79#include "llvm/IR/IntrinsicsAArch64.h"
80#include "llvm/IR/IntrinsicsAMDGPU.h"
81#include "llvm/IR/IntrinsicsWebAssembly.h"
114#define DEBUG_TYPE "isel"
122 cl::desc(
"Insert the experimental `assertalign` node."),
127 cl::desc(
"Generate low-precision inline sequences "
128 "for some float libcalls"),
134 cl::desc(
"Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
155 const SDValue *Parts,
unsigned NumParts,
158 std::optional<CallingConv::ID> CC);
167 unsigned NumParts,
MVT PartVT,
EVT ValueVT,
const Value *V,
169 std::optional<CallingConv::ID> CC = std::nullopt,
170 std::optional<ISD::NodeType> AssertOp = std::nullopt) {
174 PartVT, ValueVT, CC))
181 assert(NumParts > 0 &&
"No parts to assemble!");
192 unsigned RoundBits = PartBits * RoundParts;
193 EVT RoundVT = RoundBits == ValueBits ?
199 if (RoundParts > 2) {
203 PartVT, HalfVT, V, InChain);
205 Lo = DAG.
getNode(ISD::BITCAST,
DL, HalfVT, Parts[0]);
206 Hi = DAG.
getNode(ISD::BITCAST,
DL, HalfVT, Parts[1]);
214 if (RoundParts < NumParts) {
216 unsigned OddParts = NumParts - RoundParts;
219 OddVT, V, InChain, CC);
235 assert(ValueVT ==
EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
246 !PartVT.
isVector() &&
"Unexpected split");
258 if (PartEVT == ValueVT)
262 ValueVT.
bitsLT(PartEVT)) {
271 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
275 if (ValueVT.
bitsLT(PartEVT)) {
280 Val = DAG.
getNode(*AssertOp,
DL, PartEVT, Val,
295 llvm::Attribute::StrictFP)) {
297 DAG.
getVTList(ValueVT, MVT::Other), InChain, Val,
304 return DAG.
getNode(ISD::FP_EXTEND,
DL, ValueVT, Val);
309 if (PartEVT == MVT::x86mmx && ValueVT.
isInteger() &&
310 ValueVT.
bitsLT(PartEVT)) {
311 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i64, Val);
319 const Twine &ErrMsg) {
322 return Ctx.emitError(ErrMsg);
325 if (CI->isInlineAsm()) {
327 *CI, ErrMsg +
", possible invalid constraint for vector type"));
330 return Ctx.emitError(
I, ErrMsg);
339 const SDValue *Parts,
unsigned NumParts,
342 std::optional<CallingConv::ID> CallConv) {
344 assert(NumParts > 0 &&
"No parts to assemble!");
345 const bool IsABIRegCopy = CallConv.has_value();
354 unsigned NumIntermediates;
359 *DAG.
getContext(), *CallConv, ValueVT, IntermediateVT,
360 NumIntermediates, RegisterVT);
364 NumIntermediates, RegisterVT);
367 assert(NumRegs == NumParts &&
"Part count doesn't match vector breakdown!");
369 assert(RegisterVT == PartVT &&
"Part type doesn't match vector breakdown!");
372 "Part type sizes don't match!");
376 if (NumIntermediates == NumParts) {
379 for (
unsigned i = 0; i != NumParts; ++i)
381 V, InChain, CallConv);
382 }
else if (NumParts > 0) {
385 assert(NumParts % NumIntermediates == 0 &&
386 "Must expand into a divisible number of parts!");
387 unsigned Factor = NumParts / NumIntermediates;
388 for (
unsigned i = 0; i != NumIntermediates; ++i)
390 IntermediateVT, V, InChain, CallConv);
405 DL, BuiltVectorTy,
Ops);
411 if (PartEVT == ValueVT)
417 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
427 "Cannot narrow, it would be a lossy transformation");
433 if (PartEVT == ValueVT)
436 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
440 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
451 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
457 return DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
458 }
else if (ValueVT.
bitsLT(PartEVT)) {
467 *DAG.
getContext(), V,
"non-trivial scalar-to-vector conversion");
476 Val = DAG.
getNode(ISD::BITCAST,
DL, ValueSVT, Val);
498 std::optional<CallingConv::ID> CallConv);
505 unsigned NumParts,
MVT PartVT,
const Value *V,
506 std::optional<CallingConv::ID> CallConv = std::nullopt,
520 unsigned OrigNumParts = NumParts;
522 "Copying to an illegal type!");
528 EVT PartEVT = PartVT;
529 if (PartEVT == ValueVT) {
530 assert(NumParts == 1 &&
"No-op copy with multiple parts!");
539 assert(NumParts == 1 &&
"Do not know what to promote to!");
540 Val = DAG.
getNode(ISD::FP_EXTEND,
DL, PartVT, Val);
546 Val = DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
550 "Unknown mismatch!");
552 Val = DAG.
getNode(ExtendKind,
DL, ValueVT, Val);
553 if (PartVT == MVT::x86mmx)
554 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
558 assert(NumParts == 1 && PartEVT != ValueVT);
559 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
564 "Unknown mismatch!");
567 if (PartVT == MVT::x86mmx)
568 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
574 "Failed to tile the value with PartVT!");
577 if (PartEVT != ValueVT) {
579 "scalar-to-vector conversion failed");
580 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
588 if (NumParts & (NumParts - 1)) {
591 "Do not know what to expand to!");
593 unsigned RoundBits = RoundParts * PartBits;
594 unsigned OddParts = NumParts - RoundParts;
603 std::reverse(Parts + RoundParts, Parts + NumParts);
605 NumParts = RoundParts;
617 for (
unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
618 for (
unsigned i = 0; i < NumParts; i += StepSize) {
619 unsigned ThisBits = StepSize * PartBits / 2;
622 SDValue &Part1 = Parts[i+StepSize/2];
629 if (ThisBits == PartBits && ThisVT != PartVT) {
630 Part0 = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Part0);
631 Part1 = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Part1);
637 std::reverse(Parts, Parts + OrigNumParts);
659 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
661 "Cannot widen to illegal type");
664 }
else if (PartEVT != ValueEVT) {
679 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
690 std::optional<CallingConv::ID> CallConv) {
694 const bool IsABIRegCopy = CallConv.has_value();
697 EVT PartEVT = PartVT;
698 if (PartEVT == ValueVT) {
702 Val = DAG.
getNode(ISD::BITCAST,
DL, PartVT, Val);
737 Val = DAG.
getNode(ISD::FP_EXTEND,
DL, PartVT, Val);
744 "lossy conversion of vector to scalar type");
759 unsigned NumIntermediates;
763 *DAG.
getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
768 NumIntermediates, RegisterVT);
771 assert(NumRegs == NumParts &&
"Part count doesn't match vector breakdown!");
773 assert(RegisterVT == PartVT &&
"Part type doesn't match vector breakdown!");
776 "Mixing scalable and fixed vectors when copying in parts");
778 std::optional<ElementCount> DestEltCnt;
788 if (ValueVT == BuiltVectorTy) {
792 Val = DAG.
getNode(ISD::BITCAST,
DL, BuiltVectorTy, Val);
812 for (
unsigned i = 0; i != NumIntermediates; ++i) {
827 if (NumParts == NumIntermediates) {
830 for (
unsigned i = 0; i != NumParts; ++i)
832 }
else if (NumParts > 0) {
835 assert(NumIntermediates != 0 &&
"division by zero");
836 assert(NumParts % NumIntermediates == 0 &&
837 "Must expand into a divisible number of parts!");
838 unsigned Factor = NumParts / NumIntermediates;
839 for (
unsigned i = 0; i != NumIntermediates; ++i)
847 if (
I.hasOperandBundlesOtherThan(AllowedBundles)) {
851 for (
unsigned i = 0, e =
I.getNumOperandBundles(); i != e; ++i) {
854 OS << LS << U.getTagName();
857 Twine(
"cannot lower ", Name)
863 EVT valuevt, std::optional<CallingConv::ID> CC)
869 std::optional<CallingConv::ID> CC) {
883 for (
unsigned i = 0; i != NumRegs; ++i)
884 Regs.push_back(Reg + i);
885 RegVTs.push_back(RegisterVT);
887 Reg = Reg.id() + NumRegs;
914 for (
unsigned i = 0; i != NumRegs; ++i) {
920 *Glue =
P.getValue(2);
923 Chain =
P.getValue(1);
951 EVT FromVT(MVT::Other);
955 }
else if (NumSignBits > 1) {
963 assert(FromVT != MVT::Other);
969 RegisterVT, ValueVT, V, Chain,
CallConv);
985 unsigned NumRegs =
Regs.size();
999 NumParts, RegisterVT, V,
CallConv, ExtendKind);
1005 for (
unsigned i = 0; i != NumRegs; ++i) {
1017 if (NumRegs == 1 || Glue)
1028 Chain = Chains[NumRegs-1];
1034 unsigned MatchingIdx,
const SDLoc &dl,
1036 std::vector<SDValue> &
Ops)
const {
1041 Flag.setMatchingOp(MatchingIdx);
1042 else if (!
Regs.empty() &&
Regs.front().isVirtual()) {
1050 Flag.setRegClass(RC->
getID());
1061 "No 1:1 mapping from clobbers to regs?");
1064 for (
unsigned I = 0, E =
ValueVTs.size();
I != E; ++
I) {
1069 "If we clobbered the stack pointer, MFI should know about it.");
1078 for (
unsigned i = 0; i != NumRegs; ++i) {
1079 assert(Reg <
Regs.size() &&
"Mismatch in # registers expected");
1091 unsigned RegCount = std::get<0>(CountAndVT);
1092 MVT RegisterVT = std::get<1>(CountAndVT);
1110 SL->init(
DAG.getTargetLoweringInfo(), TM,
DAG.getDataLayout());
1112 *
DAG.getMachineFunction().getFunction().getParent());
1117 UnusedArgNodeMap.clear();
1119 PendingExports.clear();
1120 PendingConstrainedFP.clear();
1121 PendingConstrainedFPStrict.clear();
1129 DanglingDebugInfoMap.clear();
1136 if (Pending.
empty())
1142 unsigned i = 0, e = Pending.
size();
1143 for (; i != e; ++i) {
1145 if (Pending[i].
getNode()->getOperand(0) == Root)
1153 if (Pending.
size() == 1)
1180 if (!PendingConstrainedFPStrict.empty()) {
1181 assert(PendingConstrainedFP.empty());
1182 updateRoot(PendingConstrainedFPStrict);
1195 if (!PendingConstrainedFP.empty()) {
1196 assert(PendingConstrainedFPStrict.empty());
1197 updateRoot(PendingConstrainedFP);
1201 return DAG.getRoot();
1209 PendingConstrainedFP.size() +
1210 PendingConstrainedFPStrict.size());
1212 PendingConstrainedFP.end());
1213 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1214 PendingConstrainedFPStrict.end());
1215 PendingConstrainedFP.clear();
1216 PendingConstrainedFPStrict.clear();
1223 PendingExports.append(PendingConstrainedFPStrict.begin(),
1224 PendingConstrainedFPStrict.end());
1225 PendingConstrainedFPStrict.clear();
1226 return updateRoot(PendingExports);
1233 assert(Variable &&
"Missing variable");
1240 <<
"dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n");
1256 if (IsParameter && FINode) {
1258 SDV =
DAG.getFrameIndexDbgValue(Variable,
Expression, FINode->getIndex(),
1259 true,
DL, SDNodeOrder);
1264 FuncArgumentDbgValueKind::Declare,
N);
1267 SDV =
DAG.getDbgValue(Variable,
Expression,
N.getNode(),
N.getResNo(),
1268 true,
DL, SDNodeOrder);
1270 DAG.AddDbgValue(SDV, IsParameter);
1275 FuncArgumentDbgValueKind::Declare,
N)) {
1277 <<
" (could not emit func-arg dbg_value)\n");
1288 for (
auto It = FnVarLocs->locs_begin(&
I), End = FnVarLocs->locs_end(&
I);
1290 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1292 if (It->Values.isKillLocation(It->Expr)) {
1298 It->Values.hasArgList())) {
1301 FnVarLocs->getDILocalVariable(It->VariableID),
1302 It->Expr, Vals.
size() > 1, It->DL, SDNodeOrder);
1315 bool SkipDbgVariableRecords =
DAG.getFunctionVarLocs();
1318 for (
DbgRecord &DR :
I.getDbgRecordRange()) {
1320 assert(DLR->getLabel() &&
"Missing label");
1322 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder);
1323 DAG.AddDbgLabel(SDV);
1327 if (SkipDbgVariableRecords)
1335 if (
FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1337 LLVM_DEBUG(
dbgs() <<
"SelectionDAG visiting dbg_declare: " << DVR
1346 if (Values.
empty()) {
1363 SDNodeOrder, IsVariadic)) {
1374 if (
I.isTerminator()) {
1375 HandlePHINodesInSuccessorBlocks(
I.getParent());
1382 bool NodeInserted =
false;
1383 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1384 MDNode *PCSectionsMD =
I.getMetadata(LLVMContext::MD_pcsections);
1385 MDNode *MMRA =
I.getMetadata(LLVMContext::MD_mmra);
1386 if (PCSectionsMD || MMRA) {
1387 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1388 DAG, [&](
SDNode *) { NodeInserted =
true; });
1398 if (PCSectionsMD || MMRA) {
1399 auto It = NodeMap.find(&
I);
1400 if (It != NodeMap.end()) {
1402 DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1404 DAG.addMMRAMetadata(It->second.getNode(), MMRA);
1405 }
else if (NodeInserted) {
1408 errs() <<
"warning: loosing !pcsections and/or !mmra metadata ["
1409 <<
I.getModule()->getName() <<
"]\n";
1418void SelectionDAGBuilder::visitPHI(
const PHINode &) {
1428#define HANDLE_INST(NUM, OPCODE, CLASS) \
1429 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1430#include "llvm/IR/Instruction.def"
1442 for (
const Value *V : Values) {
1467 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr,
DL, Order);
1472 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1473 DIVariable *DanglingVariable = DDI.getVariable();
1475 if (DanglingVariable == Variable && Expr->
fragmentsOverlap(DanglingExpr)) {
1477 << printDDI(
nullptr, DDI) <<
"\n");
1483 for (
auto &DDIMI : DanglingDebugInfoMap) {
1484 DanglingDebugInfoVector &DDIV = DDIMI.second;
1488 for (
auto &DDI : DDIV)
1489 if (isMatchingDbgValue(DDI))
1492 erase_if(DDIV, isMatchingDbgValue);
1500 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1501 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1504 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1505 for (
auto &DDI : DDIV) {
1508 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1511 assert(Variable->isValidLocationForIntrinsic(
DL) &&
1512 "Expected inlined-at fields to agree");
1521 if (!EmitFuncArgumentDbgValue(V, Variable, Expr,
DL,
1522 FuncArgumentDbgValueKind::Value, Val)) {
1524 << printDDI(V, DDI) <<
"\n");
1531 <<
"changing SDNodeOrder from " << DbgSDNodeOrder <<
" to "
1532 << ValSDNodeOrder <<
"\n");
1533 SDV = getDbgValue(Val, Variable, Expr,
DL,
1534 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1535 DAG.AddDbgValue(SDV,
false);
1539 <<
" in EmitFuncArgumentDbgValue\n");
1541 LLVM_DEBUG(
dbgs() <<
"Dropping debug info for " << printDDI(V, DDI)
1545 DAG.getConstantDbgValue(Variable, Expr,
Poison,
DL, DbgSDNodeOrder);
1546 DAG.AddDbgValue(SDV,
false);
1553 DanglingDebugInfo &DDI) {
1558 const Value *OrigV = V;
1562 unsigned SDOrder = DDI.getSDNodeOrder();
1566 bool StackValue =
true;
1591 if (!AdditionalValues.
empty())
1601 dbgs() <<
"Salvaged debug location info for:\n " << *Var <<
"\n"
1602 << *OrigV <<
"\nBy stripping back to:\n " << *V <<
"\n");
1610 assert(OrigV &&
"V shouldn't be null");
1612 auto *SDV =
DAG.getConstantDbgValue(Var, Expr,
Poison,
DL, SDNodeOrder);
1613 DAG.AddDbgValue(SDV,
false);
1615 << printDDI(OrigV, DDI) <<
"\n");
1632 unsigned Order,
bool IsVariadic) {
1637 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc))
1642 for (
const Value *V : Values) {
1652 if (CE->getOpcode() == Instruction::IntToPtr) {
1671 N = UnusedArgNodeMap[V];
1676 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1677 FuncArgumentDbgValueKind::Value,
N))
1704 bool IsParamOfFunc =
1712 auto VMI =
FuncInfo.ValueMap.find(V);
1713 if (VMI !=
FuncInfo.ValueMap.end()) {
1718 V->getType(), std::nullopt);
1724 unsigned BitsToDescribe = 0;
1726 BitsToDescribe = *VarSize;
1728 BitsToDescribe = Fragment->SizeInBits;
1731 if (
Offset >= BitsToDescribe)
1734 unsigned RegisterSize = RegAndSize.second;
1735 unsigned FragmentSize = (
Offset + RegisterSize > BitsToDescribe)
1736 ? BitsToDescribe -
Offset
1739 Expr,
Offset, FragmentSize);
1743 Var, *FragmentExpr, RegAndSize.first,
false, DbgLoc, Order);
1744 DAG.AddDbgValue(SDV,
false);
1760 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1761 false, DbgLoc, Order, IsVariadic);
1762 DAG.AddDbgValue(SDV,
false);
1768 for (
auto &Pair : DanglingDebugInfoMap)
1769 for (
auto &DDI : Pair.second)
1780 if (It !=
FuncInfo.ValueMap.end()) {
1784 DAG.getDataLayout(), InReg, Ty,
1801 if (
N.getNode())
return N;
1861 return DAG.getSplatBuildVector(
1864 return DAG.getConstant(*CI,
DL, VT);
1873 getValue(CPA->getAddrDiscriminator()),
1874 getValue(CPA->getDiscriminator()));
1890 visit(CE->getOpcode(), *CE);
1892 assert(N1.
getNode() &&
"visit didn't populate the NodeMap!");
1898 for (
const Use &U :
C->operands()) {
1904 for (
unsigned i = 0, e = Val->
getNumValues(); i != e; ++i)
1905 Constants.push_back(
SDValue(Val, i));
1914 for (
uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) {
1918 for (
unsigned i = 0, e = Val->
getNumValues(); i != e; ++i)
1927 if (
C->getType()->isStructTy() ||
C->getType()->isArrayTy()) {
1929 "Unknown struct or array constant!");
1933 unsigned NumElts = ValueVTs.
size();
1937 for (
unsigned i = 0; i != NumElts; ++i) {
1938 EVT EltVT = ValueVTs[i];
1940 Constants[i] =
DAG.getUNDEF(EltVT);
1951 return DAG.getBlockAddress(BA, VT);
1954 return getValue(Equiv->getGlobalValue());
1959 if (VT == MVT::aarch64svcount) {
1960 assert(
C->isNullValue() &&
"Can only zero this target type!");
1966 assert(
C->isNullValue() &&
"Can only zero this target type!");
1983 for (
unsigned i = 0; i != NumElements; ++i)
2011 return DAG.getFrameIndex(
2019 std::optional<CallingConv::ID> CallConv;
2021 if (CB && !CB->isInlineAsm())
2022 CallConv = CB->getCallingConv();
2025 Inst->getType(), CallConv);
2039void SelectionDAGBuilder::visitCatchPad(
const CatchPadInst &
I) {
2052 if (IsMSVCCXX || IsCoreCLR)
2058 MachineBasicBlock *TargetMBB =
FuncInfo.getMBB(
I.getSuccessor());
2059 FuncInfo.MBB->addSuccessor(TargetMBB);
2066 if (TargetMBB != NextBlock(
FuncInfo.MBB) ||
2075 DAG.getMachineFunction().setHasEHContTarget(
true);
2081 Value *ParentPad =
I.getCatchSwitchParentPad();
2084 SuccessorColor = &
FuncInfo.Fn->getEntryBlock();
2087 assert(SuccessorColor &&
"No parent funclet for catchret!");
2088 MachineBasicBlock *SuccessorColorMBB =
FuncInfo.getMBB(SuccessorColor);
2089 assert(SuccessorColorMBB &&
"No MBB for SuccessorColor!");
2094 DAG.getBasicBlock(SuccessorColorMBB));
2098void SelectionDAGBuilder::visitCleanupPad(
const CleanupPadInst &CPI) {
2104 FuncInfo.MBB->setIsEHFuncletEntry();
2105 FuncInfo.MBB->setIsCleanupFuncletEntry();
2134 UnwindDests.emplace_back(FuncInfo.
getMBB(EHPadBB), Prob);
2140 UnwindDests.emplace_back(FuncInfo.
getMBB(EHPadBB), Prob);
2141 UnwindDests.back().first->setIsEHScopeEntry();
2144 UnwindDests.back().first->setIsEHFuncletEntry();
2148 for (
const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2149 UnwindDests.emplace_back(FuncInfo.
getMBB(CatchPadBB), Prob);
2151 if (IsMSVCCXX || IsCoreCLR)
2152 UnwindDests.back().first->setIsEHFuncletEntry();
2154 UnwindDests.back().first->setIsEHScopeEntry();
2156 NewEHPadBB = CatchSwitch->getUnwindDest();
2162 if (BPI && NewEHPadBB)
2164 EHPadBB = NewEHPadBB;
2171 auto UnwindDest =
I.getUnwindDest();
2172 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
2173 BranchProbability UnwindDestProb =
2178 for (
auto &UnwindDest : UnwindDests) {
2179 UnwindDest.first->setIsEHPad();
2180 addSuccessorWithProb(
FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
2182 FuncInfo.MBB->normalizeSuccProbs();
2185 MachineBasicBlock *CleanupPadMBB =
2186 FuncInfo.getMBB(
I.getCleanupPad()->getParent());
2192void SelectionDAGBuilder::visitCatchSwitch(
const CatchSwitchInst &CSI) {
2196void SelectionDAGBuilder::visitRet(
const ReturnInst &
I) {
2197 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
2198 auto &
DL =
DAG.getDataLayout();
2210 if (
I.getParent()->getTerminatingDeoptimizeCall()) {
2227 SmallVector<uint64_t, 4>
Offsets;
2230 unsigned NumValues = ValueVTs.
size();
2233 Align BaseAlign =
DL.getPrefTypeAlign(
I.getOperand(0)->getType());
2234 for (
unsigned i = 0; i != NumValues; ++i) {
2241 if (MemVTs[i] != ValueVTs[i])
2243 Chains[i] =
DAG.getStore(
2251 MVT::Other, Chains);
2252 }
else if (
I.getNumOperands() != 0) {
2255 unsigned NumValues =
Types.size();
2259 const Function *
F =
I.getParent()->getParent();
2262 I.getOperand(0)->getType(),
F->getCallingConv(),
2266 if (
F->getAttributes().hasRetAttr(Attribute::SExt))
2268 else if (
F->getAttributes().hasRetAttr(Attribute::ZExt))
2271 LLVMContext &
Context =
F->getContext();
2272 bool RetInReg =
F->getAttributes().hasRetAttr(Attribute::InReg);
2274 for (
unsigned j = 0;
j != NumValues; ++
j) {
2287 &Parts[0], NumParts, PartVT, &
I, CC, ExtendKind);
2290 ISD::ArgFlagsTy
Flags = ISD::ArgFlagsTy();
2294 if (
I.getOperand(0)->getType()->isPointerTy()) {
2296 Flags.setPointerAddrSpace(
2300 if (NeedsRegBlock) {
2301 Flags.setInConsecutiveRegs();
2302 if (j == NumValues - 1)
2303 Flags.setInConsecutiveRegsLast();
2311 else if (
F->getAttributes().hasRetAttr(Attribute::NoExt))
2314 for (
unsigned i = 0; i < NumParts; ++i) {
2317 VT, Types[j], 0, 0));
2327 const Function *
F =
I.getParent()->getParent();
2329 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2331 ISD::ArgFlagsTy
Flags = ISD::ArgFlagsTy();
2332 Flags.setSwiftError();
2344 bool isVarArg =
DAG.getMachineFunction().getFunction().isVarArg();
2346 DAG.getMachineFunction().getFunction().getCallingConv();
2347 Chain =
DAG.getTargetLoweringInfo().LowerReturn(
2352 "LowerReturn didn't return a valid chain!");
2363 if (V->getType()->isEmptyTy())
2367 if (VMI !=
FuncInfo.ValueMap.end()) {
2369 "Unused value assigned virtual registers!");
2382 if (
FuncInfo.isExportedInst(V))
return;
2394 if (VI->getParent() == FromBB)
2420 const BasicBlock *SrcBB = Src->getBasicBlock();
2421 const BasicBlock *DstBB = Dst->getBasicBlock();
2425 auto SuccSize = std::max<uint32_t>(
succ_size(SrcBB), 1);
2435 Src->addSuccessorWithoutProb(Dst);
2438 Prob = getEdgeProbability(Src, Dst);
2439 Src->addSuccessor(Dst, Prob);
2445 return I->getParent() == BB;
2469 if (CurBB == SwitchBB ||
2475 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2480 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2482 if (TM.Options.NoNaNsFPMath)
2486 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1),
nullptr,
2488 SL->SwitchCases.push_back(CB);
2497 SL->SwitchCases.push_back(CB);
2505 unsigned Depth = 0) {
2514 if (Necessary !=
nullptr) {
2517 if (Necessary->contains(
I))
2536 if (
I.getNumSuccessors() != 2)
2539 if (!
