LLVM 20.0.0git
TargetInstrInfo.cpp
Go to the documentation of this file.
1//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
30#include "llvm/IR/DataLayout.h"
32#include "llvm/MC/MCAsmInfo.h"
38
39using namespace llvm;
40
42 "disable-sched-hazard", cl::Hidden, cl::init(false),
43 cl::desc("Disable hazard detection during preRA scheduling"));
44
46
48TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
50 const MachineFunction &MF) const {
51 if (OpNum >= MCID.getNumOperands())
52 return nullptr;
53
54 short RegClass = MCID.operands()[OpNum].RegClass;
55 if (MCID.operands()[OpNum].isLookupPtrRegClass())
56 return TRI->getPointerRegClass(MF, RegClass);
57
58 // Instructions like INSERT_SUBREG do not have fixed register classes.
59 if (RegClass < 0)
60 return nullptr;
61
62 // Otherwise just look it up normally.
63 return TRI->getRegClass(RegClass);
64}
65
66/// insertNoop - Insert a noop into the instruction stream at the specified
67/// point.
70 llvm_unreachable("Target didn't implement insertNoop!");
71}
72
73/// insertNoops - Insert noops into the instruction stream at the specified
74/// point.
77 unsigned Quantity) const {
78 for (unsigned i = 0; i < Quantity; ++i)
80}
81
82static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
83 return strncmp(Str, MAI.getCommentString().data(),
84 MAI.getCommentString().size()) == 0;
85}
86
87/// Measure the specified inline asm to determine an approximation of its
88/// length.
89/// Comments (which run till the next SeparatorString or newline) do not
90/// count as an instruction.
91/// Any other non-whitespace text is considered an instruction, with
92/// multiple instructions separated by SeparatorString or newlines.
93/// Variable-length instructions are not handled here; this function
94/// may be overloaded in the target code to do that.
95/// We implement a special case of the .space directive which takes only a
96/// single integer argument in base 10 that is the size in bytes. This is a
97/// restricted form of the GAS directive in that we only interpret
98/// simple--i.e. not a logical or arithmetic expression--size values without
99/// the optional fill value. This is primarily used for creating arbitrary
100/// sized inline asm blocks for testing purposes.
102 const char *Str,
103 const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
104 // Count the number of instructions in the asm.
105 bool AtInsnStart = true;
106 unsigned Length = 0;
107 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
108 for (; *Str; ++Str) {
109 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
110 strlen(MAI.getSeparatorString())) == 0) {
111 AtInsnStart = true;
112 } else if (isAsmComment(Str, MAI)) {
113 // Stop counting as an instruction after a comment until the next
114 // separator.
115 AtInsnStart = false;
116 }
117
118 if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
119 unsigned AddLength = MaxInstLength;
120 if (strncmp(Str, ".space", 6) == 0) {
121 char *EStr;
122 int SpaceSize;
123 SpaceSize = strtol(Str + 6, &EStr, 10);
124 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
125 while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr)))
126 ++EStr;
127 if (*EStr == '\0' || *EStr == '\n' ||
128 isAsmComment(EStr, MAI)) // Successfully parsed .space argument
129 AddLength = SpaceSize;
130 }
131 Length += AddLength;
132 AtInsnStart = false;
133 }
134 }
135
136 return Length;
137}
138
139/// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
140/// after it, replacing it with an unconditional branch to NewDest.
141void
143 MachineBasicBlock *NewDest) const {
144 MachineBasicBlock *MBB = Tail->getParent();
145
146 // Remove all the old successors of MBB from the CFG.
147 while (!MBB->succ_empty())
149
150 // Save off the debug loc before erasing the instruction.
151 DebugLoc DL = Tail->getDebugLoc();
152
153 // Update call site info and remove all the dead instructions
154 // from the end of MBB.
155 while (Tail != MBB->end()) {
156 auto MI = Tail++;
157 if (MI->shouldUpdateCallSiteInfo())
159 MBB->erase(MI);
160 }
161
162 // If MBB isn't immediately before MBB, insert a branch to it.
164 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
165 MBB->addSuccessor(NewDest);
166}
167
169 bool NewMI, unsigned Idx1,
170 unsigned Idx2) const {
171 const MCInstrDesc &MCID = MI.getDesc();
172 bool HasDef = MCID.getNumDefs();
173 if (HasDef && !MI.getOperand(0).isReg())
174 // No idea how to commute this instruction. Target should implement its own.
175 return nullptr;
176
177 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
178 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
179 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
180 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
181 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
182 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
183 "This only knows how to commute register operands so far");
184
185 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
186 Register Reg1 = MI.getOperand(Idx1).getReg();
187 Register Reg2 = MI.getOperand(Idx2).getReg();
188 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
189 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
190 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
191 bool Reg1IsKill = MI.getOperand(Idx1).isKill();
192 bool Reg2IsKill = MI.getOperand(Idx2).isKill();
193 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
194 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
195 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
196 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
197 // Avoid calling isRenamable for virtual registers since we assert that
198 // renamable property is only queried/set for physical registers.
199 bool Reg1IsRenamable =
200 Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false;
201 bool Reg2IsRenamable =
202 Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false;
203 // If destination is tied to either of the commuted source register, then
204 // it must be updated.
205 if (HasDef && Reg0 == Reg1 &&
206 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
207 Reg2IsKill = false;
208 Reg0 = Reg2;
209 SubReg0 = SubReg2;
210 } else if (HasDef && Reg0 == Reg2 &&
211 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
212 Reg1IsKill = false;
213 Reg0 = Reg1;
214 SubReg0 = SubReg1;
215 }
216
217 MachineInstr *CommutedMI = nullptr;
218 if (NewMI) {
219 // Create a new instruction.
220 MachineFunction &MF = *MI.getMF();
221 CommutedMI = MF.CloneMachineInstr(&MI);
222 } else {
223 CommutedMI = &MI;
224 }
225
226 if (HasDef) {
227 CommutedMI->getOperand(0).setReg(Reg0);
228 CommutedMI->getOperand(0).setSubReg(SubReg0);
229 }
230 CommutedMI->getOperand(Idx2).setReg(Reg1);
231 CommutedMI->getOperand(Idx1).setReg(Reg2);
232 CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
233 CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
234 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
235 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
236 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
237 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
238 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
239 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
240 // Avoid calling setIsRenamable for virtual registers since we assert that
241 // renamable property is only queried/set for physical registers.
242 if (Reg1.isPhysical())
243 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
244 if (Reg2.isPhysical())
245 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
246 return CommutedMI;
247}
248
250 unsigned OpIdx1,
251 unsigned OpIdx2) const {
252 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
253 // any commutable operand, which is done in findCommutedOpIndices() method
254 // called below.
255 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
256 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
257 assert(MI.isCommutable() &&
258 "Precondition violation: MI must be commutable.");
259 return nullptr;
260 }
261 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
262}
263
265 unsigned &ResultIdx2,
266 unsigned CommutableOpIdx1,
267 unsigned CommutableOpIdx2) {
268 if (ResultIdx1 == CommuteAnyOperandIndex &&
269 ResultIdx2 == CommuteAnyOperandIndex) {
270 ResultIdx1 = CommutableOpIdx1;
271 ResultIdx2 = CommutableOpIdx2;
272 } else if (ResultIdx1 == CommuteAnyOperandIndex) {
273 if (ResultIdx2 == CommutableOpIdx1)
274 ResultIdx1 = CommutableOpIdx2;
275 else if (ResultIdx2 == CommutableOpIdx2)
276 ResultIdx1 = CommutableOpIdx1;
277 else
278 return false;
279 } else if (ResultIdx2 == CommuteAnyOperandIndex) {
280 if (ResultIdx1 == CommutableOpIdx1)
281 ResultIdx2 = CommutableOpIdx2;
282 else if (ResultIdx1 == CommutableOpIdx2)
283 ResultIdx2 = CommutableOpIdx1;
284 else
285 return false;
286 } else
287 // Check that the result operand indices match the given commutable
288 // operand indices.
289 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
290 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
291
292 return true;
293}
294
296 unsigned &SrcOpIdx1,
297 unsigned &SrcOpIdx2) const {
298 assert(!MI.isBundle() &&
299 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
300
301 const MCInstrDesc &MCID = MI.getDesc();
302 if (!MCID.isCommutable())
303 return false;
304
305 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
306 // is not true, then the target must implement this.
307 unsigned CommutableOpIdx1 = MCID.getNumDefs();
308 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
309 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
310 CommutableOpIdx1, CommutableOpIdx2))
311 return false;
312
313 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
314 // No idea.
315 return false;
316 return true;
317}
318
320 if (!MI.isTerminator()) return false;
321
322 // Conditional branch is a special case.
323 if (MI.isBranch() && !MI.isBarrier())
324 return true;
325 if (!MI.isPredicable())
326 return true;
327 return !isPredicated(MI);
328}
329
332 bool MadeChange = false;
333
334 assert(!MI.isBundle() &&
335 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
336
337 const MCInstrDesc &MCID = MI.getDesc();
338 if (!MI.isPredicable())
339 return false;
340
341 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
342 if (MCID.operands()[i].isPredicate()) {
343 MachineOperand &MO = MI.getOperand(i);
344 if (MO.isReg()) {
345 MO.setReg(Pred[j].getReg());
346 MadeChange = true;
347 } else if (MO.isImm()) {
348 MO.setImm(Pred[j].getImm());
349 MadeChange = true;
350 } else if (MO.isMBB()) {
351 MO.setMBB(Pred[j].getMBB());
352 MadeChange = true;
353 }
354 ++j;
355 }
356 }
357 return MadeChange;
358}
359
361 const MachineInstr &MI,
363 size_t StartSize = Accesses.size();
364 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
365 oe = MI.memoperands_end();
366 o != oe; ++o) {
367 if ((*o)->isLoad() &&
368 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
369 Accesses.push_back(*o);
370 }
371 return Accesses.size() != StartSize;
372}
373
375 const MachineInstr &MI,
377 size_t StartSize = Accesses.size();
378 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
379 oe = MI.memoperands_end();
380 o != oe; ++o) {
381 if ((*o)->isStore() &&
382 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
383 Accesses.push_back(*o);
384 }
385 return Accesses.size() != StartSize;
386}
387
389 unsigned SubIdx, unsigned &Size,
390 unsigned &Offset,
391 const MachineFunction &MF) const {
393 if (!SubIdx) {
394 Size = TRI->getSpillSize(*RC);
395 Offset = 0;
396 return true;
397 }
398 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
399 // Convert bit size to byte size.
