LLVM 22.0.0git
SelectionDAGISel.cpp
Go to the documentation of this file.
1//===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAGISel class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "ScheduleDAGSDNodes.h"
15#include "SelectionDAGBuilder.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/ADT/StringRef.h"
27#include "llvm/Analysis/CFG.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/Constants.h"
67#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/DebugInfo.h"
70#include "llvm/IR/DebugLoc.h"
73#include "llvm/IR/Function.h"
74#include "llvm/IR/InlineAsm.h"
76#include "llvm/IR/Instruction.h"
79#include "llvm/IR/Intrinsics.h"
80#include "llvm/IR/IntrinsicsWebAssembly.h"
81#include "llvm/IR/Metadata.h"
82#include "llvm/IR/Module.h"
83#include "llvm/IR/PrintPasses.h"
84#include "llvm/IR/Statepoint.h"
85#include "llvm/IR/Type.h"
86#include "llvm/IR/User.h"
87#include "llvm/IR/Value.h"
89#include "llvm/MC/MCInstrDesc.h"
90#include "llvm/Pass.h"
96#include "llvm/Support/Debug.h"
99#include "llvm/Support/Timer.h"
104#include <cassert>
105#include <cstdint>
106#include <iterator>
107#include <limits>
108#include <memory>
109#include <optional>
110#include <string>
111#include <utility>
112#include <vector>
113
114using namespace llvm;
115
116#define DEBUG_TYPE "isel"
117#define ISEL_DUMP_DEBUG_TYPE DEBUG_TYPE "-dump"
118
119STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
120STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
121STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
122STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
123STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
124STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
125STATISTIC(NumFastIselFailLowerArguments,
126 "Number of entry blocks where fast isel failed to lower arguments");
127
129 "fast-isel-abort", cl::Hidden,
130 cl::desc("Enable abort calls when \"fast\" instruction selection "
131 "fails to lower an instruction: 0 disable the abort, 1 will "
132 "abort but for args, calls and terminators, 2 will also "
133 "abort for argument lowering, and 3 will never fallback "
134 "to SelectionDAG."));
135
137 "fast-isel-report-on-fallback", cl::Hidden,
138 cl::desc("Emit a diagnostic when \"fast\" instruction selection "
139 "falls back to SelectionDAG."));
140
141static cl::opt<bool>
142UseMBPI("use-mbpi",
143 cl::desc("use Machine Branch Probability Info"),
144 cl::init(true), cl::Hidden);
145
146#ifndef NDEBUG
147static cl::opt<bool>
148 DumpSortedDAG("dump-sorted-dags", cl::Hidden,
149 cl::desc("Print DAGs with sorted nodes in debug dump"),
150 cl::init(false));
151
154 cl::desc("Only display the basic block whose name "
155 "matches this for all view-*-dags options"));
156static cl::opt<bool>
157ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
158 cl::desc("Pop up a window to show dags before the first "
159 "dag combine pass"));
160static cl::opt<bool>
161ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
162 cl::desc("Pop up a window to show dags before legalize types"));
163static cl::opt<bool>
164 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
165 cl::desc("Pop up a window to show dags before the post "
166 "legalize types dag combine pass"));
167static cl::opt<bool>
168 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
169 cl::desc("Pop up a window to show dags before legalize"));
170static cl::opt<bool>
171ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
172 cl::desc("Pop up a window to show dags before the second "
173 "dag combine pass"));
174static cl::opt<bool>
175ViewISelDAGs("view-isel-dags", cl::Hidden,
176 cl::desc("Pop up a window to show isel dags as they are selected"));
177static cl::opt<bool>
178ViewSchedDAGs("view-sched-dags", cl::Hidden,
179 cl::desc("Pop up a window to show sched dags as they are processed"));
180static cl::opt<bool>
181ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
182 cl::desc("Pop up a window to show SUnit dags after they are processed"));
183#else
184static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
185 ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
186 ViewDAGCombine2 = false, ViewISelDAGs = false,
187 ViewSchedDAGs = false, ViewSUnitDAGs = false;
188#endif
189
190#ifndef NDEBUG
191#define ISEL_DUMP(X) \
192 do { \
193 if (llvm::DebugFlag && \
194 (isCurrentDebugType(DEBUG_TYPE) || \
195 (isCurrentDebugType(ISEL_DUMP_DEBUG_TYPE) && MatchFilterFuncName))) { \
196 X; \
197 } \
198 } while (false)
199#else
200#define ISEL_DUMP(X) do { } while (false)
201#endif
202
203//===---------------------------------------------------------------------===//
204///
205/// RegisterScheduler class - Track the registration of instruction schedulers.
206///
207//===---------------------------------------------------------------------===//
210
211//===---------------------------------------------------------------------===//
212///
213/// ISHeuristic command line option for instruction schedulers.
214///
215//===---------------------------------------------------------------------===//
218ISHeuristic("pre-RA-sched",
220 cl::desc("Instruction schedulers available (before register"
221 " allocation):"));
222
224defaultListDAGScheduler("default", "Best scheduler for the target",
226
227static bool dontUseFastISelFor(const Function &Fn) {
228 // Don't enable FastISel for functions with swiftasync Arguments.
229 // Debug info on those is reliant on good Argument lowering, and FastISel is
230 // not capable of lowering the entire function. Mixing the two selectors tend
231 // to result in poor lowering of Arguments.
232 return any_of(Fn.args(), [](const Argument &Arg) {
233 return Arg.hasAttribute(Attribute::AttrKind::SwiftAsync);
234 });
235}
236
237static bool maintainPGOProfile(const TargetMachine &TM,
238 CodeGenOptLevel OptLevel) {
239 if (OptLevel != CodeGenOptLevel::None)
240 return true;
241 if (TM.getPGOOption()) {
242 const PGOOptions &Options = *TM.getPGOOption();
243 return Options.Action == PGOOptions::PGOAction::IRUse ||
246 }
247 return false;
248}
249
250namespace llvm {
251
252 //===--------------------------------------------------------------------===//
253 /// This class is used by SelectionDAGISel to temporarily override
254 /// the optimization level on a per-function basis.
257 CodeGenOptLevel SavedOptLevel;
258 bool SavedFastISel;
259
260 public:
262 : IS(ISel) {
263 SavedOptLevel = IS.OptLevel;
264 SavedFastISel = IS.TM.Options.EnableFastISel;
265 if (NewOptLevel != SavedOptLevel) {
266 IS.OptLevel = NewOptLevel;
267 IS.TM.setOptLevel(NewOptLevel);
268 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
269 << IS.MF->getFunction().getName() << "\n");
270 LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(SavedOptLevel)
271 << " ; After: -O" << static_cast<int>(NewOptLevel)
272 << "\n");
273 if (NewOptLevel == CodeGenOptLevel::None)
274 IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
275 }
276 if (dontUseFastISelFor(IS.MF->getFunction()))
277 IS.TM.setFastISel(false);
279 dbgs() << "\tFastISel is "
280 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
281 << "\n");
282 }
283
285 if (IS.OptLevel == SavedOptLevel)
286 return;
287 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
288 << IS.MF->getFunction().getName() << "\n");
289 LLVM_DEBUG(dbgs() << "\tBefore: -O" << static_cast<int>(IS.OptLevel)
290 << " ; After: -O" << static_cast<int>(SavedOptLevel) << "\n");
291 IS.OptLevel = SavedOptLevel;
292 IS.TM.setOptLevel(SavedOptLevel);
293 IS.TM.setFastISel(SavedFastISel);
294 }
295 };
296
297 //===--------------------------------------------------------------------===//
298 /// createDefaultScheduler - This creates an instruction scheduler appropriate
299 /// for the target.
301 CodeGenOptLevel OptLevel) {
302 const TargetLowering *TLI = IS->TLI;
303 const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
304
305 // Try first to see if the Target has its own way of selecting a scheduler
306 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
307 return SchedulerCtor(IS, OptLevel);
308 }
309
310 if (OptLevel == CodeGenOptLevel::None ||
311 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
313 return createSourceListDAGScheduler(IS, OptLevel);
315 return createBURRListDAGScheduler(IS, OptLevel);
317 return createHybridListDAGScheduler(IS, OptLevel);
319 return createVLIWDAGScheduler(IS, OptLevel);
321 return createFastDAGScheduler(IS, OptLevel);
323 return createDAGLinearizer(IS, OptLevel);
325 "Unknown sched type!");
326 return createILPListDAGScheduler(IS, OptLevel);
327 }
328
329} // end namespace llvm
330
333 MachineBasicBlock *MBB) const {
334#ifndef NDEBUG
335 dbgs() << "If a target marks an instruction with "
336 "'usesCustomInserter', it must implement "
337 "TargetLowering::EmitInstrWithCustomInserter!\n";
338#endif
339 llvm_unreachable(nullptr);
340}
341
343 SDNode *Node) const {
344 assert(!MI.hasPostISelHook() &&
345 "If a target marks an instruction with 'hasPostISelHook', "
346 "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
347}
348
349//===----------------------------------------------------------------------===//
350// SelectionDAGISel code
351//===----------------------------------------------------------------------===//
352
362
364 // If we already selected that function, we do not need to run SDISel.
365 if (MF.getProperties().hasSelected())
366 return false;
367
368 // Do some sanity-checking on the command-line options.
369 if (EnableFastISelAbort && !Selector->TM.Options.EnableFastISel)
370 reportFatalUsageError("-fast-isel-abort > 0 requires -fast-isel");
371
372 // Decide what flavour of variable location debug-info will be used, before
373 // we change the optimisation level.
375
376 // Reset the target options before resetting the optimization
377 // level below.
378 // FIXME: This is a horrible hack and should be processed via
379 // codegen looking at the optimization level explicitly when
380 // it wants to look at it.
381 Selector->TM.resetTargetOptions(MF.getFunction());
382 // Reset OptLevel to None for optnone functions.
383 CodeGenOptLevel NewOptLevel = skipFunction(MF.getFunction())
385 : Selector->OptLevel;
386
387 Selector->MF = &MF;
388 OptLevelChanger OLC(*Selector, NewOptLevel);
389 Selector->initializeAnalysisResults(*this);
390 return Selector->runOnMachineFunction(MF);
391}
392
406
408
410 CodeGenOptLevel OptLevel = Selector->OptLevel;
411 bool RegisterPGOPasses = maintainPGOProfile(Selector->TM, Selector->OptLevel);
412 if (OptLevel != CodeGenOptLevel::None)
420 if (UseMBPI && RegisterPGOPasses)
423 // AssignmentTrackingAnalysis only runs if assignment tracking is enabled for
424 // the module.
427 if (RegisterPGOPasses)
430}
431
435 // If we already selected that function, we do not need to run SDISel.
436 if (MF.getProperties().hasSelected())
437 return PreservedAnalyses::all();
438
439 // Do some sanity-checking on the command-line options.
440 if (EnableFastISelAbort && !Selector->TM.Options.EnableFastISel)
441 reportFatalUsageError("-fast-isel-abort > 0 requires -fast-isel");
442
443 // Decide what flavour of variable location debug-info will be used, before
444 // we change the optimisation level.
446
447 // Reset the target options before resetting the optimization
448 // level below.
449 // FIXME: This is a horrible hack and should be processed via
450 // codegen looking at the optimization level explicitly when
451 // it wants to look at it.
452 Selector->TM.resetTargetOptions(MF.getFunction());
453 // Reset OptLevel to None for optnone functions.
454 // TODO: Add a function analysis to handle this.
455 Selector->MF = &MF;
456 // Reset OptLevel to None for optnone functions.
457 CodeGenOptLevel NewOptLevel = MF.getFunction().hasOptNone()
459 : Selector->OptLevel;
460
461 OptLevelChanger OLC(*Selector, NewOptLevel);
462 Selector->initializeAnalysisResults(MFAM);
463 Selector->runOnMachineFunction(MF);
464
466}
467
471 .getManager();
473 Function &Fn = MF->getFunction();
474#ifndef NDEBUG
475 FuncName = Fn.getName();
477#else
479#endif
480
481 bool RegisterPGOPasses = maintainPGOProfile(TM, OptLevel);
482 TII = MF->getSubtarget().getInstrInfo();
483 TLI = MF->getSubtarget().getTargetLowering();
484 RegInfo = &MF->getRegInfo();
485 LibInfo = &FAM.getResult<TargetLibraryAnalysis>(Fn);
486 GFI = Fn.hasGC() ? &FAM.getResult<GCFunctionAnalysis>(Fn) : nullptr;
487 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
488 AC = &FAM.getResult<AssumptionAnalysis>(Fn);
489 auto *PSI = MAMP.getCachedResult<ProfileSummaryAnalysis>(*Fn.getParent());
490 BlockFrequencyInfo *BFI = nullptr;
491 FAM.getResult<BlockFrequencyAnalysis>(Fn);
492 if (PSI && PSI->hasProfileSummary() && RegisterPGOPasses)
493 BFI = &FAM.getResult<BlockFrequencyAnalysis>(Fn);
494
495 FunctionVarLocs const *FnVarLocs = nullptr;
497 FnVarLocs = &FAM.getResult<DebugAssignmentTrackingAnalysis>(Fn);
498
499 auto *UA = FAM.getCachedResult<UniformityInfoAnalysis>(Fn);
501 MAMP.getCachedResult<MachineModuleAnalysis>(*Fn.getParent())->getMMI();
502
503 CurDAG->init(*MF, *ORE, MFAM, LibInfo, UA, PSI, BFI, MMI, FnVarLocs);
504
505 // Now get the optional analyzes if we want to.
506 // This is based on the possibly changed OptLevel (after optnone is taken
507 // into account). That's unfortunate but OK because it just means we won't
508 // ask for passes that have been required anyway.
509
510 if (UseMBPI && RegisterPGOPasses)
511 FuncInfo->BPI = &FAM.getResult<BranchProbabilityAnalysis>(Fn);
512 else
513 FuncInfo->BPI = nullptr;
514
516 BatchAA.emplace(FAM.getResult<AAManager>(Fn));
517 else
518 BatchAA = std::nullopt;
519
520 SP = &FAM.getResult<SSPLayoutAnalysis>(Fn);
521
522 TTI = &FAM.getResult<TargetIRAnalysis>(Fn);
523}
524
526 Function &Fn = MF->getFunction();
527#ifndef NDEBUG
528 FuncName = Fn.getName();
530#else
532#endif
533
534 bool RegisterPGOPasses = maintainPGOProfile(TM, OptLevel);
535 TII = MF->getSubtarget().getInstrInfo();
536 TLI = MF->getSubtarget().getTargetLowering();
537 RegInfo = &MF->getRegInfo();
539 GFI = Fn.hasGC() ? &MFP.getAnalysis<GCModuleInfo>().getFunctionInfo(Fn)
540 : nullptr;
541 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
542 AC = &MFP.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(Fn);
543 auto *PSI = &MFP.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
544 BlockFrequencyInfo *BFI = nullptr;
545 if (PSI && PSI->hasProfileSummary() && RegisterPGOPasses)
546 BFI = &MFP.getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
547
548 FunctionVarLocs const *FnVarLocs = nullptr;
550 FnVarLocs = MFP.getAnalysis<AssignmentTrackingAnalysis>().getResults();
551
552 UniformityInfo *UA = nullptr;
553 if (auto *UAPass = MFP.getAnalysisIfAvailable<UniformityInfoWrapperPass>())
554 UA = &UAPass->getUniformityInfo();
555
558
559 CurDAG->init(*MF, *ORE, &MFP, LibInfo, UA, PSI, BFI, MMI, FnVarLocs);
560
561 // Now get the optional analyzes if we want to.
562 // This is based on the possibly changed OptLevel (after optnone is taken
563 // into account). That's unfortunate but OK because it just means we won't
564 // ask for passes that have been required anyway.
565
566 if (UseMBPI && RegisterPGOPasses)
567 FuncInfo->BPI =
569 else
570 FuncInfo->BPI = nullptr;
571
574 else
575 BatchAA = std::nullopt;
576
577 SP = &MFP.getAnalysis<StackProtector>().getLayoutInfo();
578
580}
581
583 SwiftError->setFunction(mf);
584 const Function &Fn = mf.getFunction();
585
586 bool InstrRef = mf.useDebugInstrRef();
587
588 FuncInfo->set(MF->getFunction(), *MF, CurDAG);
589
590 ISEL_DUMP(dbgs() << "\n\n\n=== " << FuncName << '\n');
591
592 SDB->init(GFI, getBatchAA(), AC, LibInfo, *TTI);
593
594 MF->setHasInlineAsm(false);
595
596 FuncInfo->SplitCSR = false;
597
598 // We split CSR if the target supports it for the given function
599 // and the function has only return exits.
600 if (OptLevel != CodeGenOptLevel::None && TLI->supportSplitCSR(MF)) {
601 FuncInfo->SplitCSR = true;
602
603 // Collect all the return blocks.
604 for (const BasicBlock &BB : Fn) {
605 if (!succ_empty(&BB))
606 continue;
607
608 const Instruction *Term = BB.getTerminator();
609 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
610 continue;
611
612 // Bail out if the exit block is not Return nor Unreachable.
613 FuncInfo->SplitCSR = false;
614 break;
615 }
616 }
617
618 MachineBasicBlock *EntryMBB = &MF->front();
619 if (FuncInfo->SplitCSR)
620 // This performs initialization so lowering for SplitCSR will be correct.
621 TLI->initializeSplitCSR(EntryMBB);
622
623 SelectAllBasicBlocks(Fn);
625 DiagnosticInfoISelFallback DiagFallback(Fn);
626 Fn.getContext().diagnose(DiagFallback);
627 }
628
629 // Replace forward-declared registers with the registers containing
630 // the desired value.
631 // Note: it is important that this happens **before** the call to
632 // EmitLiveInCopies, since implementations can skip copies of unused
633 // registers. If we don't apply the reg fixups before, some registers may
634 // appear as unused and will be skipped, resulting in bad MI.
635 MachineRegisterInfo &MRI = MF->getRegInfo();
636 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
637 E = FuncInfo->RegFixups.end();
638 I != E; ++I) {
639 Register From = I->first;
640 Register To = I->second;
641 // If To is also scheduled to be replaced, find what its ultimate
642 // replacement is.
643 while (true) {
644 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
645 if (J == E)
646 break;
647 To = J->second;
648 }
649 // Make sure the new register has a sufficiently constrained register class.
650 if (From.isVirtual() && To.isVirtual())
651 MRI.constrainRegClass(To, MRI.getRegClass(From));
652 // Replace it.
653
654 // Replacing one register with another won't touch the kill flags.
655 // We need to conservatively clear the kill flags as a kill on the old
656 // register might dominate existing uses of the new register.
657 if (!MRI.use_empty(To))
658 MRI.clearKillFlags(From);
659 MRI.replaceRegWith(From, To);
660 }
661
662 // If the first basic block in the function has live ins that need to be
663 // copied into vregs, emit the copies into the top of the block before
664 // emitting the code for the block.
665 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
666 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
667
668 // Insert copies in the entry block and the return blocks.
669 if (FuncInfo->SplitCSR) {
671 // Collect all the return blocks.
672 for (MachineBasicBlock &MBB : mf) {
673 if (!MBB.succ_empty())
674 continue;
675
676 MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
677 if (Term != MBB.end() && Term->isReturn()) {
678 Returns.push_back(&MBB);
679 continue;
680 }
681 }
682 TLI->insertCopiesSplitCSR(EntryMBB, Returns);
683 }
684
686 if (!FuncInfo->ArgDbgValues.empty())
687 for (std::pair<MCRegister, Register> LI : RegInfo->liveins())
688 if (LI.second)
689 LiveInMap.insert(LI);
690
691 // Insert DBG_VALUE instructions for function arguments to the entry block.
692 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
693 MachineInstr *MI = FuncInfo->ArgDbgValues[e - i - 1];
694 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
695 "Function parameters should not be described by DBG_VALUE_LIST.");
696 bool hasFI = MI->getDebugOperand(0).isFI();
697 Register Reg =
698 hasFI ? TRI.getFrameRegister(*MF) : MI->getDebugOperand(0).getReg();
699 if (Reg.isPhysical())
700 EntryMBB->insert(EntryMBB->begin(), MI);
701 else {
702 MachineInstr *Def = RegInfo->getVRegDef(Reg);
703 if (Def) {
704 MachineBasicBlock::iterator InsertPos = Def;
705 // FIXME: VR def may not be in entry block.
706 Def->getParent()->insert(std::next(InsertPos), MI);
707 } else
708 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
709 << printReg(Reg) << '\n');
710 }
711
712 // Don't try and extend through copies in instruction referencing mode.
713 if (InstrRef)
714 continue;
715
716 // If Reg is live-in then update debug info to track its copy in a vreg.
717 if (!Reg.isPhysical())
718 continue;
720 if (LDI != LiveInMap.end()) {
721 assert(!hasFI && "There's no handling of frame pointer updating here yet "
722 "- add if needed");
723 MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
724 MachineBasicBlock::iterator InsertPos = Def;
725 const MDNode *Variable = MI->getDebugVariable();
726 const MDNode *Expr = MI->getDebugExpression();
727 DebugLoc DL = MI->getDebugLoc();
728 bool IsIndirect = MI->isIndirectDebugValue();
729 if (IsIndirect)
730 assert(MI->getDebugOffset().getImm() == 0 &&
731 "DBG_VALUE with nonzero offset");
732 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
733 "Expected inlined-at fields to agree");
734 assert(MI->getOpcode() != TargetOpcode::DBG_VALUE_LIST &&
735 "Didn't expect to see a DBG_VALUE_LIST here");
736 // Def is never a terminator here, so it is ok to increment InsertPos.