I.isConditional())
2551 if (BPI !=
nullptr) {
2557 std::optional<bool> Likely;
2560 else if (BPI->
isEdgeHot(
I.getParent(), IfFalse))
2564 if (
Opc == (*Likely ? Instruction::And : Instruction::Or))
2576 if (CostThresh <= 0)
2597 Value *BrCond =
I.getCondition();
2598 auto ShouldCountInsn = [&RhsDeps, &BrCond](
const Instruction *Ins) {
2599 for (
const auto *U : Ins->users()) {
2602 if (UIns != BrCond && !RhsDeps.
contains(UIns))
2615 for (
unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) {
2617 for (
const auto &InsPair : RhsDeps) {
2618 if (!ShouldCountInsn(InsPair.first)) {
2619 ToDrop = InsPair.first;
2623 if (ToDrop ==
nullptr)
2625 RhsDeps.erase(ToDrop);
2628 for (
const auto &InsPair : RhsDeps) {
2633 CostOfIncluding +=
TTI->getInstructionCost(
2636 if (CostOfIncluding > CostThresh)
2662 const Value *BOpOp0, *BOpOp1;
2676 if (BOpc == Instruction::And)
2677 BOpc = Instruction::Or;
2678 else if (BOpc == Instruction::Or)
2679 BOpc = Instruction::And;
2685 bool BOpIsInOrAndTree = BOpc && BOpc ==
Opc && BOp->
hasOneUse();
2690 TProb, FProb, InvertCond);
2700 if (
Opc == Instruction::Or) {
2721 auto NewTrueProb = TProb / 2;
2722 auto NewFalseProb = TProb / 2 + FProb;
2725 NewFalseProb, InvertCond);
2732 Probs[1], InvertCond);
2734 assert(
Opc == Instruction::And &&
"Unknown merge op!");
2754 auto NewTrueProb = TProb + FProb / 2;
2755 auto NewFalseProb = FProb / 2;
2758 NewFalseProb, InvertCond);
2765 Probs[1], InvertCond);
2774 if (Cases.size() != 2)
return true;
2778 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2779 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2780 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2781 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2787 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2788 Cases[0].CC == Cases[1].CC &&
2791 if (Cases[0].CC ==
ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2793 if (Cases[0].CC ==
ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2800void SelectionDAGBuilder::visitBr(
const BranchInst &
I) {
2806 if (
I.isUnconditional()) {
2812 if (Succ0MBB != NextBlock(BrMBB) ||
2825 const Value *CondVal =
I.getCondition();
2826 MachineBasicBlock *Succ1MBB =
FuncInfo.getMBB(
I.getSuccessor(1));
2845 bool IsUnpredictable =
I.hasMetadata(LLVMContext::MD_unpredictable);
2847 if (!
DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2850 const Value *BOp0, *BOp1;
2853 Opcode = Instruction::And;
2855 Opcode = Instruction::Or;
2862 DAG.getTargetLoweringInfo().getJumpConditionMergingParams(
2863 Opcode, BOp0, BOp1))) {
2865 getEdgeProbability(BrMBB, Succ0MBB),
2866 getEdgeProbability(BrMBB, Succ1MBB),
2871 assert(
SL->SwitchCases[0].ThisBB == BrMBB &&
"Unexpected lowering!");
2875 for (
unsigned i = 1, e =
SL->SwitchCases.size(); i != e; ++i) {
2882 SL->SwitchCases.erase(
SL->SwitchCases.begin());
2888 for (
unsigned i = 1, e =
SL->SwitchCases.size(); i != e; ++i)
2889 FuncInfo.MF->erase(
SL->SwitchCases[i].ThisBB);
2891 SL->SwitchCases.clear();
2897 nullptr, Succ0MBB, Succ1MBB, BrMBB,
getCurSDLoc(),
2918 if (CB.
TrueBB != NextBlock(SwitchBB)) {
2925 auto &TLI =
DAG.getTargetLoweringInfo();
2949 Cond =
DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.
CC);
2961 Cond =
DAG.getSetCC(dl, MVT::i1, CmpOp,
DAG.getConstant(
High, dl, VT),
2965 VT, CmpOp,
DAG.getConstant(
Low, dl, VT));
2966 Cond =
DAG.getSetCC(dl, MVT::i1, SUB,
2981 if (CB.
TrueBB == NextBlock(SwitchBB)) {
2997 BrCond =
DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3000 DAG.setRoot(BrCond);
3006 assert(JT.SL &&
"Should set SDLoc for SelectionDAG!");
3007 assert(JT.Reg &&
"Should lower JT Header first!");
3008 EVT PTy =
DAG.getTargetLoweringInfo().getJumpTableRegTy(
DAG.getDataLayout());
3010 SDValue Table =
DAG.getJumpTable(JT.JTI, PTy);
3011 SDValue BrJumpTable =
DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other,
3012 Index.getValue(1), Table, Index);
3013 DAG.setRoot(BrJumpTable);
3021 assert(JT.SL &&
"Should set SDLoc for SelectionDAG!");
3022 const SDLoc &dl = *JT.SL;
3028 DAG.getConstant(JTH.
First, dl, VT));
3043 JT.Reg = JumpTableReg;
3051 Sub.getValueType()),
3054 SDValue BrCond =
DAG.getNode(ISD::BRCOND, dl,
3055 MVT::Other, CopyTo, CMP,
3056 DAG.getBasicBlock(JT.Default));
3059 if (JT.MBB != NextBlock(SwitchBB))
3060 BrCond =
DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
3061 DAG.getBasicBlock(JT.MBB));
3063 DAG.setRoot(BrCond);
3066 if (JT.MBB != NextBlock(SwitchBB))
3067 DAG.setRoot(
DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
3068 DAG.getBasicBlock(JT.MBB)));
3070 DAG.setRoot(CopyTo);
3093 if (PtrTy != PtrMemTy)
3109 auto &
DL =
DAG.getDataLayout();
3118 SDValue StackSlotPtr =
DAG.getFrameIndex(FI, PtrTy);
3125 PtrMemTy, dl,
DAG.getEntryNode(), StackSlotPtr,
3138 assert(GuardCheckFn &&
"Guard check function is null");
3149 Entry.IsInReg =
true;
3150 Args.push_back(Entry);
3156 getValue(GuardCheckFn), std::move(Args));
3158 std::pair<SDValue, SDValue> Result = TLI.
LowerCallTo(CLI);
3159 DAG.setRoot(Result.second);
3171 Guard =
DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
3177 Guard =
DAG.getPOISON(PtrMemTy);
3187 SDValue BrCond =
DAG.getNode(ISD::BRCOND, dl,
3220 auto &
DL =
DAG.getDataLayout();
3228 SDValue StackSlotPtr =
DAG.getFrameIndex(FI, PtrTy);
3234 PtrMemTy, dl,
DAG.getEntryNode(), StackSlotPtr,
3249 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
3250 Entry.IsInReg =
true;
3251 Args.push_back(Entry);
3257 getValue(GuardCheckFn), std::move(Args));
3263 Chain = TLI.
makeLibCall(
DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
3271 Chain =
DAG.getNode(ISD::TRAP,
getCurSDLoc(), MVT::Other, Chain);
3286 DAG.getNode(
ISD::SUB, dl, VT, SwitchOp,
DAG.getConstant(
B.First, dl, VT));
3290 bool UsePtrType =
false;
3314 if (!
B.FallthroughUnreachable)
3315 addSuccessorWithProb(SwitchBB,
B.Default,
B.DefaultProb);
3316 addSuccessorWithProb(SwitchBB,
MBB,
B.Prob);
3320 if (!
B.FallthroughUnreachable) {
3328 Root =
DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
3329 DAG.getBasicBlock(
B.Default));
3333 if (
MBB != NextBlock(SwitchBB))
3334 Root =
DAG.getNode(ISD::BR, dl, MVT::Other, Root,
DAG.getBasicBlock(
MBB));
3351 if (PopCount == 1) {
3358 }
else if (PopCount == BB.
Range) {
3366 DAG.getConstant(1, dl, VT), ShiftOp);
3370 VT, SwitchVal,
DAG.getConstant(
B.Mask, dl, VT));
3377 addSuccessorWithProb(SwitchBB,
B.TargetBB,
B.ExtraProb);
3379 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
3387 Cmp,
DAG.getBasicBlock(
B.TargetBB));
3390 if (NextMBB != NextBlock(SwitchBB))
3391 BrAnd =
DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
3392 DAG.getBasicBlock(NextMBB));
3397void SelectionDAGBuilder::visitInvoke(
const InvokeInst &
I) {
3415 const Value *Callee(
I.getCalledOperand());
3418 visitInlineAsm(
I, EHPadBB);
3423 case Intrinsic::donothing:
3425 case Intrinsic::seh_try_begin:
3426 case Intrinsic::seh_scope_begin:
3427 case Intrinsic::seh_try_end:
3428 case Intrinsic::seh_scope_end:
3434 case Intrinsic::experimental_patchpoint_void:
3435 case Intrinsic::experimental_patchpoint:
3436 visitPatchpoint(
I, EHPadBB);
3438 case Intrinsic::experimental_gc_statepoint:
3444 case Intrinsic::wasm_throw: {
3446 std::array<SDValue, 4>
Ops = {
3457 case Intrinsic::wasm_rethrow: {
3458 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3459 std::array<SDValue, 2>
Ops = {
3468 }
else if (
I.hasDeoptState()) {
3489 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
3490 BranchProbability EHPadBBProb =
3496 addSuccessorWithProb(InvokeMBB, Return);
3497 for (
auto &UnwindDest : UnwindDests) {
3498 UnwindDest.first->setIsEHPad();
3499 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3505 DAG.getBasicBlock(Return)));
3508void SelectionDAGBuilder::visitCallBr(
const CallBrInst &
I) {
3509 MachineBasicBlock *CallBrMBB =
FuncInfo.MBB;
3516 assert(
I.isInlineAsm() &&
"Only know how to handle inlineasm callbr");
3521 SmallPtrSet<BasicBlock *, 8> Dests;
3522 Dests.
insert(
I.getDefaultDest());
3527 for (BasicBlock *Dest :
I.getIndirectDests()) {
3529 Target->setIsInlineAsmBrIndirectTarget();
3535 Target->setLabelMustBeEmitted();
3537 if (Dests.
insert(Dest).second)
3545 DAG.getBasicBlock(Return)));
3548void SelectionDAGBuilder::visitResume(
const ResumeInst &RI) {
3549 llvm_unreachable(
"SelectionDAGBuilder shouldn't visit resume instructions!");
3552void SelectionDAGBuilder::visitLandingPad(
const LandingPadInst &LP) {
3554 "Call to landingpad not in landing pad!");
3558 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3574 assert(ValueVTs.
size() == 2 &&
"Only two-valued landingpads are supported");
3579 if (
FuncInfo.ExceptionPointerVirtReg) {
3580 Ops[0] =
DAG.getZExtOrTrunc(
3581 DAG.getCopyFromReg(
DAG.getEntryNode(), dl,
3588 Ops[1] =
DAG.getZExtOrTrunc(
3589 DAG.getCopyFromReg(
DAG.getEntryNode(), dl,
3596 DAG.getVTList(ValueVTs),
Ops);
3604 if (JTB.first.HeaderBB ==
First)
3605 JTB.first.HeaderBB =
Last;
3618 for (
unsigned i = 0, e =
I.getNumSuccessors(); i != e; ++i) {
3620 bool Inserted =
Done.insert(BB).second;
3625 addSuccessorWithProb(IndirectBrMBB, Succ);
3635 if (!
I.shouldLowerToTrap(
DAG.getTarget().Options.TrapUnreachable,
3636 DAG.getTarget().Options.NoTrapAfterNoreturn))
3642void SelectionDAGBuilder::visitUnary(
const User &
I,
unsigned Opcode) {
3645 Flags.copyFMF(*FPOp);
3653void SelectionDAGBuilder::visitBinary(
const User &
I,
unsigned Opcode) {
3656 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3657 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3660 Flags.setExact(ExactOp->isExact());
3662 Flags.setDisjoint(DisjointOp->isDisjoint());
3664 Flags.copyFMF(*FPOp);
3673void SelectionDAGBuilder::visitShift(
const User &
I,
unsigned Opcode) {
3677 EVT ShiftTy =
DAG.getTargetLoweringInfo().getShiftAmountTy(
3682 if (!
I.getType()->isVectorTy() && Op2.
getValueType() != ShiftTy) {
3684 "Unexpected shift type");
3694 if (
const OverflowingBinaryOperator *OFBinOp =
3696 nuw = OFBinOp->hasNoUnsignedWrap();
3697 nsw = OFBinOp->hasNoSignedWrap();
3699 if (
const PossiblyExactOperator *ExactOp =
3701 exact = ExactOp->isExact();
3704 Flags.setExact(exact);
3705 Flags.setNoSignedWrap(nsw);
3706 Flags.setNoUnsignedWrap(nuw);
3712void SelectionDAGBuilder::visitSDiv(
const User &
I) {
3723void SelectionDAGBuilder::visitICmp(
const ICmpInst &
I) {
3729 auto &TLI =
DAG.getTargetLoweringInfo();
3742 Flags.setSameSign(
I.hasSameSign());
3743 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
3745 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3750void SelectionDAGBuilder::visitFCmp(
const FCmpInst &
I) {
3757 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3761 Flags.copyFMF(*FPMO);
3762 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
3764 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3773 return isa<SelectInst>(V);
3777void SelectionDAGBuilder::visitSelect(
const User &
I) {
3781 unsigned NumValues = ValueVTs.
size();
3782 if (NumValues == 0)
return;
3792 bool IsUnaryAbs =
false;
3793 bool Negate =
false;
3797 Flags.copyFMF(*FPOp);
3799 Flags.setUnpredictable(
3804 EVT VT = ValueVTs[0];
3805 LLVMContext &Ctx = *
DAG.getContext();
3806 auto &TLI =
DAG.getTargetLoweringInfo();
3816 bool UseScalarMinMax = VT.
isVector() &&
3825 switch (SPR.Flavor) {
3831 switch (SPR.NaNBehavior) {
3844 switch (SPR.NaNBehavior) {
3888 for (
unsigned i = 0; i != NumValues; ++i) {
3894 Values[i] =
DAG.getNegative(Values[i], dl, VT);
3897 for (
unsigned i = 0; i != NumValues; ++i) {
3901 Values[i] =
DAG.getNode(
3908 DAG.getVTList(ValueVTs), Values));
3911void SelectionDAGBuilder::visitTrunc(
const User &
I) {
3914 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3918 Flags.setNoSignedWrap(Trunc->hasNoSignedWrap());
3919 Flags.setNoUnsignedWrap(Trunc->hasNoUnsignedWrap());
3925void SelectionDAGBuilder::visitZExt(
const User &
I) {
3929 auto &TLI =
DAG.getTargetLoweringInfo();
3934 Flags.setNonNeg(PNI->hasNonNeg());
3939 if (
Flags.hasNonNeg() &&
3948void SelectionDAGBuilder::visitSExt(
const User &
I) {
3952 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3957void SelectionDAGBuilder::visitFPTrunc(
const User &
I) {
3963 Flags.copyFMF(*TruncInst);
3964 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
3967 DAG.getTargetConstant(
3972void SelectionDAGBuilder::visitFPExt(
const User &
I) {
3975 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3979 Flags.copyFMF(*TruncInst);
3983void SelectionDAGBuilder::visitFPToUI(
const User &
I) {
3986 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3991void SelectionDAGBuilder::visitFPToSI(
const User &
I) {
3994 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
3999void SelectionDAGBuilder::visitUIToFP(
const User &
I) {
4002 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4006 Flags.setNonNeg(PNI->hasNonNeg());
4011void SelectionDAGBuilder::visitSIToFP(
const User &
I) {
4014 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4019void SelectionDAGBuilder::visitPtrToAddr(
const User &
I) {
4022 const auto &TLI =
DAG.getTargetLoweringInfo();
4030void SelectionDAGBuilder::visitPtrToInt(
const User &
I) {
4034 auto &TLI =
DAG.getTargetLoweringInfo();
4035 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4044void SelectionDAGBuilder::visitIntToPtr(
const User &
I) {
4048 auto &TLI =
DAG.getTargetLoweringInfo();
4056void SelectionDAGBuilder::visitBitCast(
const User &
I) {
4059 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
4064 if (DestVT !=
N.getValueType())
4072 setValue(&
I,
DAG.getConstant(
C->getValue(), dl, DestVT,
false,
4078void SelectionDAGBuilder::visitAddrSpaceCast(
const User &
I) {
4079 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4080 const Value *SV =
I.getOperand(0);
4085 unsigned DestAS =
I.getType()->getPointerAddressSpace();
4087 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
4093void SelectionDAGBuilder::visitInsertElement(
const User &
I) {
4094 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4101 InVec, InVal, InIdx));
4104void SelectionDAGBuilder::visitExtractElement(
const User &
I) {
4105 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4114void SelectionDAGBuilder::visitShuffleVector(
const User &
I) {
4119 Mask = SVI->getShuffleMask();
4123 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4127 if (
all_of(Mask, [](
int Elem) {
return Elem == 0; }) &&
4132 DAG.getVectorIdxConstant(0,
DL));
4143 unsigned MaskNumElts =
Mask.size();
4145 if (SrcNumElts == MaskNumElts) {
4151 if (SrcNumElts < MaskNumElts) {
4155 if (MaskNumElts % SrcNumElts == 0) {
4159 unsigned NumConcat = MaskNumElts / SrcNumElts;
4160 bool IsConcat =
true;
4161 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
4162 for (
unsigned i = 0; i != MaskNumElts; ++i) {
4168 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
4169 (ConcatSrcs[i / SrcNumElts] >= 0 &&
4170 ConcatSrcs[i / SrcNumElts] != (
int)(Idx / SrcNumElts))) {
4175 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
4182 for (
auto Src : ConcatSrcs) {
4195 unsigned PaddedMaskNumElts =
alignTo(MaskNumElts, SrcNumElts);
4196 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
4212 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
4213 for (
unsigned i = 0; i != MaskNumElts; ++i) {
4215 if (Idx >= (
int)SrcNumElts)
4216 Idx -= SrcNumElts - PaddedMaskNumElts;
4224 if (MaskNumElts != PaddedMaskNumElts)
4226 DAG.getVectorIdxConstant(0,
DL));
4232 assert(SrcNumElts > MaskNumElts);
4236 int StartIdx[2] = {-1, -1};
4237 bool CanExtract =
true;
4238 for (
int Idx : Mask) {
4243 if (Idx >= (
int)SrcNumElts) {
4251 int NewStartIdx =
alignDown(Idx, MaskNumElts);
4252 if (NewStartIdx + MaskNumElts > SrcNumElts ||
4253 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
4257 StartIdx[Input] = NewStartIdx;
4260 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
4266 for (
unsigned Input = 0; Input < 2; ++Input) {
4267 SDValue &Src = Input == 0 ? Src1 : Src2;
4268 if (StartIdx[Input] < 0)
4269 Src =
DAG.getUNDEF(VT);
4272 DAG.getVectorIdxConstant(StartIdx[Input],
DL));
4277 SmallVector<int, 8> MappedOps(Mask);
4278 for (
int &Idx : MappedOps) {
4279 if (Idx >= (
int)SrcNumElts)
4280 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
4285 setValue(&
I,
DAG.getVectorShuffle(VT,
DL, Src1, Src2, MappedOps));
4294 for (
int Idx : Mask) {
4298 Res =
DAG.getUNDEF(EltVT);
4300 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
4301 if (Idx >= (
int)SrcNumElts) Idx -= SrcNumElts;
4304 DAG.getVectorIdxConstant(Idx,
DL));
4314 ArrayRef<unsigned> Indices =
I.getIndices();
4315 const Value *Op0 =
I.getOperand(0);
4317 Type *AggTy =
I.getType();
4324 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4330 unsigned NumAggValues = AggValueVTs.
size();
4331 unsigned NumValValues = ValValueVTs.
size();
4335 if (!NumAggValues) {
4343 for (; i != LinearIndex; ++i)
4344 Values[i] = IntoUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4349 for (; i != LinearIndex + NumValValues; ++i)
4350 Values[i] = FromUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4354 for (; i != NumAggValues; ++i)
4355 Values[i] = IntoUndef ?
DAG.getUNDEF(AggValueVTs[i]) :
4359 DAG.getVTList(AggValueVTs), Values));
4363 ArrayRef<unsigned> Indices =
I.getIndices();
4364 const Value *Op0 =
I.getOperand(0);
4366 Type *ValTy =
I.getType();
4371 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4375 unsigned NumValValues = ValValueVTs.
size();
4378 if (!NumValValues) {
4387 for (
unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
4388 Values[i - LinearIndex] =
4394 DAG.getVTList(ValValueVTs), Values));
4397void SelectionDAGBuilder::visitGetElementPtr(
const User &
I) {
4398 Value *Op0 =
I.getOperand(0);
4404 auto &TLI =
DAG.getTargetLoweringInfo();
4409 bool IsVectorGEP =
I.getType()->isVectorTy();
4410 ElementCount VectorElementCount =
4416 const Value *Idx = GTI.getOperand();
4417 if (StructType *StTy = GTI.getStructTypeOrNull()) {
4422 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(
Field);
4432 N =
DAG.getMemBasePlusOffset(
4433 N,
DAG.getConstant(
Offset, dl,
N.getValueType()), dl, Flags);
4439 unsigned IdxSize =
DAG.getDataLayout().getIndexSizeInBits(AS);
4441 TypeSize ElementSize =
4442 GTI.getSequentialElementStride(
DAG.getDataLayout());
4447 bool ElementScalable = ElementSize.
isScalable();
4453 C =
C->getSplatValue();
4456 if (CI && CI->isZero())
4458 if (CI && !ElementScalable) {
4459 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4462 if (
N.getValueType().isVector())
4463 OffsVal =
DAG.getConstant(
4466 OffsVal =
DAG.getConstant(Offs, dl, IdxTy);
4473 Flags.setNoUnsignedWrap(
true);
4476 OffsVal =
DAG.getSExtOrTrunc(OffsVal, dl,
N.getValueType());
4478 N =
DAG.getMemBasePlusOffset(
N, OffsVal, dl, Flags);
4486 if (
N.getValueType().isVector()) {
4488 VectorElementCount);
4489 IdxN =
DAG.getSplat(VT, dl, IdxN);
4493 N =
DAG.getSplat(VT, dl,
N);
4499 IdxN =
DAG.getSExtOrTrunc(IdxN, dl,
N.getValueType());
4501 SDNodeFlags ScaleFlags;
4510 if (ElementScalable) {
4511 EVT VScaleTy =
N.getValueType().getScalarType();
4513 ISD::VSCALE, dl, VScaleTy,
4514 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4515 if (
N.getValueType().isVector())
4516 VScale =
DAG.getSplatVector(
N.getValueType(), dl, VScale);
4517 IdxN =
DAG.getNode(
ISD::MUL, dl,
N.getValueType(), IdxN, VScale,
4522 if (ElementMul != 1) {
4523 if (ElementMul.isPowerOf2()) {
4524 unsigned Amt = ElementMul.logBase2();
4527 DAG.getShiftAmountConstant(Amt,
N.getValueType(), dl),
4530 SDValue Scale =
DAG.getConstant(ElementMul.getZExtValue(), dl,
4532 IdxN =
DAG.getNode(
ISD::MUL, dl,
N.getValueType(), IdxN, Scale,
4542 SDNodeFlags AddFlags;
4546 N =
DAG.getMemBasePlusOffset(
N, IdxN, dl, AddFlags);
4550 if (IsVectorGEP && !
