LLVM 18.0.0git
FastISel.cpp
Go to the documentation of this file.
1//===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the implementation of the FastISel class.
10//
11// "Fast" instruction selection is designed to emit very poor code quickly.
12// Also, it is not designed to be able to do much lowering, so most illegal
13// types (e.g. i64 on 32-bit targets) and operations are not supported. It is
14// also not intended to be able to do much optimization, except in a few cases
15// where doing optimizations reduces overall compile time. For example, folding
16// constants into immediate fields is often done, because it's cheap and it
17// reduces the number of instructions later phases have to examine.
18//
19// "Fast" instruction selection is able to fail gracefully and transfer
20// control to the SelectionDAG selector for operations that it doesn't
21// support. In many cases, this allows us to avoid duplicating a lot of
22// the complicated lowering logic that SelectionDAG currently has.
23//
24// The intended use for "fast" instruction selection is "-O0" mode
25// compilation, where the quality of the generated code is irrelevant when
26// weighed against the speed at which the code can be generated. Also,
27// at -O0, the LLVM optimizers are not running, and this makes the
28// compile time of codegen a much higher portion of the overall compile
29// time. Despite its limitations, "fast" instruction selection is able to
30// handle enough code on its own to provide noticeable overall speedups
31// in -O0 compiles.
32//
33// Basic operations are supported in a target-independent way, by reading
34// the same instruction descriptions that the SelectionDAG selector reads,
35// and identifying simple arithmetic operations that can be directly selected
36// from simple operators. More complicated operations currently require
37// target-specific code.
38//
39//===----------------------------------------------------------------------===//
40
42#include "llvm/ADT/APFloat.h"
43#include "llvm/ADT/APSInt.h"
44#include "llvm/ADT/DenseMap.h"
48#include "llvm/ADT/Statistic.h"
68#include "llvm/IR/Argument.h"
69#include "llvm/IR/Attributes.h"
70#include "llvm/IR/BasicBlock.h"
71#include "llvm/IR/CallingConv.h"
72#include "llvm/IR/Constant.h"
73#include "llvm/IR/Constants.h"
74#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/DebugLoc.h"
78#include "llvm/IR/Function.h"
80#include "llvm/IR/GlobalValue.h"
81#include "llvm/IR/InlineAsm.h"
82#include "llvm/IR/InstrTypes.h"
83#include "llvm/IR/Instruction.h"
86#include "llvm/IR/LLVMContext.h"
87#include "llvm/IR/Mangler.h"
88#include "llvm/IR/Metadata.h"
89#include "llvm/IR/Operator.h"
91#include "llvm/IR/Type.h"
92#include "llvm/IR/User.h"
93#include "llvm/IR/Value.h"
94#include "llvm/MC/MCContext.h"
95#include "llvm/MC/MCInstrDesc.h"
97#include "llvm/Support/Debug.h"
103#include <algorithm>
104#include <cassert>
105#include <cstdint>
106#include <iterator>
107#include <optional>
108#include <utility>
109
110using namespace llvm;
111using namespace PatternMatch;
112
113#define DEBUG_TYPE "isel"
114
115STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
116 "target-independent selector");
117STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
118 "target-specific selector");
119STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
120
121/// Set the current block to which generated machine instructions will be
122/// appended.
124 assert(LocalValueMap.empty() &&
125 "local values should be cleared after finishing a BB");
126
127 // Instructions are appended to FuncInfo.MBB. If the basic block already
128 // contains labels or copies, use the last instruction as the last local
129 // value.
130 EmitStartPt = nullptr;
131 if (!FuncInfo.MBB->empty())
134}
135
136void FastISel::finishBasicBlock() { flushLocalValueMap(); }
137
140 // Fallback to SDISel argument lowering code to deal with sret pointer
141 // parameter.
142 return false;
143
144 if (!fastLowerArguments())
145 return false;
146
147 // Enter arguments into ValueMap for uses in non-entry BBs.
149 E = FuncInfo.Fn->arg_end();
150 I != E; ++I) {
152 assert(VI != LocalValueMap.end() && "Missed an argument?");
153 FuncInfo.ValueMap[&*I] = VI->second;
154 }
155 return true;
156}
157
158/// Return the defined register if this instruction defines exactly one
159/// virtual register and uses no other virtual registers. Otherwise return 0.
161 Register RegDef;
162 for (const MachineOperand &MO : MI.operands()) {
163 if (!MO.isReg())
164 continue;
165 if (MO.isDef()) {
166 if (RegDef)
167 return Register();
168 RegDef = MO.getReg();
169 } else if (MO.getReg().isVirtual()) {
170 // This is another use of a vreg. Don't delete it.
171 return Register();
172 }
173 }
174 return RegDef;
175}
176
177static bool isRegUsedByPhiNodes(Register DefReg,
178 FunctionLoweringInfo &FuncInfo) {
179 for (auto &P : FuncInfo.PHINodesToUpdate)
180 if (P.second == DefReg)
181 return true;
182 return false;
183}
184
185void FastISel::flushLocalValueMap() {
186 // If FastISel bails out, it could leave local value instructions behind
187 // that aren't used for anything. Detect and erase those.
189 // Save the first instruction after local values, for later.
191 ++FirstNonValue;
192
195 : FuncInfo.MBB->rend();
197 for (MachineInstr &LocalMI :
199 Register DefReg = findLocalRegDef(LocalMI);
200 if (!DefReg)
201 continue;
202 if (FuncInfo.RegsWithFixups.count(DefReg))
203 continue;
204 bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
205 if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
206 if (EmitStartPt == &LocalMI)
208 LLVM_DEBUG(dbgs() << "removing dead local value materialization"
209 << LocalMI);
210 LocalMI.eraseFromParent();
211 }
212 }
213
214 if (FirstNonValue != FuncInfo.MBB->end()) {
215 // See if there are any local value instructions left. If so, we want to
216 // make sure the first one has a debug location; if it doesn't, use the
217 // first non-value instruction's debug location.
218
219 // If EmitStartPt is non-null, this block had copies at the top before
220 // FastISel started doing anything; it points to the last one, so the
221 // first local value instruction is the one after EmitStartPt.
222 // If EmitStartPt is null, the first local value instruction is at the
223 // top of the block.
224 MachineBasicBlock::iterator FirstLocalValue =
226 : FuncInfo.MBB->begin();
227 if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
228 FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
229 }
230 }
231
232 LocalValueMap.clear();
235 SavedInsertPt = FuncInfo.InsertPt;
236}
237
239 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
240 // Don't handle non-simple values in FastISel.
241 if (!RealVT.isSimple())
242 return Register();
243
244 // Ignore illegal types. We must do this before looking up the value
245 // in ValueMap because Arguments are given virtual registers regardless
246 // of whether FastISel can handle them.
247 MVT VT = RealVT.getSimpleVT();
248 if (!TLI.isTypeLegal(VT)) {
249 // Handle integer promotions, though, because they're common and easy.
250 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
251 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
252 else
253 return Register();
254 }
255
256 // Look up the value to see if we already have a register for it.
258 if (Reg)
259 return Reg;
260
261 // In bottom-up mode, just create the virtual register which will be used
262 // to hold the value. It will be materialized later.
263 if (isa<Instruction>(V) &&
264 (!isa<AllocaInst>(V) ||
265 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
267
268 SavePoint SaveInsertPt = enterLocalValueArea();
269
270 // Materialize the value in a register. Emit any instructions in the
271 // local value area.
272 Reg = materializeRegForValue(V, VT);
273
274 leaveLocalValueArea(SaveInsertPt);
275
276 return Reg;
277}
278
279Register FastISel::materializeConstant(const Value *V, MVT VT) {
280 Register Reg;
281 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
282 if (CI->getValue().getActiveBits() <= 64)
283 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
284 } else if (isa<AllocaInst>(V))
285 Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
286 else if (isa<ConstantPointerNull>(V))
287 // Translate this as an integer zero so that it can be
288 // local-CSE'd with actual integer zeros.
289 Reg =
291 else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
292 if (CF->isNullValue())
293 Reg = fastMaterializeFloatZero(CF);
294 else
295 // Try to emit the constant directly.
296 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
297
298 if (!Reg) {
299 // Try to emit the constant by using an integer constant with a cast.
300 const APFloat &Flt = CF->getValueAPF();
301 EVT IntVT = TLI.getPointerTy(DL);
302 uint32_t IntBitWidth = IntVT.getSizeInBits();
303 APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
304 bool isExact;
305 (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
306 if (isExact) {
307 Register IntegerReg =
308 getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
309 if (IntegerReg)
310 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
311 IntegerReg);
312 }
313 }
314 } else if (const auto *Op = dyn_cast<Operator>(V)) {
315 if (!selectOperator(Op, Op->getOpcode()))
316 if (!isa<Instruction>(Op) ||
317 !fastSelectInstruction(cast<Instruction>(Op)))
318 return 0;
320 } else if (isa<UndefValue>(V)) {
323 TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
324 }
325 return Reg;
326}
327
328/// Helper for getRegForValue. This function is called when the value isn't
329/// already available in a register and must be materialized with new
330/// instructions.
331Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
333 // Give the target-specific code a try first.
334 if (isa<Constant>(V))
335 Reg = fastMaterializeConstant(cast<Constant>(V));
336
337 // If target-specific code couldn't or didn't want to handle the value, then
338 // give target-independent code a try.
339 if (!Reg)
340 Reg = materializeConstant(V, VT);
341
342 // Don't cache constant materializations in the general ValueMap.
343 // To do so would require tracking what uses they dominate.
344 if (Reg) {
347 }
348 return Reg;
349}
350
352 // Look up the value to see if we already have a register for it. We
353 // cache values defined by Instructions across blocks, and other values
354 // only locally. This is because Instructions already have the SSA
355 // def-dominates-use requirement enforced.
357 if (I != FuncInfo.ValueMap.end())
358 return I->second;
359 return LocalValueMap[V];
360}
361
362void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
363 if (!isa<Instruction>(I)) {
364 LocalValueMap[I] = Reg;
365 return;
366 }
367
368 Register &AssignedReg = FuncInfo.ValueMap[I];
369 if (!AssignedReg)
370 // Use the new register.
371 AssignedReg = Reg;
372 else if (Reg != AssignedReg) {
373 // Arrange for uses of AssignedReg to be replaced by uses of Reg.
374 for (unsigned i = 0; i < NumRegs; i++) {
375 FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
377 }
378
379 AssignedReg = Reg;
380 }
381}
382
385 if (!IdxN)
386 // Unhandled operand. Halt "fast" selection and bail.
387 return Register();
388
389 // If the index is smaller or larger than intptr_t, truncate or extend it.
