_fence: {
7046 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
7047 getValue(I.getArgOperand(0)).getValueType(),
7048 getValue(I.getArgOperand(0)), Flags));
7049 return;
7050 }
7051 case Intrinsic::fma:
7052 setValue(&I, DAG.getNode(
7053 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
7054 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
7055 getValue(I.getArgOperand(2)), Flags));
7056 return;
7057#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
7058 case Intrinsic::INTRINSIC:
7059#include "llvm/IR/ConstrainedOps.def"
7060 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
7061 return;
7062#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7063#include "llvm/IR/VPIntrinsics.def"
7064 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
7065 return;
7066 case Intrinsic::fptrunc_round: {
7067 // Get the last argument, the metadata and convert it to an integer in the
7068 // call
7069 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
7070 std::optional<RoundingMode> RoundMode =
7071 convertStrToRoundingMode(cast<MDString>(MD)->getString());
7072
7073 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7074
7075 // Propagate fast-math-flags from IR to node(s).
7076 SDNodeFlags Flags;
7077 Flags.copyFMF(*cast<FPMathOperator>(&I));
7078 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
7079
7081 Result = DAG.getNode(
7082 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
7083 DAG.getTargetConstant((int)*RoundMode, sdl, MVT::i32));
7084 setValue(&I, Result);
7085
7086 return;
7087 }
7088 case Intrinsic::fmuladd: {
7089 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7090 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7091 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7092 setValue(&I, DAG.getNode(ISD::FMA, sdl,
7093 getValue(I.getArgOperand(0)).getValueType(),
7094 getValue(I.getArgOperand(0)),
7095 getValue(I.getArgOperand(1)),
7096 getValue(I.getArgOperand(2)), Flags));
7097 } else if (TLI.isOperationLegalOrCustom(ISD::FMULADD, VT)) {
7098 // TODO: Support splitting the vector.
7099 setValue(&I, DAG.getNode(ISD::FMULADD, sdl,
7100 getValue(I.getArgOperand(0)).getValueType(),
7101 getValue(I.getArgOperand(0)),
7102 getValue(I.getArgOperand(1)),
7103 getValue(I.getArgOperand(2)), Flags));
7104 } else {
7105 // TODO: Intrinsic calls should have fast-math-flags.
7106 SDValue Mul = DAG.getNode(
7107 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
7108 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
7109 SDValue Add = DAG.getNode(ISD::FADD, sdl,
7110 getValue(I.getArgOperand(0)).getValueType(),
7111 Mul, getValue(I.getArgOperand(2)), Flags);
7112 setValue(&I, Add);
7113 }
7114 return;
7115 }
7116 case Intrinsic::convert_to_fp16:
7117 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
7118 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
7119 getValue(I.getArgOperand(0)),
7120 DAG.getTargetConstant(0, sdl,
7121 MVT::i32))));
7122 return;
7123 case Intrinsic::convert_from_fp16:
7124 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
7125 TLI.getValueType(DAG.getDataLayout(), I.getType()),
7126 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7127 getValue(I.getArgOperand(0)))));
7128 return;
7129 case Intrinsic::fptosi_sat: {
7130 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7131 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
7132 getValue(I.getArgOperand(0)),
7133 DAG.getValueType(VT.getScalarType())));
7134 return;
7135 }
7136 case Intrinsic::fptoui_sat: {
7137 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7138 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
7139 getValue(I.getArgOperand(0)),
7140 DAG.getValueType(VT.getScalarType())));
7141 return;
7142 }
7143 case Intrinsic::set_rounding:
7144 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7145 {getRoot(), getValue(I.getArgOperand(0))});
7146 setValue(&I, Res);
7147 DAG.setRoot(Res.getValue(0));
7148 return;
7149 case Intrinsic::is_fpclass: {
7150 const DataLayout DLayout = DAG.getDataLayout();
7151 EVT DestVT = TLI.getValueType(DLayout, I.getType());
7152 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
7153 FPClassTest Test = static_cast<FPClassTest>(
7154 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
7155 MachineFunction &MF = DAG.getMachineFunction();
7156 const Function &F = MF.getFunction();
7157 SDValue Op = getValue(I.getArgOperand(0));
7158 SDNodeFlags Flags;
7159 Flags.setNoFPExcept(
7160 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7161 // If ISD::IS_FPCLASS should be expanded, do it right now, because the
7162 // expansion can use illegal types. Making expansion early allows
7163 // legalizing these types prior to selection.
7164 if (!TLI.isOperationLegal(ISD::IS_FPCLASS, ArgVT) &&
7165 !TLI.isOperationCustom(ISD::IS_FPCLASS, ArgVT)) {
7166 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
7167 setValue(&I, Result);
7168 return;
7169 }
7170
7171 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
7172 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
7173 setValue(&I, V);
7174 return;
7175 }
7176 case Intrinsic::get_fpenv: {
7177 const DataLayout DLayout = DAG.getDataLayout();
7178 EVT EnvVT = TLI.getValueType(DLayout, I.getType());
7179 Align TempAlign = DAG.getEVTAlign(EnvVT);
7180 SDValue Chain = getRoot();
7181 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
7182 // and temporary storage in stack.
7183 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
7184 Res = DAG.getNode(
7185 ISD::GET_FPENV, sdl,
7186 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7187 MVT::Other),
7188 Chain);
7189 } else {
7190 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7191 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7192 auto MPI =
7193 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7194 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7196 TempAlign);
7197 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7198 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7199 }
7200 setValue(&I, Res);
7201 DAG.setRoot(Res.getValue(1));
7202 return;
7203 }
7204 case Intrinsic::set_fpenv: {
7205 const DataLayout DLayout = DAG.getDataLayout();
7206 SDValue Env = getValue(I.getArgOperand(0));
7207 EVT EnvVT = Env.getValueType();
7208 Align TempAlign = DAG.getEVTAlign(EnvVT);
7209 SDValue Chain = getRoot();
7210 // If SET_FPENV is custom or legal, use it. Otherwise use loading
7211 // environment from memory.
7212 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
7213 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7214 } else {
7215 // Allocate space in stack, copy environment bits into it and use this
7216 // memory in SET_FPENV_MEM.
7217 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
7218 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
7219 auto MPI =
7220 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
7221 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7223 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7225 TempAlign);
7226 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7227 }
7228 DAG.setRoot(Chain);
7229 return;
7230 }
7231 case Intrinsic::reset_fpenv:
7232 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
7233 return;
7234 case Intrinsic::get_fpmode:
7235 Res = DAG.getNode(
7236 ISD::GET_FPMODE, sdl,
7237 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7238 MVT::Other),
7239 DAG.getRoot());
7240 setValue(&I, Res);
7241 DAG.setRoot(Res.getValue(1));
7242 return;
7243 case Intrinsic::set_fpmode:
7244 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()},
7245 getValue(I.getArgOperand(0)));
7246 DAG.setRoot(Res);
7247 return;
7248 case Intrinsic::reset_fpmode: {
7249 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot());
7250 DAG.setRoot(Res);
7251 return;
7252 }
7253 case Intrinsic::pcmarker: {
7254 SDValue Tmp = getValue(I.getArgOperand(0));
7255 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
7256 return;
7257 }
7258 case Intrinsic::readcyclecounter: {
7259 SDValue Op = getRoot();
7260 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7261 DAG.getVTList(MVT::i64, MVT::Other), Op);
7262 setValue(&I, Res);
7263 DAG.setRoot(Res.getValue(1));
7264 return;
7265 }
7266 case Intrinsic::readsteadycounter: {
7267 SDValue Op = getRoot();
7268 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7269 DAG.getVTList(MVT::i64, MVT::Other), Op);
7270 setValue(&I, Res);
7271 DAG.setRoot(Res.getValue(1));
7272 return;
7273 }
7274 case Intrinsic::bitreverse:
7275 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
7276 getValue(I.getArgOperand(0)).getValueType(),
7277 getValue(I.getArgOperand(0))));
7278 return;
7279 case Intrinsic::bswap:
7280 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
7281 getValue(I.getArgOperand(0)).getValueType(),
7282 getValue(I.getArgOperand(0))));
7283 return;
7284 case Intrinsic::cttz: {
7285 SDValue Arg = getValue(I.getArgOperand(0));
7286 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7287 EVT Ty = Arg.getValueType();
7288 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
7289 sdl, Ty, Arg));
7290 return;
7291 }
7292 case Intrinsic::ctlz: {
7293 SDValue Arg = getValue(I.getArgOperand(0));
7294 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
7295 EVT Ty = Arg.getValueType();
7296 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
7297 sdl, Ty, Arg));
7298 return;
7299 }
7300 case Intrinsic::ctpop: {
7301 SDValue Arg = getValue(I.getArgOperand(0));
7302 EVT Ty = Arg.getValueType();
7303 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
7304 return;
7305 }
7306 case Intrinsic::fshl:
7307 case Intrinsic::fshr: {
7308 bool IsFSHL = Intrinsic == Intrinsic::fshl;
7309 SDValue X = getValue(I.getArgOperand(0));
7310 SDValue Y = getValue(I.getArgOperand(1));
7311 SDValue Z = getValue(I.getArgOperand(2));
7312 EVT VT = X.getValueType();
7313
7314 if (X == Y) {
7315 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
7316 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
7317 } else {
7318 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
7319 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
7320 }
7321 return;
7322 }
7323 case Intrinsic::clmul: {
7324 SDValue X = getValue(I.getArgOperand(0));
7325 SDValue Y = getValue(I.getArgOperand(1));
7326 setValue(&I, DAG.getNode(ISD::CLMUL, sdl, X.getValueType(), X, Y));
7327 return;
7328 }
7329 case Intrinsic::sadd_sat: {
7330 SDValue Op1 = getValue(I.getArgOperand(0));
7331 SDValue Op2 = getValue(I.getArgOperand(1));
7332 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7333 return;
7334 }
7335 case Intrinsic::uadd_sat: {
7336 SDValue Op1 = getValue(I.getArgOperand(0));
7337 SDValue Op2 = getValue(I.getArgOperand(1));
7338 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
7339 return;
7340 }
7341 case Intrinsic::ssub_sat: {
7342 SDValue Op1 = getValue(I.getArgOperand(0));
7343 SDValue Op2 = getValue(I.getArgOperand(1));
7344 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7345 return;
7346 }
7347 case Intrinsic::usub_sat: {
7348 SDValue Op1 = getValue(I.getArgOperand(0));
7349 SDValue Op2 = getValue(I.getArgOperand(1));
7350 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
7351 return;
7352 }
7353 case Intrinsic::sshl_sat:
7354 case Intrinsic::ushl_sat: {
7355 SDValue Op1 = getValue(I.getArgOperand(0));
7356 SDValue Op2 = getValue(I.getArgOperand(1));
7357
7358 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
7359 Op1.getValueType(), DAG.getDataLayout());
7360
7361 // Coerce the shift amount to the right type if we can. This exposes the
7362 // truncate or zext to optimization early.
7363 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
7364 assert(ShiftTy.getSizeInBits() >=
7366 "Unexpected shift type");
7367 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
7368 }
7369
7370 unsigned Opc =
7371 Intrinsic == Intrinsic::sshl_sat ? ISD::SSHLSAT : ISD::USHLSAT;
7372 setValue(&I, DAG.getNode(Opc, sdl, Op1.getValueType(), Op1, Op2));
7373 return;
7374 }
7375 case Intrinsic::smul_fix:
7376 case Intrinsic::umul_fix:
7377 case Intrinsic::smul_fix_sat:
7378 case Intrinsic::umul_fix_sat: {
7379 SDValue Op1 = getValue(I.getArgOperand(0));
7380 SDValue Op2 = getValue(I.getArgOperand(1));
7381 SDValue Op3 = getValue(I.getArgOperand(2));
7382 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
7383 Op1.getValueType(), Op1, Op2, Op3));
7384 return;
7385 }
7386 case Intrinsic::sdiv_fix:
7387 case Intrinsic::udiv_fix:
7388 case Intrinsic::sdiv_fix_sat:
7389 case Intrinsic::udiv_fix_sat: {
7390 SDValue Op1 = getValue(I.getArgOperand(0));
7391 SDValue Op2 = getValue(I.getArgOperand(1));
7392 SDValue Op3 = getValue(I.getArgOperand(2));
7394 Op1, Op2, Op3, DAG, TLI));
7395 return;
7396 }
7397 case Intrinsic::smax: {
7398 SDValue Op1 = getValue(I.getArgOperand(0));
7399 SDValue Op2 = getValue(I.getArgOperand(1));
7400 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
7401 return;
7402 }
7403 case Intrinsic::smin: {
7404 SDValue Op1 = getValue(I.getArgOperand(0));
7405 SDValue Op2 = getValue(I.getArgOperand(1));
7406 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
7407 return;
7408 }
7409 case Intrinsic::umax: {
7410 SDValue Op1 = getValue(I.getArgOperand(0));
7411 SDValue Op2 = getValue(I.getArgOperand(1));
7412 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
7413 return;
7414 }
7415 case Intrinsic::umin: {
7416 SDValue Op1 = getValue(I.getArgOperand(0));
7417 SDValue Op2 = getValue(I.getArgOperand(1));
7418 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
7419 return;
7420 }
7421 case Intrinsic::abs: {
7422 // TODO: Preserve "int min is poison" arg in SDAG?
7423 SDValue Op1 = getValue(I.getArgOperand(0));
7424 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
7425 return;
7426 }
7427 case Intrinsic::scmp: {
7428 SDValue Op1 = getValue(I.getArgOperand(0));
7429 SDValue Op2 = getValue(I.getArgOperand(1));
7430 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7431 setValue(&I, DAG.getNode(ISD::SCMP, sdl, DestVT, Op1, Op2));
7432 break;
7433 }
7434 case Intrinsic::ucmp: {
7435 SDValue Op1 = getValue(I.getArgOperand(0));
7436 SDValue Op2 = getValue(I.getArgOperand(1));
7437 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7438 setValue(&I, DAG.getNode(ISD::UCMP, sdl, DestVT, Op1, Op2));
7439 break;
7440 }
7441 case Intrinsic::stackaddress:
7442 case Intrinsic::stacksave: {
7443 unsigned SDOpcode = Intrinsic == Intrinsic::stackaddress ? ISD::STACKADDRESS
7445 SDValue Op = getRoot();
7446 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7447 Res = DAG.getNode(SDOpcode, sdl, DAG.getVTList(VT, MVT::Other), Op);
7448 setValue(&I, Res);
7449 DAG.setRoot(Res.getValue(1));
7450 return;
7451 }
7452 case Intrinsic::stackrestore:
7453 Res = getValue(I.getArgOperand(0));
7454 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
7455 return;
7456 case Intrinsic::get_dynamic_area_offset: {
7457 SDValue Op = getRoot();
7458 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7459 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
7460 Op);
7461 DAG.setRoot(Op);
7462 setValue(&I, Res);
7463 return;
7464 }
7465 case Intrinsic::stackguard: {
7466 MachineFunction &MF = DAG.getMachineFunction();
7467 const Module &M = *MF.getFunction().getParent();
7468 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
7469 SDValue Chain = getRoot();
7470 if (TLI.useLoadStackGuardNode(M)) {
7471 Res = getLoadStackGuard(DAG, sdl, Chain);
7472 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7473 } else {
7474 const Value *Global = TLI.getSDagStackGuard(M);
7475 if (!Global) {
7476 LLVMContext &Ctx = *DAG.getContext();
7477 Ctx.diagnose(DiagnosticInfoGeneric("unable to lower stackguard"));
7478 setValue(&I, DAG.getPOISON(PtrTy));
7479 return;
7480 }
7481
7482 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
7483 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
7484 MachinePointerInfo(Global, 0), Align,
7486 }
7487 if (TLI.useStackGuardXorFP())
7488 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
7489 DAG.setRoot(Chain);
7490 setValue(&I, Res);
7491 return;
7492 }
7493 case Intrinsic::stackprotector: {
7494 // Emit code into the DAG to store the stack guard onto the stack.
7495 MachineFunction &MF = DAG.getMachineFunction();
7496 MachineFrameInfo &MFI = MF.getFrameInfo();
7497 const Module &M = *MF.getFunction().getParent();
7498 SDValue Src, Chain = getRoot();
7499
7500 if (TLI.useLoadStackGuardNode(M))
7501 Src = getLoadStackGuard(DAG, sdl, Chain);
7502 else
7503 Src = getValue(I.getArgOperand(0)); // The guard's value.
7504
7505 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
7506
7507 int FI = FuncInfo.StaticAllocaMap[Slot];
7508 MFI.setStackProtectorIndex(FI);
7509 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
7510
7511 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
7512
7513 // Store the stack protector onto the stack.
7514 Res = DAG.getStore(
7515 Chain, sdl, Src, FIN,
7516 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
7517 MaybeAlign(), MachineMemOperand::MOVolatile);
7518 setValue(&I, Res);
7519 DAG.setRoot(Res);
7520 return;
7521 }
7522 case Intrinsic::objectsize:
7523 llvm_unreachable("llvm.objectsize.* should have been lowered already");
7524
7525 case Intrinsic::is_constant:
7526 llvm_unreachable("llvm.is.constant.* should have been lowered already");
7527
7528 case Intrinsic::annotation:
7529 case Intrinsic::ptr_annotation:
7530 case Intrinsic::launder_invariant_group:
7531 case Intrinsic::strip_invariant_group:
7532 // Drop the intrinsic, but forward the value
7533 setValue(&I, getValue(I.getOperand(0)));
7534 return;
7535
7536 case Intrinsic::type_test:
7537 case Intrinsic::public_type_test:
7538 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7539 return;
7540
7541 case Intrinsic::assume:
7542 case Intrinsic::experimental_noalias_scope_decl:
7543 case Intrinsic::var_annotation:
7544 case Intrinsic::sideeffect:
7545 // Discard annotate attributes, noalias scope declarations, assumptions, and
7546 // artificial side-effects.
7547 return;
7548
7549 case Intrinsic::codeview_annotation: {
7550 // Emit a label associated with this metadata.
7551 MachineFunction &MF = DAG.getMachineFunction();
7552 MCSymbol *Label = MF.getContext().createTempSymbol("annotation", true);
7553 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7554 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
7555 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
7556 DAG.setRoot(Res);
7557 return;
7558 }
7559
7560 case Intrinsic::init_trampoline: {
7561 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
7562
7563 SDValue Ops[6];
7564 Ops[0] = getRoot();
7565 Ops[1] = getValue(I.getArgOperand(0));
7566 Ops[2] = getValue(I.getArgOperand(1));
7567 Ops[3] = getValue(I.getArgOperand(2));
7568 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
7569 Ops[5] = DAG.getSrcValue(F);
7570
7571 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
7572
7573 DAG.setRoot(Res);
7574 return;
7575 }
7576 case Intrinsic::adjust_trampoline:
7577 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
7578 TLI.getPointerTy(DAG.getDataLayout()),
7579 getValue(I.getArgOperand(0))));
7580 return;
7581 case Intrinsic::gcroot: {
7582 assert(DAG.getMachineFunction().getFunction().hasGC() &&
7583 "only valid in functions with gc specified, enforced by Verifier");
7584 assert(GFI && "implied by previous");
7585 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
7586 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
7587
7588 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
7589 GFI->addStackRoot(FI->getIndex(), TypeMap);
7590 return;
7591 }
7592 case Intrinsic::gcread:
7593 case Intrinsic::gcwrite:
7594 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
7595 case Intrinsic::get_rounding:
7596 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
7597 setValue(&I, Res);
7598 DAG.setRoot(Res.getValue(1));
7599 return;
7600
7601 case Intrinsic::expect:
7602 case Intrinsic::expect_with_probability:
7603 // Just replace __builtin_expect(exp, c) and
7604 // __builtin_expect_with_probability(exp, c, p) with EXP.
7605 setValue(&I, getValue(I.getArgOperand(0)));
7606 return;
7607
7608 case Intrinsic::ubsantrap:
7609 case Intrinsic::debugtrap:
7610 case Intrinsic::trap: {
7611 StringRef TrapFuncName =
7612 I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
7613 if (TrapFuncName.empty()) {
7614 switch (Intrinsic) {
7615 case Intrinsic::trap:
7616 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
7617 break;
7618 case Intrinsic::debugtrap:
7619 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
7620 break;
7621 case Intrinsic::ubsantrap:
7622 DAG.setRoot(DAG.getNode(
7623 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
7624 DAG.getTargetConstant(
7625 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
7626 MVT::i32)));
7627 break;
7628 default: llvm_unreachable("unknown trap intrinsic");
7629 }
7630 DAG.addNoMergeSiteInfo(DAG.getRoot().getNode(),
7631 I.hasFnAttr(Attribute::NoMerge));
7632 return;
7633 }
7635 if (Intrinsic == Intrinsic::ubsantrap) {
7636 Value *Arg = I.getArgOperand(0);
7637 Args.emplace_back(Arg, getValue(Arg));
7638 }
7639
7640 TargetLowering::CallLoweringInfo CLI(DAG);
7641 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
7642 CallingConv::C, I.getType(),
7643 DAG.getExternalSymbol(TrapFuncName.data(),
7644 TLI.getPointerTy(DAG.getDataLayout())),
7645 std::move(Args));
7646 CLI.NoMerge = I.hasFnAttr(Attribute::NoMerge);
7647 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7648 DAG.setRoot(Result.second);
7649 return;
7650 }
7651
7652 case Intrinsic::allow_runtime_check:
7653 case Intrinsic::allow_ubsan_check:
7654 setValue(&I, getValue(ConstantInt::getTrue(I.getType())));
7655 return;
7656
7657 case Intrinsic::uadd_with_overflow:
7658 case Intrinsic::sadd_with_overflow:
7659 case Intrinsic::usub_with_overflow:
7660 case Intrinsic::ssub_with_overflow:
7661 case Intrinsic::umul_with_overflow:
7662 case Intrinsic::smul_with_overflow: {
7664 switch (Intrinsic) {
7665 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7666 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7667 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7668 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7669 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7670 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7671 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7672 }
7673 SDValue Op1 = getValue(I.getArgOperand(0));
7674 SDValue Op2 = getValue(I.getArgOperand(1));
7675
7676 EVT ResultVT = Op1.getValueType();
7677 EVT OverflowVT = ResultVT.changeElementType(*Context, MVT::i1);
7678
7679 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7680 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7681 return;
7682 }
7683 case Intrinsic::prefetch: {
7684 SDValue Ops[5];
7685 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7687 Ops[0] = DAG.getRoot();
7688 Ops[1] = getValue(I.getArgOperand(0));
7689 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
7690 MVT::i32);
7691 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl,
7692 MVT::i32);
7693 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl,
7694 MVT::i32);
7695 SDValue Result = DAG.getMemIntrinsicNode(
7696 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7697 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7698 /* align */ std::nullopt, Flags);
7699
7700 // Chain the prefetch in parallel with any pending loads, to stay out of
7701 // the way of later optimizations.
7702 PendingLoads.push_back(Result);
7703 Result = getRoot();
7704 DAG.setRoot(Result);
7705 return;
7706 }
7707 case Intrinsic::lifetime_start:
7708 case Intrinsic::lifetime_end: {
7709 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7710 // Stack coloring is not enabled in O0, discard region information.
7711 if (TM.getOptLevel() == CodeGenOptLevel::None)
7712 return;
7713
7714 const AllocaInst *LifetimeObject = dyn_cast<AllocaInst>(I.getArgOperand(0));
7715 if (!LifetimeObject)
7716 return;
7717
7718 // First check that the Alloca is static, otherwise it won't have a
7719 // valid frame index.
7720 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7721 if (SI == FuncInfo.StaticAllocaMap.end())
7722 return;
7723
7724 const int FrameIndex = SI->second;
7725 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex);
7726 DAG.setRoot(Res);
7727 return;
7728 }
7729 case Intrinsic::pseudoprobe: {
7730 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7731 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7732 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7733 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7734 DAG.setRoot(Res);
7735 return;
7736 }
7737 case Intrinsic::invariant_start:
7738 // Discard region information.
7739 setValue(&I,
7740 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7741 return;
7742 case Intrinsic::invariant_end:
7743 // Discard region information.
7744 return;
7745 case Intrinsic::clear_cache: {
7746 SDValue InputChain = DAG.getRoot();
7747 SDValue StartVal = getValue(I.getArgOperand(0));
7748 SDValue EndVal = getValue(I.getArgOperand(1));
7749 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other),
7750 {InputChain, StartVal, EndVal});
7751 setValue(&I, Res);
7752 DAG.setRoot(Res);
7753 return;
7754 }
7755 case Intrinsic::donothing:
7756 case Intrinsic::seh_try_begin:
7757 case Intrinsic::seh_scope_begin:
7758 case Intrinsic::seh_try_end:
7759 case Intrinsic::seh_scope_end:
7760 // ignore
7761 return;
7762 case Intrinsic::experimental_stackmap:
7763 visitStackmap(I);
7764 return;
7765 case Intrinsic::experimental_patchpoint_void:
7766 case Intrinsic::experimental_patchpoint:
7767 visitPatchpoint(I);
7768 return;
7769 case Intrinsic::experimental_gc_statepoint:
7771 return;
7772 case Intrinsic::experimental_gc_result:
7773 visitGCResult(cast<GCResultInst>(I));
7774 return;
7775 case Intrinsic::experimental_gc_relocate:
7776 visitGCRelocate(cast<GCRelocateInst>(I));
7777 return;
7778 case Intrinsic::instrprof_cover:
7779 llvm_unreachable("instrprof failed to lower a cover");
7780 case Intrinsic::instrprof_increment:
7781 llvm_unreachable("instrprof failed to lower an increment");
7782 case Intrinsic::instrprof_timestamp:
7783 llvm_unreachable("instrprof failed to lower a timestamp");
7784 case Intrinsic::instrprof_value_profile:
7785 llvm_unreachable("instrprof failed to lower a value profiling call");
7786 case Intrinsic::instrprof_mcdc_parameters:
7787 llvm_unreachable("instrprof failed to lower mcdc parameters");
7788 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7789 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update");
7790 case Intrinsic::localescape: {
7791 MachineFunction &MF = DAG.getMachineFunction();
7792 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7793
7794 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7795 // is the same on all targets.
7796 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7797 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7798 if (isa<ConstantPointerNull>(Arg))
7799 continue; // Skip null pointers. They represent a hole in index space.
7800 AllocaInst *Slot = cast<AllocaInst>(Arg);
7801 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7802 "can only escape static allocas");
7803 int FI = FuncInfo.StaticAllocaMap[Slot];
7804 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7806 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7807 TII->get(TargetOpcode::LOCAL_ESCAPE))
7808 .addSym(FrameAllocSym)
7809 .addFrameIndex(FI);
7810 }
7811
7812 return;
7813 }
7814
7815 case Intrinsic::localrecover: {
7816 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7817 MachineFunction &MF = DAG.getMachineFunction();
7818
7819 // Get the symbol that defines the frame offset.
7820 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7821 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7822 unsigned IdxVal =
7823 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7824 MCSymbol *FrameAllocSym = MF.getContext().getOrCreateFrameAllocSymbol(
7826
7827 Value *FP = I.getArgOperand(1);
7828 SDValue FPVal = getValue(FP);
7829 EVT PtrVT = FPVal.getValueType();
7830
7831 // Create a MCSymbol for the label to avoid any target lowering
7832 // that would make this PC relative.
7833 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7834 SDValue OffsetVal =
7835 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7836
7837 // Add the offset to the FP.
7838 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7839 setValue(&I, Add);
7840
7841 return;
7842 }
7843
7844 case Intrinsic::fake_use: {
7845 Value *V = I.getArgOperand(0);
7846 SDValue Ops[2];
7847 // For Values not declared or previously used in this basic block, the
7848 // NodeMap will not have an entry, and `getValue` will assert if V has no
7849 // valid register value.
7850 auto FakeUseValue = [&]() -> SDValue {
7851 SDValue &N = NodeMap[V];
7852 if (N.getNode())
7853 return N;
7854
7855 // If there's a virtual register allocated and initialized for this
7856 // value, use it.
7857 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
7858 return copyFromReg;
7859 // FIXME: Do we want to preserve constants? It seems pointless.
7860 if (isa<Constant>(V))
7861 return getValue(V);
7862 return SDValue();
7863 }();
7864 if (!FakeUseValue || FakeUseValue.isUndef())
7865 return;
7866 Ops[0] = getRoot();
7867 Ops[1] = FakeUseValue;
7868 // Also, do not translate a fake use with an undef operand, or any other
7869 // empty SDValues.
7870 if (!Ops[1] || Ops[1].isUndef())
7871 return;
7872 DAG.setRoot(DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other, Ops));
7873 return;
7874 }
7875
7876 case Intrinsic::reloc_none: {
7877 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
7878 StringRef SymbolName = cast<MDString>(MD)->getString();
7879 SDValue Ops[2] = {
7880 getRoot(),
7881 DAG.getTargetExternalSymbol(
7882 SymbolName.data(), TLI.getProgramPointerTy(DAG.getDataLayout()))};
7883 DAG.setRoot(DAG.getNode(ISD::RELOC_NONE, sdl, MVT::Other, Ops));
7884 return;
7885 }
7886
7887 case Intrinsic::eh_exceptionpointer:
7888 case Intrinsic::eh_exceptioncode: {
7889 // Get the exception pointer vreg, copy from it, and resize it to fit.