N.getValueType().isVector()) {
4552 N =
DAG.getSplat(VT, dl,
N);
4563 N =
DAG.getPtrExtendInReg(
N, dl, PtrMemTy);
4568void SelectionDAGBuilder::visitAlloca(
const AllocaInst &
I) {
4575 Type *Ty =
I.getAllocatedType();
4576 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4577 auto &
DL =
DAG.getDataLayout();
4578 TypeSize TySize =
DL.getTypeAllocSize(Ty);
4579 MaybeAlign Alignment = std::max(
DL.getPrefTypeAlign(Ty),
I.getAlign());
4585 AllocSize =
DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4587 AllocSize =
DAG.getNode(
4589 DAG.getZExtOrTrunc(
DAG.getTypeSize(dl, MVT::i64, TySize), dl, IntPtr));
4594 Align StackAlign =
DAG.getSubtarget().getFrameLowering()->getStackAlign();
4595 if (*Alignment <= StackAlign)
4596 Alignment = std::nullopt;
4598 const uint64_t StackAlignMask = StackAlign.
value() - 1U;
4603 DAG.getConstant(StackAlignMask, dl, IntPtr),
4608 DAG.getSignedConstant(~StackAlignMask, dl, IntPtr));
4612 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4614 SDValue DSA =
DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs,
Ops);
4622 return I.getMetadata(LLVMContext::MD_range);
4627 if (std::optional<ConstantRange> CR = CB->getRange())
4631 return std::nullopt;
4636 return CB->getRetNoFPClass();
4640void SelectionDAGBuilder::visitLoad(
const LoadInst &
I) {
4642 return visitAtomicLoad(
I);
4644 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4645 const Value *SV =
I.getOperand(0);
4650 if (Arg->hasSwiftErrorAttr())
4651 return visitLoadFromSwiftError(
I);
4655 if (Alloca->isSwiftError())
4656 return visitLoadFromSwiftError(
I);
4662 Type *Ty =
I.getType();
4666 unsigned NumValues = ValueVTs.
size();
4670 Align Alignment =
I.getAlign();
4671 AAMDNodes AAInfo =
I.getAAMetadata();
4673 bool isVolatile =
I.isVolatile();
4678 bool ConstantMemory =
false;
4685 BatchAA->pointsToConstantMemory(MemoryLocation(
4690 Root =
DAG.getEntryNode();
4691 ConstantMemory =
true;
4695 Root =
DAG.getRoot();
4706 unsigned ChainI = 0;
4707 for (
unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4723 MachinePointerInfo PtrInfo =
4725 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue())
4726 : MachinePointerInfo();
4728 SDValue A =
DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]);
4729 SDValue L =
DAG.getLoad(MemVTs[i], dl, Root,
A, PtrInfo, Alignment,
4730 MMOFlags, AAInfo, Ranges);
4731 Chains[ChainI] =
L.getValue(1);
4733 if (MemVTs[i] != ValueVTs[i])
4734 L =
DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4739 if (!ConstantMemory) {
4749 DAG.getVTList(ValueVTs), Values));
4752void SelectionDAGBuilder::visitStoreToSwiftError(
const StoreInst &
I) {
4753 assert(
DAG.getTargetLoweringInfo().supportSwiftError() &&
4754 "call visitStoreToSwiftError when backend supports swifterror");
4757 SmallVector<uint64_t, 4>
Offsets;
4758 const Value *SrcV =
I.getOperand(0);
4760 SrcV->
getType(), ValueVTs,
nullptr, &Offsets, 0);
4761 assert(ValueVTs.
size() == 1 && Offsets[0] == 0 &&
4762 "expect a single EVT for swifterror");
4771 SDValue(Src.getNode(), Src.getResNo()));
4772 DAG.setRoot(CopyNode);
4775void SelectionDAGBuilder::visitLoadFromSwiftError(
const LoadInst &
I) {
4776 assert(
DAG.getTargetLoweringInfo().supportSwiftError() &&
4777 "call visitLoadFromSwiftError when backend supports swifterror");
4780 !
I.hasMetadata(LLVMContext::MD_nontemporal) &&
4781 !
I.hasMetadata(LLVMContext::MD_invariant_load) &&
4782 "Support volatile, non temporal, invariant for load_from_swift_error");
4784 const Value *SV =
I.getOperand(0);
4785 Type *Ty =
I.getType();
4788 !
BatchAA->pointsToConstantMemory(MemoryLocation(
4790 I.getAAMetadata()))) &&
4791 "load_from_swift_error should not be constant memory");
4794 SmallVector<uint64_t, 4>
Offsets;
4796 ValueVTs,
nullptr, &Offsets, 0);
4797 assert(ValueVTs.
size() == 1 && Offsets[0] == 0 &&
4798 "expect a single EVT for swifterror");
4808void SelectionDAGBuilder::visitStore(
const StoreInst &
I) {
4810 return visitAtomicStore(
I);
4812 const Value *SrcV =
I.getOperand(0);
4813 const Value *PtrV =
I.getOperand(1);
4815 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
4820 if (Arg->hasSwiftErrorAttr())
4821 return visitStoreToSwiftError(
I);
4825 if (Alloca->isSwiftError())
4826 return visitStoreToSwiftError(
I);
4833 SrcV->
getType(), ValueVTs, &MemVTs, &Offsets);
4834 unsigned NumValues = ValueVTs.
size();
4847 Align Alignment =
I.getAlign();
4848 AAMDNodes AAInfo =
I.getAAMetadata();
4852 unsigned ChainI = 0;
4853 for (
unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4863 MachinePointerInfo PtrInfo =
4865 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue())
4866 : MachinePointerInfo();
4870 if (MemVTs[i] != ValueVTs[i])
4871 Val =
DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4873 DAG.getStore(Root, dl, Val,
Add, PtrInfo, Alignment, MMOFlags, AAInfo);
4874 Chains[ChainI] = St;
4880 DAG.setRoot(StoreNode);
4883void SelectionDAGBuilder::visitMaskedStore(
const CallInst &
I,
4884 bool IsCompressing) {
4887 Value *Src0Operand =
I.getArgOperand(0);
4888 Value *PtrOperand =
I.getArgOperand(1);
4889 Value *MaskOperand =
I.getArgOperand(2);
4890 Align Alignment =
I.getParamAlign(1).valueOrOne();
4900 if (
I.hasMetadata(LLVMContext::MD_nontemporal))
4903 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
4904 MachinePointerInfo(PtrOperand), MMOFlags,
4907 const auto &TLI =
DAG.getTargetLoweringInfo();
4910 !IsCompressing &&
TTI->hasConditionalLoadStoreForType(
4911 I.getArgOperand(0)->getType(),
true)
4917 DAG.setRoot(StoreNode);
4947 C =
C->getSplatValue();
4961 if (!
GEP ||
GEP->getParent() != CurBB)
4964 if (
GEP->getNumOperands() != 2)
4967 const Value *BasePtr =
GEP->getPointerOperand();
4968 const Value *IndexVal =
GEP->getOperand(
GEP->getNumOperands() - 1);
4974 TypeSize ScaleVal =
DL.getTypeAllocSize(
GEP->getResultElementType());
4979 if (ScaleVal != 1 &&
4991void SelectionDAGBuilder::visitMaskedScatter(
const CallInst &
I) {
4995 const Value *Ptr =
I.getArgOperand(1);
4999 Align Alignment =
I.getParamAlign(1).valueOrOne();
5000 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5009 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5019 EVT IdxVT =
Index.getValueType();
5027 SDValue Scatter =
DAG.getMaskedScatter(
DAG.getVTList(MVT::Other), VT, sdl,
5029 DAG.setRoot(Scatter);
5033void SelectionDAGBuilder::visitMaskedLoad(
const CallInst &
I,
bool IsExpanding) {
5036 Value *PtrOperand =
I.getArgOperand(0);
5037 Value *MaskOperand =
I.getArgOperand(1);
5038 Value *Src0Operand =
I.getArgOperand(2);
5039 Align Alignment =
I.getParamAlign(0).valueOrOne();
5047 AAMDNodes AAInfo =
I.getAAMetadata();
5054 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
5057 if (
I.hasMetadata(LLVMContext::MD_nontemporal))
5059 if (
I.hasMetadata(LLVMContext::MD_invariant_load))
5062 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5063 MachinePointerInfo(PtrOperand), MMOFlags,
5066 const auto &TLI =
DAG.getTargetLoweringInfo();
5073 TTI->hasConditionalLoadStoreForType(Src0Operand->
getType(),
5078 DAG.getMaskedLoad(VT, sdl, InChain, Ptr,
Offset, Mask, Src0, VT, MMO,
5085void SelectionDAGBuilder::visitMaskedGather(
const CallInst &
I) {
5089 const Value *Ptr =
I.getArgOperand(0);
5093 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5095 Align Alignment =
I.getParamAlign(0).valueOrOne();
5106 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5118 EVT IdxVT =
Index.getValueType();
5127 DAG.getMaskedGather(
DAG.getVTList(VT, MVT::Other), VT, sdl,
Ops, MMO,
5143 SDVTList VTs =
DAG.getVTList(MemVT, MVT::i1, MVT::Other);
5145 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5148 MachineFunction &MF =
DAG.getMachineFunction();
5150 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5151 DAG.getEVTAlign(MemVT), AAMDNodes(),
nullptr, SSID, SuccessOrdering,
5154 SDValue L =
DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
5155 dl, MemVT, VTs, InChain,
5163 DAG.setRoot(OutChain);
5166void SelectionDAGBuilder::visitAtomicRMW(
const AtomicRMWInst &
I) {
5169 switch (
I.getOperation()) {
5187 NT = ISD::ATOMIC_LOAD_FMAXIMUM;
5190 NT = ISD::ATOMIC_LOAD_FMINIMUM;
5193 NT = ISD::ATOMIC_LOAD_UINC_WRAP;
5196 NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
5199 NT = ISD::ATOMIC_LOAD_USUB_COND;
5202 NT = ISD::ATOMIC_LOAD_USUB_SAT;
5211 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5214 MachineFunction &MF =
DAG.getMachineFunction();
5216 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5217 DAG.getEVTAlign(MemVT), AAMDNodes(),
nullptr, SSID, Ordering);
5220 DAG.getAtomic(NT, dl, MemVT, InChain,
5227 DAG.setRoot(OutChain);
5230void SelectionDAGBuilder::visitFence(
const FenceInst &
I) {
5232 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5235 Ops[1] =
DAG.getTargetConstant((
unsigned)
I.getOrdering(), dl,
5237 Ops[2] =
DAG.getTargetConstant(
I.getSyncScopeID(), dl,
5244void SelectionDAGBuilder::visitAtomicLoad(
const LoadInst &
I) {
5251 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5262 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5263 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5264 I.getAlign(), AAMDNodes(), Ranges, SSID, Order);
5274 L =
DAG.getPtrExtOrTrunc(L, dl, VT);
5277 DAG.setRoot(OutChain);
5280void SelectionDAGBuilder::visitAtomicStore(
const StoreInst &
I) {
5288 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5298 MachineFunction &MF =
DAG.getMachineFunction();
5300 MachinePointerInfo(
I.getPointerOperand()), Flags, MemVT.
getStoreSize(),
5301 I.getAlign(), AAMDNodes(),
nullptr, SSID, Ordering);
5305 Val =
DAG.getPtrExtOrTrunc(Val, dl, MemVT);
5309 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO);
5312 DAG.setRoot(OutChain);
5320std::pair<bool, bool>
5321SelectionDAGBuilder::getTargetIntrinsicCallProperties(
const CallBase &
I) {
5323 bool HasChain = !
F->doesNotAccessMemory();
5325 HasChain &&
F->onlyReadsMemory() &&
F->willReturn() &&
F->doesNotThrow();
5327 return {HasChain, OnlyLoad};
5331 const CallBase &
I,
bool HasChain,
bool OnlyLoad,
5333 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5340 Ops.push_back(
DAG.getRoot());
5353 for (
unsigned i = 0, e =
I.arg_size(); i != e; ++i) {
5354 const Value *Arg =
I.getArgOperand(i);
5355 if (!
I.paramHasAttr(i, Attribute::ImmArg)) {
5363 assert(CI->getBitWidth() <= 64 &&
5364 "large intrinsic immediates not handled");
5365 Ops.push_back(
DAG.getTargetConstant(*CI, SDLoc(), VT));
5372 if (std::optional<OperandBundleUse> Bundle =
5374 auto *Sym = Bundle->Inputs[0].get();
5377 Ops.push_back(SDSym);
5380 if (std::optional<OperandBundleUse> Bundle =
5382 Value *Token = Bundle->Inputs[0].get();
5384 assert(
Ops.back().getValueType() != MVT::Glue &&
5385 "Did not expect another glue node here.");
5387 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken);
5388 Ops.push_back(ConvControlToken);
5396 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5404 return DAG.getVTList(ValueVTs);
5408SDValue SelectionDAGBuilder::getTargetNonMemIntrinsicNode(
5431 if (
I.getType()->isVoidTy())
5446void SelectionDAGBuilder::visitTargetIntrinsic(
const CallInst &
I,
5448 auto [HasChain, OnlyLoad] = getTargetIntrinsicCallProperties(
I);
5451 TargetLowering::IntrinsicInfo
Info;
5452 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
5453 bool IsTgtMemIntrinsic =
5457 I, HasChain, OnlyLoad, IsTgtMemIntrinsic ? &
Info :
nullptr);
5458 SDVTList VTs = getTargetIntrinsicVTList(
I, HasChain);
5463 Flags.copyFMF(*FPMO);
5464 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
5471 if (IsTgtMemIntrinsic) {
5476 MachinePointerInfo MPI;
5478 MPI = MachinePointerInfo(
Info.ptrVal,
Info.offset);
5479 else if (
Info.fallbackAddressSpace)
5480 MPI = MachinePointerInfo(*
Info.fallbackAddressSpace);
5481 EVT MemVT =
Info.memVT;
5483 if (
Size.hasValue() && !
Size.getValue())
5485 Align Alignment =
Info.align.value_or(
DAG.getEVTAlign(MemVT));
5486 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
5487 MPI,
Info.flags,
Size, Alignment,
I.getAAMetadata(),
nullptr,
5492 Result = getTargetNonMemIntrinsicNode(*
I.getType(), HasChain,
Ops, VTs);
5495 Result = handleTargetIntrinsicRet(
I, HasChain, OnlyLoad, Result);
5511 return DAG.
getNode(ISD::BITCAST, dl, MVT::f32, t2);
5552 SDValue TwoToFractionalPartOfX;
5620 SDValue t13 = DAG.
getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5621 return DAG.
getNode(ISD::BITCAST, dl, MVT::f32,
5629 if (
Op.getValueType() == MVT::f32 &&
5644 return DAG.
getNode(ISD::FEXP, dl,
Op.getValueType(),
Op, Flags);
5653 if (
Op.getValueType() == MVT::f32 &&
5743 return DAG.
getNode(ISD::FLOG, dl,
Op.getValueType(),
Op, Flags);
5752 if (
Op.getValueType() == MVT::f32 &&
5836 return DAG.
getNode(
ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5840 return DAG.
getNode(ISD::FLOG2, dl,
Op.getValueType(),
Op, Flags);
5849 if (
Op.getValueType() == MVT::f32 &&
5926 return DAG.
getNode(
ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5930 return DAG.
getNode(ISD::FLOG10, dl,
Op.getValueType(),
Op, Flags);
5937 if (
Op.getValueType() == MVT::f32 &&
5942 return DAG.
getNode(ISD::FEXP2, dl,
Op.getValueType(),
Op, Flags);
5950 bool IsExp10 =
false;
5951 if (
LHS.getValueType() == MVT::f32 &&
RHS.getValueType() == MVT::f32 &&
5955 IsExp10 = LHSC->isExactlyValue(Ten);
5982 unsigned Val = RHSC->getSExtValue();
6011 CurSquare, CurSquare);
6016 if (RHSC->getSExtValue() < 0)
6030 EVT VT =
LHS.getValueType();
6053 if ((ScaleInt > 0 || (Saturating &&
Signed)) &&
6057 Opcode, VT, ScaleInt);
6092 switch (
N.getOpcode()) {
6096 Op.getValueType().getSizeInBits());
6121bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
6128 MachineFunction &MF =
DAG.getMachineFunction();
6129 const TargetInstrInfo *
TII =
DAG.getSubtarget().getInstrInfo();
6133 auto MakeVRegDbgValue = [&](
Register Reg, DIExpression *FragExpr,
6138 auto &Inst =
TII->get(TargetOpcode::DBG_INSTR_REF);
6145 auto *NewDIExpr = FragExpr;
6152 return BuildMI(MF,
DL, Inst,
false, MOs, Variable, NewDIExpr);
6155 auto &Inst =
TII->get(TargetOpcode::DBG_VALUE);
6156 return BuildMI(MF,
DL, Inst, Indirect,
Reg, Variable, FragExpr);
6160 if (Kind == FuncArgumentDbgValueKind::Value) {
6165 if (!IsInEntryBlock)
6181 bool VariableIsFunctionInputArg =
Variable->isParameter() &&
6182 !
DL->getInlinedAt();
6184 if (!IsInPrologue && !VariableIsFunctionInputArg)
6218 if (VariableIsFunctionInputArg) {
6220 if (ArgNo >=
FuncInfo.DescribedArgs.size())
6221 FuncInfo.DescribedArgs.resize(ArgNo + 1,
false);
6222 else if (!IsInPrologue &&
FuncInfo.DescribedArgs.test(ArgNo))
6223 return !NodeMap[
V].getNode();
6228 bool IsIndirect =
false;
6229 std::optional<MachineOperand>
Op;
6231 int FI =
FuncInfo.getArgumentFrameIndex(Arg);
6232 if (FI != std::numeric_limits<int>::max())
6236 if (!
Op &&
N.getNode()) {
6239 if (ArgRegsAndSizes.
size() == 1)
6240 Reg = ArgRegsAndSizes.
front().first;
6243 MachineRegisterInfo &RegInfo = MF.
getRegInfo();
6250 IsIndirect =
Kind != FuncArgumentDbgValueKind::Value;
6254 if (!
Op &&
N.getNode()) {
6258 if (FrameIndexSDNode *FINode =
6268 for (
const auto &RegAndSize : SplitRegs) {
6272 int RegFragmentSizeInBits = RegAndSize.second;
6274 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
6277 if (
Offset >= ExprFragmentSizeInBits)
6281 if (
Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
6282 RegFragmentSizeInBits = ExprFragmentSizeInBits -
Offset;
6287 Expr,
Offset, RegFragmentSizeInBits);
6288 Offset += RegAndSize.second;
6291 if (!FragmentExpr) {
6292 SDDbgValue *SDV =
DAG.getConstantDbgValue(
6294 DAG.AddDbgValue(SDV,
false);
6297 MachineInstr *NewMI =
6298 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
6299 Kind != FuncArgumentDbgValueKind::Value);
6300 FuncInfo.ArgDbgValues.push_back(NewMI);
6307 if (VMI !=
FuncInfo.ValueMap.end()) {
6308 const auto &TLI =
DAG.getTargetLoweringInfo();
6309 RegsForValue RFV(
V->getContext(), TLI,
DAG.getDataLayout(), VMI->second,
6310 V->getType(), std::nullopt);
6311 if (RFV.occupiesMultipleRegs()) {
6312 splitMultiRegDbgValue(RFV.getRegsAndSizes());
6317 IsIndirect =
Kind != FuncArgumentDbgValueKind::Value;
6318 }
else if (ArgRegsAndSizes.
size() > 1) {
6321 splitMultiRegDbgValue(ArgRegsAndSizes);
6330 "Expected inlined-at fields to agree");
6331 MachineInstr *NewMI =
nullptr;
6334 NewMI = MakeVRegDbgValue(
Op->getReg(), Expr, IsIndirect);
6336 NewMI =
BuildMI(MF,
DL,
TII->get(TargetOpcode::DBG_VALUE),
true, *
Op,
6340 FuncInfo.ArgDbgValues.push_back(NewMI);
6349 unsigned DbgSDNodeOrder) {
6361 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
6362 false, dl, DbgSDNodeOrder);
6364 return DAG.getDbgValue(Variable, Expr,
N.getNode(),
N.getResNo(),
6365 false, dl, DbgSDNodeOrder);
6370 case Intrinsic::smul_fix:
6372 case Intrinsic::umul_fix:
6374 case Intrinsic::smul_fix_sat:
6376 case Intrinsic::umul_fix_sat:
6378 case Intrinsic::sdiv_fix:
6380 case Intrinsic::udiv_fix:
6382 case Intrinsic::sdiv_fix_sat:
6384 case Intrinsic::udiv_fix_sat:
6397 "expected call_preallocated_setup Value");
6398 for (
const auto *U : PreallocatedSetup->
users()) {
6400 const Function *Fn = UseCall->getCalledFunction();
6401 if (!Fn || Fn->
getIntrinsicID() != Intrinsic::call_preallocated_arg) {
6411bool SelectionDAGBuilder::visitEntryValueDbgValue(
6421 auto ArgIt =
FuncInfo.ValueMap.find(Arg);
6422 if (ArgIt ==
FuncInfo.ValueMap.end()) {
6424 dbgs() <<
"Dropping dbg.value: expression is entry_value but "
6425 "couldn't find an associated register for the Argument\n");
6428 Register ArgVReg = ArgIt->getSecond();
6430 for (
auto [PhysReg, VirtReg] :
FuncInfo.RegInfo->liveins())
6431 if (ArgVReg == VirtReg || ArgVReg == PhysReg) {
6432 SDDbgValue *SDV =
DAG.getVRegDbgValue(
6433 Variable, Expr, PhysReg,
false , DbgLoc, SDNodeOrder);
6434 DAG.AddDbgValue(SDV,
false );
6437 LLVM_DEBUG(
dbgs() <<
"Dropping dbg.value: expression is entry_value but "
6438 "couldn't find a physical register\n");
6443void SelectionDAGBuilder::visitConvergenceControl(
const CallInst &
I,
6446 switch (Intrinsic) {
6447 case Intrinsic::experimental_convergence_anchor:
6448 setValue(&
I,
DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped));
6450 case Intrinsic::experimental_convergence_entry:
6451 setValue(&
I,
DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped));
6453 case Intrinsic::experimental_convergence_loop: {
6455 auto *Token = Bundle->Inputs[0].get();
6456 setValue(&
I,
DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped,
6463void SelectionDAGBuilder::visitVectorHistogram(
const CallInst &
I,
6464 unsigned IntrinsicID) {
6467 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add &&
6468 "Tried to lower unsupported histogram type");
6474 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6475 DataLayout TargetDL =
DAG.getDataLayout();
6477 Align Alignment =
DAG.getEVTAlign(VT);
6490 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
6491 MachinePointerInfo(AS),
6502 EVT IdxVT =
Index.getValueType();
6509 SDValue ID =
DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32);
6512 SDValue Histogram =
DAG.getMaskedHistogram(
DAG.getVTList(MVT::Other), VT, sdl,
6516 DAG.setRoot(Histogram);
6519void SelectionDAGBuilder::visitVectorExtractLastActive(
const CallInst &
I,
6521 assert(Intrinsic == Intrinsic::experimental_vector_extract_last_active &&
6522 "Tried lowering invalid vector extract last");
6524 const DataLayout &Layout =
DAG.getDataLayout();
6528 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6532 SDValue Idx =
DAG.getNode(ISD::VECTOR_FIND_LAST_ACTIVE, sdl, ExtVT, Mask);
6538 EVT BoolVT =
Mask.getValueType().getScalarType();
6539 SDValue AnyActive =
DAG.getNode(ISD::VECREDUCE_OR, sdl, BoolVT, Mask);
6540 Result =
DAG.getSelect(sdl, ResVT, AnyActive, Result, PassThru);
6547void SelectionDAGBuilder::visitIntrinsicCall(
const CallInst &
I,
6549 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
6556 Flags.copyFMF(*FPOp);
6558 switch (Intrinsic) {
6561 visitTargetIntrinsic(
I, Intrinsic);
6563 case Intrinsic::vscale: {
6568 case Intrinsic::vastart: visitVAStart(
I);
return;
6569 case Intrinsic::vaend: visitVAEnd(
I);
return;
6570 case Intrinsic::vacopy: visitVACopy(
I);
return;
6571 case Intrinsic::returnaddress:
6576 case Intrinsic::addressofreturnaddress:
6581 case Intrinsic::sponentry:
6586 case Intrinsic::frameaddress:
6591 case Intrinsic::read_volatile_register:
6592 case Intrinsic::read_register: {
6593 Value *
Reg =
I.getArgOperand(0);
6599 DAG.getVTList(VT, MVT::Other), Chain,
RegName);
6604 case Intrinsic::write_register: {
6605 Value *
Reg =
I.getArgOperand(0);
6606 Value *RegValue =
I.getArgOperand(1);
6614 case Intrinsic::memcpy:
6615 case Intrinsic::memcpy_inline: {
6621 "memcpy_inline needs constant size");
6623 Align DstAlign = MCI.getDestAlign().valueOrOne();
6624 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6625 Align Alignment = std::min(DstAlign, SrcAlign);
6626 bool isVol = MCI.isVolatile();
6630 SDValue MC =
DAG.getMemcpy(Root, sdl, Dst, Src,
Size, Alignment, isVol,
6631 MCI.isForceInlined(), &
I, std::nullopt,
6632 MachinePointerInfo(
I.getArgOperand(0)),
6633 MachinePointerInfo(
I.getArgOperand(1)),
6635 updateDAGForMaybeTailCall(MC);
6638 case Intrinsic::memset:
6639 case Intrinsic::memset_inline: {
6645 "memset_inline needs constant size");
6647 Align DstAlign = MSII.getDestAlign().valueOrOne();
6648 bool isVol = MSII.isVolatile();
6651 Root, sdl, Dst, Value,
Size, DstAlign, isVol, MSII.isForceInlined(),
6652 &
I, MachinePointerInfo(
I.getArgOperand(0)),
I.getAAMetadata());
6653 updateDAGForMaybeTailCall(MC);
6656 case Intrinsic::memmove: {
6662 Align DstAlign = MMI.getDestAlign().valueOrOne();
6663 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6664 Align Alignment = std::min(DstAlign, SrcAlign);
6665 bool isVol = MMI.isVolatile();
6669 SDValue MM =
DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, &