400 if (BitSize % 8)
401 return false;
402
403 int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
404 if (BitOffset < 0 || BitOffset % 8)
405 return false;
406
407 Size = BitSize / 8;
408 Offset = (unsigned)BitOffset / 8;
409
410 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
411
412 if (!MF.getDataLayout().isLittleEndian()) {
413 Offset = TRI->getSpillSize(*RC) - (Offset + Size);
414 }
415 return true;
416}
417
420 Register DestReg, unsigned SubIdx,
421 const MachineInstr &Orig,
422 const TargetRegisterInfo &TRI) const {
424 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
425 MBB.insert(I, MI);
426}
427
429 const MachineInstr &MI1,
430 const MachineRegisterInfo *MRI) const {
432}
433
436 MachineBasicBlock::iterator InsertBefore,
437 const MachineInstr &Orig) const {
439 // CFI instructions are marked as non-duplicable, because Darwin compact
440 // unwind info emission can't handle multiple prologue setups.
441 assert((!Orig.isNotDuplicable() ||
443 Orig.isCFIInstruction())) &&
444 "Instruction cannot be duplicated");
445
446 return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig);
447}
448
449// If the COPY instruction in MI can be folded to a stack operation, return
450// the register class to use.
452 const TargetInstrInfo &TII,
453 unsigned FoldIdx) {
454 assert(TII.isCopyInstr(MI) && "MI must be a COPY instruction");
455 if (MI.getNumOperands() != 2)
456 return nullptr;
457 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
458
459 const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
460 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
461
462 if (FoldOp.getSubReg() || LiveOp.getSubReg())
463 return nullptr;
464
465 Register FoldReg = FoldOp.getReg();
466 Register LiveReg = LiveOp.getReg();
467
468 assert(FoldReg.isVirtual() && "Cannot fold physregs");
469
470 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
471 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
472
473 if (LiveOp.getReg().isPhysical())
474 return RC->contains(LiveOp.getReg()) ? RC : nullptr;
475
476 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
477 return RC;
478
479 // FIXME: Allow folding when register classes are memory compatible.
480 return nullptr;
481}
482
483MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); }
484
485std::pair<unsigned, unsigned>
487 switch (MI.getOpcode()) {
488 case TargetOpcode::STACKMAP:
489 // StackMapLiveValues are foldable
490 return std::make_pair(0, StackMapOpers(&MI).getVarIdx());
491 case TargetOpcode::PATCHPOINT:
492 // For PatchPoint, the call args are not foldable (even if reported in the
493 // stackmap e.g. via anyregcc).
494 return std::make_pair(0, PatchPointOpers(&MI).getVarIdx());
495 case TargetOpcode::STATEPOINT:
496 // For statepoints, fold deopt and gc arguments, but not call arguments.
497 return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx());
498 default:
499 llvm_unreachable("unexpected stackmap opcode");
500 }
501}
502
504 ArrayRef<unsigned> Ops, int FrameIndex,
505 const TargetInstrInfo &TII) {
506 unsigned StartIdx = 0;
507 unsigned NumDefs = 0;
508 // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
509 std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI);
510
511 unsigned DefToFoldIdx = MI.getNumOperands();
512
513 // Return false if any operands requested for folding are not foldable (not
514 // part of the stackmap's live values).
515 for (unsigned Op : Ops) {
516 if (Op < NumDefs) {
517 assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs");
518 DefToFoldIdx = Op;
519 } else if (Op < StartIdx) {
520 return nullptr;
521 }
522 if (MI.getOperand(Op).isTied())
523 return nullptr;
524 }
525
526 MachineInstr *NewMI =
527 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
528 MachineInstrBuilder MIB(MF, NewMI);
529
530 // No need to fold return, the meta data, and function arguments
531 for (unsigned i = 0; i < StartIdx; ++i)
532 if (i != DefToFoldIdx)
533 MIB.add(MI.getOperand(i));
534
535 for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) {
536 MachineOperand &MO = MI.getOperand(i);
537 unsigned TiedTo = e;
538 (void)MI.isRegTiedToDefOperand(i, &TiedTo);
539
540 if (is_contained(Ops, i)) {
541 assert(TiedTo == e && "Cannot fold tied operands");
542 unsigned SpillSize;
543 unsigned SpillOffset;
544 // Compute the spill slot size and offset.
545 const TargetRegisterClass *RC =
546 MF.getRegInfo().getRegClass(MO.getReg());
547 bool Valid =
548 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
549 if (!Valid)
550 report_fatal_error("cannot spill patchpoint subregister operand");
551 MIB.addImm(StackMaps::IndirectMemRefOp);
552 MIB.addImm(SpillSize);
553 MIB.addFrameIndex(FrameIndex);
554 MIB.addImm(SpillOffset);
555 } else {
556 MIB.add(MO);
557 if (TiedTo < e) {
558 assert(TiedTo < NumDefs && "Bad tied operand");
559 if (TiedTo > DefToFoldIdx)
560 --TiedTo;
561 NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1);
562 }
563 }
564 }
565 return NewMI;
566}
567
568static void foldInlineAsmMemOperand(MachineInstr *MI, unsigned OpNo, int FI,
569 const TargetInstrInfo &TII) {
570 // If the machine operand is tied, untie it first.
571 if (MI->getOperand(OpNo).isTied()) {
572 unsigned TiedTo = MI->findTiedOperandIdx(OpNo);
573 MI->untieRegOperand(OpNo);
574 // Intentional recursion!
575 foldInlineAsmMemOperand(MI, TiedTo, FI, TII);
576 }
577
579 TII.getFrameIndexOperands(NewOps, FI);
580 assert(!NewOps.empty() && "getFrameIndexOperands didn't create any operands");
581 MI->removeOperand(OpNo);
582 MI->insert(MI->operands_begin() + OpNo, NewOps);
583
584 // Change the previous operand to a MemKind InlineAsm::Flag. The second param
585 // is the per-target number of operands that represent the memory operand
586 // excluding this one (MD). This includes MO.
588 F.setMemConstraint(InlineAsm::ConstraintCode::m);
589 MachineOperand &MD = MI->getOperand(OpNo - 1);
590 MD.setImm(F);
591}
592
593// Returns nullptr if not possible to fold.
595 ArrayRef<unsigned> Ops, int FI,
596 const TargetInstrInfo &TII) {
597 assert(MI.isInlineAsm() && "wrong opcode");
598 if (Ops.size() > 1)
599 return nullptr;
600 unsigned Op = Ops[0];
601 assert(Op && "should never be first operand");
602 assert(MI.getOperand(Op).isReg() && "shouldn't be folding non-reg operands");
603
604 if (!MI.mayFoldInlineAsmRegOp(Op))
605 return nullptr;
606
607 MachineInstr &NewMI = TII.duplicate(*MI.getParent(), MI.getIterator(), MI);
608
609 foldInlineAsmMemOperand(&NewMI, Op, FI, TII);
610
611 // Update mayload/maystore metadata, and memoperands.
612 const VirtRegInfo &RI =
613 AnalyzeVirtRegInBundle(MI, MI.getOperand(Op).getReg());
616 if (RI.Reads) {
617 ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayLoad);
619 }
620 if (RI.Writes) {
621 ExtraMO.setImm(ExtraMO.getImm() | InlineAsm::Extra_MayStore);
623 }
624 MachineFunction *MF = NewMI.getMF();
625 const MachineFrameInfo &MFI = MF->getFrameInfo();
627 MachinePointerInfo::getFixedStack(*MF, FI), Flags, MFI.getObjectSize(FI),
628 MFI.getObjectAlign(FI));
629 NewMI.addMemOperand(*MF, MMO);
630
631 return &NewMI;
632}
633
635 ArrayRef<unsigned> Ops, int FI,
636 LiveIntervals *LIS,
637 VirtRegMap *VRM) const {
638 auto Flags = MachineMemOperand::MONone;
639 for (unsigned OpIdx : Ops)
640 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
642
643 MachineBasicBlock *MBB = MI.getParent();
644 assert(MBB && "foldMemoryOperand needs an inserted instruction");
645 MachineFunction &MF = *MBB->getParent();
646
647 // If we're not folding a load into a subreg, the size of the load is the
648 // size of the spill slot. But if we are, we need to figure out what the
649 // actual load size is.
650 int64_t MemSize = 0;
651 const MachineFrameInfo &MFI = MF.getFrameInfo();
653
654 if (Flags & MachineMemOperand::MOStore) {
655 MemSize = MFI.getObjectSize(FI);
656 } else {
657 for (unsigned OpIdx : Ops) {
658 int64_t OpSize = MFI.getObjectSize(FI);
659
660 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
661 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
662 if (SubRegSize > 0 && !(SubRegSize % 8))
663 OpSize = SubRegSize / 8;
664 }
665
666 MemSize = std::max(MemSize, OpSize);
667 }
668 }
669
670 assert(MemSize && "Did not expect a zero-sized stack slot");
671
672 MachineInstr *NewMI = nullptr;
673
674 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
675 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
676 MI.getOpcode() == TargetOpcode::STATEPOINT) {
677 // Fold stackmap/patchpoint.