390 MVT PtrVT = TLI.getPointerTy(DL);
391 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
392 if (IdxVT.bitsLT(PtrVT)) {
393 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
394 } else if (IdxVT.bitsGT(PtrVT)) {
395 IdxN =
396 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
397 }
398 return IdxN;
399}
400
402 if (getLastLocalValue()) {
404 FuncInfo.MBB = FuncInfo.InsertPt->getParent();
406 } else
408}
409
412 assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
413 "Invalid iterator!");
414 while (I != E) {
415 if (SavedInsertPt == I)
416 SavedInsertPt = E;
417 if (EmitStartPt == I)
418 EmitStartPt = E.isValid() ? &*E : nullptr;
419 if (LastLocalValue == I)
420 LastLocalValue = E.isValid() ? &*E : nullptr;
421
422 MachineInstr *Dead = &*I;
423 ++I;
424 Dead->eraseFromParent();
425 ++NumFastIselDead;
426 }
428}
429
431 SavePoint OldInsertPt = FuncInfo.InsertPt;
433 return OldInsertPt;
434}
435
438 LastLocalValue = &*std::prev(FuncInfo.InsertPt);
439
440 // Restore the previous insert position.
441 FuncInfo.InsertPt = OldInsertPt;
442}
443
444bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
445 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
446 if (VT == MVT::Other || !VT.isSimple())
447 // Unhandled type. Halt "fast" selection and bail.
448 return false;
449
450 // We only handle legal types. For example, on x86-32 the instruction
451 // selector contains all of the 64-bit instructions from x86-64,
452 // under the assumption that i64 won't be used if the target doesn't
453 // support it.
454 if (!TLI.isTypeLegal(VT)) {
455 // MVT::i1 is special. Allow AND, OR, or XOR because they
456 // don't require additional zeroing, which makes them easy.
457 if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode))
458 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
459 else
460 return false;
461 }
462
463 // Check if the first operand is a constant, and handle it as "ri". At -O0,
464 // we don't have anything that canonicalizes operand order.
465 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
466 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
467 Register Op1 = getRegForValue(I->getOperand(1));
468 if (!Op1)
469 return false;
470
471 Register ResultReg =
472 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
473 VT.getSimpleVT());
474 if (!ResultReg)
475 return false;
476
477 // We successfully emitted code for the given LLVM Instruction.
478 updateValueMap(I, ResultReg);
479 return true;
480 }
481
482 Register Op0 = getRegForValue(I->getOperand(0));
483 if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
484 return false;
485
486 // Check if the second operand is a constant and handle it appropriately.
487 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
488 uint64_t Imm = CI->getSExtValue();
489
490 // Transform "sdiv exact X, 8" -> "sra X, 3".
491 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
492 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
493 Imm = Log2_64(Imm);
494 ISDOpcode = ISD::SRA;
495 }
496
497 // Transform "urem x, pow2" -> "and x, pow2-1".
498 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
499 isPowerOf2_64(Imm)) {
500 --Imm;
501 ISDOpcode = ISD::AND;
502 }
503
504 Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
505 VT.getSimpleVT());
506 if (!ResultReg)
507 return false;
508
509 // We successfully emitted code for the given LLVM Instruction.
510 updateValueMap(I, ResultReg);
511 return true;
512 }
513
514 Register Op1 = getRegForValue(I->getOperand(1));
515 if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
516 return false;
517
518 // Now we have both operands in registers. Emit the instruction.
519 Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
520 ISDOpcode, Op0, Op1);
521 if (!ResultReg)
522 // Target-specific code wasn't able to find a machine opcode for
523 // the given ISD opcode and type. Halt "fast" selection and bail.
524 return false;
525
526 // We successfully emitted code for the given LLVM Instruction.
527 updateValueMap(I, ResultReg);
528 return true;
529}
530
532 Register N = getRegForValue(I->getOperand(0));
533 if (!N) // Unhandled operand. Halt "fast" selection and bail.
534 return false;
535
536 // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
537 // and bail.
538 if (isa<VectorType>(I->getType()))
539 return false;
540
541 // Keep a running tab of the total offset to coalesce multiple N = N + Offset
542 // into a single N = N + TotalOffset.
543 uint64_t TotalOffs = 0;
544 // FIXME: What's a good SWAG number for MaxOffs?
545 uint64_t MaxOffs = 2048;
546 MVT VT = TLI.getPointerTy(DL);
548 GTI != E; ++GTI) {
549 const Value *Idx = GTI.getOperand();
550 if (StructType *StTy = GTI.getStructTypeOrNull()) {
551 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
552 if (Field) {
553 // N = N + Offset
554 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
555 if (TotalOffs >= MaxOffs) {
556 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
557 if (!N) // Unhandled operand. Halt "fast" selection and bail.
558 return false;
559 TotalOffs = 0;
560 }
561 }
562 } else {
563 Type *Ty = GTI.getIndexedType();
564
565 // If this is a constant subscript, handle it quickly.
566 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
567 if (CI->isZero())
568 continue;
569 // N = N + Offset
570 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
571 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
572 if (TotalOffs >= MaxOffs) {
573 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
574 if (!N) // Unhandled operand. Halt "fast" selection and bail.
575 return false;
576 TotalOffs = 0;
577 }
578 continue;
579 }
580 if (TotalOffs) {
581 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
582 if (!N) // Unhandled operand. Halt "fast" selection and bail.
583 return false;
584 TotalOffs = 0;
585 }
586
587 // N = N + Idx * ElementSize;
588 uint64_t ElementSize = DL.getTypeAllocSize(Ty);
590 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
591 return false;
592
593 if (ElementSize != 1) {
594 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
595 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
596 return false;
597 }
598 N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
599 if (!N) // Unhandled operand. Halt "fast" selection and bail.
600 return false;
601 }
602 }
603 if (TotalOffs) {
604 N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
605 if (!N) // Unhandled operand. Halt "fast" selection and bail.
606 return false;
607 }
608
609 // We successfully emitted code for the given LLVM Instruction.
611 return true;
612}
613
614bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
615 const CallInst *CI, unsigned StartIdx) {
616 for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) {
617 Value *Val = CI->getArgOperand(i);
618 // Check for constants and encode them with a StackMaps::ConstantOp prefix.
619 if (const auto *C = dyn_cast<ConstantInt>(Val)) {
620 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
621 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
622 } else if (isa<ConstantPointerNull>(Val)) {
623 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
625 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
626 // Values coming from a stack location also require a special encoding,
627 // but that is added later on by the target specific frame index
628 // elimination implementation.
629 auto SI = FuncInfo.StaticAllocaMap.find(AI);
630 if (SI != FuncInfo.StaticAllocaMap.end())
632 else
633 return false;
634 } else {
636 if (!Reg)
637 return false;
638 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
639 }
640 }
641 return true;
642}
643
645 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
646 // [live variables...])
647 assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
648 "Stackmap cannot return a value.");
649
650 // The stackmap intrinsic only records the live variables (the arguments
651 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
652 // intrinsic, this won't be lowered to a function call. This means we don't
653 // have to worry about calling conventions and target-specific lowering code.
654 // Instead we perform the call lowering right here.
655 //
656 // CALLSEQ_START(0, 0...)
657 // STACKMAP(id, nbytes, ...)
658 // CALLSEQ_END(0, 0)
659 //
661
662 // Add the <id> and <numBytes> constants.
663 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
664 "Expected a constant integer.");
665 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
666 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
667
668 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
669 "Expected a constant integer.");
670 const auto *NumBytes =
671 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
672 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
673
674 // Push live variables for the stack map (skipping the first two arguments
675 // <id> and <numBytes>).
676 if (!addStackMapLiveVars(Ops, I, 2))
677 return false;
678
679 // We are not adding any register mask info here, because the stackmap doesn't
680 // clobber anything.
681
682 // Add scratch registers as implicit def and early clobber.
683 CallingConv::ID CC = I->getCallingConv();
684 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
685 for (unsigned i = 0; ScratchRegs[i]; ++i)
687 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
688 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
689
690 // Issue CALLSEQ_START
691 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
692 auto Builder =
693 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown));
694 const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
695 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
696 Builder.addImm(0);
697
698 // Issue STACKMAP.
700 TII.get(TargetOpcode::STACKMAP));
701 for (auto const &MO : Ops)
702 MIB.add(MO);
703
704 // Issue CALLSEQ_END
705 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
707 .addImm(0)
708 .addImm(0);
709
710 // Inform the Frame Information that we have a stackmap in this function.
712
713 return true;
714}
715
716/// Lower an argument list according to the target calling convention.
717///
718/// This is a helper for lowering intrinsics that follow a target calling
719/// convention or require stack pointer adjustment. Only a subset of the
720/// intrinsic's operands need to participate in the calling convention.
721bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
722 unsigned NumArgs, const Value *Callee,
723 bool ForceRetVoidTy, CallLoweringInfo &CLI) {
724 ArgListTy Args;
725 Args.reserve(NumArgs);
726
727 // Populate the argument list.
728 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
729 Value *V = CI->getOperand(ArgI);
730
731 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
732
733 ArgListEntry Entry;
734 Entry.Val = V;
735 Entry.Ty = V->getType();
736 Entry.setAttributes(CI, ArgI);
737 Args.push_back(Entry);
738 }
739
740 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
741 : CI->getType();
742 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
743
744 return lowerCallTo(CLI);
745}
746
748 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
749 StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
750 SmallString<32> MangledName;
751 Mangler::getNameWithPrefix(MangledName, Target, DL);
752 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
753 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
754}
755
757 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
758 // i32 <numBytes>,
759 // i8* <target>,
760 // i32 <numArgs>,
761 // [Args...],
762 // [live variables...])
763 CallingConv::ID CC = I->getCallingConv();
764 bool IsAnyRegCC = CC == CallingConv::AnyReg;
765 bool HasDef = !I->getType()->isVoidTy();
766 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
767
768 // Get the real number of arguments participating in the call <numArgs>
769 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
770 "Expected a constant integer.");
771 const auto *NumArgsVal =
772 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
773 unsigned NumArgs = NumArgsVal->getZExtValue();
774
775 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
776 // This includes all meta-operands up to but not including CC.
777 unsigned NumMetaOpers = PatchPointOpers::CCPos;
778 assert(I->arg_size() >= NumMetaOpers + NumArgs &&
779 "Not enough arguments provided to the patchpoint intrinsic");
780
781 // For AnyRegCC the arguments are lowered later on manually.
782 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
784 CLI.setIsPatchPoint();
785 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
786 return false;
787
788 assert(CLI.Call && "No call instruction specified.");
789
791
792 // Add an explicit result reg if we use the anyreg calling convention.
793 if (IsAnyRegCC && HasDef) {
794 assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
796 CLI.NumResultRegs = 1;
797 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
798 }
799
800 // Add the <id> and <numBytes> constants.
801 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
802 "Expected a constant integer.");
803 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
804 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
805
806 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
807 "Expected a constant integer.");
808 const auto *NumBytes =
809 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
810 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
811
812 // Add the call target.
813 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
814 uint64_t CalleeConstAddr =
815 cast<ConstantInt>(C->getOperand(0))->getZExtValue();
816 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
817 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
818 if (C->getOpcode() == Instruction::IntToPtr) {
819 uint64_t CalleeConstAddr =
820 cast<ConstantInt>(C->getOperand(0))->getZExtValue();
821 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
822 } else
823 llvm_unreachable("Unsupported ConstantExpr.");
824 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
826 } else if (isa<ConstantPointerNull>(Callee))
828 else
829 llvm_unreachable("Unsupported callee address.");
830
831 // Adjust <numArgs> to account for any arguments that have been passed on
832 // the stack instead.
833 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
834 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
835
836 // Add the calling convention
837 Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
838
839 // Add the arguments we omitted previously. The register allocator should
840 // place these in any free register.