I,
6671 MachinePointerInfo(
I.getArgOperand(0)),
6672 MachinePointerInfo(
I.getArgOperand(1)),
6674 updateDAGForMaybeTailCall(MM);
6677 case Intrinsic::memcpy_element_unordered_atomic: {
6683 Type *LengthTy =
MI.getLength()->getType();
6684 unsigned ElemSz =
MI.getElementSizeInBytes();
6688 isTC, MachinePointerInfo(
MI.getRawDest()),
6689 MachinePointerInfo(
MI.getRawSource()));
6690 updateDAGForMaybeTailCall(MC);
6693 case Intrinsic::memmove_element_unordered_atomic: {
6699 Type *LengthTy =
MI.getLength()->getType();
6700 unsigned ElemSz =
MI.getElementSizeInBytes();
6704 isTC, MachinePointerInfo(
MI.getRawDest()),
6705 MachinePointerInfo(
MI.getRawSource()));
6706 updateDAGForMaybeTailCall(MC);
6709 case Intrinsic::memset_element_unordered_atomic: {
6715 Type *LengthTy =
MI.getLength()->getType();
6716 unsigned ElemSz =
MI.getElementSizeInBytes();
6720 isTC, MachinePointerInfo(
MI.getRawDest()));
6721 updateDAGForMaybeTailCall(MC);
6724 case Intrinsic::call_preallocated_setup: {
6726 SDValue SrcValue =
DAG.getSrcValue(PreallocatedCall);
6727 SDValue Res =
DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6733 case Intrinsic::call_preallocated_arg: {
6735 SDValue SrcValue =
DAG.getSrcValue(PreallocatedCall);
6742 ISD::PREALLOCATED_ARG, sdl,
6749 case Intrinsic::eh_typeid_for: {
6752 unsigned TypeID =
DAG.getMachineFunction().getTypeIDFor(GV);
6753 Res =
DAG.getConstant(
TypeID, sdl, MVT::i32);
6758 case Intrinsic::eh_return_i32:
6759 case Intrinsic::eh_return_i64:
6760 DAG.getMachineFunction().setCallsEHReturn(
true);
6767 case Intrinsic::eh_unwind_init:
6768 DAG.getMachineFunction().setCallsUnwindInit(
true);
6770 case Intrinsic::eh_dwarf_cfa:
6775 case Intrinsic::eh_sjlj_callsite: {
6777 assert(
FuncInfo.getCurrentCallSite() == 0 &&
"Overlapping call sites!");
6782 case Intrinsic::eh_sjlj_functioncontext: {
6784 MachineFrameInfo &MFI =
DAG.getMachineFunction().getFrameInfo();
6787 int FI =
FuncInfo.StaticAllocaMap[FnCtx];
6791 case Intrinsic::eh_sjlj_setjmp: {
6796 DAG.getVTList(MVT::i32, MVT::Other),
Ops);
6798 DAG.setRoot(
Op.getValue(1));
6801 case Intrinsic::eh_sjlj_longjmp:
6805 case Intrinsic::eh_sjlj_setup_dispatch:
6809 case Intrinsic::masked_gather:
6810 visitMaskedGather(
I);
6812 case Intrinsic::masked_load:
6815 case Intrinsic::masked_scatter:
6816 visitMaskedScatter(
I);
6818 case Intrinsic::masked_store:
6819 visitMaskedStore(
I);
6821 case Intrinsic::masked_expandload:
6822 visitMaskedLoad(
I,
true );
6824 case Intrinsic::masked_compressstore:
6825 visitMaskedStore(
I,
true );
6827 case Intrinsic::powi:
6831 case Intrinsic::log:
6834 case Intrinsic::log2:
6838 case Intrinsic::log10:
6842 case Intrinsic::exp:
6845 case Intrinsic::exp2:
6849 case Intrinsic::pow:
6853 case Intrinsic::sqrt:
6854 case Intrinsic::fabs:
6855 case Intrinsic::sin:
6856 case Intrinsic::cos:
6857 case Intrinsic::tan:
6858 case Intrinsic::asin:
6859 case Intrinsic::acos:
6860 case Intrinsic::atan:
6861 case Intrinsic::sinh:
6862 case Intrinsic::cosh:
6863 case Intrinsic::tanh:
6864 case Intrinsic::exp10:
6865 case Intrinsic::floor:
6866 case Intrinsic::ceil:
6867 case Intrinsic::trunc:
6868 case Intrinsic::rint:
6869 case Intrinsic::nearbyint:
6870 case Intrinsic::round:
6871 case Intrinsic::roundeven:
6872 case Intrinsic::canonicalize: {
6875 switch (Intrinsic) {
6877 case Intrinsic::sqrt: Opcode = ISD::FSQRT;
break;
6878 case Intrinsic::fabs: Opcode = ISD::FABS;
break;
6879 case Intrinsic::sin: Opcode = ISD::FSIN;
break;
6880 case Intrinsic::cos: Opcode = ISD::FCOS;
break;
6881 case Intrinsic::tan: Opcode = ISD::FTAN;
break;
6882 case Intrinsic::asin: Opcode = ISD::FASIN;
break;
6883 case Intrinsic::acos: Opcode = ISD::FACOS;
break;
6884 case Intrinsic::atan: Opcode = ISD::FATAN;
break;
6885 case Intrinsic::sinh: Opcode = ISD::FSINH;
break;
6886 case Intrinsic::cosh: Opcode = ISD::FCOSH;
break;
6887 case Intrinsic::tanh: Opcode = ISD::FTANH;
break;
6888 case Intrinsic::exp10: Opcode = ISD::FEXP10;
break;
6889 case Intrinsic::floor: Opcode = ISD::FFLOOR;
break;
6890 case Intrinsic::ceil: Opcode = ISD::FCEIL;
break;
6891 case Intrinsic::trunc: Opcode = ISD::FTRUNC;
break;
6892 case Intrinsic::rint: Opcode = ISD::FRINT;
break;
6893 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT;
break;
6894 case Intrinsic::round: Opcode = ISD::FROUND;
break;
6895 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN;
break;
6901 getValue(
I.getArgOperand(0)).getValueType(),
6905 case Intrinsic::atan2:
6907 getValue(
I.getArgOperand(0)).getValueType(),
6911 case Intrinsic::lround:
6912 case Intrinsic::llround:
6913 case Intrinsic::lrint:
6914 case Intrinsic::llrint: {
6917 switch (Intrinsic) {
6919 case Intrinsic::lround: Opcode = ISD::LROUND;
break;
6920 case Intrinsic::llround: Opcode = ISD::LLROUND;
break;
6921 case Intrinsic::lrint: Opcode = ISD::LRINT;
break;
6922 case Intrinsic::llrint: Opcode = ISD::LLRINT;
break;
6931 case Intrinsic::minnum:
6933 getValue(
I.getArgOperand(0)).getValueType(),
6937 case Intrinsic::maxnum:
6939 getValue(
I.getArgOperand(0)).getValueType(),
6943 case Intrinsic::minimum:
6945 getValue(
I.getArgOperand(0)).getValueType(),
6949 case Intrinsic::maximum:
6951 getValue(
I.getArgOperand(0)).getValueType(),
6955 case Intrinsic::minimumnum:
6957 getValue(
I.getArgOperand(0)).getValueType(),
6961 case Intrinsic::maximumnum:
6963 getValue(
I.getArgOperand(0)).getValueType(),
6967 case Intrinsic::copysign:
6969 getValue(
I.getArgOperand(0)).getValueType(),
6973 case Intrinsic::ldexp:
6975 getValue(
I.getArgOperand(0)).getValueType(),
6979 case Intrinsic::modf:
6980 case Intrinsic::sincos:
6981 case Intrinsic::sincospi:
6982 case Intrinsic::frexp: {
6984 switch (Intrinsic) {
6987 case Intrinsic::sincos:
6988 Opcode = ISD::FSINCOS;
6990 case Intrinsic::sincospi:
6991 Opcode = ISD::FSINCOSPI;
6993 case Intrinsic::modf:
6994 Opcode = ISD::FMODF;
6996 case Intrinsic::frexp:
6997 Opcode = ISD::FFREXP;
7002 SDVTList VTs =
DAG.getVTList(ValueVTs);
7004 &
I,
DAG.getNode(Opcode, sdl, VTs,
getValue(
I.getArgOperand(0)), Flags));
7007 case Intrinsic::arithmetic_fence: {
7009 getValue(
I.getArgOperand(0)).getValueType(),
7013 case Intrinsic::fma:
7019#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
7020 case Intrinsic::INTRINSIC:
7021#include "llvm/IR/ConstrainedOps.def"
7024#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7025#include "llvm/IR/VPIntrinsics.def"
7028 case Intrinsic::fptrunc_round: {
7032 std::optional<RoundingMode> RoundMode =
7040 SelectionDAG::FlagInserter FlagsInserter(
DAG, Flags);
7045 DAG.getTargetConstant((
int)*RoundMode, sdl, MVT::i32));
7050 case Intrinsic::fmuladd: {
7055 getValue(
I.getArgOperand(0)).getValueType(),
7062 getValue(
I.getArgOperand(0)).getValueType(),
7078 case Intrinsic::convert_to_fp16:
7082 DAG.getTargetConstant(0, sdl,
7085 case Intrinsic::convert_from_fp16:
7088 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
7091 case Intrinsic::fptosi_sat: {
7098 case Intrinsic::fptoui_sat: {
7105 case Intrinsic::set_rounding:
7106 Res =
DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
7111 case Intrinsic::is_fpclass: {
7112 const DataLayout DLayout =
DAG.getDataLayout();
7114 EVT ArgVT = TLI.
getValueType(DLayout,
I.getArgOperand(0)->getType());
7117 MachineFunction &MF =
DAG.getMachineFunction();
7121 Flags.setNoFPExcept(
7122 !
F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
7138 case Intrinsic::get_fpenv: {
7139 const DataLayout DLayout =
DAG.getDataLayout();
7141 Align TempAlign =
DAG.getEVTAlign(EnvVT);
7147 ISD::GET_FPENV, sdl,
7156 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
7159 Chain =
DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7160 Res =
DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
7166 case Intrinsic::set_fpenv: {
7167 const DataLayout DLayout =
DAG.getDataLayout();
7170 Align TempAlign =
DAG.getEVTAlign(EnvVT);
7175 Chain =
DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
7183 Chain =
DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
7185 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
7188 Chain =
DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
7193 case Intrinsic::reset_fpenv:
7194 DAG.setRoot(
DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other,
getRoot()));
7196 case Intrinsic::get_fpmode:
7198 ISD::GET_FPMODE, sdl,
7205 case Intrinsic::set_fpmode:
7206 Res =
DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {
DAG.getRoot()},
7210 case Intrinsic::reset_fpmode: {
7211 Res =
DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other,
getRoot());
7215 case Intrinsic::pcmarker: {
7217 DAG.setRoot(
DAG.getNode(ISD::PCMARKER, sdl, MVT::Other,
getRoot(), Tmp));
7220 case Intrinsic::readcyclecounter: {
7222 Res =
DAG.getNode(ISD::READCYCLECOUNTER, sdl,
7223 DAG.getVTList(MVT::i64, MVT::Other),
Op);
7228 case Intrinsic::readsteadycounter: {
7230 Res =
DAG.getNode(ISD::READSTEADYCOUNTER, sdl,
7231 DAG.getVTList(MVT::i64, MVT::Other),
Op);
7236 case Intrinsic::bitreverse:
7238 getValue(
I.getArgOperand(0)).getValueType(),
7241 case Intrinsic::bswap:
7243 getValue(
I.getArgOperand(0)).getValueType(),
7246 case Intrinsic::cttz: {
7254 case Intrinsic::ctlz: {
7262 case Intrinsic::ctpop: {
7268 case Intrinsic::fshl:
7269 case Intrinsic::fshr: {
7270 bool IsFSHL =
Intrinsic == Intrinsic::fshl;
7274 EVT VT =
X.getValueType();
7285 case Intrinsic::sadd_sat: {
7291 case Intrinsic::uadd_sat: {
7297 case Intrinsic::ssub_sat: {
7303 case Intrinsic::usub_sat: {
7309 case Intrinsic::sshl_sat: {
7315 case Intrinsic::ushl_sat: {
7321 case Intrinsic::smul_fix:
7322 case Intrinsic::umul_fix:
7323 case Intrinsic::smul_fix_sat:
7324 case Intrinsic::umul_fix_sat: {
7332 case Intrinsic::sdiv_fix:
7333 case Intrinsic::udiv_fix:
7334 case Intrinsic::sdiv_fix_sat:
7335 case Intrinsic::udiv_fix_sat: {
7340 Op1, Op2, Op3,
DAG, TLI));
7343 case Intrinsic::smax: {
7349 case Intrinsic::smin: {
7355 case Intrinsic::umax: {
7361 case Intrinsic::umin: {
7367 case Intrinsic::abs: {
7373 case Intrinsic::scmp: {
7380 case Intrinsic::ucmp: {
7387 case Intrinsic::stacksave: {
7390 Res =
DAG.getNode(ISD::STACKSAVE, sdl,
DAG.getVTList(VT, MVT::Other),
Op);
7395 case Intrinsic::stackrestore:
7397 DAG.setRoot(
DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other,
getRoot(), Res));
7399 case Intrinsic::get_dynamic_area_offset: {
7402 Res =
DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl,
DAG.getVTList(ResTy),
7408 case Intrinsic::stackguard: {
7409 MachineFunction &MF =
DAG.getMachineFunction();
7415 Res =
DAG.getPtrExtOrTrunc(Res, sdl, PtrTy);
7419 LLVMContext &Ctx = *
DAG.getContext();
7420 Ctx.
diagnose(DiagnosticInfoGeneric(
"unable to lower stackguard"));
7427 MachinePointerInfo(
Global, 0), Align,
7436 case Intrinsic::stackprotector: {
7438 MachineFunction &MF =
DAG.getMachineFunction();
7458 Chain, sdl, Src, FIN,
7465 case Intrinsic::objectsize:
7468 case Intrinsic::is_constant:
7471 case Intrinsic::annotation:
7472 case Intrinsic::ptr_annotation:
7473 case Intrinsic::launder_invariant_group:
7474 case Intrinsic::strip_invariant_group:
7479 case Intrinsic::type_test:
7480 case Intrinsic::public_type_test:
7484 case Intrinsic::assume:
7485 case Intrinsic::experimental_noalias_scope_decl:
7486 case Intrinsic::var_annotation:
7487 case Intrinsic::sideeffect:
7492 case Intrinsic::codeview_annotation: {
7494 MachineFunction &MF =
DAG.getMachineFunction();
7498 Res =
DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl,
getRoot(), Label);
7503 case Intrinsic::init_trampoline: {
7511 Ops[4] =
DAG.getSrcValue(
I.getArgOperand(0));
7514 Res =
DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other,
Ops);
7519 case Intrinsic::adjust_trampoline:
7524 case Intrinsic::gcroot: {
7525 assert(
DAG.getMachineFunction().getFunction().hasGC() &&
7526 "only valid in functions with gc specified, enforced by Verifier");
7528 const Value *Alloca =
I.getArgOperand(0)->stripPointerCasts();
7535 case Intrinsic::gcread:
7536 case Intrinsic::gcwrite:
7538 case Intrinsic::get_rounding:
7544 case Intrinsic::expect:
7545 case Intrinsic::expect_with_probability:
7551 case Intrinsic::ubsantrap:
7552 case Intrinsic::debugtrap:
7553 case Intrinsic::trap: {
7554 StringRef TrapFuncName =
7555 I.getAttributes().getFnAttr(
"trap-func-name").getValueAsString();
7556 if (TrapFuncName.
empty()) {
7557 switch (Intrinsic) {
7558 case Intrinsic::trap:
7559 DAG.setRoot(
DAG.getNode(ISD::TRAP, sdl, MVT::Other,
getRoot()));
7561 case Intrinsic::debugtrap:
7562 DAG.setRoot(
DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other,
getRoot()));
7564 case Intrinsic::ubsantrap:
7566 ISD::UBSANTRAP, sdl, MVT::Other,
getRoot(),
7567 DAG.getTargetConstant(
7573 DAG.addNoMergeSiteInfo(
DAG.getRoot().getNode(),
7574 I.hasFnAttr(Attribute::NoMerge));
7578 if (Intrinsic == Intrinsic::ubsantrap) {
7579 Value *Arg =
I.getArgOperand(0);
7583 TargetLowering::CallLoweringInfo CLI(
DAG);
7584 CLI.setDebugLoc(sdl).setChain(
getRoot()).setLibCallee(
7586 DAG.getExternalSymbol(TrapFuncName.
data(),
7589 CLI.NoMerge =
I.hasFnAttr(Attribute::NoMerge);
7595 case Intrinsic::allow_runtime_check:
7596 case Intrinsic::allow_ubsan_check:
7600 case Intrinsic::uadd_with_overflow:
7601 case Intrinsic::sadd_with_overflow:
7602 case Intrinsic::usub_with_overflow:
7603 case Intrinsic::ssub_with_overflow:
7604 case Intrinsic::umul_with_overflow:
7605 case Intrinsic::smul_with_overflow: {
7607 switch (Intrinsic) {
7609 case Intrinsic::uadd_with_overflow:
Op =
ISD::UADDO;
break;
7610 case Intrinsic::sadd_with_overflow:
Op =
ISD::SADDO;
break;
7611 case Intrinsic::usub_with_overflow:
Op =
ISD::USUBO;
break;
7612 case Intrinsic::ssub_with_overflow:
Op =
ISD::SSUBO;
break;
7613 case Intrinsic::umul_with_overflow:
Op =
ISD::UMULO;
break;
7614 case Intrinsic::smul_with_overflow:
Op =
ISD::SMULO;
break;
7620 EVT OverflowVT = MVT::i1;
7625 SDVTList VTs =
DAG.getVTList(ResultVT, OverflowVT);
7629 case Intrinsic::prefetch: {
7642 ISD::PREFETCH, sdl,
DAG.getVTList(MVT::Other),
Ops,
7644 std::nullopt, Flags);
7650 DAG.setRoot(Result);
7653 case Intrinsic::lifetime_start:
7654 case Intrinsic::lifetime_end: {
7655 bool IsStart = (
Intrinsic == Intrinsic::lifetime_start);
7661 if (!LifetimeObject)
7666 auto SI =
FuncInfo.StaticAllocaMap.find(LifetimeObject);
7667 if (SI ==
FuncInfo.StaticAllocaMap.end())
7671 Res =
DAG.getLifetimeNode(IsStart, sdl,
getRoot(), FrameIndex);
7675 case Intrinsic::pseudoprobe: {
7683 case Intrinsic::invariant_start:
7688 case Intrinsic::invariant_end:
7691 case Intrinsic::clear_cache: {
7696 {InputChain, StartVal, EndVal});
7701 case Intrinsic::donothing:
7702 case Intrinsic::seh_try_begin:
7703 case Intrinsic::seh_scope_begin:
7704 case Intrinsic::seh_try_end:
7705 case Intrinsic::seh_scope_end:
7708 case Intrinsic::experimental_stackmap:
7711 case Intrinsic::experimental_patchpoint_void:
7712 case Intrinsic::experimental_patchpoint:
7715 case Intrinsic::experimental_gc_statepoint:
7718 case Intrinsic::experimental_gc_result:
7721 case Intrinsic::experimental_gc_relocate:
7724 case Intrinsic::instrprof_cover:
7726 case Intrinsic::instrprof_increment:
7728 case Intrinsic::instrprof_timestamp:
7730 case Intrinsic::instrprof_value_profile:
7732 case Intrinsic::instrprof_mcdc_parameters:
7734 case Intrinsic::instrprof_mcdc_tvbitmap_update:
7736 case Intrinsic::localescape: {
7737 MachineFunction &MF =
DAG.getMachineFunction();
7738 const TargetInstrInfo *
TII =
DAG.getSubtarget().getInstrInfo();
7742 for (
unsigned Idx = 0,
E =
I.arg_size(); Idx <
E; ++Idx) {
7748 "can only escape static allocas");
7753 TII->get(TargetOpcode::LOCAL_ESCAPE))
7761 case Intrinsic::localrecover: {
7763 MachineFunction &MF =
DAG.getMachineFunction();
7769 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7773 Value *
FP =
I.getArgOperand(1);
7779 SDValue OffsetSym =
DAG.getMCSymbol(FrameAllocSym, PtrVT);
7784 SDValue Add =
DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7790 case Intrinsic::fake_use: {
7791 Value *
V =
I.getArgOperand(0);
7796 auto FakeUseValue = [&]() ->
SDValue {
7810 if (!FakeUseValue || FakeUseValue.isUndef())
7813 Ops[1] = FakeUseValue;
7818 DAG.setRoot(
DAG.getNode(ISD::FAKE_USE, sdl, MVT::Other,
Ops));
7822 case Intrinsic::reloc_none: {
7827 DAG.getTargetExternalSymbol(
7829 DAG.setRoot(
DAG.getNode(ISD::RELOC_NONE, sdl, MVT::Other,
Ops));
7833 case Intrinsic::eh_exceptionpointer:
7834 case Intrinsic::eh_exceptioncode: {
7840 SDValue N =
DAG.getCopyFromReg(
DAG.getEntryNode(), sdl, VReg, PtrVT);
7841 if (Intrinsic == Intrinsic::eh_exceptioncode)
7842 N =
DAG.getZExtOrTrunc(
N, sdl, MVT::i32);
7846 case Intrinsic::xray_customevent: {
7849 const auto &Triple =
DAG.getTarget().getTargetTriple();
7858 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
7860 Ops.push_back(LogEntryVal);
7861 Ops.push_back(StrSizeVal);
7862 Ops.push_back(Chain);
7868 MachineSDNode *MN =
DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7871 DAG.setRoot(patchableNode);
7875 case Intrinsic::xray_typedevent: {
7878 const auto &Triple =
DAG.getTarget().getTargetTriple();
7890 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
7892 Ops.push_back(LogTypeId);
7893 Ops.push_back(LogEntryVal);
7894 Ops.push_back(StrSizeVal);
7895 Ops.push_back(Chain);
7901 MachineSDNode *MN =
DAG.getMachineNode(
7902 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys,
Ops);
7904 DAG.setRoot(patchableNode);
7908 case Intrinsic::experimental_deoptimize:
7911 case Intrinsic::stepvector:
7914 case Intrinsic::vector_reduce_fadd:
7915 case Intrinsic::vector_reduce_fmul:
7916 case Intrinsic::vector_reduce_add:
7917 case Intrinsic::vector_reduce_mul:
7918 case Intrinsic::vector_reduce_and:
7919 case Intrinsic::vector_reduce_or:
7920 case Intrinsic::vector_reduce_xor:
7921 case Intrinsic::vector_reduce_smax:
7922 case Intrinsic::vector_reduce_smin:
7923 case Intrinsic::vector_reduce_umax:
7924 case Intrinsic::vector_reduce_umin:
7925 case Intrinsic::vector_reduce_fmax:
7926 case Intrinsic::vector_reduce_fmin:
7927 case Intrinsic::vector_reduce_fmaximum:
7928 case Intrinsic::vector_reduce_fminimum:
7929 visitVectorReduce(
I, Intrinsic);
7932 case Intrinsic::icall_branch_funnel: {
7938 I.getArgOperand(1),
Offset,
DAG.getDataLayout()));
7941 "llvm.icall.branch.funnel operand must be a GlobalValue");
7942 Ops.push_back(
DAG.getTargetGlobalAddress(
Base, sdl, MVT::i64, 0));
7944 struct BranchFunnelTarget {
7950 for (
unsigned Op = 1,
N =
I.arg_size();
Op !=
N;
Op += 2) {
7953 if (ElemBase !=
Base)
7955 "to the same GlobalValue");
7961 "llvm.icall.branch.funnel operand must be a GlobalValue");
7967 [](
const BranchFunnelTarget &
T1,
const BranchFunnelTarget &T2) {
7968 return T1.Offset < T2.Offset;
7971 for (
auto &
T : Targets) {
7972 Ops.push_back(
DAG.getTargetConstant(
T.Offset, sdl, MVT::i32));
7973 Ops.push_back(
T.Target);
7976 Ops.push_back(
DAG.getRoot());
7977 SDValue N(
DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7986 case Intrinsic::wasm_landingpad_index:
7992 case Intrinsic::aarch64_settag:
7993 case Intrinsic::aarch64_settag_zero: {
7994 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
7995 bool ZeroMemory =
Intrinsic == Intrinsic::aarch64_settag_zero;
7998 getValue(
I.getArgOperand(1)), MachinePointerInfo(
I.getArgOperand(0)),
8004 case Intrinsic::amdgcn_cs_chain: {
8009 Type *RetTy =
I.getType();
8019 for (
unsigned Idx : {2, 3, 1}) {
8020 TargetLowering::ArgListEntry Arg(
getValue(
I.getOperand(Idx)),
8022 Arg.setAttributes(&
I, Idx);
8023 Args.push_back(Arg);
8026 assert(Args[0].IsInReg &&
"SGPR args should be marked inreg");
8027 assert(!Args[1].IsInReg &&
"VGPR args should not be marked inreg");
8028 Args[2].IsInReg =
true;
8031 for (
unsigned Idx = 4; Idx <
I.arg_size(); ++Idx) {
8032 TargetLowering::ArgListEntry Arg(
getValue(
I.getOperand(Idx)),
8034 Arg.setAttributes(&
I, Idx);
8035 Args.push_back(Arg);
8038 TargetLowering::CallLoweringInfo CLI(
DAG);
8041 .setCallee(CC, RetTy, Callee, std::move(Args))
8044 .setConvergent(
I.isConvergent());
8046 std::pair<SDValue, SDValue>
Result =
8050 "Should've lowered as tail call");
8055 case Intrinsic::amdgcn_call_whole_wave: {
8057 bool isTailCall =
I.isTailCall();
8060 for (
unsigned Idx = 1; Idx <
I.arg_size(); ++Idx) {
8061 TargetLowering::ArgListEntry Arg(
getValue(
I.getArgOperand(Idx)),
8062 I.getArgOperand(Idx)->getType());
8063 Arg.setAttributes(&
I, Idx);
8070 Args.push_back(Arg);
8075 auto *Token = Bundle->Inputs[0].get();
8076 ConvControlToken =
getValue(Token);
8079 TargetLowering::CallLoweringInfo CLI(
DAG);
8083 getValue(
I.getArgOperand(0)), std::move(Args))
8087 .setConvergent(
I.isConvergent())
8088 .setConvergenceControlToken(ConvControlToken);
8091 std::pair<SDValue, SDValue>
Result =
8094 if (
Result.first.getNode())
8098 case Intrinsic::ptrmask: {
8114 auto HighOnes =
DAG.getNode(
8115 ISD::SHL, sdl, PtrVT,
DAG.getAllOnesConstant(sdl, PtrVT),
8116 DAG.getShiftAmountConstant(
Mask.getValueType().getFixedSizeInBits(),
8119 DAG.getZExtOrTrunc(Mask, sdl, PtrVT), HighOnes);
8120 }
else if (
Mask.getValueType() != PtrVT)
8121 Mask =
DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT);
8127 case Intrinsic::threadlocal_address: {
8131 case Intrinsic::get_active_lane_mask: {
8135 EVT ElementVT =
Index.getValueType();
8138 setValue(&
I,
DAG.getNode(ISD::GET_ACTIVE_LANE_MASK, sdl, CCVT, Index,
8146 SDValue VectorIndex =
DAG.getSplat(VecTy, sdl, Index);
8147 SDValue VectorTripCount =
DAG.getSplat(VecTy, sdl, TripCount);
8148 SDValue VectorStep =
DAG.getStepVector(sdl, VecTy);
8151 SDValue SetCC =
DAG.getSetCC(sdl, CCVT, VectorInduction,
8156 case Intrinsic::experimental_get_vector_length: {
8158 "Expected positive VF");
8163 EVT CountVT =
Count.getValueType();
8166 visitTargetIntrinsic(
I, Intrinsic);
8175 if (CountVT.