678 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
679 if (NewMI)
680 MBB->insert(MI, NewMI);
681 } else if (MI.isInlineAsm()) {
682 return foldInlineAsmMemOperand(MI, Ops, FI, *this);
683 } else {
684 // Ask the target to do the actual folding.
685 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
686 }
687
688 if (NewMI) {
689 NewMI->setMemRefs(MF, MI.memoperands());
690 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
692 NewMI->mayStore()) &&
693 "Folded a def to a non-store!");
694 assert((!(Flags & MachineMemOperand::MOLoad) ||
695 NewMI->mayLoad()) &&
696 "Folded a use to a non-load!");
697 assert(MFI.getObjectOffset(FI) != -1);
698 MachineMemOperand *MMO =
700 Flags, MemSize, MFI.getObjectAlign(FI));
701 NewMI->addMemOperand(MF, MMO);
702
703 // The pass "x86 speculative load hardening" always attaches symbols to
704 // call instructions. We need copy it form old instruction.
705 NewMI->cloneInstrSymbols(MF, MI);
706
707 return NewMI;
708 }
709
710 // Straight COPY may fold as load/store.
711 if (!isCopyInstr(MI) || Ops.size() != 1)
712 return nullptr;
713
714 const TargetRegisterClass *RC = canFoldCopy(MI, *this, Ops[0]);
715 if (!RC)
716 return nullptr;
717
718 const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
720
721 if (Flags == MachineMemOperand::MOStore)
722 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI,
723 Register());
724 else
725 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register());
726 return &*--Pos;
727}
728
731 MachineInstr &LoadMI,
732 LiveIntervals *LIS) const {
733 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
734#ifndef NDEBUG
735 for (unsigned OpIdx : Ops)
736 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
737#endif
738
739 MachineBasicBlock &MBB = *MI.getParent();
741
742 // Ask the target to do the actual folding.
743 MachineInstr *NewMI = nullptr;
744 int FrameIndex = 0;
745
746 if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
747 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
748 MI.getOpcode() == TargetOpcode::STATEPOINT) &&
749 isLoadFromStackSlot(LoadMI, FrameIndex)) {
750 // Fold stackmap/patchpoint.
751 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
752 if (NewMI)
753 NewMI = &*MBB.insert(MI, NewMI);
754 } else if (MI.isInlineAsm() && isLoadFromStackSlot(LoadMI, FrameIndex)) {
755 return foldInlineAsmMemOperand(MI, Ops, FrameIndex, *this);
756 } else {
757 // Ask the target to do the actual folding.
758 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
759 }
760
761 if (!NewMI)
762 return nullptr;
763
764 // Copy the memoperands from the load to the folded instruction.
765 if (MI.memoperands_empty()) {
766 NewMI->setMemRefs(MF, LoadMI.memoperands());
767 } else {
768 // Handle the rare case of folding multiple loads.
769 NewMI->setMemRefs(MF, MI.memoperands());
771 E = LoadMI.memoperands_end();
772 I != E; ++I) {
773 NewMI->addMemOperand(MF, *I);
774 }
775 }
776 return NewMI;
777}
778
779/// transferImplicitOperands - MI is a pseudo-instruction, and the lowered
780/// replacement instructions immediately precede it. Copy any implicit
781/// operands from MI to the replacement instruction.
783 const TargetRegisterInfo *TRI) {
785 --CopyMI;
786
787 Register DstReg = MI->getOperand(0).getReg();
788 for (const MachineOperand &MO : MI->implicit_operands()) {
789 CopyMI->addOperand(MO);
790
791 // Be conservative about preserving kills when subregister defs are
792 // involved. If there was implicit kill of a super-register overlapping the
793 // copy result, we would kill the subregisters previous copies defined.
794
795 if (MO.isKill() && TRI->regsOverlap(DstReg, MO.getReg()))
796 CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(false);
797 }
798}
799
801 const TargetRegisterInfo *TRI) const {
802 if (MI->allDefsAreDead()) {
803 MI->setDesc(get(TargetOpcode::KILL));
804 return;
805 }
806
807 MachineOperand &DstMO = MI->getOperand(0);
808 MachineOperand &SrcMO = MI->getOperand(1);
809
810 bool IdentityCopy = (SrcMO.getReg() == DstMO.getReg());
811 if (IdentityCopy || SrcMO.isUndef()) {
812 // No need to insert an identity copy instruction, but replace with a KILL
813 // if liveness is changed.
814 if (SrcMO.isUndef() || MI->getNumOperands() > 2) {
815 // We must make sure the super-register gets killed. Replace the
816 // instruction with KILL.
817 MI->setDesc(get(TargetOpcode::KILL));
818 return;
819 }
820 // Vanilla identity copy.
821 MI->eraseFromParent();
822 return;
823 }
824
825 copyPhysReg(*MI->getParent(), MI, MI->getDebugLoc(), DstMO.getReg(),
826 SrcMO.getReg(), SrcMO.isKill(),
827 DstMO.getReg().isPhysical() ? DstMO.isRenamable() : false,
828 SrcMO.getReg().isPhysical() ? SrcMO.isRenamable() : false);
829
830 if (MI->getNumOperands() > 2)
832 MI->eraseFromParent();
833}
834
836 const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
837 const MachineOperand &Op1 = Inst.getOperand(1);
838 const MachineOperand &Op2 = Inst.getOperand(2);
840
841 // We need virtual register definitions for the operands that we will
842 // reassociate.
843 MachineInstr *MI1 = nullptr;
844 MachineInstr *MI2 = nullptr;
845 if (Op1.isReg() && Op1.getReg().isVirtual())
846 MI1 = MRI.getUniqueVRegDef(Op1.getReg());
847 if (Op2.isReg() && Op2.getReg().isVirtual())
848 MI2 = MRI.getUniqueVRegDef(Op2.getReg());
849
850 // And at least one operand must be defined in MBB.
851 return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB);
852}
853
855 unsigned Opcode2) const {
856 return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2;
857}
858
860 bool &Commuted) const {
861 const MachineBasicBlock *MBB = Inst.getParent();
863 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
864 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
865 unsigned Opcode = Inst.getOpcode();
866
867 // If only one operand has the same or inverse opcode and it's the second
868 // source operand, the operands must be commuted.
869 Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
870 areOpcodesEqualOrInverse(Opcode, MI2->getOpcode());
871 if (Commuted)
872 std::swap(MI1, MI2);
873
874 // 1. The previous instruction must be the same type as Inst.
875 // 2. The previous instruction must also be associative/commutative or be the
876 // inverse of such an operation (this can be different even for
877 // instructions with the same opcode if traits like fast-math-flags are
878 // included).
879 // 3. The previous instruction must have virtual register definitions for its
880 // operands in the same basic block as Inst.
881 // 4. The previous instruction's result must only be used by Inst.
882 return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) &&
884 isAssociativeAndCommutative(*MI1, /* Invert */ true)) &&
886 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
887}
888
889// 1. The operation must be associative and commutative or be the inverse of
890// such an operation.
891// 2. The instruction must have virtual register definitions for its
892// operands in the same basic block.
893// 3. The instruction must have a reassociable sibling.
895 bool &Commuted) const {
896 return (isAssociativeAndCommutative(Inst) ||
897 isAssociativeAndCommutative(Inst, /* Invert */ true)) &&
898 hasReassociableOperands(Inst, Inst.getParent()) &&
899 hasReassociableSibling(Inst, Commuted);
900}
901
902// The concept of the reassociation pass is that these operations can benefit
903// from this kind of transformation:
904//
905// A = ? op ?
906// B = A op X (Prev)
907// C = B op Y (Root)
908// -->
909// A = ? op ?
910// B = X op Y
911// C = A op B
912//
913// breaking the dependency between A and B, allowing them to be executed in
914// parallel (or back-to-back in a pipeline) instead of depending on each other.
915
916// FIXME: This has the potential to be expensive (compile time) while not
917// improving the code at all. Some ways to limit the overhead:
918// 1. Track successful transforms; bail out if hit rate gets too low.
919// 2. Only enable at -O3 or some other non-default optimization level.
920// 3. Pre-screen pattern candidates here: if an operand of the previous
921// instruction is known to not increase the critical path, then don't match
922// that pattern.
925 bool DoRegPressureReduce) const {
926 bool Commute;
927 if (isReassociationCandidate(Root, Commute)) {
928 // We found a sequence of instructions that may be suitable for a
929 // reassociation of operands to increase ILP. Specify each commutation
930 // possibility for the Prev instruction in the sequence and let the
931 // machine combiner decide if changing the operands is worthwhile.
932 if (Commute) {
935 } else {
938 }
939 return true;
940 }
941
942 return false;
943}
944
945/// Return true when a code sequence can improve loop throughput.
947 return false;
948}
949
953}
954
955std::pair<unsigned, unsigned>
957 const MachineInstr &Root,
958 const MachineInstr &Prev) const {
959 bool AssocCommutRoot = isAssociativeAndCommutative(Root);
960 bool AssocCommutPrev = isAssociativeAndCommutative(Prev);
961
962 // Early exit if both opcodes are associative and commutative. It's a trivial
963 // reassociation when we only change operands order. In this case opcodes are
964 // not required to have inverse versions.
965 if (AssocCommutRoot && AssocCommutPrev) {
966 assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal");
967 return std::make_pair(Root.getOpcode(), Root.getOpcode());
968 }
969
970 // At least one instruction is not associative or commutative.
971 // Since we have matched one of the reassociation patterns, we expect that the
972 // instructions' opcodes are equal or one of them is the inversion of the
973 // other.