7890 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7891 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7892 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7893 Register VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7894 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7895 if (Intrinsic == Intrinsic::eh_exceptioncode)
7896 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7897 setValue(&I, N);
7898 return;
7899 }
7900 case Intrinsic::xray_customevent: {
7901 // Here we want to make sure that the intrinsic behaves as if it has a
7902 // specific calling convention.
7903 const auto &Triple = DAG.getTarget().getTargetTriple();
7904 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7905 return;
7906
7908
7909 // We want to say that we always want the arguments in registers.
7910 SDValue LogEntryVal = getValue(I.getArgOperand(0));
7911 SDValue StrSizeVal = getValue(I.getArgOperand(1));
7912 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7913 SDValue Chain = getRoot();
7914 Ops.push_back(LogEntryVal);
7915 Ops.push_back(StrSizeVal);
7916 Ops.push_back(Chain);
7917
7918 // We need to enforce the calling convention for the callsite, so that
7919 // argument ordering is enforced correctly, and that register allocation can
7920 // see that some registers may be assumed clobbered and have to preserve
7921 // them across calls to the intrinsic.
7922 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7923 sdl, NodeTys, Ops);
7924 SDValue patchableNode = SDValue(MN, 0);
7925 DAG.setRoot(patchableNode);
7926 setValue(&I, patchableNode);
7927 return;
7928 }
7929 case Intrinsic::xray_typedevent: {
7930 // Here we want to make sure that the intrinsic behaves as if it has a
7931 // specific calling convention.
7932 const auto &Triple = DAG.getTarget().getTargetTriple();
7933 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
7934 return;
7935
7937
7938 // We want to say that we always want the arguments in registers.
7939 // It's unclear to me how manipulating the selection DAG here forces callers
7940 // to provide arguments in registers instead of on the stack.
7941 SDValue LogTypeId = getValue(I.getArgOperand(0));
7942 SDValue LogEntryVal = getValue(I.getArgOperand(1));
7943 SDValue StrSizeVal = getValue(I.getArgOperand(2));
7944 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7945 SDValue Chain = getRoot();
7946 Ops.push_back(LogTypeId);
7947 Ops.push_back(LogEntryVal);
7948 Ops.push_back(StrSizeVal);
7949 Ops.push_back(Chain);
7950
7951 // We need to enforce the calling convention for the callsite, so that
7952 // argument ordering is enforced correctly, and that register allocation can
7953 // see that some registers may be assumed clobbered and have to preserve
7954 // them across calls to the intrinsic.
7955 MachineSDNode *MN = DAG.getMachineNode(
7956 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7957 SDValue patchableNode = SDValue(MN, 0);
7958 DAG.setRoot(patchableNode);
7959 setValue(&I, patchableNode);
7960 return;
7961 }
7962 case Intrinsic::experimental_deoptimize:
7964 return;
7965 case Intrinsic::stepvector:
7966 visitStepVector(I);
7967 return;
7968 case Intrinsic::vector_reduce_fadd:
7969 case Intrinsic::vector_reduce_fmul:
7970 case Intrinsic::vector_reduce_add:
7971 case Intrinsic::vector_reduce_mul:
7972 case Intrinsic::vector_reduce_and:
7973 case Intrinsic::vector_reduce_or:
7974 case Intrinsic::vector_reduce_xor:
7975 case Intrinsic::vector_reduce_smax:
7976 case Intrinsic::vector_reduce_smin:
7977 case Intrinsic::vector_reduce_umax:
7978 case Intrinsic::vector_reduce_umin:
7979 case Intrinsic::vector_reduce_fmax:
7980 case Intrinsic::vector_reduce_fmin:
7981 case Intrinsic::vector_reduce_fmaximum:
7982 case Intrinsic::vector_reduce_fminimum:
7983 visitVectorReduce(I, Intrinsic);
7984 return;
7985
7986 case Intrinsic::icall_branch_funnel: {
7988 Ops.push_back(getValue(I.getArgOperand(0)));
7989
7990 int64_t Offset;
7992 I.getArgOperand(1), Offset, DAG.getDataLayout()));
7993 if (!Base)
7995 "llvm.icall.branch.funnel operand must be a GlobalValue");
7996 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7997
7998 struct BranchFunnelTarget {
7999 int64_t Offset;
8001 };
8003
8004 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
8006 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
8007 if (ElemBase != Base)
8008 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
8009 "to the same GlobalValue");
8010
8011 SDValue Val = getValue(I.getArgOperand(Op + 1));
8012 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
8013 if (!GA)
8015 "llvm.icall.branch.funnel operand must be a GlobalValue");
8016 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
8017 GA->getGlobal(), sdl, Val.getValueType(),
8018 GA->getOffset())});
8019 }
8020 llvm::sort(Targets,
8021 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
8022 return T1.Offset < T2.Offset;
8023 });
8024
8025 for (auto &T : Targets) {
8026 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
8027 Ops.push_back(T.Target);
8028 }
8029
8030 Ops.push_back(DAG.getRoot()); // Chain
8031 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
8032 MVT::Other, Ops),
8033 0);
8034 DAG.setRoot(N);
8035 setValue(&I, N);
8036 HasTailCall = true;
8037 return;
8038 }
8039
8040 case Intrinsic::wasm_landingpad_index:
8041 // Information this intrinsic contained has been transferred to
8042 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
8043 // delete it now.
8044 return;
8045
8046 case Intrinsic::aarch64_settag:
8047 case Intrinsic::aarch64_settag_zero: {
8048 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8049 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
8051 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
8052 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
8053 ZeroMemory);
8054 DAG.setRoot(Val);
8055 setValue(&I, Val);
8056 return;
8057 }
8058 case Intrinsic::amdgcn_cs_chain: {
8059 // At this point we don't care if it's amdgpu_cs_chain or
8060 // amdgpu_cs_chain_preserve.
8062
8063 Type *RetTy = I.getType();
8064 assert(RetTy->isVoidTy() && "Should not return");
8065
8066 SDValue Callee = getValue(I.getOperand(0));
8067
8068 // We only have 2 actual args: one for the SGPRs and one for the VGPRs.
8069 // We'll also tack the value of the EXEC mask at the end.
8071 Args.reserve(3);
8072
8073 for (unsigned Idx : {2, 3, 1}) {
8074 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8075 I.getOperand(Idx)->getType());
8076 Arg.setAttributes(&I, Idx);
8077 Args.push_back(Arg);
8078 }
8079
8080 assert(Args[0].IsInReg && "SGPR args should be marked inreg");
8081 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg");
8082 Args[2].IsInReg = true; // EXEC should be inreg
8083
8084 // Forward the flags and any additional arguments.
8085 for (unsigned Idx = 4; Idx < I.arg_size(); ++Idx) {
8086 TargetLowering::ArgListEntry Arg(getValue(I.getOperand(Idx)),
8087 I.getOperand(Idx)->getType());
8088 Arg.setAttributes(&I, Idx);
8089 Args.push_back(Arg);
8090 }
8091
8092 TargetLowering::CallLoweringInfo CLI(DAG);
8093 CLI.setDebugLoc(getCurSDLoc())
8094 .setChain(getRoot())
8095 .setCallee(CC, RetTy, Callee, std::move(Args))
8096 .setNoReturn(true)
8097 .setTailCall(true)
8098 .setConvergent(I.isConvergent());
8099 CLI.CB = &I;
8100 std::pair<SDValue, SDValue> Result =
8101 lowerInvokable(CLI, /*EHPadBB*/ nullptr);
8102 (void)Result;
8103 assert(!Result.first.getNode() && !Result.second.getNode() &&
8104 "Should've lowered as tail call");
8105
8106 HasTailCall = true;
8107 return;
8108 }
8109 case Intrinsic::amdgcn_call_whole_wave: {
8111 bool isTailCall = I.isTailCall();
8112
8113 // The first argument is the callee. Skip it when assembling the call args.
8114 for (unsigned Idx = 1; Idx < I.arg_size(); ++Idx) {
8115 TargetLowering::ArgListEntry Arg(getValue(I.getArgOperand(Idx)),
8116 I.getArgOperand(Idx)->getType());
8117 Arg.setAttributes(&I, Idx);
8118
8119 // If we have an explicit sret argument that is an Instruction, (i.e., it
8120 // might point to function-local memory), we can't meaningfully tail-call.
8121 if (Arg.IsSRet && isa<Instruction>(I.getArgOperand(Idx)))
8122 isTailCall = false;
8123
8124 Args.push_back(Arg);
8125 }
8126
8127 SDValue ConvControlToken;
8128 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) {
8129 auto *Token = Bundle->Inputs[0].get();
8130 ConvControlToken = getValue(Token);
8131 }
8132
8133 TargetLowering::CallLoweringInfo CLI(DAG);
8134 CLI.setDebugLoc(getCurSDLoc())
8135 .setChain(getRoot())
8136 .setCallee(CallingConv::AMDGPU_Gfx_WholeWave, I.getType(),
8137 getValue(I.getArgOperand(0)), std::move(Args))
8138 .setTailCall(isTailCall && canTailCall(I))
8139 .setIsPreallocated(
8140 I.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8141 .setConvergent(I.isConvergent())
8142 .setConvergenceControlToken(ConvControlToken);
8143 CLI.CB = &I;
8144
8145 std::pair<SDValue, SDValue> Result =
8146 lowerInvokable(CLI, /*EHPadBB=*/nullptr);
8147
8148 if (Result.first.getNode())
8149 setValue(&I, Result.first);
8150 return;
8151 }
8152 case Intrinsic::ptrmask: {
8153 SDValue Ptr = getValue(I.getOperand(0));
8154 SDValue Mask = getValue(I.getOperand(1));
8155
8156 // On arm64_32, pointers are 32 bits when stored in memory, but
8157 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to
8158 // match the index type, but the pointer is 64 bits, so the mask must be
8159 // zero-extended up to 64 bits to match the pointer.
8160 EVT PtrVT =
8161 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8162 EVT MemVT =
8163 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
8164 assert(PtrVT == Ptr.getValueType());
8165 if (Mask.getValueType().getFixedSizeInBits() < MemVT.getFixedSizeInBits()) {
8166 // For AMDGPU buffer descriptors the mask is 48 bits, but the pointer is
8167 // 128-bit, so we have to pad the mask with ones for unused bits.
8168 auto HighOnes = DAG.getNode(
8169 ISD::SHL, sdl, PtrVT, DAG.getAllOnesConstant(sdl, PtrVT),
8170 DAG.getShiftAmountConstant(Mask.getValueType().getFixedSizeInBits(),
8171 PtrVT, sdl));
8172 Mask = DAG.getNode(ISD::OR, sdl, PtrVT,
8173 DAG.getZExtOrTrunc(Mask, sdl, PtrVT), HighOnes);
8174 } else if (Mask.getValueType() != PtrVT)
8175 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8176
8177 assert(Mask.getValueType() == PtrVT);
8178 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask));
8179 return;
8180 }
8181 case Intrinsic::threadlocal_address: {
8182 setValue(&I, getValue(I.getOperand(0)));
8183 return;
8184 }
8185 case Intrinsic::get_active_lane_mask: {
8186 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8187 SDValue Index = getValue(I.getOperand(0));
8188 SDValue TripCount = getValue(I.getOperand(1));
8189 EVT ElementVT = Index.getValueType();
8190
8191 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
8192 setValue(&I, DAG.getNode(ISD::GET_ACTIVE_LANE_MASK, sdl, CCVT, Index,
8193 TripCount));
8194 return;
8195 }
8196
8197 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT,
8198 CCVT.getVectorElementCount());
8199
8200 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
8201 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
8202 SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
8203 SDValue VectorInduction = DAG.getNode(
8204 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
8205 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
8206 VectorTripCount, ISD::CondCode::SETULT);
8207 setValue(&I, SetCC);
8208 return;
8209 }
8210 case Intrinsic::experimental_get_vector_length: {
8211 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
8212 "Expected positive VF");
8213 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
8214 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
8215
8216 SDValue Count = getValue(I.getOperand(0));
8217 EVT CountVT = Count.getValueType();
8218
8219 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
8220 visitTargetIntrinsic(I, Intrinsic);
8221 return;
8222 }
8223
8224 // Expand to a umin between the trip count and the maximum elements the type
8225 // can hold.
8226 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8227
8228 // Extend the trip count to at least the result VT.
8229 if (CountVT.bitsLT(VT)) {
8230 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
8231 CountVT = VT;
8232 }
8233
8234 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
8235 ElementCount::get(VF, IsScalable));
8236
8237 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
8238 // Clip to the result type if needed.
8239 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
8240
8241 setValue(&I, Trunc);
8242 return;
8243 }
8244 case Intrinsic::vector_partial_reduce_add: {
8245 SDValue Acc = getValue(I.getOperand(0));
8246 SDValue Input = getValue(I.getOperand(1));
8247 setValue(&I,
8248 DAG.getNode(ISD::PARTIAL_REDUCE_UMLA, sdl, Acc.getValueType(), Acc,
8249 Input, DAG.getConstant(1, sdl, Input.getValueType())));
8250 return;
8251 }
8252 case Intrinsic::vector_partial_reduce_fadd: {
8253 SDValue Acc = getValue(I.getOperand(0));
8254 SDValue Input = getValue(I.getOperand(1));
8255 setValue(&I, DAG.getNode(
8256 ISD::PARTIAL_REDUCE_FMLA, sdl, Acc.getValueType(), Acc,
8257 Input, DAG.getConstantFP(1.0, sdl, Input.getValueType())));
8258 return;
8259 }
8260 case Intrinsic::experimental_cttz_elts: {
8261 auto DL = getCurSDLoc();
8262 SDValue Op = getValue(I.getOperand(0));
8263 EVT OpVT = Op.getValueType();
8264
8265 if (!TLI.shouldExpandCttzElements(OpVT)) {
8266 visitTargetIntrinsic(I, Intrinsic);
8267 return;
8268 }
8269
8270 if (OpVT.getScalarType() != MVT::i1) {
8271 // Compare the input vector elements to zero & use to count trailing zeros
8272 SDValue AllZero = DAG.getConstant(0, DL, OpVT);
8273 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
8274 OpVT.getVectorElementCount());
8275 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE);
8276 }
8277
8278 // If the zero-is-poison flag is set, we can assume the upper limit
8279 // of the result is VF-1.
8280 bool ZeroIsPoison =
8281 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero();
8282 ConstantRange VScaleRange(1, true); // Dummy value.
8283 if (isa<ScalableVectorType>(I.getOperand(0)->getType()))
8284 VScaleRange = getVScaleRange(I.getCaller(), 64);
8285 unsigned EltWidth = TLI.getBitWidthForCttzElements(
8286 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange);
8287
8288 MVT NewEltTy = MVT::getIntegerVT(EltWidth);
8289
8290 // Create the new vector type & get the vector length
8291 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy,
8292 OpVT.getVectorElementCount());
8293
8294 SDValue VL =
8295 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount());
8296
8297 SDValue StepVec = DAG.getStepVector(DL, NewVT);
8298 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL);
8299 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec);
8300 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op);
8301 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext);
8302 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And);
8303 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max);
8304
8305 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
8306 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy);
8307
8308 setValue(&I, Ret);
8309 return;
8310 }
8311 case Intrinsic::vector_insert: {
8312 SDValue Vec = getValue(I.getOperand(0));
8313 SDValue SubVec = getValue(I.getOperand(1));
8314 SDValue Index = getValue(I.getOperand(2));
8315
8316 // The intrinsic's index type is i64, but the SDNode requires an index type
8317 // suitable for the target. Convert the index as required.
8318 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8319 if (Index.getValueType() != VectorIdxTy)
8320 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8321
8322 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8323 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
8324 Index));
8325 return;
8326 }
8327 case Intrinsic::vector_extract: {
8328 SDValue Vec = getValue(I.getOperand(0));
8329 SDValue Index = getValue(I.getOperand(1));
8330 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8331
8332 // The intrinsic's index type is i64, but the SDNode requires an index type
8333 // suitable for the target. Convert the index as required.
8334 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
8335 if (Index.getValueType() != VectorIdxTy)
8336 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl);
8337
8338 setValue(&I,
8339 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
8340 return;
8341 }
8342 case Intrinsic::experimental_vector_match: {
8343 SDValue Op1 = getValue(I.getOperand(0));
8344 SDValue Op2 = getValue(I.getOperand(1));
8345 SDValue Mask = getValue(I.getOperand(2));
8346 EVT Op1VT = Op1.getValueType();
8347 EVT Op2VT = Op2.getValueType();
8348 EVT ResVT = Mask.getValueType();
8349 unsigned SearchSize = Op2VT.getVectorNumElements();
8350
8351 // If the target has native support for this vector match operation, lower
8352 // the intrinsic untouched; otherwise, expand it below.
8353 if (!TLI.shouldExpandVectorMatch(Op1VT, SearchSize)) {
8354 visitTargetIntrinsic(I, Intrinsic);
8355 return;
8356 }
8357
8358 SDValue Ret = DAG.getConstant(0, sdl, ResVT);
8359
8360 for (unsigned i = 0; i < SearchSize; ++i) {
8361 SDValue Op2Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl,
8362 Op2VT.getVectorElementType(), Op2,
8363 DAG.getVectorIdxConstant(i, sdl));
8364 SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, sdl, Op1VT, Op2Elem);
8365 SDValue Cmp = DAG.getSetCC(sdl, ResVT, Op1, Splat, ISD::SETEQ);
8366 Ret = DAG.getNode(ISD::OR, sdl, ResVT, Ret, Cmp);
8367 }
8368
8369 setValue(&I, DAG.getNode(ISD::AND, sdl, ResVT, Ret, Mask));
8370 return;
8371 }
8372 case Intrinsic::vector_reverse:
8373 visitVectorReverse(I);
8374 return;
8375 case Intrinsic::vector_splice_left:
8376 case Intrinsic::vector_splice_right:
8377 visitVectorSplice(I);
8378 return;
8379 case Intrinsic::callbr_landingpad:
8380 visitCallBrLandingPad(I);
8381 return;
8382 case Intrinsic::vector_interleave2:
8383 visitVectorInterleave(I, 2);
8384 return;
8385 case Intrinsic::vector_interleave3:
8386 visitVectorInterleave(I, 3);
8387 return;
8388 case Intrinsic::vector_interleave4:
8389 visitVectorInterleave(I, 4);
8390 return;
8391 case Intrinsic::vector_interleave5:
8392 visitVectorInterleave(I, 5);
8393 return;
8394 case Intrinsic::vector_interleave6:
8395 visitVectorInterleave(I, 6);
8396 return;
8397 case Intrinsic::vector_interleave7:
8398 visitVectorInterleave(I, 7);
8399 return;
8400 case Intrinsic::vector_interleave8:
8401 visitVectorInterleave(I, 8);
8402 return;
8403 case Intrinsic::vector_deinterleave2:
8404 visitVectorDeinterleave(I, 2);
8405 return;
8406 case Intrinsic::vector_deinterleave3:
8407 visitVectorDeinterleave(I, 3);
8408 return;
8409 case Intrinsic::vector_deinterleave4:
8410 visitVectorDeinterleave(I, 4);
8411 return;
8412 case Intrinsic::vector_deinterleave5:
8413 visitVectorDeinterleave(I, 5);
8414 return;
8415 case Intrinsic::vector_deinterleave6:
8416 visitVectorDeinterleave(I, 6);
8417 return;
8418 case Intrinsic::vector_deinterleave7:
8419 visitVectorDeinterleave(I, 7);
8420 return;
8421 case Intrinsic::vector_deinterleave8:
8422 visitVectorDeinterleave(I, 8);
8423 return;
8424 case Intrinsic::experimental_vector_compress:
8425 setValue(&I, DAG.getNode(ISD::VECTOR_COMPRESS, sdl,
8426 getValue(I.getArgOperand(0)).getValueType(),
8427 getValue(I.getArgOperand(0)),
8428 getValue(I.getArgOperand(1)),
8429 getValue(I.getArgOperand(2)), Flags));
8430 return;
8431 case Intrinsic::experimental_convergence_anchor:
8432 case Intrinsic::experimental_convergence_entry:
8433 case Intrinsic::experimental_convergence_loop:
8434 visitConvergenceControl(I, Intrinsic);
8435 return;
8436 case Intrinsic::experimental_vector_histogram_add: {
8437 visitVectorHistogram(I, Intrinsic);
8438 return;
8439 }
8440 case Intrinsic::experimental_vector_extract_last_active: {
8441 visitVectorExtractLastActive(I, Intrinsic);
8442 return;
8443 }
8444 case Intrinsic::loop_dependence_war_mask:
8445 setValue(&I,
8447 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8448 getValue(I.getOperand(1)), getValue(I.getOperand(2)),
8449 DAG.getConstant(0, sdl, MVT::i64)));
8450 return;
8451 case Intrinsic::loop_dependence_raw_mask:
8452 setValue(&I,
8454 EVT::getEVT(I.getType()), getValue(I.getOperand(0)),
8455 getValue(I.getOperand(1)), getValue(I.getOperand(2)),
8456 DAG.getConstant(0, sdl, MVT::i64)));
8457 return;
8458 }
8459}
8460
8461void SelectionDAGBuilder::pushFPOpOutChain(SDValue Result,
8463 assert(Result.getNode()->getNumValues() == 2);
8464 SDValue OutChain = Result.getValue(1);
8465 assert(OutChain.getValueType() == MVT::Other);
8466
8467 // Instead of updating the root immediately, push the produced chain to the
8468 // appropriate list, deferring the update until the root is requested. In this
8469 // case, the nodes from the lists are chained using TokenFactor, indicating
8470 // that the operations are independent.
8471 //
8472 // In particular, the root is updated before any call that might access the
8473 // floating-point environment, except for constrained intrinsics.
8474 switch (EB) {
8477 PendingConstrainedFP.push_back(OutChain);
8478 break;
8480 PendingConstrainedFPStrict.push_back(OutChain);
8481 break;
8482 }
8483}
8484
8485void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8486 const ConstrainedFPIntrinsic &FPI) {
8487 SDLoc sdl = getCurSDLoc();
8488
8489 // We do not need to serialize constrained FP intrinsics against
8490 // each other or against (nonvolatile) loads, so they can be
8491 // chained like loads.
8493 SDValue Chain = getFPOperationRoot(EB);
8495 Opers.push_back(Chain);
8496 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I)
8497 Opers.push_back(getValue(FPI.getArgOperand(I)));
8498
8499 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8500 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
8501 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
8502
8503 SDNodeFlags Flags;
8505 Flags.setNoFPExcept(true);
8506
8507 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
8508 Flags.copyFMF(*FPOp);
8509
8510 unsigned Opcode;
8511 switch (FPI.getIntrinsicID()) {
8512 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
8513#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8514 case Intrinsic::INTRINSIC: \
8515 Opcode = ISD::STRICT_##DAGN; \
8516 break;
8517#include "llvm/IR/ConstrainedOps.def"
8518 case Intrinsic::experimental_constrained_fmuladd: {
8519 Opcode = ISD::STRICT_FMA;
8520 // Break fmuladd into fmul and fadd.
8521 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
8522 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
8523 Opers.pop_back();
8524 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
8525 pushFPOpOutChain(Mul, EB);
8526 Opcode = ISD::STRICT_FADD;
8527 Opers.clear();
8528 Opers.push_back(Mul.getValue(1));
8529 Opers.push_back(Mul.getValue(0));
8530 Opers.push_back(getValue(FPI.getArgOperand(2)));
8531 }
8532 break;
8533 }
8534 }
8535
8536 // A few strict DAG nodes carry additional operands that are not
8537 // set up by the default code above.
8538 switch (Opcode) {
8539 default: break;
8541 Opers.push_back(
8542 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
8543 break;
8544 case ISD::STRICT_FSETCC:
8545 case ISD::STRICT_FSETCCS: {
8546 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
8547 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
8548 if (TM.Options.NoNaNsFPMath)
8549 Condition = getFCmpCodeWithoutNaN(Condition);
8550 Opers.push_back(DAG.getCondCode(Condition));
8551 break;
8552 }
8553 }
8554
8555 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
8556 pushFPOpOutChain(Result, EB);
8557
8558 SDValue FPResult = Result.getValue(0);
8559 setValue(&FPI, FPResult);
8560}
8561
8562static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
8563 std::optional<unsigned> ResOPC;
8564 switch (VPIntrin.getIntrinsicID()) {
8565 case Intrinsic::vp_ctlz: {
8566 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8567 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8568 break;
8569 }
8570 case Intrinsic::vp_cttz: {
8571 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8572 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8573 break;
8574 }
8575 case Intrinsic::vp_cttz_elts: {
8576 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
8577 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8578 break;
8579 }
8580#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8581 case Intrinsic::VPID: \
8582 ResOPC = ISD::VPSD; \
8583 break;
8584#include "llvm/IR/VPIntrinsics.def"
8585 }
8586
8587 if (!ResOPC)
8589 "Inconsistency: no SDNode available for this VPIntrinsic!");
8590
8591 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8592 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8593 if (VPIntrin.getFastMathFlags().allowReassoc())
8594 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8595 : ISD::VP_REDUCE_FMUL;
8596 }
8597
8598 return *ResOPC;
8599}
8600
8601void SelectionDAGBuilder::visitVPLoad(
8602 const VPIntrinsic &VPIntrin, EVT VT,
8603 const SmallVectorImpl<SDValue> &OpValues) {
8604 SDLoc DL = getCurSDLoc();
8605 Value *PtrOperand = VPIntrin.getArgOperand(0);
8606 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8607 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8608 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8609 SDValue LD;
8610 // Do not serialize variable-length loads of constant memory with
8611 // anything.
8612 if (!Alignment)
8613 Alignment = DAG.getEVTAlign(VT);
8614 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8615 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8616 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8617 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8618 MachineMemOperand::Flags MMOFlags =
8619 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8620 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8621 MachinePointerInfo(PtrOperand), MMOFlags,
8622 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8623 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8624 MMO, false /*IsExpanding */);
8625 if (AddToChain)
8626 PendingLoads.push_back(LD.getValue(1));
8627 setValue(&VPIntrin, LD);
8628}
8629
8630void SelectionDAGBuilder::visitVPLoadFF(
8631 const VPIntrinsic &VPIntrin, EVT VT, EVT EVLVT,
8632 const SmallVectorImpl<SDValue> &OpValues) {
8633 assert(OpValues.size() == 3 && "Unexpected number of operands");
8634 SDLoc DL = getCurSDLoc();
8635 Value *PtrOperand = VPIntrin.getArgOperand(0);
8636 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8637 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8638 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
8639 SDValue LD;
8640 // Do not serialize variable-length loads of constant memory with
8641 // anything.