bitsLT(VT)) {
8180 SDValue MaxEVL =
DAG.getElementCount(sdl, CountVT,
8190 case Intrinsic::vector_partial_reduce_add: {
8198 case Intrinsic::vector_partial_reduce_fadd: {
8202 ISD::PARTIAL_REDUCE_FMLA, sdl, Acc.
getValueType(), Acc,
8206 case Intrinsic::experimental_cttz_elts: {
8209 EVT OpVT =
Op.getValueType();
8212 visitTargetIntrinsic(
I, Intrinsic);
8228 ConstantRange VScaleRange(1,
true);
8257 case Intrinsic::vector_insert: {
8265 if (
Index.getValueType() != VectorIdxTy)
8266 Index =
DAG.getVectorIdxConstant(
Index->getAsZExtVal(), sdl);
8273 case Intrinsic::vector_extract: {
8281 if (
Index.getValueType() != VectorIdxTy)
8282 Index =
DAG.getVectorIdxConstant(
Index->getAsZExtVal(), sdl);
8288 case Intrinsic::experimental_vector_match: {
8294 EVT ResVT =
Mask.getValueType();
8300 visitTargetIntrinsic(
I, Intrinsic);
8306 for (
unsigned i = 0; i < SearchSize; ++i) {
8309 DAG.getVectorIdxConstant(i, sdl));
8318 case Intrinsic::vector_reverse:
8319 visitVectorReverse(
I);
8321 case Intrinsic::vector_splice:
8322 visitVectorSplice(
I);
8324 case Intrinsic::callbr_landingpad:
8325 visitCallBrLandingPad(
I);
8327 case Intrinsic::vector_interleave2:
8328 visitVectorInterleave(
I, 2);
8330 case Intrinsic::vector_interleave3:
8331 visitVectorInterleave(
I, 3);
8333 case Intrinsic::vector_interleave4:
8334 visitVectorInterleave(
I, 4);
8336 case Intrinsic::vector_interleave5:
8337 visitVectorInterleave(
I, 5);
8339 case Intrinsic::vector_interleave6:
8340 visitVectorInterleave(
I, 6);
8342 case Intrinsic::vector_interleave7:
8343 visitVectorInterleave(
I, 7);
8345 case Intrinsic::vector_interleave8:
8346 visitVectorInterleave(
I, 8);
8348 case Intrinsic::vector_deinterleave2:
8349 visitVectorDeinterleave(
I, 2);
8351 case Intrinsic::vector_deinterleave3:
8352 visitVectorDeinterleave(
I, 3);
8354 case Intrinsic::vector_deinterleave4:
8355 visitVectorDeinterleave(
I, 4);
8357 case Intrinsic::vector_deinterleave5:
8358 visitVectorDeinterleave(
I, 5);
8360 case Intrinsic::vector_deinterleave6:
8361 visitVectorDeinterleave(
I, 6);
8363 case Intrinsic::vector_deinterleave7:
8364 visitVectorDeinterleave(
I, 7);
8366 case Intrinsic::vector_deinterleave8:
8367 visitVectorDeinterleave(
I, 8);
8369 case Intrinsic::experimental_vector_compress:
8371 getValue(
I.getArgOperand(0)).getValueType(),
8376 case Intrinsic::experimental_convergence_anchor:
8377 case Intrinsic::experimental_convergence_entry:
8378 case Intrinsic::experimental_convergence_loop:
8379 visitConvergenceControl(
I, Intrinsic);
8381 case Intrinsic::experimental_vector_histogram_add: {
8382 visitVectorHistogram(
I, Intrinsic);
8385 case Intrinsic::experimental_vector_extract_last_active: {
8386 visitVectorExtractLastActive(
I, Intrinsic);
8389 case Intrinsic::loop_dependence_war_mask:
8395 case Intrinsic::loop_dependence_raw_mask:
8404void SelectionDAGBuilder::pushFPOpOutChain(
SDValue Result,
8420 PendingConstrainedFP.push_back(OutChain);
8423 PendingConstrainedFPStrict.push_back(OutChain);
8428void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
8442 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8444 SDVTList VTs =
DAG.getVTList(VT, MVT::Other);
8448 Flags.setNoFPExcept(
true);
8451 Flags.copyFMF(*FPOp);
8456#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8457 case Intrinsic::INTRINSIC: \
8458 Opcode = ISD::STRICT_##DAGN; \
8460#include "llvm/IR/ConstrainedOps.def"
8461 case Intrinsic::experimental_constrained_fmuladd: {
8468 pushFPOpOutChain(
Mul, EB);
8491 if (TM.Options.NoNaNsFPMath)
8499 pushFPOpOutChain(Result, EB);
8506 std::optional<unsigned> ResOPC;
8508 case Intrinsic::vp_ctlz: {
8510 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
8513 case Intrinsic::vp_cttz: {
8515 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
8518 case Intrinsic::vp_cttz_elts: {
8520 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS;
8523#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
8524 case Intrinsic::VPID: \
8525 ResOPC = ISD::VPSD; \
8527#include "llvm/IR/VPIntrinsics.def"
8532 "Inconsistency: no SDNode available for this VPIntrinsic!");
8534 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
8535 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
8537 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
8538 : ISD::VP_REDUCE_FMUL;
8544void SelectionDAGBuilder::visitVPLoad(
8556 Alignment =
DAG.getEVTAlign(VT);
8559 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8560 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8563 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8564 MachinePointerInfo(PtrOperand), MMOFlags,
8566 LD =
DAG.getLoadVP(VT,
DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8573void SelectionDAGBuilder::visitVPLoadFF(
8576 assert(OpValues.
size() == 3 &&
"Unexpected number of operands");
8586 Alignment =
DAG.getEVTAlign(VT);
8589 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8590 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8593 LD =
DAG.getLoadFFVP(VT,
DL, InChain, OpValues[0], OpValues[1], OpValues[2],
8598 setValue(&VPIntrin,
DAG.getMergeValues({LD.getValue(0), Trunc},
DL));
8601void SelectionDAGBuilder::visitVPGather(
8605 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8617 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8619 *Alignment, AAInfo, Ranges);
8629 EVT IdxVT =
Index.getValueType();
8635 LD =
DAG.getGatherVP(
8636 DAG.getVTList(VT, MVT::Other), VT,
DL,
8637 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
8643void SelectionDAGBuilder::visitVPStore(
8647 EVT VT = OpValues[0].getValueType();
8652 Alignment =
DAG.getEVTAlign(VT);
8655 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8658 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8659 MachinePointerInfo(PtrOperand), MMOFlags,
8668void SelectionDAGBuilder::visitVPScatter(
8671 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8673 EVT VT = OpValues[0].getValueType();
8683 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8685 *Alignment, AAInfo);
8695 EVT IdxVT =
Index.getValueType();
8701 ST =
DAG.getScatterVP(
DAG.getVTList(MVT::Other), VT,
DL,
8702 {getMemoryRoot(), OpValues[0], Base, Index, Scale,
8703 OpValues[2], OpValues[3]},
8709void SelectionDAGBuilder::visitVPStridedLoad(
8721 SDValue InChain = AddToChain ?
DAG.getRoot() :
DAG.getEntryNode();
8723 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8726 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8728 *Alignment, AAInfo, Ranges);
8730 SDValue LD =
DAG.getStridedLoadVP(VT,
DL, InChain, OpValues[0], OpValues[1],
8731 OpValues[2], OpValues[3], MMO,
8739void SelectionDAGBuilder::visitVPStridedStore(
8743 EVT VT = OpValues[0].getValueType();
8749 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8752 MachineMemOperand *MMO =
DAG.getMachineFunction().getMachineMemOperand(
8754 *Alignment, AAInfo);
8758 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
8766void SelectionDAGBuilder::visitVPCmp(
const VPCmpIntrinsic &VPIntrin) {
8767 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8778 if (TM.Options.NoNaNsFPMath)
8791 "Unexpected target EVL type");
8794 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
8797 DAG.getSetCCVP(
DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
8800void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
8808 return visitVPCmp(*CmpI);
8811 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
8813 SDVTList VTs =
DAG.getVTList(ValueVTs);
8819 "Unexpected target EVL type");
8823 for (
unsigned I = 0;
I < VPIntrin.
arg_size(); ++
I) {
8825 if (
I == EVLParamPos)
8832 SDNodeFlags SDFlags;
8840 visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
8842 case ISD::VP_LOAD_FF:
8843 visitVPLoadFF(VPIntrin, ValueVTs[0], ValueVTs[1], OpValues);
8845 case ISD::VP_GATHER:
8846 visitVPGather(VPIntrin, ValueVTs[0], OpValues);
8848 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
8849 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
8852 visitVPStore(VPIntrin, OpValues);
8854 case ISD::VP_SCATTER:
8855 visitVPScatter(VPIntrin, OpValues);
8857 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
8858 visitVPStridedStore(VPIntrin, OpValues);
8860 case ISD::VP_FMULADD: {
8861 assert(OpValues.
size() == 5 &&
"Unexpected number of operands");
8862 SDNodeFlags SDFlags;
8867 setValue(&VPIntrin,
DAG.getNode(ISD::VP_FMA,
DL, VTs, OpValues, SDFlags));
8870 ISD::VP_FMUL,
DL, VTs,
8871 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
8873 DAG.getNode(ISD::VP_FADD,
DL, VTs,
8874 {
Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
8879 case ISD::VP_IS_FPCLASS: {
8880 const DataLayout DLayout =
DAG.getDataLayout();
8882 auto Constant = OpValues[1]->getAsZExtVal();
8885 {OpValues[0],
Check, OpValues[2], OpValues[3]});
8889 case ISD::VP_INTTOPTR: {
8900 case ISD::VP_PTRTOINT: {
8902 EVT DestVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
8915 case ISD::VP_CTLZ_ZERO_UNDEF:
8917 case ISD::VP_CTTZ_ZERO_UNDEF:
8918 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF:
8919 case ISD::VP_CTTZ_ELTS: {
8921 DAG.getNode(Opcode,
DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
8931 MachineFunction &MF =
DAG.getMachineFunction();
8939 unsigned CallSiteIndex =
FuncInfo.getCurrentCallSite();
8940 if (CallSiteIndex) {
8954 assert(BeginLabel &&
"BeginLabel should've been set");
8956 MachineFunction &MF =
DAG.getMachineFunction();
8968 assert(
II &&
"II should've been set");
8979std::pair<SDValue, SDValue>
8993 std::pair<SDValue, SDValue> Result = TLI.
LowerCallTo(CLI);
8996 "Non-null chain expected with non-tail call!");
8997 assert((Result.second.getNode() || !Result.first.getNode()) &&
8998 "Null value expected with tail call!");
9000 if (!Result.second.getNode()) {
9007 PendingExports.clear();
9009 DAG.setRoot(Result.second);
9027 if (!isMustTailCall &&
9028 Caller->getFnAttribute(
"disable-tail-calls").getValueAsBool())
9034 if (
DAG.getTargetLoweringInfo().supportSwiftError() &&
9035 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
9044 bool isTailCall,
bool isMustTailCall,
9047 auto &
DL =
DAG.getDataLayout();
9054 const Value *SwiftErrorVal =
nullptr;
9061 const Value *V = *
I;
9064 if (V->getType()->isEmptyTy())
9069 Entry.setAttributes(&CB,
I - CB.
arg_begin());
9081 Args.push_back(Entry);
9092 Value *V = Bundle->Inputs[0];
9094 Entry.IsCFGuardTarget =
true;
9095 Args.push_back(Entry);
9108 "Target doesn't support calls with kcfi operand bundles.");
9116 auto *Token = Bundle->Inputs[0].get();
9117 ConvControlToken =
getValue(Token);
9128 .
setCallee(RetTy, FTy, Callee, std::move(Args), CB)
9141 "This target doesn't support calls with ptrauth operand bundles.");
9145 std::pair<SDValue, SDValue> Result =
lowerInvokable(CLI, EHPadBB);
9147 if (Result.first.getNode()) {
9162 DAG.setRoot(CopyNode);
9178 LoadTy, Builder.DAG.getDataLayout()))
9179 return Builder.getValue(LoadCst);
9185 bool ConstantMemory =
false;
9188 if (Builder.BatchAA && Builder.BatchAA->pointsToConstantMemory(PtrVal)) {
9189 Root = Builder.DAG.getEntryNode();
9190 ConstantMemory =
true;
9193 Root = Builder.DAG.getRoot();
9198 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
9201 if (!ConstantMemory)
9202 Builder.PendingLoads.push_back(LoadVal.
getValue(1));
9208void SelectionDAGBuilder::processIntegerCallValue(
const Instruction &
I,
9211 EVT VT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
9222bool SelectionDAGBuilder::visitMemCmpBCmpCall(
const CallInst &
I) {
9223 const Value *
LHS =
I.getArgOperand(0), *
RHS =
I.getArgOperand(1);
9224 const Value *
Size =
I.getArgOperand(2);
9227 EVT CallVT =
DAG.getTargetLoweringInfo().getValueType(
DAG.getDataLayout(),
9233 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9237 if (Res.first.getNode()) {
9238 processIntegerCallValue(
I, Res.first,
true);
9252 auto hasFastLoadsAndCompare = [&](
unsigned NumBits) {
9253 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
9275 switch (NumBitsToCompare) {
9287 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
9300 LoadL =
DAG.getBitcast(CmpVT, LoadL);
9301 LoadR =
DAG.getBitcast(CmpVT, LoadR);
9305 processIntegerCallValue(
I, Cmp,
false);
9314bool SelectionDAGBuilder::visitMemChrCall(
const CallInst &
I) {
9315 const Value *Src =
I.getArgOperand(0);
9316 const Value *
Char =
I.getArgOperand(1);
9317 const Value *
Length =
I.getArgOperand(2);
9319 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9320 std::pair<SDValue, SDValue> Res =
9323 MachinePointerInfo(Src));
9324 if (Res.first.getNode()) {
9338bool SelectionDAGBuilder::visitMemPCpyCall(
const CallInst &
I) {
9343 Align DstAlign =
DAG.InferPtrAlign(Dst).valueOrOne();
9344 Align SrcAlign =
DAG.InferPtrAlign(Src).valueOrOne();
9346 Align Alignment = std::min(DstAlign, SrcAlign);
9355 Root, sdl, Dst, Src,
Size, Alignment,
false,
false,
nullptr,
9356 std::nullopt, MachinePointerInfo(
I.getArgOperand(0)),
9357 MachinePointerInfo(
I.getArgOperand(1)),
I.getAAMetadata());
9359 "** memcpy should not be lowered as TailCall in mempcpy context **");
9363 Size =
DAG.getSExtOrTrunc(
Size, sdl, Dst.getValueType());
9376bool SelectionDAGBuilder::visitStrCpyCall(
const CallInst &
I,
bool isStpcpy) {
9377 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9379 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9380 std::pair<SDValue, SDValue> Res =
9383 MachinePointerInfo(Arg0),
9384 MachinePointerInfo(Arg1), isStpcpy);
9385 if (Res.first.getNode()) {
9387 DAG.setRoot(Res.second);
9399bool SelectionDAGBuilder::visitStrCmpCall(
const CallInst &
I) {
9400 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9402 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9403 std::pair<SDValue, SDValue> Res =
9406 MachinePointerInfo(Arg0),
9407 MachinePointerInfo(Arg1));
9408 if (Res.first.getNode()) {
9409 processIntegerCallValue(
I, Res.first,
true);
9422bool SelectionDAGBuilder::visitStrLenCall(
const CallInst &
I) {
9423 const Value *Arg0 =
I.getArgOperand(0);
9425 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9428 if (Res.first.getNode()) {
9429 processIntegerCallValue(
I, Res.first,
false);
9442bool SelectionDAGBuilder::visitStrNLenCall(
const CallInst &
I) {
9443 const Value *Arg0 =
I.getArgOperand(0), *Arg1 =
I.getArgOperand(1);
9445 const SelectionDAGTargetInfo &TSI =
DAG.getSelectionDAGInfo();
9446 std::pair<SDValue, SDValue> Res =
9449 MachinePointerInfo(Arg0));
9450 if (Res.first.getNode()) {
9451 processIntegerCallValue(
I, Res.first,
false);
9464bool SelectionDAGBuilder::visitUnaryFloatCall(
const CallInst &
I,
9469 if (!
I.onlyReadsMemory() ||
I.isStrictFP())
9486bool SelectionDAGBuilder::visitBinaryFloatCall(
const CallInst &
I,
9491 if (!
I.onlyReadsMemory() ||
I.isStrictFP())
9504void SelectionDAGBuilder::visitCall(
const CallInst &
I) {
9506 if (
I.isInlineAsm()) {
9513 if (Function *
F =
I.getCalledFunction()) {
9514 if (
F->isDeclaration()) {
9516 if (
unsigned IID =
F->getIntrinsicID()) {
9517 visitIntrinsicCall(
I, IID);
9526 if (!
I.isNoBuiltin() && !
F->hasLocalLinkage() &&
F->hasName() &&
9527 LibInfo->getLibFunc(*
F, Func) &&
LibInfo->hasOptimizedCodeGen(Func)) {
9531 if (visitMemCmpBCmpCall(
I))
9534 case LibFunc_copysign:
9535 case LibFunc_copysignf:
9536 case LibFunc_copysignl:
9539 if (
I.onlyReadsMemory()) {
9550 if (visitUnaryFloatCall(
I, ISD::FABS))
9556 if (visitBinaryFloatCall(
I, ISD::FMINNUM))
9562 if (visitBinaryFloatCall(
I, ISD::FMAXNUM))
9565 case LibFunc_fminimum_num:
9566 case LibFunc_fminimum_numf:
9567 case LibFunc_fminimum_numl:
9568 if (visitBinaryFloatCall(
I, ISD::FMINIMUMNUM))
9571 case LibFunc_fmaximum_num:
9572 case LibFunc_fmaximum_numf:
9573 case LibFunc_fmaximum_numl:
9574 if (visitBinaryFloatCall(
I, ISD::FMAXIMUMNUM))
9580 if (visitUnaryFloatCall(
I, ISD::FSIN))
9586 if (visitUnaryFloatCall(
I, ISD::FCOS))
9592 if (visitUnaryFloatCall(
I, ISD::FTAN))
9598 if (visitUnaryFloatCall(
I, ISD::FASIN))
9604 if (visitUnaryFloatCall(
I, ISD::FACOS))
9610 if (visitUnaryFloatCall(
I, ISD::FATAN))
9614 case LibFunc_atan2f:
9615 case LibFunc_atan2l:
9616 if (visitBinaryFloatCall(
I, ISD::FATAN2))
9622 if (visitUnaryFloatCall(
I, ISD::FSINH))
9628 if (visitUnaryFloatCall(
I, ISD::FCOSH))
9634 if (visitUnaryFloatCall(
I, ISD::FTANH))
9640 case LibFunc_sqrt_finite:
9641 case LibFunc_sqrtf_finite:
9642 case LibFunc_sqrtl_finite:
9643 if (visitUnaryFloatCall(
I, ISD::FSQRT))
9647 case LibFunc_floorf:
9648 case LibFunc_floorl:
9649 if (visitUnaryFloatCall(
I, ISD::FFLOOR))
9652 case LibFunc_nearbyint:
9653 case LibFunc_nearbyintf:
9654 case LibFunc_nearbyintl:
9655 if (visitUnaryFloatCall(
I, ISD::FNEARBYINT))
9661 if (visitUnaryFloatCall(
I, ISD::FCEIL))
9667 if (visitUnaryFloatCall(
I, ISD::FRINT))
9671 case LibFunc_roundf:
9672 case LibFunc_roundl:
9673 if (visitUnaryFloatCall(
I, ISD::FROUND))
9677 case LibFunc_truncf:
9678 case LibFunc_truncl:
9679 if (visitUnaryFloatCall(
I, ISD::FTRUNC))
9685 if (visitUnaryFloatCall(
I, ISD::FLOG2))
9691 if (visitUnaryFloatCall(
I, ISD::FEXP2))
9695 case LibFunc_exp10f:
9696 case LibFunc_exp10l:
9697 if (visitUnaryFloatCall(
I, ISD::FEXP10))
9701 case LibFunc_ldexpf:
9702 case LibFunc_ldexpl:
9703 if (visitBinaryFloatCall(
I, ISD::FLDEXP))
9706 case LibFunc_memcmp:
9707 if (visitMemCmpBCmpCall(
I))
9710 case LibFunc_mempcpy:
9711 if (visitMemPCpyCall(
I))
9714 case LibFunc_memchr:
9715 if (visitMemChrCall(
I))
9718 case LibFunc_strcpy:
9719 if (visitStrCpyCall(
I,
false))
9722 case LibFunc_stpcpy:
9723 if (visitStrCpyCall(
I,
true))
9726 case LibFunc_strcmp:
9727 if (visitStrCmpCall(
I))
9730 case LibFunc_strlen:
9731 if (visitStrLenCall(
I))
9734 case LibFunc_strnlen:
9735 if (visitStrNLenCall(
I))
9759 if (
I.hasDeoptState())
9776 const Value *Discriminator = PAB->Inputs[1];
9778 assert(
Key->getType()->isIntegerTy(32) &&
"Invalid ptrauth key");
9779 assert(Discriminator->getType()->isIntegerTy(64) &&
9780 "Invalid ptrauth discriminator");
9785 if (CalleeCPA->isKnownCompatibleWith(
Key, Discriminator,
9786 DAG.getDataLayout()))
9826 for (
const auto &Code : Codes)
9841 SDISelAsmOperandInfo &MatchingOpInfo,
9843 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
9849 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
9851 OpInfo.ConstraintVT);
9852 std::pair<unsigned, const TargetRegisterClass *> InputRC =
9854 MatchingOpInfo.ConstraintVT);
9855 const bool OutOpIsIntOrFP =
9856 OpInfo.ConstraintVT.isInteger() || OpInfo.ConstraintVT.isFloatingPoint();
9857 const bool InOpIsIntOrFP = MatchingOpInfo.ConstraintVT.isInteger() ||
9858 MatchingOpInfo.ConstraintVT.isFloatingPoint();
9859 if ((OutOpIsIntOrFP != InOpIsIntOrFP) || (MatchRC.second != InputRC.second)) {
9862 " with a matching output constraint of"
9863 " incompatible type!");
9865 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
9872 SDISelAsmOperandInfo &OpInfo,
9885 const Value *OpVal = OpInfo.CallOperandVal;
9903 DL.getPrefTypeAlign(Ty),
false,
9906 Chain = DAG.
getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
9909 OpInfo.CallOperand = StackSlot;
9922static std::optional<unsigned>
9924 SDISelAsmOperandInfo &OpInfo,
9925 SDISelAsmOperandInfo &RefOpInfo) {
9936 return std::nullopt;
9940 unsigned AssignedReg;
9943 &
TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
9946 return std::nullopt;
9951 const MVT RegVT = *
TRI.legalclasstypes_begin(*RC);
9953 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
9962 !
TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
9967 if (RegVT.
getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
9972 OpInfo.CallOperand =
9973 DAG.
getNode(ISD::BITCAST,
DL, RegVT, OpInfo.CallOperand);
9974 OpInfo.ConstraintVT = RegVT;
9978 }
else if (RegVT.
isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
9981 OpInfo.CallOperand =
9982 DAG.
getNode(ISD::BITCAST,
DL, VT, OpInfo.CallOperand);
9983 OpInfo.ConstraintVT = VT;
9990 if (OpInfo.isMatchingInputConstraint())
9991 return std::nullopt;
9993 EVT ValueVT = OpInfo.ConstraintVT;
9994 if (OpInfo.ConstraintVT == MVT::Other)
9998 unsigned NumRegs = 1;
9999 if (OpInfo.ConstraintVT != MVT::Other)
10014 I = std::find(
I, RC->
end(), AssignedReg);
10015 if (
I == RC->
end()) {
10018 return {AssignedReg};
10022 for (; NumRegs; --NumRegs, ++
I) {
10023 assert(
I != RC->
end() &&
"Ran out of registers to allocate!");
10028 OpInfo.AssignedRegs =
RegsForValue(Regs, RegVT, ValueVT);
10029 return std::nullopt;
10034 const std::vector<SDValue> &AsmNodeOperands) {
10037 for (; OperandNo; --OperandNo) {
10039 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal();
10042 (
F.isRegDefKind() ||
F.isRegDefEarlyClobberKind() ||
F.isMemKind()) &&
10043 "Skipped past definitions?");
10044 CurOp +=
F.getNumOperandRegisters() + 1;
10052 unsigned Flags = 0;
10055 explicit ExtraFlags(
const CallBase &
Call) {
10057 if (
IA->hasSideEffects())
10059 if (
IA->isAlignStack())
10066 void update(
const TargetLowering::AsmOperandInfo &OpInfo) {
10082 unsigned get()
const {
return Flags; }
10105void SelectionDAGBuilder::visitInlineAsm(
const CallBase &
Call,
10112 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10114 DAG.getDataLayout(),
DAG.getSubtarget().getRegisterInfo(),
Call);
10118 bool HasSideEffect =
IA->hasSideEffects();
10119 ExtraFlags ExtraInfo(
Call);
10121 for (
auto &
T : TargetConstraints) {
10122 ConstraintOperands.
push_back(SDISelAsmOperandInfo(
T));
10123 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.
back();
10125 if (OpInfo.CallOperandVal)
10126 OpInfo.CallOperand =
getValue(OpInfo.CallOperandVal);
10128 if (!HasSideEffect)
10129 HasSideEffect = OpInfo.hasMemory(TLI);
10141 return emitInlineAsmError(
Call,
"constraint '" + Twine(
T.ConstraintCode) +
10142 "' expects an integer constant "
10145 ExtraInfo.update(
T);
10153 if (EmitEHLabels) {
10154 assert(EHPadBB &&
"InvokeInst must have an EHPadBB");
10158 if (IsCallBr || EmitEHLabels) {
10166 if (EmitEHLabels) {
10167 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
10172 IA->collectAsmStrs(AsmStrs);
10175 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10183 if (OpInfo.hasMatchingInput()) {
10184 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
10215 if (OpInfo.isIndirect &&
isFunction(OpInfo.CallOperand) &&
10218 OpInfo.isIndirect =
false;
10225 !OpInfo.isIndirect) {
10226 assert((OpInfo.isMultipleAlternative ||
10228 "Can only indirectify direct input operands!");
10234 OpInfo.CallOperandVal =
nullptr;
10237 OpInfo.isIndirect =
true;
10243 std::vector<SDValue> AsmNodeOperands;
10244 AsmNodeOperands.push_back(
SDValue());
10245 AsmNodeOperands.push_back(
DAG.getTargetExternalSymbol(
10252 AsmNodeOperands.push_back(
DAG.getMDNode(SrcLoc));
10256 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10261 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10263 SDISelAsmOperandInfo &RefOpInfo =
10264 OpInfo.isMatchingInputConstraint()
10265 ? ConstraintOperands[OpInfo.getMatchedOperand()]
10267 const auto RegError =
10270 const MachineFunction &MF =
DAG.getMachineFunction();
10272 const char *
RegName =
TRI.getName(*RegError);
10273 emitInlineAsmError(
Call,
"register '" + Twine(
RegName) +
10274 "' allocated for constraint '" +
10275 Twine(OpInfo.ConstraintCode) +
10276 "' does not match required type");
10280 auto DetectWriteToReservedRegister = [&]() {
10281 const MachineFunction &MF =
DAG.getMachineFunction();
10286 emitInlineAsmError(
Call,
"write to reserved register '" +
10295 !OpInfo.isMatchingInputConstraint())) &&
10296 "Only address as input operand is allowed.");
10298 switch (OpInfo.Type) {
10304 "Failed to convert memory constraint code to constraint id.");
10308 OpFlags.setMemConstraint(ConstraintID);
10309 AsmNodeOperands.push_back(
DAG.getTargetConstant(OpFlags,
getCurSDLoc(),
10311 AsmNodeOperands.push_back(OpInfo.CallOperand);
10316 if (OpInfo.AssignedRegs.
Regs.empty()) {
10317 emitInlineAsmError(
10318 Call,
"couldn't allocate output register for constraint '" +
10319 Twine(OpInfo.ConstraintCode) +
"'");
10323 if (DetectWriteToReservedRegister())
10337 SDValue InOperandVal = OpInfo.CallOperand;
10339 if (OpInfo.isMatchingInputConstraint()) {
10344 InlineAsm::Flag
Flag(AsmNodeOperands[CurOp]->getAsZExtVal());
10345 if (
Flag.isRegDefKind() ||
Flag.isRegDefEarlyClobberKind()) {
10346 if (OpInfo.isIndirect) {
10348 emitInlineAsmError(
Call,
"inline asm not supported yet: "
10349 "don't know how to handle tied "
10350 "indirect register inputs");
10355 MachineFunction &MF =
DAG.getMachineFunction();
10360 MVT RegVT =
R->getSimpleValueType(0);
10361 const TargetRegisterClass *RC =
10364 :
TRI.getMinimalPhysRegClass(TiedReg);
10365 for (
unsigned i = 0, e =
Flag.getNumOperandRegisters(); i != e; ++i)
10368 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.
getValueType());
10372 MatchedRegs.getCopyToRegs(InOperandVal,
DAG, dl, Chain, &Glue, &
Call);
10374 OpInfo.getMatchedOperand(), dl,
DAG,
10379 assert(
Flag.isMemKind() &&
"Unknown matching constraint!");
10380 assert(
Flag.getNumOperandRegisters() == 1 &&
10381 "Unexpected number of operands");
10384 Flag.clearMemConstraint();
10385 Flag.setMatchingOp(OpInfo.getMatchedOperand());
10386 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10388 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
10399 std::vector<SDValue>
Ops;
10405 emitInlineAsmError(
Call,
"value out of range for constraint '" +
10406 Twine(OpInfo.ConstraintCode) +
"'");
10410 emitInlineAsmError(
Call,
10411 "invalid operand for inline asm constraint '" +
10412 Twine(OpInfo.ConstraintCode) +
"'");
10418 AsmNodeOperands.push_back(
DAG.getTargetConstant(
10425 assert((OpInfo.isIndirect ||
10427 "Operand must be indirect to be a mem!");
10430 "Memory operands expect pointer values");
10435 "Failed to convert memory constraint code to constraint id.");
10439 ResOpType.setMemConstraint(ConstraintID);
10440 AsmNodeOperands.push_back(
DAG.getTargetConstant(ResOpType,
10443 AsmNodeOperands.push_back(InOperandVal);
10451 "Failed to convert memory constraint code to constraint id.");
10455 SDValue AsmOp = InOperandVal;
10459 AsmOp =
DAG.getTargetGlobalAddress(GA->getGlobal(),
getCurSDLoc(),
10465 ResOpType.setMemConstraint(ConstraintID);
10467 AsmNodeOperands.push_back(
10470 AsmNodeOperands.push_back(AsmOp);
10476 emitInlineAsmError(
Call,
"unknown asm constraint '" +
10477 Twine(OpInfo.ConstraintCode) +
"'");
10482 if (OpInfo.isIndirect) {
10483 emitInlineAsmError(
10484 Call,
"Don't know how to handle indirect register inputs yet "
10485 "for constraint '" +
10486 Twine(OpInfo.ConstraintCode) +
"'");
10491 if (OpInfo.AssignedRegs.
Regs.empty()) {
10492 emitInlineAsmError(
Call,
10493 "couldn't allocate input reg for constraint '" +
10494 Twine(OpInfo.ConstraintCode) +
"'");
10498 if (DetectWriteToReservedRegister())
10507 0, dl,
DAG, AsmNodeOperands);
10513 if (!OpInfo.AssignedRegs.
Regs.empty())
10523 if (Glue.
getNode()) AsmNodeOperands.push_back(Glue);
10525 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
10527 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
10539 ResultTypes = StructResult->elements();
10540 else if (!CallResultType->
isVoidTy())
10541 ResultTypes =
ArrayRef(CallResultType);
10543 auto CurResultType = ResultTypes.
begin();
10544 auto handleRegAssign = [&](
SDValue V) {
10545 assert(CurResultType != ResultTypes.
end() &&
"Unexpected value");
10546 assert((*CurResultType)->isSized() &&
"Unexpected unsized type");
10547 EVT ResultVT = TLI.
getValueType(
DAG.getDataLayout(), *CurResultType);
10559 if (ResultVT !=
V.getValueType() &&
10562 else if (ResultVT !=
V.getValueType() && ResultVT.
isInteger() &&
10563 V.getValueType().isInteger()) {
10569 assert(ResultVT ==
V.getValueType() &&
"Asm result value mismatch!");
10575 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
10579 if (OpInfo.AssignedRegs.
Regs.empty())
10582 switch (OpInfo.ConstraintType) {
10586 Chain, &Glue, &
Call);
10598 assert(
false &&
"Unexpected unknown constraint");
10602 if (OpInfo.isIndirect) {
10603 const Value *Ptr = OpInfo.CallOperandVal;
10604 assert(Ptr &&
"Expected value CallOperandVal for indirect asm operand");
10606 MachinePointerInfo(Ptr));
10613 handleRegAssign(V);
10615 handleRegAssign(Val);
10621 if (!ResultValues.
empty()) {
10622 assert(CurResultType == ResultTypes.
end() &&
10623 "Mismatch in number of ResultTypes");
10625 "Mismatch in number of output operands in asm result");
10628 DAG.getVTList(ResultVTs), ResultValues);
10633 if (!OutChains.
empty())
10636 if (EmitEHLabels) {
10641 if (ResultValues.
empty() || HasSideEffect || !OutChains.
empty() || IsCallBr ||
10643 DAG.setRoot(Chain);
10646void SelectionDAGBuilder::emitInlineAsmError(
const CallBase &
Call,
10647 const Twine &Message) {
10648 LLVMContext &Ctx = *
DAG.getContext();
10652 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10656 if (ValueVTs.
empty())
10660 for (
const EVT &VT : ValueVTs)
10661 Ops.push_back(
DAG.getUNDEF(VT));
10666void SelectionDAGBuilder::visitVAStart(
const CallInst &
I) {
10670 DAG.getSrcValue(
I.getArgOperand(0))));
10673void SelectionDAGBuilder::visitVAArg(
const VAArgInst &
I) {
10674 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
10675 const DataLayout &
DL =
DAG.getDataLayout();
10679 DL.getABITypeAlign(
I.getType()).value());
10680 DAG.setRoot(
V.getValue(1));
10682 if (
I.getType()->isPointerTy())
10683 V =
DAG.getPtrExtOrTrunc(
10688void SelectionDAGBuilder::visitVAEnd(
const CallInst &
I) {
10692 DAG.getSrcValue(
I.getArgOperand(0))));
10695void SelectionDAGBuilder::visitVACopy(
const CallInst &
I) {
10700 DAG.getSrcValue(
I.getArgOperand(0)),
10701 DAG.getSrcValue(
I.getArgOperand(1))));
10707 std::optional<ConstantRange> CR =
getRange(
I);
10709 if (!CR || CR->isFullSet() || CR->isEmptySet() || CR->isUpperWrapped())
10712 APInt Lo = CR->getUnsignedMin();
10713 if (!
Lo.isMinValue())
10716 APInt Hi = CR->getUnsignedMax();
10717 unsigned Bits = std::max(
Hi.getActiveBits(),
10725 DAG.getValueType(SmallVT));
10726 unsigned NumVals =
Op.getNode()->getNumValues();
10732 Ops.push_back(ZExt);
10733 for (
unsigned I = 1;
I != NumVals; ++
I)
10734 Ops.push_back(
Op.getValue(
I));
10736 return DAG.getMergeValues(
Ops,
SL);
10746 SDValue TestConst =
DAG.getTargetConstant(Classes,
SDLoc(), MVT::i32);
10754 for (
unsigned I = 0, E =
Ops.size();
I != E; ++
I) {
10757 MergeOp, TestConst);
10760 return DAG.getMergeValues(
Ops,
SL);
10771 unsigned ArgIdx,
unsigned NumArgs,
SDValue Callee,
Type *ReturnTy,
10774 Args.reserve(NumArgs);
10778 for (
unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
10779 ArgI != ArgE; ++ArgI) {
10780 const Value *V =
Call->getOperand(ArgI);
10782 assert(!V->getType()->isEmptyTy() &&
"Empty type passed to intrinsic.");
10785 Entry.setAttributes(
Call, ArgI);
10786 Args.push_back(Entry);
10791 .
setCallee(
Call->getCallingConv(), ReturnTy, Callee, std::move(Args),
10820 for (
unsigned I = StartIdx;
I <
Call.arg_size();
I++) {
10829 Ops.push_back(Builder.getValue(
Call.getArgOperand(
I)));
10835void SelectionDAGBuilder::visitStackmap(
const CallInst &CI) {
10861 Ops.push_back(Chain);
10862 Ops.push_back(InGlue);
10869 assert(
ID.getValueType() == MVT::i64);
10871 DAG.getTargetConstant(
ID->getAsZExtVal(),
DL,
ID.getValueType());
10872 Ops.push_back(IDConst);
10878 Ops.push_back(ShadConst);
10884 SDVTList NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
10885 Chain =
DAG.getNode(ISD::STACKMAP,
DL, NodeTys,
Ops);
10888 Chain =
DAG.getCALLSEQ_END(Chain, 0, 0, InGlue,
DL);
10893 DAG.setRoot(Chain);
10896 FuncInfo.MF->getFrameInfo().setHasStackMap();
10900void SelectionDAGBuilder::visitPatchpoint(
const CallBase &CB,
10917 Callee =
DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
10920 Callee =
DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
10921 SDLoc(SymbolicCallee),
10922 SymbolicCallee->getValueType(0));
10932 "Not enough arguments provided to the patchpoint intrinsic");
10935 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
10939 TargetLowering::CallLoweringInfo CLI(
DAG);
10944 SDNode *CallEnd =
Result.second.getNode();
10945 if (CallEnd->
getOpcode() == ISD::EH_LABEL)
10953 "Expected a callseq node.");
10955 bool HasGlue =
Call->getGluedNode();
10980 Ops.push_back(Callee);
10986 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
10987 Ops.push_back(
DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
10990 Ops.push_back(
DAG.getTargetConstant((
unsigned)CC, dl, MVT::i32));
10995 for (
unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i !=
e; ++i)
11006 if (IsAnyRegCC && HasDef) {
11008 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
11011 assert(ValueVTs.
size() == 1 &&
"Expected only one return value type.");
11016 NodeTys =
DAG.getVTList(ValueVTs);
11018 NodeTys =
DAG.getVTList(MVT::Other, MVT::Glue);
11021 SDValue PPV =
DAG.getNode(ISD::PATCHPOINT, dl, NodeTys,
Ops);
11035 if (IsAnyRegCC && HasDef) {
11038 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
11044 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
11047void SelectionDAGBuilder::visitVectorReduce(
const CallInst &
I,
11049 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
11052 if (
I.arg_size() > 1)
11057 SDNodeFlags SDFlags;
11061 switch (Intrinsic) {
11062 case Intrinsic::vector_reduce_fadd:
11065 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
11068 Res =
DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
11070 case Intrinsic::vector_reduce_fmul:
11073 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
11076 Res =
DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
11078 case Intrinsic::vector_reduce_add:
11079 Res =
DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
11081 case Intrinsic::vector_reduce_mul:
11082 Res =
DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
11084 case Intrinsic::vector_reduce_and:
11085 Res =
DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
11087 case Intrinsic::vector_reduce_or:
11088 Res =
DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
11090 case Intrinsic::vector_reduce_xor:
11091 Res =
DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
11093 case Intrinsic::vector_reduce_smax:
11094 Res =
DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
11096 case Intrinsic::vector_reduce_smin:
11097 Res =
DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
11099 case Intrinsic::vector_reduce_umax:
11100 Res =
DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
11102 case Intrinsic::vector_reduce_umin:
11103 Res =
DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
11105 case Intrinsic::vector_reduce_fmax:
11106 Res =
DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
11108 case Intrinsic::vector_reduce_fmin:
11109 Res =
DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
11111 case Intrinsic::vector_reduce_fmaximum:
11112 Res =
DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
11114 case Intrinsic::vector_reduce_fminimum:
11115 Res =
DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
11128 Attrs.push_back(Attribute::SExt);
11130 Attrs.push_back(Attribute::ZExt);
11132 Attrs.push_back(Attribute::InReg);
11134 return AttributeList::get(CLI.
RetTy->
getContext(), AttributeList::ReturnIndex,
11142std::pair<SDValue, SDValue>
11156 "Only supported for non-aggregate returns");
11159 for (
Type *Ty : RetOrigTys)
11168 RetOrigTys.
swap(OldRetOrigTys);
11169 RetVTs.
swap(OldRetVTs);
11170 Offsets.swap(OldOffsets);
11172 for (
size_t i = 0, e = OldRetVTs.
size(); i != e; ++i) {
11173 EVT RetVT = OldRetVTs[i];
11177 unsigned RegisterVTByteSZ = RegisterVT.
getSizeInBits() / 8;
11178 RetOrigTys.
append(NumRegs, OldRetOrigTys[i]);
11179 RetVTs.
append(NumRegs, RegisterVT);
11180 for (
unsigned j = 0; j != NumRegs; ++j)
11193 int DemoteStackIdx = -100;
11206 ArgListEntry Entry(DemoteStackSlot, StackSlotPtrType);
11207 Entry.IsSRet =
true;
11208 Entry.Alignment = Alignment;
11220 for (
unsigned I = 0, E = RetVTs.
size();
I != E; ++
I) {
11222 if (NeedsRegBlock) {
11223 Flags.setInConsecutiveRegs();
11224 if (
I == RetVTs.
size() - 1)
11225 Flags.setInConsecutiveRegsLast();
11227 EVT VT = RetVTs[
I];
11231 for (
unsigned i = 0; i != NumRegs; ++i) {
11235 Ret.Flags.setPointer();
11236 Ret.Flags.setPointerAddrSpace(
11240 Ret.Flags.setSExt();
11242 Ret.Flags.setZExt();
11244 Ret.Flags.setInReg();
11245 CLI.
Ins.push_back(Ret);
11254 if (Arg.IsSwiftError) {
11260 CLI.
Ins.push_back(Ret);
11268 for (
unsigned i = 0, e = Args.size(); i != e; ++i) {
11272 Type *FinalType = Args[i].Ty;
11273 if (Args[i].IsByVal)
11274 FinalType = Args[i].IndirectType;
11277 for (
unsigned Value = 0, NumValues = OrigArgTys.
size();
Value != NumValues;
11280 Type *ArgTy = OrigArgTy;
11281 if (Args[i].Ty != Args[i].OrigTy) {
11282 assert(
Value == 0 &&
"Only supported for non-aggregate arguments");
11283 ArgTy = Args[i].Ty;
11288 Args[i].Node.getResNo() +
Value);
11295 Flags.setOrigAlign(OriginalAlignment);
11300 Flags.setPointer();
11303 if (Args[i].IsZExt)
11305 if (Args[i].IsSExt)
11307 if (Args[i].IsNoExt)
11309 if (Args[i].IsInReg) {
11316 Flags.setHvaStart();
11322 if (Args[i].IsSRet)
11324 if (Args[i].IsSwiftSelf)
11325 Flags.setSwiftSelf();
11326 if (Args[i].IsSwiftAsync)
11327 Flags.setSwiftAsync();
11328 if (Args[i].IsSwiftError)
11329 Flags.setSwiftError();
11330 if (Args[i].IsCFGuardTarget)
11331 Flags.setCFGuardTarget();
11332 if (Args[i].IsByVal)
11334 if (Args[i].IsByRef)
11336 if (Args[i].IsPreallocated) {
11337 Flags.setPreallocated();
11345 if (Args[i].IsInAlloca) {
11346 Flags.setInAlloca();
11355 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
11356 unsigned FrameSize =
DL.getTypeAllocSize(Args[i].IndirectType);
11357 Flags.setByValSize(FrameSize);
11360 if (
auto MA = Args[i].Alignment)
11364 }
else if (
auto MA = Args[i].Alignment) {
11367 MemAlign = OriginalAlignment;
11369 Flags.setMemAlign(MemAlign);
11370 if (Args[i].IsNest)
11373 Flags.setInConsecutiveRegs();
11376 unsigned NumParts =
11381 if (Args[i].IsSExt)
11383 else if (Args[i].IsZExt)
11388 if (Args[i].IsReturned && !
Op.getValueType().isVector() &&
11393 Args[i].Ty->getPointerAddressSpace())) &&
11394 RetVTs.
size() == NumValues &&
"unexpected use of 'returned'");
11407 CLI.
RetZExt == Args[i].IsZExt))
11408 Flags.setReturned();
11414 for (
unsigned j = 0; j != NumParts; ++j) {
11420 j * Parts[j].
getValueType().getStoreSize().getKnownMinValue());
11421 if (NumParts > 1 && j == 0)
11425 if (j == NumParts - 1)
11429 CLI.
Outs.push_back(MyFlags);
11430 CLI.
OutVals.push_back(Parts[j]);
11433 if (NeedsRegBlock &&
Value == NumValues - 1)
11434 CLI.
Outs[CLI.
Outs.size() - 1].Flags.setInConsecutiveRegsLast();
11446 "LowerCall didn't return a valid chain!");
11448 "LowerCall emitted a return value for a tail call!");
11450 "LowerCall didn't emit the correct number of values!");
11462 for (
unsigned i = 0, e = CLI.
Ins.size(); i != e; ++i) {
11463 assert(InVals[i].
getNode() &&
"LowerCall emitted a null value!");
11464 assert(
EVT(CLI.
Ins[i].VT) == InVals[i].getValueType() &&
11465 "LowerCall emitted a value with the wrong type!");
11475 unsigned NumValues = RetVTs.
size();
11476 ReturnValues.
resize(NumValues);
11483 for (
unsigned i = 0; i < NumValues; ++i) {
11490 DemoteStackIdx, Offsets[i]),
11492 ReturnValues[i] = L;
11493 Chains[i] = L.getValue(1);
11500 std::optional<ISD::NodeType> AssertOp;
11505 unsigned CurReg = 0;
11506 for (
EVT VT : RetVTs) {
11512 CLI.
DAG, CLI.
DL, &InVals[CurReg], NumRegs, RegisterVT, VT,
nullptr,
11520 if (ReturnValues.
empty())
11526 return std::make_pair(Res, CLI.
Chain);
11543 if (
N->getNumValues() == 1) {
11551 "Lowering returned the wrong number of results!");
11554 for (
unsigned I = 0, E =
N->getNumValues();
I != E; ++
I)
11568 "Copy from a reg to the same reg!");
11569 assert(!Reg.isPhysical() &&
"Is a physreg");
11575 RegsForValue RFV(V->getContext(), TLI,
DAG.getDataLayout(), Reg, V->getType(),
11580 auto PreferredExtendIt =
FuncInfo.PreferredExtendType.find(V);
11581 if (PreferredExtendIt !=
FuncInfo.PreferredExtendType.end())
11582 ExtendType = PreferredExtendIt->second;
11585 PendingExports.push_back(Chain);
11597 return A->use_empty();
11599 const BasicBlock &Entry =
A->getParent()->front();
11600 for (
const User *U :
A->users())
11609 std::pair<const AllocaInst *, const StoreInst *>>;
11621 enum StaticAllocaInfo {
Unknown, Clobbered, Elidable };
11623 unsigned NumArgs = FuncInfo->
Fn->
arg_size();
11624 StaticAllocas.
reserve(NumArgs * 2);
11626 auto GetInfoIfStaticAlloca = [&](
const Value *V) -> StaticAllocaInfo * {
11629 V = V->stripPointerCasts();
11631 if (!AI || !AI->isStaticAlloca() || !FuncInfo->
StaticAllocaMap.count(AI))
11634 return &Iter.first->second;
11651 if (
I.isDebugOrPseudoInst())
11655 for (
const Use &U :
I.operands()) {
11656 if (StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(U))
11657 *
Info = StaticAllocaInfo::Clobbered;
11663 if (StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(
SI->getValueOperand()))
11664 *
Info = StaticAllocaInfo::Clobbered;
11667 const Value *Dst =
SI->getPointerOperand()->stripPointerCasts();
11668 StaticAllocaInfo *
Info = GetInfoIfStaticAlloca(Dst);
11674 if (*
Info != StaticAllocaInfo::Unknown)
11682 const Value *Val =
SI->getValueOperand()->stripPointerCasts();
11684 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
11688 !