975 "Incorrectly matched pattern");
976 unsigned AssocCommutOpcode = Root.getOpcode();
977 unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode());
978 if (!AssocCommutRoot)
979 std::swap(AssocCommutOpcode, InverseOpcode);
980
981 // The transformation rule (`+` is any associative and commutative binary
982 // operation, `-` is the inverse):
983 // REASSOC_AX_BY:
984 // (A + X) + Y => A + (X + Y)
985 // (A + X) - Y => A + (X - Y)
986 // (A - X) + Y => A - (X - Y)
987 // (A - X) - Y => A - (X + Y)
988 // REASSOC_XA_BY:
989 // (X + A) + Y => (X + Y) + A
990 // (X + A) - Y => (X - Y) + A
991 // (X - A) + Y => (X + Y) - A
992 // (X - A) - Y => (X - Y) - A
993 // REASSOC_AX_YB:
994 // Y + (A + X) => (Y + X) + A
995 // Y - (A + X) => (Y - X) - A
996 // Y + (A - X) => (Y - X) + A
997 // Y - (A - X) => (Y + X) - A
998 // REASSOC_XA_YB:
999 // Y + (X + A) => (Y + X) + A
1000 // Y - (X + A) => (Y - X) - A
1001 // Y + (X - A) => (Y + X) - A
1002 // Y - (X - A) => (Y - X) + A
1003 switch (Pattern) {
1004 default:
1005 llvm_unreachable("Unexpected pattern");
1007 if (!AssocCommutRoot && AssocCommutPrev)
1008 return {AssocCommutOpcode, InverseOpcode};
1009 if (AssocCommutRoot && !AssocCommutPrev)
1010 return {InverseOpcode, InverseOpcode};
1011 if (!AssocCommutRoot && !AssocCommutPrev)
1012 return {InverseOpcode, AssocCommutOpcode};
1013 break;
1015 if (!AssocCommutRoot && AssocCommutPrev)
1016 return {AssocCommutOpcode, InverseOpcode};
1017 if (AssocCommutRoot && !AssocCommutPrev)
1018 return {InverseOpcode, AssocCommutOpcode};
1019 if (!AssocCommutRoot && !AssocCommutPrev)
1020 return {InverseOpcode, InverseOpcode};
1021 break;
1023 if (!AssocCommutRoot && AssocCommutPrev)
1024 return {InverseOpcode, InverseOpcode};
1025 if (AssocCommutRoot && !AssocCommutPrev)
1026 return {AssocCommutOpcode, InverseOpcode};
1027 if (!AssocCommutRoot && !AssocCommutPrev)
1028 return {InverseOpcode, AssocCommutOpcode};
1029 break;
1031 if (!AssocCommutRoot && AssocCommutPrev)
1032 return {InverseOpcode, InverseOpcode};
1033 if (AssocCommutRoot && !AssocCommutPrev)
1034 return {InverseOpcode, AssocCommutOpcode};
1035 if (!AssocCommutRoot && !AssocCommutPrev)
1036 return {AssocCommutOpcode, InverseOpcode};
1037 break;
1038 }
1039 llvm_unreachable("Unhandled combination");
1040}
1041
1042// Return a pair of boolean flags showing if the new root and new prev operands
1043// must be swapped. See visual example of the rule in
1044// TargetInstrInfo::getReassociationOpcodes.
1045static std::pair<bool, bool> mustSwapOperands(unsigned Pattern) {
1046 switch (Pattern) {
1047 default:
1048 llvm_unreachable("Unexpected pattern");
1050 return {false, false};
1052 return {true, false};
1054 return {true, true};
1056 return {true, true};
1057 }
1058}
1059
1061 const MachineInstr &Root, unsigned Pattern,
1062 std::array<unsigned, 5> &OperandIndices) const {
1063 switch (Pattern) {
1065 OperandIndices = {1, 1, 1, 2, 2};
1066 break;
1068 OperandIndices = {2, 1, 2, 2, 1};
1069 break;
1071 OperandIndices = {1, 2, 1, 1, 2};
1072 break;
1074 OperandIndices = {2, 2, 2, 1, 1};
1075 break;
1076 default:
1077 llvm_unreachable("unexpected MachineCombinerPattern");
1078 }
1079}
1080
1081/// Attempt the reassociation transformation to reduce critical path length.
1082/// See the above comments before getMachineCombinerPatterns().
1084 MachineInstr &Root, MachineInstr &Prev, unsigned Pattern,
1088 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
1089 MachineFunction *MF = Root.getMF();
1093 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
1094
1099 MachineOperand &OpC = Root.getOperand(0);
1100
1101 Register RegA = OpA.getReg();
1102 Register RegB = OpB.getReg();
1103 Register RegX = OpX.getReg();
1104 Register RegY = OpY.getReg();
1105 Register RegC = OpC.getReg();
1106
1107 if (RegA.isVirtual())
1108 MRI.constrainRegClass(RegA, RC);
1109 if (RegB.isVirtual())
1110 MRI.constrainRegClass(RegB, RC);
1111 if (RegX.isVirtual())
1112 MRI.constrainRegClass(RegX, RC);
1113 if (RegY.isVirtual())
1114 MRI.constrainRegClass(RegY, RC);
1115 if (RegC.isVirtual())
1116 MRI.constrainRegClass(RegC, RC);
1117
1118 // Create a new virtual register for the result of (X op Y) instead of
1119 // recycling RegB because the MachineCombiner's computation of the critical
1120 // path requires a new register definition rather than an existing one.
1121 Register NewVR = MRI.createVirtualRegister(RC);
1122 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
1123
1124 auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev);
1125 bool KillA = OpA.isKill();
1126 bool KillX = OpX.isKill();
1127 bool KillY = OpY.isKill();
1128 bool KillNewVR = true;
1129
1130 auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern);
1131
1132 if (SwapPrevOperands) {
1133 std::swap(RegX, RegY);
1134 std::swap(KillX, KillY);
1135 }
1136
1137 unsigned PrevFirstOpIdx, PrevSecondOpIdx;
1138 unsigned RootFirstOpIdx, RootSecondOpIdx;
1139 switch (Pattern) {
1141 PrevFirstOpIdx = OperandIndices[1];
1142 PrevSecondOpIdx = OperandIndices[3];
1143 RootFirstOpIdx = OperandIndices[2];
1144 RootSecondOpIdx = OperandIndices[4];
1145 break;
1147 PrevFirstOpIdx = OperandIndices[1];
1148 PrevSecondOpIdx = OperandIndices[3];
1149 RootFirstOpIdx = OperandIndices[4];
1150 RootSecondOpIdx = OperandIndices[2];
1151 break;
1153 PrevFirstOpIdx = OperandIndices[3];
1154 PrevSecondOpIdx = OperandIndices[1];
1155 RootFirstOpIdx = OperandIndices[2];
1156 RootSecondOpIdx = OperandIndices[4];
1157 break;
1159 PrevFirstOpIdx = OperandIndices[3];
1160 PrevSecondOpIdx = OperandIndices[1];
1161 RootFirstOpIdx = OperandIndices[4];
1162 RootSecondOpIdx = OperandIndices[2];
1163 break;
1164 default:
1165 llvm_unreachable("unexpected MachineCombinerPattern");
1166 }
1167
1168 // Basically BuildMI but doesn't add implicit operands by default.
1169 auto buildMINoImplicit = [](MachineFunction &MF, const MIMetadata &MIMD,
1170 const MCInstrDesc &MCID, Register DestReg) {
1171 return MachineInstrBuilder(
1172 MF, MF.CreateMachineInstr(MCID, MIMD.getDL(), /*NoImpl=*/true))
1173 .setPCSections(MIMD.getPCSections())
1174 .addReg(DestReg, RegState::Define);
1175 };
1176
1177 // Create new instructions for insertion.
1178 MachineInstrBuilder MIB1 =
1179 buildMINoImplicit(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR);
1180 for (const auto &MO : Prev.explicit_operands()) {
1181 unsigned Idx = MO.getOperandNo();
1182 // Skip the result operand we'd already added.
1183 if (Idx == 0)
1184 continue;
1185 if (Idx == PrevFirstOpIdx)
1186 MIB1.addReg(RegX, getKillRegState(KillX));
1187 else if (Idx == PrevSecondOpIdx)
1188 MIB1.addReg(RegY, getKillRegState(KillY));
1189 else
1190 MIB1.add(MO);
1191 }
1192 MIB1.copyImplicitOps(Prev);
1193
1194 if (SwapRootOperands) {
1195 std::swap(RegA, NewVR);
1196 std::swap(KillA, KillNewVR);
1197 }
1198
1199 MachineInstrBuilder MIB2 =
1200 buildMINoImplicit(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC);
1201 for (const auto &MO : Root.explicit_operands()) {
1202 unsigned Idx = MO.getOperandNo();
1203 // Skip the result operand.
1204 if (Idx == 0)
1205 continue;
1206 if (Idx == RootFirstOpIdx)
1207 MIB2 = MIB2.addReg(RegA, getKillRegState(KillA));
1208 else if (Idx == RootSecondOpIdx)
1209 MIB2 = MIB2.addReg(NewVR, getKillRegState(KillNewVR));
1210 else
1211 MIB2 = MIB2.add(MO);
1212 }
1213 MIB2.copyImplicitOps(Root);
1214
1215 // Propagate FP flags from the original instructions.
1216 // But clear poison-generating flags because those may not be valid now.
1217 // TODO: There should be a helper function for copying only fast-math-flags.
1218 uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags();
1219 MIB1->setFlags(IntersectedFlags);
1223
1224 MIB2->setFlags(IntersectedFlags);
1228
1229 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
1230
1231 // Record new instructions for insertion and old instructions for deletion.
1232 InsInstrs.push_back(MIB1);
1233 InsInstrs.push_back(MIB2);
1234 DelInstrs.push_back(&Prev);
1235 DelInstrs.push_back(&Root);
1236
1237 // We transformed:
1238 // B = A op X (Prev)
1239 // C = B op Y (Root)
1240 // Into:
1241 // B = X op Y (MIB1)
1242 // C = A op B (MIB2)
1243 // C has the same value as before, B doesn't; as such, keep the debug number
1244 // of C but not of B.