8642 if (!Alignment)
8643 Alignment = DAG.getEVTAlign(VT);
8644 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8645 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8646 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8647 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8648 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
8649 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges);
8650 LD = DAG.getLoadFFVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8651 MMO);
8652 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, EVLVT, LD.getValue(1));
8653 if (AddToChain)
8654 PendingLoads.push_back(LD.getValue(2));
8655 setValue(&VPIntrin, DAG.getMergeValues({LD.getValue(0), Trunc}, DL));
8656}
8657
8658void SelectionDAGBuilder::visitVPGather(
8659 const VPIntrinsic &VPIntrin, EVT VT,
8660 const SmallVectorImpl<SDValue> &OpValues) {
8661 SDLoc DL = getCurSDLoc();
8662 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8663 Value *PtrOperand = VPIntrin.getArgOperand(0);
8664 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8665 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8666 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8667 SDValue LD;
8668 if (!Alignment)
8669 Alignment = DAG.getEVTAlign(VT.getScalarType());
8670 unsigned AS =
8671 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8672 MachineMemOperand::Flags MMOFlags =
8673 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8674 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8675 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8676 *Alignment, AAInfo, Ranges);
8677 SDValue Base, Index, Scale;
8678 bool UniformBase =
8679 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8680 VT.getScalarStoreSize());
8681 if (!UniformBase) {
8682 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8683 Index = getValue(PtrOperand);
8684 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8685 }
8686 EVT IdxVT = Index.getValueType();
8687 EVT EltTy = IdxVT.getVectorElementType();
8688 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8689 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
8690 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8691 }
8692 LD = DAG.getGatherVP(
8693 DAG.getVTList(VT, MVT::Other), VT, DL,
8694 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8696 PendingLoads.push_back(LD.getValue(1));
8697 setValue(&VPIntrin, LD);
8698}
8699
8700void SelectionDAGBuilder::visitVPStore(
8701 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8702 SDLoc DL = getCurSDLoc();
8703 Value *PtrOperand = VPIntrin.getArgOperand(1);
8704 EVT VT = OpValues[0].getValueType();
8705 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8706 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8707 SDValue ST;
8708 if (!Alignment)
8709 Alignment = DAG.getEVTAlign(VT);
8710 SDValue Ptr = OpValues[1];
8711 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
8712 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8713 MachineMemOperand::Flags MMOFlags =
8714 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8715 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8716 MachinePointerInfo(PtrOperand), MMOFlags,
8717 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo);
8718 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
8719 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
8720 /* IsTruncating */ false, /*IsCompressing*/ false);
8721 DAG.setRoot(ST);
8722 setValue(&VPIntrin, ST);
8723}
8724
8725void SelectionDAGBuilder::visitVPScatter(
8726 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8727 SDLoc DL = getCurSDLoc();
8728 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8729 Value *PtrOperand = VPIntrin.getArgOperand(1);
8730 EVT VT = OpValues[0].getValueType();
8731 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8732 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8733 SDValue ST;
8734 if (!Alignment)
8735 Alignment = DAG.getEVTAlign(VT.getScalarType());
8736 unsigned AS =
8737 PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
8738 MachineMemOperand::Flags MMOFlags =
8739 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8740 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8741 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8742 *Alignment, AAInfo);
8743 SDValue Base, Index, Scale;
8744 bool UniformBase =
8745 getUniformBase(PtrOperand, Base, Index, Scale, this, VPIntrin.getParent(),
8746 VT.getScalarStoreSize());
8747 if (!UniformBase) {
8748 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
8749 Index = getValue(PtrOperand);
8750 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
8751 }
8752 EVT IdxVT = Index.getValueType();
8753 EVT EltTy = IdxVT.getVectorElementType();
8754 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
8755 EVT NewIdxVT = IdxVT.changeVectorElementType(*DAG.getContext(), EltTy);
8756 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
8757 }
8758 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
8759 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8760 OpValues[2], OpValues[3]},
8761 MMO, ISD::SIGNED_SCALED);
8762 DAG.setRoot(ST);
8763 setValue(&VPIntrin, ST);
8764}
8765
8766void SelectionDAGBuilder::visitVPStridedLoad(
8767 const VPIntrinsic &VPIntrin, EVT VT,
8768 const SmallVectorImpl<SDValue> &OpValues) {
8769 SDLoc DL = getCurSDLoc();
8770 Value *PtrOperand = VPIntrin.getArgOperand(0);
8771 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8772 if (!Alignment)
8773 Alignment = DAG.getEVTAlign(VT.getScalarType());
8774 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8775 const MDNode *Ranges = getRangeMetadata(VPIntrin);
8776 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
8777 bool AddToChain = !BatchAA || !BatchAA->pointsToConstantMemory(ML);
8778 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
8779 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8780 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8781 MachineMemOperand::Flags MMOFlags =
8782 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8783 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8784 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8785 *Alignment, AAInfo, Ranges);
8786
8787 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
8788 OpValues[2], OpValues[3], MMO,
8789 false /*IsExpanding*/);
8790
8791 if (AddToChain)
8792 PendingLoads.push_back(LD.getValue(1));
8793 setValue(&VPIntrin, LD);
8794}
8795
8796void SelectionDAGBuilder::visitVPStridedStore(
8797 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
8798 SDLoc DL = getCurSDLoc();
8799 Value *PtrOperand = VPIntrin.getArgOperand(1);
8800 EVT VT = OpValues[0].getValueType();
8801 MaybeAlign Alignment = VPIntrin.getPointerAlignment();
8802 if (!Alignment)
8803 Alignment = DAG.getEVTAlign(VT.getScalarType());
8804 AAMDNodes AAInfo = VPIntrin.getAAMetadata();
8805 unsigned AS = PtrOperand->getType()->getPointerAddressSpace();
8806 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8807 MachineMemOperand::Flags MMOFlags =
8808 TLI.getVPIntrinsicMemOperandFlags(VPIntrin);
8809 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
8810 MachinePointerInfo(AS), MMOFlags, LocationSize::beforeOrAfterPointer(),
8811 *Alignment, AAInfo);
8812
8813 SDValue ST = DAG.getStridedStoreVP(
8814 getMemoryRoot(), DL, OpValues[0], OpValues[1],
8815 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8816 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
8817 /*IsCompressing*/ false);
8818
8819 DAG.setRoot(ST);
8820 setValue(&VPIntrin, ST);
8821}
8822
8823void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
8824 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8825 SDLoc DL = getCurSDLoc();
8826
8827 ISD::CondCode Condition;
8829 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
8830 if (IsFP) {
8831 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
8832 // flags, but calls that don't return floating-point types can't be
8833 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
8834 Condition = getFCmpCondCode(CondCode);
8835 if (TM.Options.NoNaNsFPMath)
8836 Condition = getFCmpCodeWithoutNaN(Condition);
8837 } else {
8838 Condition = getICmpCondCode(CondCode);
8839 }
8840
8841 SDValue Op1 = getValue(VPIntrin.getOperand(0));
8842 SDValue Op2 = getValue(VPIntrin.getOperand(1));
8843 // #2 is the condition code
8844 SDValue MaskOp = getValue(VPIntrin.getOperand(3));
8845 SDValue EVL = getValue(VPIntrin.getOperand(4));
8846 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8847 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8848 "Unexpected target EVL type");
8849 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
8850
8851 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8852 VPIntrin.getType());
8853 setValue(&VPIntrin,
8854 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8855}
8856
8857void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8858 const VPIntrinsic &VPIntrin) {
8859 SDLoc DL = getCurSDLoc();
8860 unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
8861
8862 auto IID = VPIntrin.getIntrinsicID();
8863
8864 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
8865 return visitVPCmp(*CmpI);
8866
8867 SmallVector<EVT, 4> ValueVTs;
8868 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8869 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
8870 SDVTList VTs = DAG.getVTList(ValueVTs);
8871
8872 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
8873
8874 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
8875 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
8876 "Unexpected target EVL type");
8877
8878 // Request operands.
8879 SmallVector<SDValue, 7> OpValues;
8880 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
8881 auto Op = getValue(VPIntrin.getArgOperand(I));
8882 if (I == EVLParamPos)
8883 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
8884 OpValues.push_back(Op);
8885 }
8886
8887 switch (Opcode) {
8888 default: {
8889 SDNodeFlags SDFlags;
8890 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8891 SDFlags.copyFMF(*FPMO);
8892 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
8893 setValue(&VPIntrin, Result);
8894 break;
8895 }
8896 case ISD::VP_LOAD:
8897 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8898 break;
8899 case ISD::VP_LOAD_FF:
8900 visitVPLoadFF(VPIntrin, ValueVTs[0], ValueVTs[1], OpValues);
8901 break;
8902 case ISD::VP_GATHER:
8903 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8904 break;
8905 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8906 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8907 break;
8908 case ISD::VP_STORE:
8909 visitVPStore(VPIntrin, OpValues);
8910 break;
8911 case ISD::VP_SCATTER:
8912 visitVPScatter(VPIntrin, OpValues);
8913 break;
8914 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8915 visitVPStridedStore(VPIntrin, OpValues);
8916 break;
8917 case ISD::VP_FMULADD: {
8918 assert(OpValues.size() == 5 && "Unexpected number of operands");
8919 SDNodeFlags SDFlags;
8920 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
8921 SDFlags.copyFMF(*FPMO);
8922 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
8923 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
8924 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
8925 } else {
8926 SDValue Mul = DAG.getNode(
8927 ISD::VP_FMUL, DL, VTs,
8928 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8929 SDValue Add =
8930 DAG.getNode(ISD::VP_FADD, DL, VTs,
8931 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8932 setValue(&VPIntrin, Add);
8933 }
8934 break;
8935 }
8936 case ISD::VP_IS_FPCLASS: {
8937 const DataLayout DLayout = DAG.getDataLayout();
8938 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType());
8939 auto Constant = OpValues[1]->getAsZExtVal();
8940 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32);
8941 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT,
8942 {OpValues[0], Check, OpValues[2], OpValues[3]});
8943 setValue(&VPIntrin, V);
8944 return;
8945 }
8946 case ISD::VP_INTTOPTR: {
8947 SDValue N = OpValues[0];
8948 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
8949 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
8950 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8951 OpValues[2]);
8952 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8953 OpValues[2]);
8954 setValue(&VPIntrin, N);
8955 break;
8956 }
8957 case ISD::VP_PTRTOINT: {
8958 SDValue N = OpValues[0];
8959 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8960 VPIntrin.getType());
8961 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
8962 VPIntrin.getOperand(0)->getType());
8963 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
8964 OpValues[2]);
8965 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
8966 OpValues[2]);
8967 setValue(&VPIntrin, N);
8968 break;
8969 }
8970 case ISD::VP_ABS:
8971 case ISD::VP_CTLZ:
8972 case ISD::VP_CTLZ_ZERO_UNDEF:
8973 case ISD::VP_CTTZ:
8974 case ISD::VP_CTTZ_ZERO_UNDEF:
8975 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8976 case ISD::VP_CTTZ_ELTS: {
8977 SDValue Result =
8978 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8979 setValue(&VPIntrin, Result);
8980 break;
8981 }
8982 }
8983}
8984
8985SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
8986 const BasicBlock *EHPadBB,
8987 MCSymbol *&BeginLabel) {
8988 MachineFunction &MF = DAG.getMachineFunction();
8989
8990 // Insert a label before the invoke call to mark the try range. This can be
8991 // used to detect deletion of the invoke via the MachineModuleInfo.
8992 BeginLabel = MF.getContext().createTempSymbol();
8993
8994 // For SjLj, keep track of which landing pads go with which invokes
8995 // so as to maintain the ordering of pads in the LSDA.
8996 unsigned CallSiteIndex = FuncInfo.getCurrentCallSite();
8997 if (CallSiteIndex) {
8998 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
8999 LPadToCallSiteMap[FuncInfo.getMBB(EHPadBB)].push_back(CallSiteIndex);
9000
9001 // Now that the call site is handled, stop tracking it.
9002 FuncInfo.setCurrentCallSite(0);
9003 }
9004
9005 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
9006}
9007
9008SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
9009 const BasicBlock *EHPadBB,
9010 MCSymbol *BeginLabel) {
9011 assert(BeginLabel && "BeginLabel should've been set");
9012
9013 MachineFunction &MF = DAG.getMachineFunction();
9014
9015 // Insert a label at the end of the invoke call to mark the try range. This
9016 // can be used to detect deletion of the invoke via the MachineModuleInfo.
9017 MCSymbol *EndLabel = MF.getContext().createTempSymbol();
9018 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
9019
9020 // Inform MachineModuleInfo of range.
9021 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
9022 // There is a platform (e.g. wasm) that uses funclet style IR but does not
9023 // actually use outlined funclets and their LSDA info style.
9024 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
9025 assert(II && "II should've been set");
9026 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
9027 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
9028 } else if (!isScopedEHPersonality(Pers)) {
9029 assert(EHPadBB);
9030 MF.addInvoke(FuncInfo.getMBB(EHPadBB), BeginLabel, EndLabel);
9031 }
9032
9033 return Chain;
9034}
9035
9036std::pair<SDValue, SDValue>
9038 const BasicBlock *EHPadBB) {
9039 MCSymbol *BeginLabel = nullptr;
9040
9041 if (EHPadBB) {
9042 // Both PendingLoads and PendingExports must be flushed here;
9043 // this call might not return.
9044 (void)getRoot();
9045 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
9046 CLI.setChain(getRoot());
9047 }
9048
9049 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9050 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
9051
9052 assert((CLI.IsTailCall || Result.second.getNode()) &&
9053 "Non-null chain expected with non-tail call!");
9054 assert((Result.second.getNode() || !Result.first.getNode()) &&
9055 "Null value expected with tail call!");
9056
9057 if (!Result.second.getNode()) {
9058 // As a special case, a null chain means that a tail call has been emitted
9059 // and the DAG root is already updated.
9060 HasTailCall = true;
9061
9062 // Since there's no actual continuation from this block, nothing can be
9063 // relying on us setting vregs for them.
9064 PendingExports.clear();
9065 } else {
9066 DAG.setRoot(Result.second);
9067 }
9068
9069 if (EHPadBB) {
9070 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
9071 BeginLabel));
9072 Result.second = getRoot();
9073 }
9074
9075 return Result;
9076}
9077
9079 bool isMustTailCall = CB.isMustTailCall();
9080
9081 // Avoid emitting tail calls in functions with the disable-tail-calls
9082 // attribute.
9083 const Function *Caller = CB.getParent()->getParent();
9084 if (!isMustTailCall &&
9085 Caller->getFnAttribute("disable-tail-calls").getValueAsBool())
9086 return false;
9087
9088 // We can't tail call inside a function with a swifterror argument. Lowering
9089 // does not support this yet. It would have to move into the swifterror
9090 // register before the call.
9091 if (DAG.getTargetLoweringInfo().supportSwiftError() &&
9092 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
9093 return false;
9094
9095 // Check if target-independent constraints permit a tail call here.
9096 // Target-dependent constraints are checked within TLI->LowerCallTo.
9097 return isInTailCallPosition(CB, DAG.getTarget());
9098}
9099
9101 bool isTailCall, bool isMustTailCall,
9102 const BasicBlock *EHPadBB,
9103 const TargetLowering::PtrAuthInfo *PAI) {
9104 auto &DL = DAG.getDataLayout();
9105 FunctionType *FTy = CB.getFunctionType();
9106 Type *RetTy = CB.getType();
9107
9109 Args.reserve(CB.arg_size());
9110
9111 const Value *SwiftErrorVal = nullptr;
9112 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9113
9114 if (isTailCall)
9115 isTailCall = canTailCall(CB);
9116
9117 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
9118 const Value *V = *I;
9119
9120 // Skip empty types
9121 if (V->getType()->isEmptyTy())
9122 continue;
9123
9124 SDValue ArgNode = getValue(V);
9125 TargetLowering::ArgListEntry Entry(ArgNode, V->getType());
9126 Entry.setAttributes(&CB, I - CB.arg_begin());
9127
9128 // Use swifterror virtual register as input to the call.
9129 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
9130 SwiftErrorVal = V;
9131 // We find the virtual register for the actual swifterror argument.
9132 // Instead of using the Value, we use the virtual register instead.
9133 Entry.Node =
9134 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
9135 EVT(TLI.getPointerTy(DL)));
9136 }
9137
9138 Args.push_back(Entry);
9139
9140 // If we have an explicit sret argument that is an Instruction, (i.e., it
9141 // might point to function-local memory), we can't meaningfully tail-call.
9142 if (Entry.IsSRet && isa<Instruction>(V))
9143 isTailCall = false;
9144 }
9145
9146 // If call site has a cfguardtarget operand bundle, create and add an
9147 // additional ArgListEntry.
9148 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
9149 Value *V = Bundle->Inputs[0];
9151 Entry.IsCFGuardTarget = true;
9152 Args.push_back(Entry);
9153 }
9154
9155 // Disable tail calls if there is an swifterror argument. Targets have not
9156 // been updated to support tail calls.
9157 if (TLI.supportSwiftError() && SwiftErrorVal)
9158 isTailCall = false;
9159
9160 ConstantInt *CFIType = nullptr;
9161 if (CB.isIndirectCall()) {
9162 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
9163 if (!TLI.supportKCFIBundles())
9165 "Target doesn't support calls with kcfi operand bundles.");
9166 CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
9167 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
9168 }
9169 }
9170
9171 SDValue ConvControlToken;
9172 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) {
9173 auto *Token = Bundle->Inputs[0].get();
9174 ConvControlToken = getValue(Token);
9175 }
9176
9177 GlobalValue *DeactivationSymbol = nullptr;
9179 DeactivationSymbol = cast<GlobalValue>(Bundle->Inputs[0].get());
9180 }
9181
9184 .setChain(getRoot())
9185 .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
9186 .setTailCall(isTailCall)
9190 .setCFIType(CFIType)
9191 .setConvergenceControlToken(ConvControlToken)
9192 .setDeactivationSymbol(DeactivationSymbol);
9193
9194 // Set the pointer authentication info if we have it.
9195 if (PAI) {
9196 if (!TLI.supportPtrAuthBundles())
9198 "This target doesn't support calls with ptrauth operand bundles.");
9199 CLI.setPtrAuth(*PAI);
9200 }
9201
9202 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9203
9204 if (Result.first.getNode()) {
9205 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
9206 Result.first = lowerNoFPClassToAssertNoFPClass(DAG, CB, Result.first);
9207 setValue(&CB, Result.first);
9208 }
9209
9210 // The last element of CLI.InVals has the SDValue for swifterror return.
9211 // Here we copy it to a virtual register and update SwiftErrorMap for
9212 // book-keeping.
9213 if (SwiftErrorVal && TLI.supportSwiftError()) {
9214 // Get the last element of InVals.
9215 SDValue Src = CLI.InVals.back();
9216 Register VReg =
9217 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
9218 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
9219 DAG.setRoot(CopyNode);
9220 }
9221}
9222
9223static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
9224 SelectionDAGBuilder &Builder) {
9225 // Check to see if this load can be trivially constant folded, e.g. if the
9226 // input is from a string literal.
9227 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
9228 // Cast pointer to the type we really want to load.
9229 Type *LoadTy =
9230 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
9231 if (LoadVT.isVector())
9232 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
9233 if (const Constant *LoadCst =
9234 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
9235 LoadTy, Builder.DAG.getDataLayout()))
9236 return Builder.getValue(LoadCst);
9237 }
9238
9239 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
9240 // still constant memory, the input chain can be the entry node.
9241 SDValue Root;
9242 bool ConstantMemory = false;
9243
9244 // Do not serialize (non-volatile) loads of constant memory with anything.
9245 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) {
9246 Root = Builder.DAG.getEntryNode();
9247 ConstantMemory = true;
9248 } else {
9249 // Do not serialize non-volatile loads against each other.
9250 Root = Builder.DAG.getRoot();
9251 }
9252
9253 SDValue Ptr = Builder.getValue(PtrVal);
9254 SDValue LoadVal =
9255 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
9256 MachinePointerInfo(PtrVal), Align(1));
9257
9258 if (!ConstantMemory)
9259 Builder.PendingLoads.push_back(LoadVal.getValue(1));
9260 return LoadVal;
9261}
9262
9263/// Record the value for an instruction that produces an integer result,
9264/// converting the type where necessary.
9265void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
9266 SDValue Value,
9267 bool IsSigned) {
9268 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9269 I.getType(), true);
9270 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
9271 setValue(&I, Value);
9272}
9273
9274/// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
9275/// true and lower it. Otherwise return false, and it will be lowered like a
9276/// normal call.
9277/// The caller already checked that \p I calls the appropriate LibFunc with a
9278/// correct prototype.
9279bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
9280 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
9281 const Value *Size = I.getArgOperand(2);
9282 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
9283 if (CSize && CSize->getZExtValue() == 0) {
9284 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
9285 I.getType(), true);
9286 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
9287 return true;
9288 }
9289
9290 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9291 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
9292 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
9293 getValue(Size), &I);
9294 if (Res.first.getNode()) {
9295 processIntegerCallValue(I, Res.first, true);
9296 PendingLoads.push_back(Res.second);
9297 return true;
9298 }
9299
9300 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
9301 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
9302 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
9303 return false;
9304
9305 // If the target has a fast compare for the given size, it will return a
9306 // preferred load type for that size. Require that the load VT is legal and
9307 // that the target supports unaligned loads of that type. Otherwise, return
9308 // INVALID.
9309 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
9310 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9311 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
9312 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
9313 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
9314 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
9315 // TODO: Check alignment of src and dest ptrs.
9316 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
9317 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
9318 if (!TLI.isTypeLegal(LVT) ||
9319 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
9320 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
9322 }
9323
9324 return LVT;
9325 };
9326
9327 // This turns into unaligned loads. We only do this if the target natively
9328 // supports the MVT we'll be loading or if it is small enough (<= 4) that
9329 // we'll only produce a small number of byte loads.
9330 MVT LoadVT;
9331 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
9332 switch (NumBitsToCompare) {
9333 default:
9334 return false;
9335 case 16:
9336 LoadVT = MVT::i16;
9337 break;
9338 case 32:
9339 LoadVT = MVT::i32;
9340 break;
9341 case 64:
9342 case 128:
9343 case 256:
9344 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9345 break;
9346 }
9347
9348 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
9349 return false;
9350
9351 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
9352 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
9353
9354 // Bitcast to a wide integer type if the loads are vectors.
9355 if (LoadVT.isVector()) {
9356 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
9357 LoadL = DAG.getBitcast(CmpVT, LoadL);
9358 LoadR = DAG.getBitcast(CmpVT, LoadR);
9359 }
9360
9361 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
9362 processIntegerCallValue(I, Cmp, false);
9363 return true;
9364}
9365
9366/// See if we can lower a memchr call into an optimized form. If so, return
9367/// true and lower it. Otherwise return false, and it will be lowered like a
9368/// normal call.
9369/// The caller already checked that \p I calls the appropriate LibFunc with a
9370/// correct prototype.
9371bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
9372 const Value *Src = I.getArgOperand(0);
9373 const Value *Char = I.getArgOperand(1);
9374 const Value *Length = I.getArgOperand(2);
9375
9376 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9377 std::pair<SDValue, SDValue> Res =
9378 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
9379 getValue(Src), getValue(Char), getValue(Length),
9380 MachinePointerInfo(Src));
9381 if (Res.first.getNode()) {
9382 setValue(&I, Res.first);
9383 PendingLoads.push_back(Res.second);
9384 return true;
9385 }
9386
9387 return false;
9388}
9389
9390/// See if we can lower a mempcpy call into an optimized form. If so, return
9391/// true and lower it. Otherwise return false, and it will be lowered like a
9392/// normal call.
9393/// The caller already checked that \p I calls the appropriate LibFunc with a
9394/// correct prototype.
9395bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
9396 SDValue Dst = getValue(I.getArgOperand(0));
9397 SDValue Src = getValue(I.getArgOperand(1));
9398 SDValue Size = getValue(I.getArgOperand(2));
9399
9400 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
9401 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
9402 // DAG::getMemcpy needs Alignment to be defined.
9403 Align Alignment = std::min(DstAlign, SrcAlign);
9404
9405 SDLoc sdl = getCurSDLoc();
9406
9407 // In the mempcpy context we need to pass in a false value for isTailCall
9408 // because the return pointer needs to be adjusted by the size of
9409 // the copied memory.
9410 SDValue Root = getMemoryRoot();
9411 SDValue MC = DAG.getMemcpy(
9412 Root, sdl, Dst, Src, Size, Alignment, false, false, /*CI=*/nullptr,
9413 std::nullopt, MachinePointerInfo(I.getArgOperand(0)),
9414 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata());
9415 assert(MC.getNode() != nullptr &&
9416 "** memcpy should not be lowered as TailCall in mempcpy context **");
9417 DAG.setRoot(MC);
9418
9419 // Check if Size needs to be truncated or extended.
9420 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
9421
9422 // Adjust return pointer to point just past the last dst byte.
9423 SDValue DstPlusSize = DAG.getMemBasePlusOffset(Dst, Size, sdl);
9424 setValue(&I, DstPlusSize);
9425 return true;
9426}
9427
9428/// See if we can lower a strcpy call into an optimized form. If so, return
9429/// true and lower it, otherwise return false and it will be lowered like a
9430/// normal call.
9431/// The caller already checked that \p I calls the appropriate LibFunc with a
9432/// correct prototype.
9433bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
9434 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9435
9436 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9437 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForStrcpy(
9438 DAG, getCurSDLoc(), getRoot(), getValue(Arg0), getValue(Arg1),
9439 MachinePointerInfo(Arg0), MachinePointerInfo(Arg1), isStpcpy, &I);
9440 if (Res.first.getNode()) {
9441 setValue(&I, Res.first);
9442 DAG.setRoot(Res.second);
9443 return true;
9444 }
9445
9446 return false;
9447}
9448
9449/// See if we can lower a strcmp call into an optimized form. If so, return
9450/// true and lower it, otherwise return false and it will be lowered like a
9451/// normal call.
9452/// The caller already checked that \p I calls the appropriate LibFunc with a
9453/// correct prototype.
9454bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
9455 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9456
9457 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9458 std::pair<SDValue, SDValue> Res =
9459 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
9460 getValue(Arg0), getValue(Arg1),
9461 MachinePointerInfo(Arg0),
9462 MachinePointerInfo(Arg1));
9463 if (Res.first.getNode()) {
9464 processIntegerCallValue(I, Res.first, true);
9465 PendingLoads.push_back(Res.second);
9466 return true;
9467 }
9468
9469 return false;
9470}
9471
9472/// See if we can lower a strlen call into an optimized form. If so, return
9473/// true and lower it, otherwise return false and it will be lowered like a
9474/// normal call.
9475/// The caller already checked that \p I calls the appropriate LibFunc with a
9476/// correct prototype.
9477bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
9478 const Value *Arg0 = I.getArgOperand(0);
9479
9480 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9481 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForStrlen(
9482 DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), &I);
9483 if (Res.first.getNode()) {
9484 processIntegerCallValue(I, Res.first, false);
9485 PendingLoads.push_back(Res.second);
9486 return true;
9487 }
9488
9489 return false;
9490}
9491
9492/// See if we can lower a strnlen call into an optimized form. If so, return
9493/// true and lower it, otherwise return false and it will be lowered like a
9494/// normal call.
9495/// The caller already checked that \p I calls the appropriate LibFunc with a
9496/// correct prototype.
9497bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
9498 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9499
9500 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9501 std::pair<SDValue, SDValue> Res =
9502 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
9503 getValue(Arg0), getValue(Arg1),
9504 MachinePointerInfo(Arg0));
9505 if (Res.first.getNode()) {
9506 processIntegerCallValue(I, Res.first, false);
9507 PendingLoads.push_back(Res.second);
9508 return true;
9509 }
9510
9511 return false;
9512}
9513
9514/// See if we can lower a Strstr call into an optimized form. If so, return
9515/// true and lower it, otherwise return false and it will be lowered like a
9516/// normal call.
9517/// The caller already checked that \p I calls the appropriate LibFunc with a
9518/// correct prototype.
9519bool SelectionDAGBuilder::visitStrstrCall(const CallInst &I) {
9520 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
9521 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
9522 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForStrstr(
9523 DAG, getCurSDLoc(), DAG.getRoot(), getValue(Arg0), getValue(Arg1), &I);
9524 if (Res.first) {
9525 processIntegerCallValue(I, Res.first, false);
9526 PendingLoads.push_back(Res.second);
9527 return true;
9528 }
9529 return false;
9530}
9531
9532/// See if we can lower a unary floating-point operation into an SDNode with
9533/// the specified Opcode. If so, return true and lower it, otherwise return
9534/// false and it will be lowered like a normal call.
9535/// The caller already checked that \p I calls the appropriate LibFunc with a
9536/// correct prototype.
9537bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
9538 unsigned Opcode) {
9539 // We already checked this call's prototype; verify it doesn't modify errno.
9540 // Do not perform optimizations for call sites that require strict
9541 // floating-point semantics.
9542 if (!I.onlyReadsMemory() || I.isStrictFP())
9543 return false;
9544
9545 SDNodeFlags Flags;
9546 Flags.copyFMF(cast<FPMathOperator>(I));
9547
9548 SDValue Tmp = getValue(I.getArgOperand(0));
9549 setValue(&I,
9550 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
9551 return true;
9552}
9553
9554/// See if we can lower a binary floating-point operation into an SDNode with
9555/// the specified Opcode. If so, return true and lower it. Otherwise return
9556/// false, and it will be lowered like a normal call.
9557/// The caller already checked that \p I calls the appropriate LibFunc with a
9558/// correct prototype.
9559bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
9560 unsigned Opcode) {
9561 // We already checked this call's prototype; verify it doesn't modify errno.
9562 // Do not perform optimizations for call sites that require strict
9563 // floating-point semantics.
9564 if (!I.onlyReadsMemory() || I.isStrictFP())
9565 return false;
9566
9567 SDNodeFlags Flags;
9568 Flags.copyFMF(cast<FPMathOperator>(I));
9569
9570 SDValue Tmp0 = getValue(I.getArgOperand(0));
9571 SDValue Tmp1 = getValue(I.getArgOperand(1));
9572 EVT VT = Tmp0.getValueType();
9573 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
9574 return true;
9575}
9576
9577void SelectionDAGBuilder::visitCall(const CallInst &I) {
9578 // Handle inline assembly differently.
9579 if (I.isInlineAsm()) {
9580 visitInlineAsm(I);
9581 return;
9582 }
9583
9585
9586 if (Function *F = I.getCalledFunction()) {
9587 if (F->isDeclaration()) {
9588 // Is this an LLVM intrinsic?
