44 cl::desc(
"Disable hazard detection during preRA scheduling"));
48 cl::desc(
"Enable reassociation of accumulation chains"));
52 cl::desc(
"Minimum length of accumulator chains "
53 "required for the optimization to kick in"));
57 cl::desc(
"Maximum number of branches in the accumulator tree"));
62 unsigned OpNum)
const {
63 if (OpNum >=
MCID.getNumOperands())
74 return TRI.getRegClass(RegClass);
88 unsigned Quantity)
const {
89 for (
unsigned i = 0; i < Quantity; ++i)
116 bool AtInsnStart =
true;
119 for (; *Str; ++Str) {
129 if (AtInsnStart && !
isSpace(
static_cast<unsigned char>(*Str))) {
130 unsigned AddLength = MaxInstLength;
131 if (strncmp(Str,
".space", 6) == 0) {
134 SpaceSize = strtol(Str + 6, &EStr, 10);
135 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
136 while (*EStr !=
'\n' &&
isSpace(
static_cast<unsigned char>(*EStr)))
138 if (*EStr ==
'\0' || *EStr ==
'\n' ||
140 AddLength = SpaceSize;
158 while (!
MBB->succ_empty())
159 MBB->removeSuccessor(
MBB->succ_begin());
168 if (
MI->shouldUpdateAdditionalCallInfo())
169 MBB->getParent()->eraseAdditionalCallInfo(&*
MI);
176 MBB->addSuccessor(NewDest);
180 bool NewMI,
unsigned Idx1,
181 unsigned Idx2)
const {
183 bool HasDef =
MCID.getNumDefs();
184 if (HasDef && !
MI.getOperand(0).isReg())
188 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
189 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
191 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
192 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
193 assert(
MI.getOperand(Idx1).isReg() &&
MI.getOperand(Idx2).isReg() &&
194 "This only knows how to commute register operands so far");
199 unsigned SubReg0 = HasDef ?
MI.getOperand(0).getSubReg() : 0;
200 unsigned SubReg1 =
MI.getOperand(Idx1).getSubReg();
201 unsigned SubReg2 =
MI.getOperand(Idx2).getSubReg();
202 bool Reg1IsKill =
MI.getOperand(Idx1).isKill();
203 bool Reg2IsKill =
MI.getOperand(Idx2).isKill();
204 bool Reg1IsUndef =
MI.getOperand(Idx1).isUndef();
205 bool Reg2IsUndef =
MI.getOperand(Idx2).isUndef();
206 bool Reg1IsInternal =
MI.getOperand(Idx1).isInternalRead();
207 bool Reg2IsInternal =
MI.getOperand(Idx2).isInternalRead();
210 bool Reg1IsRenamable =
211 Reg1.
isPhysical() ?
MI.getOperand(Idx1).isRenamable() :
false;
212 bool Reg2IsRenamable =
213 Reg2.
isPhysical() ?
MI.getOperand(Idx2).isRenamable() :
false;
220 if (HasDef &&
MI.hasImplicitDef()) {
223 if ((ImplReg.
isVirtual() && ImplReg == Reg0) ||
225 TRI.isSubRegisterEq(ImplReg, Reg0)))
226 UpdateImplicitDefIdx.
push_back(OpNo +
MI.getNumExplicitOperands());
232 if (HasDef && Reg0 == Reg1 &&
237 }
else if (HasDef && Reg0 == Reg2 &&
248 CommutedMI = MF.CloneMachineInstr(&
MI);
256 for (
unsigned Idx : UpdateImplicitDefIdx)
280 unsigned OpIdx2)
const {
287 "Precondition violation: MI must be commutable.");
294 unsigned &ResultIdx2,
295 unsigned CommutableOpIdx1,
296 unsigned CommutableOpIdx2) {
299 ResultIdx1 = CommutableOpIdx1;
300 ResultIdx2 = CommutableOpIdx2;
302 if (ResultIdx2 == CommutableOpIdx1)
303 ResultIdx1 = CommutableOpIdx2;
304 else if (ResultIdx2 == CommutableOpIdx2)
305 ResultIdx1 = CommutableOpIdx1;
309 if (ResultIdx1 == CommutableOpIdx1)
310 ResultIdx2 = CommutableOpIdx2;
311 else if (ResultIdx1 == CommutableOpIdx2)
312 ResultIdx2 = CommutableOpIdx1;
318 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
319 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
326 unsigned &SrcOpIdx2)
const {
328 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
331 if (!