1245 if (unsigned OldRootNum = Root.peekDebugInstrNum())
1246 MIB2.getInstr()->setDebugInstrNum(OldRootNum);
1247}
1248
1250 MachineInstr &Root, unsigned Pattern,
1253 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
1255
1256 // Select the previous instruction in the sequence based on the input pattern.
1257 std::array<unsigned, 5> OperandIndices;
1259 MachineInstr *Prev =
1260 MRI.getUniqueVRegDef(Root.getOperand(OperandIndices[0]).getReg());
1261
1262 // Don't reassociate if Prev and Root are in different blocks.
1263 if (Prev->getParent() != Root.getParent())
1264 return;
1265
1266 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, OperandIndices,
1267 InstIdxForVirtReg);
1268}
1269
1272}
1273
1275 const MachineInstr &MI) const {
1276 const MachineFunction &MF = *MI.getMF();
1277 const MachineRegisterInfo &MRI = MF.getRegInfo();
1278
1279 // Remat clients assume operand 0 is the defined register.
1280 if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
1281 return false;
1282 Register DefReg = MI.getOperand(0).getReg();
1283
1284 // A sub-register definition can only be rematerialized if the instruction
1285 // doesn't read the other parts of the register. Otherwise it is really a
1286 // read-modify-write operation on the full virtual register which cannot be
1287 // moved safely.
1288 if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() &&
1289 MI.readsVirtualRegister(DefReg))
1290 return false;
1291
1292 // A load from a fixed stack slot can be rematerialized. This may be
1293 // redundant with subsequent checks, but it's target-independent,
1294 // simple, and a common case.
1295 int FrameIdx = 0;
1296 if (isLoadFromStackSlot(MI, FrameIdx) &&
1297 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
1298 return true;
1299
1300 // Avoid instructions obviously unsafe for remat.
1301 if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
1302 MI.hasUnmodeledSideEffects())
1303 return false;
1304
1305 // Don't remat inline asm. We have no idea how expensive it is
1306 // even if it's side effect free.
1307 if (MI.isInlineAsm())
1308 return false;
1309
1310 // Avoid instructions which load from potentially varying memory.
1311 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
1312 return false;
1313
1314 // If any of the registers accessed are non-constant, conservatively assume
1315 // the instruction is not rematerializable.
1316 for (const MachineOperand &MO : MI.operands()) {
1317 if (!MO.isReg()) continue;
1318 Register Reg = MO.getReg();
1319 if (Reg == 0)
1320 continue;
1321
1322 // Check for a well-behaved physical register.
1323 if (Reg.isPhysical()) {
1324 if (MO.isUse()) {
1325 // If the physreg has no defs anywhere, it's just an ambient register
1326 // and we can freely move its uses. Alternatively, if it's allocatable,
1327 // it could get allocated to something with a def during allocation.
1328 if (!MRI.isConstantPhysReg(Reg))
1329 return false;
1330 } else {
1331 // A physreg def. We can't remat it.
1332 return false;
1333 }
1334 continue;
1335 }
1336
1337 // Only allow one virtual-register def. There may be multiple defs of the
1338 // same virtual register, though.
1339 if (MO.isDef() && Reg != DefReg)
1340 return false;
1341
1342 // Don't allow any virtual-register uses. Rematting an instruction with
1343 // virtual register uses would length the live ranges of the uses, which
1344 // is not necessarily a good idea, certainly not "trivial".
1345 if (MO.isUse())
1346 return false;
1347 }
1348
1349 // Everything checked out.
1350 return true;
1351}
1352
1354 const MachineFunction *MF = MI.getMF();
1356 bool StackGrowsDown =
1358
1359 unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
1360 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
1361
1362 if (!isFrameInstr(MI))
1363 return 0;
1364
1365 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
1366
1367 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
1368 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
1369 SPAdj = -SPAdj;
1370
1371 return SPAdj;
1372}
1373
1374/// isSchedulingBoundary - Test if the given instruction should be
1375/// considered a scheduling boundary. This primarily includes labels
1376/// and terminators.
1378 const MachineBasicBlock *MBB,
1379 const MachineFunction &MF) const {
1380 // Terminators and labels can't be scheduled around.
1381 if (MI.isTerminator() || MI.isPosition())
1382 return true;
1383
1384 // INLINEASM_BR can jump to another block
1385 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1386 return true;
1387
1388 // Don't attempt to schedule around any instruction that defines
1389 // a stack-oriented pointer, as it's unlikely to be profitable. This
1390 // saves compile time, because it doesn't require every single
1391 // stack slot reference to depend on the instruction that does the
1392 // modification.
1393 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1395 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1396}
1397
1398// Provide a global flag for disabling the PreRA hazard recognizer that targets
1399// may choose to honor.
1402}
1403
1404// Default implementation of CreateTargetRAHazardRecognizer.
1407 const ScheduleDAG *DAG) const {
1408 // Dummy hazard recognizer allows all instructions to issue.
1409 return new ScheduleHazardRecognizer();
1410}
1411
1412// Default implementation of CreateTargetMIHazardRecognizer.
1414 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
1415 return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1416}
1417
1418// Default implementation of CreateTargetPostRAHazardRecognizer.
1421 const ScheduleDAG *DAG) const {
1422 return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1423}
1424
1425// Default implementation of getMemOperandWithOffset.
1427 const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset,
1428 bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const {
1430 LocationSize Width = 0;
1431 if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable,
1432 Width, TRI) ||
1433 BaseOps.size() != 1)
1434 return false;
1435 BaseOp = BaseOps.front();
1436 return true;
1437}
1438
1439//===----------------------------------------------------------------------===//
1440// SelectionDAG latency interface.
1441//===----------------------------------------------------------------------===//
1442
1443std::optional<unsigned>
1445 SDNode *DefNode, unsigned DefIdx,
1446 SDNode *UseNode, unsigned UseIdx) const {
1447 if (!ItinData || ItinData->isEmpty())
1448 return std::nullopt;
1449
1450 if (!DefNode->isMachineOpcode())
1451 return std::nullopt;
1452
1453 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1454 if (!UseNode->isMachineOpcode())
1455 return ItinData->getOperandCycle(DefClass, DefIdx);
1456 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1457 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1458}
1459
1461 SDNode *N) const {
1462 if (!ItinData || ItinData->isEmpty())
1463 return 1;
1464
1465 if (!N->isMachineOpcode())
1466 return 1;
1467
1468 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1469}
1470
1471//===----------------------------------------------------------------------===//
1472// MachineInstr latency interface.
1473//===----------------------------------------------------------------------===//
1474
1476 const MachineInstr &MI) const {
1477 if (!ItinData || ItinData->isEmpty())
1478 return 1;
1479
1480 unsigned Class = MI.getDesc().getSchedClass();
1481 int UOps = ItinData->Itineraries[Class].NumMicroOps;
1482 if (UOps >= 0)
1483 return UOps;
1484
1485 // The # of u-ops is dynamically determined. The specific target should
1486 // override this function to return the right number.
1487 return 1;
1488}
1489
1490/// Return the default expected latency for a def based on it's opcode.
1492 const MachineInstr &DefMI) const {
1493 if (DefMI.isTransient())
1494 return 0;
1495 if (DefMI.mayLoad())
1496 return SchedModel.LoadLatency;
1497 if (isHighLatencyDef(DefMI.getOpcode()))
1498 return SchedModel.HighLatency;
1499 return 1;
1500}
1501
1503 return 0;
1504}
1505
1507 const MachineInstr &MI,
1508 unsigned *PredCost) const {
1509 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1510 // still have a MinLatency property, which getStageLatency checks.
1511 if (!ItinData)
1512 return MI.mayLoad() ? 2 : 1;
1513
1514 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1515}
1516
1518 const MachineInstr &DefMI,
1519 unsigned DefIdx) const {
1520 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1521 if (!ItinData || ItinData->isEmpty())
1522 return false;
1523
1524 unsigned DefClass = DefMI.getDesc().getSchedClass();
1525 std::optional<unsigned> DefCycle =
1526 ItinData->getOperandCycle(DefClass, DefIdx);
1527 return DefCycle && DefCycle <= 1U;
1528}
1529
1531 // TODO: We don't split functions where a section attribute has been set
1532 // since the split part may not be placed in a contiguous region. It may also
1533 // be more beneficial to augment the linker to ensure contiguous layout of
1534 // split functions within the same section as specified by the attribute.
1535 if (MF.getFunction().hasSection())
1536 return false;
1537
1538 // We don't want to proceed further for cold functions
1539 // or functions of unknown hotness. Lukewarm functions have no prefix.
1540 std::optional<StringRef> SectionPrefix = MF.getFunction().getSectionPrefix();
1541 if (SectionPrefix &&
1542 (*SectionPrefix == "unlikely" || *SectionPrefix == "unknown")) {
1543 return false;
1544 }
1545
1546 return true;
1547}
1548
1549std::optional<ParamLoadedValue>
1551 Register Reg) const {
1552 const MachineFunction *MF = MI.getMF();
1555 int64_t Offset;
1556 bool OffsetIsScalable;
1557
1558 // To simplify the sub-register handling, verify that we only need to
1559 // consider physical registers.
1562
1563 if (auto DestSrc = isCopyInstr(MI)) {
1564 Register DestReg = DestSrc->Destination->getReg();
1565
1566 // If the copy destination is the forwarding reg, describe the forwarding
1567 // reg using the copy source as the backup location. Example:
1568 //
1569 // x0 = MOV x7
1570 // call callee(x0) ; x0 described as x7
1571 if (Reg == DestReg)
1572 return ParamLoadedValue(*DestSrc->Source, Expr);
1573
1574 // If the target's hook couldn't describe this copy, give up.