9589 if (unsigned IID = F->getIntrinsicID()) {
9590 visitIntrinsicCall(I, IID);
9591 return;
9592 }
9593 }
9594
9595 // Check for well-known libc/libm calls. If the function is internal, it
9596 // can't be a library call. Don't do the check if marked as nobuiltin for
9597 // some reason.
9598 // This code should not handle libcalls that are already canonicalized to
9599 // intrinsics by the middle-end.
9600 LibFunc Func;
9601 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
9602 LibInfo->getLibFunc(*F, Func) && LibInfo->hasOptimizedCodeGen(Func)) {
9603 switch (Func) {
9604 default: break;
9605 case LibFunc_bcmp:
9606 if (visitMemCmpBCmpCall(I))
9607 return;
9608 break;
9609 case LibFunc_copysign:
9610 case LibFunc_copysignf:
9611 case LibFunc_copysignl:
9612 // We already checked this call's prototype; verify it doesn't modify
9613 // errno.
9614 if (I.onlyReadsMemory()) {
9615 SDValue LHS = getValue(I.getArgOperand(0));
9616 SDValue RHS = getValue(I.getArgOperand(1));
9618 LHS.getValueType(), LHS, RHS));
9619 return;
9620 }
9621 break;
9622 case LibFunc_fabs:
9623 case LibFunc_fabsf:
9624 case LibFunc_fabsl:
9625 // TODO: Remove this, already canonicalized by the middle-end.
9626 if (visitUnaryFloatCall(I, ISD::FABS))
9627 return;
9628 break;
9629 case LibFunc_sin:
9630 case LibFunc_sinf:
9631 case LibFunc_sinl:
9632 if (visitUnaryFloatCall(I, ISD::FSIN))
9633 return;
9634 break;
9635 case LibFunc_cos:
9636 case LibFunc_cosf:
9637 case LibFunc_cosl:
9638 if (visitUnaryFloatCall(I, ISD::FCOS))
9639 return;
9640 break;
9641 case LibFunc_tan:
9642 case LibFunc_tanf:
9643 case LibFunc_tanl:
9644 if (visitUnaryFloatCall(I, ISD::FTAN))
9645 return;
9646 break;
9647 case LibFunc_asin:
9648 case LibFunc_asinf:
9649 case LibFunc_asinl:
9650 if (visitUnaryFloatCall(I, ISD::FASIN))
9651 return;
9652 break;
9653 case LibFunc_acos:
9654 case LibFunc_acosf:
9655 case LibFunc_acosl:
9656 if (visitUnaryFloatCall(I, ISD::FACOS))
9657 return;
9658 break;
9659 case LibFunc_atan:
9660 case LibFunc_atanf:
9661 case LibFunc_atanl:
9662 if (visitUnaryFloatCall(I, ISD::FATAN))
9663 return;
9664 break;
9665 case LibFunc_atan2:
9666 case LibFunc_atan2f:
9667 case LibFunc_atan2l:
9668 if (visitBinaryFloatCall(I, ISD::FATAN2))
9669 return;
9670 break;
9671 case LibFunc_sinh:
9672 case LibFunc_sinhf:
9673 case LibFunc_sinhl:
9674 if (visitUnaryFloatCall(I, ISD::FSINH))
9675 return;
9676 break;
9677 case LibFunc_cosh:
9678 case LibFunc_coshf:
9679 case LibFunc_coshl:
9680 if (visitUnaryFloatCall(I, ISD::FCOSH))
9681 return;
9682 break;
9683 case LibFunc_tanh:
9684 case LibFunc_tanhf:
9685 case LibFunc_tanhl:
9686 if (visitUnaryFloatCall(I, ISD::FTANH))
9687 return;
9688 break;
9689 case LibFunc_sqrt:
9690 case LibFunc_sqrtf:
9691 case LibFunc_sqrtl:
9692 case LibFunc_sqrt_finite:
9693 case LibFunc_sqrtf_finite:
9694 case LibFunc_sqrtl_finite:
9695 if (visitUnaryFloatCall(I, ISD::FSQRT))
9696 return;
9697 break;
9698 case LibFunc_log2:
9699 case LibFunc_log2f:
9700 case LibFunc_log2l:
9701 if (visitUnaryFloatCall(I, ISD::FLOG2))
9702 return;
9703 break;
9704 case LibFunc_exp2:
9705 case LibFunc_exp2f:
9706 case LibFunc_exp2l:
9707 if (visitUnaryFloatCall(I, ISD::FEXP2))
9708 return;
9709 break;
9710 case LibFunc_exp10:
9711 case LibFunc_exp10f:
9712 case LibFunc_exp10l:
9713 if (visitUnaryFloatCall(I, ISD::FEXP10))
9714 return;
9715 break;
9716 case LibFunc_ldexp:
9717 case LibFunc_ldexpf:
9718 case LibFunc_ldexpl:
9719 if (visitBinaryFloatCall(I, ISD::FLDEXP))
9720 return;
9721 break;
9722 case LibFunc_strstr:
9723 if (visitStrstrCall(I))
9724 return;
9725 break;
9726 case LibFunc_memcmp:
9727 if (visitMemCmpBCmpCall(I))
9728 return;
9729 break;
9730 case LibFunc_mempcpy:
9731 if (visitMemPCpyCall(I))
9732 return;
9733 break;
9734 case LibFunc_memchr:
9735 if (visitMemChrCall(I))
9736 return;
9737 break;
9738 case LibFunc_strcpy:
9739 if (visitStrCpyCall(I, false))
9740 return;
9741 break;
9742 case LibFunc_stpcpy:
9743 if (visitStrCpyCall(I, true))
9744 return;
9745 break;
9746 case LibFunc_strcmp:
9747 if (visitStrCmpCall(I))
9748 return;
9749 break;
9750 case LibFunc_strlen:
9751 if (visitStrLenCall(I))
9752 return;
9753 break;
9754 case LibFunc_strnlen:
9755 if (visitStrNLenCall(I))
9756 return;
9757 break;
9758 }
9759 }
9760 }
9761
9762 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) {
9763 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr);
9764 return;
9765 }
9766
9767 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
9768 // have to do anything here to lower funclet bundles.
9769 // CFGuardTarget bundles are lowered in LowerCallTo.
9771 I, "calls",
9776
9777 SDValue Callee = getValue(I.getCalledOperand());
9778
9779 if (I.hasDeoptState())
9780 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
9781 else
9782 // Check if we can potentially perform a tail call. More detailed checking
9783 // is be done within LowerCallTo, after more information about the call is
9784 // known.
9785 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
9786}
9787
9789 const CallBase &CB, const BasicBlock *EHPadBB) {
9790 auto PAB = CB.getOperandBundle("ptrauth");
9791 const Value *CalleeV = CB.getCalledOperand();
9792
9793 // Gather the call ptrauth data from the operand bundle:
9794 // [ i32 <key>, i64 <discriminator> ]
9795 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]);
9796 const Value *Discriminator = PAB->Inputs[1];
9797
9798 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key");
9799 assert(Discriminator->getType()->isIntegerTy(64) &&
9800 "Invalid ptrauth discriminator");
9801
9802 // Look through ptrauth constants to find the raw callee.
9803 // Do a direct unauthenticated call if we found it and everything matches.
9804 if (const auto *CalleeCPA = dyn_cast<ConstantPtrAuth>(CalleeV))
9805 if (CalleeCPA->isKnownCompatibleWith(Key, Discriminator,
9806 DAG.getDataLayout()))
9807 return LowerCallTo(CB, getValue(CalleeCPA->getPointer()), CB.isTailCall(),
9808 CB.isMustTailCall(), EHPadBB);
9809
9810 // Functions should never be ptrauth-called directly.
9811 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call");
9812
9813 // Otherwise, do an authenticated indirect call.
9814 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(),
9815 getValue(Discriminator)};
9816
9817 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(),
9818 EHPadBB, &PAI);
9819}
9820
9821namespace {
9822
9823/// AsmOperandInfo - This contains information for each constraint that we are
9824/// lowering.
9825class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
9826public:
9827 /// CallOperand - If this is the result output operand or a clobber
9828 /// this is null, otherwise it is the incoming operand to the CallInst.
9829 /// This gets modified as the asm is processed.
9830 SDValue CallOperand;
9831
9832 /// AssignedRegs - If this is a register or register class operand, this
9833 /// contains the set of register corresponding to the operand.
9834 RegsForValue AssignedRegs;
9835
9836 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
9837 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
9838 }
9839
9840 /// Whether or not this operand accesses memory
9841 bool hasMemory(const TargetLowering &TLI) const {
9842 // Indirect operand accesses access memory.
9843 if (isIndirect)
9844 return true;
9845
9846 for (const auto &Code : Codes)
9848 return true;
9849
9850 return false;
9851 }
9852};
9853
9854
9855} // end anonymous namespace
9856
9857/// Make sure that the output operand \p OpInfo and its corresponding input
9858/// operand \p MatchingOpInfo have compatible constraint types (otherwise error
9859/// out).
9860static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
9861 SDISelAsmOperandInfo &MatchingOpInfo,
9862 SelectionDAG &DAG) {
9863 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9864 return;
9865
9867 const auto &TLI = DAG.getTargetLoweringInfo();
9868
9869 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9870 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
9871 OpInfo.ConstraintVT);
9872 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9873 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
9874 MatchingOpInfo.ConstraintVT);
9875 const bool OutOpIsIntOrFP =
9876 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9877 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9878 MatchingOpInfo.ConstraintVT.isFloatingPoint();
9879 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9880 // FIXME: error out in a more elegant fashion
9881 report_fatal_error("Unsupported asm: input constraint"
9882 " with a matching output constraint of"
9883 " incompatible type!");
9884 }
9885 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9886}
9887
9888/// Get a direct memory input to behave well as an indirect operand.
9889/// This may introduce stores, hence the need for a \p Chain.
9890/// \return The (possibly updated) chain.
9891static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
9892 SDISelAsmOperandInfo &OpInfo,
9893 SelectionDAG &DAG) {
9894 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9895
9896 // If we don't have an indirect input, put it in the constpool if we can,
9897 // otherwise spill it to a stack slot.
9898 // TODO: This isn't quite right. We need to handle these according to
9899 // the addressing mode that the constraint wants. Also, this may take
9900 // an additional register for the computation and we don't want that
9901 // either.
9902
9903 // If the operand is a float, integer, or vector constant, spill to a
9904 // constant pool entry to get its address.
9905 const Value *OpVal = OpInfo.CallOperandVal;
9906 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
9908 OpInfo.CallOperand = DAG.getConstantPool(
9909 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
9910 return Chain;
9911 }
9912
9913 // Otherwise, create a stack slot and emit a store to it before the asm.
9914 Type *Ty = OpVal->getType();
9915 auto &DL = DAG.getDataLayout();
9916 TypeSize TySize = DL.getTypeAllocSize(Ty);
9919 int StackID = 0;
9920 if (TySize.isScalable())
9921 StackID = TFI->getStackIDForScalableVectors();
9922 int SSFI = MF.getFrameInfo().CreateStackObject(TySize.getKnownMinValue(),
9923 DL.getPrefTypeAlign(Ty), false,
9924 nullptr, StackID);
9925 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
9926 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9928 TLI.getMemValueType(DL, Ty));
9929 OpInfo.CallOperand = StackSlot;
9930
9931 return Chain;
9932}
9933
9934/// GetRegistersForValue - Assign registers (virtual or physical) for the
9935/// specified operand. We prefer to assign virtual registers, to allow the
9936/// register allocator to handle the assignment process. However, if the asm
9937/// uses features that we can't model on machineinstrs, we have SDISel do the
9938/// allocation. This produces generally horrible, but correct, code.
9939///
9940/// OpInfo describes the operand
9941/// RefOpInfo describes the matching operand if any, the operand otherwise
9942static std::optional<unsigned>
9944 SDISelAsmOperandInfo &OpInfo,
9945 SDISelAsmOperandInfo &RefOpInfo) {
9946 LLVMContext &Context = *DAG.getContext();
9947 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9948
9952
9953 // No work to do for memory/address operands.
9954 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
9955 OpInfo.ConstraintType == TargetLowering::C_Address)
9956 return std::nullopt;
9957
9958 // If this is a constraint for a single physreg, or a constraint for a
9959 // register class, find it.
9960 unsigned AssignedReg;
9961 const TargetRegisterClass *RC;
9962 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
9963 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9964 // RC is unset only on failure. Return immediately.
9965 if (!RC)
9966 return std::nullopt;
9967
9968 // Get the actual register value type. This is important, because the user
9969 // may have asked for (e.g.) the AX register in i32 type. We need to
9970 // remember that AX is actually i16 to get the right extension.
9971 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
9972
9973 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9974 // If this is an FP operand in an integer register (or visa versa), or more
9975 // generally if the operand value disagrees with the register class we plan
9976 // to stick it in, fix the operand type.
9977 //
9978 // If this is an input value, the bitcast to the new type is done now.
9979 // Bitcast for output value is done at the end of visitInlineAsm().
9980 if ((OpInfo.Type == InlineAsm::isOutput ||
9981 OpInfo.Type == InlineAsm::isInput) &&
9982 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9983 // Try to convert to the first EVT that the reg class contains. If the
9984 // types are identical size, use a bitcast to convert (e.g. two differing
9985 // vector types). Note: output bitcast is done at the end of
9986 // visitInlineAsm().
9987 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9988 // Exclude indirect inputs while they are unsupported because the code
9989 // to perform the load is missing and thus OpInfo.CallOperand still
9990 // refers to the input address rather than the pointed-to value.
9991 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
9992 OpInfo.CallOperand =
9993 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
9994 OpInfo.ConstraintVT = RegVT;
9995 // If the operand is an FP value and we want it in integer registers,
9996 // use the corresponding integer type. This turns an f64 value into
9997 // i64, which can be passed with two i32 values on a 32-bit machine.
9998 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9999 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
10000 if (OpInfo.Type == InlineAsm::isInput)
10001 OpInfo.CallOperand =
10002 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
10003 OpInfo.ConstraintVT = VT;
10004 }
10005 }
10006 }
10007
10008 // No need to allocate a matching input constraint since the constraint it's
10009 // matching to has already been allocated.
10010 if (OpInfo.isMatchingInputConstraint())
10011 return std::nullopt;
10012
10013 EVT ValueVT = OpInfo.ConstraintVT;
10014 if (OpInfo.ConstraintVT == MVT::Other)
10015 ValueVT = RegVT;
10016
10017 // Initialize NumRegs.
10018 unsigned NumRegs = 1;
10019 if (OpInfo.ConstraintVT != MVT::Other)
10020 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
10021
10022 // If this is a constraint for a specific physical register, like {r17},
10023 // assign it now.
10024
10025 // If this associated to a specific register, initialize iterator to correct
10026 // place. If virtual, make sure we have enough registers
10027
10028 // Initialize iterator if necessary
10031
10032 // Do not check for single registers.
10033 if (AssignedReg) {
10034 I = std::find(I, RC->end(), AssignedReg);
10035 if (I == RC->end()) {
10036 // RC does not contain the selected register, which indicates a
10037 // mismatch between the register and the required type/bitwidth.
10038 return {AssignedReg};
10039 }
10040 }
10041
10042 for (; NumRegs; --NumRegs, ++I) {
10043 assert(I != RC->end() && "Ran out of registers to allocate!");
10044 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
10045 Regs.push_back(R);
10046 }
10047
10048 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
10049 return std::nullopt;
10050}
10051
10052static unsigned
10054 const std::vector<SDValue> &AsmNodeOperands) {
10055 // Scan until we find the definition we already emitted of this operand.
10056 unsigned CurOp = InlineAsm::Op_FirstOperand;
10057 for (; OperandNo; --OperandNo) {
10058 // Advance to the next operand.
10059 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
10060 const InlineAsm::Flag F(OpFlag);
10061 assert(
10062 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) &&
10063 "Skipped past definitions?");
10064 CurOp += F.getNumOperandRegisters() + 1;
10065 }
10066 return CurOp;
10067}
10068
10069namespace {
10070
10071class ExtraFlags {
10072 unsigned Flags = 0;
10073
10074public:
10075 explicit ExtraFlags(const CallBase &Call) {
10076 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10077 if (IA->hasSideEffects())
10079 if (IA->isAlignStack())
10081 if (Call.isConvergent())
10083 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
10084 }
10085
10086 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
10087 // Ideally, we would only check against memory constraints. However, the
10088 // meaning of an Other constraint can be target-specific and we can't easily
10089 // reason about it. Therefore, be conservative and set MayLoad/MayStore
10090 // for Other constraints as well.
10093 if (OpInfo.Type == InlineAsm::isInput)
10095 else if (OpInfo.Type == InlineAsm::isOutput)
10097 else if (OpInfo.Type == InlineAsm::isClobber)
10099 }
10100 }
10101
10102 unsigned get() const { return Flags; }
10103};
10104
10105} // end anonymous namespace
10106
10107static bool isFunction(SDValue Op) {
10108 if (Op && Op.getOpcode() == ISD::GlobalAddress) {
10109 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
10110 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
10111
10112 // In normal "call dllimport func" instruction (non-inlineasm) it force
10113 // indirect access by specifing call opcode. And usually specially print
10114 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
10115 // not do in this way now. (In fact, this is similar with "Data Access"
10116 // action). So here we ignore dllimport function.
10117 if (Fn && !Fn->hasDLLImportStorageClass())
10118 return true;
10119 }
10120 }
10121 return false;
10122}
10123
10124/// visitInlineAsm - Handle a call to an InlineAsm object.
10125void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
10126 const BasicBlock *EHPadBB) {
10127 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
10128
10129 /// ConstraintOperands - Information about all of the constraints.
10130 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
10131
10132 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10134 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
10135
10136 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
10137 // AsmDialect, MayLoad, MayStore).
10138 bool HasSideEffect = IA->hasSideEffects();
10139 ExtraFlags ExtraInfo(Call);
10140
10141 for (auto &T : TargetConstraints) {
10142 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
10143 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
10144
10145 if (OpInfo.CallOperandVal)
10146 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
10147
10148 if (!HasSideEffect)
10149 HasSideEffect = OpInfo.hasMemory(TLI);
10150
10151 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
10152 // FIXME: Could we compute this on OpInfo rather than T?
10153
10154 // Compute the constraint code and ConstraintType to use.
10156
10157 if (T.ConstraintType == TargetLowering::C_Immediate &&
10158 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
10159 // We've delayed emitting a diagnostic like the "n" constraint because
10160 // inlining could cause an integer showing up.
10161 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
10162 "' expects an integer constant "
10163 "expression");
10164
10165 ExtraInfo.update(T);
10166 }
10167
10168 // We won't need to flush pending loads if this asm doesn't touch
10169 // memory and is nonvolatile.
10170 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
10171
10172 bool EmitEHLabels = isa<InvokeInst>(Call);
10173 if (EmitEHLabels) {
10174 assert(EHPadBB && "InvokeInst must have an EHPadBB");
10175 }
10176 bool IsCallBr = isa<CallBrInst>(Call);
10177
10178 if (IsCallBr || EmitEHLabels) {
10179 // If this is a callbr or invoke we need to flush pending exports since
10180 // inlineasm_br and invoke are terminators.
10181 // We need to do this before nodes are glued to the inlineasm_br node.
10182 Chain = getControlRoot();
10183 }
10184
10185 MCSymbol *BeginLabel = nullptr;
10186 if (EmitEHLabels) {
10187 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
10188 }
10189
10190 int OpNo = -1;
10191 SmallVector<StringRef> AsmStrs;
10192 IA->collectAsmStrs(AsmStrs);
10193
10194 // Second pass over the constraints: compute which constraint option to use.
10195 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10196 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
10197 OpNo++;
10198
10199 // If this is an output operand with a matching input operand, look up the
10200 // matching input. If their types mismatch, e.g. one is an integer, the
10201 // other is floating point, or their sizes are different, flag it as an
10202 // error.
10203 if (OpInfo.hasMatchingInput()) {
10204 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
10205 patchMatchingInput(OpInfo, Input, DAG);
10206 }
10207
10208 // Compute the constraint code and ConstraintType to use.
10209 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
10210
10211 if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
10212 OpInfo.Type == InlineAsm::isClobber) ||
10213 OpInfo.ConstraintType == TargetLowering::C_Address)
10214 continue;
10215
10216 // In Linux PIC model, there are 4 cases about value/label addressing:
10217 //
10218 // 1: Function call or Label jmp inside the module.
10219 // 2: Data access (such as global variable, static variable) inside module.
10220 // 3: Function call or Label jmp outside the module.
10221 // 4: Data access (such as global variable) outside the module.
10222 //
10223 // Due to current llvm inline asm architecture designed to not "recognize"
10224 // the asm code, there are quite troubles for us to treat mem addressing
10225 // differently for same value/adress used in different instuctions.
10226 // For example, in pic model, call a func may in plt way or direclty
10227 // pc-related, but lea/mov a function adress may use got.
10228 //
10229 // Here we try to "recognize" function call for the case 1 and case 3 in
10230 // inline asm. And try to adjust the constraint for them.
10231 //
10232 // TODO: Due to current inline asm didn't encourage to jmp to the outsider
10233 // label, so here we don't handle jmp function label now, but we need to
10234 // enhance it (especilly in PIC model) if we meet meaningful requirements.
10235 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
10236 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
10237 TM.getCodeModel() != CodeModel::Large) {
10238 OpInfo.isIndirect = false;
10239 OpInfo.ConstraintType = TargetLowering::C_Address;
10240 }
10241
10242 // If this is a memory input, and if the operand is not indirect, do what we
10243 // need to provide an address for the memory input.
10244 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
10245 !OpInfo.isIndirect) {
10246 assert((OpInfo.isMultipleAlternative ||
10247 (OpInfo.Type == InlineAsm::isInput)) &&
10248 "Can only indirectify direct input operands!");
10249
10250 // Memory operands really want the address of the value.
10251 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
10252
10253 // There is no longer a Value* corresponding to this operand.
10254 OpInfo.CallOperandVal = nullptr;
10255
10256 // It is now an indirect operand.
10257 OpInfo.isIndirect = true;
10258 }
10259
10260 }
10261
10262 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
10263 std::vector<SDValue> AsmNodeOperands;
10264 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
10265 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
10266 IA->getAsmString().data(), TLI.getProgramPointerTy(DAG.getDataLayout())));
10267
10268 // If we have a !srcloc metadata node associated with it, we want to attach
10269 // this to the ultimately generated inline asm machineinstr. To do this, we
10270 // pass in the third operand as this (potentially null) inline asm MDNode.
10271 const MDNode *SrcLoc = Call.getMetadata("srcloc");
10272 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
10273
10274 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
10275 // bits as operand 3.
10276 AsmNodeOperands.push_back(DAG.getTargetConstant(
10277 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10278
10279 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
10280 // this, assign virtual and physical registers for inputs and otput.
10281 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10282 // Assign Registers.
10283 SDISelAsmOperandInfo &RefOpInfo =
10284 OpInfo.isMatchingInputConstraint()
10285 ? ConstraintOperands[OpInfo.getMatchedOperand()]
10286 : OpInfo;
10287 const auto RegError =
10288 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
10289 if (RegError) {
10290 const MachineFunction &MF = DAG.getMachineFunction();
10291 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10292 const char *RegName = TRI.getName(*RegError);
10293 emitInlineAsmError(Call, "register '" + Twine(RegName) +
10294 "' allocated for constraint '" +
10295 Twine(OpInfo.ConstraintCode) +
10296 "' does not match required type");
10297 return;
10298 }
10299
10300 auto DetectWriteToReservedRegister = [&]() {
10301 const MachineFunction &MF = DAG.getMachineFunction();
10302 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10303 for (Register Reg : OpInfo.AssignedRegs.Regs) {
10304 if (Reg.isPhysical() && TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
10305 const char *RegName = TRI.getName(Reg);
10306 emitInlineAsmError(Call, "write to reserved register '" +
10307 Twine(RegName) + "'");
10308 return true;
10309 }
10310 }
10311 return false;
10312 };
10313 assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
10314 (OpInfo.Type == InlineAsm::isInput &&
10315 !OpInfo.isMatchingInputConstraint())) &&
10316 "Only address as input operand is allowed.");
10317
10318 switch (OpInfo.Type) {
10320 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10321 const InlineAsm::ConstraintCode ConstraintID =
10322 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10324 "Failed to convert memory constraint code to constraint id.");
10325
10326 // Add information to the INLINEASM node to know about this output.
10327 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1);
10328 OpFlags.setMemConstraint(ConstraintID);
10329 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
10330 MVT::i32));
10331 AsmNodeOperands.push_back(OpInfo.CallOperand);
10332 } else {
10333 // Otherwise, this outputs to a register (directly for C_Register /
10334 // C_RegisterClass, and a target-defined fashion for
10335 // C_Immediate/C_Other). Find a register that we can use.
10336 if (OpInfo.AssignedRegs.Regs.empty()) {
10337 emitInlineAsmError(
10338 Call, "couldn't allocate output register for constraint '" +
10339 Twine(OpInfo.ConstraintCode) + "'");
10340 return;
10341 }
10342
10343 if (DetectWriteToReservedRegister())
10344 return;
10345
10346 // Add information to the INLINEASM node to know that this register is
10347 // set.
10348 OpInfo.AssignedRegs.AddInlineAsmOperands(
10349 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber
10351 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
10352 }
10353 break;
10354
10355 case InlineAsm::isInput:
10356 case InlineAsm::isLabel: {
10357 SDValue InOperandVal = OpInfo.CallOperand;
10358
10359 if (OpInfo.isMatchingInputConstraint()) {
10360 // If this is required to match an output register we have already set,
10361 // just use its register.
10362 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
10363 AsmNodeOperands);
10364 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10365 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) {
10366 if (OpInfo.isIndirect) {
10367 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
10368 emitInlineAsmError(Call, "inline asm not supported yet: "
10369 "don't know how to handle tied "
10370 "indirect register inputs");
10371 return;
10372 }
10373
10375 MachineFunction &MF = DAG.getMachineFunction();
10376 MachineRegisterInfo &MRI = MF.getRegInfo();
10377 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
10378 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
10379 Register TiedReg = R->getReg();
10380 MVT RegVT = R->getSimpleValueType(0);
10381 const TargetRegisterClass *RC =
10382 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg)
10383 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
10384 : TRI.getMinimalPhysRegClass(TiedReg);
10385 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i)
10386 Regs.push_back(MRI.createVirtualRegister(RC));
10387
10388 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
10389
10390 SDLoc dl = getCurSDLoc();
10391 // Use the produced MatchedRegs object to
10392 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
10393 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true,
10394 OpInfo.getMatchedOperand(), dl, DAG,
10395 AsmNodeOperands);
10396 break;
10397 }
10398
10399 assert(Flag.isMemKind() && "Unknown matching constraint!");
10400 assert(Flag.getNumOperandRegisters() == 1 &&
10401 "Unexpected number of operands");
10402 // Add information to the INLINEASM node to know about this input.
10403 // See InlineAsm.h isUseOperandTiedToDef.
10404 Flag.clearMemConstraint();
10405 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10406 AsmNodeOperands.push_back(DAG.getTargetConstant(
10407 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10408 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10409 break;
10410 }
10411
10412 // Treat indirect 'X' constraint as memory.
10413 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
10414 OpInfo.isIndirect)
10415 OpInfo.ConstraintType = TargetLowering::C_Memory;
10416
10417 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
10418 OpInfo.ConstraintType == TargetLowering::C_Other) {
10419 std::vector<SDValue> Ops;
10420 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
10421 Ops, DAG);
10422 if (Ops.empty()) {
10423 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
10424 if (isa<ConstantSDNode>(InOperandVal)) {
10425 emitInlineAsmError(Call, "value out of range for constraint '" +
10426 Twine(OpInfo.ConstraintCode) + "'");
10427 return;
10428 }
10429
10430 emitInlineAsmError(Call,
10431 "invalid operand for inline asm constraint '" +
10432 Twine(OpInfo.ConstraintCode) + "'");
10433 return;
10434 }
10435
10436 // Add information to the INLINEASM node to know about this input.
10437 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size());
10438 AsmNodeOperands.push_back(DAG.getTargetConstant(
10439 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
10440 llvm::append_range(AsmNodeOperands, Ops);
10441 break;
10442 }
10443
10444 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
10445 assert((OpInfo.isIndirect ||
10446 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
10447 "Operand must be indirect to be a mem!");
10448 assert(InOperandVal.getValueType() ==
10449 TLI.getPointerTy(DAG.getDataLayout()) &&
10450 "Memory operands expect pointer values");
10451
10452 const InlineAsm::ConstraintCode ConstraintID =
10453 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10455 "Failed to convert memory constraint code to constraint id.");
10456
10457 // Add information to the INLINEASM node to know about this input.