737 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
738 IsIndirect, LDI->second, Variable, Expr);
739
740 // If this vreg is directly copied into an exported register then
741 // that COPY instructions also need DBG_VALUE, if it is the only
742 // user of LDI->second.
743 MachineInstr *CopyUseMI = nullptr;
744 for (MachineInstr &UseMI : RegInfo->use_instructions(LDI->second)) {
745 if (UseMI.isDebugValue())
746 continue;
747 if (UseMI.isCopy() && !CopyUseMI && UseMI.getParent() == EntryMBB) {
748 CopyUseMI = &UseMI;
749 continue;
750 }
751 // Otherwise this is another use or second copy use.
752 CopyUseMI = nullptr;
753 break;
754 }
755 if (CopyUseMI &&
756 TRI.getRegSizeInBits(LDI->second, MRI) ==
757 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
758 // Use MI's debug location, which describes where Variable was
759 // declared, rather than whatever is attached to CopyUseMI.
760 MachineInstr *NewMI =
761 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
762 CopyUseMI->getOperand(0).getReg(), Variable, Expr);
763 MachineBasicBlock::iterator Pos = CopyUseMI;
764 EntryMBB->insertAfter(Pos, NewMI);
765 }
766 }
767 }
768
769 // For debug-info, in instruction referencing mode, we need to perform some
770 // post-isel maintenence.
771 if (MF->useDebugInstrRef())
772 MF->finalizeDebugInstrRefs();
773
774 // Determine if there are any calls in this machine function.
775 MachineFrameInfo &MFI = MF->getFrameInfo();
776 for (const auto &MBB : *MF) {
777 if (MFI.hasCalls() && MF->hasInlineAsm())
778 break;
779
780 for (const auto &MI : MBB) {
781 const MCInstrDesc &MCID = TII->get(MI.getOpcode());
782 if ((MCID.isCall() && !MCID.isReturn()) ||
783 MI.isStackAligningInlineAsm()) {
784 MFI.setHasCalls(true);
785 }
786 if (MI.isInlineAsm()) {
787 MF->setHasInlineAsm(true);
788 }
789 }
790 }
791
792 // Release function-specific state. SDB and CurDAG are already cleared
793 // at this point.
794 FuncInfo->clear();
795
796 ISEL_DUMP(dbgs() << "*** MachineFunction at end of ISel ***\n");
797 ISEL_DUMP(MF->print(dbgs()));
798
799 return true;
800}
801
805 bool ShouldAbort) {
806 // Print the function name explicitly if we don't have a debug location (which
807 // makes the diagnostic less useful) or if we're going to emit a raw error.
808 if (!R.getLocation().isValid() || ShouldAbort)
809 R << (" (in function: " + MF.getName() + ")").str();
810
811 if (ShouldAbort)
812 reportFatalUsageError(Twine(R.getMsg()));
813
814 ORE.emit(R);
815 LLVM_DEBUG(dbgs() << R.getMsg() << "\n");
816}
817
818// Detect any fake uses that follow a tail call and move them before the tail
819// call. Ignore fake uses that use values that are def'd by or after the tail
820// call.
824 if (--I == Begin || !isa<ReturnInst>(*I))
825 return;
826 // Detect whether there are any fake uses trailing a (potential) tail call.
827 bool HaveFakeUse = false;
828 bool HaveTailCall = false;
829 do {
830 if (const CallInst *CI = dyn_cast<CallInst>(--I))
831 if (CI->isTailCall()) {
832 HaveTailCall = true;
833 break;
834 }
836 if (II->getIntrinsicID() == Intrinsic::fake_use)
837 HaveFakeUse = true;
838 } while (I != Begin);
839
840 // If we didn't find any tail calls followed by fake uses, we are done.
841 if (!HaveTailCall || !HaveFakeUse)
842 return;
843
845 // Record the fake uses we found so we can move them to the front of the
846 // tail call. Ignore them if they use a value that is def'd by or after
847 // the tail call.
848 for (BasicBlock::iterator Inst = I; Inst != End; Inst++) {
849 if (IntrinsicInst *FakeUse = dyn_cast<IntrinsicInst>(Inst);
850 FakeUse && FakeUse->getIntrinsicID() == Intrinsic::fake_use) {
851 if (auto UsedDef = dyn_cast<Instruction>(FakeUse->getOperand(0));
852 !UsedDef || UsedDef->getParent() != I->getParent() ||
853 UsedDef->comesBefore(&*I))
854 FakeUses.push_back(FakeUse);
855 }
856 }
857
858 for (auto *Inst : FakeUses)
859 Inst->moveBefore(*Inst->getParent(), I);
860}
861
862void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
864 bool &HadTailCall) {
865 // Allow creating illegal types during DAG building for the basic block.
866 CurDAG->NewNodesMustHaveLegalTypes = false;
867
868 // Lower the instructions. If a call is emitted as a tail call, cease emitting
869 // nodes for this block. If an instruction is elided, don't emit it, but do
870 // handle any debug-info attached to it.
871 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
872 if (!ElidedArgCopyInstrs.count(&*I))
873 SDB->visit(*I);
874 else
875 SDB->visitDbgInfo(*I);
876 }
877
878 // Make sure the root of the DAG is up-to-date.
879 CurDAG->setRoot(SDB->getControlRoot());
880 HadTailCall = SDB->HasTailCall;
881 SDB->resolveOrClearDbgInfo();
882 SDB->clear();
883
884 // Final step, emit the lowered DAG as machine code.
885 CodeGenAndEmitDAG();
886}
887
888void SelectionDAGISel::ComputeLiveOutVRegInfo() {
889 SmallPtrSet<SDNode *, 16> Added;
891
892 Worklist.push_back(CurDAG->getRoot().getNode());
893 Added.insert(CurDAG->getRoot().getNode());
894
895 KnownBits Known;
896
897 do {
898 SDNode *N = Worklist.pop_back_val();
899
900 // Otherwise, add all chain operands to the worklist.
901 for (const SDValue &Op : N->op_values())
902 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
903 Worklist.push_back(Op.getNode());
904
905 // If this is a CopyToReg with a vreg dest, process it.
906 if (N->getOpcode() != ISD::CopyToReg)
907 continue;
908
909 Register DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
910 if (!DestReg.isVirtual())
911 continue;
912
913 // Ignore non-integer values.
914 SDValue Src = N->getOperand(2);
915 EVT SrcVT = Src.getValueType();
916 if (!SrcVT.isInteger())
917 continue;
918
919 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
920 Known = CurDAG->computeKnownBits(Src);
921 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
922 } while (!Worklist.empty());
923}
924
925void SelectionDAGISel::CodeGenAndEmitDAG() {
926 StringRef GroupName = "sdag";
927 StringRef GroupDescription = "Instruction Selection and Scheduling";
928 std::string BlockName;
929 bool MatchFilterBB = false;
930 (void)MatchFilterBB;
931
932 // Pre-type legalization allow creation of any node types.
933 CurDAG->NewNodesMustHaveLegalTypes = false;
934
935#ifndef NDEBUG
936 MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
938 FuncInfo->MBB->getBasicBlock()->getName());
939#endif
940#ifdef NDEBUG
944#endif
945 {
946 BlockName =
947 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
948 }
949 ISEL_DUMP(dbgs() << "\nInitial selection DAG: "
950 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
951 << "'\n";
952 CurDAG->dump(DumpSortedDAG));
953
954#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
955 if (TTI->hasBranchDivergence())
956 CurDAG->VerifyDAGDivergence();
957#endif
958
959 if (ViewDAGCombine1 && MatchFilterBB)
960 CurDAG->viewGraph("dag-combine1 input for " + BlockName);
961
962 // Run the DAG combiner in pre-legalize mode.
963 {
964 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
965 GroupDescription, TimePassesIsEnabled);
967 }
968
969 ISEL_DUMP(dbgs() << "\nOptimized lowered selection DAG: "
970 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
971 << "'\n";
972 CurDAG->dump(DumpSortedDAG));
973
974#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
975 if (TTI->hasBranchDivergence())
976 CurDAG->VerifyDAGDivergence();
977#endif
978
979 // Second step, hack on the DAG until it only uses operations and types that
980 // the target supports.
981 if (ViewLegalizeTypesDAGs && MatchFilterBB)
982 CurDAG->viewGraph("legalize-types input for " + BlockName);
983
984 bool Changed;
985 {
986 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
987 GroupDescription, TimePassesIsEnabled);
988 Changed = CurDAG->LegalizeTypes();
989 }
990
991 ISEL_DUMP(dbgs() << "\nType-legalized selection DAG: "
992 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
993 << "'\n";
994 CurDAG->dump(DumpSortedDAG));
995
996#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
997 if (TTI->hasBranchDivergence())
998 CurDAG->VerifyDAGDivergence();
999#endif
1000
1001 // Only allow creation of legal node types.
1002 CurDAG->NewNodesMustHaveLegalTypes = true;
1003
1004 if (Changed) {
1005 if (ViewDAGCombineLT && MatchFilterBB)
1006 CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
1007
1008 // Run the DAG combiner in post-type-legalize mode.
1009 {
1010 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
1011 GroupName, GroupDescription, TimePassesIsEnabled);
1013 }
1014
1015 ISEL_DUMP(dbgs() << "\nOptimized type-legalized selection DAG: "
1016 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1017 << "'\n";
1018 CurDAG->dump(DumpSortedDAG));
1019
1020#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1021 if (TTI->hasBranchDivergence())
1022 CurDAG->VerifyDAGDivergence();
1023#endif
1024 }
1025
1026 {
1027 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
1028 GroupDescription, TimePassesIsEnabled);
1029 Changed = CurDAG->LegalizeVectors();
1030 }
1031
1032 if (Changed) {
1033 ISEL_DUMP(dbgs() << "\nVector-legalized selection DAG: "
1034 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1035 << "'\n";
1036 CurDAG->dump(DumpSortedDAG));
1037
1038#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1039 if (TTI->hasBranchDivergence())
1040 CurDAG->VerifyDAGDivergence();
1041#endif
1042
1043 {
1044 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
1045 GroupDescription, TimePassesIsEnabled);
1046 CurDAG->LegalizeTypes();
1047 }
1048
1049 ISEL_DUMP(dbgs() << "\nVector/type-legalized selection DAG: "
1050 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1051 << "'\n";
1052 CurDAG->dump(DumpSortedDAG));
1053
1054#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1055 if (TTI->hasBranchDivergence())
1056 CurDAG->VerifyDAGDivergence();
1057#endif
1058
1059 if (ViewDAGCombineLT && MatchFilterBB)
1060 CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
1061
1062 // Run the DAG combiner in post-type-legalize mode.
1063 {
1064 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
1065 GroupName, GroupDescription, TimePassesIsEnabled);
1067 }
1068
1069 ISEL_DUMP(dbgs() << "\nOptimized vector-legalized selection DAG: "
1070 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1071 << "'\n";
1072 CurDAG->dump(DumpSortedDAG));
1073
1074#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1075 if (TTI->hasBranchDivergence())
1076 CurDAG->VerifyDAGDivergence();
1077#endif
1078 }
1079
1080 if (ViewLegalizeDAGs && MatchFilterBB)
1081 CurDAG->viewGraph("legalize input for " + BlockName);
1082
1083 {
1084 NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
1085 GroupDescription, TimePassesIsEnabled);
1086 CurDAG->Legalize();
1087 }
1088
1089 ISEL_DUMP(dbgs() << "\nLegalized selection DAG: "
1090 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1091 << "'\n";
1092 CurDAG->dump(DumpSortedDAG));
1093
1094#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1095 if (TTI->hasBranchDivergence())
1096 CurDAG->VerifyDAGDivergence();
1097#endif
1098
1099 if (ViewDAGCombine2 && MatchFilterBB)
1100 CurDAG->viewGraph("dag-combine2 input for " + BlockName);
1101
1102 // Run the DAG combiner in post-legalize mode.
1103 {
1104 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
1105 GroupDescription, TimePassesIsEnabled);
1107 }
1108
1109 ISEL_DUMP(dbgs() << "\nOptimized legalized selection DAG: "
1110 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1111 << "'\n";
1112 CurDAG->dump(DumpSortedDAG));
1113
1114#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
1115 if (TTI->hasBranchDivergence())
1116 CurDAG->VerifyDAGDivergence();
1117#endif
1118
1120 ComputeLiveOutVRegInfo();
1121
1122 if (ViewISelDAGs && MatchFilterBB)
1123 CurDAG->viewGraph("isel input for " + BlockName);
1124
1125 // Third, instruction select all of the operations to machine code, adding the
1126 // code to the MachineBasicBlock.
1127 {
1128 NamedRegionTimer T("isel", "Instruction Selection", GroupName,
1129 GroupDescription, TimePassesIsEnabled);
1130 DoInstructionSelection();
1131 }
1132
1133 ISEL_DUMP(dbgs() << "\nSelected selection DAG: "
1134 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
1135 << "'\n";
1136 CurDAG->dump(DumpSortedDAG));
1137
1138 if (ViewSchedDAGs && MatchFilterBB)
1139 CurDAG->viewGraph("scheduler input for " + BlockName);
1140
1141 // Schedule machine code.
1142 ScheduleDAGSDNodes *Scheduler = CreateScheduler();
1143 {
1144 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
1145 GroupDescription, TimePassesIsEnabled);
1146 Scheduler->Run(CurDAG, FuncInfo->MBB);
1147 }
1148
1149 if (ViewSUnitDAGs && MatchFilterBB)
1150 Scheduler->viewGraph();
1151
1152 // Emit machine code to BB. This can change 'BB' to the last block being
1153 // inserted into.
1154 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
1155 {
1156 NamedRegionTimer T("emit", "Instruction Creation", GroupName,
1157 GroupDescription, TimePassesIsEnabled);
1158
1159 // FuncInfo->InsertPt is passed by reference and set to the end of the
1160 // scheduled instructions.
1161 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
1162 }
1163
1164 // If the block was split, make sure we update any references that are used to
1165 // update PHI nodes later on.
1166 if (FirstMBB != LastMBB)
1167 SDB->UpdateSplitBlock(FirstMBB, LastMBB);
1168
1169 // Free the scheduler state.
1170 {
1171 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
1172 GroupDescription, TimePassesIsEnabled);
1173 delete Scheduler;
1174 }
1175
1176 // Free the SelectionDAG state, now that we're finished with it.
1177 CurDAG->clear();
1178}
1179
1180namespace {
1181
1182/// ISelUpdater - helper class to handle updates of the instruction selection
1183/// graph.
1184class ISelUpdater : public SelectionDAG::DAGUpdateListener {
1185 SelectionDAG::allnodes_iterator &ISelPosition;
1186
1187public:
1188 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1189 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1190
1191 /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1192 /// deleted is the current ISelPosition node, update ISelPosition.
1193 ///
1194 void NodeDeleted(SDNode *N, SDNode *E) override {
1195 if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1196 ++ISelPosition;
1197 }
1198
1199 /// NodeInserted - Handle new nodes inserted into the graph: propagate
1200 /// metadata from root nodes that also applies to new nodes, in case the root
1201 /// is later deleted.
1202 void NodeInserted(SDNode *N) override {
1203 SDNode *CurNode = &*ISelPosition;
1204 if (MDNode *MD = DAG.getPCSections(CurNode))
1205 DAG.addPCSections(N, MD);
1206 if (MDNode *MMRA = DAG.getMMRAMetadata(CurNode))
1207 DAG.addMMRAMetadata(N, MMRA);
1208 }
1209};
1210
1211} // end anonymous namespace
1212
1213// This function is used to enforce the topological node id property
1214// leveraged during instruction selection. Before the selection process all
1215// nodes are given a non-negative id such that all nodes have a greater id than
1216// their operands. As this holds transitively we can prune checks that a node N
1217// is a predecessor of M another by not recursively checking through M's
1218// operands if N's ID is larger than M's ID. This significantly improves
1219// performance of various legality checks (e.g. IsLegalToFold / UpdateChains).
1220
1221// However, when we fuse multiple nodes into a single node during the
1222// selection we may induce a predecessor relationship between inputs and
1223// outputs of distinct nodes being merged, violating the topological property.
1224// Should a fused node have a successor which has yet to be selected,
1225// our legality checks would be incorrect. To avoid this we mark all unselected
1226// successor nodes, i.e. id != -1, as invalid for pruning by bit-negating (x =>
1227// (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1228// We use bit-negation to more clearly enforce that node id -1 can only be
1229// achieved by selected nodes. As the conversion is reversable to the original
1230// Id, topological pruning can still be leveraged when looking for unselected
1231// nodes. This method is called internally in all ISel replacement related
1232// functions.
1235 Nodes.push_back(Node);
1236
1237 while (!Nodes.empty()) {
1238 SDNode *N = Nodes.pop_back_val();
1239 for (auto *U : N->users()) {
1240 auto UId = U->getNodeId();
1241 if (UId > 0) {
1243 Nodes.push_back(U);
1244 }
1245 }
1246 }
1247}
1248
1249// InvalidateNodeId - As explained in EnforceNodeIdInvariant, mark a
1250// NodeId with the equivalent node id which is invalid for topological
1251// pruning.
1253 int InvalidId = -(N->getNodeId() + 1);
1254 N->setNodeId(InvalidId);
1255}
1256
1257// getUninvalidatedNodeId - get original uninvalidated node id.
1259 int Id = N->getNodeId();
1260 if (Id < -1)
1261 return -(Id + 1);
1262 return Id;
1263}
1264
1265void SelectionDAGISel::DoInstructionSelection() {
1266 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1267 << printMBBReference(*FuncInfo->MBB) << " '"
1268 << FuncInfo->MBB->getName() << "'\n");
1269
1271
1272 // Select target instructions for the DAG.
1273 {
1274 // Number all nodes with a topological order and set DAGSize.
1276
1277 // Create a dummy node (which is not added to allnodes), that adds
1278 // a reference to the root node, preventing it from being deleted,
1279 // and tracking any changes of the root.
1280 HandleSDNode Dummy(CurDAG->getRoot());
1282 ++ISelPosition;
1283
1284 // Make sure that ISelPosition gets properly updated when nodes are deleted
1285 // in calls made from this function. New nodes inherit relevant metadata.
1286 ISelUpdater ISU(*CurDAG, ISelPosition);
1287
1288 // The AllNodes list is now topological-sorted. Visit the
1289 // nodes by starting at the end of the list (the root of the
1290 // graph) and preceding back toward the beginning (the entry
1291 // node).
1292 while (ISelPosition != CurDAG->allnodes_begin()) {
1293 SDNode *Node = &*--ISelPosition;
1294 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1295 // but there are currently some corner cases that it misses. Also, this
1296 // makes it theoretically possible to disable the DAGCombiner.
1297 if (Node->use_empty())
1298 continue;
1299
1300#ifndef NDEBUG
1302 Nodes.push_back(Node);
1303
1304 while (!Nodes.empty()) {
1305 auto N = Nodes.pop_back_val();
1306 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1307 continue;
1308 for (const SDValue &Op : N->op_values()) {
1309 if (Op->getOpcode() == ISD::TokenFactor)
1310 Nodes.push_back(Op.getNode());
1311 else {
1312 // We rely on topological ordering of node ids for checking for
1313 // cycles when fusing nodes during selection. All unselected nodes
1314 // successors of an already selected node should have a negative id.
1315 // This assertion will catch such cases. If this assertion triggers
1316 // it is likely you using DAG-level Value/Node replacement functions
1317 // (versus equivalent ISEL replacement) in backend-specific
1318 // selections. See comment in EnforceNodeIdInvariant for more
1319 // details.
1320 assert(Op->getNodeId() != -1 &&
1321 "Node has already selected predecessor node");
1322 }
1323 }
1324 }
1325#endif
1326
1327 // When we are using non-default rounding modes or FP exception behavior
1328 // FP operations are represented by StrictFP pseudo-operations. For
1329 // targets that do not (yet) understand strict FP operations directly,
1330 // we convert them to normal FP opcodes instead at this point. This
1331 // will allow them to be handled by existing target-specific instruction
1332 // selectors.
1333 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1334 // For some opcodes, we need to call TLI->getOperationAction using
1335 // the first operand type instead of the result type. Note that this
1336 // must match what SelectionDAGLegalize::LegalizeOp is doing.
1337 EVT ActionVT;
1338 switch (Node->getOpcode()) {
1341 case ISD::STRICT_LRINT:
1342 case ISD::STRICT_LLRINT:
1343 case ISD::STRICT_LROUND:
1345 case ISD::STRICT_FSETCC:
1347 ActionVT = Node->getOperand(1).getValueType();
1348 break;
1349 default:
1350 ActionVT = Node->getValueType(0);
1351 break;
1352 }
1353 if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1355 Node = CurDAG->mutateStrictFPToFP(Node);
1356 }
1357
1358 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1359 Node->dump(CurDAG));
1360
1361 Select(Node);
1362 }
1363
1364 CurDAG->setRoot(Dummy.getValue());
1365 }
1366
1367 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1368
1370}
1371
1373 for (const User *U : CPI->users()) {
1374 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1375 Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1376 if (IID == Intrinsic::eh_exceptionpointer ||
1377 IID == Intrinsic::eh_exceptioncode)
1378 return true;
1379 }
1380 }
1381 return false;
1382}
1383
1384// wasm.landingpad.index intrinsic is for associating a landing pad index number
1385// with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1386// and store the mapping in the function.
1388 const CatchPadInst *CPI) {
1389 MachineFunction *MF = MBB->getParent();
1390 // In case of single catch (...), we don't emit LSDA, so we don't need
1391 // this information.