1575 return std::nullopt;
1576 } else if (auto RegImm = isAddImmediate(MI, Reg)) {
1577 Register SrcReg = RegImm->Reg;
1578 Offset = RegImm->Imm;
1580 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
1581 } else if (MI.hasOneMemOperand()) {
1582 // Only describe memory which provably does not escape the function. As
1583 // described in llvm.org/PR43343, escaped memory may be clobbered by the
1584 // callee (or by another thread).
1585 const auto &TII = MF->getSubtarget().getInstrInfo();
1586 const MachineFrameInfo &MFI = MF->getFrameInfo();
1587 const MachineMemOperand *MMO = MI.memoperands()[0];
1588 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1589
1590 // If the address points to "special" memory (e.g. a spill slot), it's
1591 // sufficient to check that it isn't aliased by any high-level IR value.
1592 if (!PSV || PSV->mayAlias(&MFI))
1593 return std::nullopt;
1594
1595 const MachineOperand *BaseOp;
1596 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable,
1597 TRI))
1598 return std::nullopt;
1599
1600 // FIXME: Scalable offsets are not yet handled in the offset code below.
1601 if (OffsetIsScalable)
1602 return std::nullopt;
1603
1604 // TODO: Can currently only handle mem instructions with a single define.
1605 // An example from the x86 target:
1606 // ...
1607 // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
1608 // ...
1609 //
1610 if (MI.getNumExplicitDefs() != 1)
1611 return std::nullopt;
1612
1613 // TODO: In what way do we need to take Reg into consideration here?
1614
1617 Ops.push_back(dwarf::DW_OP_deref_size);
1618 Ops.push_back(MMO->getSize().hasValue() ? MMO->getSize().getValue()
1619 : ~UINT64_C(0));
1620 Expr = DIExpression::prependOpcodes(Expr, Ops);
1621 return ParamLoadedValue(*BaseOp, Expr);
1622 }
1623
1624 return std::nullopt;
1625}
1626
1627// Get the call frame size just before MI.
1629 // Search backwards from MI for the most recent call frame instruction.
1630 MachineBasicBlock *MBB = MI.getParent();
1631 for (auto &AdjI : reverse(make_range(MBB->instr_begin(), MI.getIterator()))) {
1632 if (AdjI.getOpcode() == getCallFrameSetupOpcode())
1633 return getFrameTotalSize(AdjI);
1634 if (AdjI.getOpcode() == getCallFrameDestroyOpcode())
1635 return 0;
1636 }
1637
1638 // If none was found, use the call frame size from the start of the basic
1639 // block.
1640 return MBB->getCallFrameSize();
1641}
1642
1643/// Both DefMI and UseMI must be valid. By default, call directly to the
1644/// itinerary. This may be overriden by the target.
1646 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
1647 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
1648 unsigned DefClass = DefMI.getDesc().getSchedClass();
1649 unsigned UseClass = UseMI.getDesc().getSchedClass();
1650 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1651}
1652
1654 const MachineInstr &MI, unsigned DefIdx,
1655 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1656 assert((MI.isRegSequence() ||
1657 MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1658
1659 if (!MI.isRegSequence())
1660 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1661
1662 // We are looking at:
1663 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1664 assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1665 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1666 OpIdx += 2) {
1667 const MachineOperand &MOReg = MI.getOperand(OpIdx);
1668 if (MOReg.isUndef())
1669 continue;
1670 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1671 assert(MOSubIdx.isImm() &&
1672 "One of the subindex of the reg_sequence is not an immediate");
1673 // Record Reg:SubReg, SubIdx.
1674 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1675 (unsigned)MOSubIdx.getImm()));
1676 }
1677 return true;
1678}
1679
1681 const MachineInstr &MI, unsigned DefIdx,
1682 RegSubRegPairAndIdx &InputReg) const {
1683 assert((MI.isExtractSubreg() ||
1684 MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1685
1686 if (!MI.isExtractSubreg())
1687 return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1688
1689 // We are looking at:
1690 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1691 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1692 const MachineOperand &MOReg = MI.getOperand(1);
1693 if (MOReg.isUndef())
1694 return false;
1695 const MachineOperand &MOSubIdx = MI.getOperand(2);
1696 assert(MOSubIdx.isImm() &&
1697 "The subindex of the extract_subreg is not an immediate");
1698
1699 InputReg.Reg = MOReg.getReg();
1700 InputReg.SubReg = MOReg.getSubReg();
1701 InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1702 return true;
1703}
1704
1706 const MachineInstr &MI, unsigned DefIdx,
1707 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1708 assert((MI.isInsertSubreg() ||
1709 MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1710
1711 if (!MI.isInsertSubreg())
1712 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1713
1714 // We are looking at:
1715 // Def = INSERT_SEQUENCE v0, v1, sub0.
1716 assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1717 const MachineOperand &MOBaseReg = MI.getOperand(1);
1718 const MachineOperand &MOInsertedReg = MI.getOperand(2);
1719 if (MOInsertedReg.isUndef())
1720 return false;
1721 const MachineOperand &MOSubIdx = MI.getOperand(3);
1722 assert(MOSubIdx.isImm() &&
1723 "One of the subindex of the reg_sequence is not an immediate");
1724 BaseReg.Reg = MOBaseReg.getReg();
1725 BaseReg.SubReg = MOBaseReg.getSubReg();
1726
1727 InsertedReg.Reg = MOInsertedReg.getReg();
1728 InsertedReg.SubReg = MOInsertedReg.getSubReg();
1729 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1730 return true;
1731}
1732
1733// Returns a MIRPrinter comment for this machine operand.
1735 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
1736 const TargetRegisterInfo *TRI) const {
1737
1738 if (!MI.isInlineAsm())
1739 return "";
1740
1741 std::string Flags;
1742 raw_string_ostream OS(Flags);
1743
1744 if (OpIdx == InlineAsm::MIOp_ExtraInfo) {
1745 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1746 unsigned ExtraInfo = Op.getImm();
1747 bool First = true;
1748 for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) {
1749 if (!First)
1750 OS << " ";
1751 First = false;
1752 OS << Info;
1753 }
1754
1755 return Flags;
1756 }
1757
1758 int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx);
1759 if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx)
1760 return "";
1761
1762 assert(Op.isImm() && "Expected flag operand to be an immediate");
1763 // Pretty print the inline asm operand descriptor.
1764 unsigned Flag = Op.getImm();
1765 const InlineAsm::Flag F(Flag);
1766 OS << F.getKindName();
1767
1768 unsigned RCID;
1769 if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RCID)) {
1770 if (TRI) {
1771 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1772 } else
1773 OS << ":RC" << RCID;
1774 }
1775
1776 if (F.isMemKind()) {
1777 InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID();
1778 OS << ":" << InlineAsm::getMemConstraintName(MCID);
1779 }
1780
1781 unsigned TiedTo;
1782 if (F.isUseOperandTiedToDef(TiedTo))
1783 OS << " tiedto:$" << TiedTo;
1784
1785 if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isRegUseKind()) &&
1786 F.getRegMayBeFolded())
1787 OS << " foldable";
1788
1789 return Flags;
1790}
1791
1793
1795 Function &F, std::vector<outliner::Candidate> &Candidates) const {
1796 // Include target features from an arbitrary candidate for the outlined
1797 // function. This makes sure the outlined function knows what kinds of
1798 // instructions are going into it. This is fine, since all parent functions
1799 // must necessarily support the instructions that are in the outlined region.
1800 outliner::Candidate &FirstCand = Candidates.front();
1801 const Function &ParentFn = FirstCand.getMF()->getFunction();
1802 if (ParentFn.hasFnAttribute("target-features"))
1803 F.addFnAttr(ParentFn.getFnAttribute("target-features"));
1804 if (ParentFn.hasFnAttribute("target-cpu"))
1805 F.addFnAttr(ParentFn.getFnAttribute("target-cpu"));
1806
1807 // Set nounwind, so we don't generate eh_frame.
1808 if (llvm::all_of(Candidates, [](const outliner::Candidate &C) {
1809 return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind);
1810 }))
1811 F.addFnAttr(Attribute::NoUnwind);
1812}
1813
1817 unsigned Flags) const {
1818 MachineInstr &MI = *MIT;
1819
1820 // NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets
1821 // have support for outlining those. Special-case that here.
1822 if (MI.isCFIInstruction())
1823 // Just go right to the target implementation.
1824 return getOutliningTypeImpl(MMI, MIT, Flags);
1825
1826 // Be conservative about inline assembly.
1827 if (MI.isInlineAsm())
1829
1830 // Labels generally can't safely be outlined.
1831 if (MI.isLabel())
1833
1834 // Don't let debug instructions impact analysis.
1835 if (MI.isDebugInstr())
1837
1838 // Some other special cases.
1839 switch (MI.getOpcode()) {
1840 case TargetOpcode::IMPLICIT_DEF:
1841 case TargetOpcode::KILL:
1842 case TargetOpcode::LIFETIME_START:
1843 case TargetOpcode::LIFETIME_END:
1845 default:
1846 break;
1847 }
1848
1849 // Is this a terminator for a basic block?
1850 if (MI.isTerminator()) {
1851 // If this is a branch to another block, we can't outline it.
1852 if (!MI.getParent()->succ_empty())
1854
1855 // Don't outline if the branch is not unconditional.
1856 if (isPredicated(MI))
1858 }
1859
1860 // Make sure none of the operands of this instruction do anything that
1861 // might break if they're moved outside their current function.
1862 // This includes MachineBasicBlock references, BlockAddressses,
1863 // Constant pool indices and jump table indices.
1864 //
1865 // A quick note on MO_TargetIndex:
1866 // This doesn't seem to be used in any of the architectures that the
1867 // MachineOutliner supports, but it was still filtered out in all of them.