841 if (IsAnyRegCC) {
842 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
843 Register Reg = getRegForValue(I->getArgOperand(i));
844 if (!Reg)
845 return false;
846 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
847 }
848 }
849
850 // Push the arguments from the call instruction.
851 for (auto Reg : CLI.OutRegs)
852 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
853
854 // Push live variables for the stack map.
855 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
856 return false;
857
858 // Push the register mask info.
861
862 // Add scratch registers as implicit def and early clobber.
863 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
864 for (unsigned i = 0; ScratchRegs[i]; ++i)
866 ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
867 /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
868
869 // Add implicit defs (return values).
870 for (auto Reg : CLI.InRegs)
871 Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
872 /*isImp=*/true));
873
874 // Insert the patchpoint instruction before the call generated by the target.
876 TII.get(TargetOpcode::PATCHPOINT));
877
878 for (auto &MO : Ops)
879 MIB.add(MO);
880
882
883 // Delete the original call instruction.
884 CLI.Call->eraseFromParent();
885
886 // Inform the Frame Information that we have a patchpoint in this function.
888
889 if (CLI.NumResultRegs)
891 return true;
892}
893
895 const auto &Triple = TM.getTargetTriple();
897 return true; // don't do anything to this instruction.
900 /*isDef=*/false));
902 /*isDef=*/false));
905 TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
906 for (auto &MO : Ops)
907 MIB.add(MO);
908
909 // Insert the Patchable Event Call instruction, that gets lowered properly.
910 return true;
911}
912
914 const auto &Triple = TM.getTargetTriple();
916 return true; // don't do anything to this instruction.
919 /*isDef=*/false));
921 /*isDef=*/false));
923 /*isDef=*/false));
926 TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
927 for (auto &MO : Ops)
928 MIB.add(MO);
929
930 // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
931 return true;
932}
933
934/// Returns an AttributeList representing the attributes applied to the return
935/// value of the given call.
938 if (CLI.RetSExt)
939 Attrs.push_back(Attribute::SExt);
940 if (CLI.RetZExt)
941 Attrs.push_back(Attribute::ZExt);
942 if (CLI.IsInReg)
943 Attrs.push_back(Attribute::InReg);
944
946 Attrs);
947}
948
949bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
950 unsigned NumArgs) {
951 MCContext &Ctx = MF->getContext();
952 SmallString<32> MangledName;
953 Mangler::getNameWithPrefix(MangledName, SymName, DL);
954 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
955 return lowerCallTo(CI, Sym, NumArgs);
956}
957
959 unsigned NumArgs) {
960 FunctionType *FTy = CI->getFunctionType();
961 Type *RetTy = CI->getType();
962
963 ArgListTy Args;
964 Args.reserve(NumArgs);
965
966 // Populate the argument list.
967 // Attributes for args start at offset 1, after the return attribute.
968 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
969 Value *V = CI->getOperand(ArgI);
970
971 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
972
973 ArgListEntry Entry;
974 Entry.Val = V;
975 Entry.Ty = V->getType();
976 Entry.setAttributes(CI, ArgI);
977 Args.push_back(Entry);
978 }
980
982 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
983
984 return lowerCallTo(CLI);
985}
986
988 // Handle the incoming return values from the call.
989 CLI.clearIns();
990 SmallVector<EVT, 4> RetTys;
991 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
992
994 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
995
996 bool CanLowerReturn = TLI.CanLowerReturn(
997 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
998
999 // FIXME: sret demotion isn't supported yet - bail out.
1000 if (!CanLowerReturn)
1001 return false;
1002
1003 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1004 EVT VT = RetTys[I];
1005 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1006 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1007 for (unsigned i = 0; i != NumRegs; ++i) {
1008 ISD::InputArg MyFlags;
1009 MyFlags.VT = RegisterVT;
1010 MyFlags.ArgVT = VT;
1011 MyFlags.Used = CLI.IsReturnValueUsed;
1012 if (CLI.RetSExt)
1013 MyFlags.Flags.setSExt();
1014 if (CLI.RetZExt)
1015 MyFlags.Flags.setZExt();
1016 if (CLI.IsInReg)
1017 MyFlags.Flags.setInReg();
1018 CLI.Ins.push_back(MyFlags);
1019 }
1020 }
1021
1022 // Handle all of the outgoing arguments.
1023 CLI.clearOuts();
1024 for (auto &Arg : CLI.getArgs()) {
1025 Type *FinalType = Arg.Ty;
1026 if (Arg.IsByVal)
1027 FinalType = Arg.IndirectType;
1029 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
1030
1031 ISD::ArgFlagsTy Flags;
1032 if (Arg.IsZExt)
1033 Flags.setZExt();
1034 if (Arg.IsSExt)
1035 Flags.setSExt();
1036 if (Arg.IsInReg)
1037 Flags.setInReg();
1038 if (Arg.IsSRet)
1039 Flags.setSRet();
1040 if (Arg.IsSwiftSelf)
1041 Flags.setSwiftSelf();
1042 if (Arg.IsSwiftAsync)
1043 Flags.setSwiftAsync();
1044 if (Arg.IsSwiftError)
1045 Flags.setSwiftError();
1046 if (Arg.IsCFGuardTarget)
1047 Flags.setCFGuardTarget();
1048 if (Arg.IsByVal)
1049 Flags.setByVal();
1050 if (Arg.IsInAlloca) {
1051 Flags.setInAlloca();
1052 // Set the byval flag for CCAssignFn callbacks that don't know about
1053 // inalloca. This way we can know how many bytes we should've allocated
1054 // and how many bytes a callee cleanup function will pop. If we port
1055 // inalloca to more targets, we'll have to add custom inalloca handling in
1056 // the various CC lowering callbacks.
1057 Flags.setByVal();
1058 }
1059 if (Arg.IsPreallocated) {
1060 Flags.setPreallocated();
1061 // Set the byval flag for CCAssignFn callbacks that don't know about
1062 // preallocated. This way we can know how many bytes we should've
1063 // allocated and how many bytes a callee cleanup function will pop. If we
1064 // port preallocated to more targets, we'll have to add custom
1065 // preallocated handling in the various CC lowering callbacks.
1066 Flags.setByVal();
1067 }
1068 MaybeAlign MemAlign = Arg.Alignment;
1069 if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1070 unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
1071
1072 // For ByVal, alignment should come from FE. BE will guess if this info
1073 // is not there, but there are cases it cannot get right.
1074 if (!MemAlign)
1075 MemAlign = Align(TLI.getByValTypeAlignment(Arg.IndirectType, DL));
1076 Flags.setByValSize(FrameSize);
1077 } else if (!MemAlign) {
1078 MemAlign = DL.getABITypeAlign(Arg.Ty);
1079 }
1080 Flags.setMemAlign(*MemAlign);
1081 if (Arg.IsNest)
1082 Flags.setNest();
1083 if (NeedsRegBlock)
1084 Flags.setInConsecutiveRegs();
1085 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1086 CLI.OutVals.push_back(Arg.Val);
1087 CLI.OutFlags.push_back(Flags);
1088 }
1089
1090 if (!fastLowerCall(CLI))
1091 return false;
1092
1093 // Set all unused physreg defs as dead.
1094 assert(CLI.Call && "No call instruction specified.");
1096
1097 if (CLI.NumResultRegs && CLI.CB)
1099
1100 // Set labels for heapallocsite call.
1101 if (CLI.CB)
1102 if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1103 CLI.Call->setHeapAllocMarker(*MF, MD);
1104
1105 return true;
1106}
1107
1109 FunctionType *FuncTy = CI->getFunctionType();
1110 Type *RetTy = CI->getType();
1111
1112 ArgListTy Args;
1113 ArgListEntry Entry;
1114 Args.reserve(CI->arg_size());
1115
1116 for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1117 Value *V = *i;
1118
1119 // Skip empty types
1120 if (V->getType()->isEmptyTy())
1121 continue;
1122
1123 Entry.Val = V;
1124 Entry.Ty = V->getType();
1125
1126 // Skip the first return-type Attribute to get to params.
1127 Entry.setAttributes(CI, i - CI->arg_begin());
1128 Args.push_back(Entry);
1129 }
1130
1131 // Check if target-independent constraints permit a tail call here.
1132 // Target-dependent constraints are checked within fastLowerCall.
1133 bool IsTailCall = CI->isTailCall();
1134 if (IsTailCall && !isInTailCallPosition(*CI, TM))
1135 IsTailCall = false;
1136 if (IsTailCall && !CI->isMustTailCall() &&
1137 MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool())
1138 IsTailCall = false;
1139
1140 CallLoweringInfo CLI;
1141 CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1142 .setTailCall(IsTailCall);
1143
1144 diagnoseDontCall(*CI);
1145
1146 return lowerCallTo(CLI);
1147}
1148
1150 const CallInst *Call = cast<CallInst>(I);
1151
1152 // Handle simple inline asms.
1153 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1154 // Don't attempt to handle constraints.
1155 if (!IA->getConstraintString().empty())
1156 return false;
1157
1158 unsigned ExtraInfo = 0;
1159 if (IA->hasSideEffects())
1161 if (IA->isAlignStack())
1162 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1163 if (Call->isConvergent())
1164 ExtraInfo |= InlineAsm::Extra_IsConvergent;
1165 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1166
1168 TII.get(TargetOpcode::INLINEASM));
1169 MIB.addExternalSymbol(IA->getAsmString().c_str());
1170 MIB.addImm(ExtraInfo);
1171
1172 const MDNode *SrcLoc = Call->getMetadata("srcloc");
1173 if (SrcLoc)
1174 MIB.addMetadata(SrcLoc);
1175
1176 return true;
1177 }
1178
1179 // Handle intrinsic function calls.
1180 if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1181 return selectIntrinsicCall(II);
1182
1183 return lowerCall(Call);
1184}
1185
1187 switch (II->getIntrinsicID()) {
1188 default:
1189 break;
1190 // At -O0 we don't care about the lifetime intrinsics.
1191 case Intrinsic::lifetime_start:
1192 case Intrinsic::lifetime_end:
1193 // The donothing intrinsic does, well, nothing.
1194 case Intrinsic::donothing:
1195 // Neither does the sideeffect intrinsic.
1196 case Intrinsic::sideeffect:
1197 // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1198 case Intrinsic::assume:
1199 // Neither does the llvm.experimental.noalias.scope.decl intrinsic
1200 case Intrinsic::experimental_noalias_scope_decl:
1201 return true;
1202 case Intrinsic::dbg_declare: {
1203 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1204 assert(DI->getVariable() && "Missing variable");
1205 if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1206 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1207 << " (!hasDebugInfo)\n");
1208 return true;
1209 }
1210
1211 if (FuncInfo.PreprocessedDbgDeclares.contains(DI))
1212 return true;
1213
1214 const Value *Address = DI->getAddress();
1215 if (!Address || isa<UndefValue>(Address)) {
1216 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1217 << " (bad/undef address)\n");
1218 return true;
1219 }
1220
1221 std::optional<MachineOperand> Op;
1223 Op = MachineOperand::CreateReg(Reg, false);
1224
1225 // If we have a VLA that has a "use" in a metadata node that's then used
1226 // here but it has no other uses, then we have a problem. E.g.,
1227 //
1228 // int foo (const int *x) {
1229 // char a[*x];
1230 // return 0;
1231 // }
1232 //
1233 // If we assign 'a' a vreg and fast isel later on has to use the selection
1234 // DAG isel, it will want to copy the value to the vreg. However, there are
1235 // no uses, which goes counter to what selection DAG isel expects.