1392 bool IsSingleCatchAllClause =
1393 CPI->arg_size() == 1 &&
1394 cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1395 // cathchpads for longjmp use an empty type list, e.g. catchpad within %0 []
1396 // and they don't need LSDA info
1397 bool IsCatchLongjmp = CPI->arg_size() == 0;
1398 if (!IsSingleCatchAllClause && !IsCatchLongjmp) {
1399 // Create a mapping from landing pad label to landing pad index.
1400 bool IntrFound = false;
1401 for (const User *U : CPI->users()) {
1402 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1403 Intrinsic::ID IID = Call->getIntrinsicID();
1404 if (IID == Intrinsic::wasm_landingpad_index) {
1405 Value *IndexArg = Call->getArgOperand(1);
1406 int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1407 MF->setWasmLandingPadIndex(MBB, Index);
1408 IntrFound = true;
1409 break;
1410 }
1411 }
1412 }
1413 assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1414 (void)IntrFound;
1415 }
1416}
1417
1418/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1419/// do other setup for EH landing-pad blocks.
1420bool SelectionDAGISel::PrepareEHLandingPad() {
1421 MachineBasicBlock *MBB = FuncInfo->MBB;
1422 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1423 const BasicBlock *LLVMBB = MBB->getBasicBlock();
1424 const TargetRegisterClass *PtrRC =
1425 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1426
1427 auto Pers = classifyEHPersonality(PersonalityFn);
1428
1429 // Catchpads have one live-in register, which typically holds the exception
1430 // pointer or code.
1431 if (isFuncletEHPersonality(Pers)) {
1432 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHIIt())) {
1434 // Get or create the virtual register to hold the pointer or code. Mark
1435 // the live in physreg and copy into the vreg.
1436 MCRegister EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1437 assert(EHPhysReg && "target lacks exception pointer register");
1438 MBB->addLiveIn(EHPhysReg);
1439 Register VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1440 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1441 TII->get(TargetOpcode::COPY), VReg)
1442 .addReg(EHPhysReg, RegState::Kill);
1443 }
1444 }
1445 return true;
1446 }
1447
1448 // Add a label to mark the beginning of the landing pad. Deletion of the
1449 // landing pad can thus be detected via the MachineModuleInfo.
1450 MCSymbol *Label = MF->addLandingPad(MBB);
1451
1452 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1453 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1454 .addSym(Label);
1455
1456 // If the unwinder does not preserve all registers, ensure that the
1457 // function marks the clobbered registers as used.
1458 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
1459 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
1460 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
1461
1462 if (Pers == EHPersonality::Wasm_CXX) {
1463 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHIIt()))
1465 } else {
1466 // Assign the call site to the landing pad's begin label.
1467 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1468 // Mark exception register as live in.
1469 if (MCRegister Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1470 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1471 // Mark exception selector register as live in.
1472 if (MCRegister Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1473 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1474 }
1475
1476 return true;
1477}
1478
1479// Mark and Report IPToState for each Block under IsEHa
1480void SelectionDAGISel::reportIPToStateForBlocks(MachineFunction *MF) {
1481 llvm::WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo();
1482 if (!EHInfo)
1483 return;
1484 for (MachineBasicBlock &MBB : *MF) {
1485 const BasicBlock *BB = MBB.getBasicBlock();
1486 int State = EHInfo->BlockToStateMap[BB];
1487 if (BB->getFirstMayFaultInst()) {
1488 // Report IP range only for blocks with Faulty inst
1489 auto MBBb = MBB.getFirstNonPHI();
1490
1491 if (MBBb == MBB.end())
1492 continue;
1493
1494 MachineInstr *MIb = &*MBBb;
1495 if (MIb->isTerminator())
1496 continue;
1497
1498 // Insert EH Labels
1499 MCSymbol *BeginLabel = MF->getContext().createTempSymbol();
1500 MCSymbol *EndLabel = MF->getContext().createTempSymbol();
1501 EHInfo->addIPToStateRange(State, BeginLabel, EndLabel);
1502 BuildMI(MBB, MBBb, SDB->getCurDebugLoc(),
1503 TII->get(TargetOpcode::EH_LABEL))
1504 .addSym(BeginLabel);
1505 auto MBBe = MBB.instr_end();
1506 MachineInstr *MIe = &*(--MBBe);
1507 // insert before (possible multiple) terminators
1508 while (MIe->isTerminator())
1509 MIe = &*(--MBBe);
1510 ++MBBe;
1511 BuildMI(MBB, MBBe, SDB->getCurDebugLoc(),
1512 TII->get(TargetOpcode::EH_LABEL))
1513 .addSym(EndLabel);
1514 }
1515 }
1516}
1517
1518/// isFoldedOrDeadInstruction - Return true if the specified instruction is
1519/// side-effect free and is either dead or folded into a generated instruction.
1520/// Return false if it needs to be emitted.
1522 const FunctionLoweringInfo &FuncInfo) {
1523 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1524 !I->isTerminator() && // Terminators aren't folded.
1525 !I->isEHPad() && // EH pad instructions aren't folded.
1526 !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1527}
1528
1530 const Value *Arg, DIExpression *Expr,
1531 DILocalVariable *Var,
1532 DebugLoc DbgLoc) {
1533 if (!Expr->isEntryValue() || !isa<Argument>(Arg))
1534 return false;
1535
1536 auto ArgIt = FuncInfo.ValueMap.find(Arg);
1537 if (ArgIt == FuncInfo.ValueMap.end())
1538 return false;
1539 Register ArgVReg = ArgIt->getSecond();
1540
1541 // Find the corresponding livein physical register to this argument.
1542 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
1543 if (VirtReg == ArgVReg) {
1544 // Append an op deref to account for the fact that this is a dbg_declare.
1545 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
1546 FuncInfo.MF->setVariableDbgInfo(Var, Expr, PhysReg, DbgLoc);
1547 LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var
1548 << ", Expr=" << *Expr << ", MCRegister=" << PhysReg
1549 << ", DbgLoc=" << DbgLoc << "\n");
1550 return true;
1551 }
1552 return false;
1553}
1554
1556 const Value *Address, DIExpression *Expr,
1557 DILocalVariable *Var, DebugLoc DbgLoc) {
1558 if (!Address) {
1559 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *Var
1560 << " (bad address)\n");
1561 return false;
1562 }
1563
1564 if (processIfEntryValueDbgDeclare(FuncInfo, Address, Expr, Var, DbgLoc))
1565 return true;
1566
1567 if (!Address->getType()->isPointerTy())
1568 return false;
1569
1570 MachineFunction *MF = FuncInfo.MF;
1571 const DataLayout &DL = MF->getDataLayout();
1572
1573 assert(Var && "Missing variable");
1574 assert(DbgLoc && "Missing location");
1575
1576 // Look through casts and constant offset GEPs. These mostly come from
1577 // inalloca.
1578 APInt Offset(DL.getIndexTypeSizeInBits(Address->getType()), 0);
1579 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1580
1581 // Check if the variable is a static alloca or a byval or inalloca
1582 // argument passed in memory. If it is not, then we will ignore this
1583 // intrinsic and handle this during isel like dbg.value.
1584 int FI = std::numeric_limits<int>::max();
1585 if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1586 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1587 if (SI != FuncInfo.StaticAllocaMap.end())
1588 FI = SI->second;
1589 } else if (const auto *Arg = dyn_cast<Argument>(Address))
1590 FI = FuncInfo.getArgumentFrameIndex(Arg);
1591
1592 if (FI == std::numeric_limits<int>::max())
1593 return false;
1594
1595 if (Offset.getBoolValue())
1597 Offset.getZExtValue());
1598
1599 LLVM_DEBUG(dbgs() << "processDbgDeclare: setVariableDbgInfo Var=" << *Var
1600 << ", Expr=" << *Expr << ", FI=" << FI
1601 << ", DbgLoc=" << DbgLoc << "\n");
1602 MF->setVariableDbgInfo(Var, Expr, FI, DbgLoc);
1603 return true;
1604}
1605
1606/// Collect llvm.dbg.declare information. This is done after argument lowering
1607/// in case the declarations refer to arguments.
1609 for (const auto &I : instructions(*FuncInfo.Fn)) {
1610 for (const DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
1612 processDbgDeclare(FuncInfo, DVR.getVariableLocationOp(0),
1613 DVR.getExpression(), DVR.getVariable(),
1614 DVR.getDebugLoc()))
1615 FuncInfo.PreprocessedDVRDeclares.insert(&DVR);
1616 }
1617 }
1618}
1619
1620/// Collect single location variable information generated with assignment
1621/// tracking. This is done after argument lowering in case the declarations
1622/// refer to arguments.
1624 FunctionVarLocs const *FnVarLocs) {
1625 for (auto It = FnVarLocs->single_locs_begin(),
1626 End = FnVarLocs->single_locs_end();
1627 It != End; ++It) {
1628 assert(!It->Values.hasArgList() && "Single loc variadic ops not supported");
1629 processDbgDeclare(FuncInfo, It->Values.getVariableLocationOp(0), It->Expr,
1630 FnVarLocs->getDILocalVariable(It->VariableID), It->DL);
1631 }
1632}
1633
1634void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1635 FastISelFailed = false;
1636 // Initialize the Fast-ISel state, if needed.
1637 FastISel *FastIS = nullptr;
1638 if (TM.Options.EnableFastISel) {
1639 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1640 FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1641 }
1642
1643 ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1644
1645 // Lower arguments up front. An RPO iteration always visits the entry block
1646 // first.
1647 assert(*RPOT.begin() == &Fn.getEntryBlock());
1648 ++NumEntryBlocks;
1649
1650 // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1651 FuncInfo->MBB = FuncInfo->getMBB(&Fn.getEntryBlock());
1652 FuncInfo->InsertPt = FuncInfo->MBB->begin();
1653
1654 CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1655
1656 if (!FastIS) {
1657 LowerArguments(Fn);
1658 } else {
1659 // See if fast isel can lower the arguments.
1660 FastIS->startNewBlock();
1661 if (!FastIS->lowerArguments()) {
1662 FastISelFailed = true;
1663 // Fast isel failed to lower these arguments
1664 ++NumFastIselFailLowerArguments;
1665
1666 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1667 Fn.getSubprogram(),
1668 &Fn.getEntryBlock());
1669 R << "FastISel didn't lower all arguments: "
1670 << ore::NV("Prototype", Fn.getFunctionType());
1672
1673 // Use SelectionDAG argument lowering
1674 LowerArguments(Fn);
1675 CurDAG->setRoot(SDB->getControlRoot());
1676 SDB->clear();
1677 CodeGenAndEmitDAG();
1678 }
1679
1680 // If we inserted any instructions at the beginning, make a note of
1681 // where they are, so we can be sure to emit subsequent instructions
1682 // after them.
1683 if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1684 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1685 else
1686 FastIS->setLastLocalValue(nullptr);
1687 }
1688
1689 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1690
1691 if (FastIS && Inserted)
1692 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1693
1695 assert(CurDAG->getFunctionVarLocs() &&
1696 "expected AssignmentTrackingAnalysis pass results");
1697 processSingleLocVars(*FuncInfo, CurDAG->getFunctionVarLocs());
1698 } else {
1700 }
1701
1702 // Iterate over all basic blocks in the function.
1703 FuncInfo->VisitedBBs.assign(Fn.getMaxBlockNumber(), false);
1704 for (const BasicBlock *LLVMBB : RPOT) {
1706 bool AllPredsVisited = true;
1707 for (const BasicBlock *Pred : predecessors(LLVMBB)) {
1708 if (!FuncInfo->VisitedBBs[Pred->getNumber()]) {
1709 AllPredsVisited = false;
1710 break;
1711 }
1712 }
1713
1714 if (AllPredsVisited) {
1715 for (const PHINode &PN : LLVMBB->phis())
1716 FuncInfo->ComputePHILiveOutRegInfo(&PN);
1717 } else {
1718 for (const PHINode &PN : LLVMBB->phis())
1719 FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1720 }
1721
1722 FuncInfo->VisitedBBs[LLVMBB->getNumber()] = true;
1723 }
1724
1725 // Fake uses that follow tail calls are dropped. To avoid this, move
1726 // such fake uses in front of the tail call, provided they don't
1727 // use anything def'd by or after the tail call.
1728 {
1729 BasicBlock::iterator BBStart =
1730 const_cast<BasicBlock *>(LLVMBB)->getFirstNonPHIIt();
1731 BasicBlock::iterator BBEnd = const_cast<BasicBlock *>(LLVMBB)->end();
1732 preserveFakeUses(BBStart, BBEnd);
1733 }
1734
1735 BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHIIt();
1736 BasicBlock::const_iterator const End = LLVMBB->end();
1738
1739 FuncInfo->MBB = FuncInfo->getMBB(LLVMBB);
1740 if (!FuncInfo->MBB)
1741 continue; // Some blocks like catchpads have no code or MBB.
1742
1743 // Insert new instructions after any phi or argument setup code.
1744 FuncInfo->InsertPt = FuncInfo->MBB->end();
1745
1746 // Setup an EH landing-pad block.
1747 FuncInfo->ExceptionPointerVirtReg = Register();
1748 FuncInfo->ExceptionSelectorVirtReg = Register();
1749 if (LLVMBB->isEHPad()) {
1750 if (!PrepareEHLandingPad())
1751 continue;
1752
1753 if (!FastIS) {
1754 SDValue NewRoot = TLI->lowerEHPadEntry(CurDAG->getRoot(),
1755 SDB->getCurSDLoc(), *CurDAG);
1756 if (NewRoot && NewRoot != CurDAG->getRoot())
1757 CurDAG->setRoot(NewRoot);
1758 }
1759 }
1760
1761 // Before doing SelectionDAG ISel, see if FastISel has been requested.
1762 if (FastIS) {
1763 if (LLVMBB != &Fn.getEntryBlock())
1764 FastIS->startNewBlock();
1765
1766 unsigned NumFastIselRemaining = std::distance(Begin, End);
1767
1768 // Pre-assign swifterror vregs.
1769 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1770
1771 // Do FastISel on as many instructions as possible.
1772 for (; BI != Begin; --BI) {
1773 const Instruction *Inst = &*std::prev(BI);
1774
1775 // If we no longer require this instruction, skip it.
1776 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1777 ElidedArgCopyInstrs.count(Inst)) {
1778 --NumFastIselRemaining;
1779 FastIS->handleDbgInfo(Inst);
1780 continue;
1781 }
1782
1783 // Bottom-up: reset the insert pos at the top, after any local-value
1784 // instructions.
1785 FastIS->recomputeInsertPt();
1786
1787 // Try to select the instruction with FastISel.
1788 if (FastIS->selectInstruction(Inst)) {
1789 --NumFastIselRemaining;
1790 ++NumFastIselSuccess;
1791
1792 FastIS->handleDbgInfo(Inst);
1793 // If fast isel succeeded, skip over all the folded instructions, and
1794 // then see if there is a load right before the selected instructions.
1795 // Try to fold the load if so.
1796 const Instruction *BeforeInst = Inst;
1797 while (BeforeInst != &*Begin) {
1798 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1799 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1800 break;
1801 }
1802 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1803 BeforeInst->hasOneUse() &&
1804 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1805 // If we succeeded, don't re-select the load.
1807 << "FastISel folded load: " << *BeforeInst << "\n");
1808 FastIS->handleDbgInfo(BeforeInst);
1809 BI = std::next(BasicBlock::const_iterator(BeforeInst));
1810 --NumFastIselRemaining;
1811 ++NumFastIselSuccess;
1812 }
1813 continue;
1814 }
1815
1816 FastISelFailed = true;
1817
1818 // Then handle certain instructions as single-LLVM-Instruction blocks.
1819 // We cannot separate out GCrelocates to their own blocks since we need
1820 // to keep track of gc-relocates for a particular gc-statepoint. This is
1821 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1822 // visitGCRelocate.
1823 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1824 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1825 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1826 Inst->getDebugLoc(), LLVMBB);
1827
1828 R << "FastISel missed call";
1829
1830 if (R.isEnabled() || EnableFastISelAbort) {
1831 std::string InstStrStorage;
1832 raw_string_ostream InstStr(InstStrStorage);
1833 InstStr << *Inst;
1834
1835 R << ": " << InstStrStorage;
1836 }
1837
1839
1840 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1841 !Inst->use_empty()) {
1842 Register &R = FuncInfo->ValueMap[Inst];
1843 if (!R)
1844 R = FuncInfo->CreateRegs(Inst);
1845 }
1846
1847 bool HadTailCall = false;
1848 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1849 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1850
1851 // If the call was emitted as a tail call, we're done with the block.
1852 // We also need to delete any previously emitted instructions.
1853 if (HadTailCall) {
1854 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1855 --BI;
1856 break;
1857 }
1858
1859 // Recompute NumFastIselRemaining as Selection DAG instruction
1860 // selection may have handled the call, input args, etc.
1861 unsigned RemainingNow = std::distance(Begin, BI);
1862 NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1863 NumFastIselRemaining = RemainingNow;
1864 continue;
1865 }
1866
1867 OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1868 Inst->getDebugLoc(), LLVMBB);
1869
1870 bool ShouldAbort = EnableFastISelAbort;
1871 if (Inst->isTerminator()) {
1872 // Use a different message for terminator misses.
1873 R << "FastISel missed terminator";
1874 // Don't abort for terminator unless the level is really high
1875 ShouldAbort = (EnableFastISelAbort > 2);
1876 } else {
1877 R << "FastISel missed";
1878 }
1879
1880 if (R.isEnabled() || EnableFastISelAbort) {
1881 std::string InstStrStorage;
1882 raw_string_ostream InstStr(InstStrStorage);
1883 InstStr << *Inst;
1884 R << ": " << InstStrStorage;
1885 }
1886
1887 reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1888
1889 NumFastIselFailures += NumFastIselRemaining;
1890 break;
1891 }
1892
1893 FastIS->recomputeInsertPt();
1894 }
1895
1896 if (SP->shouldEmitSDCheck(*LLVMBB)) {
1897 bool FunctionBasedInstrumentation =
1898 TLI->getSSPStackGuardCheck(*Fn.getParent()) && Fn.hasMinSize();
1899 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->getMBB(LLVMBB),
1900 FunctionBasedInstrumentation);
1901 }
1902
1903 if (Begin != BI)
1904 ++NumDAGBlocks;
1905 else
1906 ++NumFastIselBlocks;
1907
1908 if (Begin != BI) {
1909 // Run SelectionDAG instruction selection on the remainder of the block
1910 // not handled by FastISel. If FastISel is not run, this is the entire
1911 // block.
1912 bool HadTailCall;
1913 SelectBasicBlock(Begin, BI, HadTailCall);
1914
1915 // But if FastISel was run, we already selected some of the block.
1916 // If we emitted a tail-call, we need to delete any previously emitted
1917 // instruction that follows it.
1918 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1919 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1920 }
1921
1922 if (FastIS)
1923 FastIS->finishBasicBlock();
1924 FinishBasicBlock();
1925 FuncInfo->PHINodesToUpdate.clear();
1926 ElidedArgCopyInstrs.clear();
1927 }
1928
1929 // AsynchEH: Report Block State under -AsynchEH
1930 if (Fn.getParent()->getModuleFlag("eh-asynch"))
1931 reportIPToStateForBlocks(MF);
1932
1933 SP->copyToMachineFrameInfo(MF->getFrameInfo());
1934
1935 SwiftError->propagateVRegs();
1936
1937 delete FastIS;
1938 SDB->clearDanglingDebugInfo();
1939 SDB->SPDescriptor.resetPerFunctionState();
1940}
1941
1942void
1943SelectionDAGISel::FinishBasicBlock() {
1944 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1945 << FuncInfo->PHINodesToUpdate.size() << "\n";
1946 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1947 ++i) dbgs()
1948 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1949 << ", " << printReg(FuncInfo->PHINodesToUpdate[i].second)
1950 << ")\n");
1951
1952 // Next, now that we know what the last MBB the LLVM BB expanded is, update
1953 // PHI nodes in successors.
1954 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1955 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1956 assert(PHI->isPHI() &&
1957 "This is not a machine PHI node that we are updating!");
1958 if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1959 continue;
1960 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1961 }
1962
1963 // Handle stack protector.
1964 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1965 // The target provides a guard check function. There is no need to
1966 // generate error handling code or to split current basic block.
1967 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1968
1969 // Add load and check to the basicblock.
1970 FuncInfo->MBB = ParentMBB;
1971 FuncInfo->InsertPt = findSplitPointForStackProtector(ParentMBB, *TII);
1972 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1973 CurDAG->setRoot(SDB->getRoot());
1974 SDB->clear();
1975 CodeGenAndEmitDAG();
1976
1977 // Clear the Per-BB State.
1978 SDB->SPDescriptor.resetPerBBState();
1979 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1980 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1981 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1982
1983 // Find the split point to split the parent mbb. At the same time copy all
1984 // physical registers used in the tail of parent mbb into virtual registers
1985 // before the split point and back into physical registers after the split
1986 // point. This prevents us needing to deal with Live-ins and many other
1987 // register allocation issues caused by us splitting the parent mbb. The
1988 // register allocator will clean up said virtual copies later on.
1989 MachineBasicBlock::iterator SplitPoint =
1991
1992 // Splice the terminator of ParentMBB into SuccessMBB.
1993 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
1994 ParentMBB->end());
1995
1996 // Add compare/jump on neq/jump to the parent BB.
1997 FuncInfo->MBB = ParentMBB;
1998 FuncInfo->InsertPt = ParentMBB->end();
1999 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
2000 CurDAG->setRoot(SDB->getRoot());
2001 SDB->clear();
2002 CodeGenAndEmitDAG();
2003
2004 // CodeGen Failure MBB if we have not codegened it yet.