1868 // There was one exception (RISC-V), but MO_TargetIndex also isn't used there.
1869 // As such, this check is removed both here and in the target-specific
1870 // implementations. Instead, we assert to make sure this doesn't
1871 // catch anyone off-guard somewhere down the line.
1872 for (const MachineOperand &MOP : MI.operands()) {
1873 // If you hit this assertion, please remove it and adjust
1874 // `getOutliningTypeImpl` for your target appropriately if necessary.
1875 // Adding the assertion back to other supported architectures
1876 // would be nice too :)
1877 assert(!MOP.isTargetIndex() && "This isn't used quite yet!");
1878
1879 // CFI instructions should already have been filtered out at this point.
1880 assert(!MOP.isCFIIndex() && "CFI instructions handled elsewhere!");
1881
1882 // PrologEpilogInserter should've already run at this point.
1883 assert(!MOP.isFI() && "FrameIndex instructions should be gone by now!");
1884
1885 if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI())
1887 }
1888
1889 // If we don't know, delegate to the target-specific hook.
1890 return getOutliningTypeImpl(MMI, MIT, Flags);
1891}
1892
1894 unsigned &Flags) const {
1895 // Some instrumentations create special TargetOpcode at the start which
1896 // expands to special code sequences which must be present.
1898 if (First == MBB.end())
1899 return true;
1900
1901 if (First->getOpcode() == TargetOpcode::FENTRY_CALL ||
1902 First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER)
1903 return false;
1904
1905 // Some instrumentations create special pseudo-instructions at or just before
1906 // the end that must be present.
1907 auto Last = MBB.getLastNonDebugInstr();
1908 if (Last->getOpcode() == TargetOpcode::PATCHABLE_RET ||
1909 Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
1910 return false;
1911
1912 if (Last != First && Last->isReturn()) {
1913 --Last;
1914 if (Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT ||
1915 Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
1916 return false;
1917 }
1918 return true;
1919}
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
SmallVector< int16_t, MAX_SRC_OPERANDS_NUM > OperandIndices
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file contains constants used for implementing Dwarf debug support.
uint64_t Size
static Function * getFunction(Constant *C)
Definition: Evaluator.cpp:235
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file contains some functions that are useful when dealing with strings.
static bool isAsmComment(const char *Str, const MCAsmInfo &MAI)
static void transferImplicitOperands(MachineInstr *MI, const TargetRegisterInfo *TRI)
transferImplicitOperands - MI is a pseudo-instruction, and the lowered replacement instructions immed...
static std::pair< bool, bool > mustSwapOperands(unsigned Pattern)
static const TargetRegisterClass * canFoldCopy(const MachineInstr &MI, const TargetInstrInfo &TII, unsigned FoldIdx)
static void foldInlineAsmMemOperand(MachineInstr *MI, unsigned OpNo, int FI, const TargetInstrInfo &TII)
static cl::opt< bool > DisableHazardRecognizer("disable-sched-hazard", cl::Hidden, cl::init(false), cl::desc("Disable hazard detection during preRA scheduling"))
static MachineInstr * foldPatchpoint(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, int FrameIndex, const TargetInstrInfo &TII)
This file describes how to lower LLVM code to machine code.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
DWARF expression.
static void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
This class represents an Operation in the Expression.
bool isLittleEndian() const
Layout endianness...
Definition: DataLayout.h:197
A debug info location.
Definition: DebugLoc.h:33
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
std::optional< StringRef > getSectionPrefix() const
Get the section prefix for this function.
Definition: Function.cpp:1173
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.cpp:766
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:369
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:731
bool hasSection() const
Check if this global has a custom object file section.
Definition: GlobalObject.h:109
static std::vector< StringRef > getExtraInfoNames(unsigned ExtraInfo)
Definition: InlineAsm.h:443
static StringRef getMemConstraintName(ConstraintCode C)
Definition: InlineAsm.h:467
Itinerary data supplied by a subtarget to be used by a target.
std::optional< unsigned > getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const
Return the cycle for the given class and operand.
unsigned getStageLatency(unsigned ItinClassIndx) const
Return the total stage latency of the given class.
std::optional< unsigned > getOperandLatency(unsigned DefClass, unsigned DefIdx, unsigned UseClass, unsigned UseIdx) const
Compute and return the use operand latency of a given itinerary class and operand index if the value ...
const InstrItinerary * Itineraries
Array of itineraries selected.
bool isEmpty() const
Returns true if there are no itineraries.
bool hasValue() const
TypeSize getValue() const
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition: MCAsmInfo.h:56
virtual unsigned getMaxInstLength(const MCSubtargetInfo *STI=nullptr) const
Returns the maximum possible encoded instruction size in bytes.
Definition: MCAsmInfo.h:602
StringRef getCommentString() const
Definition: MCAsmInfo.h:615
const char * getSeparatorString() const
Definition: MCAsmInfo.h:610
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getSchedClass() const
Return the scheduling class for this instruction.
Definition: MCInstrDesc.h:600
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:237
ArrayRef< MCOperandInfo > operands() const
Definition: MCInstrDesc.h:239
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:248
bool isCommutable() const
Return true if this may be a 2- or 3-address instruction (of the form "X = op Y, Z,...
Definition: MCInstrDesc.h:481
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:63
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1543
Set of metadata that should be preserved when using BuildMI().
instr_iterator instr_begin()
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
iterator getFirstNonDebugInstr(bool SkipPseudoOp=true)
Returns an iterator to the first non-debug instruction in the basic block, or end().
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
void removeSuccessor(MachineBasicBlock *Succ, bool NormalizeSuccProbs=false)
Remove successor from the successors list of this MachineBasicBlock.
iterator getLastNonDebugInstr(bool SkipPseudoOp=true)
Returns an iterator to the last non-debug instruction in the basic block, or end().
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
unsigned getCallFrameSize() const
Return the call frame size on entry to this basic block.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isImmutableObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to an immutable object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
bool hasProperty(Property P) const
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineInstr & cloneMachineInstrBundle(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig)
Clones instruction or the whole instruction bundle Orig and insert into MBB before InsertBefore.
MachineInstr * CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, bool NoImplicit=false)
CreateMachineInstr - Allocate a new MachineInstr.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineFunctionProperties & getProperties() const
Get the function properties.
MachineInstr * CloneMachineInstr(const MachineInstr *Orig)
Create a new MachineInstr which is a copy of Orig, identical in all ways except the instruction has n...
void eraseCallSiteInfo(const MachineInstr *MI)
Following functions update call site info.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & setPCSections(MDNode *MD) const
const MachineInstrBuilder & copyImplicitOps(const MachineInstr &OtherMI) const
Copy all the implicit operands from OtherMI onto this one.
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:575
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:347
void setFlags(unsigned flags)
Definition: MachineInstr.h:410
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:578
void setDebugInstrNum(unsigned Num)
Set instruction number of this MachineInstr.
Definition: MachineInstr.h:550
mmo_iterator memoperands_end() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:813
iterator_range< mop_iterator > explicit_operands()
Definition: MachineInstr.h:697
unsigned peekDebugInstrNum() const
Examine the instruction number of this MachineInstr.
Definition: MachineInstr.h:546
void setMemRefs(MachineFunction &MF, ArrayRef< MachineMemOperand * > MemRefs)
Assign this MachineInstr's memory reference descriptor list.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
bool isCFIInstruction() const
bool isNotDuplicable(QueryType Type=AnyInBundle) const
Return true if this instruction cannot be safely duplicated.
void clearFlag(MIFlag Flag)
clearFlag - Clear a MI flag.
Definition: MachineInstr.h:419
void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:806
void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI)
Clone another MachineInstr's pre- and post- instruction symbols and replace ours with it.
bool isIdenticalTo(const MachineInstr &Other, MICheckType Check=CheckDefs) const
Return true if this instruction is identical to Other.
const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
ArrayRef< MachineMemOperand * > memoperands() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:788
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:585
uint32_t getFlags() const
Return the MI flags bitvector.
Definition: MachineInstr.h:392
bool canFoldAsLoad(QueryType Type=IgnoreBundle) const
Return true for instructions that can be folded as memory operands in other instructions.
const TargetRegisterClass * getRegClassConstraint(unsigned OpIdx, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const
Compute the static register class constraint for operand OpIdx.
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
LocationSize getSize() const
Return the size in bytes of the memory reference.
const PseudoSourceValue * getPseudoValue() const
Flags
Flags values. These may be or'd together.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
This class contains meta information specific to a module.
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
void setIsInternalRead(bool Val=true)
void setImm(int64_t immVal)
int64_t getImm() const
void setIsRenamable(bool Val=true)
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void setIsKill(bool Val=true)
bool isRenamable() const
isRenamable - Returns true if this register may be renamed, i.e.
void setMBB(MachineBasicBlock *MBB)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
MI-level patchpoint operands.
Definition: StackMaps.h:76
Special value supplied for machine level alias analysis.
virtual bool mayAlias(const MachineFrameInfo *) const
Return true if the memory pointed to by this PseudoSourceValue can ever alias an LLVM IR Value.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition: Register.h:95
Represents one node in the SelectionDAG.
bool isMachineOpcode() const
Test if this node has a post-isel opcode, directly corresponding to a MachineInstr opcode.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
HazardRecognizer - This determines whether or not an instruction can be issued this cycle,...
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
MI-level stackmap operands.
Definition: StackMaps.h:35
MI-level Statepoint operands.
Definition: StackMaps.h:158
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:150
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:144
Information about stack frame layout on the target.
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
int alignSPAdjust(int SPAdj) const
alignSPAdjust - This method aligns the stack adjustment to the correct alignment.