1236 if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1237 (!isa<AllocaInst>(Address) ||
1238 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1240 false);
1241
1242 if (Op) {
1244 "Expected inlined-at fields to agree");
1245 if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) {
1246 // If using instruction referencing, produce this as a DBG_INSTR_REF,
1247 // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
1248 // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
1250 {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref});
1253 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op,
1254 DI->getVariable(), NewExpr);
1255 } else {
1256 // A dbg.declare describes the address of a source variable, so lower it
1257 // into an indirect DBG_VALUE.
1259 TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op,
1260 DI->getVariable(), DI->getExpression());
1261 }
1262 } else {
1263 // We can't yet handle anything else here because it would require
1264 // generating code, thus altering codegen because of debug info.
1265 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
1266 << " (no materialized reg for address)\n");
1267 }
1268 return true;
1269 }
1270 case Intrinsic::dbg_value: {
1271 // This form of DBG_VALUE is target-independent.
1272 const DbgValueInst *DI = cast<DbgValueInst>(II);
1273 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1274 const Value *V = DI->getValue();
1275 DIExpression *Expr = DI->getExpression();
1276 DILocalVariable *Var = DI->getVariable();
1278 "Expected inlined-at fields to agree");
1279 if (!V || isa<UndefValue>(V) || DI->hasArgList()) {
1280 // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
1281 // undef DBG_VALUE to terminate any prior location.
1282 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II, false, 0U,
1283 Var, Expr);
1284 return true;
1285 }
1286 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1287 // See if there's an expression to constant-fold.
1288 if (Expr)
1289 std::tie(Expr, CI) = Expr->constantFold(CI);
1290 if (CI->getBitWidth() > 64)
1292 .addCImm(CI)
1293 .addImm(0U)
1294 .addMetadata(Var)
1295 .addMetadata(Expr);
1296 else
1298 .addImm(CI->getZExtValue())
1299 .addImm(0U)
1300 .addMetadata(Var)
1301 .addMetadata(Expr);
1302 return true;
1303 }
1304 if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1306 .addFPImm(CF)
1307 .addImm(0U)
1308 .addMetadata(Var)
1309 .addMetadata(Expr);
1310 return true;
1311 }
1312 if (const auto *Arg = dyn_cast<Argument>(V);
1313 Arg && Expr && Expr->isEntryValue()) {
1314 // As per the Verifier, this case is only valid for swift async Args.
1315 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
1316
1317 Register Reg = getRegForValue(Arg);
1318 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
1319 if (Reg == VirtReg || Reg == PhysReg) {
1321 false /*IsIndirect*/, PhysReg, Var, Expr);
1322 return true;
1323 }
1324
1325 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
1326 "couldn't find a physical register\n"
1327 << *DI << "\n");
1328 return true;
1329 }
1330 if (Register Reg = lookUpRegForValue(V)) {
1331 // FIXME: This does not handle register-indirect values at offset 0.
1332 if (!FuncInfo.MF->useDebugInstrRef()) {
1333 bool IsIndirect = false;
1334 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD.getDL(), II, IsIndirect,
1335 Reg, Var, Expr);
1336 return true;
1337 }
1338 // If using instruction referencing, produce this as a DBG_INSTR_REF,
1339 // to be later patched up by finalizeDebugInstrRefs.
1341 /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
1342 /* isKill */ false, /* isDead */ false,
1343 /* isUndef */ false, /* isEarlyClobber */ false,
1344 /* SubReg */ 0, /* isDebug */ true)});
1346 auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops);
1348 TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs,
1349 Var, NewExpr);
1350 return true;
1351 }
1352 // We don't know how to handle other cases, so we drop.
1353 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1354 return true;
1355 }
1356 case Intrinsic::dbg_label: {
1357 const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1358 assert(DI->getLabel() && "Missing label");
1359 if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1360 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1361 return true;
1362 }
1363
1365 TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1366 return true;
1367 }
1368 case Intrinsic::objectsize:
1369 llvm_unreachable("llvm.objectsize.* should have been lowered already");
1370
1371 case Intrinsic::is_constant:
1372 llvm_unreachable("llvm.is.constant.* should have been lowered already");
1373
1374 case Intrinsic::launder_invariant_group:
1375 case Intrinsic::strip_invariant_group:
1376 case Intrinsic::expect: {
1377 Register ResultReg = getRegForValue(II->getArgOperand(0));
1378 if (!ResultReg)
1379 return false;
1380 updateValueMap(II, ResultReg);
1381 return true;
1382 }
1383 case Intrinsic::experimental_stackmap:
1384 return selectStackmap(II);
1385 case Intrinsic::experimental_patchpoint_void:
1386 case Intrinsic::experimental_patchpoint_i64:
1387 return selectPatchpoint(II);
1388
1389 case Intrinsic::xray_customevent:
1390 return selectXRayCustomEvent(II);
1391 case Intrinsic::xray_typedevent:
1392 return selectXRayTypedEvent(II);
1393 }
1394
1395 return fastLowerIntrinsicCall(II);
1396}
1397
1398bool FastISel::selectCast(const User *I, unsigned Opcode) {
1399 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1400 EVT DstVT = TLI.getValueType(DL, I->getType());
1401
1402 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1403 !DstVT.isSimple())
1404 // Unhandled type. Halt "fast" selection and bail.
1405 return false;
1406
1407 // Check if the destination type is legal.
1408 if (!TLI.isTypeLegal(DstVT))
1409 return false;
1410
1411 // Check if the source operand is legal.
1412 if (!TLI.isTypeLegal(SrcVT))
1413 return false;
1414
1415 Register InputReg = getRegForValue(I->getOperand(0));
1416 if (!InputReg)
1417 // Unhandled operand. Halt "fast" selection and bail.
1418 return false;
1419
1420 Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1421 Opcode, InputReg);
1422 if (!ResultReg)
1423 return false;
1424
1425 updateValueMap(I, ResultReg);
1426 return true;
1427}
1428
1430 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1431 EVT DstEVT = TLI.getValueType(DL, I->getType());
1432 if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1433 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1434 // Unhandled type. Halt "fast" selection and bail.
1435 return false;
1436
1437 MVT SrcVT = SrcEVT.getSimpleVT();
1438 MVT DstVT = DstEVT.getSimpleVT();
1439 Register Op0 = getRegForValue(I->getOperand(0));
1440 if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1441 return false;
1442
1443 // If the bitcast doesn't change the type, just use the operand value.
1444 if (SrcVT == DstVT) {
1445 updateValueMap(I, Op0);
1446 return true;
1447 }
1448
1449 // Otherwise, select a BITCAST opcode.
1450 Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
1451 if (!ResultReg)
1452 return false;
1453
1454 updateValueMap(I, ResultReg);
1455 return true;
1456}
1457
1459 Register Reg = getRegForValue(I->getOperand(0));
1460 if (!Reg)
1461 // Unhandled operand.
1462 return false;
1463
1464 EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1465 if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1466 // Unhandled type, bail out.
1467 return false;
1468
1469 MVT Ty = ETy.getSimpleVT();
1470 const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1471 Register ResultReg = createResultReg(TyRegClass);
1473 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1474
1475 updateValueMap(I, ResultReg);
1476 return true;
1477}
1478
1479// Remove local value instructions starting from the instruction after
1480// SavedLastLocalValue to the current function insert point.
1481void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1482{
1483 MachineInstr *CurLastLocalValue = getLastLocalValue();
1484 if (CurLastLocalValue != SavedLastLocalValue) {
1485 // Find the first local value instruction to be deleted.
1486 // This is the instruction after SavedLastLocalValue if it is non-NULL.
1487 // Otherwise it's the first instruction in the block.
1488 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1489 if (SavedLastLocalValue)
1490 ++FirstDeadInst;
1491 else
1492 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1493 setLastLocalValue(SavedLastLocalValue);
1494 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1495 }
1496}
1497
1499 // Flush the local value map before starting each instruction.
1500 // This improves locality and debugging, and can reduce spills.
1501 // Reuse of values across IR instructions is relatively uncommon.
1502 flushLocalValueMap();
1503
1504 MachineInstr *SavedLastLocalValue = getLastLocalValue();
1505 // Just before the terminator instruction, insert instructions to
1506 // feed PHI nodes in successor blocks.
1507 if (I->isTerminator()) {
1508 if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1509 // PHI node handling may have generated local value instructions,
1510 // even though it failed to handle all PHI nodes.
1511 // We remove these instructions because SelectionDAGISel will generate
1512 // them again.
1513 removeDeadLocalValueCode(SavedLastLocalValue);
1514 return false;
1515 }
1516 }
1517
1518 // FastISel does not handle any operand bundles except OB_funclet.
1519 if (auto *Call = dyn_cast<CallBase>(I))
1520 for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1521 if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1522 return false;
1523
1524 MIMD = MIMetadata(*I);
1525
1526 SavedInsertPt = FuncInfo.InsertPt;
1527
1528 if (const auto *Call = dyn_cast<CallInst>(I)) {
1529 const Function *F = Call->getCalledFunction();
1530 LibFunc Func;
1531
1532 // As a special case, don't handle calls to builtin library functions that
1533 // may be translated directly to target instructions.
1534 if (F && !F->hasLocalLinkage() && F->hasName() &&
1535 LibInfo->getLibFunc(F->getName(), Func) &&
1537 return false;
1538
1539 // Don't handle Intrinsic::trap if a trap function is specified.
1540 if (F && F->getIntrinsicID() == Intrinsic::trap &&
1541 Call->hasFnAttr("trap-func-name"))
1542 return false;
1543 }
1544
1545 // First, try doing target-independent selection.
1547 if (selectOperator(I, I->getOpcode())) {
1548 ++NumFastIselSuccessIndependent;
1549 MIMD = {};
1550 return true;
1551 }
1552 // Remove dead code.
1554 if (SavedInsertPt != FuncInfo.InsertPt)
1555 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1556 SavedInsertPt = FuncInfo.InsertPt;
1557 }
1558 // Next, try calling the target to attempt to handle the instruction.
1559 if (fastSelectInstruction(I)) {
1560 ++NumFastIselSuccessTarget;
1561 MIMD = {};
1562 return true;
1563 }
1564 // Remove dead code.
1566 if (SavedInsertPt != FuncInfo.InsertPt)
1567 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1568
1569 MIMD = {};
1570 // Undo phi node updates, because they will be added again by SelectionDAG.
1571 if (I->isTerminator()) {
1572 // PHI node handling may have generated local value instructions.
1573 // We remove them because SelectionDAGISel will generate them again.
1574 removeDeadLocalValueCode(SavedLastLocalValue);
1576 }
1577 return false;
1578}
1579
1580/// Emit an unconditional branch to the given block, unless it is the immediate
1581/// (fall-through) successor, and update the CFG.
1583 const DebugLoc &DbgLoc) {
1585 FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1586 // For more accurate line information if this is the only non-debug
1587 // instruction in the block then emit it, otherwise we have the
1588 // unconditional fall-through case, which needs no instructions.