DL.typeSizeEqualsStoreSize(Arg->
getType()) ||
11689 ArgCopyElisionCandidates.count(Arg)) {
11690 *
Info = StaticAllocaInfo::Clobbered;
11694 LLVM_DEBUG(
dbgs() <<
"Found argument copy elision candidate: " << *AI
11698 *
Info = StaticAllocaInfo::Elidable;
11699 ArgCopyElisionCandidates.insert({Arg, {AI,
SI}});
11704 if (ArgCopyElisionCandidates.size() == NumArgs)
11728 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
11729 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
11730 const AllocaInst *AI = ArgCopyIter->second.first;
11731 int FixedIndex = FINode->getIndex();
11733 int OldIndex = AllocaIndex;
11737 dbgs() <<
" argument copy elision failed due to bad fixed stack "
11743 LLVM_DEBUG(
dbgs() <<
" argument copy elision failed: alignment of alloca "
11744 "greater than stack argument alignment ("
11745 <<
DebugStr(RequiredAlignment) <<
" vs "
11753 dbgs() <<
"Eliding argument copy from " << Arg <<
" to " << *AI <<
'\n'
11754 <<
" Replacing frame index " << OldIndex <<
" with " << FixedIndex
11760 AllocaIndex = FixedIndex;
11761 ArgCopyElisionFrameIndexMap.
insert({OldIndex, FixedIndex});
11762 for (
SDValue ArgVal : ArgVals)
11766 const StoreInst *
SI = ArgCopyIter->second.second;
11779void SelectionDAGISel::LowerArguments(
const Function &
F) {
11780 SelectionDAG &DAG =
SDB->DAG;
11781 SDLoc dl =
SDB->getCurSDLoc();
11786 if (
F.hasFnAttribute(Attribute::Naked))
11791 MVT ValueVT =
TLI->getPointerTy(
DL,
DL.getAllocaAddrSpace());
11793 ISD::ArgFlagsTy
Flags;
11795 MVT RegisterVT =
TLI->getRegisterType(*DAG.
getContext(), ValueVT);
11796 ISD::InputArg RetArg(Flags, RegisterVT, ValueVT,
F.getReturnType(),
true,
11798 Ins.push_back(RetArg);
11806 ArgCopyElisionCandidates);
11809 for (
const Argument &Arg :
F.args()) {
11810 unsigned ArgNo = Arg.getArgNo();
11813 bool isArgValueUsed = !Arg.
use_empty();
11814 unsigned PartBase = 0;
11816 if (Arg.hasAttribute(Attribute::ByVal))
11817 FinalType = Arg.getParamByValType();
11818 bool NeedsRegBlock =
TLI->functionArgumentNeedsConsecutiveRegisters(
11819 FinalType,
F.getCallingConv(),
F.isVarArg(),
DL);
11820 for (
unsigned Value = 0, NumValues =
Types.size();
Value != NumValues;
11823 EVT VT =
TLI->getValueType(
DL, ArgTy);
11824 ISD::ArgFlagsTy
Flags;
11827 Flags.setPointer();
11830 if (Arg.hasAttribute(Attribute::ZExt))
11832 if (Arg.hasAttribute(Attribute::SExt))
11834 if (Arg.hasAttribute(Attribute::InReg)) {
11841 Flags.setHvaStart();
11847 if (Arg.hasAttribute(Attribute::StructRet))
11849 if (Arg.hasAttribute(Attribute::SwiftSelf))
11850 Flags.setSwiftSelf();
11851 if (Arg.hasAttribute(Attribute::SwiftAsync))
11852 Flags.setSwiftAsync();
11853 if (Arg.hasAttribute(Attribute::SwiftError))
11854 Flags.setSwiftError();
11855 if (Arg.hasAttribute(Attribute::ByVal))
11857 if (Arg.hasAttribute(Attribute::ByRef))
11859 if (Arg.hasAttribute(Attribute::InAlloca)) {
11860 Flags.setInAlloca();
11868 if (Arg.hasAttribute(Attribute::Preallocated)) {
11869 Flags.setPreallocated();
11881 const Align OriginalAlignment(
11882 TLI->getABIAlignmentForCallingConv(ArgTy,
DL));
11883 Flags.setOrigAlign(OriginalAlignment);
11886 Type *ArgMemTy =
nullptr;
11887 if (
Flags.isByVal() ||
Flags.isInAlloca() ||
Flags.isPreallocated() ||
11890 ArgMemTy = Arg.getPointeeInMemoryValueType();
11892 uint64_t MemSize =
DL.getTypeAllocSize(ArgMemTy);
11897 if (
auto ParamAlign = Arg.getParamStackAlign())
11898 MemAlign = *ParamAlign;
11899 else if ((ParamAlign = Arg.getParamAlign()))
11900 MemAlign = *ParamAlign;
11902 MemAlign =
TLI->getByValTypeAlignment(ArgMemTy,
DL);
11903 if (
Flags.isByRef())
11904 Flags.setByRefSize(MemSize);
11906 Flags.setByValSize(MemSize);
11907 }
else if (
auto ParamAlign = Arg.getParamStackAlign()) {
11908 MemAlign = *ParamAlign;
11910 MemAlign = OriginalAlignment;
11912 Flags.setMemAlign(MemAlign);
11914 if (Arg.hasAttribute(Attribute::Nest))
11917 Flags.setInConsecutiveRegs();
11918 if (ArgCopyElisionCandidates.count(&Arg))
11919 Flags.setCopyElisionCandidate();
11920 if (Arg.hasAttribute(Attribute::Returned))
11921 Flags.setReturned();
11923 MVT RegisterVT =
TLI->getRegisterTypeForCallingConv(
11924 *
CurDAG->getContext(),
F.getCallingConv(), VT);
11925 unsigned NumRegs =
TLI->getNumRegistersForCallingConv(
11926 *
CurDAG->getContext(),
F.getCallingConv(), VT);
11927 for (
unsigned i = 0; i != NumRegs; ++i) {
11931 ISD::InputArg MyFlags(
11932 Flags, RegisterVT, VT, ArgTy, isArgValueUsed, ArgNo,
11934 if (NumRegs > 1 && i == 0)
11935 MyFlags.Flags.setSplit();
11938 MyFlags.Flags.setOrigAlign(
Align(1));
11939 if (i == NumRegs - 1)
11940 MyFlags.Flags.setSplitEnd();
11942 Ins.push_back(MyFlags);
11944 if (NeedsRegBlock &&
Value == NumValues - 1)
11945 Ins[
Ins.size() - 1].Flags.setInConsecutiveRegsLast();
11952 SDValue NewRoot =
TLI->LowerFormalArguments(
11953 DAG.
getRoot(),
F.getCallingConv(),
F.isVarArg(), Ins, dl, DAG, InVals);
11957 "LowerFormalArguments didn't return a valid chain!");
11959 "LowerFormalArguments didn't emit the correct number of values!");
11961 for (
unsigned i = 0, e =
Ins.size(); i != e; ++i) {
11963 "LowerFormalArguments emitted a null value!");
11965 "LowerFormalArguments emitted a value with the wrong type!");
11977 MVT VT =
TLI->getPointerTy(
DL,
DL.getAllocaAddrSpace());
11978 MVT RegVT =
TLI->getRegisterType(*
CurDAG->getContext(), VT);
11979 std::optional<ISD::NodeType> AssertOp;
11982 F.getCallingConv(), AssertOp);
11984 MachineFunction&
MF =
SDB->DAG.getMachineFunction();
11985 MachineRegisterInfo&
RegInfo =
MF.getRegInfo();
11987 RegInfo.createVirtualRegister(
TLI->getRegClassFor(RegVT));
11988 FuncInfo->DemoteRegister = SRetReg;
11990 SDB->DAG.getCopyToReg(NewRoot,
SDB->getCurSDLoc(), SRetReg, ArgValue);
11998 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
11999 for (
const Argument &Arg :
F.args()) {
12003 unsigned NumValues = ValueVTs.
size();
12004 if (NumValues == 0)
12011 if (Ins[i].
Flags.isCopyElisionCandidate()) {
12012 unsigned NumParts = 0;
12013 for (EVT VT : ValueVTs)
12014 NumParts +=
TLI->getNumRegistersForCallingConv(*
CurDAG->getContext(),
12015 F.getCallingConv(), VT);
12019 ArrayRef(&InVals[i], NumParts), ArgHasUses);
12024 bool isSwiftErrorArg =
12025 TLI->supportSwiftError() &&
12026 Arg.hasAttribute(Attribute::SwiftError);
12027 if (!ArgHasUses && !isSwiftErrorArg) {
12028 SDB->setUnusedArgValue(&Arg, InVals[i]);
12031 if (FrameIndexSDNode *FI =
12033 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12036 for (
unsigned Val = 0; Val != NumValues; ++Val) {
12037 EVT VT = ValueVTs[Val];
12038 MVT PartVT =
TLI->getRegisterTypeForCallingConv(*
CurDAG->getContext(),
12039 F.getCallingConv(), VT);
12040 unsigned NumParts =
TLI->getNumRegistersForCallingConv(
12041 *
CurDAG->getContext(),
F.getCallingConv(), VT);
12046 if (ArgHasUses || isSwiftErrorArg) {
12047 std::optional<ISD::NodeType> AssertOp;
12048 if (Arg.hasAttribute(Attribute::SExt))
12050 else if (Arg.hasAttribute(Attribute::ZExt))
12055 NewRoot,
F.getCallingConv(), AssertOp);
12058 if (NoFPClass !=
fcNone) {
12060 static_cast<uint64_t
>(NoFPClass), dl, MVT::i32);
12062 OutVal, SDNoFPClass);
12071 if (ArgValues.
empty())
12075 if (FrameIndexSDNode *FI =
12077 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12080 SDB->getCurSDLoc());
12082 SDB->setValue(&Arg, Res);
12092 if (LoadSDNode *LNode =
12094 if (FrameIndexSDNode *FI =
12096 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
12124 FuncInfo->InitializeRegForValue(&Arg);
12125 SDB->CopyToExportRegsIfNeeded(&Arg);
12129 if (!Chains.
empty()) {
12136 assert(i == InVals.
size() &&
"Argument register count mismatch!");
12140 if (!ArgCopyElisionFrameIndexMap.
empty()) {
12141 for (MachineFunction::VariableDbgInfo &VI :
12142 MF->getInStackSlotVariableDbgInfo()) {
12143 auto I = ArgCopyElisionFrameIndexMap.
find(
VI.getStackSlot());
12144 if (
I != ArgCopyElisionFrameIndexMap.
end())
12145 VI.updateStackSlot(
I->second);
12160SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(
const BasicBlock *LLVMBB) {
12161 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12163 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
12169 MachineBasicBlock *SuccMBB =
FuncInfo.getMBB(SuccBB);
12173 if (!SuccsHandled.
insert(SuccMBB).second)
12181 for (
const PHINode &PN : SuccBB->phis()) {
12183 if (PN.use_empty())
12187 if (PN.getType()->isEmptyTy())
12191 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
12196 RegOut =
FuncInfo.CreateRegs(&PN);
12214 "Didn't codegen value into a register!??");
12224 for (EVT VT : ValueVTs) {
12226 for (
unsigned i = 0; i != NumRegisters; ++i)
12228 Reg += NumRegisters;
12248void SelectionDAGBuilder::updateDAGForMaybeTailCall(
SDValue MaybeTC) {
12250 if (MaybeTC.
getNode() !=
nullptr)
12251 DAG.setRoot(MaybeTC);
12256void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W,
Value *
Cond,
12259 MachineFunction *CurMF =
FuncInfo.MF;
12260 MachineBasicBlock *NextMBB =
nullptr;
12265 unsigned Size =
W.LastCluster -
W.FirstCluster + 1;
12267 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
12269 if (
Size == 2 &&
W.MBB == SwitchMBB) {
12277 CaseCluster &
Small = *
W.FirstCluster;
12278 CaseCluster &
Big = *
W.LastCluster;
12282 const APInt &SmallValue =
Small.Low->getValue();
12283 const APInt &BigValue =
Big.Low->getValue();
12286 APInt CommonBit = BigValue ^ SmallValue;
12293 DAG.getConstant(CommonBit,
DL, VT));
12295 DL, MVT::i1,
Or,
DAG.getConstant(BigValue | SmallValue,
DL, VT),
12301 addSuccessorWithProb(SwitchMBB,
Small.MBB,
Small.Prob +
Big.Prob);
12303 addSuccessorWithProb(
12304 SwitchMBB, DefaultMBB,
12308 addSuccessorWithProb(SwitchMBB, DefaultMBB);
12315 BrCond =
DAG.getNode(ISD::BR,
DL, MVT::Other, BrCond,
12316 DAG.getBasicBlock(DefaultMBB));
12318 DAG.setRoot(BrCond);
12330 [](
const CaseCluster &a,
const CaseCluster &b) {
12331 return a.Prob != b.Prob ?
12333 a.Low->getValue().slt(b.Low->getValue());
12340 if (
I->Prob >
W.LastCluster->Prob)
12342 if (
I->Kind ==
CC_Range &&
I->MBB == NextMBB) {
12350 BranchProbability DefaultProb =
W.DefaultProb;
12351 BranchProbability UnhandledProbs = DefaultProb;
12353 UnhandledProbs +=
I->Prob;
12355 MachineBasicBlock *CurMBB =
W.MBB;
12357 bool FallthroughUnreachable =
false;
12358 MachineBasicBlock *Fallthrough;
12359 if (
I ==
W.LastCluster) {
12361 Fallthrough = DefaultMBB;
12366 CurMF->
insert(BBI, Fallthrough);
12370 UnhandledProbs -=
I->Prob;
12375 JumpTableHeader *JTH = &
SL->JTCases[
I->JTCasesIndex].first;
12376 SwitchCG::JumpTable *
JT = &
SL->JTCases[
I->JTCasesIndex].second;
12379 MachineBasicBlock *JumpMBB =
JT->MBB;
12380 CurMF->
insert(BBI, JumpMBB);
12382 auto JumpProb =
I->Prob;
12383 auto FallthroughProb = UnhandledProbs;
12391 if (*SI == DefaultMBB) {
12392 JumpProb += DefaultProb / 2;
12393 FallthroughProb -= DefaultProb / 2;
12411 if (FallthroughUnreachable) {
12418 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
12419 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
12425 JT->Default = Fallthrough;
12428 if (CurMBB == SwitchMBB) {
12436 BitTestBlock *BTB = &
SL->BitTestCases[
I->BTCasesIndex];
12439 for (BitTestCase &BTC : BTB->
Cases)
12451 BTB->
Prob += DefaultProb / 2;
12455 if (FallthroughUnreachable)
12459 if (CurMBB == SwitchMBB) {
12466 const Value *
RHS, *
LHS, *MHS;
12468 if (
I->Low ==
I->High) {
12483 if (FallthroughUnreachable)
12487 CaseBlock CB(CC,
LHS,
RHS, MHS,
I->MBB, Fallthrough, CurMBB,
12490 if (CurMBB == SwitchMBB)
12493 SL->SwitchCases.push_back(CB);
12498 CurMBB = Fallthrough;
12502void SelectionDAGBuilder::splitWorkItem(
SwitchWorkList &WorkList,
12503 const SwitchWorkListItem &W,
12506 assert(
W.FirstCluster->Low->getValue().slt(
W.LastCluster->Low->getValue()) &&
12507 "Clusters not sorted?");
12508 assert(
W.LastCluster -
W.FirstCluster + 1 >= 2 &&
"Too small to split!");
12510 auto [LastLeft, FirstRight, LeftProb, RightProb] =
12511 SL->computeSplitWorkItemInfo(W);
12516 assert(PivotCluster >
W.FirstCluster);
12517 assert(PivotCluster <=
W.LastCluster);
12522 const ConstantInt *Pivot = PivotCluster->Low;
12531 MachineBasicBlock *LeftMBB;
12532 if (FirstLeft == LastLeft && FirstLeft->Kind ==
CC_Range &&
12533 FirstLeft->Low ==
W.GE &&
12534 (FirstLeft->High->getValue() + 1LL) == Pivot->
getValue()) {
12535 LeftMBB = FirstLeft->MBB;
12537 LeftMBB =
FuncInfo.MF->CreateMachineBasicBlock(
W.MBB->getBasicBlock());
12538 FuncInfo.MF->insert(BBI, LeftMBB);
12540 {LeftMBB, FirstLeft, LastLeft,
W.GE, Pivot,
W.DefaultProb / 2});
12548 MachineBasicBlock *RightMBB;
12549 if (FirstRight == LastRight && FirstRight->Kind ==
CC_Range &&
12550 W.LT && (FirstRight->High->getValue() + 1ULL) ==
W.LT->getValue()) {
12551 RightMBB = FirstRight->MBB;
12553 RightMBB =
FuncInfo.MF->CreateMachineBasicBlock(
W.MBB->getBasicBlock());
12554 FuncInfo.MF->insert(BBI, RightMBB);
12556 {RightMBB, FirstRight, LastRight, Pivot,
W.LT,
W.DefaultProb / 2});
12562 CaseBlock CB(
ISD::SETLT,
Cond, Pivot,
nullptr, LeftMBB, RightMBB,
W.MBB,
12565 if (
W.MBB == SwitchMBB)
12568 SL->SwitchCases.push_back(CB);
12593 MachineBasicBlock *SwitchMBB =
FuncInfo.MBB;
12601 unsigned PeeledCaseIndex = 0;
12602 bool SwitchPeeled =
false;
12603 for (
unsigned Index = 0;
Index < Clusters.size(); ++
Index) {
12604 CaseCluster &CC = Clusters[
Index];
12605 if (CC.
Prob < TopCaseProb)
12607 TopCaseProb = CC.
Prob;
12608 PeeledCaseIndex =
Index;
12609 SwitchPeeled =
true;
12614 LLVM_DEBUG(
dbgs() <<
"Peeled one top case in switch stmt, prob: "
12615 << TopCaseProb <<
"\n");
12620 MachineBasicBlock *PeeledSwitchMBB =
12622 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
12625 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
12626 SwitchWorkListItem
W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
12627 nullptr,
nullptr, TopCaseProb.
getCompl()};
12628 lowerWorkItem(W,
SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
12630 Clusters.erase(PeeledCaseIt);
12631 for (CaseCluster &CC : Clusters) {
12633 dbgs() <<
"Scale the probablity for one cluster, before scaling: "
12634 << CC.
Prob <<
"\n");
12638 PeeledCaseProb = TopCaseProb;
12639 return PeeledSwitchMBB;
12642void SelectionDAGBuilder::visitSwitch(
const SwitchInst &
SI) {
12644 BranchProbabilityInfo *BPI =
FuncInfo.BPI;
12646 Clusters.reserve(
SI.getNumCases());
12647 for (
auto I :
SI.cases()) {
12648 MachineBasicBlock *Succ =
FuncInfo.getMBB(
I.getCaseSuccessor());
12649 const ConstantInt *CaseVal =
I.getCaseValue();
12650 BranchProbability Prob =
12652 : BranchProbability(1,
SI.getNumCases() + 1);
12656 MachineBasicBlock *DefaultMBB =
FuncInfo.getMBB(
SI.getDefaultDest());
12665 MachineBasicBlock *PeeledSwitchMBB =
12666 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
12669 MachineBasicBlock *SwitchMBB =
FuncInfo.MBB;
12670 if (Clusters.empty()) {
12671 assert(PeeledSwitchMBB == SwitchMBB);
12673 if (DefaultMBB != NextBlock(SwitchMBB)) {
12680 SL->findJumpTables(Clusters, &SI,
getCurSDLoc(), DefaultMBB,
DAG.getPSI(),
12682 SL->findBitTestClusters(Clusters, &SI);
12685 dbgs() <<
"Case clusters: ";
12686 for (
const CaseCluster &
C : Clusters) {
12692 C.Low->getValue().print(
dbgs(),
true);
12693 if (
C.Low !=
C.High) {
12695 C.High->getValue().print(
dbgs(),
true);
12702 assert(!Clusters.empty());
12706 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
12710 DefaultMBB ==
FuncInfo.getMBB(
SI.getDefaultDest()))
12713 {PeeledSwitchMBB,
First,
Last,
nullptr,
nullptr, DefaultProb});
12715 while (!WorkList.
empty()) {
12717 unsigned NumClusters =
W.LastCluster -
W.FirstCluster + 1;
12722 splitWorkItem(WorkList, W,
SI.getCondition(), SwitchMBB);
12726 lowerWorkItem(W,
SI.getCondition(), SwitchMBB, DefaultMBB);
12730void SelectionDAGBuilder::visitStepVector(
const CallInst &
I) {
12731 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12737void SelectionDAGBuilder::visitVectorReverse(
const CallInst &
I) {
12738 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12743 assert(VT ==
V.getValueType() &&
"Malformed vector.reverse!");
12752 SmallVector<int, 8>
Mask;
12754 for (
unsigned i = 0; i != NumElts; ++i)
12755 Mask.push_back(NumElts - 1 - i);
12760void SelectionDAGBuilder::visitVectorDeinterleave(
const CallInst &
I,
12769 EVT OutVT = ValueVTs[0];
12773 for (
unsigned i = 0; i != Factor; ++i) {
12774 assert(ValueVTs[i] == OutVT &&
"Expected VTs to be the same");
12776 DAG.getVectorIdxConstant(OutNumElts * i,
DL));
12782 SDValue Even =
DAG.getVectorShuffle(OutVT,
DL, SubVecs[0], SubVecs[1],
12784 SDValue Odd =
DAG.getVectorShuffle(OutVT,
DL, SubVecs[0], SubVecs[1],
12792 DAG.getVTList(ValueVTs), SubVecs);
12796void SelectionDAGBuilder::visitVectorInterleave(
const CallInst &
I,
12799 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12804 for (
unsigned i = 0; i < Factor; ++i) {
12807 "Expected VTs to be the same");
12825 for (
unsigned i = 0; i < Factor; ++i)
12832void SelectionDAGBuilder::visitFreeze(
const FreezeInst &
I) {
12836 unsigned NumValues = ValueVTs.
size();
12837 if (NumValues == 0)
return;
12842 for (
unsigned i = 0; i != NumValues; ++i)
12847 DAG.getVTList(ValueVTs), Values));
12850void SelectionDAGBuilder::visitVectorSplice(
const CallInst &
I) {
12851 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12863 DAG.getSignedConstant(
12870 uint64_t Idx = (NumElts +
Imm) % NumElts;
12873 SmallVector<int, 8>
Mask;
12874 for (
unsigned i = 0; i < NumElts; ++i)
12875 Mask.push_back(Idx + i);
12903 assert(
MI->getOpcode() == TargetOpcode::COPY &&
12904 "start of copy chain MUST be COPY");
12905 Reg =
MI->getOperand(1).getReg();
12908 assert(
Reg.isVirtual() &&
"expected COPY of virtual register");
12909 MI =
MRI.def_begin(
Reg)->getParent();
12912 if (
MI->getOpcode() == TargetOpcode::COPY) {
12913 assert(
Reg.isVirtual() &&
"expected COPY of virtual register");
12914 Reg =
MI->getOperand(1).getReg();
12915 assert(
Reg.isPhysical() &&
"expected COPY of physical register");
12918 assert(
MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
12919 "end of copy chain MUST be INLINEASM_BR");
12929void SelectionDAGBuilder::visitCallBrLandingPad(
const CallInst &
I) {
12935 const TargetLowering &TLI =
DAG.getTargetLoweringInfo();
12936 const TargetRegisterInfo *
TRI =
DAG.getSubtarget().getRegisterInfo();
12937 MachineRegisterInfo &
MRI =
DAG.getMachineFunction().getRegInfo();
12945 for (
auto &
T : TargetConstraints) {
12946 SDISelAsmOperandInfo OpInfo(
T);
12954 switch (OpInfo.ConstraintType) {
12965 FuncInfo.MBB->addLiveIn(OriginalDef);
12973 ResultVTs.
push_back(OpInfo.ConstraintVT);
12982 ResultVTs.
push_back(OpInfo.ConstraintVT);
12990 DAG.getVTList(ResultVTs), ResultValues);
unsigned const MachineRegisterInfo * MRI
static unsigned getIntrinsicID(const SDNode *N)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
static Value * getCondition(Instruction *I)
const HexagonInstrInfo * TII
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
static void getRegistersForValue(MachineFunction &MF, MachineIRBuilder &MIRBuilder, GISelAsmOperandInfo &OpInfo, GISelAsmOperandInfo &RefOpInfo)
Assign virtual/physical registers for the specified register operand.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Machine Check Debug Module
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static const Function * getCalledFunction(const Value *V)
This file provides utility analysis objects describing memory locations.
This file provides utility for Memory Model Relaxation Annotations (MMRAs).
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
OptimizedStructLayoutField Field
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static bool hasOnlySelectUsers(const Value *Cond)
static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, SDValue &Chain)
Create a LOAD_STACK_GUARD node, and let it carry the target specific global variable if there exists ...
static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, SDValue &Scale, SelectionDAGBuilder *SDB, const BasicBlock *CurBB, uint64_t ElemSize)
static void failForInvalidBundles(const CallBase &I, StringRef Name, ArrayRef< uint32_t > AllowedBundles)
static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, const SDLoc &DL, SmallVectorImpl< SDValue > &Ops, SelectionDAGBuilder &Builder)
Add a stack map intrinsic call's live variable operands to a stackmap or patchpoint target node's ope...
static const unsigned MaxParallelChains
static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
visitPow - Lower a pow intrinsic.
static const CallBase * FindPreallocatedCall(const Value *PreallocatedSetup)
Given a @llvm.call.preallocated.setup, return the corresponding preallocated call.
static cl::opt< unsigned > SwitchPeelThreshold("switch-peel-threshold", cl::Hidden, cl::init(66), cl::desc("Set the case probability threshold for peeling the case from a " "switch statement. A value greater than 100 will void this " "optimization"))
static cl::opt< bool > InsertAssertAlign("insert-assert-align", cl::init(true), cl::desc("Insert the experimental `assertalign` node."), cl::ReallyHidden)
static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin)
static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, DILocalVariable *Variable, DebugLoc DL, unsigned Order, SmallVectorImpl< Value * > &Values, DIExpression *Expression)
static unsigned findMatchingInlineAsmOperand(unsigned OperandNo, const std::vector< SDValue > &AsmNodeOperands)
static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, SDISelAsmOperandInfo &MatchingOpInfo, SelectionDAG &DAG)
Make sure that the output operand OpInfo and its corresponding input operand MatchingOpInfo have comp...
static void findUnwindDestinations(FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, BranchProbability Prob, SmallVectorImpl< std::pair< MachineBasicBlock *, BranchProbability > > &UnwindDests)
When an invoke or a cleanupret unwinds to the next EH pad, there are many places it could ultimately ...
static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic)
static BranchProbability scaleCaseProbality(BranchProbability CaseProb, BranchProbability PeeledCaseProb)
static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp2 - Lower an exp2 intrinsic.
static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue Scale, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, const SDLoc &dl)
getF32Constant - Get 32-bit floating point constant.
static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, const SDLoc &DL, EVT PartVT)
static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog10 - Lower a log10 intrinsic.