10458 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10459 ResOpType.setMemConstraint(ConstraintID);
10460 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
10461 getCurSDLoc(),
10462 MVT::i32));
10463 AsmNodeOperands.push_back(InOperandVal);
10464 break;
10465 }
10466
10467 if (OpInfo.ConstraintType == TargetLowering::C_Address) {
10468 const InlineAsm::ConstraintCode ConstraintID =
10469 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
10471 "Failed to convert memory constraint code to constraint id.");
10472
10473 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1);
10474
10475 SDValue AsmOp = InOperandVal;
10476 if (isFunction(InOperandVal)) {
10477 auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
10478 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1);
10479 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
10480 InOperandVal.getValueType(),
10481 GA->getOffset());
10482 }
10483
10484 // Add information to the INLINEASM node to know about this input.
10485 ResOpType.setMemConstraint(ConstraintID);
10486
10487 AsmNodeOperands.push_back(
10488 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
10489
10490 AsmNodeOperands.push_back(AsmOp);
10491 break;
10492 }
10493
10494 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
10495 OpInfo.ConstraintType != TargetLowering::C_Register) {
10496 emitInlineAsmError(Call, "unknown asm constraint '" +
10497 Twine(OpInfo.ConstraintCode) + "'");
10498 return;
10499 }
10500
10501 // TODO: Support this.
10502 if (OpInfo.isIndirect) {
10503 emitInlineAsmError(
10504 Call, "Don't know how to handle indirect register inputs yet "
10505 "for constraint '" +
10506 Twine(OpInfo.ConstraintCode) + "'");
10507 return;
10508 }
10509
10510 // Copy the input into the appropriate registers.
10511 if (OpInfo.AssignedRegs.Regs.empty()) {
10512 emitInlineAsmError(Call,
10513 "couldn't allocate input reg for constraint '" +
10514 Twine(OpInfo.ConstraintCode) + "'");
10515 return;
10516 }
10517
10518 if (DetectWriteToReservedRegister())
10519 return;
10520
10521 SDLoc dl = getCurSDLoc();
10522
10523 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
10524 &Call);
10525
10526 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false,
10527 0, dl, DAG, AsmNodeOperands);
10528 break;
10529 }
10531 // Add the clobbered value to the operand list, so that the register
10532 // allocator is aware that the physreg got clobbered.
10533 if (!OpInfo.AssignedRegs.Regs.empty())
10535 false, 0, getCurSDLoc(), DAG,
10536 AsmNodeOperands);
10537 break;
10538 }
10539 }
10540
10541 // Finish up input operands. Set the input chain and add the flag last.
10542 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
10543 if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
10544
10545 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10546 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
10547 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10548 Glue = Chain.getValue(1);
10549
10550 // Do additional work to generate outputs.
10551
10552 SmallVector<EVT, 1> ResultVTs;
10553 SmallVector<SDValue, 1> ResultValues;
10554 SmallVector<SDValue, 8> OutChains;
10555
10556 llvm::Type *CallResultType = Call.getType();
10557 ArrayRef<Type *> ResultTypes;
10558 if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
10559 ResultTypes = StructResult->elements();
10560 else if (!CallResultType->isVoidTy())
10561 ResultTypes = ArrayRef(CallResultType);
10562
10563 auto CurResultType = ResultTypes.begin();
10564 auto handleRegAssign = [&](SDValue V) {
10565 assert(CurResultType != ResultTypes.end() && "Unexpected value");
10566 assert((*CurResultType)->isSized() && "Unexpected unsized type");
10567 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
10568 ++CurResultType;
10569 // If the type of the inline asm call site return value is different but has
10570 // same size as the type of the asm output bitcast it. One example of this
10571 // is for vectors with different width / number of elements. This can
10572 // happen for register classes that can contain multiple different value
10573 // types. The preg or vreg allocated may not have the same VT as was
10574 // expected.
10575 //
10576 // This can also happen for a return value that disagrees with the register
10577 // class it is put in, eg. a double in a general-purpose register on a
10578 // 32-bit machine.
10579 if (ResultVT != V.getValueType() &&
10580 ResultVT.getSizeInBits() == V.getValueSizeInBits())
10581 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
10582 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
10583 V.getValueType().isInteger()) {
10584 // If a result value was tied to an input value, the computed result
10585 // may have a wider width than the expected result. Extract the
10586 // relevant portion.
10587 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
10588 }
10589 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
10590 ResultVTs.push_back(ResultVT);
10591 ResultValues.push_back(V);
10592 };
10593
10594 // Deal with output operands.
10595 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10596 if (OpInfo.Type == InlineAsm::isOutput) {
10597 SDValue Val;
10598 // Skip trivial output operands.
10599 if (OpInfo.AssignedRegs.Regs.empty())
10600 continue;
10601
10602 switch (OpInfo.ConstraintType) {
10605 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
10606 Chain, &Glue, &Call);
10607 break;
10610 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
10611 OpInfo, DAG);
10612 break;
10614 break; // Already handled.
10616 break; // Silence warning.
10618 assert(false && "Unexpected unknown constraint");
10619 }
10620
10621 // Indirect output manifest as stores. Record output chains.
10622 if (OpInfo.isIndirect) {
10623 const Value *Ptr = OpInfo.CallOperandVal;
10624 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
10625 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
10626 MachinePointerInfo(Ptr));
10627 OutChains.push_back(Store);
10628 } else {
10629 // generate CopyFromRegs to associated registers.
10630 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
10631 if (Val.getOpcode() == ISD::MERGE_VALUES) {
10632 for (const SDValue &V : Val->op_values())
10633 handleRegAssign(V);
10634 } else
10635 handleRegAssign(Val);
10636 }
10637 }
10638 }
10639
10640 // Set results.
10641 if (!ResultValues.empty()) {
10642 assert(CurResultType == ResultTypes.end() &&
10643 "Mismatch in number of ResultTypes");
10644 assert(ResultValues.size() == ResultTypes.size() &&
10645 "Mismatch in number of output operands in asm result");
10646
10648 DAG.getVTList(ResultVTs), ResultValues);
10649 setValue(&Call, V);
10650 }
10651
10652 // Collect store chains.
10653 if (!OutChains.empty())
10654 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
10655
10656 if (EmitEHLabels) {
10657 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
10658 }
10659
10660 // Only Update Root if inline assembly has a memory effect.
10661 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
10662 EmitEHLabels)
10663 DAG.setRoot(Chain);
10664}
10665
10666void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
10667 const Twine &Message) {
10668 LLVMContext &Ctx = *DAG.getContext();
10669 Ctx.diagnose(DiagnosticInfoInlineAsm(Call, Message));
10670
10671 // Make sure we leave the DAG in a valid state
10672 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10673 SmallVector<EVT, 1> ValueVTs;
10674 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
10675
10676 if (ValueVTs.empty())
10677 return;
10678
10680 for (const EVT &VT : ValueVTs)
10681 Ops.push_back(DAG.getUNDEF(VT));
10682
10683 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
10684}
10685
10686void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
10687 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
10688 MVT::Other, getRoot(),
10689 getValue(I.getArgOperand(0)),
10690 DAG.getSrcValue(I.getArgOperand(0))));
10691}
10692
10693void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
10694 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10695 const DataLayout &DL = DAG.getDataLayout();
10696 SDValue V = DAG.getVAArg(
10697 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
10698 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
10699 DL.getABITypeAlign(I.getType()).value());
10700 DAG.setRoot(V.getValue(1));
10701
10702 if (I.getType()->isPointerTy())
10703 V = DAG.getPtrExtOrTrunc(
10704 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
10705 setValue(&I, V);
10706}
10707
10708void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
10709 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
10710 MVT::Other, getRoot(),
10711 getValue(I.getArgOperand(0)),
10712 DAG.getSrcValue(I.getArgOperand(0))));
10713}
10714
10715void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
10716 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
10717 MVT::Other, getRoot(),
10718 getValue(I.getArgOperand(0)),
10719 getValue(I.getArgOperand(1)),
10720 DAG.getSrcValue(I.getArgOperand(0)),
10721 DAG.getSrcValue(I.getArgOperand(1))));
10722}
10723
10725 const Instruction &I,
10726 SDValue Op) {
10727 std::optional<ConstantRange> CR = getRange(I);
10728
10729 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10730 return Op;
10731
10732 APInt Lo = CR->getUnsignedMin();
10733 if (!Lo.isMinValue())
10734 return Op;
10735
10736 APInt Hi = CR->getUnsignedMax();
10737 unsigned Bits = std::max(Hi.getActiveBits(),
10738 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
10739
10740 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
10741
10742 SDLoc SL = getCurSDLoc();
10743
10744 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
10745 DAG.getValueType(SmallVT));
10746 unsigned NumVals = Op.getNode()->getNumValues();
10747 if (NumVals == 1)
10748 return ZExt;
10749
10751
10752 Ops.push_back(ZExt);
10753 for (unsigned I = 1; I != NumVals; ++I)
10754 Ops.push_back(Op.getValue(I));
10755
10756 return DAG.getMergeValues(Ops, SL);
10757}
10758
10760 SelectionDAG &DAG, const Instruction &I, SDValue Op) {
10761 FPClassTest Classes = getNoFPClass(I);
10762 if (Classes == fcNone)
10763 return Op;
10764
10765 SDLoc SL = getCurSDLoc();
10766 SDValue TestConst = DAG.getTargetConstant(Classes, SDLoc(), MVT::i32);
10767
10768 if (Op.getOpcode() != ISD::MERGE_VALUES) {
10769 return DAG.getNode(ISD::AssertNoFPClass, SL, Op.getValueType(), Op,
10770 TestConst);
10771 }
10772
10773 SmallVector<SDValue, 8> Ops(Op.getNumOperands());
10774 for (unsigned I = 0, E = Ops.size(); I != E; ++I) {
10775 SDValue MergeOp = Op.getOperand(I);
10776 Ops[I] = DAG.getNode(ISD::AssertNoFPClass, SL, MergeOp.getValueType(),
10777 MergeOp, TestConst);
10778 }
10779
10780 return DAG.getMergeValues(Ops, SL);
10781}
10782
10783/// Populate a CallLowerinInfo (into \p CLI) based on the properties of
10784/// the call being lowered.
10785///
10786/// This is a helper for lowering intrinsics that follow a target calling
10787/// convention or require stack pointer adjustment. Only a subset of the
10788/// intrinsic's operands need to participate in the calling convention.
10791 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
10792 AttributeSet RetAttrs, bool IsPatchPoint) {
10794 Args.reserve(NumArgs);
10795
10796 // Populate the argument list.
10797 // Attributes for args start at offset 1, after the return attribute.
10798 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10799 ArgI != ArgE; ++ArgI) {
10800 const Value *V = Call->getOperand(ArgI);
10801
10802 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
10803
10804 TargetLowering::ArgListEntry Entry(getValue(V), V->getType());
10805 Entry.setAttributes(Call, ArgI);
10806 Args.push_back(Entry);
10807 }
10808
10810 .setChain(getRoot())
10811 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10812 RetAttrs)
10813 .setDiscardResult(Call->use_empty())
10814 .setIsPatchPoint(IsPatchPoint)
10816 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
10817}
10818
10819/// Add a stack map intrinsic call's live variable operands to a stackmap
10820/// or patchpoint target node's operand list.
10821///
10822/// Constants are converted to TargetConstants purely as an optimization to
10823/// avoid constant materialization and register allocation.
10824///
10825/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
10826/// generate addess computation nodes, and so FinalizeISel can convert the
10827/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
10828/// address materialization and register allocation, but may also be required
10829/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
10830/// alloca in the entry block, then the runtime may assume that the alloca's
10831/// StackMap location can be read immediately after compilation and that the
10832/// location is valid at any point during execution (this is similar to the
10833/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
10834/// only available in a register, then the runtime would need to trap when
10835/// execution reaches the StackMap in order to read the alloca's location.
10836static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
10838 SelectionDAGBuilder &Builder) {
10839 SelectionDAG &DAG = Builder.DAG;
10840 for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
10841 SDValue Op = Builder.getValue(Call.getArgOperand(I));
10842
10843 // Things on the stack are pointer-typed, meaning that they are already
10844 // legal and can be emitted directly to target nodes.
10846 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
10847 } else {
10848 // Otherwise emit a target independent node to be legalised.
10849 Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
10850 }
10851 }
10852}
10853
10854/// Lower llvm.experimental.stackmap.
10855void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
10856 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
10857 // [live variables...])
10858
10859 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
10860
10861 SDValue Chain, InGlue, Callee;
10863
10864 SDLoc DL = getCurSDLoc();
10866
10867 // The stackmap intrinsic only records the live variables (the arguments
10868 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
10869 // intrinsic, this won't be lowered to a function call. This means we don't
10870 // have to worry about calling conventions and target specific lowering code.
10871 // Instead we perform the call lowering right here.
10872 //
10873 // chain, flag = CALLSEQ_START(chain, 0, 0)
10874 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
10875 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
10876 //
10877 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
10878 InGlue = Chain.getValue(1);
10879
10880 // Add the STACKMAP operands, starting with DAG house-keeping.
10881 Ops.push_back(Chain);
10882 Ops.push_back(InGlue);
10883
10884 // Add the <id>, <numShadowBytes> operands.
10885 //
10886 // These do not require legalisation, and can be emitted directly to target
10887 // constant nodes.
10889 assert(ID.getValueType() == MVT::i64);
10890 SDValue IDConst =
10891 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType());
10892 Ops.push_back(IDConst);
10893
10894 SDValue Shad = getValue(CI.getArgOperand(1));
10895 assert(Shad.getValueType() == MVT::i32);
10896 SDValue ShadConst =
10897 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType());
10898 Ops.push_back(ShadConst);
10899
10900 // Add the live variables.
10901 addStackMapLiveVars(CI, 2, DL, Ops, *this);
10902
10903 // Create the STACKMAP node.
10904 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10905 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
10906 InGlue = Chain.getValue(1);
10907
10908 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
10909
10910 // Stackmaps don't generate values, so nothing goes into the NodeMap.
10911
10912 // Set the root to the target-lowered call chain.
10913 DAG.setRoot(Chain);
10914
10915 // Inform the Frame Information that we have a stackmap in this function.
10916 FuncInfo.MF->getFrameInfo().setHasStackMap();
10917}
10918
10919/// Lower llvm.experimental.patchpoint directly to its target opcode.
10920void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
10921 const BasicBlock *EHPadBB) {
10922 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
10923 // i32 <numBytes>,
10924 // i8* <target>,
10925 // i32 <numArgs>,
10926 // [Args...],
10927 // [live variables...])
10928
10930 bool IsAnyRegCC = CC == CallingConv::AnyReg;
10931 bool HasDef = !CB.getType()->isVoidTy();
10932 SDLoc dl = getCurSDLoc();
10934
10935 // Handle immediate and symbolic callees.
10936 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
10937 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10938 /*isTarget=*/true);
10939 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
10940 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10941 SDLoc(SymbolicCallee),
10942 SymbolicCallee->getValueType(0));
10943
10944 // Get the real number of arguments participating in the call <numArgs>
10946 unsigned NumArgs = NArgVal->getAsZExtVal();
10947
10948 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
10949 // Intrinsics include all meta-operands up to but not including CC.
10950 unsigned NumMetaOpers = PatchPointOpers::CCPos;
10951 assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
10952 "Not enough arguments provided to the patchpoint intrinsic");
10953
10954 // For AnyRegCC the arguments are lowered later on manually.
10955 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10956 Type *ReturnTy =
10957 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
10958
10959 TargetLowering::CallLoweringInfo CLI(DAG);
10960 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
10961 ReturnTy, CB.getAttributes().getRetAttrs(), true);
10962 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
10963
10964 SDNode *CallEnd = Result.second.getNode();
10965 if (CallEnd->getOpcode() == ISD::EH_LABEL)
10966 CallEnd = CallEnd->getOperand(0).getNode();
10967 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
10968 CallEnd = CallEnd->getOperand(0).getNode();
10969
10970 /// Get a call instruction from the call sequence chain.
10971 /// Tail calls are not allowed.
10972 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
10973 "Expected a callseq node.");
10974 SDNode *Call = CallEnd->getOperand(0).getNode();
10975 bool HasGlue = Call->getGluedNode();
10976
10977 // Replace the target specific call node with the patchable intrinsic.
10979
10980 // Push the chain.
10981 Ops.push_back(*(Call->op_begin()));
10982
10983 // Optionally, push the glue (if any).
10984 if (HasGlue)
10985 Ops.push_back(*(Call->op_end() - 1));
10986
10987 // Push the register mask info.
10988 if (HasGlue)
10989 Ops.push_back(*(Call->op_end() - 2));
10990 else
10991 Ops.push_back(*(Call->op_end() - 1));
10992
10993 // Add the <id> and <numBytes> constants.
10995 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64));
10997 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32));
10998
10999 // Add the callee.
11000 Ops.push_back(Callee);
11001
11002 // Adjust <numArgs> to account for any arguments that have been passed on the
11003 // stack instead.
11004 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
11005 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
11006 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
11007 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
11008
11009 // Add the calling convention
11010 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
11011
11012 // Add the arguments we omitted previously. The register allocator should
11013 // place these in any free register.
11014 if (IsAnyRegCC)
11015 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
11016 Ops.push_back(getValue(CB.getArgOperand(i)));
11017
11018 // Push the arguments from the call instruction.
11019 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
11020 Ops.append(Call->op_begin() + 2, e);
11021
11022 // Push live variables for the stack map.
11023 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
11024
11025 SDVTList NodeTys;
11026 if (IsAnyRegCC && HasDef) {
11027 // Create the return types based on the intrinsic definition
11028 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11029 SmallVector<EVT, 3> ValueVTs;
11030 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
11031 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
11032
11033 // There is always a chain and a glue type at the end
11034 ValueVTs.push_back(MVT::Other);
11035 ValueVTs.push_back(MVT::Glue);
11036 NodeTys = DAG.getVTList(ValueVTs);
11037 } else
11038 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11039
11040 // Replace the target specific call node with a PATCHPOINT node.
11041 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
11042
11043 // Update the NodeMap.
11044 if (HasDef) {
11045 if (IsAnyRegCC)
11046 setValue(&CB, SDValue(PPV.getNode(), 0));
11047 else
11048 setValue(&CB, Result.first);
11049 }
11050
11051 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
11052 // call sequence. Furthermore the location of the chain and glue can change
11053 // when the AnyReg calling convention is used and the intrinsic returns a
11054 // value.
11055 if (IsAnyRegCC && HasDef) {
11056 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
11057 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
11058 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
11059 } else
11060 DAG.ReplaceAllUsesWith(Call, PPV.getNode());
11061 DAG.DeleteNode(Call);
11062
11063 // Inform the Frame Information that we have a patchpoint in this function.
11064 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
11065}
11066
11067void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
11068 unsigned Intrinsic) {
11069 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11070 SDValue Op1 = getValue(I.getArgOperand(0));
11071 SDValue Op2;
11072 if (I.arg_size() > 1)
11073 Op2 = getValue(I.getArgOperand(1));
11074 SDLoc dl = getCurSDLoc();
11075 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11076 SDValue Res;
11077 SDNodeFlags SDFlags;
11078 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
11079 SDFlags.copyFMF(*FPMO);
11080
11081 switch (Intrinsic) {
11082 case Intrinsic::vector_reduce_fadd:
11083 if (SDFlags.hasAllowReassociation())
11084 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
11085 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
11086 SDFlags);
11087 else
11088 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
11089 break;
11090 case Intrinsic::vector_reduce_fmul:
11091 if (SDFlags.hasAllowReassociation())
11092 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
11093 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
11094 SDFlags);
11095 else
11096 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
11097 break;
11098 case Intrinsic::vector_reduce_add:
11099 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
11100 break;
11101 case Intrinsic::vector_reduce_mul:
11102 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
11103 break;
11104 case Intrinsic::vector_reduce_and:
11105 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
11106 break;
11107 case Intrinsic::vector_reduce_or:
11108 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
11109 break;
11110 case Intrinsic::vector_reduce_xor:
11111 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
11112 break;
11113 case Intrinsic::vector_reduce_smax:
11114 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
11115 break;
11116 case Intrinsic::vector_reduce_smin:
11117 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
11118 break;
11119 case Intrinsic::vector_reduce_umax:
11120 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
11121 break;
11122 case Intrinsic::vector_reduce_umin:
11123 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
11124 break;
11125 case Intrinsic::vector_reduce_fmax:
11126 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
11127 break;
11128 case Intrinsic::vector_reduce_fmin:
11129 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
11130 break;
11131 case Intrinsic::vector_reduce_fmaximum:
11132 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
11133 break;
11134 case Intrinsic::vector_reduce_fminimum:
11135 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
11136 break;
11137 default:
11138 llvm_unreachable("Unhandled vector reduce intrinsic");
11139 }
11140 setValue(&I, Res);
11141}
11142
11143/// Returns an AttributeList representing the attributes applied to the return
11144/// value of the given call.
11147 if (CLI.RetSExt)
11148 Attrs.push_back(Attribute::SExt);
11149 if (CLI.RetZExt)
11150 Attrs.push_back(Attribute::ZExt);
11151 if (CLI.IsInReg)
11152 Attrs.push_back(Attribute::InReg);
11153
11154 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
11155 Attrs);
11156}
11157
11158/// TargetLowering::LowerCallTo - This is the default LowerCallTo
11159/// implementation, which just calls LowerCall.
11160/// FIXME: When all targets are
11161/// migrated to using LowerCall, this hook should be integrated into SDISel.
11162std::pair<SDValue, SDValue>
11164 LLVMContext &Context = CLI.RetTy->getContext();
11165
11166 // Handle the incoming return values from the call.
11167 CLI.Ins.clear();
11168 SmallVector<Type *, 4> RetOrigTys;
11170 auto &DL = CLI.DAG.getDataLayout();
11171 ComputeValueTypes(DL, CLI.OrigRetTy, RetOrigTys, &Offsets);
11172
11173 SmallVector<EVT, 4> RetVTs;
11174 if (CLI.RetTy != CLI.OrigRetTy) {
11175 assert(RetOrigTys.size() == 1 &&
11176 "Only supported for non-aggregate returns");
11177 RetVTs.push_back(getValueType(DL, CLI.RetTy));
11178 } else {
11179 for (Type *Ty : RetOrigTys)
11180 RetVTs.push_back(getValueType(DL, Ty));
11181 }
11182
11183 if (CLI.IsPostTypeLegalization) {
11184 // If we are lowering a libcall after legalization, split the return type.
11185 SmallVector<Type *, 4> OldRetOrigTys;
11186 SmallVector<EVT, 4> OldRetVTs;
11187 SmallVector<TypeSize, 4> OldOffsets;
11188 RetOrigTys.swap(OldRetOrigTys);
11189 RetVTs.swap(OldRetVTs);
11190 Offsets.swap(OldOffsets);
11191
11192 for (size_t i = 0, e = OldRetVTs.size(); i != e; ++i) {
11193 EVT RetVT = OldRetVTs[i];
11194 uint64_t Offset = OldOffsets[i];
11195 MVT RegisterVT = getRegisterType(Context, RetVT);
11196 unsigned NumRegs = getNumRegisters(Context, RetVT);
11197 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
11198 RetOrigTys.append(NumRegs, OldRetOrigTys[i]);
11199 RetVTs.append(NumRegs, RegisterVT);
11200 for (unsigned j = 0; j != NumRegs; ++j)
11201 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ));
11202 }
11203 }
11204
11206 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
11207
11208 bool CanLowerReturn =
11210 CLI.IsVarArg, Outs, Context, CLI.RetTy);
11211
11212 SDValue DemoteStackSlot;
11213 int DemoteStackIdx = -100;
11214 if (!CanLowerReturn) {
11215 // FIXME: equivalent assert?
11216 // assert(!CS.hasInAllocaArgument() &&
11217 // "sret demotion is incompatible with inalloca");
11218 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
11219 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
11221 DemoteStackIdx =
11222 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
11223 Type *StackSlotPtrType = PointerType::get(Context, DL.getAllocaAddrSpace());
11224
11225 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
11226 ArgListEntry Entry(DemoteStackSlot, StackSlotPtrType);
11227 Entry.IsSRet = true;
11228 Entry.Alignment = Alignment;
11229 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
11230 CLI.NumFixedArgs += 1;
11231 CLI.getArgs()[0].IndirectType = CLI.RetTy;
11232 CLI.RetTy = CLI.OrigRetTy = Type::getVoidTy(Context);
11233
11234 // sret demotion isn't compatible with tail-calls, since the sret argument
11235 // points into the callers stack frame.
11236 CLI.IsTailCall = false;
11237 } else {
11238 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11239 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
11240 for (unsigned I = 0, E = RetVTs.size(); I != E; ++I) {
11241 ISD::ArgFlagsTy Flags;
11242 if (NeedsRegBlock) {
11243 Flags.setInConsecutiveRegs();
11244 if (I == RetVTs.size() - 1)
11245 Flags.setInConsecutiveRegsLast();
11246 }
11247 EVT VT = RetVTs[I];
11248 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11249 unsigned NumRegs =
11250 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11251 for (unsigned i = 0; i != NumRegs; ++i) {
11252 ISD::InputArg Ret(Flags, RegisterVT, VT, RetOrigTys[I],
11254 if (CLI.RetTy->isPointerTy()) {
11255 Ret.Flags.setPointer();
11257 cast<PointerType>(CLI.RetTy)->getAddressSpace());
11258 }
11259 if (CLI.RetSExt)
11260 Ret.Flags.setSExt();
11261 if (CLI.RetZExt)
11262 Ret.Flags.setZExt();
11263 if (CLI.IsInReg)
11264 Ret.Flags.setInReg();
11265 CLI.Ins.push_back(Ret);
11266 }
11267 }
11268 }
11269
11270 // We push in swifterror return as the last element of CLI.Ins.
11271 ArgListTy &Args = CLI.getArgs();
11272 if (supportSwiftError()) {
11273 for (const ArgListEntry &Arg : Args) {
11274 if (Arg.IsSwiftError) {
11275 ISD::ArgFlagsTy Flags;
11276 Flags.setSwiftError();
11278 PointerType::getUnqual(Context),
11279 /*Used=*/true, ISD::InputArg::NoArgIndex, 0);
11280 CLI.Ins.push_back(Ret);
11281 }
11282 }
11283 }
11284
11285 // Handle all of the outgoing arguments.
11286 CLI.Outs.clear();
11287 CLI.OutVals.clear();
11288 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
11289 SmallVector<Type *, 4> OrigArgTys;
11290 ComputeValueTypes(DL, Args[i].OrigTy, OrigArgTys);
11291 // FIXME: Split arguments if CLI.IsPostTypeLegalization
11292 Type *FinalType = Args[i].Ty;
11293 if (Args[i].IsByVal)
11294 FinalType = Args[i].IndirectType;
11295 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
11296 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
11297 for (unsigned Value = 0, NumValues = OrigArgTys.size(); Value != NumValues;
11298 ++Value) {
11299 Type *OrigArgTy = OrigArgTys[Value];
11300 Type *ArgTy = OrigArgTy;
11301 if (Args[i].Ty != Args[i].OrigTy) {
11302 assert(Value == 0 && "Only supported for non-aggregate arguments");
11303 ArgTy = Args[i].Ty;
11304 }
11305
11306 EVT VT = getValueType(DL, ArgTy);
11307 SDValue Op = SDValue(Args[i].Node.getNode(),
11308 Args[i].Node.getResNo() + Value);
11309 ISD::ArgFlagsTy Flags;
11310
11311 // Certain targets (such as MIPS), may have a different ABI alignment
11312 // for a type depending on the context. Give the target a chance to
11313 // specify the alignment it wants.
11314 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
11315 Flags.setOrigAlign(OriginalAlignment);
11316
11317 if (i >= CLI.NumFixedArgs)
11318 Flags.setVarArg();
11319 if (ArgTy->isPointerTy()) {
11320 Flags.setPointer();
11321 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11322 }
11323 if (Args[i].IsZExt)
11324 Flags.setZExt();
11325 if (Args[i].IsSExt)
11326 Flags.setSExt();
11327 if (Args[i].IsNoExt)
11328 Flags.setNoExt();
11329 if (Args[i].IsInReg) {
11330 // If we are using vectorcall calling convention, a structure that is
11331 // passed InReg - is surely an HVA
11333 isa<StructType>(FinalType)) {
11334 // The first value of a structure is marked
11335 if (0 == Value)
11336 Flags.setHvaStart();
11337 Flags.setHva();
11338 }
11339 // Set InReg Flag
11340 Flags.setInReg();
11341 }
11342 if (Args[i].IsSRet)
11343 Flags.setSRet();
11344 if (Args[i].IsSwiftSelf)
11345 Flags.setSwiftSelf();
11346 if (Args[i].IsSwiftAsync)
11347 Flags.setSwiftAsync();
11348 if (Args[i].IsSwiftError)
11349 Flags.setSwiftError();
11350 if (Args[i].IsCFGuardTarget)
11351 Flags.setCFGuardTarget();
11352 if (Args[i].IsByVal)
11353 Flags.setByVal();
11354 if (Args[i].IsByRef)
11355 Flags.setByRef();
11356 if (Args[i].IsPreallocated) {
11357 Flags.setPreallocated();
11358 // Set the byval flag for CCAssignFn callbacks that don't know about
11359 // preallocated. This way we can know how many bytes we should've
11360 // allocated and how many bytes a callee cleanup function will pop. If
11361 // we port preallocated to more targets, we'll have to add custom
11362 // preallocated handling in the various CC lowering callbacks.