1589 } else {
1590 // The unconditional branch case.
1591 TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1593 }
1594 if (FuncInfo.BPI) {
1598 } else
1600}
1601
1603 MachineBasicBlock *TrueMBB,
1604 MachineBasicBlock *FalseMBB) {
1605 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1606 // happen in degenerate IR and MachineIR forbids to have a block twice in the
1607 // successor/predecessor lists.
1608 if (TrueMBB != FalseMBB) {
1609 if (FuncInfo.BPI) {
1610 auto BranchProbability =
1611 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1613 } else
1615 }
1616
1617 fastEmitBranch(FalseMBB, MIMD.getDL());
1618}
1619
1620/// Emit an FNeg operation.
1621bool FastISel::selectFNeg(const User *I, const Value *In) {
1622 Register OpReg = getRegForValue(In);
1623 if (!OpReg)
1624 return false;
1625
1626 // If the target has ISD::FNEG, use it.
1627 EVT VT = TLI.getValueType(DL, I->getType());
1628 Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1629 OpReg);
1630 if (ResultReg) {
1631 updateValueMap(I, ResultReg);
1632 return true;
1633 }
1634
1635 // Bitcast the value to integer, twiddle the sign bit with xor,
1636 // and then bitcast it back to floating-point.
1637 if (VT.getSizeInBits() > 64)
1638 return false;
1639 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1640 if (!TLI.isTypeLegal(IntVT))
1641 return false;
1642
1643 Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1644 ISD::BITCAST, OpReg);
1645 if (!IntReg)
1646 return false;
1647
1648 Register IntResultReg = fastEmit_ri_(
1649 IntVT.getSimpleVT(), ISD::XOR, IntReg,
1650 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1651 if (!IntResultReg)
1652 return false;
1653
1654 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1655 IntResultReg);
1656 if (!ResultReg)
1657 return false;
1658
1659 updateValueMap(I, ResultReg);
1660 return true;
1661}
1662
1664 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1665 if (!EVI)
1666 return false;
1667
1668 // Make sure we only try to handle extracts with a legal result. But also
1669 // allow i1 because it's easy.
1670 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1671 if (!RealVT.isSimple())
1672 return false;
1673 MVT VT = RealVT.getSimpleVT();
1674 if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1675 return false;
1676
1677 const Value *Op0 = EVI->getOperand(0);
1678 Type *AggTy = Op0->getType();
1679
1680 // Get the base result register.
1681 unsigned ResultReg;
1683 if (I != FuncInfo.ValueMap.end())
1684 ResultReg = I->second;
1685 else if (isa<Instruction>(Op0))
1686 ResultReg = FuncInfo.InitializeRegForValue(Op0);
1687 else
1688 return false; // fast-isel can't handle aggregate constants at the moment
1689
1690 // Get the actual result register, which is an offset from the base register.
1691 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1692
1693 SmallVector<EVT, 4> AggValueVTs;
1694 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1695
1696 for (unsigned i = 0; i < VTIndex; i++)
1697 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1698
1699 updateValueMap(EVI, ResultReg);
1700 return true;
1701}
1702
1703bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1704 switch (Opcode) {
1705 case Instruction::Add:
1706 return selectBinaryOp(I, ISD::ADD);
1707 case Instruction::FAdd:
1708 return selectBinaryOp(I, ISD::FADD);
1709 case Instruction::Sub:
1710 return selectBinaryOp(I, ISD::SUB);
1711 case Instruction::FSub:
1712 return selectBinaryOp(I, ISD::FSUB);
1713 case Instruction::Mul:
1714 return selectBinaryOp(I, ISD::MUL);
1715 case Instruction::FMul:
1716 return selectBinaryOp(I, ISD::FMUL);
1717 case Instruction::SDiv:
1718 return selectBinaryOp(I, ISD::SDIV);
1719 case Instruction::UDiv:
1720 return selectBinaryOp(I, ISD::UDIV);
1721 case Instruction::FDiv:
1722 return selectBinaryOp(I, ISD::FDIV);
1723 case Instruction::SRem:
1724 return selectBinaryOp(I, ISD::SREM);
1725 case Instruction::URem:
1726 return selectBinaryOp(I, ISD::UREM);
1727 case Instruction::FRem:
1728 return selectBinaryOp(I, ISD::FREM);
1729 case Instruction::Shl:
1730 return selectBinaryOp(I, ISD::SHL);
1731 case Instruction::LShr:
1732 return selectBinaryOp(I, ISD::SRL);
1733 case Instruction::AShr:
1734 return selectBinaryOp(I, ISD::SRA);
1735 case Instruction::And:
1736 return selectBinaryOp(I, ISD::AND);
1737 case Instruction::Or:
1738 return selectBinaryOp(I, ISD::OR);
1739 case Instruction::Xor:
1740 return selectBinaryOp(I, ISD::XOR);
1741
1742 case Instruction::FNeg:
1743 return selectFNeg(I, I->getOperand(0));
1744
1745 case Instruction::GetElementPtr:
1746 return selectGetElementPtr(I);
1747
1748 case Instruction::Br: {
1749 const BranchInst *BI = cast<BranchInst>(I);
1750
1751 if (BI->isUnconditional()) {
1752 const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1753 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1754 fastEmitBranch(MSucc, BI->getDebugLoc());
1755 return true;
1756 }
1757
1758 // Conditional branches are not handed yet.
1759 // Halt "fast" selection and bail.
1760 return false;
1761 }
1762
1763 case Instruction::Unreachable:
1765 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1766 else
1767 return true;
1768
1769 case Instruction::Alloca:
1770 // FunctionLowering has the static-sized case covered.
1771 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1772 return true;
1773
1774 // Dynamic-sized alloca is not handled yet.
1775 return false;
1776
1777 case Instruction::Call:
1778 // On AIX, normal call lowering uses the DAG-ISEL path currently so that the
1779 // callee of the direct function call instruction will be mapped to the
1780 // symbol for the function's entry point, which is distinct from the
1781 // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1782 // name is the C-linkage name of the source level function.
1783 // But fast isel still has the ability to do selection for intrinsics.
1784 if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I))
1785 return false;
1786 return selectCall(I);
1787
1788 case Instruction::BitCast:
1789 return selectBitCast(I);
1790
1791 case Instruction::FPToSI:
1792 return selectCast(I, ISD::FP_TO_SINT);
1793 case Instruction::ZExt:
1794 return selectCast(I, ISD::ZERO_EXTEND);
1795 case Instruction::SExt:
1796 return selectCast(I, ISD::SIGN_EXTEND);
1797 case Instruction::Trunc:
1798 return selectCast(I, ISD::TRUNCATE);
1799 case Instruction::SIToFP:
1800 return selectCast(I, ISD::SINT_TO_FP);
1801
1802 case Instruction::IntToPtr: // Deliberate fall-through.
1803 case Instruction::PtrToInt: {
1804 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1805 EVT DstVT = TLI.getValueType(DL, I->getType());
1806 if (DstVT.bitsGT(SrcVT))
1807 return selectCast(I, ISD::ZERO_EXTEND);
1808 if (DstVT.bitsLT(SrcVT))
1809 return selectCast(I, ISD::TRUNCATE);
1810 Register Reg = getRegForValue(I->getOperand(0));
1811 if (!Reg)
1812 return false;
1813 updateValueMap(I, Reg);
1814 return true;
1815 }
1816
1817 case Instruction::ExtractValue:
1818 return selectExtractValue(I);
1819
1820 case Instruction::Freeze:
1821 return selectFreeze(I);
1822
1823 case Instruction::PHI:
1824 llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1825
1826 default:
1827 // Unhandled instruction. Halt "fast" selection and bail.
1828 return false;
1829 }
1830}
1831
1835 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1836 MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1837 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1838 TII(*MF->getSubtarget().getInstrInfo()),
1839 TLI(*MF->getSubtarget().getTargetLowering()),
1840 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1842
1843FastISel::~FastISel() = default;
1844
1845bool FastISel::fastLowerArguments() { return false; }
1846
1847bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1848
1850 return false;
1851}
1852
1853unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1854
1855unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
1856 return 0;
1857}
1858
1859unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1860 unsigned /*Op1*/) {
1861 return 0;
1862}
1863
1864unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1865 return 0;
1866}
1867
1868unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1869 const ConstantFP * /*FPImm*/) {
1870 return 0;
1871}
1872
1873unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1874 uint64_t /*Imm*/) {
1875 return 0;
1876}
1877
1878/// This method is a wrapper of fastEmit_ri. It first tries to emit an
1879/// instruction with an immediate operand using fastEmit_ri.
1880/// If that fails, it materializes the immediate into a register and try
1881/// fastEmit_rr instead.
1882Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1883 uint64_t Imm, MVT ImmType) {
1884 // If this is a multiply by a power of two, emit this as a shift left.
1885 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1886 Opcode = ISD::SHL;
1887 Imm = Log2_64(Imm);
1888 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1889 // div x, 8 -> srl x, 3
1890 Opcode = ISD::SRL;
1891 Imm = Log2_64(Imm);
1892 }
1893
1894 // Horrible hack (to be removed), check to make sure shift amounts are
1895 // in-range.
1896 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1897 Imm >= VT.getSizeInBits())
1898 return 0;
1899
1900 // First check if immediate type is legal. If not, we can't use the ri form.
1901 Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
1902 if (ResultReg)
1903 return ResultReg;
1904 Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1905 if (!MaterialReg) {
1906 // This is a bit ugly/slow, but failing here means falling out of
1907 // fast-isel, which would be very slow.
1908 IntegerType *ITy =
1910 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1911 if (!MaterialReg)
1912 return 0;
1913 }
1914 return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
1915}
1916
1918 return MRI.createVirtualRegister(RC);
1919}
1920
1922 unsigned OpNum) {
1923 if (Op.isVirtual()) {
1924 const TargetRegisterClass *RegClass =
1925 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1926 if (!MRI.constrainRegClass(Op, RegClass)) {
1927 // If it's not legal to COPY between the register classes, something
1928 // has gone very wrong before we got here.