TargetInstrInfo - Interface to description of machine instruction set.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const
Target-dependent implementation for foldMemoryOperand.
virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, const MachineInstr &DefMI, unsigned DefIdx) const
Compute operand latency of a def of 'Reg'.
virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const
This is an architecture-specific helper function of reassociateOps.
virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr &MI) const
Return the number of u-operations the given machine instruction will be decoded to on the target cpu.
virtual int getSPAdjust(const MachineInstr &MI) const
Returns the actual stack pointer adjustment made by an instruction as part of a call sequence.
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const
Load the specified register of the given register class from the specified stack frame index.
virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const
Delete the instruction OldInst and everything after it, replacing it with an unconditional branch to ...
virtual bool PredicateInstruction(MachineInstr &MI, ArrayRef< MachineOperand > Pred) const
Convert the instruction into a predicated instruction.
bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const
Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
virtual outliner::InstrType getOutliningTypeImpl(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MIT, unsigned Flags) const
Target-dependent implementation for getOutliningTypeImpl.
virtual bool getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const
Target-dependent implementation of getInsertSubregInputs.
outliner::InstrType getOutliningType(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MIT, unsigned Flags) const
Returns how or if MIT should be outlined.
virtual bool isThroughputPattern(unsigned Pattern) const
Return true when a code sequence can improve throughput.
virtual std::pair< unsigned, unsigned > getPatchpointUnfoldableRange(const MachineInstr &MI) const
For a patchpoint, stackmap, or statepoint intrinsic, return the range of operands which can't be fold...
virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const
Store the specified register of the given register class to the specified stack frame index.
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual void mergeOutliningCandidateAttributes(Function &F, std::vector< outliner::Candidate > &Candidates) const
Optional target hook to create the LLVM IR attributes for the outlined function.
bool isUnpredicatedTerminator(const MachineInstr &MI) const
Returns true if the instruction is a terminator instruction that has not been predicated.
virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
Insert a noop into the instruction stream at the specified point.
bool isFrameInstr(const MachineInstr &I) const
Returns true if the argument is a frame pseudo instruction.
virtual bool getRegSequenceLikeInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl< RegSubRegPairAndIdx > &InputRegs) const
Target-dependent implementation of getRegSequenceInputs.
virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, unsigned &Size, unsigned &Offset, const MachineFunction &MF) const
Compute the size in bytes and offset within a stack slot of a spilled register or subregister.
virtual ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *, const ScheduleDAGMI *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a store to a stack slot, return true along with the FrameInd...
virtual bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const
Return true when \P Inst has reassociable operands in the same \P MBB.
virtual unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI, const TargetSubtargetInfo *STI=nullptr) const
Measure the specified inline asm to determine an approximation of its length.
virtual void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstIdxForVirtReg) const
When getMachineCombinerPatterns() finds patterns, this function generates the instructions that could...
virtual std::optional< ParamLoadedValue > describeLoadedValue(const MachineInstr &MI, Register Reg) const
Produce the expression describing the MI loading a value into the physical register Reg.
void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const
This function defines the logic to lower COPY instruction to target specific instruction(s).
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct load from a stack slot, return the virtual or physic...
MachineInstr * foldMemoryOperand(MachineInstr &MI, ArrayRef< unsigned > Ops, int FI, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const
Attempt to fold a load or store of the specified stack slot into the specified machine instruction fo...
virtual ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const
Insert branch code into the end of the specified MachineBasicBlock.
unsigned getCallFrameSetupOpcode() const
These methods return the opcode of the frame setup/destroy instructions if they exist (-1 otherwise).
virtual bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const
Return true when there is potentially a faster code sequence for an instruction chain ending in Root.
virtual MCInst getNop() const
Return the noop instruction to use for a noop.
unsigned getCallFrameSizeAt(MachineInstr &MI) const
virtual MachineInstr & duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const
Clones instruction or the whole instruction bundle Orig and insert into MBB before InsertBefore.
std::pair< unsigned, unsigned > getReassociationOpcodes(unsigned Pattern, const MachineInstr &Root, const MachineInstr &Prev) const
Reassociation of some instructions requires inverse operations (e.g.
virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, unsigned &Flags) const
Optional target hook that returns true if MBB is safe to outline from, and returns any target-specifi...
virtual void getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern, std::array< unsigned, 5 > &OperandIndices) const
The returned array encodes the operand index for each parameter because the operands may be commuted;...
int64_t getFrameTotalSize(const MachineInstr &I) const
Returns the total frame size, which is made up of the space set up inside the pair of frame start-sto...
MachineInstr * commuteInstruction(MachineInstr &MI, bool NewMI=false, unsigned OpIdx1=CommuteAnyOperandIndex, unsigned OpIdx2=CommuteAnyOperandIndex) const
This method commutes the operands of the given machine instruction MI.
virtual std::optional< unsigned > getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const
virtual bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert=false) const
Return true when \P Inst is both associative and commutative.
virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const
Re-issue the specified 'original' instruction at the specific location targeting a new destination re...
virtual std::optional< unsigned > getInverseOpcode(unsigned Opcode) const
Return the inverse operation opcode if it exists for \P Opcode (e.g.
virtual void insertNoops(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Quantity) const
Insert noops into the instruction stream at the specified point.
unsigned getCallFrameDestroyOpcode() const
int64_t getFrameSize(const MachineInstr &I) const
Returns size of the frame associated with the given frame instruction.
virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual bool isPredicated(const MachineInstr &MI) const
Returns true if the instruction is already predicated.
bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const
Build the equivalent inputs of a INSERT_SUBREG for the given MI and DefIdx.
virtual ~TargetInstrInfo()
virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost=nullptr) const
Compute the instruction latency of a given instruction.
virtual bool produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1, const MachineRegisterInfo *MRI=nullptr) const
Return true if two machine instructions would produce identical values.
std::optional< DestSourcePair > isCopyInstr(const MachineInstr &MI) const
If the specific machine instruction is a instruction that moves/copies value from one register to ano...
bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const
Return true if the input \P Inst is part of a chain of dependent ops that are suitable for reassociat...
virtual bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const
Test if the given instruction should be considered a scheduling boundary.
virtual bool getMemOperandsWithOffsetWidth(const MachineInstr &MI, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const
Get zero or more base operands and the byte offset of an instruction that reads/writes memory.
virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const
Emit instructions to copy a pair of physical registers.
virtual unsigned getPredicationCost(const MachineInstr &MI) const
virtual CombinerObjective getCombinerObjective(unsigned Pattern) const
Return the objective of a combiner pattern.
virtual MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const
This method commutes the operands of the given machine instruction MI.
virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const
Return true if the function is a viable candidate for machine function splitting.
virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const
Return a strategy that MachineCombiner must use when creating traces.
bool getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl< RegSubRegPairAndIdx > &InputRegs) const
Build the equivalent inputs of a REG_SEQUENCE for the given MI and DefIdx.
virtual bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a load from a stack slot, return true along with the FrameIn...
virtual std::optional< RegImmPair > isAddImmediate(const MachineInstr &MI, Register Reg) const
If the specific machine instruction is an instruction that adds an immediate value and a register,...
unsigned defaultDefLatency(const MCSchedModel &SchedModel, const MachineInstr &DefMI) const
Return the default expected latency for a def based on its opcode.
void reassociateOps(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, ArrayRef< unsigned > OperandIndices, DenseMap< unsigned, unsigned > &InstrIdxForVirtReg) const
Attempt to reassociate \P Root and \P Prev according to \P Pattern to reduce critical path length.
static const unsigned CommuteAnyOperandIndex
virtual bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const
Return true when \P Inst has reassociable sibling.
virtual std::string createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const
virtual bool isHighLatencyDef(int opc) const
Return true if this opcode has high latency to its result.
static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, unsigned CommutableOpIdx1, unsigned CommutableOpIdx2)
Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable operand indices to (ResultIdx1,...
bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const
Build the equivalent inputs of a EXTRACT_SUBREG for the given MI and DefIdx.
virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const
Target-dependent implementation of getExtractSubregInputs.
bool usePreRAHazardRecognizer() const
Provide a global flag for disabling the PreRA hazard recognizer that targets may choose to honor.
virtual const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
bool getMemOperandWithOffset(const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const
Get the base operand and byte offset of an instruction that reads/writes memory.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
const Triple & getTargetTriple() const
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
bool hasSubClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a sub-class of or equal to this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
const InstrItineraryData * getInstrItineraries() const
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, XROS, or DriverKit).
Definition: Triple.h:568
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ Define
Register definition.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
InstrType
Represents how an instruction should be mapped by the outliner.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
@ Length
Definition: DWP.cpp:480
MachineTraceStrategy
Strategies for selecting traces.
@ TS_MinInstrCount
Select the trace through a block that has the fewest instructions.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
std::pair< MachineOperand, DIExpression * > ParamLoadedValue
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
CombinerObjective
The combiner's goal may differ based on which pattern it is attempting to optimize.
VirtRegInfo AnalyzeVirtRegInBundle(MachineInstr &MI, Register Reg, SmallVectorImpl< std::pair< MachineInstr *, unsigned > > *Ops=nullptr)
AnalyzeVirtRegInBundle - Analyze how the current instruction or bundle uses a virtual register.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
unsigned getKillRegState(bool B)
DWARFExpression::Operation Op
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
Machine model for scheduling, bundling, and heuristics.
Definition: MCSchedule.h:256
unsigned LoadLatency
Definition: MCSchedule.h:297
unsigned HighLatency
Definition: MCSchedule.h:304
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A pair composed of a pair of a register and a sub-register index, and another sub-register index.
A pair composed of a register and a sub-register index.
VirtRegInfo - Information about a virtual register used by a set of operands.
bool Reads
Reads - One of the operands read the virtual register.
bool Writes
Writes - One of the operands writes the virtual register.
An individual sequence of instructions to be replaced with a call to an outlined function.
MachineFunction * getMF() const