11363 Flags.setByVal();
11364 }
11365 if (Args[i].IsInAlloca) {
11366 Flags.setInAlloca();
11367 // Set the byval flag for CCAssignFn callbacks that don't know about
11368 // inalloca. This way we can know how many bytes we should've allocated
11369 // and how many bytes a callee cleanup function will pop. If we port
11370 // inalloca to more targets, we'll have to add custom inalloca handling
11371 // in the various CC lowering callbacks.
11372 Flags.setByVal();
11373 }
11374 Align MemAlign;
11375 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11376 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
11377 Flags.setByValSize(FrameSize);
11378
11379 // info is not there but there are cases it cannot get right.
11380 if (auto MA = Args[i].Alignment)
11381 MemAlign = *MA;
11382 else
11383 MemAlign = getByValTypeAlignment(Args[i].IndirectType, DL);
11384 } else if (auto MA = Args[i].Alignment) {
11385 MemAlign = *MA;
11386 } else {
11387 MemAlign = OriginalAlignment;
11388 }
11389 Flags.setMemAlign(MemAlign);
11390 if (Args[i].IsNest)
11391 Flags.setNest();
11392 if (NeedsRegBlock)
11393 Flags.setInConsecutiveRegs();
11394
11395 MVT PartVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11396 unsigned NumParts =
11397 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11398 SmallVector<SDValue, 4> Parts(NumParts);
11399 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
11400
11401 if (Args[i].IsSExt)
11402 ExtendKind = ISD::SIGN_EXTEND;
11403 else if (Args[i].IsZExt)
11404 ExtendKind = ISD::ZERO_EXTEND;
11405
11406 // Conservatively only handle 'returned' on non-vectors that can be lowered,
11407 // for now.
11408 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
11410 assert((CLI.RetTy == Args[i].Ty ||
11411 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
11413 Args[i].Ty->getPointerAddressSpace())) &&
11414 RetVTs.size() == NumValues && "unexpected use of 'returned'");
11415 // Before passing 'returned' to the target lowering code, ensure that
11416 // either the register MVT and the actual EVT are the same size or that
11417 // the return value and argument are extended in the same way; in these
11418 // cases it's safe to pass the argument register value unchanged as the
11419 // return register value (although it's at the target's option whether
11420 // to do so)
11421 // TODO: allow code generation to take advantage of partially preserved
11422 // registers rather than clobbering the entire register when the
11423 // parameter extension method is not compatible with the return
11424 // extension method
11425 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
11426 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
11427 CLI.RetZExt == Args[i].IsZExt))
11428 Flags.setReturned();
11429 }
11430
11431 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
11432 CLI.CallConv, ExtendKind);
11433
11434 for (unsigned j = 0; j != NumParts; ++j) {
11435 // if it isn't first piece, alignment must be 1
11436 // For scalable vectors the scalable part is currently handled
11437 // by individual targets, so we just use the known minimum size here.
11438 ISD::OutputArg MyFlags(
11439 Flags, Parts[j].getValueType().getSimpleVT(), VT, OrigArgTy, i,
11440 j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
11441 if (NumParts > 1 && j == 0)
11442 MyFlags.Flags.setSplit();
11443 else if (j != 0) {
11444 MyFlags.Flags.setOrigAlign(Align(1));
11445 if (j == NumParts - 1)
11446 MyFlags.Flags.setSplitEnd();
11447 }
11448
11449 CLI.Outs.push_back(MyFlags);
11450 CLI.OutVals.push_back(Parts[j]);
11451 }
11452
11453 if (NeedsRegBlock && Value == NumValues - 1)
11454 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11455 }
11456 }
11457
11459 CLI.Chain = LowerCall(CLI, InVals);
11460
11461 // Update CLI.InVals to use outside of this function.
11462 CLI.InVals = InVals;
11463
11464 // Verify that the target's LowerCall behaved as expected.
11465 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
11466 "LowerCall didn't return a valid chain!");
11467 assert((!CLI.IsTailCall || InVals.empty()) &&
11468 "LowerCall emitted a return value for a tail call!");
11469 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
11470 "LowerCall didn't emit the correct number of values!");
11471
11472 // For a tail call, the return value is merely live-out and there aren't
11473 // any nodes in the DAG representing it. Return a special value to
11474 // indicate that a tail call has been emitted and no more Instructions
11475 // should be processed in the current block.
11476 if (CLI.IsTailCall) {
11477 CLI.DAG.setRoot(CLI.Chain);
11478 return std::make_pair(SDValue(), SDValue());
11479 }
11480
11481#ifndef NDEBUG
11482 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
11483 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
11484 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
11485 "LowerCall emitted a value with the wrong type!");
11486 }
11487#endif
11488
11489 SmallVector<SDValue, 4> ReturnValues;
11490 if (!CanLowerReturn) {
11491 // The instruction result is the result of loading from the
11492 // hidden sret parameter.
11493 MVT PtrVT = getPointerTy(DL, DL.getAllocaAddrSpace());
11494
11495 unsigned NumValues = RetVTs.size();
11496 ReturnValues.resize(NumValues);
11497 SmallVector<SDValue, 4> Chains(NumValues);
11498
11499 // An aggregate return value cannot wrap around the address space, so
11500 // offsets to its parts don't wrap either.
11502 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
11503 for (unsigned i = 0; i < NumValues; ++i) {
11505 DemoteStackSlot, CLI.DAG.getConstant(Offsets[i], CLI.DL, PtrVT),
11507 SDValue L = CLI.DAG.getLoad(
11508 RetVTs[i], CLI.DL, CLI.Chain, Add,
11510 DemoteStackIdx, Offsets[i]),
11511 HiddenSRetAlign);
11512 ReturnValues[i] = L;
11513 Chains[i] = L.getValue(1);
11514 }
11515
11516 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
11517 } else {
11518 // Collect the legal value parts into potentially illegal values
11519 // that correspond to the original function's return values.
11520 std::optional<ISD::NodeType> AssertOp;
11521 if (CLI.RetSExt)
11522 AssertOp = ISD::AssertSext;
11523 else if (CLI.RetZExt)
11524 AssertOp = ISD::AssertZext;
11525 unsigned CurReg = 0;
11526 for (EVT VT : RetVTs) {
11527 MVT RegisterVT = getRegisterTypeForCallingConv(Context, CLI.CallConv, VT);
11528 unsigned NumRegs =
11529 getNumRegistersForCallingConv(Context, CLI.CallConv, VT);
11530
11531 ReturnValues.push_back(getCopyFromParts(
11532 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr,
11533 CLI.Chain, CLI.CallConv, AssertOp));
11534 CurReg += NumRegs;
11535 }
11536
11537 // For a function returning void, there is no return value. We can't create
11538 // such a node, so we just return a null return value in that case. In
11539 // that case, nothing will actually look at the value.
11540 if (ReturnValues.empty())
11541 return std::make_pair(SDValue(), CLI.Chain);
11542 }
11543
11544 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
11545 CLI.DAG.getVTList(RetVTs), ReturnValues);
11546 return std::make_pair(Res, CLI.Chain);
11547}
11548
11549/// Places new result values for the node in Results (their number
11550/// and types must exactly match those of the original return values of
11551/// the node), or leaves Results empty, which indicates that the node is not
11552/// to be custom lowered after all.
11555 SelectionDAG &DAG) const {
11556 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
11557
11558 if (!Res.getNode())
11559 return;
11560
11561 // If the original node has one result, take the return value from
11562 // LowerOperation as is. It might not be result number 0.
11563 if (N->getNumValues() == 1) {
11564 Results.push_back(Res);
11565 return;
11566 }
11567
11568 // If the original node has multiple results, then the return node should
11569 // have the same number of results.
11570 assert((N->getNumValues() == Res->getNumValues()) &&
11571 "Lowering returned the wrong number of results!");
11572
11573 // Places new result values base on N result number.
11574 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
11575 Results.push_back(Res.getValue(I));
11576}
11577
11579 llvm_unreachable("LowerOperation not implemented for this target!");
11580}
11581
11583 Register Reg,
11584 ISD::NodeType ExtendType) {
11586 assert((Op.getOpcode() != ISD::CopyFromReg ||
11587 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
11588 "Copy from a reg to the same reg!");
11589 assert(!Reg.isPhysical() && "Is a physreg");
11590
11591 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11592 // If this is an InlineAsm we have to match the registers required, not the
11593 // notional registers required by the type.
11594
11595 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
11596 std::nullopt); // This is not an ABI copy.
11597 SDValue Chain = DAG.getEntryNode();
11598
11599 if (ExtendType == ISD::ANY_EXTEND) {
11600 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
11601 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
11602 ExtendType = PreferredExtendIt->second;
11603 }
11604 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
11605 PendingExports.push_back(Chain);
11606}
11607
11609
11610/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
11611/// entry block, return true. This includes arguments used by switches, since
11612/// the switch may expand into multiple basic blocks.
11613static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
11614 // With FastISel active, we may be splitting blocks, so force creation
11615 // of virtual registers for all non-dead arguments.
11616 if (FastISel)
11617 return A->use_empty();
11618
11619 const BasicBlock &Entry = A->getParent()->front();
11620 for (const User *U : A->users())
11621 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
11622 return false; // Use not in entry block.
11623
11624 return true;
11625}
11626
11628 DenseMap<const Argument *,
11629 std::pair<const AllocaInst *, const StoreInst *>>;
11630
11631/// Scan the entry block of the function in FuncInfo for arguments that look
11632/// like copies into a local alloca. Record any copied arguments in
11633/// ArgCopyElisionCandidates.
11634static void
11636 FunctionLoweringInfo *FuncInfo,
11637 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
11638 // Record the state of every static alloca used in the entry block. Argument
11639 // allocas are all used in the entry block, so we need approximately as many
11640 // entries as we have arguments.
11641 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
11643 unsigned NumArgs = FuncInfo->Fn->arg_size();
11644 StaticAllocas.reserve(NumArgs * 2);
11645
11646 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
11647 if (!V)
11648 return nullptr;
11649 V = V->stripPointerCasts();
11650 const auto *AI = dyn_cast<AllocaInst>(V);
11651 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
11652 return nullptr;
11653 auto Iter = StaticAllocas.insert({AI, Unknown});
11654 return &Iter.first->second;
11655 };
11656
11657 // Look for stores of arguments to static allocas. Look through bitcasts and
11658 // GEPs to handle type coercions, as long as the alloca is fully initialized
11659 // by the store. Any non-store use of an alloca escapes it and any subsequent
11660 // unanalyzed store might write it.
11661 // FIXME: Handle structs initialized with multiple stores.
11662 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
11663 // Look for stores, and handle non-store uses conservatively.
11664 const auto *SI = dyn_cast<StoreInst>(&I);
11665 if (!SI) {
11666 // We will look through cast uses, so ignore them completely.
11667 if (I.isCast())
11668 continue;
11669 // Ignore debug info and pseudo op intrinsics, they don't escape or store
11670 // to allocas.
11671 if (I.isDebugOrPseudoInst())
11672 continue;
11673 // This is an unknown instruction. Assume it escapes or writes to all
11674 // static alloca operands.
11675 for (const Use &U : I.operands()) {
11676 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
11677 *Info = StaticAllocaInfo::Clobbered;
11678 }
11679 continue;
11680 }
11681
11682 // If the stored value is a static alloca, mark it as escaped.
11683 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
11684 *Info = StaticAllocaInfo::Clobbered;
11685
11686 // Check if the destination is a static alloca.
11687 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
11688 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
11689 if (!Info)
11690 continue;
11691 const AllocaInst *AI = cast<AllocaInst>(Dst);
11692
11693 // Skip allocas that have been initialized or clobbered.
11694 if (*Info != StaticAllocaInfo::Unknown)
11695 continue;
11696
11697 // Check if the stored value is an argument, and that this store fully
11698 // initializes the alloca.
11699 // If the argument type has padding bits we can't directly forward a pointer
11700 // as the upper bits may contain garbage.
11701 // Don't elide copies from the same argument twice.
11702 const Value *Val = SI->getValueOperand()->stripPointerCasts();
11703 const auto *Arg = dyn_cast<Argument>(Val);
11704 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11705 Arg->getType()->isEmptyTy() ||
11706 DL.getTypeStoreSize(Arg->getType()) !=
11707 DL.getTypeAllocSize(AI->getAllocatedType()) ||
11708 !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
11709 ArgCopyElisionCandidates.count(Arg)) {
11710 *Info = StaticAllocaInfo::Clobbered;
11711 continue;
11712 }
11713
11714 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
11715 << '\n');
11716
11717 // Mark this alloca and store for argument copy elision.
11718 *Info = StaticAllocaInfo::Elidable;
11719 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
11720
11721 // Stop scanning if we've seen all arguments. This will happen early in -O0
11722 // builds, which is useful, because -O0 builds have large entry blocks and
11723 // many allocas.
11724 if (ArgCopyElisionCandidates.size() == NumArgs)
11725 break;
11726 }
11727}
11728
11729/// Try to elide argument copies from memory into a local alloca. Succeeds if
11730/// ArgVal is a load from a suitable fixed stack object.
11733 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
11734 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
11735 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
11736 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
11737 // Check if this is a load from a fixed stack object.
11738 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
11739 if (!LNode)
11740 return;
11741 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
11742 if (!FINode)
11743 return;
11744
11745 // Check that the fixed stack object is the right size and alignment.
11746 // Look at the alignment that the user wrote on the alloca instead of looking
11747 // at the stack object.
11748 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11749 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11750 const AllocaInst *AI = ArgCopyIter->second.first;
11751 int FixedIndex = FINode->getIndex();
11752 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
11753 int OldIndex = AllocaIndex;
11754 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
11755 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
11756 LLVM_DEBUG(
11757 dbgs() << " argument copy elision failed due to bad fixed stack "
11758 "object size\n");
11759 return;
11760 }
11761 Align RequiredAlignment = AI->getAlign();
11762 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
11763 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
11764 "greater than stack argument alignment ("
11765 << DebugStr(RequiredAlignment) << " vs "
11766 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
11767 return;
11768 }
11769
11770 // Perform the elision. Delete the old stack object and replace its only use
11771 // in the variable info map. Mark the stack object as mutable and aliased.
11772 LLVM_DEBUG({
11773 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
11774 << " Replacing frame index " << OldIndex << " with " << FixedIndex
11775 << '\n';
11776 });
11777 MFI.RemoveStackObject(OldIndex);
11778 MFI.setIsImmutableObjectIndex(FixedIndex, false);
11779 MFI.setIsAliasedObjectIndex(FixedIndex, true);
11780 AllocaIndex = FixedIndex;
11781 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
11782 for (SDValue ArgVal : ArgVals)
11783 Chains.push_back(ArgVal.getValue(1));
11784
11785 // Avoid emitting code for the store implementing the copy.
11786 const StoreInst *SI = ArgCopyIter->second.second;
11787 ElidedArgCopyInstrs.insert(SI);
11788
11789 // Check for uses of the argument again so that we can avoid exporting ArgVal
11790 // if it is't used by anything other than the store.
11791 for (const Value *U : Arg.users()) {
11792 if (U != SI) {
11793 ArgHasUses = true;
11794 break;
11795 }
11796 }
11797}
11798
11799void SelectionDAGISel::LowerArguments(const Function &F) {
11800 SelectionDAG &DAG = SDB->DAG;
11801 SDLoc dl = SDB->getCurSDLoc();
11802 const DataLayout &DL = DAG.getDataLayout();
11804
11805 // In Naked functions we aren't going to save any registers.
11806 if (F.hasFnAttribute(Attribute::Naked))
11807 return;
11808
11809 if (!FuncInfo->CanLowerReturn) {
11810 // Put in an sret pointer parameter before all the other parameters.
11811 MVT ValueVT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11812
11813 ISD::ArgFlagsTy Flags;
11814 Flags.setSRet();
11815 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVT);
11816 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT, F.getReturnType(), true,
11818 Ins.push_back(RetArg);
11819 }
11820
11821 // Look for stores of arguments to static allocas. Mark such arguments with a
11822 // flag to ask the target to give us the memory location of that argument if
11823 // available.
11824 ArgCopyElisionMapTy ArgCopyElisionCandidates;
11826 ArgCopyElisionCandidates);
11827
11828 // Set up the incoming argument description vector.
11829 for (const Argument &Arg : F.args()) {
11830 unsigned ArgNo = Arg.getArgNo();
11832 ComputeValueTypes(DAG.getDataLayout(), Arg.getType(), Types);
11833 bool isArgValueUsed = !Arg.use_empty();
11834 Type *FinalType = Arg.getType();
11835 if (Arg.hasAttribute(Attribute::ByVal))
11836 FinalType = Arg.getParamByValType();
11837 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
11838 FinalType, F.getCallingConv(), F.isVarArg(), DL);
11839 for (unsigned Value = 0, NumValues = Types.size(); Value != NumValues;
11840 ++Value) {
11841 Type *ArgTy = Types[Value];
11842 EVT VT = TLI->getValueType(DL, ArgTy);
11843 ISD::ArgFlagsTy Flags;
11844
11845 if (ArgTy->isPointerTy()) {
11846 Flags.setPointer();
11847 Flags.setPointerAddrSpace(cast<PointerType>(ArgTy)->getAddressSpace());
11848 }
11849 if (Arg.hasAttribute(Attribute::ZExt))
11850 Flags.setZExt();
11851 if (Arg.hasAttribute(Attribute::SExt))
11852 Flags.setSExt();
11853 if (Arg.hasAttribute(Attribute::InReg)) {
11854 // If we are using vectorcall calling convention, a structure that is
11855 // passed InReg - is surely an HVA
11856 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
11857 isa<StructType>(Arg.getType())) {
11858 // The first value of a structure is marked
11859 if (0 == Value)
11860 Flags.setHvaStart();
11861 Flags.setHva();
11862 }
11863 // Set InReg Flag
11864 Flags.setInReg();
11865 }
11866 if (Arg.hasAttribute(Attribute::StructRet))
11867 Flags.setSRet();
11868 if (Arg.hasAttribute(Attribute::SwiftSelf))
11869 Flags.setSwiftSelf();
11870 if (Arg.hasAttribute(Attribute::SwiftAsync))
11871 Flags.setSwiftAsync();
11872 if (Arg.hasAttribute(Attribute::SwiftError))
11873 Flags.setSwiftError();
11874 if (Arg.hasAttribute(Attribute::ByVal))
11875 Flags.setByVal();
11876 if (Arg.hasAttribute(Attribute::ByRef))
11877 Flags.setByRef();
11878 if (Arg.hasAttribute(Attribute::InAlloca)) {
11879 Flags.setInAlloca();
11880 // Set the byval flag for CCAssignFn callbacks that don't know about
11881 // inalloca. This way we can know how many bytes we should've allocated
11882 // and how many bytes a callee cleanup function will pop. If we port
11883 // inalloca to more targets, we'll have to add custom inalloca handling
11884 // in the various CC lowering callbacks.
11885 Flags.setByVal();
11886 }
11887 if (Arg.hasAttribute(Attribute::Preallocated)) {
11888 Flags.setPreallocated();
11889 // Set the byval flag for CCAssignFn callbacks that don't know about
11890 // preallocated. This way we can know how many bytes we should've
11891 // allocated and how many bytes a callee cleanup function will pop. If
11892 // we port preallocated to more targets, we'll have to add custom
11893 // preallocated handling in the various CC lowering callbacks.
11894 Flags.setByVal();
11895 }
11896
11897 // Certain targets (such as MIPS), may have a different ABI alignment
11898 // for a type depending on the context. Give the target a chance to
11899 // specify the alignment it wants.
11900 const Align OriginalAlignment(
11901 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
11902 Flags.setOrigAlign(OriginalAlignment);
11903
11904 Align MemAlign;
11905 Type *ArgMemTy = nullptr;
11906 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
11907 Flags.isByRef()) {
11908 if (!ArgMemTy)
11909 ArgMemTy = Arg.getPointeeInMemoryValueType();
11910
11911 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
11912
11913 // For in-memory arguments, size and alignment should be passed from FE.
11914 // BE will guess if this info is not there but there are cases it cannot
11915 // get right.
11916 if (auto ParamAlign = Arg.getParamStackAlign())
11917 MemAlign = *ParamAlign;
11918 else if ((ParamAlign = Arg.getParamAlign()))
11919 MemAlign = *ParamAlign;
11920 else
11921 MemAlign = TLI->getByValTypeAlignment(ArgMemTy, DL);
11922 if (Flags.isByRef())
11923 Flags.setByRefSize(MemSize);
11924 else
11925 Flags.setByValSize(MemSize);
11926 } else if (auto ParamAlign = Arg.getParamStackAlign()) {
11927 MemAlign = *ParamAlign;
11928 } else {
11929 MemAlign = OriginalAlignment;
11930 }
11931 Flags.setMemAlign(MemAlign);
11932
11933 if (Arg.hasAttribute(Attribute::Nest))
11934 Flags.setNest();
11935 if (NeedsRegBlock)
11936 Flags.setInConsecutiveRegs();
11937 if (ArgCopyElisionCandidates.count(&Arg))
11938 Flags.setCopyElisionCandidate();
11939 if (Arg.hasAttribute(Attribute::Returned))
11940 Flags.setReturned();
11941
11942 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
11943 *CurDAG->getContext(), F.getCallingConv(), VT);
11944 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
11945 *CurDAG->getContext(), F.getCallingConv(), VT);
11946 for (unsigned i = 0; i != NumRegs; ++i) {
11947 // For scalable vectors, use the minimum size; individual targets
11948 // are responsible for handling scalable vector arguments and
11949 // return values.
11950 ISD::InputArg MyFlags(
11951 Flags, RegisterVT, VT, ArgTy, isArgValueUsed, ArgNo,
11952 i * RegisterVT.getStoreSize().getKnownMinValue());
11953 if (NumRegs > 1 && i == 0)
11954 MyFlags.Flags.setSplit();
11955 // if it isn't first piece, alignment must be 1
11956 else if (i > 0) {
11957 MyFlags.Flags.setOrigAlign(Align(1));
11958 if (i == NumRegs - 1)
11959 MyFlags.Flags.setSplitEnd();
11960 }
11961 Ins.push_back(MyFlags);
11962 }
11963 if (NeedsRegBlock && Value == NumValues - 1)
11964 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11965 }
11966 }
11967
11968 // Call the target to set up the argument values.
11970 SDValue NewRoot = TLI->LowerFormalArguments(
11971 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
11972
11973 // Verify that the target's LowerFormalArguments behaved as expected.
11974 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
11975 "LowerFormalArguments didn't return a valid chain!");
11976 assert(InVals.size() == Ins.size() &&
11977 "LowerFormalArguments didn't emit the correct number of values!");
11978 LLVM_DEBUG({
11979 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
11980 assert(InVals[i].getNode() &&
11981 "LowerFormalArguments emitted a null value!");
11982 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
11983 "LowerFormalArguments emitted a value with the wrong type!");
11984 }
11985 });
11986
11987 // Update the DAG with the new chain value resulting from argument lowering.
11988 DAG.setRoot(NewRoot);
11989
11990 // Set up the argument values.
11991 unsigned i = 0;
11992 if (!FuncInfo->CanLowerReturn) {
11993 // Create a virtual register for the sret pointer, and put in a copy
11994 // from the sret argument into it.
11995 MVT VT = TLI->getPointerTy(DL, DL.getAllocaAddrSpace());
11996 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
11997 std::optional<ISD::NodeType> AssertOp;
11998 SDValue ArgValue =
11999 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot,
12000 F.getCallingConv(), AssertOp);
12001
12002 MachineFunction& MF = SDB->DAG.getMachineFunction();
12003 MachineRegisterInfo& RegInfo = MF.getRegInfo();
12004 Register SRetReg =
12005 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
12006 FuncInfo->DemoteRegister = SRetReg;
12007 NewRoot =
12008 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
12009 DAG.setRoot(NewRoot);
12010
12011 // i indexes lowered arguments. Bump it past the hidden sret argument.
12012 ++i;
12013 }
12014
12016 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
12017 for (const Argument &Arg : F.args()) {
12018 SmallVector<SDValue, 4> ArgValues;
12019 SmallVector<EVT, 4> ValueVTs;
12020 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
12021 unsigned NumValues = ValueVTs.size();
12022 if (NumValues == 0)
12023 continue;
12024
12025 bool ArgHasUses = !Arg.use_empty();
12026
12027 // Elide the copying store if the target loaded this argument from a
12028 // suitable fixed stack object.
12029 if (Ins[i].Flags.isCopyElisionCandidate()) {
12030 unsigned NumParts = 0;
12031 for (EVT VT : ValueVTs)
12032 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
12033 F.getCallingConv(), VT);
12034
12035 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
12036 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
12037 ArrayRef(&InVals[i], NumParts), ArgHasUses);
12038 }
12039
12040 // If this argument is unused then remember its value. It is used to generate
12041 // debugging information.
12042 bool isSwiftErrorArg =
12043 TLI->supportSwiftError() &&
12044 Arg.hasAttribute(Attribute::SwiftError);
12045 if (!ArgHasUses && !isSwiftErrorArg) {
12046 SDB->setUnusedArgValue(&Arg, InVals[i]);
12047
12048 // Also remember any frame index for use in FastISel.
12049 if (FrameIndexSDNode *FI =
12051 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12052 }
12053
12054 for (unsigned Val = 0; Val != NumValues; ++Val) {
12055 EVT VT = ValueVTs[Val];
12056 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
12057 F.getCallingConv(), VT);
12058 unsigned NumParts = TLI->getNumRegistersForCallingConv(
12059 *CurDAG->getContext(), F.getCallingConv(), VT);
12060
12061 // Even an apparent 'unused' swifterror argument needs to be returned. So
12062 // we do generate a copy for it that can be used on return from the
12063 // function.
12064 if (ArgHasUses || isSwiftErrorArg) {
12065 std::optional<ISD::NodeType> AssertOp;
12066 if (Arg.hasAttribute(Attribute::SExt))
12067 AssertOp = ISD::AssertSext;
12068 else if (Arg.hasAttribute(Attribute::ZExt))
12069 AssertOp = ISD::AssertZext;
12070
12071 SDValue OutVal =
12072 getCopyFromParts(DAG, dl, &InVals[i], NumParts, PartVT, VT, nullptr,
12073 NewRoot, F.getCallingConv(), AssertOp);
12074
12075 FPClassTest NoFPClass = Arg.getNoFPClass();
12076 if (NoFPClass != fcNone) {
12077 SDValue SDNoFPClass = DAG.getTargetConstant(
12078 static_cast<uint64_t>(NoFPClass), dl, MVT::i32);
12079 OutVal = DAG.getNode(ISD::AssertNoFPClass, dl, OutVal.getValueType(),
12080 OutVal, SDNoFPClass);
12081 }
12082 ArgValues.push_back(OutVal);
12083 }
12084
12085 i += NumParts;
12086 }
12087
12088 // We don't need to do anything else for unused arguments.
12089 if (ArgValues.empty())
12090 continue;
12091
12092 // Note down frame index.
12093 if (FrameIndexSDNode *FI =
12094 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
12095 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12096
12097 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
12098 SDB->getCurSDLoc());
12099
12100 SDB->setValue(&Arg, Res);
12101 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
12102 // We want to associate the argument with the frame index, among
12103 // involved operands, that correspond to the lowest address. The
12104 // getCopyFromParts function, called earlier, is swapping the order of
12105 // the operands to BUILD_PAIR depending on endianness. The result of
12106 // that swapping is that the least significant bits of the argument will
12107 // be in the first operand of the BUILD_PAIR node, and the most
12108 // significant bits will be in the second operand.
12109 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
12110 if (LoadSDNode *LNode =
12111 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
12112 if (FrameIndexSDNode *FI =
12113 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
12114 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12115 }
12116
12117 // Analyses past this point are naive and don't expect an assertion.
12118 if (Res.getOpcode() == ISD::AssertZext)
12119 Res = Res.getOperand(0);
12120
12121 // Update the SwiftErrorVRegDefMap.
12122 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
12123 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12124 if (Reg.isVirtual())
12125 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
12126 Reg);
12127 }
12128
12129 // If this argument is live outside of the entry block, insert a copy from
12130 // wherever we got it to the vreg that other BB's will reference it as.
12131 if (Res.getOpcode() == ISD::CopyFromReg) {
12132 // If we can, though, try to skip creating an unnecessary vreg.
12133 // FIXME: This isn't very clean... it would be nice to make this more
12134 // general.