1929 Register NewOp = createResultReg(RegClass);
1931 TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1932 return NewOp;
1933 }
1934 }
1935 return Op;
1936}
1937
1938Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1939 const TargetRegisterClass *RC) {
1940 Register ResultReg = createResultReg(RC);
1941 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1942
1943 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg);
1944 return ResultReg;
1945}
1946
1947Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1948 const TargetRegisterClass *RC, unsigned Op0) {
1949 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1950
1951 Register ResultReg = createResultReg(RC);
1952 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1953
1954 if (II.getNumDefs() >= 1)
1955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
1956 .addReg(Op0);
1957 else {
1959 .addReg(Op0);
1960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
1961 ResultReg)
1962 .addReg(II.implicit_defs()[0]);
1963 }
1964
1965 return ResultReg;
1966}
1967
1968Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1969 const TargetRegisterClass *RC, unsigned Op0,
1970 unsigned Op1) {
1971 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1972
1973 Register ResultReg = createResultReg(RC);
1974 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1975 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1976
1977 if (II.getNumDefs() >= 1)
1978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
1979 .addReg(Op0)
1980 .addReg(Op1);
1981 else {
1983 .addReg(Op0)
1984 .addReg(Op1);
1985 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
1986 ResultReg)
1987 .addReg(II.implicit_defs()[0]);
1988 }
1989 return ResultReg;
1990}
1991
1992Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1993 const TargetRegisterClass *RC, unsigned Op0,
1994 unsigned Op1, unsigned Op2) {
1995 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1996
1997 Register ResultReg = createResultReg(RC);
1998 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1999 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2000 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2001
2002 if (II.getNumDefs() >= 1)
2003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2004 .addReg(Op0)
2005 .addReg(Op1)
2006 .addReg(Op2);
2007 else {
2009 .addReg(Op0)
2010 .addReg(Op1)
2011 .addReg(Op2);
2012 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2013 ResultReg)
2014 .addReg(II.implicit_defs()[0]);
2015 }
2016 return ResultReg;
2017}
2018
2019Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2020 const TargetRegisterClass *RC, unsigned Op0,
2021 uint64_t Imm) {
2022 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2023
2024 Register ResultReg = createResultReg(RC);
2025 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2026
2027 if (II.getNumDefs() >= 1)
2028 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2029 .addReg(Op0)
2030 .addImm(Imm);
2031 else {
2033 .addReg(Op0)
2034 .addImm(Imm);
2035 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2036 ResultReg)
2037 .addReg(II.implicit_defs()[0]);
2038 }
2039 return ResultReg;
2040}
2041
2042Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2043 const TargetRegisterClass *RC, unsigned Op0,
2044 uint64_t Imm1, uint64_t Imm2) {
2045 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2046
2047 Register ResultReg = createResultReg(RC);
2048 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2049
2050 if (II.getNumDefs() >= 1)
2051 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2052 .addReg(Op0)
2053 .addImm(Imm1)
2054 .addImm(Imm2);
2055 else {
2057 .addReg(Op0)
2058 .addImm(Imm1)
2059 .addImm(Imm2);
2060 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2061 ResultReg)
2062 .addReg(II.implicit_defs()[0]);
2063 }
2064 return ResultReg;
2065}
2066
2067Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2068 const TargetRegisterClass *RC,
2069 const ConstantFP *FPImm) {
2070 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2071
2072 Register ResultReg = createResultReg(RC);
2073
2074 if (II.getNumDefs() >= 1)
2075 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2076 .addFPImm(FPImm);
2077 else {
2079 .addFPImm(FPImm);
2080 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2081 ResultReg)
2082 .addReg(II.implicit_defs()[0]);
2083 }
2084 return ResultReg;
2085}
2086
2087Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2088 const TargetRegisterClass *RC, unsigned Op0,
2089 unsigned Op1, uint64_t Imm) {
2090 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2091
2092 Register ResultReg = createResultReg(RC);
2093 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2094 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2095
2096 if (II.getNumDefs() >= 1)
2097 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2098 .addReg(Op0)
2099 .addReg(Op1)
2100 .addImm(Imm);
2101 else {
2103 .addReg(Op0)
2104 .addReg(Op1)
2105 .addImm(Imm);
2106 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2107 ResultReg)
2108 .addReg(II.implicit_defs()[0]);
2109 }
2110 return ResultReg;
2111}
2112
2113Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2114 const TargetRegisterClass *RC, uint64_t Imm) {
2115 Register ResultReg = createResultReg(RC);
2116 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2117
2118 if (II.getNumDefs() >= 1)
2119 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2120 .addImm(Imm);
2121 else {
2123 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2124 ResultReg)
2125 .addReg(II.implicit_defs()[0]);
2126 }
2127 return ResultReg;
2128}
2129
2131 uint32_t Idx) {
2132 Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2134 "Cannot yet extract from physregs");
2135 const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2137 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2138 ResultReg).addReg(Op0, 0, Idx);
2139 return ResultReg;
2140}
2141
2142/// Emit MachineInstrs to compute the value of Op with all but the least
2143/// significant bit set to zero.
2145 return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
2146}
2147
2148/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2149/// Emit code to ensure constants are copied into registers when needed.
2150/// Remember the virtual registers that need to be added to the Machine PHI
2151/// nodes as input. We cannot just directly add them, because expansion
2152/// might result in multiple MBB's for one BB. As such, the start of the
2153/// BB might correspond to a different MBB than the end.
2154bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2155 const Instruction *TI = LLVMBB->getTerminator();
2156
2159
2160 // Check successor nodes' PHI nodes that expect a constant to be available
2161 // from this block.
2162 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2163 const BasicBlock *SuccBB = TI->getSuccessor(succ);
2164 if (!isa<PHINode>(SuccBB->begin()))
2165 continue;
2166 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2167
2168 // If this terminator has multiple identical successors (common for
2169 // switches), only handle each succ once.
2170 if (!SuccsHandled.insert(SuccMBB).second)
2171 continue;
2172
2174
2175 // At this point we know that there is a 1-1 correspondence between LLVM PHI
2176 // nodes and Machine PHI nodes, but the incoming operands have not been
2177 // emitted yet.
2178 for (const PHINode &PN : SuccBB->phis()) {
2179 // Ignore dead phi's.
2180 if (PN.use_empty())
2181 continue;
2182
2183 // Only handle legal types. Two interesting things to note here. First,
2184 // by bailing out early, we may leave behind some dead instructions,
2185 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2186 // own moves. Second, this check is necessary because FastISel doesn't
2187 // use CreateRegs to create registers, so it always creates
2188 // exactly one register for each non-void instruction.
2189 EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2190 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2191 // Handle integer promotions, though, because they're common and easy.
2192 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2194 return false;
2195 }
2196 }
2197
2198 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2199
2200 // Set the DebugLoc for the copy. Use the location of the operand if
2201 // there is one; otherwise no location, flushLocalValueMap will fix it.
2202 MIMD = {};
2203 if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2204 MIMD = MIMetadata(*Inst);
2205
2206 Register Reg = getRegForValue(PHIOp);
2207 if (!Reg) {
2209 return false;
2210 }
2211 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2212 MIMD = {};
2213 }
2214 }
2215
2216 return true;
2217}
2218
2219bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2220 assert(LI->hasOneUse() &&
2221 "tryToFoldLoad expected a LoadInst with a single use");
2222 // We know that the load has a single use, but don't know what it is. If it
2223 // isn't one of the folded instructions, then we can't succeed here. Handle
2224 // this by scanning the single-use users of the load until we get to FoldInst.
2225 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2226
2227 const Instruction *TheUser = LI->user_back();
2228 while (TheUser != FoldInst && // Scan up until we find FoldInst.
2229 // Stay in the right block.
2230 TheUser->getParent() == FoldInst->getParent() &&
2231 --MaxUsers) { // Don't scan too far.
2232 // If there are multiple or no uses of this instruction, then bail out.
2233 if (!TheUser->hasOneUse())
2234 return false;
2235
2236 TheUser = TheUser->user_back();
2237 }
2238
2239 // If we didn't find the fold instruction, then we failed to collapse the
2240 // sequence.
2241 if (TheUser != FoldInst)
2242 return false;
2243
2244 // Don't try to fold volatile loads. Target has to deal with alignment
2245 // constraints.
2246 if (LI->isVolatile())
2247 return false;
2248
2249 // Figure out which vreg this is going into. If there is no assigned vreg yet
2250 // then there actually was no reference to it. Perhaps the load is referenced
2251 // by a dead instruction.
2252 Register LoadReg = getRegForValue(LI);
2253 if (!LoadReg)
2254 return false;
2255
2256 // We can't fold if this vreg has no uses or more than one use. Multiple uses
2257 // may mean that the instruction got lowered to multiple MIs, or the use of
2258 // the loaded value ended up being multiple operands of the result.
2259 if (!MRI.hasOneUse(LoadReg))
2260 return false;
2261
2262 // If the register has fixups, there may be additional uses through a
2263 // different alias of the register.
2264 if (FuncInfo.RegsWithFixups.contains(LoadReg))
2265 return false;
2266
2268 MachineInstr *User = RI->getParent();
2269
2270 // Set the insertion point properly. Folding the load can cause generation of
2271 // other random instructions (like sign extends) for addressing modes; make
2272 // sure they get inserted in a logical place before the new instruction.
2274 FuncInfo.MBB = User->getParent();
2275
2276 // Ask the target to try folding the load.
2277 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2278}
2279
2281 // Must be an add.
2282 if (!isa<AddOperator>(Add))
2283 return false;
2284 // Type size needs to match.
2285 if (DL.getTypeSizeInBits(GEP->getType()) !=
2286 DL.getTypeSizeInBits(Add->getType()))
2287 return false;
2288 // Must be in the same basic block.
2289 if (isa<Instruction>(Add) &&
2290 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2291 return false;
2292 // Must have a constant operand.
2293 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2294}
2295
2298 const Value *Ptr;
2299 Type *ValTy;
2300 MaybeAlign Alignment;
2302 bool IsVolatile;
2303
2304 if (const auto *LI = dyn_cast<LoadInst>(I)) {
2305 Alignment = LI->getAlign();
2306 IsVolatile = LI->isVolatile();
2308 Ptr = LI->getPointerOperand();
2309 ValTy = LI->getType();
2310 } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2311 Alignment = SI->getAlign();
2312 IsVolatile = SI->isVolatile();
2314 Ptr = SI->getPointerOperand();
2315 ValTy = SI->getValueOperand()->getType();
2316 } else
2317 return nullptr;
2318
2319 bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2320 bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2321 bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2322 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2323
2324 AAMDNodes AAInfo = I->getAAMetadata();
2325
2326 if (!Alignment) // Ensure that codegen never sees alignment 0.
2327 Alignment = DL.getABITypeAlign(ValTy);
2328
2329 unsigned Size = DL.getTypeStoreSize(ValTy);
2330
2331 if (IsVolatile)
2333 if (IsNonTemporal)
2335 if (IsDereferenceable)
2337 if (IsInvariant)
2339
2341 *Alignment, AAInfo, Ranges);
2342}
2343
2345 // If both operands are the same, then try to optimize or fold the cmp.
2346 CmpInst::Predicate Predicate = CI->getPredicate();
2347 if (CI->getOperand(0) != CI->getOperand(1))
2348 return Predicate;
2349
2350 switch (Predicate) {
2351 default: llvm_unreachable("Invalid predicate!");
2352 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2353 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break;
2354 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break;
2355 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break;
2356 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break;
2357 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break;
2358 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break;
2359 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break;
2360 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break;
2361 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break;
2362 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break;
2363 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
2364 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break;
2365 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
2366 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break;
2367 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break;
2368
2369 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break;
2370 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break;
2371 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break;
2372 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
2373 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break;
2374 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
2375 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break;
2376 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break;
2377 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break;
2378 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break;
2379 }
2380
2381 return Predicate;
2382}
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
assume Assume Builder
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
uint64_t Size
Symbol * Sym
Definition: ELF_riscv.cpp:468
static Register findLocalRegDef(MachineInstr &MI)
Return the defined register if this instruction defines exactly one virtual register and uses no othe...
Definition: FastISel.cpp:160
static bool isRegUsedByPhiNodes(Register DefReg, FunctionLoweringInfo &FuncInfo)
Definition: FastISel.cpp:177
static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI)
Returns an AttributeList representing the attributes applied to the return value of the given call.