2005 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
2006 if (FailureMBB->empty()) {
2007 FuncInfo->MBB = FailureMBB;
2008 FuncInfo->InsertPt = FailureMBB->end();
2009 SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
2010 CurDAG->setRoot(SDB->getRoot());
2011 SDB->clear();
2012 CodeGenAndEmitDAG();
2013 }
2014
2015 // Clear the Per-BB State.
2016 SDB->SPDescriptor.resetPerBBState();
2017 }
2018
2019 // Lower each BitTestBlock.
2020 for (auto &BTB : SDB->SL->BitTestCases) {
2021 // Lower header first, if it wasn't already lowered
2022 if (!BTB.Emitted) {
2023 // Set the current basic block to the mbb we wish to insert the code into
2024 FuncInfo->MBB = BTB.Parent;
2025 FuncInfo->InsertPt = FuncInfo->MBB->end();
2026 // Emit the code
2027 SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
2028 CurDAG->setRoot(SDB->getRoot());
2029 SDB->clear();
2030 CodeGenAndEmitDAG();
2031 }
2032
2033 BranchProbability UnhandledProb = BTB.Prob;
2034 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
2035 UnhandledProb -= BTB.Cases[j].ExtraProb;
2036 // Set the current basic block to the mbb we wish to insert the code into
2037 FuncInfo->MBB = BTB.Cases[j].ThisBB;
2038 FuncInfo->InsertPt = FuncInfo->MBB->end();
2039 // Emit the code
2040
2041 // If all cases cover a contiguous range, it is not necessary to jump to
2042 // the default block after the last bit test fails. This is because the
2043 // range check during bit test header creation has guaranteed that every
2044 // case here doesn't go outside the range. In this case, there is no need
2045 // to perform the last bit test, as it will always be true. Instead, make
2046 // the second-to-last bit-test fall through to the target of the last bit
2047 // test, and delete the last bit test.
2048
2049 MachineBasicBlock *NextMBB;
2050 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
2051 // Second-to-last bit-test with contiguous range or omitted range
2052 // check: fall through to the target of the final bit test.
2053 NextMBB = BTB.Cases[j + 1].TargetBB;
2054 } else if (j + 1 == ej) {
2055 // For the last bit test, fall through to Default.
2056 NextMBB = BTB.Default;
2057 } else {
2058 // Otherwise, fall through to the next bit test.
2059 NextMBB = BTB.Cases[j + 1].ThisBB;
2060 }
2061
2062 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
2063 FuncInfo->MBB);
2064
2065 CurDAG->setRoot(SDB->getRoot());
2066 SDB->clear();
2067 CodeGenAndEmitDAG();
2068
2069 if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
2070 // Since we're not going to use the final bit test, remove it.
2071 BTB.Cases.pop_back();
2072 break;
2073 }
2074 }
2075
2076 // Update PHI Nodes
2077 for (const std::pair<MachineInstr *, Register> &P :
2078 FuncInfo->PHINodesToUpdate) {
2079 MachineInstrBuilder PHI(*MF, P.first);
2080 MachineBasicBlock *PHIBB = PHI->getParent();
2081 assert(PHI->isPHI() &&
2082 "This is not a machine PHI node that we are updating!");
2083 // This is "default" BB. We have two jumps to it. From "header" BB and
2084 // from last "case" BB, unless the latter was skipped.
2085 if (PHIBB == BTB.Default) {
2086 PHI.addReg(P.second).addMBB(BTB.Parent);
2087 if (!BTB.ContiguousRange) {
2088 PHI.addReg(P.second).addMBB(BTB.Cases.back().ThisBB);
2089 }
2090 }
2091 // One of "cases" BB.
2092 for (const SwitchCG::BitTestCase &BT : BTB.Cases) {
2093 MachineBasicBlock* cBB = BT.ThisBB;
2094 if (cBB->isSuccessor(PHIBB))
2095 PHI.addReg(P.second).addMBB(cBB);
2096 }
2097 }
2098 }
2099 SDB->SL->BitTestCases.clear();
2100
2101 // If the JumpTable record is filled in, then we need to emit a jump table.
2102 // Updating the PHI nodes is tricky in this case, since we need to determine
2103 // whether the PHI is a successor of the range check MBB or the jump table MBB
2104 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
2105 // Lower header first, if it wasn't already lowered
2106 if (!SDB->SL->JTCases[i].first.Emitted) {
2107 // Set the current basic block to the mbb we wish to insert the code into
2108 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
2109 FuncInfo->InsertPt = FuncInfo->MBB->end();
2110 // Emit the code
2111 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
2112 SDB->SL->JTCases[i].first, FuncInfo->MBB);
2113 CurDAG->setRoot(SDB->getRoot());
2114 SDB->clear();
2115 CodeGenAndEmitDAG();
2116 }
2117
2118 // Set the current basic block to the mbb we wish to insert the code into
2119 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
2120 FuncInfo->InsertPt = FuncInfo->MBB->end();
2121 // Emit the code
2122 SDB->visitJumpTable(SDB->SL->JTCases[i].second);
2123 CurDAG->setRoot(SDB->getRoot());
2124 SDB->clear();
2125 CodeGenAndEmitDAG();
2126
2127 // Update PHI Nodes
2128 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
2129 pi != pe; ++pi) {
2130 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
2131 MachineBasicBlock *PHIBB = PHI->getParent();
2132 assert(PHI->isPHI() &&
2133 "This is not a machine PHI node that we are updating!");
2134 // "default" BB. We can go there only from header BB.
2135 if (PHIBB == SDB->SL->JTCases[i].second.Default)
2136 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
2137 .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
2138 // JT BB. Just iterate over successors here
2139 if (FuncInfo->MBB->isSuccessor(PHIBB))
2140 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
2141 }
2142 }
2143 SDB->SL->JTCases.clear();
2144
2145 // If we generated any switch lowering information, build and codegen any
2146 // additional DAGs necessary.
2147 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
2148 // Set the current basic block to the mbb we wish to insert the code into
2149 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
2150 FuncInfo->InsertPt = FuncInfo->MBB->end();
2151
2152 // Determine the unique successors.
2154 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
2155 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
2156 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
2157
2158 // Emit the code. Note that this could result in FuncInfo->MBB being split.
2159 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
2160 CurDAG->setRoot(SDB->getRoot());
2161 SDB->clear();
2162 CodeGenAndEmitDAG();
2163
2164 // Remember the last block, now that any splitting is done, for use in
2165 // populating PHI nodes in successors.
2166 MachineBasicBlock *ThisBB = FuncInfo->MBB;
2167
2168 // Handle any PHI nodes in successors of this chunk, as if we were coming
2169 // from the original BB before switch expansion. Note that PHI nodes can
2170 // occur multiple times in PHINodesToUpdate. We have to be very careful to
2171 // handle them the right number of times.
2172 for (MachineBasicBlock *Succ : Succs) {
2173 FuncInfo->MBB = Succ;
2174 FuncInfo->InsertPt = FuncInfo->MBB->end();
2175 // FuncInfo->MBB may have been removed from the CFG if a branch was
2176 // constant folded.
2177 if (ThisBB->isSuccessor(FuncInfo->MBB)) {
2179 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
2180 MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
2181 MachineInstrBuilder PHI(*MF, MBBI);
2182 // This value for this PHI node is recorded in PHINodesToUpdate.
2183 for (unsigned pn = 0; ; ++pn) {
2184 assert(pn != FuncInfo->PHINodesToUpdate.size() &&
2185 "Didn't find PHI entry!");
2186 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
2187 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
2188 break;
2189 }
2190 }
2191 }
2192 }
2193 }
2194 }
2195 SDB->SL->SwitchCases.clear();
2196}
2197
2198/// Create the scheduler. If a specific scheduler was specified
2199/// via the SchedulerRegistry, use it, otherwise select the
2200/// one preferred by the target.
2201///
2202ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
2203 return ISHeuristic(this, OptLevel);
2204}
2205
2206//===----------------------------------------------------------------------===//
2207// Helper functions used by the generated instruction selector.
2208//===----------------------------------------------------------------------===//
2209// Calls to these methods are generated by tblgen.
2210
2211/// CheckAndMask - The isel is trying to match something like (and X, 255). If
2212/// the dag combiner simplified the 255, we still want to match. RHS is the
2213/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
2214/// specified in the .td file (e.g. 255).
2216 int64_t DesiredMaskS) const {
2217 const APInt &ActualMask = RHS->getAPIntValue();
2218 // TODO: Avoid implicit trunc?
2219 // See https://github.com/llvm/llvm-project/issues/112510.
2220 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS,
2221 /*isSigned=*/false, /*implicitTrunc=*/true);
2222
2223 // If the actual mask exactly matches, success!
2224 if (ActualMask == DesiredMask)
2225 return true;
2226
2227 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2228 if (!ActualMask.isSubsetOf(DesiredMask))
2229 return false;
2230
2231 // Otherwise, the DAG Combiner may have proven that the value coming in is
2232 // either already zero or is not demanded. Check for known zero input bits.
2233 APInt NeededMask = DesiredMask & ~ActualMask;
2234 if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
2235 return true;
2236
2237 // TODO: check to see if missing bits are just not demanded.
2238
2239 // Otherwise, this pattern doesn't match.
2240 return false;
2241}
2242
2243/// CheckOrMask - The isel is trying to match something like (or X, 255). If
2244/// the dag combiner simplified the 255, we still want to match. RHS is the
2245/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
2246/// specified in the .td file (e.g. 255).
2248 int64_t DesiredMaskS) const {
2249 const APInt &ActualMask = RHS->getAPIntValue();
2250 // TODO: Avoid implicit trunc?
2251 // See https://github.com/llvm/llvm-project/issues/112510.
2252 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS,
2253 /*isSigned=*/false, /*implicitTrunc=*/true);
2254
2255 // If the actual mask exactly matches, success!
2256 if (ActualMask == DesiredMask)
2257 return true;
2258
2259 // If the actual AND mask is allowing unallowed bits, this doesn't match.
2260 if (!ActualMask.isSubsetOf(DesiredMask))
2261 return false;
2262
2263 // Otherwise, the DAG Combiner may have proven that the value coming in is
2264 // either already zero or is not demanded. Check for known zero input bits.
2265 APInt NeededMask = DesiredMask & ~ActualMask;
2266 KnownBits Known = CurDAG->computeKnownBits(LHS);
2267
2268 // If all the missing bits in the or are already known to be set, match!
2269 if (NeededMask.isSubsetOf(Known.One))
2270 return true;
2271
2272 // TODO: check to see if missing bits are just not demanded.
2273
2274 // Otherwise, this pattern doesn't match.
2275 return false;
2276}
2277
2278/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2279/// by tblgen. Others should not call it.
2281 const SDLoc &DL) {
2282 // Change the vector of SDValue into a list of SDNodeHandle for x86 might call
2283 // replaceAllUses when matching address.
2284
2285 std::list<HandleSDNode> Handles;
2286
2287 Handles.emplace_back(Ops[InlineAsm::Op_InputChain]); // 0
2288 Handles.emplace_back(Ops[InlineAsm::Op_AsmString]); // 1
2289 Handles.emplace_back(Ops[InlineAsm::Op_MDNode]); // 2, !srcloc
2290 Handles.emplace_back(
2291 Ops[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
2292
2293 unsigned i = InlineAsm::Op_FirstOperand, e = Ops.size();
2294 if (Ops[e - 1].getValueType() == MVT::Glue)
2295 --e; // Don't process a glue operand if it is here.
2296
2297 while (i != e) {
2298 InlineAsm::Flag Flags(Ops[i]->getAsZExtVal());
2299 if (!Flags.isMemKind() && !Flags.isFuncKind()) {
2300 // Just skip over this operand, copying the operands verbatim.
2301 Handles.insert(Handles.end(), Ops.begin() + i,
2302 Ops.begin() + i + Flags.getNumOperandRegisters() + 1);
2303 i += Flags.getNumOperandRegisters() + 1;
2304 } else {
2305 assert(Flags.getNumOperandRegisters() == 1 &&
2306 "Memory operand with multiple values?");
2307
2308 unsigned TiedToOperand;
2309 if (Flags.isUseOperandTiedToDef(TiedToOperand)) {
2310 // We need the constraint ID from the operand this is tied to.
2311 unsigned CurOp = InlineAsm::Op_FirstOperand;
2312 Flags = InlineAsm::Flag(Ops[CurOp]->getAsZExtVal());
2313 for (; TiedToOperand; --TiedToOperand) {
2314 CurOp += Flags.getNumOperandRegisters() + 1;
2315 Flags = InlineAsm::Flag(Ops[CurOp]->getAsZExtVal());
2316 }
2317 }
2318
2319 // Otherwise, this is a memory operand. Ask the target to select it.
2320 std::vector<SDValue> SelOps;
2321 const InlineAsm::ConstraintCode ConstraintID =
2322 Flags.getMemoryConstraintID();
2323 if (SelectInlineAsmMemoryOperand(Ops[i + 1], ConstraintID, SelOps))
2324 report_fatal_error("Could not match memory address. Inline asm"
2325 " failure!");
2326
2327 // Add this to the output node.
2328 Flags = InlineAsm::Flag(Flags.isMemKind() ? InlineAsm::Kind::Mem
2330 SelOps.size());
2331 Flags.setMemConstraint(ConstraintID);
2332 Handles.emplace_back(CurDAG->getTargetConstant(Flags, DL, MVT::i32));
2333 llvm::append_range(Handles, SelOps);
2334 i += 2;
2335 }
2336 }
2337
2338 // Add the glue input back if present.
2339 if (e != Ops.size())
2340 Handles.emplace_back(Ops.back());
2341
2342 Ops.clear();
2343 for (auto &handle : Handles)
2344 Ops.push_back(handle.getValue());
2345}
2346
2347/// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2348/// beyond "ImmedUse". We may ignore chains as they are checked separately.
2349static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2350 bool IgnoreChains) {
2353 // Only check if we have non-immediate uses of Def.
2354 if (ImmedUse->isOnlyUserOf(Def))
2355 return false;
2356
2357 // We don't care about paths to Def that go through ImmedUse so mark it
2358 // visited and mark non-def operands as used.
2359 Visited.insert(ImmedUse);
2360 for (const SDValue &Op : ImmedUse->op_values()) {
2361 SDNode *N = Op.getNode();
2362 // Ignore chain deps (they are validated by
2363 // HandleMergeInputChains) and immediate uses
2364 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2365 continue;
2366 if (!Visited.insert(N).second)
2367 continue;
2368 WorkList.push_back(N);
2369 }
2370
2371 // Initialize worklist to operands of Root.
2372 if (Root != ImmedUse) {
2373 for (const SDValue &Op : Root->op_values()) {
2374 SDNode *N = Op.getNode();
2375 // Ignore chains (they are validated by HandleMergeInputChains)
2376 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2377 continue;
2378 if (!Visited.insert(N).second)
2379 continue;
2380 WorkList.push_back(N);
2381 }
2382 }
2383
2384 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2385}
2386
2387/// IsProfitableToFold - Returns true if it's profitable to fold the specific
2388/// operand node N of U during instruction selection that starts at Root.
2390 SDNode *Root) const {
2392 return false;
2393 return N.hasOneUse();
2394}
2395
2396/// IsLegalToFold - Returns true if the specific operand node N of
2397/// U can be folded during instruction selection that starts at Root.
2400 bool IgnoreChains) {
2402 return false;
2403
2404 // If Root use can somehow reach N through a path that doesn't contain
2405 // U then folding N would create a cycle. e.g. In the following
2406 // diagram, Root can reach N through X. If N is folded into Root, then
2407 // X is both a predecessor and a successor of U.
2408 //
2409 // [N*] //
2410 // ^ ^ //
2411 // / \ //
2412 // [U*] [X]? //
2413 // ^ ^ //
2414 // \ / //
2415 // \ / //
2416 // [Root*] //
2417 //
2418 // * indicates nodes to be folded together.
2419 //
2420 // If Root produces glue, then it gets (even more) interesting. Since it
2421 // will be "glued" together with its glue use in the scheduler, we need to
2422 // check if it might reach N.
2423 //
2424 // [N*] //
2425 // ^ ^ //
2426 // / \ //
2427 // [U*] [X]? //
2428 // ^ ^ //
2429 // \ \ //
2430 // \ | //
2431 // [Root*] | //
2432 // ^ | //
2433 // f | //
2434 // | / //
2435 // [Y] / //
2436 // ^ / //
2437 // f / //
2438 // | / //
2439 // [GU] //
2440 //
2441 // If GU (glue use) indirectly reaches N (the load), and Root folds N
2442 // (call it Fold), then X is a predecessor of GU and a successor of
2443 // Fold. But since Fold and GU are glued together, this will create
2444 // a cycle in the scheduling graph.
2445
2446 // If the node has glue, walk down the graph to the "lowest" node in the
2447 // glued set.
2448 EVT VT = Root->getValueType(Root->getNumValues()-1);
2449 while (VT == MVT::Glue) {
2450 SDNode *GU = Root->getGluedUser();
2451 if (!GU)
2452 break;
2453 Root = GU;
2454 VT = Root->getValueType(Root->getNumValues()-1);
2455
2456 // If our query node has a glue result with a use, we've walked up it. If
2457 // the user (which has already been selected) has a chain or indirectly uses
2458 // the chain, HandleMergeInputChains will not consider it. Because of
2459 // this, we cannot ignore chains in this predicate.
2460 IgnoreChains = false;
2461 }
2462
2463 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2464}
2465
2466void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2467 SDLoc DL(N);
2468
2469 std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2471
2472 const EVT VTs[] = {MVT::Other, MVT::Glue};
2473 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2474 New->setNodeId(-1);
2475 ReplaceUses(N, New.getNode());
2477}
2478
2479void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2480 SDLoc dl(Op);
2481 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2482 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2483
2484 EVT VT = Op->getValueType(0);
2485 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2486
2487 const MachineFunction &MF = CurDAG->getMachineFunction();
2488 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
2489
2490 SDValue New;
2491 if (!Reg) {
2492 const Function &Fn = MF.getFunction();
2493 Fn.getContext().diagnose(DiagnosticInfoGenericWithLoc(
2494 "invalid register \"" + Twine(RegStr->getString().data()) +
2495 "\" for llvm.read_register",
2496 Fn, Op->getDebugLoc()));
2497 New =
2498 SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0);
2499 ReplaceUses(SDValue(Op, 1), Op->getOperand(0));
2500 } else {
2501 New =
2502 CurDAG->getCopyFromReg(Op->getOperand(0), dl, Reg, Op->getValueType(0));
2503 }
2504
2505 New->setNodeId(-1);
2506 ReplaceUses(Op, New.getNode());
2507 CurDAG->RemoveDeadNode(Op);
2508}
2509
2510void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2511 SDLoc dl(Op);
2512 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2513 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2514
2515 EVT VT = Op->getOperand(2).getValueType();
2516 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2517
2518 const MachineFunction &MF = CurDAG->getMachineFunction();
2519 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, MF);
2520
2521 if (!Reg) {
2522 const Function &Fn = MF.getFunction();
2523 Fn.getContext().diagnose(DiagnosticInfoGenericWithLoc(
2524 "invalid register \"" + Twine(RegStr->getString().data()) +
2525 "\" for llvm.write_register",
2526 Fn, Op->getDebugLoc()));
2527 ReplaceUses(SDValue(Op, 0), Op->getOperand(0));
2528 } else {
2529 SDValue New =
2530 CurDAG->getCopyToReg(Op->getOperand(0), dl, Reg, Op->getOperand(2));
2531 New->setNodeId(-1);
2532 ReplaceUses(Op, New.getNode());
2533 }
2534
2535 CurDAG->RemoveDeadNode(Op);
2536}
2537
2538void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2539 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2540}
2541
2542// Use the generic target FAKE_USE target opcode. The chain operand
2543// must come last, because InstrEmitter::AddOperand() requires it.
2544void SelectionDAGISel::Select_FAKE_USE(SDNode *N) {
2545 CurDAG->SelectNodeTo(N, TargetOpcode::FAKE_USE, N->getValueType(0),
2546 N->getOperand(1), N->getOperand(0));
2547}
2548
2549void SelectionDAGISel::Select_RELOC_NONE(SDNode *N) {
2550 CurDAG->SelectNodeTo(N, TargetOpcode::RELOC_NONE, N->getValueType(0),
2551 N->getOperand(1), N->getOperand(0));
2552}
2553
2554void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2555 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2556 // If FREEZE instruction is added later, the code below must be changed as
2557 // well.
2558 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2559 N->getOperand(0));
2560}
2561
2562void SelectionDAGISel::Select_ARITH_FENCE(SDNode *N) {
2563 CurDAG->SelectNodeTo(N, TargetOpcode::ARITH_FENCE, N->getValueType(0),
2564 N->getOperand(0));
2565}
2566
2567void SelectionDAGISel::Select_MEMBARRIER(SDNode *N) {
2568 CurDAG->SelectNodeTo(N, TargetOpcode::MEMBARRIER, N->getValueType(0),
2569 N->getOperand(0));
2570}
2571
2572void SelectionDAGISel::Select_CONVERGENCECTRL_ANCHOR(SDNode *N) {
2573 CurDAG->SelectNodeTo(N, TargetOpcode::CONVERGENCECTRL_ANCHOR,
2574 N->getValueType(0));
2575}
2576
2577void SelectionDAGISel::Select_CONVERGENCECTRL_ENTRY(SDNode *N) {
2578 CurDAG->SelectNodeTo(N, TargetOpcode::CONVERGENCECTRL_ENTRY,
2579 N->getValueType(0));
2580}
2581
2582void SelectionDAGISel::Select_CONVERGENCECTRL_LOOP(SDNode *N) {
2583 CurDAG->SelectNodeTo(N, TargetOpcode::CONVERGENCECTRL_LOOP,
2584 N->getValueType(0), N->getOperand(0));
2585}
2586
2587void SelectionDAGISel::pushStackMapLiveVariable(SmallVectorImpl<SDValue> &Ops,
2588 SDValue OpVal, SDLoc DL) {
2589 SDNode *OpNode = OpVal.getNode();
2590
2591 // FrameIndex nodes should have been directly emitted to TargetFrameIndex
2592 // nodes at DAG-construction time.