DenseMap< const Argument *, std::pair< const AllocaInst *, const StoreInst * > > ArgCopyElisionMapTy
static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv)
getCopyToPartsVector - Create a series of nodes that contain the specified value split into legal par...
static void getUnderlyingArgRegs(SmallVectorImpl< std::pair< Register, TypeSize > > &Regs, const SDValue &N)
static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, const Value *V, std::optional< CallingConv::ID > CallConv=std::nullopt, ISD::NodeType ExtendKind=ISD::ANY_EXTEND)
getCopyToParts - Create a series of nodes that contain the specified value split into legal parts.
static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, SelectionDAGBuilder &Builder)
static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog2 - Lower a log2 intrinsic.
static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, SDISelAsmOperandInfo &OpInfo, SelectionDAG &DAG)
Get a direct memory input to behave well as an indirect operand.
static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel)
isOnlyUsedInEntryBlock - If the specified argument is only used in the entry block,...
static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, const Twine &ErrMsg)
static bool collectInstructionDeps(SmallMapVector< const Instruction *, bool, 8 > *Deps, const Value *V, SmallMapVector< const Instruction *, bool, 8 > *Necessary=nullptr, unsigned Depth=0)
static void findArgumentCopyElisionCandidates(const DataLayout &DL, FunctionLoweringInfo *FuncInfo, ArgCopyElisionMapTy &ArgCopyElisionCandidates)
Scan the entry block of the function in FuncInfo for arguments that look like copies into a local all...
static bool isFunction(SDValue Op)
static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, const SDLoc &dl)
GetExponent - Get the exponent:
static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg)
static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, SelectionDAG &DAG)
ExpandPowI - Expand a llvm.powi intrinsic.
static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandLog - Lower a log intrinsic.
static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC=std::nullopt, std::optional< ISD::NodeType > AssertOp=std::nullopt)
getCopyFromParts - Create a value that contains the specified legal parts combined into the value the...
static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, SelectionDAG &DAG)
static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl)
GetSignificand - Get the significand and build it into a floating-point number with exponent of 1:
static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, const TargetLowering &TLI, SDNodeFlags Flags)
expandExp - Lower an exp intrinsic.
static const MDNode * getRangeMetadata(const Instruction &I)
static cl::opt< unsigned, true > LimitFPPrecision("limit-float-precision", cl::desc("Generate low-precision inline sequences " "for some float libcalls"), cl::location(LimitFloatPrecision), cl::Hidden, cl::init(0))
static void tryToElideArgumentCopy(FunctionLoweringInfo &FuncInfo, SmallVectorImpl< SDValue > &Chains, DenseMap< int, int > &ArgCopyElisionFrameIndexMap, SmallPtrSetImpl< const Instruction * > &ElidedArgCopyInstrs, ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, ArrayRef< SDValue > ArgVals, bool &ArgHasUses)
Try to elide argument copies from memory into a local alloca.
static unsigned LimitFloatPrecision
LimitFloatPrecision - Generate low-precision inline sequences for some float libcalls (6,...
static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, SDValue InChain, std::optional< CallingConv::ID > CC)
getCopyFromPartsVector - Create a value that contains the specified legal parts combined into the val...
static bool InBlock(const Value *V, const BasicBlock *BB)
static FPClassTest getNoFPClass(const Instruction &I)
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
This file defines the SmallPtrSet class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static const fltSemantics & IEEEsingle()
Class for arbitrary precision integers.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
an instruction to allocate memory on the stack
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
This class represents an incoming formal argument to a Function.
LLVM_ABI bool hasAttribute(Attribute::AttrKind Kind) const
Check if an argument has a given attribute.
unsigned getArgNo() const
Return the index of this formal argument in its containing function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
This class holds the attributes for a particular argument, parameter, function, or return value.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI InstListType::const_iterator getFirstNonPHIOrDbg(bool SkipPseudoOp=true) const
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
This class represents a no-op cast from one type to another.
The address of a basic block.
Conditional or Unconditional Branch instruction.
Analysis providing branch probability information.
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
static uint32_t getDenominator()
static BranchProbability getOne()
static BranchProbability getUnknown()
uint32_t getNumerator() const
LLVM_ABI uint64_t scale(uint64_t Num) const
Scale a large integer.
BranchProbability getCompl() const
static BranchProbability getZero()
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
A constant value that is initialized with an expression using other constant values.
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
A signed pointer, in the ptrauth sense.
uint64_t getZExtValue() const
Constant Vector Declarations.
This is an important base class in LLVM.
This is the common base class for constrained floating point intrinsics.
LLVM_ABI std::optional< fp::ExceptionBehavior > getExceptionBehavior() const
LLVM_ABI unsigned getNonMetadataArgCount() const
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static bool fragmentsOverlap(const FragmentInfo &A, const FragmentInfo &B)
Check if fragments overlap between a pair of FragmentInfos.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI const DIExpression * convertToUndefExpression(const DIExpression *Expr)
Removes all elements from Expr that do not apply to an undef debug value, which includes every operat...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Base class for variables.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
A parsed version of the target data layout string in and methods for querying it.
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LocationType getType() const
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
DIExpression * getExpression() const
DILocalVariable * getVariable() const
LLVM_ABI iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
LLVM_ABI DILocation * getInlinedAt() const
iterator find(const_arg_type_t< KeyT > Val)
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT, true > const_iterator
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Diagnostic information for inline asm reporting.
static constexpr ElementCount getFixed(ScalarTy MinVal)
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
constexpr bool isScalar() const
Exactly one element.
Lightweight error class with error context and mandatory checking.
Class representing an expression and its matching format.
This instruction compares its operands according to the predicate given to the constructor.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
bool allowReassoc() const
Flag queries.
An instruction for ordering other memory operations.
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
MachineBasicBlock * getMBB(const BasicBlock *BB) const
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
const LiveOutInfo * GetLiveOutRegInfo(Register Reg)
GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the register is a PHI destinat...
MachineBasicBlock * MBB
MBB - The current block.
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Type * getReturnType() const
Data structure describing the variable locations in a function.
const BasicBlock & getEntryBlock() const
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const
check if an attributes is in the list of attributes.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Constant * getPersonalityFn() const
Get the personality function associated with this function.
AttributeList getAttributes() const
Return the attribute list for this Function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function's name starts with "llvm.".
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Garbage collection metadata for a single function.
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
This instruction inserts a struct field of array element value into an aggregate value.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
@ MIN_INT_BITS
Minimum number of bits that can be specified.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
@ OB_clang_arc_attachedcall
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
The landingpad instruction holds all of the information necessary to generate correct exception handl...
A helper class to return the specified delimiter string after the first invocation of operator String...
An instruction for reading from memory.
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
LLVM_ABI MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
LLVM_ABI MCSymbol * getOrCreateFrameAllocSymbol(const Twine &FuncName, unsigned Idx)
Gets a symbol that will be defined to the final stack offset of a local variable after codegen.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
@ INVALID_SIMPLE_VALUE_TYPE
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
ElementCount getVectorElementCount() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool bitsGE(MVT VT) const
Return true if this has no less bits than VT.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void normalizeSuccProbs()
Normalize probabilities of all successors so that the sum of them becomes one.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void setSuccProbability(succ_iterator I, BranchProbability Prob)
Set successor probability of a given iterator.
succ_iterator succ_begin()
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
SmallVectorImpl< MachineBasicBlock * >::iterator succ_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void setIsEHContTarget(bool V=true)
Indicates if this is a target of Windows EH Continuation Guard.
void setIsEHFuncletEntry(bool V=true)
Indicates if this is the entry block of an EH funclet.
MachineInstrBundleIterator< MachineInstr > iterator
void setIsEHScopeEntry(bool V=true)
Indicates if this is the entry block of an EH scope, i.e., the block that that used to have a catchpa...
void setMachineBlockAddressTaken()
Set this block to indicate that its address is used as something other than the target of a terminato...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable)
Marks the immutability of an object.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasOpaqueSPAdjustment() const
Returns true if the function contains opaque dynamic stack adjustments.
int getStackProtectorIndex() const
Return the index for the stack protector object.
void setStackProtectorIndex(int I)
void setIsAliasedObjectIndex(int ObjectIdx, bool IsAliased)
Set "maybe pointed to by an LLVM IR value" for an object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
void setFunctionContextIndex(int I)
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site)
Map the begin label for a call site.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD)
Record annotations associated with a particular label.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
bool hasEHFunclets() const
void setHasEHContTarget(bool V)
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
Representation of each machine instruction.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI MCRegister getLiveInPhysReg(Register VReg) const
getLiveInPhysReg - If VReg is a live-in virtual register, return the corresponding live-in physical r...
An SDNode that represents everything that will be needed to construct a MachineInstr.
bool contains(const KeyT &Key) const
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
static MemoryLocation getAfter(const Value *Ptr, const AAMDNodes &AATags=AAMDNodes())
Return a location that may access any location after Ptr, while remaining within the underlying objec...
A Module instance is used to store all the information related to an LLVM module.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Holds the information from a dbg_label node through SDISel.
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
DenseMap< const Constant *, Register > ConstantsOut
void addDanglingDebugInfo(SmallVectorImpl< Value * > &Values, DILocalVariable *Var, DIExpression *Expr, bool IsVariadic, DebugLoc DL, unsigned Order)
Register a dbg_value which relies on a Value which we have not yet seen.
void visitDbgInfo(const Instruction &I)
void clearDanglingDebugInfo()
Clear the dangling debug information map.
void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall, bool IsMustTailCall, const BasicBlock *EHPadBB=nullptr, const TargetLowering::PtrAuthInfo *PAI=nullptr)
void clear()
Clear out the current SelectionDAG and the associated state and prepare this SelectionDAGBuilder obje...
void visitBitTestHeader(SwitchCG::BitTestBlock &B, MachineBasicBlock *SwitchBB)
visitBitTestHeader - This function emits necessary code to produce value suitable for "bit tests"
void LowerStatepoint(const GCStatepointInst &I, const BasicBlock *EHPadBB=nullptr)
std::unique_ptr< SDAGSwitchLowering > SL
SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, SDValue Op)
bool HasTailCall
This is set to true if a call in the current block has been translated as a tail call.
bool ShouldEmitAsBranches(const std::vector< SwitchCG::CaseBlock > &Cases)
If the set of cases should be emitted as a series of branches, return true.
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
EmitBranchForMergedCondition - Helper method for FindMergedConditions.
void LowerDeoptimizeCall(const CallInst *CI)
void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee, const BasicBlock *EHPadBB)
SwiftErrorValueTracking & SwiftError
Information about the swifterror values used throughout the function.
SDValue getNonRegisterValue(const Value *V)
getNonRegisterValue - Return an SDValue for the given Value, but don't look in FuncInfo....
const TargetTransformInfo * TTI
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
Map a landing pad to the call site indexes.
SDValue lowerNoFPClassToAssertNoFPClass(SelectionDAG &DAG, const Instruction &I, SDValue Op)
void handleDebugDeclare(Value *Address, DILocalVariable *Variable, DIExpression *Expression, DebugLoc DL)
bool shouldKeepJumpConditionsTogether(const FunctionLoweringInfo &FuncInfo, const BranchInst &I, Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, TargetLoweringBase::CondMergingParams Params) const
StatepointLoweringState StatepointLowering
State used while lowering a statepoint sequence (gc_statepoint, gc_relocate, and gc_result).
void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB, BranchProbability BranchProbToNext, Register Reg, SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
bool canTailCall(const CallBase &CB) const
void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, AttributeSet RetAttrs, bool IsPatchPoint)
Populate a CallLowerinInfo (into CLI) based on the properties of the call being lowered.
void CopyValueToVirtualRegister(const Value *V, Register Reg, ISD::NodeType ExtendType=ISD::ANY_EXTEND)
void salvageUnresolvedDbgValue(const Value *V, DanglingDebugInfo &DDI)
For the given dangling debuginfo record, perform last-ditch efforts to resolve the debuginfo to somet...
SmallVector< SDValue, 8 > PendingLoads
Loads are not emitted to the program immediately.
GCFunctionInfo * GFI
Garbage collection metadata for the function.
void init(GCFunctionInfo *gfi, BatchAAResults *BatchAA, AssumptionCache *AC, const TargetLibraryInfo *li, const TargetTransformInfo &TTI)
SDValue getRoot()
Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict) items.
void ExportFromCurrentBlock(const Value *V)
ExportFromCurrentBlock - If this condition isn't known to be exported from the current basic block,...
DebugLoc getCurDebugLoc() const
void resolveOrClearDbgInfo()
Evict any dangling debug information, attempting to salvage it first.
std::pair< SDValue, SDValue > lowerInvokable(TargetLowering::CallLoweringInfo &CLI, const BasicBlock *EHPadBB=nullptr)
SDValue getMemoryRoot()
Return the current virtual root of the Selection DAG, flushing any PendingLoad items.
void resolveDanglingDebugInfo(const Value *V, SDValue Val)
If we saw an earlier dbg_value referring to V, generate the debug data structures now that we've seen...
SDLoc getCurSDLoc() const
void visit(const Instruction &I)
void dropDanglingDebugInfo(const DILocalVariable *Variable, const DIExpression *Expr)
If we have dangling debug info that describes Variable, or an overlapping part of variable considerin...
SDValue getCopyFromRegs(const Value *V, Type *Ty)
If there was virtual register allocated for the value V emit CopyFromReg of the specified type Ty.
void CopyToExportRegsIfNeeded(const Value *V)
CopyToExportRegsIfNeeded - If the given value has virtual registers created for it,...
void handleKillDebugValue(DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order)
Create a record for a kill location debug intrinsic.
void visitJumpTable(SwitchCG::JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
SDValue getFPOperationRoot(fp::ExceptionBehavior EB)
Return the current virtual root of the Selection DAG, flushing PendingConstrainedFP or PendingConstra...
void visitJumpTableHeader(SwitchCG::JumpTable &JT, SwitchCG::JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
visitJumpTableHeader - This function emits necessary code to produce index in the JumpTable from swit...
void LowerCallSiteWithPtrAuthBundle(const CallBase &CB, const BasicBlock *EHPadBB)
static const unsigned LowestSDNodeOrder
Lowest valid SDNodeOrder.
void LowerDeoptimizingReturn()
FunctionLoweringInfo & FuncInfo
Information about the function as a whole.
void setValue(const Value *V, SDValue NewN)
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, Instruction::BinaryOps Opc, BranchProbability TProb, BranchProbability FProb, bool InvertCond)
const TargetLibraryInfo * LibInfo
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
Codegen a new tail for a stack protector check ParentMBB which has had its tail spliced into a stack ...
bool handleDebugValue(ArrayRef< const Value * > Values, DILocalVariable *Var, DIExpression *Expr, DebugLoc DbgLoc, unsigned Order, bool IsVariadic)
For a given list of Values, attempt to create and record a SDDbgValue in the SelectionDAG.
SDValue getControlRoot()
Similar to getRoot, but instead of flushing all the PendingLoad items, flush all the PendingExports (...
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
When an MBB was split during scheduling, update the references that need to refer to the last resulti...
SDValue getValueImpl(const Value *V)
getValueImpl - Helper function for getValue and getNonRegisterValue.
void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB)
visitSwitchCase - Emits the necessary code to represent a single node in the binary search tree resul...
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
Codegen the failure basic block for a stack protector check.
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
const TargetLowering * TLI
MachineRegisterInfo * RegInfo
std::unique_ptr< SwiftErrorValueTracking > SwiftError
virtual void emitFunctionEntryCode()
std::unique_ptr< SelectionDAGBuilder > SDB
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrnlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, SDValue MaxLength, MachinePointerInfo SrcPtrInfo) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrlen(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Src, const CallInst *CI) const
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcpy(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, SDValue Dest, SDValue Src, MachinePointerInfo DestPtrInfo, MachinePointerInfo SrcPtrInfo, bool isStpcpy) const
Emit target-specific code that performs a strcpy or stpcpy, in cases where that is faster than a libc...
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemchr(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Src, SDValue Char, SDValue Length, MachinePointerInfo SrcPtrInfo) const
Emit target-specific code that performs a memchr, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForMemcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, SDValue Op3, const CallInst *CI) const
Emit target-specific code that performs a memcmp/bcmp, in cases where that is faster than a libcall.
virtual std::pair< SDValue, SDValue > EmitTargetCodeForStrcmp(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Op1, SDValue Op2, MachinePointerInfo Op1PtrInfo, MachinePointerInfo Op2PtrInfo) const
Emit target-specific code that performs a strcmp, in cases where that is faster than a libcall.
virtual SDValue EmitTargetCodeForSetTag(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Addr, SDValue Size, MachinePointerInfo DstPtrInfo, bool ZeroData) const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void swap(SmallVectorImpl &RHS)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Encapsulates all of the information needed to generate a stack protector check, and signals to isel w...
MachineBasicBlock * getSuccessMBB()
MachineBasicBlock * getFailureMBB()
MachineBasicBlock * getParentMBB()
bool shouldEmitFunctionBasedCheckStackProtector() const
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
constexpr bool empty() const
empty - Check if the string is empty.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Provides information about what library functions are available for the current target.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
MachineMemOperand::Flags getVPIntrinsicMemOperandFlags(const VPIntrinsic &VPIntrin) const
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldExpandVectorMatch(EVT VT, unsigned SearchSize) const
Return true if the @llvm.experimental.vector.match intrinsic should be expanded for vector type ‘VT’ ...
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
std::vector< ArgListEntry > ArgListTy
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
virtual bool supportPtrAuthBundles() const
Return true if the target supports ptrauth operand bundles.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
virtual SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const
virtual bool useLoadStackGuardNode(const Module &M) const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
virtual MVT getJumpTableRegTy(const DataLayout &DL) const
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &, const Type *RetTy) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
unsigned NoTrapAfterNoreturn
Do not emit a trap instruction for 'unreachable' IR instructions behind noreturn calls,...
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
unsigned getID() const
Return the register class ID number.
const MCPhysReg * iterator
iterator begin() const
begin/end - Return all of the registers in this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
bool isVoidTy() const
Return true if this is 'void'.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
LLVM_ABI CmpInst::Predicate getPredicate() const
This is the common base class for vector predication intrinsics.
static LLVM_ABI std::optional< unsigned > getVectorLengthParamPos(Intrinsic::ID IntrinsicID)
LLVM_ABI MaybeAlign getPointerAlignment() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
Type * getElementType() const
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ AnyReg
OBSOLETED - Used for stack based JavaScript calls.
@ AMDGPU_CS_Chain
Used on AMDGPUs to give the middle-end more control over argument placement.
@ X86_VectorCall
MSVC calling convention that passes vectors and vector aggregates in SSE registers.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ LOOP_DEPENDENCE_RAW_MASK
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ FPTRUNC_ROUND
FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ EH_RETURN
OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents 'eh_return' gcc dwarf builtin,...
@ SIGN_EXTEND
Conversion operators.
@ ADDROFRETURNADDR
ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SSUBO
Same for subtraction.
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ PtrAuthGlobalAddress
A ptrauth constant.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ LOCAL_RECOVER
LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VECTOR_REVERSE
VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR, whose elements are shuffled us...
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ STRICT_FADD
Constrained versions of the binary floating point operators.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ VECTOR_DEINTERLEAVE
VECTOR_DEINTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor ...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
@ LOOP_DEPENDENCE_WAR_MASK
Set rounding mode.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
Flag
These should be considered private to the implementation of the MCInstrDesc class.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
bool match(Val *V, const Pattern &P)
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
std::pair< JumpTableHeader, JumpTable > JumpTableBlock
void sortAndRangeify(CaseClusterVector &Clusters)
Sort Clusters and merge adjacent cases.
std::vector< CaseCluster > CaseClusterVector
@ CC_Range
A cluster of adjacent case labels with the same destination, or just one case.
@ CC_JumpTable
A cluster of cases suitable for jump table lowering.
@ CC_BitTests
A cluster of cases suitable for bit test lowering.
SmallVector< SwitchWorkListItem, 4 > SwitchWorkList
CaseClusterVector::iterator CaseClusterIt
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
ExceptionBehavior
Exception behavior used for floating point operations.
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebMayTrap
This corresponds to "fpexcept.maytrap".
@ ebIgnore
This corresponds to "fpexcept.ignore".
NodeAddr< FuncNode * > Func
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs=nullptr, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
LLVM_ABI void diagnoseDontCall(const CallInst &CI)
auto successors(const MachineBasicBlock *BB)
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
static ConstantRange getRange(Value *Op, SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues)
Helper for getting ranges from Solver.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout &DL, bool AllowNonInbounds=true)
Analyze the specified pointer to see if it can be expressed as a base pointer plus a constant offset.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
auto cast_or_null(const Y &Val)
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
gep_type_iterator gep_type_end(const User *GEP)
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
void ComputeValueTypes(const DataLayout &DL, Type *Ty, SmallVectorImpl< Type * > &Types, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
Given an LLVM IR type, compute non-aggregate subtypes.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&...args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest.
void sort(IteratorTy Start, IteratorTy End)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
auto succ_size(const MachineBasicBlock *BB)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
getFCmpCondCode - Return the ISD condition code corresponding to the given LLVM IR floating-point con...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
FunctionAddr VTableAddr uintptr_t uintptr_t Data
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats, return the equivalent code if w...
ArrayRef(const T &OneElt) -> ArrayRef< T >
bool isAsynchronousEHPersonality(EHPersonality Pers)
Returns true if this personality function catches asynchronous exceptions.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI std::optional< RoundingMode > convertStrToRoundingMode(StringRef)
Returns a valid RoundingMode enumerator when given a string that is valid as input in constrained int...
gep_type_iterator gep_type_begin(const User *GEP)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
GlobalValue * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
uint64_t getScalarStoreSize() const
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isRISCVVectorTuple() const
Return true if this is a vector value type.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInteger() const
Return true if this is an integer or a vector integer type.
void setOrigAlign(Align A)
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A lightweight accessor for an operand bundle meant to be passed around by value.
This struct represents the registers (physical or virtual) that a particular set of values is assigne...
SmallVector< std::pair< Register, TypeSize >, 4 > getRegsAndSizes() const
Return a list of registers and their sizes.
SmallVector< unsigned, 4 > RegCount
This list holds the number of registers for each value.
bool isABIMangled() const
SmallVector< EVT, 4 > ValueVTs
The value types of the values, which may not be legal, and may need be promoted or synthesized from o...
SmallVector< Register, 4 > Regs
This list holds the registers assigned to the values.
void AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, unsigned MatchingIdx, const SDLoc &dl, SelectionDAG &DAG, std::vector< SDValue > &Ops) const
Add this value to the specified inlineasm node operand list.
SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr) const
Emit a series of CopyFromReg nodes that copies from this value and returns the result as a ValueVTs v...
SmallVector< MVT, 4 > RegVTs
The value types of the registers.
void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, SDValue &Chain, SDValue *Glue, const Value *V=nullptr, ISD::NodeType PreferredExtendType=ISD::ANY_EXTEND) const
Emit a series of CopyToReg nodes that copies the specified value into the registers specified by this...
std::optional< CallingConv::ID > CallConv
Records if this value needs to be treated in an ABI dependant manner, different to normal type legali...
bool occupiesMultipleRegs() const
Check if the total RegCount is greater than one.
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
void setUnpredictable(bool b)
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
A MapVector that performs no allocations if smaller than a certain size.
MachineBasicBlock * Default
BranchProbability DefaultProb
MachineBasicBlock * Parent
bool FallthroughUnreachable
MachineBasicBlock * ThisBB
This structure is used to communicate between SelectionDAGBuilder and SDISel for the code generation ...
BranchProbability TrueProb
BranchProbability FalseProb
MachineBasicBlock * TrueBB
MachineBasicBlock * FalseBB
SDLoc DL
The debug location of the instruction this CaseBlock was produced from.
static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, MachineBasicBlock *MBB, BranchProbability Prob)
This contains information for each constraint that we are lowering.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setDeactivationSymbol(GlobalValue *Sym)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
SmallVector< ISD::InputArg, 32 > Ins
bool IsPostTypeLegalization
SmallVector< SDValue, 4 > InVals
Type * OrigRetTy
Original unlegalized return type.
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
Type * RetTy
Same as OrigRetTy, or partially legalized for soft float libcalls.
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setPtrAuth(PtrAuthInfo Value)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setDiscardResult(bool Value=true)
This structure contains the information necessary for lowering pointer-authenticating indirect calls.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)