Definition: FastISel.cpp:936
This file defines the FastISel class.
Hexagon Common GEP
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file contains the declarations for metadata subclasses.
#define P(N)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isCommutative(Instruction *I)
This file defines the SmallPtrSet class.
This file defines the SmallString class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
This file describes how to lower LLVM code to machine code.
An arbitrary precision integer that knows its signedness.
Definition: APSInt.h:23
This class represents an incoming formal argument to a Function.
Definition: Argument.h:28
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute > > Attrs)
Create an AttributeList with the specified parameters in it.
bool getValueAsBool() const
Return the attribute's value as a boolean.
Definition: Attributes.cpp:304
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:335
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:393
filter_iterator< BasicBlock::const_iterator, std::function< bool(constInstruction &)> >::difference_type sizeWithoutDebug() const
Return the size of the basic block ignoring debug instructions.
Definition: BasicBlock.cpp:123
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:127
Conditional or Unconditional Branch instruction.
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
CallingConv::ID getCallingConv() const
Definition: InstrTypes.h:1470
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
Definition: InstrTypes.h:1332
Value * getCalledOperand() const
Definition: InstrTypes.h:1405
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1357
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
Definition: InstrTypes.h:1338
FunctionType * getFunctionType() const
Definition: InstrTypes.h:1270
unsigned arg_size() const
Definition: InstrTypes.h:1355
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
bool isMustTailCall() const
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:701
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:711
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:714
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:728
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:740
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:741
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:717
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:726
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:715
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:716
@ ICMP_UGE
unsigned greater or equal
Definition: InstrTypes.h:735
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:734
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:738
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:725
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:719
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:722
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:736
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:723
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:718
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:720
@ ICMP_EQ
equal
Definition: InstrTypes.h:732
@ ICMP_NE
not equal
Definition: InstrTypes.h:733
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:739
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:727
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:737
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:724
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:713
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:721
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:801
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:260
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:888
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:356
DWARF expression.
bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
std::pair< DIExpression *, const ConstantInt * > constantFold(const ConstantInt *CI)
Try to shorten an expression with an initial constant operand.
static DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
bool isValidLocationForIntrinsic(const DILocation *DL) const
Check that a location is valid for this variable.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:718
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
Definition: DataLayout.cpp:876
Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
Definition: DataLayout.cpp:863
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:504
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:672
TypeSize getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type.
Definition: DataLayout.h:472
This represents the llvm.dbg.declare instruction.
Value * getAddress() const
This represents the llvm.dbg.label instruction.
DILabel * getLabel() const
This represents the llvm.dbg.value instruction.
Value * getValue(unsigned OpIdx=0) const
DILocalVariable * getVariable() const
DIExpression * getExpression() const
A debug info location.
Definition: DebugLoc.h:33
This instruction extracts a struct member or array element value from an aggregate value.
ArrayRef< unsigned > getIndices() const
MachineRegisterInfo & MRI
Definition: FastISel.h:205
Register fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, uint32_t Idx)
Emit a MachineInstr for an extract_subreg from a specified index of a superregister to a specified ty...
Definition: FastISel.cpp:2130
const TargetLibraryInfo * LibInfo
Definition: FastISel.h:214
const DataLayout & DL
Definition: FastISel.h:210
bool selectGetElementPtr(const User *I)
Definition: FastISel.cpp:531
void setLastLocalValue(MachineInstr *I)
Update the position of the last instruction emitted for materializing constants for use in the curren...
Definition: FastISel.h:237
bool selectStackmap(const CallInst *I)
Definition: FastISel.cpp:644
bool selectExtractValue(const User *U)
Definition: FastISel.cpp:1663
DenseMap< const Value *, Register > LocalValueMap
Definition: FastISel.h:202
void fastEmitBranch(MachineBasicBlock *MSucc, const DebugLoc &DbgLoc)
Emit an unconditional branch to the given block, unless it is the immediate (fall-through) successor,...
Definition: FastISel.cpp:1582
virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF)
Emit the floating-point constant +0.0 in a register using target- specific logic.
Definition: FastISel.h:476
MachineInstr * EmitStartPt
The top most instruction in the current block that is allowed for emitting local variables.
Definition: FastISel.h:226
bool selectXRayCustomEvent(const CallInst *II)
Definition: FastISel.cpp:894
Register fastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass *RC)
Emit a MachineInstr with no operands and a result register in the given register class.
Definition: FastISel.cpp:1938
virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II)
This method is called by target-independent code to do target- specific intrinsic lowering.
Definition: FastISel.cpp:1849
MachineInstr * getLastLocalValue()
Return the position of the last instruction emitted for materializing constants for use in the curren...
Definition: FastISel.h:233
bool lowerCall(const CallInst *I)
Definition: FastISel.cpp:1108
virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0, uint64_t Imm)
This method is called by target-independent code to request that an instruction with the given type,...
Definition: FastISel.cpp:1873
void leaveLocalValueArea(SavePoint Old)
Reset InsertPt to the given old insert position.
Definition: FastISel.cpp:436
bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs)
Definition: FastISel.cpp:958
Register fastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0)
Emit a MachineInstr with one register operand and a result register in the given register class.
Definition: FastISel.cpp:1947
bool selectFreeze(const User *I)
Definition: FastISel.cpp:1458
bool selectIntrinsicCall(const IntrinsicInst *II)
Definition: FastISel.cpp:1186
bool selectCast(const User *I, unsigned Opcode)
Definition: FastISel.cpp:1398
bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst)
We're checking to see if we can fold LI into FoldInst.
Definition: FastISel.cpp:2219
Register getRegForValue(const Value *V)
Create a virtual register and arrange for it to be assigned the value for the given LLVM value.
Definition: FastISel.cpp:238
void removeDeadCode(MachineBasicBlock::iterator I, MachineBasicBlock::iterator E)
Remove all dead instructions between the I and E.
Definition: FastISel.cpp:410
void startNewBlock()
Set the current block to which generated machine instructions will be appended.
Definition: FastISel.cpp:123
MachineMemOperand * createMachineMemOperandFor(const Instruction *I) const
Create a machine mem operand from the given instruction.
Definition: FastISel.cpp:2297
virtual bool tryToFoldLoadIntoMI(MachineInstr *, unsigned, const LoadInst *)
The specified machine instr operand is a vreg, and that vreg is being provided by the specified load ...
Definition: FastISel.h:300
Register fastEmitInst_i(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm)
Emit a MachineInstr with a single immediate operand, and a result register in the given register clas...
Definition: FastISel.cpp:2113
MachineFrameInfo & MFI
Definition: FastISel.h:206
MachineFunction * MF
Definition: FastISel.h:204
bool canFoldAddIntoGEP(const User *GEP, const Value *Add)
Check if Add is an add that can be safely folded into GEP.
Definition: FastISel.cpp:2280
virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode)
This method is called by target-independent code to request that an instruction with the given type a...
Definition: FastISel.cpp:1853
TargetLoweringBase::ArgListTy ArgListTy
Definition: FastISel.h:69
bool selectInstruction(const Instruction *I)
Do "fast" instruction selection for the given LLVM IR instruction and append the generated machine in...
Definition: FastISel.cpp:1498
virtual unsigned fastMaterializeConstant(const Constant *C)
Emit a constant in a register using target-specific logic, such as constant pool loads.
Definition: FastISel.h:469
virtual bool fastLowerCall(CallLoweringInfo &CLI)
This method is called by target-independent code to do target- specific call lowering.
Definition: FastISel.cpp:1847
bool selectXRayTypedEvent(const CallInst *II)
Definition: FastISel.cpp:913
Register fastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1)
Emit a MachineInstr with two register operands and a result register in the given register class.
Definition: FastISel.cpp:1968
Register fastEmitInst_rii(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, uint64_t Imm1, uint64_t Imm2)
Emit a MachineInstr with one register operand and two immediate operands.
Definition: FastISel.cpp:2042
Register createResultReg(const TargetRegisterClass *RC)
Definition: FastISel.cpp:1917
virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode, const ConstantFP *FPImm)
This method is called by target-independent code to request that an instruction with the given type,...
Definition: FastISel.cpp:1868
virtual bool fastLowerArguments()
This method is called by target-independent code to do target- specific argument lowering.
Definition: FastISel.cpp:1845
bool selectFNeg(const User *I, const Value *In)
Emit an FNeg operation.
Definition: FastISel.cpp:1621
const TargetInstrInfo & TII
Definition: FastISel.h:211
bool selectCall(const User *I)
Definition: FastISel.cpp:1149
Register lookUpRegForValue(const Value *V)
Look up the value to see if its value is already cached in a register.
Definition: FastISel.cpp:351
CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const
Definition: FastISel.cpp:2344
void finishBasicBlock()
Flush the local value map.
Definition: FastISel.cpp:136
FunctionLoweringInfo & FuncInfo
Definition: FastISel.h:203
Register getRegForGEPIndex(const Value *Idx)
This is a wrapper around getRegForValue that also takes care of truncating or sign-extending the give...
Definition: FastISel.cpp:383
MachineConstantPool & MCP
Definition: FastISel.h:207
bool selectOperator(const User *I, unsigned Opcode)
Do "fast" instruction selection for the given LLVM IR operator (Instruction or ConstantExpr),...
Definition: FastISel.cpp:1703
bool SkipTargetIndependentISel
Definition: FastISel.h:215
Register fastEmitInst_f(unsigned MachineInstOpcode, const TargetRegisterClass *RC, const ConstantFP *FPImm)
Emit a MachineInstr with a floating point immediate, and a result register in the given register clas...
Definition: FastISel.cpp:2067
Register constrainOperandRegClass(const MCInstrDesc &II, Register Op, unsigned OpNum)
Try to constrain Op so that it is usable by argument OpNum of the provided MCInstrDesc.
Definition: FastISel.cpp:1921
void updateValueMap(const Value *I, Register Reg, unsigned NumRegs=1)
Update the value map to include the new mapping for this instruction, or insert an extra copy to get ...
Definition: FastISel.cpp:362
bool selectBinaryOp(const User *I, unsigned ISDOpcode)
Select and emit code for a binary operator instruction, which has an opcode which directly correspond...
Definition: FastISel.cpp:444
FastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo, bool SkipTargetIndependentISel=false)
Definition: FastISel.cpp:1832
bool selectPatchpoint(const CallInst *I)
Definition: FastISel.cpp:756
void recomputeInsertPt()
Reset InsertPt to prepare for inserting instructions into the current block.
Definition: FastISel.cpp:401
virtual bool fastSelectInstruction(const Instruction *I)=0
This method is called by target-independent code when the normal FastISel process fails to select an ...
const TargetLowering & TLI
Definition: FastISel.h:212
virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0, unsigned Op1)
This method is called by target-independent code to request that an instruction with the given type,...
Definition: FastISel.cpp:1859
const TargetMachine & TM
Definition: FastISel.h:209
Register fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, uint64_t Imm, MVT ImmType)
This method is a wrapper of fastEmit_ri.
Definition: FastISel.cpp:1882
Register fastEmitZExtFromI1(MVT VT, unsigned Op0)
Emit MachineInstrs to compute the value of Op with all but the least significant bit set to zero.