12135 Register Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
12136 if (Reg.isVirtual()) {
12137 FuncInfo->ValueMap[&Arg] = Reg;
12138 continue;
12139 }
12140 }
12141 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
12142 FuncInfo->InitializeRegForValue(&Arg);
12143 SDB->CopyToExportRegsIfNeeded(&Arg);
12144 }
12145 }
12146
12147 if (!Chains.empty()) {
12148 Chains.push_back(NewRoot);
12149 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
12150 }
12151
12152 DAG.setRoot(NewRoot);
12153
12154 assert(i == InVals.size() && "Argument register count mismatch!");
12155
12156 // If any argument copy elisions occurred and we have debug info, update the
12157 // stale frame indices used in the dbg.declare variable info table.
12158 if (!ArgCopyElisionFrameIndexMap.empty()) {
12159 for (MachineFunction::VariableDbgInfo &VI :
12160 MF->getInStackSlotVariableDbgInfo()) {
12161 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
12162 if (I != ArgCopyElisionFrameIndexMap.end())
12163 VI.updateStackSlot(I->second);
12164 }
12165 }
12166
12167 // Finally, if the target has anything special to do, allow it to do so.
12169}
12170
12171/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
12172/// ensure constants are generated when needed. Remember the virtual registers
12173/// that need to be added to the Machine PHI nodes as input. We cannot just
12174/// directly add them, because expansion might result in multiple MBB's for one
12175/// BB. As such, the start of the BB might correspond to a different MBB than
12176/// the end.
12177void
12178SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
12179 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12180
12181 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
12182
12183 // Check PHI nodes in successors that expect a value to be available from this
12184 // block.
12185 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
12186 if (!isa<PHINode>(SuccBB->begin())) continue;
12187 MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
12188
12189 // If this terminator has multiple identical successors (common for
12190 // switches), only handle each succ once.
12191 if (!SuccsHandled.insert(SuccMBB).second)
12192 continue;
12193
12195
12196 // At this point we know that there is a 1-1 correspondence between LLVM PHI
12197 // nodes and Machine PHI nodes, but the incoming operands have not been
12198 // emitted yet.
12199 for (const PHINode &PN : SuccBB->phis()) {
12200 // Ignore dead phi's.
12201 if (PN.use_empty())
12202 continue;
12203
12204 // Skip empty types
12205 if (PN.getType()->isEmptyTy())
12206 continue;
12207
12208 Register Reg;
12209 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
12210
12211 if (const auto *C = dyn_cast<Constant>(PHIOp)) {
12212 Register &RegOut = ConstantsOut[C];
12213 if (!RegOut) {
12214 RegOut = FuncInfo.CreateRegs(&PN);
12215 // We need to zero/sign extend ConstantInt phi operands to match
12216 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
12217 ISD::NodeType ExtendType = ISD::ANY_EXTEND;
12218 if (auto *CI = dyn_cast<ConstantInt>(C))
12219 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
12221 CopyValueToVirtualRegister(C, RegOut, ExtendType);
12222 }
12223 Reg = RegOut;
12224 } else {
12226 FuncInfo.ValueMap.find(PHIOp);
12227 if (I != FuncInfo.ValueMap.end())
12228 Reg = I->second;
12229 else {
12230 assert(isa<AllocaInst>(PHIOp) &&
12231 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
12232 "Didn't codegen value into a register!??");
12233 Reg = FuncInfo.CreateRegs(&PN);
12235 }
12236 }
12237
12238 // Remember that this register needs to added to the machine PHI node as
12239 // the input for this MBB.
12240 SmallVector<EVT, 4> ValueVTs;
12241 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
12242 for (EVT VT : ValueVTs) {
12243 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
12244 for (unsigned i = 0; i != NumRegisters; ++i)
12245 FuncInfo.PHINodesToUpdate.emplace_back(&*MBBI++, Reg + i);
12246 Reg += NumRegisters;
12247 }
12248 }
12249 }
12250
12251 ConstantsOut.clear();
12252}
12253
12254MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
12256 if (++I == FuncInfo.MF->end())
12257 return nullptr;
12258 return &*I;
12259}
12260
12261/// During lowering new call nodes can be created (such as memset, etc.).
12262/// Those will become new roots of the current DAG, but complications arise
12263/// when they are tail calls. In such cases, the call lowering will update
12264/// the root, but the builder still needs to know that a tail call has been
12265/// lowered in order to avoid generating an additional return.
12266void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
12267 // If the node is null, we do have a tail call.
12268 if (MaybeTC.getNode() != nullptr)
12269 DAG.setRoot(MaybeTC);
12270 else
12271 HasTailCall = true;
12272}
12273
12274void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
12275 MachineBasicBlock *SwitchMBB,
12276 MachineBasicBlock *DefaultMBB) {
12277 MachineFunction *CurMF = FuncInfo.MF;
12278 MachineBasicBlock *NextMBB = nullptr;
12280 if (++BBI != FuncInfo.MF->end())
12281 NextMBB = &*BBI;
12282
12283 unsigned Size = W.LastCluster - W.FirstCluster + 1;
12284
12285 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12286
12287 if (Size == 2 && W.MBB == SwitchMBB) {
12288 // If any two of the cases has the same destination, and if one value
12289 // is the same as the other, but has one bit unset that the other has set,
12290 // use bit manipulation to do two compares at once. For example:
12291 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
12292 // TODO: This could be extended to merge any 2 cases in switches with 3
12293 // cases.
12294 // TODO: Handle cases where W.CaseBB != SwitchBB.
12295 CaseCluster &Small = *W.FirstCluster;
12296 CaseCluster &Big = *W.LastCluster;
12297
12298 if (Small.Low == Small.High && Big.Low == Big.High &&
12299 Small.MBB == Big.MBB) {
12300 const APInt &SmallValue = Small.Low->getValue();
12301 const APInt &BigValue = Big.Low->getValue();
12302
12303 // Check that there is only one bit different.
12304 APInt CommonBit = BigValue ^ SmallValue;
12305 if (CommonBit.isPowerOf2()) {
12306 SDValue CondLHS = getValue(Cond);
12307 EVT VT = CondLHS.getValueType();
12308 SDLoc DL = getCurSDLoc();
12309
12310 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
12311 DAG.getConstant(CommonBit, DL, VT));
12312 SDValue Cond = DAG.getSetCC(
12313 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
12314 ISD::SETEQ);
12315
12316 // Update successor info.
12317 // Both Small and Big will jump to Small.BB, so we sum up the
12318 // probabilities.
12319 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
12320 if (BPI)
12321 addSuccessorWithProb(
12322 SwitchMBB, DefaultMBB,
12323 // The default destination is the first successor in IR.
12324 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
12325 else
12326 addSuccessorWithProb(SwitchMBB, DefaultMBB);
12327
12328 // Insert the true branch.
12329 SDValue BrCond =
12330 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
12331 DAG.getBasicBlock(Small.MBB));
12332 // Insert the false branch.
12333 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
12334 DAG.getBasicBlock(DefaultMBB));
12335
12336 DAG.setRoot(BrCond);
12337 return;
12338 }
12339 }
12340 }
12341
12342 if (TM.getOptLevel() != CodeGenOptLevel::None) {
12343 // Here, we order cases by probability so the most likely case will be
12344 // checked first. However, two clusters can have the same probability in
12345 // which case their relative ordering is non-deterministic. So we use Low
12346 // as a tie-breaker as clusters are guaranteed to never overlap.
12347 llvm::sort(W.FirstCluster, W.LastCluster + 1,
12348 [](const CaseCluster &a, const CaseCluster &b) {
12349 return a.Prob != b.Prob ?
12350 a.Prob > b.Prob :
12351 a.Low->getValue().slt(b.Low->getValue());
12352 });
12353
12354 // Rearrange the case blocks so that the last one falls through if possible
12355 // without changing the order of probabilities.
12356 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
12357 --I;
12358 if (I->Prob > W.LastCluster->Prob)
12359 break;
12360 if (I->Kind == CC_Range && I->MBB == NextMBB) {
12361 std::swap(*I, *W.LastCluster);
12362 break;
12363 }
12364 }
12365 }
12366
12367 // Compute total probability.
12368 BranchProbability DefaultProb = W.DefaultProb;
12369 BranchProbability UnhandledProbs = DefaultProb;
12370 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
12371 UnhandledProbs += I->Prob;
12372
12373 MachineBasicBlock *CurMBB = W.MBB;
12374 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
12375 bool FallthroughUnreachable = false;
12376 MachineBasicBlock *Fallthrough;
12377 if (I == W.LastCluster) {
12378 // For the last cluster, fall through to the default destination.
12379 Fallthrough = DefaultMBB;
12380 FallthroughUnreachable = isa<UnreachableInst>(
12381 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
12382 } else {
12383 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
12384 CurMF->insert(BBI, Fallthrough);
12385 // Put Cond in a virtual register to make it available from the new blocks.
12387 }
12388 UnhandledProbs -= I->Prob;
12389
12390 switch (I->Kind) {
12391 case CC_JumpTable: {
12392 // FIXME: Optimize away range check based on pivot comparisons.
12393 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
12394 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
12395
12396 // The jump block hasn't been inserted yet; insert it here.
12397 MachineBasicBlock *JumpMBB = JT->MBB;
12398 CurMF->insert(BBI, JumpMBB);
12399
12400 auto JumpProb = I->Prob;
12401 auto FallthroughProb = UnhandledProbs;
12402
12403 // If the default statement is a target of the jump table, we evenly
12404 // distribute the default probability to successors of CurMBB. Also
12405 // update the probability on the edge from JumpMBB to Fallthrough.
12406 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
12407 SE = JumpMBB->succ_end();
12408 SI != SE; ++SI) {
12409 if (*SI == DefaultMBB) {
12410 JumpProb += DefaultProb / 2;
12411 FallthroughProb -= DefaultProb / 2;
12412 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
12413 JumpMBB->normalizeSuccProbs();
12414 break;
12415 }
12416 }
12417
12418 // If the default clause is unreachable, propagate that knowledge into
12419 // JTH->FallthroughUnreachable which will use it to suppress the range
12420 // check.
12421 //
12422 // However, don't do this if we're doing branch target enforcement,
12423 // because a table branch _without_ a range check can be a tempting JOP
12424 // gadget - out-of-bounds inputs that are impossible in correct
12425 // execution become possible again if an attacker can influence the
12426 // control flow. So if an attacker doesn't already have a BTI bypass
12427 // available, we don't want them to be able to get one out of this
12428 // table branch.
12429 if (FallthroughUnreachable) {
12430 Function &CurFunc = CurMF->getFunction();
12431 if (!CurFunc.hasFnAttribute("branch-target-enforcement"))
12432 JTH->FallthroughUnreachable = true;
12433 }
12434
12435 if (!JTH->FallthroughUnreachable)
12436 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12437 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12438 CurMBB->normalizeSuccProbs();
12439
12440 // The jump table header will be inserted in our current block, do the
12441 // range check, and fall through to our fallthrough block.
12442 JTH->HeaderBB = CurMBB;
12443 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
12444
12445 // If we're in the right place, emit the jump table header right now.
12446 if (CurMBB == SwitchMBB) {
12447 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
12448 JTH->Emitted = true;
12449 }
12450 break;
12451 }
12452 case CC_BitTests: {
12453 // FIXME: Optimize away range check based on pivot comparisons.
12454 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
12455
12456 // The bit test blocks haven't been inserted yet; insert them here.
12457 for (BitTestCase &BTC : BTB->Cases)
12458 CurMF->insert(BBI, BTC.ThisBB);
12459
12460 // Fill in fields of the BitTestBlock.
12461 BTB->Parent = CurMBB;
12462 BTB->Default = Fallthrough;
12463
12464 BTB->DefaultProb = UnhandledProbs;
12465 // If the cases in bit test don't form a contiguous range, we evenly
12466 // distribute the probability on the edge to Fallthrough to two
12467 // successors of CurMBB.
12468 if (!BTB->ContiguousRange) {
12469 BTB->Prob += DefaultProb / 2;
12470 BTB->DefaultProb -= DefaultProb / 2;
12471 }
12472
12473 if (FallthroughUnreachable)
12474 BTB->FallthroughUnreachable = true;
12475
12476 // If we're in the right place, emit the bit test header right now.
12477 if (CurMBB == SwitchMBB) {
12478 visitBitTestHeader(*BTB, SwitchMBB);
12479 BTB->Emitted = true;
12480 }
12481 break;
12482 }
12483 case CC_Range: {
12484 const Value *RHS, *LHS, *MHS;
12485 ISD::CondCode CC;
12486 if (I->Low == I->High) {
12487 // Check Cond == I->Low.
12488 CC = ISD::SETEQ;
12489 LHS = Cond;
12490 RHS=I->Low;
12491 MHS = nullptr;
12492 } else {
12493 // Check I->Low <= Cond <= I->High.
12494 CC = ISD::SETLE;
12495 LHS = I->Low;
12496 MHS = Cond;
12497 RHS = I->High;
12498 }
12499
12500 // If Fallthrough is unreachable, fold away the comparison.
12501 if (FallthroughUnreachable)
12502 CC = ISD::SETTRUE;
12503
12504 // The false probability is the sum of all unhandled cases.
12505 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
12506 getCurSDLoc(), I->Prob, UnhandledProbs);
12507
12508 if (CurMBB == SwitchMBB)
12509 visitSwitchCase(CB, SwitchMBB);
12510 else
12511 SL->SwitchCases.push_back(CB);
12512
12513 break;
12514 }
12515 }
12516 CurMBB = Fallthrough;
12517 }
12518}
12519
12520void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
12521 const SwitchWorkListItem &W,
12522 Value *Cond,
12523 MachineBasicBlock *SwitchMBB) {
12524 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
12525 "Clusters not sorted?");
12526 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
12527
12528 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12529 SL->computeSplitWorkItemInfo(W);
12530
12531 // Use the first element on the right as pivot since we will make less-than
12532 // comparisons against it.
12533 CaseClusterIt PivotCluster = FirstRight;
12534 assert(PivotCluster > W.FirstCluster);
12535 assert(PivotCluster <= W.LastCluster);
12536
12537 CaseClusterIt FirstLeft = W.FirstCluster;
12538 CaseClusterIt LastRight = W.LastCluster;
12539
12540 const ConstantInt *Pivot = PivotCluster->Low;
12541
12542 // New blocks will be inserted immediately after the current one.
12544 ++BBI;
12545
12546 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
12547 // we can branch to its destination directly if it's squeezed exactly in
12548 // between the known lower bound and Pivot - 1.
12549 MachineBasicBlock *LeftMBB;
12550 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
12551 FirstLeft->Low == W.GE &&
12552 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
12553 LeftMBB = FirstLeft->MBB;
12554 } else {
12555 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12556 FuncInfo.MF->insert(BBI, LeftMBB);
12557 WorkList.push_back(
12558 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
12559 // Put Cond in a virtual register to make it available from the new blocks.
12561 }
12562
12563 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
12564 // single cluster, RHS.Low == Pivot, and we can branch to its destination
12565 // directly if RHS.High equals the current upper bound.
12566 MachineBasicBlock *RightMBB;
12567 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
12568 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
12569 RightMBB = FirstRight->MBB;
12570 } else {
12571 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
12572 FuncInfo.MF->insert(BBI, RightMBB);
12573 WorkList.push_back(
12574 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
12575 // Put Cond in a virtual register to make it available from the new blocks.
12577 }
12578
12579 // Create the CaseBlock record that will be used to lower the branch.
12580 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
12581 getCurSDLoc(), LeftProb, RightProb);
12582
12583 if (W.MBB == SwitchMBB)
12584 visitSwitchCase(CB, SwitchMBB);
12585 else
12586 SL->SwitchCases.push_back(CB);
12587}
12588
12589// Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
12590// from the swith statement.
12592 BranchProbability PeeledCaseProb) {
12593 if (PeeledCaseProb == BranchProbability::getOne())
12595 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
12596
12597 uint32_t Numerator = CaseProb.getNumerator();
12598 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
12599 return BranchProbability(Numerator, std::max(Numerator, Denominator));
12600}
12601
12602// Try to peel the top probability case if it exceeds the threshold.
12603// Return current MachineBasicBlock for the switch statement if the peeling
12604// does not occur.
12605// If the peeling is performed, return the newly created MachineBasicBlock
12606// for the peeled switch statement. Also update Clusters to remove the peeled
12607// case. PeeledCaseProb is the BranchProbability for the peeled case.
12608MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
12609 const SwitchInst &SI, CaseClusterVector &Clusters,
12610 BranchProbability &PeeledCaseProb) {
12611 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12612 // Don't perform if there is only one cluster or optimizing for size.
12613 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
12614 TM.getOptLevel() == CodeGenOptLevel::None ||
12615 SwitchMBB->getParent()->getFunction().hasMinSize())
12616 return SwitchMBB;
12617
12618 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
12619 unsigned PeeledCaseIndex = 0;
12620 bool SwitchPeeled = false;
12621 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
12622 CaseCluster &CC = Clusters[Index];
12623 if (CC.Prob < TopCaseProb)
12624 continue;
12625 TopCaseProb = CC.Prob;
12626 PeeledCaseIndex = Index;
12627 SwitchPeeled = true;
12628 }
12629 if (!SwitchPeeled)
12630 return SwitchMBB;
12631
12632 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
12633 << TopCaseProb << "\n");
12634
12635 // Record the MBB for the peeled switch statement.
12636 MachineFunction::iterator BBI(SwitchMBB);
12637 ++BBI;
12638 MachineBasicBlock *PeeledSwitchMBB =
12639 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
12640 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12641
12642 ExportFromCurrentBlock(SI.getCondition());
12643 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12644 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12645 nullptr, nullptr, TopCaseProb.getCompl()};
12646 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12647
12648 Clusters.erase(PeeledCaseIt);
12649 for (CaseCluster &CC : Clusters) {
12650 LLVM_DEBUG(
12651 dbgs() << "Scale the probablity for one cluster, before scaling: "
12652 << CC.Prob << "\n");
12653 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
12654 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
12655 }
12656 PeeledCaseProb = TopCaseProb;
12657 return PeeledSwitchMBB;
12658}
12659
12660void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
12661 // Extract cases from the switch.
12662 BranchProbabilityInfo *BPI = FuncInfo.BPI;
12663 CaseClusterVector Clusters;
12664 Clusters.reserve(SI.getNumCases());
12665 for (auto I : SI.cases()) {
12666 MachineBasicBlock *Succ = FuncInfo.getMBB(I.getCaseSuccessor());
12667 const ConstantInt *CaseVal = I.getCaseValue();
12668 BranchProbability Prob =
12669 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
12670 : BranchProbability(1, SI.getNumCases() + 1);
12671 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
12672 }
12673
12674 MachineBasicBlock *DefaultMBB = FuncInfo.getMBB(SI.getDefaultDest());
12675
12676 // Cluster adjacent cases with the same destination. We do this at all
12677 // optimization levels because it's cheap to do and will make codegen faster
12678 // if there are many clusters.
12679 sortAndRangeify(Clusters);
12680
12681 // The branch probablity of the peeled case.
12682 BranchProbability PeeledCaseProb = BranchProbability::getZero();
12683 MachineBasicBlock *PeeledSwitchMBB =
12684 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12685
12686 // If there is only the default destination, jump there directly.
12687 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
12688 if (Clusters.empty()) {
12689 assert(PeeledSwitchMBB == SwitchMBB);
12690 SwitchMBB->addSuccessor(DefaultMBB);
12691 if (DefaultMBB != NextBlock(SwitchMBB)) {
12692 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
12693 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
12694 }
12695 return;
12696 }
12697
12698 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(),
12699 DAG.getBFI());
12700 SL->findBitTestClusters(Clusters, &SI);
12701
12702 LLVM_DEBUG({
12703 dbgs() << "Case clusters: ";
12704 for (const CaseCluster &C : Clusters) {
12705 if (C.Kind == CC_JumpTable)
12706 dbgs() << "JT:";
12707 if (C.Kind == CC_BitTests)
12708 dbgs() << "BT:";
12709
12710 C.Low->getValue().print(dbgs(), true);
12711 if (C.Low != C.High) {
12712 dbgs() << '-';
12713 C.High->getValue().print(dbgs(), true);
12714 }
12715 dbgs() << ' ';
12716 }
12717 dbgs() << '\n';
12718 });
12719
12720 assert(!Clusters.empty());
12721 SwitchWorkList WorkList;
12722 CaseClusterIt First = Clusters.begin();
12723 CaseClusterIt Last = Clusters.end() - 1;
12724 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12725 // Scale the branchprobability for DefaultMBB if the peel occurs and
12726 // DefaultMBB is not replaced.
12727 if (PeeledCaseProb != BranchProbability::getZero() &&
12728 DefaultMBB == FuncInfo.getMBB(SI.getDefaultDest()))
12729 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
12730 WorkList.push_back(
12731 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
12732
12733 while (!WorkList.empty()) {
12734 SwitchWorkListItem W = WorkList.pop_back_val();
12735 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
12736
12737 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None &&
12738 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
12739 // For optimized builds, lower large range as a balanced binary tree.
12740 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
12741 continue;
12742 }
12743
12744 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
12745 }
12746}
12747
12748void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
12749 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12750 auto DL = getCurSDLoc();
12751 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12752 setValue(&I, DAG.getStepVector(DL, ResultVT));
12753}
12754
12755void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
12756 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12757 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12758
12759 SDLoc DL = getCurSDLoc();
12760 SDValue V = getValue(I.getOperand(0));
12761 assert(VT == V.getValueType() && "Malformed vector.reverse!");
12762
12763 if (VT.isScalableVector()) {
12764 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
12765 return;
12766 }
12767
12768 // Use VECTOR_SHUFFLE for the fixed-length vector
12769 // to maintain existing behavior.
12770 SmallVector<int, 8> Mask;
12771 unsigned NumElts = VT.getVectorMinNumElements();
12772 for (unsigned i = 0; i != NumElts; ++i)
12773 Mask.push_back(NumElts - 1 - i);
12774
12775 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
12776}
12777
12778void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I,
12779 unsigned Factor) {
12780 auto DL = getCurSDLoc();
12781 SDValue InVec = getValue(I.getOperand(0));
12782
12783 SmallVector<EVT, 4> ValueVTs;
12784 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12785 ValueVTs);
12786
12787 EVT OutVT = ValueVTs[0];
12788 unsigned OutNumElts = OutVT.getVectorMinNumElements();
12789
12790 SmallVector<SDValue, 4> SubVecs(Factor);
12791 for (unsigned i = 0; i != Factor; ++i) {
12792 assert(ValueVTs[i] == OutVT && "Expected VTs to be the same");
12793 SubVecs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
12794 DAG.getVectorIdxConstant(OutNumElts * i, DL));
12795 }
12796
12797 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12798 // from existing legalisation and combines.
12799 if (OutVT.isFixedLengthVector() && Factor == 2) {
12800 SDValue Even = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12801 createStrideMask(0, 2, OutNumElts));
12802 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, SubVecs[0], SubVecs[1],
12803 createStrideMask(1, 2, OutNumElts));
12804 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
12805 setValue(&I, Res);
12806 return;
12807 }
12808
12809 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
12810 DAG.getVTList(ValueVTs), SubVecs);
12811 setValue(&I, Res);
12812}
12813
12814void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I,
12815 unsigned Factor) {
12816 auto DL = getCurSDLoc();
12817 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12818 EVT InVT = getValue(I.getOperand(0)).getValueType();
12819 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12820
12821 SmallVector<SDValue, 8> InVecs(Factor);
12822 for (unsigned i = 0; i < Factor; ++i) {
12823 InVecs[i] = getValue(I.getOperand(i));
12824 assert(InVecs[i].getValueType() == InVecs[0].getValueType() &&
12825 "Expected VTs to be the same");
12826 }
12827
12828 // Use VECTOR_SHUFFLE for fixed-length vectors with factor of 2 to benefit
12829 // from existing legalisation and combines.
12830 if (OutVT.isFixedLengthVector() && Factor == 2) {
12831 unsigned NumElts = InVT.getVectorMinNumElements();
12832 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVecs);
12833 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
12834 createInterleaveMask(NumElts, 2)));
12835 return;
12836 }
12837
12838 SmallVector<EVT, 8> ValueVTs(Factor, InVT);
12839 SDValue Res =
12840 DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, DAG.getVTList(ValueVTs), InVecs);
12841
12843 for (unsigned i = 0; i < Factor; ++i)
12844 Results[i] = Res.getValue(i);
12845
12846 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Results);
12847 setValue(&I, Res);
12848}
12849
12850void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
12851 SmallVector<EVT, 4> ValueVTs;
12852 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
12853 ValueVTs);
12854 unsigned NumValues = ValueVTs.size();
12855 if (NumValues == 0) return;
12856
12857 SmallVector<SDValue, 4> Values(NumValues);
12858 SDValue Op = getValue(I.getOperand(0));
12859
12860 for (unsigned i = 0; i != NumValues; ++i)
12861 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
12862 SDValue(Op.getNode(), Op.getResNo() + i));
12863
12865 DAG.getVTList(ValueVTs), Values));
12866}
12867
12868void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
12869 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12870 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
12871
12872 SDLoc DL = getCurSDLoc();
12873 SDValue V1 = getValue(I.getOperand(0));
12874 SDValue V2 = getValue(I.getOperand(1));
12875 uint64_t Imm = cast<ConstantInt>(I.getOperand(2))->getZExtValue();
12876 const bool IsLeft = I.getIntrinsicID() == Intrinsic::vector_splice_left;
12877
12878 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
12879 if (VT.isScalableVector()) {
12880 setValue(
12881 &I,
12882 DAG.getNode(
12884 V1, V2,
12885 DAG.getConstant(Imm, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
12886 return;
12887 }
12888
12889 unsigned NumElts = VT.getVectorNumElements();
12890
12891 uint64_t Idx = IsLeft ? Imm : NumElts - Imm;
12892
12893 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
12894 SmallVector<int, 8> Mask;
12895 for (unsigned i = 0; i < NumElts; ++i)
12896 Mask.push_back(Idx + i);
12897 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
12898}
12899
12900// Consider the following MIR after SelectionDAG, which produces output in
12901// phyregs in the first case or virtregs in the second case.
12902//
12903// INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
12904// %5:gr32 = COPY $ebx
12905// %6:gr32 = COPY $edx
12906// %1:gr32 = COPY %6:gr32
12907// %0:gr32 = COPY %5:gr32
12908//
12909// INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
12910// %1:gr32 = COPY %6:gr32
12911// %0:gr32 = COPY %5:gr32
12912//
12913// Given %0, we'd like to return $ebx in the first case and %5 in the second.
12914// Given %1, we'd like to return $edx in the first case and %6 in the second.
12915//
12916// If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
12917// to a single virtreg (such as %0). The remaining outputs monotonically
12918// increase in virtreg number from there. If a callbr has no outputs, then it
12919// should not have a corresponding callbr landingpad; in fact, the callbr
12920// landingpad would not even be able to refer to such a callbr.
12922 MachineInstr *MI = MRI.def_begin(Reg)->getParent();
12923 // There is definitely at least one copy.
12924 assert(MI->getOpcode() == TargetOpcode::COPY &&
12925 "start of copy chain MUST be COPY");
12926 Reg = MI->getOperand(1).getReg();
12927
12928 // If the copied register in the first copy must be virtual.
12929 assert(Reg.isVirtual() && "expected COPY of virtual register");
12930 MI = MRI.def_begin(Reg)->getParent();
12931
12932 // There may be an optional second copy.
12933 if (MI->getOpcode() == TargetOpcode::COPY) {
12934 assert(Reg.isVirtual() && "expected COPY of virtual register");
12935 Reg = MI->getOperand(1).getReg();
12936 assert(Reg.isPhysical() && "expected COPY of physical register");
12937 } else {
12938 // The start of the chain must be an INLINEASM_BR.
12939 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12940 "end of copy chain MUST be INLINEASM_BR");
12941 }
12942
12943 return Reg;
12944}
12945
12946// We must do this walk rather than the simpler
12947// setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
12948// otherwise we will end up with copies of virtregs only valid along direct
12949// edges.
12950void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
12951 SmallVector<EVT, 8> ResultVTs;
12952 SmallVector<SDValue, 8> ResultValues;
12953 const auto *CBR =
12954 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
12955
12956 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12957 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
12958 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
12959
12960 Register InitialDef = FuncInfo.ValueMap[CBR];
12961 SDValue Chain = DAG.getRoot();
12962
12963 // Re-parse the asm constraints string.
12964 TargetLowering::AsmOperandInfoVector TargetConstraints =
12965 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
12966 for (auto &T : TargetConstraints) {
12967 SDISelAsmOperandInfo OpInfo(T);
12968 if (OpInfo.Type != InlineAsm::isOutput)
12969 continue;
12970
12971 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
12972 // individual constraint.
12973 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
12974
12975 switch (OpInfo.ConstraintType) {
12978 // Fill in OpInfo.AssignedRegs.Regs.
12979 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
12980
12981 // getRegistersForValue may produce 1 to many registers based on whether
12982 // the OpInfo.ConstraintVT is legal on the target or not.