2593 assert(OpNode->getOpcode() != ISD::FrameIndex);
2594
2595 if (OpNode->getOpcode() == ISD::Constant) {
2596 Ops.push_back(
2597 CurDAG->getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
2598 Ops.push_back(CurDAG->getTargetConstant(OpNode->getAsZExtVal(), DL,
2599 OpVal.getValueType()));
2600 } else {
2601 Ops.push_back(OpVal);
2602 }
2603}
2604
2605void SelectionDAGISel::Select_STACKMAP(SDNode *N) {
2607 auto *It = N->op_begin();
2608 SDLoc DL(N);
2609
2610 // Stash the chain and glue operands so we can move them to the end.
2611 SDValue Chain = *It++;
2612 SDValue InGlue = *It++;
2613
2614 // <id> operand.
2615 SDValue ID = *It++;
2616 assert(ID.getValueType() == MVT::i64);
2617 Ops.push_back(ID);
2618
2619 // <numShadowBytes> operand.
2620 SDValue Shad = *It++;
2621 assert(Shad.getValueType() == MVT::i32);
2622 Ops.push_back(Shad);
2623
2624 // Live variable operands.
2625 for (; It != N->op_end(); It++)
2626 pushStackMapLiveVariable(Ops, *It, DL);
2627
2628 Ops.push_back(Chain);
2629 Ops.push_back(InGlue);
2630
2631 SDVTList NodeTys = CurDAG->getVTList(MVT::Other, MVT::Glue);
2632 CurDAG->SelectNodeTo(N, TargetOpcode::STACKMAP, NodeTys, Ops);
2633}
2634
2635void SelectionDAGISel::Select_PATCHPOINT(SDNode *N) {
2637 auto *It = N->op_begin();
2638 SDLoc DL(N);
2639
2640 // Cache arguments that will be moved to the end in the target node.
2641 SDValue Chain = *It++;
2642 std::optional<SDValue> Glue;
2643 if (It->getValueType() == MVT::Glue)
2644 Glue = *It++;
2645 SDValue RegMask = *It++;
2646
2647 // <id> operand.
2648 SDValue ID = *It++;
2649 assert(ID.getValueType() == MVT::i64);
2650 Ops.push_back(ID);
2651
2652 // <numShadowBytes> operand.
2653 SDValue Shad = *It++;
2654 assert(Shad.getValueType() == MVT::i32);
2655 Ops.push_back(Shad);
2656
2657 // Add the callee.
2658 Ops.push_back(*It++);
2659
2660 // Add <numArgs>.
2661 SDValue NumArgs = *It++;
2662 assert(NumArgs.getValueType() == MVT::i32);
2663 Ops.push_back(NumArgs);
2664
2665 // Calling convention.
2666 Ops.push_back(*It++);
2667
2668 // Push the args for the call.
2669 for (uint64_t I = NumArgs->getAsZExtVal(); I != 0; I--)
2670 Ops.push_back(*It++);
2671
2672 // Now push the live variables.
2673 for (; It != N->op_end(); It++)
2674 pushStackMapLiveVariable(Ops, *It, DL);
2675
2676 // Finally, the regmask, chain and (if present) glue are moved to the end.
2677 Ops.push_back(RegMask);
2678 Ops.push_back(Chain);
2679 if (Glue.has_value())
2680 Ops.push_back(*Glue);
2681
2682 SDVTList NodeTys = N->getVTList();
2683 CurDAG->SelectNodeTo(N, TargetOpcode::PATCHPOINT, NodeTys, Ops);
2684}
2685
2686/// GetVBR - decode a vbr encoding whose top bit is set.
2687LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
2688GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2689 assert(Val >= 128 && "Not a VBR");
2690 Val &= 127; // Remove first vbr bit.
2691
2692 unsigned Shift = 7;
2693 uint64_t NextBits;
2694 do {
2695 NextBits = MatcherTable[Idx++];
2696 Val |= (NextBits&127) << Shift;
2697 Shift += 7;
2698 } while (NextBits & 128);
2699
2700 return Val;
2701}
2702
2703/// getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value,
2704/// use GetVBR to decode it.
2706getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex) {
2707 unsigned SimpleVT = MatcherTable[MatcherIndex++];
2708 if (SimpleVT & 128)
2709 SimpleVT = GetVBR(SimpleVT, MatcherTable, MatcherIndex);
2710
2711 return static_cast<MVT::SimpleValueType>(SimpleVT);
2712}
2713
2714void SelectionDAGISel::Select_JUMP_TABLE_DEBUG_INFO(SDNode *N) {
2715 SDLoc dl(N);
2716 CurDAG->SelectNodeTo(N, TargetOpcode::JUMP_TABLE_DEBUG_INFO, MVT::Glue,
2717 CurDAG->getTargetConstant(N->getConstantOperandVal(1),
2718 dl, MVT::i64, true));
2719}
2720
2721/// When a match is complete, this method updates uses of interior chain results
2722/// to use the new results.
2723void SelectionDAGISel::UpdateChains(
2724 SDNode *NodeToMatch, SDValue InputChain,
2725 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2726 SmallVector<SDNode*, 4> NowDeadNodes;
2727
2728 // Now that all the normal results are replaced, we replace the chain and
2729 // glue results if present.
2730 if (!ChainNodesMatched.empty()) {
2731 assert(InputChain.getNode() &&
2732 "Matched input chains but didn't produce a chain");
2733 // Loop over all of the nodes we matched that produced a chain result.
2734 // Replace all the chain results with the final chain we ended up with.
2735 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2736 SDNode *ChainNode = ChainNodesMatched[i];
2737 // If ChainNode is null, it's because we replaced it on a previous
2738 // iteration and we cleared it out of the map. Just skip it.
2739 if (!ChainNode)
2740 continue;
2741
2742 assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2743 "Deleted node left in chain");
2744
2745 // Don't replace the results of the root node if we're doing a
2746 // MorphNodeTo.
2747 if (ChainNode == NodeToMatch && isMorphNodeTo)
2748 continue;
2749
2750 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2751 if (ChainVal.getValueType() == MVT::Glue)
2752 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2753 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2754 SelectionDAG::DAGNodeDeletedListener NDL(
2755 *CurDAG, [&](SDNode *N, SDNode *E) {
2756 llvm::replace(ChainNodesMatched, N, static_cast<SDNode *>(nullptr));
2757 });
2758 if (ChainNode->getOpcode() != ISD::TokenFactor)
2759 ReplaceUses(ChainVal, InputChain);
2760
2761 // If the node became dead and we haven't already seen it, delete it.
2762 if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2763 !llvm::is_contained(NowDeadNodes, ChainNode))
2764 NowDeadNodes.push_back(ChainNode);
2765 }
2766 }
2767
2768 if (!NowDeadNodes.empty())
2769 CurDAG->RemoveDeadNodes(NowDeadNodes);
2770
2771 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2772}
2773
2774/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2775/// operation for when the pattern matched at least one node with a chains. The
2776/// input vector contains a list of all of the chained nodes that we match. We
2777/// must determine if this is a valid thing to cover (i.e. matching it won't
2778/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2779/// be used as the input node chain for the generated nodes.
2780static SDValue
2782 SDValue InputGlue, SelectionDAG *CurDAG) {
2783
2786 SmallVector<SDValue, 3> InputChains;
2787 unsigned int Max = 8192;
2788
2789 // Quick exit on trivial merge.
2790 if (ChainNodesMatched.size() == 1)
2791 return ChainNodesMatched[0]->getOperand(0);
2792
2793 // Add chains that aren't already added (internal). Peek through
2794 // token factors.
2795 std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2796 if (V.getValueType() != MVT::Other)
2797 return;
2798 if (V->getOpcode() == ISD::EntryToken)
2799 return;
2800 if (!Visited.insert(V.getNode()).second)
2801 return;
2802 if (V->getOpcode() == ISD::TokenFactor) {
2803 for (const SDValue &Op : V->op_values())
2804 AddChains(Op);
2805 } else
2806 InputChains.push_back(V);
2807 };
2808
2809 for (auto *N : ChainNodesMatched) {
2810 Worklist.push_back(N);
2811 Visited.insert(N);
2812 }
2813
2814 while (!Worklist.empty())
2815 AddChains(Worklist.pop_back_val()->getOperand(0));
2816
2817 // Skip the search if there are no chain dependencies.
2818 if (InputChains.size() == 0)
2819 return CurDAG->getEntryNode();
2820
2821 // If one of these chains is a successor of input, we must have a
2822 // node that is both the predecessor and successor of the
2823 // to-be-merged nodes. Fail.
2824 Visited.clear();
2825 for (SDValue V : InputChains) {
2826 // If we need to create a TokenFactor, and any of the input chain nodes will
2827 // also be glued to the output, we cannot merge the chains. The TokenFactor
2828 // would prevent the glue from being honored.
2829 if (InputChains.size() != 1 &&
2830 V->getValueType(V->getNumValues() - 1) == MVT::Glue &&
2831 InputGlue.getNode() == V.getNode())
2832 return SDValue();
2833 Worklist.push_back(V.getNode());
2834 }
2835
2836 for (auto *N : ChainNodesMatched)
2837 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2838 return SDValue();
2839
2840 // Return merged chain.
2841 if (InputChains.size() == 1)
2842 return InputChains[0];
2843 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2844 MVT::Other, InputChains);
2845}
2846
2847/// MorphNode - Handle morphing a node in place for the selector.
2848SDNode *SelectionDAGISel::
2849MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2850 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2851 // It is possible we're using MorphNodeTo to replace a node with no
2852 // normal results with one that has a normal result (or we could be
2853 // adding a chain) and the input could have glue and chains as well.
2854 // In this case we need to shift the operands down.
2855 // FIXME: This is a horrible hack and broken in obscure cases, no worse
2856 // than the old isel though.
2857 int OldGlueResultNo = -1, OldChainResultNo = -1;
2858
2859 unsigned NTMNumResults = Node->getNumValues();
2860 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2861 OldGlueResultNo = NTMNumResults-1;
2862 if (NTMNumResults != 1 &&
2863 Node->getValueType(NTMNumResults-2) == MVT::Other)
2864 OldChainResultNo = NTMNumResults-2;
2865 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2866 OldChainResultNo = NTMNumResults-1;
2867
2868 // Call the underlying SelectionDAG routine to do the transmogrification. Note
2869 // that this deletes operands of the old node that become dead.
2870 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2871
2872 // MorphNodeTo can operate in two ways: if an existing node with the
2873 // specified operands exists, it can just return it. Otherwise, it
2874 // updates the node in place to have the requested operands.
2875 if (Res == Node) {
2876 // If we updated the node in place, reset the node ID. To the isel,
2877 // this should be just like a newly allocated machine node.
2878 Res->setNodeId(-1);
2879 }
2880
2881 unsigned ResNumResults = Res->getNumValues();
2882 // Move the glue if needed.
2883 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2884 static_cast<unsigned>(OldGlueResultNo) != ResNumResults - 1)
2885 ReplaceUses(SDValue(Node, OldGlueResultNo),
2886 SDValue(Res, ResNumResults - 1));
2887
2888 if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2889 --ResNumResults;
2890
2891 // Move the chain reference if needed.
2892 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2893 static_cast<unsigned>(OldChainResultNo) != ResNumResults - 1)
2894 ReplaceUses(SDValue(Node, OldChainResultNo),
2895 SDValue(Res, ResNumResults - 1));
2896
2897 // Otherwise, no replacement happened because the node already exists. Replace
2898 // Uses of the old node with the new one.
2899 if (Res != Node) {
2900 ReplaceNode(Node, Res);
2901 } else {
2903 }
2904
2905 return Res;
2906}
2907
2908/// CheckSame - Implements OP_CheckSame.
2910CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2911 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) {
2912 // Accept if it is exactly the same as a previously recorded node.
2913 unsigned RecNo = MatcherTable[MatcherIndex++];
2914 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2915 return N == RecordedNodes[RecNo].first;
2916}
2917
2918/// CheckChildSame - Implements OP_CheckChildXSame.
2920 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2921 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes,
2922 unsigned ChildNo) {
2923 if (ChildNo >= N.getNumOperands())
2924 return false; // Match fails if out of range child #.
2925 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2926 RecordedNodes);
2927}
2928
2929/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2931CheckPatternPredicate(unsigned Opcode, const unsigned char *MatcherTable,
2932 unsigned &MatcherIndex, const SelectionDAGISel &SDISel) {
2933 bool TwoBytePredNo =
2935 unsigned PredNo =
2936 TwoBytePredNo || Opcode == SelectionDAGISel::OPC_CheckPatternPredicate
2937 ? MatcherTable[MatcherIndex++]
2939 if (TwoBytePredNo)
2940 PredNo |= MatcherTable[MatcherIndex++] << 8;
2941 return SDISel.CheckPatternPredicate(PredNo);
2942}
2943
2944/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2946CheckNodePredicate(unsigned Opcode, const unsigned char *MatcherTable,
2947 unsigned &MatcherIndex, const SelectionDAGISel &SDISel,
2948 SDValue Op) {
2949 unsigned PredNo = Opcode == SelectionDAGISel::OPC_CheckPredicate
2950 ? MatcherTable[MatcherIndex++]
2952 return SDISel.CheckNodePredicate(Op, PredNo);
2953}
2954
2956CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2957 SDNode *N) {
2958 uint16_t Opc = MatcherTable[MatcherIndex++];
2959 Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8;
2960 return N->getOpcode() == Opc;
2961}
2962
2964 SDValue N,
2965 const TargetLowering *TLI,
2966 const DataLayout &DL) {
2967 if (N.getValueType() == VT)
2968 return true;
2969
2970 // Handle the case when VT is iPTR.
2971 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2972}
2973
2976 const DataLayout &DL, unsigned ChildNo) {
2977 if (ChildNo >= N.getNumOperands())
2978 return false; // Match fails if out of range child #.
2979 return ::CheckType(VT, N.getOperand(ChildNo), TLI, DL);
2980}
2981
2983CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2984 SDValue N) {
2985 return cast<CondCodeSDNode>(N)->get() ==
2986 static_cast<ISD::CondCode>(MatcherTable[MatcherIndex++]);
2987}
2988
2990CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2991 SDValue N) {
2992 if (2 >= N.getNumOperands())
2993 return false;
2994 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2995}
2996
2998CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2999 SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
3000 MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex);
3001 if (cast<VTSDNode>(N)->getVT() == VT)
3002 return true;
3003
3004 // Handle the case when VT is iPTR.
3005 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
3006}
3007
3008// Bit 0 stores the sign of the immediate. The upper bits contain the magnitude
3009// shifted left by 1.
3011 if ((V & 1) == 0)
3012 return V >> 1;
3013 if (V != 1)
3014 return -(V >> 1);
3015 // There is no such thing as -0 with integers. "-0" really means MININT.
3016 return 1ULL << 63;
3017}
3018
3020CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
3021 SDValue N) {
3022 int64_t Val = MatcherTable[MatcherIndex++];
3023 if (Val & 128)
3024 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3025
3026 Val = decodeSignRotatedValue(Val);
3027
3029 return C && C->getAPIntValue().trySExtValue() == Val;
3030}
3031
3033CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
3034 SDValue N, unsigned ChildNo) {
3035 if (ChildNo >= N.getNumOperands())
3036 return false; // Match fails if out of range child #.
3037 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
3038}
3039
3041CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
3042 SDValue N, const SelectionDAGISel &SDISel) {
3043 int64_t Val = MatcherTable[MatcherIndex++];
3044 if (Val & 128)
3045 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3046
3047 if (N->getOpcode() != ISD::AND) return false;
3048
3049 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3050 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
3051}
3052
3054CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
3055 const SelectionDAGISel &SDISel) {
3056 int64_t Val = MatcherTable[MatcherIndex++];
3057 if (Val & 128)
3058 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3059
3060 if (N->getOpcode() != ISD::OR) return false;
3061
3062 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3063 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
3064}
3065
3066/// IsPredicateKnownToFail - If we know how and can do so without pushing a
3067/// scope, evaluate the current node. If the current predicate is known to
3068/// fail, set Result=true and return anything. If the current predicate is
3069/// known to pass, set Result=false and return the MatcherIndex to continue
3070/// with. If the current predicate is unknown, set Result=false and return the
3071/// MatcherIndex to continue with.
3072static unsigned IsPredicateKnownToFail(const unsigned char *Table,
3073 unsigned Index, SDValue N,
3074 bool &Result,
3075 const SelectionDAGISel &SDISel,
3076 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
3077 unsigned Opcode = Table[Index++];
3078 switch (Opcode) {
3079 default:
3080 Result = false;
3081 return Index-1; // Could not evaluate this predicate.
3083 Result = !::CheckSame(Table, Index, N, RecordedNodes);
3084 return Index;
3089 Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
3090 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
3091 return Index;
3102 Result = !::CheckPatternPredicate(Opcode, Table, Index, SDISel);
3103 return Index;
3113 Result = !::CheckNodePredicate(Opcode, Table, Index, SDISel, N);
3114 return Index;
3116 Result = !::CheckOpcode(Table, Index, N.getNode());
3117 return Index;
3122 switch (Opcode) {
3124 VT = MVT::i32;
3125 break;
3127 VT = MVT::i64;
3128 break;
3129 default:
3130 VT = getSimpleVT(Table, Index);
3131 break;
3132 }
3133 Result = !::CheckType(VT, N, SDISel.TLI, SDISel.CurDAG->getDataLayout());
3134 return Index;
3135 }
3137 unsigned Res = Table[Index++];
3138 Result = !::CheckType(getSimpleVT(Table, Index), N.getValue(Res),
3139 SDISel.TLI, SDISel.CurDAG->getDataLayout());
3140 return Index;
3141 }
3167 unsigned ChildNo;
3170 VT = MVT::i32;
3172 } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 &&
3174 VT = MVT::i64;
3176 } else {
3177 VT = getSimpleVT(Table, Index);
3178 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type;
3179 }
3180 Result = !::CheckChildType(VT, N, SDISel.TLI,
3181 SDISel.CurDAG->getDataLayout(), ChildNo);
3182 return Index;
3183 }
3185 Result = !::CheckCondCode(Table, Index, N);
3186 return Index;
3188 Result = !::CheckChild2CondCode(Table, Index, N);
3189 return Index;
3191 Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
3192 SDISel.CurDAG->getDataLayout());
3193 return Index;
3195 Result = !::CheckInteger(Table, Index, N);
3196 return Index;
3202 Result = !::CheckChildInteger(Table, Index, N,
3204 return Index;
3206 Result = !::CheckAndImm(Table, Index, N, SDISel);
3207 return Index;
3209 Result = !::CheckOrImm(Table, Index, N, SDISel);
3210 return Index;
3211 }
3212}
3213
3214namespace {
3215
3216struct MatchScope {
3217 /// FailIndex - If this match fails, this is the index to continue with.
3218 unsigned FailIndex;
3219
3220 /// NodeStack - The node stack when the scope was formed.
3221 SmallVector<SDValue, 4> NodeStack;
3222
3223 /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
3224 unsigned NumRecordedNodes;
3225
3226 /// NumMatchedMemRefs - The number of matched memref entries.
3227 unsigned NumMatchedMemRefs;
3228
3229 /// InputChain/InputGlue - The current chain/glue
3230 SDValue InputChain, InputGlue;
3231
3232 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
3233 bool HasChainNodesMatched;
3234};
3235
3236/// \A DAG update listener to keep the matching state
3237/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
3238/// change the DAG while matching. X86 addressing mode matcher is an example
3239/// for this.
3240class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
3241{
3242 SDNode **NodeToMatch;
3243 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
3244 SmallVectorImpl<MatchScope> &MatchScopes;
3245
3246public:
3247 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
3248 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
3249 SmallVectorImpl<MatchScope> &MS)
3250 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
3251 RecordedNodes(RN), MatchScopes(MS) {}
3252
3253 void NodeDeleted(SDNode *N, SDNode *E) override {
3254 // Some early-returns here to avoid the search if we deleted the node or
3255 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
3256 // do, so it's unnecessary to update matching state at that point).
3257 // Neither of these can occur currently because we only install this
3258 // update listener during matching a complex patterns.
3259 if (!E || E->isMachineOpcode())
3260 return;
3261 // Check if NodeToMatch was updated.
3262 if (N == *NodeToMatch)
3263 *NodeToMatch = E;
3264 // Performing linear search here does not matter because we almost never
3265 // run this code. You'd have to have a CSE during complex pattern
3266 // matching.
3267 for (auto &I : RecordedNodes)
3268 if (I.first.getNode() == N)
3269 I.first.setNode(E);
3270
3271 for (auto &I : MatchScopes)
3272 for (auto &J : I.NodeStack)
3273 if (J.getNode() == N)
3274 J.setNode(E);
3275 }
3276};
3277
3278} // end anonymous namespace
3279
3281 const unsigned char *MatcherTable,
3282 unsigned TableSize) {
3283 // FIXME: Should these even be selected? Handle these cases in the caller?
3284 switch (NodeToMatch->getOpcode()) {
3285 default:
3286 break;
3287 case ISD::EntryToken: // These nodes remain the same.