MCID.isCommutable())
336 unsigned CommutableOpIdx1 =
MCID.getNumDefs();
337 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
339 CommutableOpIdx1, CommutableOpIdx2))
342 if (!
MI.getOperand(SrcOpIdx1).isReg() || !
MI.getOperand(SrcOpIdx2).isReg())
349 if (!
MI.isTerminator())
return false;
352 if (
MI.isBranch() && !
MI.isBarrier())
354 if (!
MI.isPredicable())
361 bool MadeChange =
false;
364 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
367 if (!
MI.isPredicable())
370 for (
unsigned j = 0, i = 0, e =
MI.getNumOperands(); i != e; ++i) {
371 if (
MCID.operands()[i].isPredicate()) {
376 }
else if (MO.
isImm()) {
379 }
else if (MO.
isMBB()) {
380 MO.
setMBB(Pred[j].getMBB());
394 oe =
MI.memoperands_end();
396 if ((*o)->isLoad() &&
400 return Accesses.size() != StartSize;
408 oe =
MI.memoperands_end();
410 if ((*o)->isStore() &&
414 return Accesses.size() != StartSize;
418 unsigned SubIdx,
unsigned &
Size,
426 unsigned BitSize =
TRI.getSubRegIdxSize(SubIdx);
431 int BitOffset =
TRI.getSubRegIdxOffset(SubIdx);
432 if (BitOffset < 0 || BitOffset % 8)
451 MI->substituteRegister(
MI->getOperand(0).getReg(), DestReg, SubIdx,
TRI);
471 "Instruction cannot be duplicated");
473 return MF.cloneMachineInstrBundle(
MBB, InsertBefore, Orig);
481 assert(
TII.isCopyInstr(
MI) &&
"MI must be a COPY instruction");
482 if (
MI.getNumOperands() != 2)
484 assert(FoldIdx<2 &&
"FoldIdx refers no nonexistent operand");
521 DefMI =
MRI->getVRegDef(FoldAsLoadDefReg);
523 bool SawStore =
false;
524 if (!
DefMI->isSafeToMove(SawStore))
529 for (
unsigned i = 0, e =
MI.getNumOperands(); i != e; ++i) {
534 if (Reg != FoldAsLoadDefReg)
541 if (SrcOperandIds.
empty())
546 FoldAsLoadDefReg = 0;
553std::pair<unsigned, unsigned>
555 switch (
MI.getOpcode()) {
556 case TargetOpcode::STACKMAP:
559 case TargetOpcode::PATCHPOINT:
563 case TargetOpcode::STATEPOINT:
574 unsigned StartIdx = 0;
575 unsigned NumDefs = 0;
577 std::tie(NumDefs, StartIdx) =
TII.getPatchpointUnfoldableRange(
MI);
579 unsigned DefToFoldIdx =
MI.getNumOperands();
583 for (
unsigned Op :
Ops) {
585 assert(DefToFoldIdx ==
MI.getNumOperands() &&
"Folding multiple defs");
587 }
else if (
Op < StartIdx) {
590 if (
MI.getOperand(
Op).isTied())
595 MF.CreateMachineInstr(
TII.get(
MI.getOpcode()),
MI.getDebugLoc(),
true);
599 for (
unsigned i = 0; i < StartIdx; ++i)
600 if (i != DefToFoldIdx)
601 MIB.
add(
MI.getOperand(i));
603 for (
unsigned i = StartIdx, e =
MI.getNumOperands(); i < e; ++i) {
606 (void)
MI.isRegTiedToDefOperand(i, &TiedTo);
609 assert(TiedTo == e &&
"Cannot fold tied operands");
611 unsigned SpillOffset;
616 TII.getStackSlotRange(RC, MO.
getSubReg(), SpillSize, SpillOffset, MF);
619 MIB.
addImm(StackMaps::IndirectMemRefOp);
626 assert(TiedTo < NumDefs &&
"Bad tied operand");
627 if (TiedTo > DefToFoldIdx)
639 if (
MI->getOperand(OpNo).isTied()) {
640 unsigned TiedTo =
MI->findTiedOperandIdx(OpNo);
641 MI->untieRegOperand(OpNo);
647 TII.getFrameIndexOperands(NewOps, FI);
648 assert(!NewOps.
empty() &&
"getFrameIndexOperands didn't create any operands");
649 MI->removeOperand(OpNo);
650 MI->insert(
MI->operands_begin() + OpNo, NewOps);
665 assert(
MI.isInlineAsm() &&
"wrong opcode");
668 unsigned Op =
Ops[0];
669 assert(
Op &&
"should never be first operand");
670 assert(
MI.getOperand(
Op).isReg() &&
"shouldn't be folding non-reg operands");
672 if (!