12983 for (Register &Reg : OpInfo.AssignedRegs.Regs) {
12984 Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
12985 if (OriginalDef.isPhysical())
12986 FuncInfo.MBB->addLiveIn(OriginalDef);
12987 // Update the assigned registers to use the original defs.
12988 Reg = OriginalDef;
12989 }
12990
12991 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
12992 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
12993 ResultValues.push_back(V);
12994 ResultVTs.push_back(OpInfo.ConstraintVT);
12995 break;
12996 }
12998 SDValue Flag;
12999 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
13000 OpInfo, DAG);
13001 ++InitialDef;
13002 ResultValues.push_back(V);
13003 ResultVTs.push_back(OpInfo.ConstraintVT);
13004 break;
13005 }
13006 default:
13007 break;
13008 }
13009 }
13011 DAG.getVTList(ResultVTs), ResultValues);
13012 setValue(&I, V);
13013}
unsigned const MachineRegisterInfo * MRI
return SDValue()
static unsigned getIntrinsicID(const SDNode *N)
unsigned RegSize
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
This file contains the declarations for the subclasses of Constant, which represent the different fla...
dxil translate DXIL Translate Metadata
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
Definition FastISel.cpp:942
#define Check(C,...)
static Value * getCondition(Instruction *I)
Hexagon Common GEP
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void getRegistersForValue(MachineFunction &MF, MachineIRBuilder &MIRBuilder, GISelAsmOperandInfo &OpInfo, GISelAsmOperandInfo &RefOpInfo)
Assign virtual/physical registers for the specified register operand.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define RegName(no)
lazy value info
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
static const Function * getCalledFunction(const Value *V)
This file provides utility analysis objects describing memory locations.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
This file contains the declarations for metadata subclasses.
Type::TypeID TypeID
#define T
#define T1
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t High
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
#define P(N)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static bool hasOnlySelectUsers(const Value *Cond)
static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain)
Create a LOAD_STACK_GUARD node, and let it carry the target specific global variable if there exists ...
static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize)
static void failForInvalidBundles(const CallBase &I, StringRef Name, ArrayRef< uint32_t > AllowedBundles)
static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl< SDValue > &Ops, SelectionDAGBuilder &Builder)
Add a stack map intrinsic call's live variable operands to a stackmap or patchpoint target node's ope...
static const unsigned MaxParallelChains
static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
visitPow - Lower a pow intrinsic.
static const CallBase * FindPreallocatedCall(const Value *PreallocatedSetup)
Given a @llvm.call.preallocated.setup, return the corresponding preallocated call.
static cl::opt< unsigned > SwitchPeelThreshold("switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization"))
static cl::opt< bool > InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden)
static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin)
static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, DILocalVariable *Variable, DebugLoc DL, unsigned Order, SmallVectorImpl< Value * > &Values, DIExpression *Expression)
static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector< SDValue > &AsmNodeOperands)
static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG)
Make sure that the output operand OpInfo and its corresponding input operand MatchingOpInfo have comp...
static void findUnwindDestinations(FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl< std::pair< MachineBasicBlock *, BranchProbability > > &UnwindDests)
When an invoke or a cleanupret unwinds to the next EH pad, there are many places it could ultimately ...
static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic)
static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb)
static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp2 - Lower an exp2 intrinsic.
static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl)
getF32Constant - Get 32-bit floating point constant.
static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT)
static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog10 - Lower a log10 intrinsic.
DenseMap< const Argument *, std::pair< const AllocaInst *, const StoreInst * > > ArgCopyElisionMapTy
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv)
getCopyToPartsVector - Create a series of nodes that contain the specified value split into legal par...
static void getUnderlyingArgRegs(SmallVectorImpl< std::pair< Register, TypeSize > > &Regs, const SDValue &N)
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv=std::nullopt, ISD::NodeType ExtendKind=ISD::ANY_EXTEND)
getCopyToParts - Create a series of nodes that contain the specified value split into legal parts.
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder)
static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog2 - Lower a log2 intrinsic.
static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG)
Get a direct memory input to behave well as an indirect operand.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel)
isOnlyUsedInEntryBlock - If the specified argument is only used in the entry block,...
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg)
static bool collectInstructionDeps(SmallMapVector< const Instruction *, bool, 8 > *Deps, const Value *V, SmallMapVector< const Instruction *, bool, 8 > *Necessary=nullptr, unsigned Depth=0)
static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates)
Scan the entry block of the function in FuncInfo for arguments that look like copies into a local all...
static bool isFunction(SDValue Op)
static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl)
GetExponent - Get the exponent:
static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg)
static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG)
ExpandPowI - Expand a llvm.powi intrinsic.
static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog - Lower a log intrinsic.
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC=std::nullopt, std::optional< ISD::NodeType > AssertOp=std::nullopt)
getCopyFromParts - Create a value that contains the specified legal parts combined into the value the...
static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG)
static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl)
GetSignificand - Get the significand and build it into a floating-point number with exponent of 1:
static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp - Lower an exp intrinsic.
static const MDNode * getRangeMetadata(const Instruction &I)
static cl::opt< unsigned, true > LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0))
static void tryToElideArgumentCopy(FunctionLoweringInfo &FuncInfo, SmallVectorImpl< SDValue > &Chains, DenseMap< int, int > &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl< const Instruction * > &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, ArrayRef< SDValue > ArgVals, bool &ArgHasUses)
Try to elide argument copies from memory into a local alloca.
static unsigned LimitFloatPrecision
LimitFloatPrecision - Generate low-precision inline sequences for some float libcalls (6,...
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC)
getCopyFromPartsVector - Create a value that contains the specified legal parts combined into the val...
static bool InBlock(const Value *V, const BasicBlock *BB)
static FPClassTest getNoFPClass(const Instruction &I)
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const uint8_t *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
This file defines the SmallPtrSet class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
Definition TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
uint16_t RegSizeInBits(const MCRegisterInfo &MRI, MCRegister RegNo)
Value * RHS
Value * LHS
static const fltSemantics & IEEEsingle()
Definition APFloat.h:296
Class for arbitrary precision integers.
Definition APInt.h:78
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:335
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:441
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
Definition Function.cpp:339
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
Definition Argument.h:50
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
iterator end() const
Definition ArrayRef.h:131
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
iterator begin() const
Definition ArrayRef.h:130
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
@ Add
*p = old + v
@ FAdd
*p = old + v
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ Sub
*p = old - v
@ And
*p = old & v
@ Xor
*p = old ^ v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ FSub
*p = old - v
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
@ Nand
*p = ~(old & v)
This class holds the attributes for a particular argument, parameter, function, or return value.
Definition Attributes.h:361
LLVM Basic Block Representation.
Definition BasicBlock.h:62
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition BasicBlock.h:233
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
This class represents a no-op cast from one type to another.
The address of a basic block.
Definition Constants.h:904
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
static uint32_t getDenominator()
static BranchProbability getOne()
static BranchProbability getUnknown()
uint32_t getNumerator() const
LLVM_ABI uint64_t scale(uint64_t Num) const
Scale a large integer.
BranchProbability getCompl() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Definition InstrTypes.h:664
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition Constants.h:598
A constant value that is initialized with an expression using other constant values.
Definition Constants.h:1130
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:282
This is the shared class of boolean and integer constants.
Definition Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition Constants.h:219
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:159
A signed pointer, in the ptrauth sense.
Definition Constants.h:1037
uint64_t getZExtValue() const
Constant Vector Declarations.
Definition Constants.h:522
This is an important base class in LLVM.
Definition Constant.h:43
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
DWARF expression.
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B)
Check if fragments overlap between a pair of FragmentInfos.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Base class for variables.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
bool isBigEndian() const
Definition DataLayout.h:215
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
DILocalVariable * getVariable() const
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
A debug info location.
Definition DebugLoc.h:123
LLVM_ABI DILocation * getInlinedAt() const
Definition DebugLoc.cpp:67
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Definition DenseMap.h:74
bool empty() const
Definition DenseMap.h:109
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
Definition DenseMap.h:75
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Definition DenseMap.h:114
Diagnostic information for inline asm reporting.
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:309
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Definition TypeSize.h:315
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:320
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
Class representing an expression and its matching format.
This instruction extracts a struct member or array element value from an aggregate value.
This instruction compares its operands according to the predicate given to the constructor.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition FastISel.h:66
bool allowReassoc() const
Flag queries.
Definition FMF.h:64
An instruction for ordering other memory operations.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition Type.cpp:802
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
MachineBasicBlock * getMBB(const BasicBlock *BB) const
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
const LiveOutInfo * GetLiveOutRegInfo(Register Reg)
GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the register is a PHI destinat...
MachineBasicBlock * MBB
MBB - The current block.
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Type * getReturnType() const
Data structure describing the variable locations in a function.
const BasicBlock & getEntryBlock() const
Definition Function.h:807
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition Function.h:244
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
check if an attributes is in the list of attributes.
Definition Function.cpp:742
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
Constant * getPersonalityFn() const
Get the personality function associated with this function.
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
Definition Function.h:249
size_t arg_size() const
Definition Function.h:899
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
Garbage collection metadata for a single function.
Definition GCMetadata.h:80
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
bool isInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a struct field of array element value into an aggregate value.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
@ MIN_INT_BITS
Minimum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
A helper class to return the specified delimiter string after the first invocation of operator String...
An instruction for reading from memory.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
LLVM_ABI MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
LLVM_ABI MCSymbol * getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx)
Gets a symbol that will be defined to the final stack offset of a local variable after codegen.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
Machine Value Type.
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool bitsGE(MVT VT) const
Return true if this has no less bits than VT.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void setIsEHContTarget(bool V=true)
Indicates if this is a target of Windows EH Continuation Guard.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHScopeEntry(bool V=true)
Indicates if this is the entry block of an EH scope, i.e., the block that that used to have a catchpa...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable)
Marks the immutability of an object.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
int getStackProtectorIndex() const
Return the index for the stack protector object.
void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased)
Set "maybe pointed to by an LLVM IR value" for an object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
void setFunctionContextIndex(int I)
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site)
Map the begin label for a call site.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD)
Record annotations associated with a particular label.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
void setHasEHContTarget(bool V)
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const
getLiveInPhysReg - If VReg is a live-in virtual register, return the corresponding live-in physical r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
bool contains(const KeyT &Key) const
Definition MapVector.h:146
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
Definition MapVector.h:116
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
Metadata wrapper in the Value hierarchy.
Definition Metadata.h:183
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:79
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:83
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Holds the information from a dbg_label node through SDISel.
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
DenseMap< const Constant *, Register > ConstantsOut
void addDanglingDebugInfo(SmallVectorImpl< Value * > &Values, DILocalVariable *Var, DIExpression *Expr, bool IsVariadic, DebugLoc DL, unsigned Order)
Register a dbg_value which relies on a Value which we have not yet seen.
void visitDbgInfo(const Instruction &I)
void clearDanglingDebugInfo()
Clear the dangling debug information map.
void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall, bool IsMustTailCall, const BasicBlock *EHPadBB=nullptr, const TargetLowering::PtrAuthInfo *PAI=nullptr)
void clear()
Clear out the current SelectionDAG and the associated state and prepare this SelectionDAGBuilder obje...
void visitBitTestHeader(SwitchCG::BitTestBlock &B, MachineBasicBlock *SwitchBB)
visitBitTestHeader - This function emits necessary code to produce value suitable for "bit tests"
void LowerStatepoint(const GCStatepointInst &I, const BasicBlock *EHPadBB=nullptr)
std::unique_ptr< SDAGSwitchLowering > SL
SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op)
bool HasTailCall
This is set to true if a call in the current block has been translated as a tail call.
bool ShouldEmitAsBranches(const std::vector< SwitchCG::CaseBlock > &Cases)
If the set of cases should be emitted as a series of branches, return true.
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
EmitBranchForMergedCondition - Helper method for FindMergedConditions.
void LowerDeoptimizeCall(const CallInst *CI)
void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB)
SwiftErrorValueTracking & SwiftError
Information about the swifterror values used throughout the function.
SDValue getNonRegisterValue(const Value *V)
getNonRegisterValue - Return an SDValue for the given Value, but don't look in FuncInfo....
const TargetTransformInfo * TTI
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
Map a landing pad to the call site indexes.
SDValue lowerNoFPClassToAssertNoFPClass(SelectionDAG &DAG, const Instruction &I, SDValue Op)
void handleDebugDeclare(Value *Address, DILocalVariable *Variable, DIExpression *Expression, DebugLoc DL)
bool shouldKeepJumpConditionsTogether(const FunctionLoweringInfo &FuncInfo, const BranchInst &I, Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, TargetLoweringBase::CondMergingParams Params) const
StatepointLoweringState StatepointLowering
State used while lowering a statepoint sequence (gc_statepoint, gc_relocate, and gc_result).
void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, BranchProbability BranchProbToNext, Register Reg, SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
bool canTailCall(const CallBase &CB) const
void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, AttributeSet RetAttrs, bool IsPatchPoint)
Populate a CallLowerinInfo (into CLI) based on the properties of the call being lowered.
void CopyValueToVirtualRegister(const Value *V, Register Reg, ISD::NodeType ExtendType=ISD::ANY_EXTEND)
void salvageUnresolvedDbgValue(const Value *V, DanglingDebugInfo &DDI)
For the given dangling debuginfo record, perform last-ditch efforts to resolve the debuginfo to somet...
SmallVector< SDValue, 8 > PendingLoads
Loads are not emitted to the program immediately.
GCFunctionInfo * GFI
Garbage collection metadata for the function.
void init(GCFunctionInfo *gfi, BatchAAResults *BatchAA, AssumptionCache *AC, const TargetLibraryInfo *li, const TargetTransformInfo &TTI)
SDValue getRoot()
Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) items.
void ExportFromCurrentBlock(const Value *V)
ExportFromCurrentBlock - If this condition isn't known to be exported from the current basic block,...
void resolveOrClearDbgInfo()
Evict any dangling debug information, attempting to salvage it first.
std::pair< SDValue, SDValue > lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB=nullptr)
SDValue getMemoryRoot()
Return the current virtual root of the Selection DAG, flushing any PendingLoad items.
void resolveDanglingDebugInfo(const Value *V, SDValue Val)
If we saw an earlier dbg_value referring to V, generate the debug data structures now that we've seen...
void visit(const Instruction &I)
void dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr)
If we have dangling debug info that describes Variable, or an overlapping part of variable considerin...
SDValue getCopyFromRegs(const Value *V, Type *Ty)
If there was virtual register allocated for the value V emit CopyFromReg of the specified type Ty.
void CopyToExportRegsIfNeeded(const Value *V)
CopyToExportRegsIfNeeded - If the given value has virtual registers created for it,...
void handleKillDebugValue(DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order)
Create a record for a kill location debug intrinsic.
void visitJumpTable(SwitchCG::JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
SDValue getFPOperationRoot(fp::ExceptionBehavior EB)
Return the current virtual root of the Selection DAG, flushing PendingConstrainedFP or PendingConstra...
void visitJumpTableHeader(SwitchCG::JumpTable &JT, SwitchCG::JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
visitJumpTableHeader - This function emits necessary code to produce index in the JumpTable from swit...
void LowerCallSiteWithPtrAuthBundle(const CallBase &CB, const BasicBlock *EHPadBB)
static const unsigned LowestSDNodeOrder
Lowest valid SDNodeOrder.
FunctionLoweringInfo & FuncInfo
Information about the function as a whole.
void setValue(const Value *V, SDValue NewN)
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
const TargetLibraryInfo * LibInfo
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
Codegen a new tail for a stack protector check ParentMBB which has had its tail spliced into a stack ...
bool handleDebugValue(ArrayRef< const Value * > Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order, bool IsVariadic)
For a given list of Values, attempt to create and record a SDDbgValue in the SelectionDAG.
SDValue getControlRoot()
Similar to getRoot, but instead of flushing all the PendingLoad items, flush all the PendingExports (...
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
When an MBB was split during scheduling, update the references that need to refer to the last resulti...
SDValue getValueImpl(const Value *V)
getValueImpl - Helper function for getValue and getNonRegisterValue.
void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB)
visitSwitchCase - Emits the necessary code to represent a single node in the binary search tree resul...
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
Codegen the failure basic block for a stack protector check.
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
const TargetLowering * TLI
MachineRegisterInfo * RegInfo
std::unique_ptr< SwiftErrorValueTracking > SwiftError
virtual void emitFunctionEntryCode()
std::unique_ptr< SelectionDAGBuilder > SDB
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrnlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, const CallInst *CI) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrstr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, const CallInst *CI) const
Emit target-specific code that performs a strstr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemchr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Src, SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const
Emit target-specific code that performs a memchr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, SDValue Op3, const CallInst *CI) const
Emit target-specific code that performs a memcmp/bcmp, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, MachinePointerInfo Op1PtrInfo, MachinePointerInfo Op2PtrInfo) const
Emit target-specific code that performs a strcmp, in cases where that is faster than a libcall.
virtual SDValue EmitTargetCodeForSetTag(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Addr, SDValue Size, MachinePointerInfo DstPtrInfo, bool ZeroData) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcpy(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, bool isStpcpy, const CallInst *CI) const
Emit target-specific code that performs a strcpy or stpcpy, in cases where that is faster than a libc...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void swap(SmallVectorImpl &RHS)
void resize(size_type N)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
MachineBasicBlock * getParentMBB()
bool shouldEmitFunctionBasedCheckStackProtector() const
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr bool empty() const
empty - Check if the string is empty.
Definition StringRef.h:143
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Multiway switch.
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Provides information about what library functions are available for the current target.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallBase &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
std::vector< ArgListEntry > ArgListTy
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
unsigned getID() const
Return the register class ID number.
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
@ TCK_Latency
The latency of instruction.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
Definition Type.cpp:180
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
bool isPointerTy() const
True if this is an instance of PointerType.
Definition Type.h:267
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:280
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
Definition Type.cpp:293
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition Type.h:240
bool isTokenTy() const
Return true if this is 'token'.
Definition Type.h:234
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition Type.cpp:300
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition Type.h:225
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
op_iterator op_begin()
Definition User.h:259
Value * getOperand(unsigned i) const
Definition User.h:207
unsigned getNumOperands() const
Definition User.h:229
op_iterator op_end()
Definition User.h:261
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM_ABI CmpInst::Predicate getPredicate() const
This is the common base class for vector predication intrinsics.
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM_ABI MaybeAlign getPointerAlignment() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:708
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1106
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
Base class of all SIMD vector types.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:168
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:165
const ParentTy * getParent() const
Definition ilist_node.h:34
A raw_ostream that writes to an std::string.
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
Definition CallingConv.h:60
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:261
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:787
@ CONVERGENCECTRL_ANCHOR
The llvm.experimental.convergence.* intrinsics.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:511
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ SET_FPENV
Sets the current floating-point environment.
@ LOOP_DEPENDENCE_RAW_MASK
@ VECREDUCE_SEQ_FADD
Generic reduction nodes.
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
Definition ISDOpcodes.h:168
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:600
@ STACKADDRESS
STACKADDRESS - Represents the llvm.stackaddress intrinsic.
Definition ISDOpcodes.h:127
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:778
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:394
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ RESET_FPENV
Set floating-point environment to default state.
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:264
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:400
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:852
@ ATOMIC_LOAD_USUB_COND
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:518
@ VECTOR_FIND_LAST_ACTIVE
Finds the index of the last active mask element Operands: Mask.
@ FMODF
FMODF - Decomposes the operand into integral and fractional parts, each having the same type and sign...
@ FATAN2
FATAN2 - atan2, inspired by libm.
@ FSINCOSPI
FSINCOSPI - Compute both the sine and cosine times pi more accurately than FSINCOS(pi*x),...
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:220
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
Definition ISDOpcodes.h:172
@ GlobalAddress
Definition ISDOpcodes.h:88
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:879
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:584
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:417
@ VECREDUCE_FMAXIMUM
FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the llvm.minimum and llvm....
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:746
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
Definition ISDOpcodes.h:528
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
Definition ISDOpcodes.h:515
@ FAKE_USE
FAKE_USE represents a use of the operand but does not do anything.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition ISDOpcodes.h:992
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:254
@ CLMUL
Carry-less multiplication operations.
Definition ISDOpcodes.h:773
@ INIT_TRAMPOLINE
INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition ISDOpcodes.h:407
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
@ ATOMIC_LOAD_USUB_SAT
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
Definition ISDOpcodes.h:156
@ ANNOTATION_LABEL
ANNOTATION_LABEL - Represents a mid basic block label used by annotations.
@ SET_ROUNDING
Set rounding mode.
Definition ISDOpcodes.h:974
@ CONVERGENCECTRL_GLUE
This does not correspond to any convergence control intrinsic.
@ PARTIAL_REDUCE_UMLA
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:843
@ PREALLOCATED_SETUP
PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE with the preallocated call Va...
@ READSTEADYCOUNTER
READSTEADYCOUNTER - This corresponds to the readfixedcounter intrinsic.
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
Definition ISDOpcodes.h:117
@ CONVERGENCECTRL_ENTRY
@ BR
Control flow instructions. These all have token chains.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:786
@ PARTIAL_REDUCE_FMLA
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:352
@ PREALLOCATED_ARG
PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE with the preallocated call Value,...
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
Definition ISDOpcodes.h:635
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:541
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
Definition ISDOpcodes.h:548
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:374
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:795
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:247
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:671
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ GET_ACTIVE_LANE_MASK
GET_ACTIVE_LANE_MASK - this corrosponds to the llvm.get.active.lane.mask intrinsic.
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:230
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:348
@ ARITH_FENCE
ARITH_FENCE - This corresponds to a arithmetic fence intrinsic.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
Definition ISDOpcodes.h:969
@ CLEANUPRET
CLEANUPRET - Represents a return from a cleanup block funclet.
@ ATOMIC_LOAD_FMAXIMUM
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:764
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ PtrAuthGlobalAddress
A ptrauth constant.
Definition ISDOpcodes.h:100
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:614
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
Definition ISDOpcodes.h:139
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:576
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:849
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ VSCALE
VSCALE(IMM) - Returns the runtime scaling factor used to calculate the number of elements within a sc...
@ LOCAL_RECOVER
LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
Definition ISDOpcodes.h:135
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ UBSANTRAP
UBSANTRAP - Trap with an immediate describing the kind of sanitizer failure.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:386
@ PATCHPOINT
The llvm.experimental.patchpoint.
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:356
@ ATOMIC_LOAD_FMINIMUM
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ VECTOR_SPLICE_LEFT
VECTOR_SPLICE_LEFT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) left by IMM elements and retu...
Definition ISDOpcodes.h:653
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ VECTOR_REVERSE
VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled us...
Definition ISDOpcodes.h:640
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:413
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:977
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:804
@ PCMARKER
PCMARKER - This corresponds to the pcmarker intrinsic.
@ INLINEASM_BR
INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
Definition ISDOpcodes.h:150
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
Definition ISDOpcodes.h:110
@ ATOMIC_LOAD_UDEC_WRAP
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:500
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:925
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ RELOC_NONE
Issue a no-op relocation against a given symbol at the current location.
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:738
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:205
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:734
@ VECTOR_SPLICE_RIGHT
VECTOR_SPLICE_RIGHT(VEC1, VEC2, IMM) - Shifts CONCAT_VECTORS(VEC1, VEC2) right by IMM elements and re...
Definition ISDOpcodes.h:656
@ STRICT_FADD
Constrained versions of the binary floating point operators.
Definition ISDOpcodes.h:427
@ STACKMAP
The llvm.experimental.stackmap intrinsic.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:241
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:565
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:958
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:698
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
Definition ISDOpcodes.h:122
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ CONVERGENCECTRL_LOOP
@ INLINEASM
INLINEASM - Represents an inline asm block.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:944
@ VECREDUCE_FMINIMUM
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
Definition ISDOpcodes.h:162
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:855
@ BRCOND
BRCOND - Conditional branch.
@ VECREDUCE_SEQ_FMUL
@ CATCHRET
CATCHRET - Represents a return from a catch block funclet.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ ATOMIC_LOAD_UINC_WRAP
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:534
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:365
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
Definition ISDOpcodes.h:624
@ GET_DYNAMIC_AREA_OFFSET
GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of the most recent dynamic alloca.
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ADJUST_TRAMPOLINE
ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:213
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:556
@ LOOP_DEPENDENCE_WAR_MASK
The llvm.loop.dependence.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
Offsets
Offsets in bytes from the start of the input buffer.
std::pair< JumpTableHeader, JumpTable > JumpTableBlock
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
ExceptionBehavior
Exception behavior used for floating point operations.
Definition FPEnv.h:39
@ ebStrict
This corresponds to "fpexcept.strict".
Definition FPEnv.h:42
@ ebMayTrap
This corresponds to "fpexcept.maytrap".
Definition FPEnv.h:41
@ ebIgnore
This corresponds to "fpexcept.ignore".
Definition FPEnv.h:40
constexpr float log2ef
Definition MathExtras.h:51
constexpr double e
constexpr float ln2f
Definition MathExtras.h:49
NodeAddr< FuncNode * > Func
Definition RDFGraph.h:393
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:280
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:344
@ Offset
Definition DWP.cpp:532
@ Length
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:237
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1737
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition STLExtras.h:1667
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition Analysis.cpp:119
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
@ Done
Definition Threading.h:60
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:293
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2198
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:243
auto cast_or_null(const Y &Val)
Definition Casting.h:714
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
Definition MathExtras.h:546
gep_type_iterator gep_type_end(const User *GEP)
constexpr auto equal_to(T &&Arg)
Functor variant of std::equal_to that can be used as a UnaryPredicate in functional algorithms like a...
Definition STLExtras.h:2163
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition STLExtras.h:1150
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:202
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
Definition Analysis.cpp:72
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
Definition STLExtras.h:852
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:163
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
auto succ_size(const MachineBasicBlock *BB)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
Definition STLExtras.h:300
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
Definition Analysis.cpp:203
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
Definition Local.cpp:2274
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:539
DWARFExpression::Operation Op
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats, return the equivalent code if w...
Definition Analysis.cpp:225
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
Definition FPEnv.cpp:25
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2182
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
Definition Analysis.cpp:181
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1945
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2156
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
Definition Analysis.cpp:33
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Definition bit.h:330
@ Default
The result values are uniform if and only if all operands are uniform.
Definition Uniformity.h:20
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:177
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
#define NC
Definition regutils.h:42
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
uint64_t getScalarStoreSize() const
Definition ValueTypes.h:402
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
Definition ValueTypes.h:102
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isRISCVVectorTuple() const
Return true if this is a vector value type.
Definition ValueTypes.h:179
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
EVT changeElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a type whose attributes match ourselves with the exception of the element type that i...
Definition ValueTypes.h:113
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
void setPointerAddrSpace(unsigned AS)
InputArg - This struct carries flags and type information about a single incoming (formal) argument o...
static const unsigned NoArgIndex
Sentinel value for implicit machine-level input arguments.
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
Definition InlineAsm.h:128
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:251
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A lightweight accessor for an operand bundle meant to be passed around by value.
This struct represents the registers (physical or virtual) that a particular set of values is assigne...
SmallVector< std::pair< Register, TypeSize >, 4 > getRegsAndSizes() const
Return a list of registers and their sizes.
RegsForValue()=default
SmallVector< unsigned, 4 > RegCount
This list holds the number of registers for each value.
SmallVector< EVT, 4 > ValueVTs
The value types of the values, which may not be legal, and may need be promoted or synthesized from o...
SmallVector< Register, 4 > Regs
This list holds the registers assigned to the values.
void AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector< SDValue > &Ops) const
Add this value to the specified inlineasm node operand list.
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr) const
Emit a series of CopyFromReg nodes that copies from this value and returns the result as a ValueVTs v...
SmallVector< MVT, 4 > RegVTs
The value types of the registers.
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr, ISD::NodeType PreferredExtendType=ISD::ANY_EXTEND) const
Emit a series of CopyToReg nodes that copies the specified value into the registers specified by this...
std::optional< CallingConv::ID > CallConv
Records if this value needs to be treated in an ABI dependant manner, different to normal type legali...
bool occupiesMultipleRegs() const
Check if the total RegCount is greater than one.
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setUnpredictable(bool b)
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
A MapVector that performs no allocations if smaller than a certain size.
Definition MapVector.h:276
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
SDLoc DL
The debug location of the instruction this CaseBlock was produced from.
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob)
Register Reg
The virtual register containing the index of the jump table entry to jump to.
MachineBasicBlock * Default
The MBB of the default bb, which is a successor of the range check MBB.
unsigned JTI
The JumpTableIndex for this jump table in the function.
MachineBasicBlock * MBB
The MBB into which to emit the code for the indirect jump.
std::optional< SDLoc > SL
The debug location of the instruction this JumpTable was produced from.
This contains information for each constraint that we are lowering.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setDeactivationSymbol(GlobalValue *Sym)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
SmallVector< ISD::InputArg, 32 > Ins
Type * OrigRetTy
Original unlegalized return type.
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setDiscardResult(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)