3288 case ISD::BasicBlock:
3289 case ISD::Register:
3290 case ISD::RegisterMask:
3291 case ISD::HANDLENODE:
3292 case ISD::MDNODE_SDNODE:
3298 case ISD::MCSymbol:
3303 case ISD::TokenFactor:
3304 case ISD::CopyFromReg:
3305 case ISD::CopyToReg:
3306 case ISD::EH_LABEL:
3307 case ISD::ANNOTATION_LABEL:
3308 case ISD::LIFETIME_START:
3309 case ISD::LIFETIME_END:
3310 case ISD::PSEUDO_PROBE:
3312 NodeToMatch->setNodeId(-1); // Mark selected.
3313 return;
3314 case ISD::AssertSext:
3315 case ISD::AssertZext:
3317 case ISD::AssertAlign:
3318 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
3319 CurDAG->RemoveDeadNode(NodeToMatch);
3320 return;
3321 case ISD::INLINEASM:
3322 case ISD::INLINEASM_BR:
3323 Select_INLINEASM(NodeToMatch);
3324 return;
3325 case ISD::READ_REGISTER:
3326 Select_READ_REGISTER(NodeToMatch);
3327 return;
3329 Select_WRITE_REGISTER(NodeToMatch);
3330 return;
3331 case ISD::POISON:
3332 case ISD::UNDEF:
3333 Select_UNDEF(NodeToMatch);
3334 return;
3335 case ISD::FAKE_USE:
3336 Select_FAKE_USE(NodeToMatch);
3337 return;
3338 case ISD::RELOC_NONE:
3339 Select_RELOC_NONE(NodeToMatch);
3340 return;
3341 case ISD::FREEZE:
3342 Select_FREEZE(NodeToMatch);
3343 return;
3344 case ISD::ARITH_FENCE:
3345 Select_ARITH_FENCE(NodeToMatch);
3346 return;
3347 case ISD::MEMBARRIER:
3348 Select_MEMBARRIER(NodeToMatch);
3349 return;
3350 case ISD::STACKMAP:
3351 Select_STACKMAP(NodeToMatch);
3352 return;
3353 case ISD::PATCHPOINT:
3354 Select_PATCHPOINT(NodeToMatch);
3355 return;
3356 case ISD::JUMP_TABLE_DEBUG_INFO:
3357 Select_JUMP_TABLE_DEBUG_INFO(NodeToMatch);
3358 return;
3359 case ISD::CONVERGENCECTRL_ANCHOR:
3360 Select_CONVERGENCECTRL_ANCHOR(NodeToMatch);
3361 return;
3362 case ISD::CONVERGENCECTRL_ENTRY:
3363 Select_CONVERGENCECTRL_ENTRY(NodeToMatch);
3364 return;
3365 case ISD::CONVERGENCECTRL_LOOP:
3366 Select_CONVERGENCECTRL_LOOP(NodeToMatch);
3367 return;
3368 }
3369
3370 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
3371
3372 // Set up the node stack with NodeToMatch as the only node on the stack.
3373 SmallVector<SDValue, 8> NodeStack;
3374 SDValue N = SDValue(NodeToMatch, 0);
3375 NodeStack.push_back(N);
3376
3377 // MatchScopes - Scopes used when matching, if a match failure happens, this
3378 // indicates where to continue checking.
3379 SmallVector<MatchScope, 8> MatchScopes;
3380
3381 // RecordedNodes - This is the set of nodes that have been recorded by the
3382 // state machine. The second value is the parent of the node, or null if the
3383 // root is recorded.
3385
3386 // MatchedMemRefs - This is the set of MemRef's we've seen in the input
3387 // pattern.
3389
3390 // These are the current input chain and glue for use when generating nodes.
3391 // Various Emit operations change these. For example, emitting a copytoreg
3392 // uses and updates these.
3393 SDValue InputChain, InputGlue, DeactivationSymbol;
3394
3395 // ChainNodesMatched - If a pattern matches nodes that have input/output
3396 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
3397 // which ones they are. The result is captured into this list so that we can
3398 // update the chain results when the pattern is complete.
3399 SmallVector<SDNode*, 3> ChainNodesMatched;
3400
3401 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
3402
3403 // Determine where to start the interpreter. Normally we start at opcode #0,
3404 // but if the state machine starts with an OPC_SwitchOpcode, then we
3405 // accelerate the first lookup (which is guaranteed to be hot) with the
3406 // OpcodeOffset table.
3407 unsigned MatcherIndex = 0;
3408
3409 if (!OpcodeOffset.empty()) {
3410 // Already computed the OpcodeOffset table, just index into it.
3411 if (N.getOpcode() < OpcodeOffset.size())
3412 MatcherIndex = OpcodeOffset[N.getOpcode()];
3413 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
3414
3415 } else if (MatcherTable[0] == OPC_SwitchOpcode) {
3416 // Otherwise, the table isn't computed, but the state machine does start
3417 // with an OPC_SwitchOpcode instruction. Populate the table now, since this
3418 // is the first time we're selecting an instruction.
3419 unsigned Idx = 1;
3420 while (true) {
3421 // Get the size of this case.
3422 unsigned CaseSize = MatcherTable[Idx++];
3423 if (CaseSize & 128)
3424 CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
3425 if (CaseSize == 0) break;
3426
3427 // Get the opcode, add the index to the table.
3428 uint16_t Opc = MatcherTable[Idx++];
3429 Opc |= static_cast<uint16_t>(MatcherTable[Idx++]) << 8;
3430 if (Opc >= OpcodeOffset.size())
3431 OpcodeOffset.resize((Opc+1)*2);
3432 OpcodeOffset[Opc] = Idx;
3433 Idx += CaseSize;
3434 }
3435
3436 // Okay, do the lookup for the first opcode.
3437 if (N.getOpcode() < OpcodeOffset.size())
3438 MatcherIndex = OpcodeOffset[N.getOpcode()];
3439 }
3440
3441 while (true) {
3442 assert(MatcherIndex < TableSize && "Invalid index");
3443#ifndef NDEBUG
3444 unsigned CurrentOpcodeIndex = MatcherIndex;
3445#endif
3446 BuiltinOpcodes Opcode =
3447 static_cast<BuiltinOpcodes>(MatcherTable[MatcherIndex++]);
3448 switch (Opcode) {
3449 case OPC_Scope: {
3450 // Okay, the semantics of this operation are that we should push a scope
3451 // then evaluate the first child. However, pushing a scope only to have
3452 // the first check fail (which then pops it) is inefficient. If we can
3453 // determine immediately that the first check (or first several) will
3454 // immediately fail, don't even bother pushing a scope for them.
3455 unsigned FailIndex;
3456
3457 while (true) {
3458 unsigned NumToSkip = MatcherTable[MatcherIndex++];
3459 if (NumToSkip & 128)
3460 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3461 // Found the end of the scope with no match.
3462 if (NumToSkip == 0) {
3463 FailIndex = 0;
3464 break;
3465 }
3466
3467 FailIndex = MatcherIndex+NumToSkip;
3468
3469 unsigned MatcherIndexOfPredicate = MatcherIndex;
3470 (void)MatcherIndexOfPredicate; // silence warning.
3471
3472 // If we can't evaluate this predicate without pushing a scope (e.g. if
3473 // it is a 'MoveParent') or if the predicate succeeds on this node, we
3474 // push the scope and evaluate the full predicate chain.
3475 bool Result;
3476 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
3477 Result, *this, RecordedNodes);
3478 if (!Result)
3479 break;
3480
3481 LLVM_DEBUG(
3482 dbgs() << " Skipped scope entry (due to false predicate) at "
3483 << "index " << MatcherIndexOfPredicate << ", continuing at "
3484 << FailIndex << "\n");
3485 ++NumDAGIselRetries;
3486
3487 // Otherwise, we know that this case of the Scope is guaranteed to fail,
3488 // move to the next case.
3489 MatcherIndex = FailIndex;
3490 }
3491
3492 // If the whole scope failed to match, bail.
3493 if (FailIndex == 0) break;
3494
3495 // Push a MatchScope which indicates where to go if the first child fails
3496 // to match.
3497 MatchScope NewEntry;
3498 NewEntry.FailIndex = FailIndex;
3499 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
3500 NewEntry.NumRecordedNodes = RecordedNodes.size();
3501 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
3502 NewEntry.InputChain = InputChain;
3503 NewEntry.InputGlue = InputGlue;
3504 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
3505 MatchScopes.push_back(NewEntry);
3506 continue;
3507 }
3508 case OPC_RecordNode: {
3509 // Remember this node, it may end up being an operand in the pattern.
3510 SDNode *Parent = nullptr;
3511 if (NodeStack.size() > 1)
3512 Parent = NodeStack[NodeStack.size()-2].getNode();
3513 RecordedNodes.push_back(std::make_pair(N, Parent));
3514 continue;
3515 }
3516
3521 unsigned ChildNo = Opcode-OPC_RecordChild0;
3522 if (ChildNo >= N.getNumOperands())
3523 break; // Match fails if out of range child #.
3524
3525 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
3526 N.getNode()));
3527 continue;
3528 }
3529 case OPC_RecordMemRef:
3530 if (auto *MN = dyn_cast<MemSDNode>(N))
3531 MatchedMemRefs.push_back(MN->getMemOperand());
3532 else {
3533 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
3534 dbgs() << '\n');
3535 }
3536
3537 continue;
3538
3540 // If the current node has an input glue, capture it in InputGlue.
3541 if (N->getNumOperands() != 0 &&
3542 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
3543 InputGlue = N->getOperand(N->getNumOperands()-1);
3544 continue;
3545
3547 // If the current node has a deactivation symbol, capture it in
3548 // DeactivationSymbol.
3549 if (N->getNumOperands() != 0 &&
3550 N->getOperand(N->getNumOperands() - 1).getOpcode() ==
3552 DeactivationSymbol = N->getOperand(N->getNumOperands() - 1);
3553 continue;
3554
3555 case OPC_MoveChild: {
3556 unsigned ChildNo = MatcherTable[MatcherIndex++];
3557 if (ChildNo >= N.getNumOperands())
3558 break; // Match fails if out of range child #.
3559 N = N.getOperand(ChildNo);
3560 NodeStack.push_back(N);
3561 continue;
3562 }
3563
3564 case OPC_MoveChild0: case OPC_MoveChild1:
3565 case OPC_MoveChild2: case OPC_MoveChild3:
3566 case OPC_MoveChild4: case OPC_MoveChild5:
3567 case OPC_MoveChild6: case OPC_MoveChild7: {
3568 unsigned ChildNo = Opcode-OPC_MoveChild0;
3569 if (ChildNo >= N.getNumOperands())
3570 break; // Match fails if out of range child #.
3571 N = N.getOperand(ChildNo);
3572 NodeStack.push_back(N);
3573 continue;
3574 }
3575
3576 case OPC_MoveSibling:
3577 case OPC_MoveSibling0:
3578 case OPC_MoveSibling1:
3579 case OPC_MoveSibling2:
3580 case OPC_MoveSibling3:
3581 case OPC_MoveSibling4:
3582 case OPC_MoveSibling5:
3583 case OPC_MoveSibling6:
3584 case OPC_MoveSibling7: {
3585 // Pop the current node off the NodeStack.
3586 NodeStack.pop_back();
3587 assert(!NodeStack.empty() && "Node stack imbalance!");
3588 N = NodeStack.back();
3589
3590 unsigned SiblingNo = Opcode == OPC_MoveSibling
3591 ? MatcherTable[MatcherIndex++]
3592 : Opcode - OPC_MoveSibling0;
3593 if (SiblingNo >= N.getNumOperands())
3594 break; // Match fails if out of range sibling #.
3595 N = N.getOperand(SiblingNo);
3596 NodeStack.push_back(N);
3597 continue;
3598 }
3599 case OPC_MoveParent:
3600 // Pop the current node off the NodeStack.
3601 NodeStack.pop_back();
3602 assert(!NodeStack.empty() && "Node stack imbalance!");
3603 N = NodeStack.back();
3604 continue;
3605
3606 case OPC_CheckSame:
3607 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3608 continue;
3609
3612 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3613 Opcode-OPC_CheckChild0Same))
3614 break;
3615 continue;
3616
3627 if (!::CheckPatternPredicate(Opcode, MatcherTable, MatcherIndex, *this))
3628 break;
3629 continue;
3638 case OPC_CheckPredicate:
3639 if (!::CheckNodePredicate(Opcode, MatcherTable, MatcherIndex, *this, N))
3640 break;
3641 continue;
3643 unsigned OpNum = MatcherTable[MatcherIndex++];
3644 SmallVector<SDValue, 8> Operands;
3645
3646 for (unsigned i = 0; i < OpNum; ++i)
3647 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3648
3649 unsigned PredNo = MatcherTable[MatcherIndex++];
3650 if (!CheckNodePredicateWithOperands(N, PredNo, Operands))
3651 break;
3652 continue;
3653 }
3662 case OPC_CheckComplexPat7: {
3663 unsigned CPNum = Opcode == OPC_CheckComplexPat
3664 ? MatcherTable[MatcherIndex++]
3665 : Opcode - OPC_CheckComplexPat0;
3666 unsigned RecNo = MatcherTable[MatcherIndex++];
3667 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3668
3669 // If target can modify DAG during matching, keep the matching state
3670 // consistent.
3671 std::unique_ptr<MatchStateUpdater> MSU;
3673 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3674 MatchScopes));
3675
3676 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3677 RecordedNodes[RecNo].first, CPNum,
3678 RecordedNodes))
3679 break;
3680 continue;
3681 }
3682 case OPC_CheckOpcode:
3683 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3684 continue;
3685
3686 case OPC_CheckType:
3687 case OPC_CheckTypeI32:
3688 case OPC_CheckTypeI64:
3690 switch (Opcode) {
3691 case OPC_CheckTypeI32:
3692 VT = MVT::i32;
3693 break;
3694 case OPC_CheckTypeI64:
3695 VT = MVT::i64;
3696 break;
3697 default:
3698 VT = getSimpleVT(MatcherTable, MatcherIndex);
3699 break;
3700 }
3701 if (!::CheckType(VT, N, TLI, CurDAG->getDataLayout()))
3702 break;
3703 continue;
3704
3705 case OPC_CheckTypeRes: {
3706 unsigned Res = MatcherTable[MatcherIndex++];
3707 if (!::CheckType(getSimpleVT(MatcherTable, MatcherIndex), N.getValue(Res),
3708 TLI, CurDAG->getDataLayout()))
3709 break;
3710 continue;
3711 }
3712
3713 case OPC_SwitchOpcode: {
3714 unsigned CurNodeOpcode = N.getOpcode();
3715 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3716 unsigned CaseSize;
3717 while (true) {
3718 // Get the size of this case.
3719 CaseSize = MatcherTable[MatcherIndex++];
3720 if (CaseSize & 128)
3721 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3722 if (CaseSize == 0) break;
3723
3724 uint16_t Opc = MatcherTable[MatcherIndex++];
3725 Opc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8;
3726
3727 // If the opcode matches, then we will execute this case.
3728 if (CurNodeOpcode == Opc)
3729 break;
3730
3731 // Otherwise, skip over this case.
3732 MatcherIndex += CaseSize;
3733 }
3734
3735 // If no cases matched, bail out.
3736 if (CaseSize == 0) break;
3737
3738 // Otherwise, execute the case we found.
3739 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
3740 << MatcherIndex << "\n");
3741 continue;
3742 }
3743
3744 case OPC_SwitchType: {
3745 MVT CurNodeVT = N.getSimpleValueType();
3746 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3747 unsigned CaseSize;
3748 while (true) {
3749 // Get the size of this case.
3750 CaseSize = MatcherTable[MatcherIndex++];
3751 if (CaseSize & 128)
3752 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3753 if (CaseSize == 0) break;
3754
3755 MVT CaseVT = getSimpleVT(MatcherTable, MatcherIndex);
3756 if (CaseVT == MVT::iPTR)
3757 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3758
3759 // If the VT matches, then we will execute this case.
3760 if (CurNodeVT == CaseVT)
3761 break;
3762
3763 // Otherwise, skip over this case.
3764 MatcherIndex += CaseSize;
3765 }
3766
3767 // If no cases matched, bail out.
3768 if (CaseSize == 0) break;
3769
3770 // Otherwise, execute the case we found.
3771 LLVM_DEBUG(dbgs() << " TypeSwitch[" << CurNodeVT
3772 << "] from " << SwitchStart << " to " << MatcherIndex
3773 << '\n');
3774 continue;
3775 }
3801 unsigned ChildNo;
3804 VT = MVT::i32;
3806 } else if (Opcode >= SelectionDAGISel::OPC_CheckChild0TypeI64 &&
3808 VT = MVT::i64;
3810 } else {
3811 VT = getSimpleVT(MatcherTable, MatcherIndex);
3812 ChildNo = Opcode - SelectionDAGISel::OPC_CheckChild0Type;
3813 }
3814 if (!::CheckChildType(VT, N, TLI, CurDAG->getDataLayout(), ChildNo))
3815 break;
3816 continue;
3817 }
3818 case OPC_CheckCondCode:
3819 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3820 continue;
3822 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3823 continue;
3824 case OPC_CheckValueType:
3825 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3826 CurDAG->getDataLayout()))
3827 break;
3828 continue;
3829 case OPC_CheckInteger:
3830 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3831 continue;
3835 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3836 Opcode-OPC_CheckChild0Integer)) break;
3837 continue;
3838 case OPC_CheckAndImm:
3839 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3840 continue;
3841 case OPC_CheckOrImm:
3842 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3843 continue;
3845 if (!ISD::isConstantSplatVectorAllOnes(N.getNode()))
3846 break;
3847 continue;
3849 if (!ISD::isConstantSplatVectorAllZeros(N.getNode()))
3850 break;
3851 continue;
3852
3854 assert(NodeStack.size() != 1 && "No parent node");
3855 // Verify that all intermediate nodes between the root and this one have
3856 // a single use (ignoring chains, which are handled in UpdateChains).
3857 bool HasMultipleUses = false;
3858 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3859 unsigned NNonChainUses = 0;
3860 SDNode *NS = NodeStack[i].getNode();
3861 for (const SDUse &U : NS->uses())
3862 if (U.getValueType() != MVT::Other)
3863 if (++NNonChainUses > 1) {
3864 HasMultipleUses = true;
3865 break;
3866 }
3867 if (HasMultipleUses) break;
3868 }
3869 if (HasMultipleUses) break;
3870
3871 // Check to see that the target thinks this is profitable to fold and that
3872 // we can fold it without inducing cycles in the graph.
3873 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3874 NodeToMatch) ||
3875 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3876 NodeToMatch, OptLevel,
3877 true/*We validate our own chains*/))
3878 break;
3879
3880 continue;
3881 }
3882 case OPC_EmitInteger:
3883 case OPC_EmitInteger8:
3884 case OPC_EmitInteger16:
3885 case OPC_EmitInteger32:
3886 case OPC_EmitInteger64:
3890 switch (Opcode) {
3891 case OPC_EmitInteger8:
3892 VT = MVT::i8;
3893 break;
3894 case OPC_EmitInteger16:
3895 VT = MVT::i16;
3896 break;
3897 case OPC_EmitInteger32:
3899 VT = MVT::i32;
3900 break;
3901 case OPC_EmitInteger64:
3902 VT = MVT::i64;
3903 break;
3904 default:
3905 VT = getSimpleVT(MatcherTable, MatcherIndex);
3906 break;
3907 }
3908 int64_t Val = MatcherTable[MatcherIndex++];
3909 if (Val & 128)
3910 Val = GetVBR(Val, MatcherTable, MatcherIndex);
3911 if (Opcode >= OPC_EmitInteger && Opcode <= OPC_EmitInteger64)
3912 Val = decodeSignRotatedValue(Val);
3913 RecordedNodes.push_back(std::pair<SDValue, SDNode *>(
3914 CurDAG->getSignedConstant(Val, SDLoc(NodeToMatch), VT,
3915 /*isTarget=*/true),
3916 nullptr));
3917 continue;
3918 }
3919 case OPC_EmitRegister:
3921 case OPC_EmitRegisterI64: {
3923 switch (Opcode) {
3925 VT = MVT::i32;
3926 break;
3928 VT = MVT::i64;
3929 break;
3930 default:
3931 VT = getSimpleVT(MatcherTable, MatcherIndex);
3932 break;
3933 }
3934 unsigned RegNo = MatcherTable[MatcherIndex++];
3935 RecordedNodes.push_back(std::pair<SDValue, SDNode *>(
3936 CurDAG->getRegister(RegNo, VT), nullptr));
3937 continue;
3938 }
3939 case OPC_EmitRegister2: {
3940 // For targets w/ more than 256 register names, the register enum
3941 // values are stored in two bytes in the matcher table (just like
3942 // opcodes).
3943 MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex);
3944 unsigned RegNo = MatcherTable[MatcherIndex++];
3945 RegNo |= MatcherTable[MatcherIndex++] << 8;
3946 RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3947 CurDAG->getRegister(RegNo, VT), nullptr));
3948 continue;
3949 }
3950
3960 // Convert from IMM/FPIMM to target version.
3961 unsigned RecNo = Opcode == OPC_EmitConvertToTarget
3962 ? MatcherTable[MatcherIndex++]
3963 : Opcode - OPC_EmitConvertToTarget0;
3964 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3965 SDValue Imm = RecordedNodes[RecNo].first;
3966
3967 if (Imm->getOpcode() == ISD::Constant) {
3968 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3969 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3970 Imm.getValueType());
3971 } else if (Imm->getOpcode() == ISD::ConstantFP) {
3972 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3973 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3974 Imm.getValueType());
3975 }
3976
3977 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3978 continue;
3979 }
3980
3981 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
3982 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
3983 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
3984 // These are space-optimized forms of OPC_EmitMergeInputChains.