MI.mayFoldInlineAsmRegOp(
Op))
712 assert(
MBB &&
"foldMemoryOperand needs an inserted instruction");
728 unsigned SubRegSize =
TRI.getSubRegIdxSize(
SubReg);
729 if (SubRegSize > 0 && !(SubRegSize % 8))
730 OpSize = SubRegSize / 8;
733 MemSize = std::max(MemSize, OpSize);
737 assert(MemSize &&
"Did not expect a zero-sized stack slot");
741 if (
MI.getOpcode() == TargetOpcode::STACKMAP ||
742 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
743 MI.getOpcode() == TargetOpcode::STATEPOINT) {
747 MBB->insert(
MI, NewMI);
748 }
else if (
MI.isInlineAsm()) {
760 "Folded a def to a non-store!");
763 "Folded a use to a non-load!");
809 assert(
MI.getOperand(
OpIdx).isUse() &&
"Folding load into def!");
819 if ((
MI.getOpcode() == TargetOpcode::STACKMAP ||
820 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
821 MI.getOpcode() == TargetOpcode::STATEPOINT) &&
826 NewMI = &*
MBB.insert(
MI, NewMI);
838 if (
MI.memoperands_empty()) {
862 CopyMI->addOperand(MO);
868 if (MO.isKill() &&
TRI->regsOverlap(DstReg, MO.getReg()))
869 CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(
false);
875 if (
MI->allDefsAreDead()) {
876 MI->setDesc(
get(TargetOpcode::KILL));
884 if (IdentityCopy || SrcMO.
isUndef()) {
887 if (SrcMO.
isUndef() ||
MI->getNumOperands() > 2) {
890 MI->setDesc(
get(TargetOpcode::KILL));
894 MI->eraseFromParent();
903 if (
MI->getNumOperands() > 2)
905 MI->eraseFromParent();
919 MI1 =
MRI.getUniqueVRegDef(Op1.
getReg());
921 MI2 =
MRI.getUniqueVRegDef(Op2.
getReg());
928 unsigned Opcode2)
const {
933 bool &Commuted)
const {
968 bool &Commuted)
const {
980 unsigned CombineOpc = 0) {
987 if (!
MI ||
MI->getParent() != &
MBB ||
988 (
MI->getOpcode() != CombineOpc && CombineOpc != 0))
1010 unsigned AccumulatorOpcode = CurrentInstr->
getOpcode();
1011 std::optional<unsigned> ChainStartOpCode =
1014 if (!ChainStartOpCode.has_value())
1021 while (CurrentInstr &&
1028 if (CurrentInstr->
getOpcode() == AccumulatorOpcode &&
1065 for (
const auto &
I :
MBB) {
1066 if (
I.getOpcode() ==
Opc &&
1067 !ReductionChain.
contains(
I.getOperand(0).getReg()))
1089 for (
unsigned int i = 1; i <= (RegistersToReduce.
size() / 2); i += 2) {
1090 auto RHS = RegistersToReduce[i - 1];
1091 auto LHS = RegistersToReduce[i];
1094 if (RegistersToReduce.
size() == 2)
1098 auto NewVR =
MRI.createVirtualRegister(
1102 InstrIdxForVirtReg.
insert(std::make_pair(Dest, InsInstrs.
size()));
1117 if (RegistersToReduce.
size() % 2 != 0)
1118 NewRegs.
push_back(RegistersToReduce[RegistersToReduce.
size() - 1]);
1120 RegistersToReduce = NewRegs;
1146 bool DoRegPressureReduce)
const {
1183std::pair<unsigned, unsigned>
1193 if (AssocCommutRoot && AssocCommutPrev) {
1203 "Incorrectly matched pattern");
1204 unsigned AssocCommutOpcode = Root.