Definition: FastISel.cpp:2144
MIMetadata MIMD
Definition: FastISel.h:208
MachineInstr * LastLocalValue
The position of the last instruction for materializing constants for use in the current block.
Definition: FastISel.h:221
Register fastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1, uint64_t Imm)
Emit a MachineInstr with two register operands, an immediate, and a result register in the given regi...
Definition: FastISel.cpp:2087
bool lowerArguments()
Do "fast" instruction selection for function arguments and append the machine instructions to the cur...
Definition: FastISel.cpp:138
SavePoint enterLocalValueArea()
Prepare InsertPt to begin inserting instructions into the local value area and return the old insert ...
Definition: FastISel.cpp:430
void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB)
Emit an unconditional branch to FalseMBB, obtains the branch weight and adds TrueMBB and FalseMBB to ...
Definition: FastISel.cpp:1602
bool selectBitCast(const User *I)
Definition: FastISel.cpp:1429
Register fastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, uint64_t Imm)
Emit a MachineInstr with a register operand, an immediate, and a result register in the given registe...
Definition: FastISel.cpp:2019
virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0)
This method is called by target-independent code to request that an instruction with the given type,...
Definition: FastISel.cpp:1855
virtual unsigned fastMaterializeAlloca(const AllocaInst *C)
Emit an alloca address in a register using target-specific logic.
Definition: FastISel.h:472
virtual ~FastISel()
virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm)
This method is called by target-independent code to request that an instruction with the given type,...
Definition: FastISel.cpp:1864
const TargetRegisterInfo & TRI
Definition: FastISel.h:213
Register fastEmitInst_rrr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, unsigned Op1, unsigned Op2)
Emit a MachineInstr with three register operands and a result register in the given register class.
Definition: FastISel.cpp:1992
TargetLoweringBase::ArgListEntry ArgListEntry
Definition: FastISel.h:68
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
BranchProbabilityInfo * BPI
DenseSet< Register > RegsWithFixups
DenseMap< const AllocaInst *, int > StaticAllocaMap
StaticAllocaMap - Keep track of frame indices for fixed sized allocas in the entry block.
DenseMap< const BasicBlock *, MachineBasicBlock * > MBBMap
MBBMap - A mapping from LLVM basic blocks to their machine code entry.
Register InitializeRegForValue(const Value *V)
SmallPtrSet< const DbgDeclareInst *, 8 > PreprocessedDbgDeclares
Collection of dbg.declare instructions handled after argument lowering and before ISel proper.
DenseMap< const Value *, Register > ValueMap
ValueMap - Since we emit code for the function a basic block at a time, we must remember which virtua...
MachineBasicBlock::iterator InsertPt
MBB - The current insert position inside the current block.
MachineBasicBlock * MBB
MBB - The current block.
std::vector< std::pair< MachineInstr *, unsigned > > PHINodesToUpdate
PHINodesToUpdate - A list of phi instructions whose operand list will be updated after processing the...
DenseMap< Register, Register > RegFixups
RegFixups - Registers which need to be replaced after isel is done.
MachineRegisterInfo * RegInfo
bool CanLowerReturn
CanLowerReturn - true iff the function's return value can be lowered to registers.
Class to represent function types.
Definition: DerivedTypes.h:103
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.cpp:671
arg_iterator arg_end()
Definition: Function.h:787
arg_iterator arg_begin()
Definition: Function.h:778
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:320
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:392
const BasicBlock * getParent() const
Definition: Instruction.h:90
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:87
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:302
BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
Class to represent integer types.
Definition: DerivedTypes.h:40
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:279
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:54
An instruction for reading from memory.
Definition: Instructions.h:177
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Definition: Instructions.h:214
Context object for machine code objects.
Definition: MCContext.h:76
MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Definition: MCContext.cpp:201
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:237
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:248
ArrayRef< MCPhysReg > implicit_defs() const
Return a list of registers that are potentially written by any instance of this machine instruction.
Definition: MCInstrDesc.h:579
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:63
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
Metadata node.
Definition: Metadata.h:950
Set of metadata that should be preserved when using BuildMI().
const DebugLoc & getDL() const
Machine Value Type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
void addSuccessorWithoutProb(MachineBasicBlock *Succ)
Add Succ as a successor of this MachineBasicBlock.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
MachineInstrBundleIterator< MachineInstr, true > reverse_iterator
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB will be emitted immediately after this block, such that if this bloc...
MachineInstrBundleIterator< MachineInstr > iterator
void setHasPatchPoint(bool s=true)
void setHasStackMap(bool s=true)
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
Function & getFunction()
Return the LLVM function that this machine code represents.
MachineModuleInfo & getMMI() const
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned TargetFlags=0) const
const MachineInstrBuilder & addCImm(const ConstantInt *Val) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addMetadata(const MDNode *MD) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addFPImm(const ConstantFP *Val) const
Representation of each machine instruction.
Definition: MachineInstr.h:68
void setHeapAllocMarker(MachineFunction &MF, MDNode *MD)
Set a marker on instructions that denotes where we should create and emit heap alloc site labels.
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
void setPhysRegsDeadExcept(ArrayRef< Register > UsedRegs, const TargetRegisterInfo &TRI)
Mark every physreg used by this instruction as dead except those in the UsedRegs list.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
bool hasDebugInfo() const
Returns true if valid debug info is present.
MachineOperand class - Representation of each machine instruction operand.
static MachineOperand CreateRegMask(const uint32_t *Mask)
CreateRegMask - Creates a register mask operand referencing Mask.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
static MachineOperand CreateImm(int64_t Val)
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags=0)
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
static MachineOperand CreateFI(int Idx)
reg_begin/reg_end - Provide iteration support to walk over all definitions and uses of a register wit...
unsigned getOperandNo() const
getOperandNo - Return the operand # of this MachineOperand in its MachineInstr.
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
reg_iterator reg_begin(Register RegNo) const
MachineInstr * getVRegDef(Register Reg) const
getVRegDef - Return the machine instr that defines the specified virtual register or null if none is ...
bool use_nodbg_empty(Register RegNo) const
use_nodbg_empty - Return true if there are no non-Debug instructions using the specified register.
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
bool hasOneUse(Register RegNo) const
hasOneUse - Return true if there is exactly one instruction using the specified register.
ArrayRef< std::pair< MCRegister, Register > > liveins() const
const TargetRegisterClass * constrainRegClass(Register Reg, const TargetRegisterClass *RC, unsigned MinNumRegs=0)
constrainRegClass - Constrain the register class of the specified virtual register to be a common sub...
void getNameWithPrefix(raw_ostream &OS, const GlobalValue *GV, bool CannotUsePrivateLabel) const
Print the appropriate prefix and the specified global variable's name.
Definition: Mangler.cpp:119
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
static constexpr bool isVirtualRegister(unsigned Reg)
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:71
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:366
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:451
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TypeSize getElementOffset(unsigned Idx) const
Definition: DataLayout.h:651
Class to represent struct types.
Definition: DerivedTypes.h:213
virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const
Insert branch code into the end of the specified MachineBasicBlock.
unsigned getCallFrameSetupOpcode() const
These methods return the opcode of the frame setup/destroy instructions if they exist (-1 otherwise).
unsigned getCallFrameDestroyOpcode() const
virtual const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
Provides information about what library functions are available for the current target.
bool hasOptimizedCodeGen(LibFunc F) const
Tests if the function is both available and a candidate for optimized code generation.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC, ArgListTy &Args) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Return the desired alignment for ByVal or InAlloca aggregate function arguments in the caller paramet...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
virtual const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const
Returns a 0 terminated array of registers that can be safely used as scratch registers.
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
const Triple & getTargetTriple() const
TargetOptions Options
unsigned TrapUnreachable
Emit target-specific trap instruction for 'unreachable' IR instructions.
virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const
Returns the largest legal sub-class of RC that supports the sub-register index Idx.
virtual const uint32_t * getCallPreservedMask(const MachineFunction &MF, CallingConv::ID) const
Return a mask of call-preserved registers for the given calling convention on the current function.
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition: Triple.h:355
bool isOSAIX() const
Tests whether the OS is AIX.
Definition: Triple.h:670
bool isAArch64() const
Tests whether the target is AArch64 (little and big endian).
Definition: Triple.h:865
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static Type * getVoidTy(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:129
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition: DenseSet.h:185
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ AnyReg
Used for dynamic register based calls (e.g.
Definition: CallingConv.h:60
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ ConstantFP
Definition: ISDOpcodes.h:77
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:239
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition: ISDOpcodes.h:787
@ FADD
Simple binary floating point operators.
Definition: ISDOpcodes.h:390
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition: ISDOpcodes.h:900
@ SIGN_EXTEND
Conversion operators.
Definition: ISDOpcodes.h:774
@ FNEG
Perform various unary floating-point operations inspired by libm.
Definition: ISDOpcodes.h:925
@ SHL
Shift and rotation operations.
Definition: ISDOpcodes.h:705
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:777
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition: ISDOpcodes.h:833
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:680
@ TRAP
TRAP - Trapping instruction.
Definition: ISDOpcodes.h:1197
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:783
bool isBitwiseLogicOp(unsigned Opcode)
Whether this is bitwise logic opcode.
Definition: ISDOpcodes.h:1395
Reg
All possible values of the reg field in the ModR/M byte.
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition: Dwarf.h:146
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:228
reverse_iterator rend(StringRef path)
Get reverse end iterator over path.
Definition: Path.cpp:308
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< TypeSize > *Offsets, TypeSize StartingOffset)
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition: Analysis.cpp:122
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
void diagnoseDontCall(const CallInst &CI)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:666
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:269
gep_type_iterator gep_type_end(const User *GEP)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:319
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
@ Add
Sum of integers.
DWARFExpression::Operation Op
gep_type_iterator gep_type_begin(const User *GEP)
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition: Analysis.cpp:572
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
Compute the linearized index of a member in a nested aggregate/struct/array.
Definition: Analysis.cpp:33
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:651
static constexpr roundingMode rmTowardZero
Definition: APFloat.h:234
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:34
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:129
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition: ValueTypes.h:267
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition: ValueTypes.h:283
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:351
static EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
Definition: ValueTypes.cpp:616
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:299
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition: ValueTypes.h:64
SmallVector< ISD::ArgFlagsTy, 16 > OutFlags
Definition: FastISel.h:95
SmallVector< Value *, 16 > OutVals
Definition: FastISel.h:94
SmallVector< Register, 16 > OutRegs
Definition: FastISel.h:96
CallLoweringInfo & setTailCall(bool Value=true)
Definition: FastISel.h:177
SmallVector< Register, 4 > InRegs
Definition: FastISel.h:98
CallLoweringInfo & setIsPatchPoint(bool Value=true)
Definition: FastISel.h:182
CallLoweringInfo & setCallee(Type *ResultTy, FunctionType *FuncTy, const Value *Target, ArgListTy &&ArgsList, const CallBase &Call)
Definition: FastISel.h:104
SmallVector< ISD::InputArg, 4 > Ins
Definition: FastISel.h:97
InputArg - This struct carries flags and type information about a single incoming (formal) argument o...
This class contains a discriminated union of information about pointers in memory operands,...
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117