3985 assert(!InputChain.getNode() &&
3986 "EmitMergeInputChains should be the first chain producing node");
3987 assert(ChainNodesMatched.empty() &&
3988 "Should only have one EmitMergeInputChains per match");
3989
3990 // Read all of the chained nodes.
3991 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3992 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3993 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3994
3995 // If the chained node is not the root, we can't fold it if it has
3996 // multiple uses.
3997 // FIXME: What if other value results of the node have uses not matched
3998 // by this pattern?
3999 if (ChainNodesMatched.back() != NodeToMatch &&
4000 !RecordedNodes[RecNo].first.hasOneUse()) {
4001 ChainNodesMatched.clear();
4002 break;
4003 }
4004
4005 // Merge the input chains if they are not intra-pattern references.
4006 InputChain = HandleMergeInputChains(ChainNodesMatched, InputGlue, CurDAG);
4007
4008 if (!InputChain.getNode())
4009 break; // Failed to merge.
4010 continue;
4011 }
4012
4014 assert(!InputChain.getNode() &&
4015 "EmitMergeInputChains should be the first chain producing node");
4016 // This node gets a list of nodes we matched in the input that have
4017 // chains. We want to token factor all of the input chains to these nodes
4018 // together. However, if any of the input chains is actually one of the
4019 // nodes matched in this pattern, then we have an intra-match reference.
4020 // Ignore these because the newly token factored chain should not refer to
4021 // the old nodes.
4022 unsigned NumChains = MatcherTable[MatcherIndex++];
4023 assert(NumChains != 0 && "Can't TF zero chains");
4024
4025 assert(ChainNodesMatched.empty() &&
4026 "Should only have one EmitMergeInputChains per match");
4027
4028 // Read all of the chained nodes.
4029 for (unsigned i = 0; i != NumChains; ++i) {
4030 unsigned RecNo = MatcherTable[MatcherIndex++];
4031 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
4032 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
4033
4034 // If the chained node is not the root, we can't fold it if it has
4035 // multiple uses.
4036 // FIXME: What if other value results of the node have uses not matched
4037 // by this pattern?
4038 if (ChainNodesMatched.back() != NodeToMatch &&
4039 !RecordedNodes[RecNo].first.hasOneUse()) {
4040 ChainNodesMatched.clear();
4041 break;
4042 }
4043 }
4044
4045 // If the inner loop broke out, the match fails.
4046 if (ChainNodesMatched.empty())
4047 break;
4048
4049 // Merge the input chains if they are not intra-pattern references.
4050 InputChain = HandleMergeInputChains(ChainNodesMatched, InputGlue, CurDAG);
4051
4052 if (!InputChain.getNode())
4053 break; // Failed to merge.
4054
4055 continue;
4056 }
4057
4058 case OPC_EmitCopyToReg:
4059 case OPC_EmitCopyToReg0:
4060 case OPC_EmitCopyToReg1:
4061 case OPC_EmitCopyToReg2:
4062 case OPC_EmitCopyToReg3:
4063 case OPC_EmitCopyToReg4:
4064 case OPC_EmitCopyToReg5:
4065 case OPC_EmitCopyToReg6:
4066 case OPC_EmitCopyToReg7:
4068 unsigned RecNo =
4069 Opcode >= OPC_EmitCopyToReg0 && Opcode <= OPC_EmitCopyToReg7
4070 ? Opcode - OPC_EmitCopyToReg0
4071 : MatcherTable[MatcherIndex++];
4072 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
4073 unsigned DestPhysReg = MatcherTable[MatcherIndex++];
4074 if (Opcode == OPC_EmitCopyToRegTwoByte)
4075 DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
4076
4077 if (!InputChain.getNode())
4078 InputChain = CurDAG->getEntryNode();
4079
4080 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
4081 DestPhysReg, RecordedNodes[RecNo].first,
4082 InputGlue);
4083
4084 InputGlue = InputChain.getValue(1);
4085 continue;
4086 }
4087
4088 case OPC_EmitNodeXForm: {
4089 unsigned XFormNo = MatcherTable[MatcherIndex++];
4090 unsigned RecNo = MatcherTable[MatcherIndex++];
4091 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
4092 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
4093 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
4094 continue;
4095 }
4096 case OPC_Coverage: {
4097 // This is emitted right before MorphNode/EmitNode.
4098 // So it should be safe to assume that this node has been selected
4099 unsigned index = MatcherTable[MatcherIndex++];
4100 index |= (MatcherTable[MatcherIndex++] << 8);
4101 index |= (MatcherTable[MatcherIndex++] << 16);
4102 index |= (MatcherTable[MatcherIndex++] << 24);
4103 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
4104 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
4105 continue;
4106 }
4107
4108 case OPC_EmitNode:
4109 case OPC_EmitNode0:
4110 case OPC_EmitNode1:
4111 case OPC_EmitNode2:
4112 case OPC_EmitNode0None:
4113 case OPC_EmitNode1None:
4114 case OPC_EmitNode2None:
4115 case OPC_EmitNode0Chain:
4116 case OPC_EmitNode1Chain:
4117 case OPC_EmitNode2Chain:
4118 case OPC_MorphNodeTo:
4119 case OPC_MorphNodeTo0:
4120 case OPC_MorphNodeTo1:
4121 case OPC_MorphNodeTo2:
4134 uint16_t TargetOpc = MatcherTable[MatcherIndex++];
4135 TargetOpc |= static_cast<uint16_t>(MatcherTable[MatcherIndex++]) << 8;
4136 unsigned EmitNodeInfo;
4137 if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2Chain) {
4138 if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain)
4139 EmitNodeInfo = OPFL_Chain;
4140 else
4141 EmitNodeInfo = OPFL_None;
4142 } else if (Opcode >= OPC_MorphNodeTo0None &&
4143 Opcode <= OPC_MorphNodeTo2GlueOutput) {
4144 if (Opcode >= OPC_MorphNodeTo0Chain && Opcode <= OPC_MorphNodeTo2Chain)
4145 EmitNodeInfo = OPFL_Chain;
4146 else if (Opcode >= OPC_MorphNodeTo0GlueInput &&
4147 Opcode <= OPC_MorphNodeTo2GlueInput)
4148 EmitNodeInfo = OPFL_GlueInput;
4149 else if (Opcode >= OPC_MorphNodeTo0GlueOutput &&
4151 EmitNodeInfo = OPFL_GlueOutput;
4152 else
4153 EmitNodeInfo = OPFL_None;
4154 } else
4155 EmitNodeInfo = MatcherTable[MatcherIndex++];
4156 // Get the result VT list.
4157 unsigned NumVTs;
4158 // If this is one of the compressed forms, get the number of VTs based
4159 // on the Opcode. Otherwise read the next byte from the table.
4160 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
4161 NumVTs = Opcode - OPC_MorphNodeTo0;
4162 else if (Opcode >= OPC_MorphNodeTo0None && Opcode <= OPC_MorphNodeTo2None)
4163 NumVTs = Opcode - OPC_MorphNodeTo0None;
4164 else if (Opcode >= OPC_MorphNodeTo0Chain &&
4165 Opcode <= OPC_MorphNodeTo2Chain)
4166 NumVTs = Opcode - OPC_MorphNodeTo0Chain;
4167 else if (Opcode >= OPC_MorphNodeTo0GlueInput &&
4168 Opcode <= OPC_MorphNodeTo2GlueInput)
4169 NumVTs = Opcode - OPC_MorphNodeTo0GlueInput;
4170 else if (Opcode >= OPC_MorphNodeTo0GlueOutput &&
4172 NumVTs = Opcode - OPC_MorphNodeTo0GlueOutput;
4173 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
4174 NumVTs = Opcode - OPC_EmitNode0;
4175 else if (Opcode >= OPC_EmitNode0None && Opcode <= OPC_EmitNode2None)
4176 NumVTs = Opcode - OPC_EmitNode0None;
4177 else if (Opcode >= OPC_EmitNode0Chain && Opcode <= OPC_EmitNode2Chain)
4178 NumVTs = Opcode - OPC_EmitNode0Chain;
4179 else
4180 NumVTs = MatcherTable[MatcherIndex++];
4182 for (unsigned i = 0; i != NumVTs; ++i) {
4183 MVT::SimpleValueType VT = getSimpleVT(MatcherTable, MatcherIndex);
4184 if (VT == MVT::iPTR)
4185 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
4186 VTs.push_back(VT);
4187 }
4188
4189 if (EmitNodeInfo & OPFL_Chain)
4190 VTs.push_back(MVT::Other);
4191 if (EmitNodeInfo & OPFL_GlueOutput)
4192 VTs.push_back(MVT::Glue);
4193
4194 // This is hot code, so optimize the two most common cases of 1 and 2
4195 // results.
4196 SDVTList VTList;
4197 if (VTs.size() == 1)
4198 VTList = CurDAG->getVTList(VTs[0]);
4199 else if (VTs.size() == 2)
4200 VTList = CurDAG->getVTList(VTs[0], VTs[1]);
4201 else
4202 VTList = CurDAG->getVTList(VTs);
4203
4204 // Get the operand list.
4205 unsigned NumOps = MatcherTable[MatcherIndex++];
4207 for (unsigned i = 0; i != NumOps; ++i) {
4208 unsigned RecNo = MatcherTable[MatcherIndex++];
4209 if (RecNo & 128)
4210 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
4211
4212 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
4213 Ops.push_back(RecordedNodes[RecNo].first);
4214 }
4215
4216 // If there are variadic operands to add, handle them now.
4217 if (EmitNodeInfo & OPFL_VariadicInfo) {
4218 // Determine the start index to copy from.
4219 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
4220 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
4221 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
4222 "Invalid variadic node");
4223 // Copy all of the variadic operands, not including a potential glue
4224 // input.
4225 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
4226 i != e; ++i) {
4227 SDValue V = NodeToMatch->getOperand(i);
4228 if (V.getValueType() == MVT::Glue) break;
4229 Ops.push_back(V);
4230 }
4231 }
4232
4233 // If this has chain/glue inputs, add them.
4234 if (EmitNodeInfo & OPFL_Chain)
4235 Ops.push_back(InputChain);
4236 if (DeactivationSymbol.getNode() != nullptr)
4237 Ops.push_back(DeactivationSymbol);
4238 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
4239 Ops.push_back(InputGlue);
4240
4241 // Check whether any matched node could raise an FP exception. Since all
4242 // such nodes must have a chain, it suffices to check ChainNodesMatched.
4243 // We need to perform this check before potentially modifying one of the
4244 // nodes via MorphNode.
4245 bool MayRaiseFPException =
4246 llvm::any_of(ChainNodesMatched, [this](SDNode *N) {
4247 return mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept();
4248 });
4249
4250 // Create the node.
4251 MachineSDNode *Res = nullptr;
4252 bool IsMorphNodeTo =
4253 Opcode == OPC_MorphNodeTo ||
4254 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2GlueOutput);
4255 if (!IsMorphNodeTo) {
4256 // If this is a normal EmitNode command, just create the new node and
4257 // add the results to the RecordedNodes list.
4258 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
4259 VTList, Ops);
4260
4261 // Add all the non-glue/non-chain results to the RecordedNodes list.
4262 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
4263 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
4264 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
4265 nullptr));
4266 }
4267 } else {
4268 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
4269 "NodeToMatch was removed partway through selection");
4271 SDNode *E) {
4272 CurDAG->salvageDebugInfo(*N);
4273 auto &Chain = ChainNodesMatched;
4274 assert((!E || !is_contained(Chain, N)) &&
4275 "Chain node replaced during MorphNode");
4276 llvm::erase(Chain, N);
4277 });
4278 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
4279 Ops, EmitNodeInfo));
4280 }
4281
4282 // Set the NoFPExcept flag when no original matched node could
4283 // raise an FP exception, but the new node potentially might.
4284 if (!MayRaiseFPException && mayRaiseFPException(Res))
4285 Res->setFlags(Res->getFlags() | SDNodeFlags::NoFPExcept);
4286
4287 // If the node had chain/glue results, update our notion of the current
4288 // chain and glue.
4289 if (EmitNodeInfo & OPFL_GlueOutput) {
4290 InputGlue = SDValue(Res, VTs.size()-1);
4291 if (EmitNodeInfo & OPFL_Chain)
4292 InputChain = SDValue(Res, VTs.size()-2);
4293 } else if (EmitNodeInfo & OPFL_Chain)
4294 InputChain = SDValue(Res, VTs.size()-1);
4295
4296 // If the OPFL_MemRefs glue is set on this node, slap all of the
4297 // accumulated memrefs onto it.
4298 //
4299 // FIXME: This is vastly incorrect for patterns with multiple outputs
4300 // instructions that access memory and for ComplexPatterns that match
4301 // loads.
4302 if (EmitNodeInfo & OPFL_MemRefs) {
4303 // Only attach load or store memory operands if the generated
4304 // instruction may load or store.
4305 const MCInstrDesc &MCID = TII->get(TargetOpc);
4306 bool mayLoad = MCID.mayLoad();
4307 bool mayStore = MCID.mayStore();
4308
4309 // We expect to have relatively few of these so just filter them into a
4310 // temporary buffer so that we can easily add them to the instruction.
4312 for (MachineMemOperand *MMO : MatchedMemRefs) {
4313 if (MMO->isLoad()) {
4314 if (mayLoad)
4315 FilteredMemRefs.push_back(MMO);
4316 } else if (MMO->isStore()) {
4317 if (mayStore)
4318 FilteredMemRefs.push_back(MMO);
4319 } else {
4320 FilteredMemRefs.push_back(MMO);
4321 }
4322 }
4323
4324 CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
4325 }
4326
4327 LLVM_DEBUG({
4328 if (!MatchedMemRefs.empty() && Res->memoperands_empty())
4329 dbgs() << " Dropping mem operands\n";
4330 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") << " node: ";
4331 Res->dump(CurDAG);
4332 });
4333
4334 // If this was a MorphNodeTo then we're completely done!
4335 if (IsMorphNodeTo) {
4336 // Update chain uses.
4337 UpdateChains(Res, InputChain, ChainNodesMatched, true);
4338 return;
4339 }
4340 continue;
4341 }
4342
4343 case OPC_CompleteMatch: {
4344 // The match has been completed, and any new nodes (if any) have been
4345 // created. Patch up references to the matched dag to use the newly
4346 // created nodes.
4347 unsigned NumResults = MatcherTable[MatcherIndex++];
4348
4349 for (unsigned i = 0; i != NumResults; ++i) {
4350 unsigned ResSlot = MatcherTable[MatcherIndex++];
4351 if (ResSlot & 128)
4352 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
4353
4354 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
4355 SDValue Res = RecordedNodes[ResSlot].first;
4356
4357 assert(i < NodeToMatch->getNumValues() &&
4358 NodeToMatch->getValueType(i) != MVT::Other &&
4359 NodeToMatch->getValueType(i) != MVT::Glue &&
4360 "Invalid number of results to complete!");
4361 assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
4362 NodeToMatch->getValueType(i) == MVT::iPTR ||
4363 Res.getValueType() == MVT::iPTR ||
4364 NodeToMatch->getValueType(i).getSizeInBits() ==
4365 Res.getValueSizeInBits()) &&
4366 "invalid replacement");
4367 ReplaceUses(SDValue(NodeToMatch, i), Res);
4368 }
4369
4370 // Update chain uses.
4371 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
4372
4373 // If the root node defines glue, we need to update it to the glue result.
4374 // TODO: This never happens in our tests and I think it can be removed /
4375 // replaced with an assert, but if we do it this the way the change is
4376 // NFC.
4377 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
4378 MVT::Glue &&
4379 InputGlue.getNode())
4380 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
4381 InputGlue);
4382
4383 assert(NodeToMatch->use_empty() &&
4384 "Didn't replace all uses of the node?");
4385 CurDAG->RemoveDeadNode(NodeToMatch);
4386
4387 return;
4388 }
4389 }
4390
4391 // If the code reached this point, then the match failed. See if there is
4392 // another child to try in the current 'Scope', otherwise pop it until we
4393 // find a case to check.
4394 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
4395 << "\n");
4396 ++NumDAGIselRetries;
4397 while (true) {
4398 if (MatchScopes.empty()) {
4399 CannotYetSelect(NodeToMatch);
4400 return;
4401 }
4402
4403 // Restore the interpreter state back to the point where the scope was
4404 // formed.
4405 MatchScope &LastScope = MatchScopes.back();
4406 RecordedNodes.resize(LastScope.NumRecordedNodes);
4407 NodeStack.clear();
4408 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
4409 N = NodeStack.back();
4410
4411 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
4412 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
4413 MatcherIndex = LastScope.FailIndex;
4414
4415 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
4416
4417 InputChain = LastScope.InputChain;
4418 InputGlue = LastScope.InputGlue;
4419 if (!LastScope.HasChainNodesMatched)
4420 ChainNodesMatched.clear();
4421
4422 // Check to see what the offset is at the new MatcherIndex. If it is zero
4423 // we have reached the end of this scope, otherwise we have another child
4424 // in the current scope to try.
4425 unsigned NumToSkip = MatcherTable[MatcherIndex++];
4426 if (NumToSkip & 128)
4427 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
4428
4429 // If we have another child in this scope to match, update FailIndex and
4430 // try it.
4431 if (NumToSkip != 0) {
4432 LastScope.FailIndex = MatcherIndex+NumToSkip;
4433 break;
4434 }
4435
4436 // End of this scope, pop it and try the next child in the containing
4437 // scope.
4438 MatchScopes.pop_back();
4439 }
4440 }
4441}
4442
4443/// Return whether the node may raise an FP exception.
4445 // For machine opcodes, consult the MCID flag.
4446 if (N->isMachineOpcode()) {
4447 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
4448 return MCID.mayRaiseFPException();
4449 }
4450
4451 // For ISD opcodes, only StrictFP opcodes may raise an FP
4452 // exception.
4453 if (N->isTargetOpcode()) {
4454 const SelectionDAGTargetInfo &TSI = CurDAG->getSelectionDAGInfo();
4455 return TSI.mayRaiseFPException(N->getOpcode());
4456 }
4457 return N->isStrictFPOpcode();
4458}
4459
4461 assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
4462 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4463 if (!C)
4464 return false;
4465
4466 // Detect when "or" is used to add an offset to a stack object.
4467 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
4468 MachineFrameInfo &MFI = MF->getFrameInfo();
4469 Align A = MFI.getObjectAlign(FN->getIndex());
4470 int32_t Off = C->getSExtValue();
4471 // If the alleged offset fits in the zero bits guaranteed by
4472 // the alignment, then this or is really an add.
4473 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
4474 }
4475 return false;
4476}
4477
4478void SelectionDAGISel::CannotYetSelect(SDNode *N) {
4479 std::string msg;
4480 raw_string_ostream Msg(msg);
4481 Msg << "Cannot select: ";
4482
4483 Msg.enable_colors(errs().has_colors());
4484
4485 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
4486 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
4487 N->getOpcode() != ISD::INTRINSIC_VOID) {
4488 N->printrFull(Msg, CurDAG);
4489 Msg << "\nIn function: " << MF->getName();
4490 } else {
4491 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
4492 unsigned iid = N->getConstantOperandVal(HasInputChain);
4493 if (iid < Intrinsic::num_intrinsics)
4494 Msg << "intrinsic %" << Intrinsic::getBaseName((Intrinsic::ID)iid);
4495 else
4496 Msg << "unknown intrinsic #" << iid;
4497 }
4498 report_fatal_error(Twine(msg));
4499}
unsigned const MachineRegisterInfo * MRI
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
MachineInstrBuilder & UseMI
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
Rewrite undef for PHI
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Expand Atomic instructions
BitTracker BT
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_ATTRIBUTE_ALWAYS_INLINE
LLVM_ATTRIBUTE_ALWAYS_INLINE - On compilers where we have a directive to do so, mark a method "always...
Definition Compiler.h:356
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
This file defines the FastISel class.
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
#define I(x, y, z)
Definition MD5.cpp:57
Machine Instruction Scheduler
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
This file contains the declarations for metadata subclasses.
#define T
uint64_t IntrinsicInst * II
#define P(N)
FunctionAnalysisManager FAM
if(PassOpts->AAPipeline)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const TargetLowering *TLI, const DataLayout &DL)
static cl::opt< bool > ViewSUnitDAGs("view-sunit-dags", cl::Hidden, cl::desc("Pop up a window to show SUnit dags after they are processed"))
static cl::opt< bool > ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the post " "legalize types dag combine pass"))
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckPatternPredicate(unsigned Opcode, const unsigned char *MatcherTable, unsigned &MatcherIndex, const SelectionDAGISel &SDISel)
CheckPatternPredicate - Implements OP_CheckPatternPredicate.
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SmallVectorImpl< std::pair< SDValue, SDNode * > > &RecordedNodes, unsigned ChildNo)
CheckChildSame - Implements OP_CheckChildXSame.
static uint64_t decodeSignRotatedValue(uint64_t V)
Decode a signed value stored with the sign bit in the LSB for dense VBR encoding.
static cl::opt< bool > ViewISelDAGs("view-isel-dags", cl::Hidden, cl::desc("Pop up a window to show isel dags as they are selected"))
static cl::opt< bool > DumpSortedDAG("dump-sorted-dags", cl::Hidden, cl::desc("Print DAGs with sorted nodes in debug dump"), cl::init(false))
static LLVM_ATTRIBUTE_ALWAYS_INLINE uint64_t GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx)
GetVBR - decode a vbr encoding whose top bit is set.
static void reportFastISelFailure(MachineFunction &MF, OptimizationRemarkEmitter &ORE, OptimizationRemarkMissed &R, bool ShouldAbort)
static cl::opt< bool > ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the second " "dag combine pass"))
static RegisterScheduler defaultListDAGScheduler("default", "Best scheduler for the target", createDefaultScheduler)
static unsigned IsPredicateKnownToFail(const unsigned char *Table, unsigned Index, SDValue N, bool &Result, const SelectionDAGISel &SDISel, SmallVectorImpl< std::pair< SDValue, SDNode * > > &RecordedNodes)
IsPredicateKnownToFail - If we know how and can do so without pushing a scope, evaluate the current n...
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckNodePredicate(unsigned Opcode, const unsigned char *MatcherTable, unsigned &MatcherIndex, const SelectionDAGISel &SDISel, SDValue Op)
CheckNodePredicate - Implements OP_CheckNodePredicate.
static cl::opt< int > EnableFastISelAbort("fast-isel-abort", cl::Hidden, cl::desc("Enable abort calls when \"fast\" instruction selection " "fails to lower an instruction: 0 disable the abort, 1 will " "abort but for args, calls and terminators, 2 will also " "abort for argument lowering, and 3 will never fallback " "to SelectionDAG."))
static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, const CatchPadInst *CPI)
#define ISEL_DUMP(X)
static void processSingleLocVars(FunctionLoweringInfo &FuncInfo, FunctionVarLocs const *FnVarLocs)
Collect single location variable information generated with assignment tracking.
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N)
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SelectionDAGISel &SDISel)
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SelectionDAGISel &SDISel)
static cl::opt< bool > UseMBPI("use-mbpi", cl::desc("use Machine Branch Probability Info"), cl::init(true), cl::Hidden)
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckChildType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI, const DataLayout &DL, unsigned ChildNo)
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SmallVectorImpl< std::pair< SDValue, SDNode * > > &RecordedNodes)
CheckSame - Implements OP_CheckSame.
static bool dontUseFastISelFor(const Function &Fn)
static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, bool IgnoreChains)
findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path beyond "ImmedUse".
static cl::opt< bool > ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the first " "dag combine pass"))
static bool processIfEntryValueDbgDeclare(FunctionLoweringInfo &FuncInfo, const Value *Arg, DIExpression *Expr, DILocalVariable *Var, DebugLoc DbgLoc)
static cl::opt< bool > ViewSchedDAGs("view-sched-dags", cl::Hidden, cl::desc("Pop up a window to show sched dags as they are processed"))
static void processDbgDeclares(FunctionLoweringInfo &FuncInfo)
Collect llvm.dbg.declare information.
static void preserveFakeUses(BasicBlock::iterator Begin, BasicBlock::iterator End)
static SDValue HandleMergeInputChains(const SmallVectorImpl< SDNode * > &ChainNodesMatched, SDValue InputGlue, SelectionDAG *CurDAG)
HandleMergeInputChains - This implements the OPC_EmitMergeInputChains operation for when the pattern ...
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckType(MVT::SimpleValueType VT, SDValue N, const TargetLowering *TLI, const DataLayout &DL)
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N)
static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI)
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N)
static cl::opt< bool > ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, cl::desc("Pop up a window to show dags before legalize"))
static cl::opt< bool > ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, cl::desc("Pop up a window to show dags before legalize types"))
static cl::opt< RegisterScheduler::FunctionPassCtor, false, RegisterPassParser< RegisterScheduler > > ISHeuristic("pre-RA-sched", cl::init(&createDefaultScheduler), cl::Hidden, cl::desc("Instruction schedulers available (before register" " allocation):"))
ISHeuristic command line option for instruction schedulers.
static bool maintainPGOProfile(const TargetMachine &TM, CodeGenOptLevel OptLevel)
static cl::opt< bool > EnableFastISelFallbackReport("fast-isel-report-on-fallback", cl::Hidden, cl::desc("Emit a diagnostic when \"fast\" instruction selection " "falls back to SelectionDAG."))
static bool processDbgDeclare(FunctionLoweringInfo &FuncInfo, const Value *Address, DIExpression *Expr, DILocalVariable *Var, DebugLoc DbgLoc)
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDNode *N)
static LLVM_ATTRIBUTE_ALWAYS_INLINE bool CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, unsigned ChildNo)
static cl::opt< std::string > FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, cl::desc("Only display the basic block whose name " "matches this for all view-*-dags options"))
static bool isFoldedOrDeadInstruction(const Instruction *I, const FunctionLoweringInfo &FuncInfo)
isFoldedOrDeadInstruction - Return true if the specified instruction is side-effect free and is eithe...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
LLVM IR instance of the generic uniformity analysis.
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
Definition APInt.h:78
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1258
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
iterator end()
Definition BasicBlock.h:472
unsigned getNumber() const
Definition BasicBlock.h:95
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition BasicBlock.h:528
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
Definition BasicBlock.h:171
InstListType::iterator iterator
Instruction iterators...
Definition BasicBlock.h:170
bool isEHPad() const
Return true if this basic block is an exception handling block.
Definition BasicBlock.h:707
LLVM_ABI const Instruction * getFirstMayFaultInst() const
Returns the first potential AsynchEH faulty instruction currently it checks for loads/stores (which m...
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Analysis pass which computes BranchProbabilityInfo.
Legacy analysis pass which computes BranchProbabilityInfo.
This class represents a function call, abstracting a target machine's calling convention.
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
This is the shared class of boolean and integer constants.
Definition Constants.h:87
DWARF expression.
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static LLVM_ABI DIExpression * append(const DIExpression *Expr, ArrayRef< uint64_t > Ops)
Append the opcodes Ops to DIExpr.
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Record of a variable value-assignment, aka a non instruction representation of the dbg....
A debug info location.
Definition DebugLoc.h:124
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
Definition DenseMap.h:74
iterator end()
Definition DenseMap.h:81
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:241
Diagnostic information for ISel fallback path.
void setLastLocalValue(MachineInstr *I)
Update the position of the last instruction emitted for materializing constants for use in the curren...
Definition FastISel.h:237
void handleDbgInfo(const Instruction *II)
Target-independent lowering of non-instruction debug info associated with this instruction.
bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst)
We're checking to see if we can fold LI into FoldInst.
void removeDeadCode(MachineBasicBlock::iterator I, MachineBasicBlock::iterator E)
Remove all dead instructions between the I and E.
Definition FastISel.cpp:410
void startNewBlock()
Set the current block to which generated machine instructions will be appended.
Definition FastISel.cpp:123
bool selectInstruction(const Instruction *I)
Do "fast" instruction selection for the given LLVM IR instruction and append the generated machine in...
void finishBasicBlock()
Flush the local value map.
Definition FastISel.cpp:136
void recomputeInsertPt()
Reset InsertPt to prepare for inserting instructions into the current block.
Definition FastISel.cpp:401
bool lowerArguments()
Do "fast" instruction selection for function arguments and append the machine instructions to the cur...
Definition FastISel.cpp:138
unsigned arg_size() const
arg_size - Return the number of funcletpad arguments.
Value * getArgOperand(unsigned i) const
getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
SmallPtrSet< const DbgVariableRecord *, 8 > PreprocessedDVRDeclares
Collection of dbg_declare instructions handled after argument lowering and before ISel proper.
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
int getArgumentFrameIndex(const Argument *A)
getArgumentFrameIndex - Get frame index for the byval argument.
bool isExportedInst(const Value *V) const
isExportedInst - Return true if the specified value is an instruction exported from its block.
DenseMap< const Value *, Register > ValueMap
ValueMap - Since we emit code for the function a basic block at a time, we must remember which virtua...
MachineRegisterInfo * RegInfo
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
Definition Pass.cpp:188
Data structure describing the variable locations in a function.
const VarLocInfo * single_locs_begin() const
DILocalVariable * getDILocalVariable(const VarLocInfo *Loc) const
Return the DILocalVariable for the location definition represented by ID.
const VarLocInfo * single_locs_end() const
One past the last single-location variable location definition.
const BasicBlock & getEntryBlock() const
Definition Function.h:807
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
unsigned getMaxBlockNumber() const
Return a value larger than the largest block number.
Definition Function.h:826
iterator_range< arg_iterator > args()
Definition Function.h:890
DISubprogram * getSubprogram() const
Get the attached subprogram.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
bool hasGC() const
hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm to use during code generatio...
Definition Function.h:344
bool hasOptNone() const
Do not optimize this function (-O0).
Definition Function.h:700
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
An analysis pass which caches information about the Function.
Definition GCMetadata.h:214
An analysis pass which caches information about the entire Module.
Definition GCMetadata.h:237
Module * getParent()
Get the module that this global value is contained inside of...
This class is used to form a handle around another node that is persistent and is updated across invo...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
bool isTerminator() const
A wrapper class for inspecting calls to intrinsic functions.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
Describe properties that are true of each instruction in the target description file.
const MDNode * getMD() const
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
LLVM_ABI StringRef getString() const
Definition Metadata.cpp:618
Machine Value Type.
LLVM_ABI instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator insertAfter(iterator I, MachineInstr *MI)
Insert MI into the instruction list after I.
LLVM_ABI bool isSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB is a successor of this block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool hasCalls() const
Return true if the current function has any function calls.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index)
Map the landing pad to its index. Used for Wasm exception handling.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
void setUseDebugInstrRef(bool UseInstrRef)
Set whether this function will use instruction referencing or not.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
bool shouldUseDebugInstrRef() const
Determine whether, in the current machine configuration, we should use instruction referencing or not...
const MachineFunctionProperties & getProperties() const
Get the function properties.
void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr, int Slot, const DILocation *Loc)
Collect information used to emit debugging information of a variable in a stack slot.
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
bool isTerminator(QueryType Type=AnyInBundle) const
Returns true if this instruction part of the terminator for a basic block.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
An analysis that produces MachineModuleInfo for a module.
This class contains meta information specific to a module.
Register getReg() const
getReg - Returns the register number.
MachinePassRegistry - Track the registration of machine passes.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
ArrayRef< std::pair< MCRegister, Register > > liveins() const
An SDNode that represents everything that will be needed to construct a MachineInstr.
Metadata * getModuleFlag(StringRef Key) const
Return the corresponding value if Key appears in module flags, otherwise return null.
Definition Module.cpp:353
This class is used by SelectionDAGISel to temporarily override the optimization level on a per-functi...
OptLevelChanger(SelectionDAGISel &ISel, CodeGenOptLevel NewOptLevel)
The optimization diagnostic interface.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
AnalysisType * getAnalysisIfAvailable() const
getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to get analysis information tha...
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
RegisterPassParser class - Handle the addition of new machine passes.
ScheduleDAGSDNodes *(*)(SelectionDAGISel *, CodeGenOptLevel) FunctionPassCtor
static LLVM_ABI MachinePassRegistry< FunctionPassCtor > Registry
RegisterScheduler class - Track the registration of instruction schedulers.
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:79
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
bool isMachineOpcode() const
Test if this node has a post-isel opcode, directly corresponding to a MachineInstr opcode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
SDNode * getGluedUser() const
If this node has a glue value with a user, return the user (there is at most one).
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
iterator_range< use_iterator > uses()
void setNodeId(int Id)
Set unique node id.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
ScheduleDAGSDNodes - A ScheduleDAG for scheduling SDNode-based DAGs.
SelectionDAGBuilder - This is the common target-independent lowering implementation that is parameter...
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
SelectionDAGISelLegacy(char &ID, std::unique_ptr< SelectionDAGISel > S)
PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
SelectionDAGISel - This is the common base class used for SelectionDAG-based pattern-matching instruc...
std::optional< BatchAAResults > BatchAA
std::unique_ptr< FunctionLoweringInfo > FuncInfo
SmallPtrSet< const Instruction *, 4 > ElidedArgCopyInstrs
virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, std::vector< SDValue > &OutOps)
SelectInlineAsmMemoryOperand - Select the specified address as a target addressing mode,...
bool CheckOrMask(SDValue LHS, ConstantSDNode *RHS, int64_t DesiredMaskS) const
CheckOrMask - The isel is trying to match something like (or X, 255).
void initializeAnalysisResults(MachineFunctionAnalysisManager &MFAM)
const TargetTransformInfo * TTI
virtual bool CheckNodePredicate(SDValue Op, unsigned PredNo) const
CheckNodePredicate - This function is generated by tblgen in the target.
MachineModuleInfo * MMI
virtual bool CheckNodePredicateWithOperands(SDValue Op, unsigned PredNo, ArrayRef< SDValue > Operands) const
CheckNodePredicateWithOperands - This function is generated by tblgen in the target.
const TargetLowering * TLI
virtual void PostprocessISelDAG()
PostprocessISelDAG() - This hook allows the target to hack on the graph right after selection.
std::unique_ptr< OptimizationRemarkEmitter > ORE
Current optimization remark emitter.
MachineRegisterInfo * RegInfo
unsigned DAGSize
DAGSize - Size of DAG being instruction selected.
bool isOrEquivalentToAdd(const SDNode *N) const
virtual bool CheckComplexPattern(SDNode *Root, SDNode *Parent, SDValue N, unsigned PatternNo, SmallVectorImpl< std::pair< SDValue, SDNode * > > &Result)
virtual bool CheckPatternPredicate(unsigned PredNo) const
CheckPatternPredicate - This function is generated by tblgen in the target.
static int getNumFixedFromVariadicInfo(unsigned Flags)
getNumFixedFromVariadicInfo - Transform an EmitNode flags word into the number of fixed arity values ...
const TargetLibraryInfo * LibInfo
static int getUninvalidatedNodeId(SDNode *N)
const TargetInstrInfo * TII
std::unique_ptr< SwiftErrorValueTracking > SwiftError
void SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, unsigned TableSize)
static void EnforceNodeIdInvariant(SDNode *N)
void ReplaceUses(SDValue F, SDValue T)
ReplaceUses - replace all uses of the old node F with the use of the new node T.
virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const
IsProfitableToFold - Returns true if it's profitable to fold the specific operand node N of U during ...
virtual SDValue RunSDNodeXForm(SDValue V, unsigned XFormNo)
bool MatchFilterFuncName
True if the function currently processing is in the function printing list (i.e.
void SelectInlineAsmMemoryOperands(std::vector< SDValue > &Ops, const SDLoc &DL)
SelectInlineAsmMemoryOperands - Calls to this are automatically generated by tblgen.
static bool IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, CodeGenOptLevel OptLevel, bool IgnoreChains=false)
IsLegalToFold - Returns true if the specific operand node N of U can be folded during instruction sel...
virtual bool ComplexPatternFuncMutatesDAG() const
Return true if complex patterns for this target can mutate the DAG.
virtual void PreprocessISelDAG()
PreprocessISelDAG - This hook allows targets to hack on the graph before instruction selection starts...
BatchAAResults * getBatchAA() const
Returns a (possibly null) pointer to the current BatchAAResults.
bool CheckAndMask(SDValue LHS, ConstantSDNode *RHS, int64_t DesiredMaskS) const
CheckAndMask - The isel is trying to match something like (and X, 255).
virtual StringRef getPatternForIndex(unsigned index)
getPatternForIndex - Patterns selected by tablegen during ISEL
bool mayRaiseFPException(SDNode *Node) const
Return whether the node may raise an FP exception.
std::unique_ptr< SelectionDAGBuilder > SDB
void ReplaceNode(SDNode *F, SDNode *T)
Replace all uses of F with T, then remove F from the DAG.
SelectionDAGISel(TargetMachine &tm, CodeGenOptLevel OL=CodeGenOptLevel::Default)
virtual bool runOnMachineFunction(MachineFunction &mf)
static void InvalidateNodeId(SDNode *N)
virtual StringRef getIncludePathForIndex(unsigned index)
getIncludePathForIndex - get the td source location of pattern instantiation
Targets can subclass this to parameterize the SelectionDAG lowering and instruction selection process...
virtual bool mayRaiseFPException(unsigned Opcode) const
Returns true if a node with the given target-specific opcode may raise a floating-point exception.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
allnodes_const_iterator allnodes_begin() const
const DataLayout & getDataLayout() const
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
ilist< SDNode >::iterator allnodes_iterator
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void resize(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const
This method should be implemented by targets that mark instructions with the 'hasPostISelHook' flag.
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
Primary interface to the complete machine description for the target machine.
const std::optional< PGOOptions > & getPGOOption() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
Wrapper pass for TargetTransformInfo.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
bool isTokenTy() const
Return true if this is 'token'.
Definition Type.h:234
bool isVoidTy() const
Return true if this is 'void'.
Definition Type.h:139
Analysis pass which computes UniformityInfo.
Legacy analysis pass which computes a CycleInfo.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
bool use_empty() const
Definition Value.h:346
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
self_iterator getIterator()
Definition ilist_node.h:123
A raw_ostream that writes to an std::string.
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
@ TargetConstantPool
Definition ISDOpcodes.h:184
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ TargetBlockAddress
Definition ISDOpcodes.h:186
@ DEACTIVATION_SYMBOL
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ STRICT_UINT_TO_FP
Definition ISDOpcodes.h:478
@ TargetExternalSymbol
Definition ISDOpcodes.h:185
@ TargetJumpTable
Definition ISDOpcodes.h:183
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition ISDOpcodes.h:180
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
Definition ISDOpcodes.h:134
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ STRICT_SINT_TO_FP
STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to a floating point value.
Definition ISDOpcodes.h:477
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:736
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ TargetGlobalTLSAddress
Definition ISDOpcodes.h:181
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI StringRef getBaseName(ID id)
Return the LLVM name for an intrinsic, without encoded types for overloading, such as "llvm....
@ Kill
The last use of a register.
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
iterator end() const
Definition BasicBlock.h:89
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
LLVM_ABI ScheduleDAGSDNodes * createDefaultScheduler(SelectionDAGISel *IS, CodeGenOptLevel OptLevel)
createDefaultScheduler - This creates an instruction scheduler appropriate for the target.
@ Offset
Definition DWP.cpp:532
OuterAnalysisManagerProxy< ModuleAnalysisManager, MachineFunction > ModuleAnalysisManagerMachineFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
bool succ_empty(const Instruction *I)
Definition CFG.h:257
LLVM_ABI ScheduleDAGSDNodes * createBURRListDAGScheduler(SelectionDAGISel *IS, CodeGenOptLevel OptLevel)
createBURRListDAGScheduler - This creates a bottom up register usage reduction list scheduler.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
LLVM_ABI ScheduleDAGSDNodes * createHybridListDAGScheduler(SelectionDAGISel *IS, CodeGenOptLevel)
createHybridListDAGScheduler - This creates a bottom up register pressure aware list scheduler that m...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
MachineBasicBlock::iterator findSplitPointForStackProtector(MachineBasicBlock *BB, const TargetInstrInfo &TII)
Find the split point at which to splice the end of BB into its success stack protector check machine ...
LLVM_ABI bool TimePassesIsEnabled
If the user specifies the -time-passes argument on an LLVM tool command line then the value of this b...
Definition IRReader.cpp:26
LLVM_ABI LLT getLLTForMVT(MVT Ty)
Get a rough equivalent of an LLT for a given MVT.
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
LLVM_ABI void initializeGCModuleInfoPass(PassRegistry &)
LLVM_ABI ScheduleDAGSDNodes * createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOptLevel OptLevel)
createFastDAGScheduler - This creates a "fast" scheduler.
LLVM_ABI PreservedAnalyses getMachineFunctionPassPreservedAnalyses()
Returns the minimum set of Analyses that all machine function passes must preserve.
void erase(Container &C, ValueType V)
Wrapper function to remove a value from a container:
Definition STLExtras.h:2128
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_ABI ScheduleDAGSDNodes * createDAGLinearizer(SelectionDAGISel *IS, CodeGenOptLevel OptLevel)
createDAGLinearizer - This creates a "no-scheduling" scheduler which linearize the DAG using topologi...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool isFunctionInPrintList(StringRef FunctionName)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
@ AfterLegalizeDAG
Definition DAGCombine.h:19
@ AfterLegalizeVectorOps
Definition DAGCombine.h:18
@ BeforeLegalizeTypes
Definition DAGCombine.h:16
@ AfterLegalizeTypes
Definition DAGCombine.h:17
LLVM_ABI ScheduleDAGSDNodes * createSourceListDAGScheduler(SelectionDAGISel *IS, CodeGenOptLevel OptLevel)
createSourceListDAGScheduler - This creates a bottom up list scheduler that schedules nodes in source...
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
void replace(R &&Range, const T &OldValue, const T &NewValue)
Provide wrappers to std::replace which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1860
DWARFExpression::Operation Op
LLVM_ABI void initializeAAResultsWrapperPassPass(PassRegistry &)
LLVM_ABI void initializeTargetLibraryInfoWrapperPassPass(PassRegistry &)
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1867
LLVM_ABI ScheduleDAGSDNodes * createILPListDAGScheduler(SelectionDAGISel *IS, CodeGenOptLevel)
createILPListDAGScheduler - This creates a bottom up register pressure aware list scheduler that trie...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI void initializeBranchProbabilityInfoWrapperPassPass(PassRegistry &)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
LLVM_ABI ScheduleDAGSDNodes * createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOptLevel OptLevel)
createVLIWDAGScheduler - Scheduler for VLIW targets.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
LLVM_ABI Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:867
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Extended Value Type.
Definition ValueTypes.h:35
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
A struct capturing PGO tunables.
Definition PGOOptions.h:22
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
void addIPToStateRange(const InvokeInst *II, MCSymbol *InvokeBegin, MCSymbol *InvokeEnd)
DenseMap< const BasicBlock *, int > BlockToStateMap