getOpcode();
1206 if (!AssocCommutRoot)
1207 std::swap(AssocCommutOpcode, InverseOpcode);
1235 if (!AssocCommutRoot && AssocCommutPrev)
1236 return {AssocCommutOpcode, InverseOpcode};
1237 if (AssocCommutRoot && !AssocCommutPrev)
1238 return {InverseOpcode, InverseOpcode};
1239 if (!AssocCommutRoot && !AssocCommutPrev)
1240 return {InverseOpcode, AssocCommutOpcode};
1243 if (!AssocCommutRoot && AssocCommutPrev)
1244 return {AssocCommutOpcode, InverseOpcode};
1245 if (AssocCommutRoot && !AssocCommutPrev)
1246 return {InverseOpcode, AssocCommutOpcode};
1247 if (!AssocCommutRoot && !AssocCommutPrev)
1248 return {InverseOpcode, InverseOpcode};
1251 if (!AssocCommutRoot && AssocCommutPrev)
1252 return {InverseOpcode, InverseOpcode};
1253 if (AssocCommutRoot && !AssocCommutPrev)
1254 return {AssocCommutOpcode, InverseOpcode};
1255 if (!AssocCommutRoot && !AssocCommutPrev)
1256 return {InverseOpcode, AssocCommutOpcode};
1259 if (!AssocCommutRoot && AssocCommutPrev)
1260 return {InverseOpcode, InverseOpcode};
1261 if (AssocCommutRoot && !AssocCommutPrev)
1262 return {InverseOpcode, AssocCommutOpcode};
1263 if (!AssocCommutRoot && !AssocCommutPrev)
1264 return {AssocCommutOpcode, InverseOpcode};
1278 return {
false,
false};
1280 return {
true,
false};
1282 return {
true,
true};
1284 return {
true,
true};
1338 MRI.constrainRegClass(RegA, RC);
1340 MRI.constrainRegClass(RegB, RC);
1342 MRI.constrainRegClass(RegX, RC);
1344 MRI.constrainRegClass(RegY, RC);
1346 MRI.constrainRegClass(RegC, RC);
1352 unsigned SubRegNewVR = 0;
1353 InstrIdxForVirtReg.
insert(std::make_pair(NewVR, 0));
1356 bool KillA = OpA.
isKill();
1357 bool KillX = OpX.
isKill();
1358 bool KillY = OpY.
isKill();
1359 bool KillNewVR =
true;
1363 if (SwapPrevOperands) {
1369 unsigned PrevFirstOpIdx, PrevSecondOpIdx;
1370 unsigned RootFirstOpIdx, RootSecondOpIdx;
1404 MF, MF.CreateMachineInstr(
MCID, MIMD.getDL(),
true))
1411 buildMINoImplicit(*MF,
MIMetadata(Prev),
TII->get(NewPrevOpc), NewVR);
1413 unsigned Idx = MO.getOperandNo();
1417 if (Idx == PrevFirstOpIdx)
1419 else if (Idx == PrevSecondOpIdx)
1426 if (SwapRootOperands) {
1433 buildMINoImplicit(*MF,
MIMetadata(Root),
TII->get(NewRootOpc), RegC);
1435 unsigned Idx = MO.getOperandNo();
1439 if (Idx == RootFirstOpIdx)
1441 else if (Idx == RootSecondOpIdx)
1444 MIB2 = MIB2.
add(MO);
1519 "Max accumulator width set to illegal value");
1527 if (IndexedReg.index() == 0)
1534 if (IndexedReg.index() < MaxWidth) {
1536 AccReg = Instr->getOperand(0).getReg();
1540 .
addReg(Instr->getOperand(2).getReg(),
1542 .
addReg(Instr->getOperand(3).getReg(),
1548 ?
MRI.createVirtualRegister(
1550 : Instr->getOperand(0).getReg();
1551 assert(IndexedReg.index() >= MaxWidth);
1552 auto AccumulatorInput =
1553 ChainRegs[
Depth - (IndexedReg.index() - MaxWidth) - 1];
1557 .
addReg(Instr->getOperand(2).getReg(),
1559 .
addReg(Instr->getOperand(3).getReg(),
1564 InstIdxForVirtReg.
insert(std::make_pair(AccReg, InsInstrs.
size()));
1570 for (
unsigned i = (InsInstrs.
size() - MaxWidth); i < InsInstrs.
size();
1572 auto Reg = InsInstrs[i]->getOperand(0).getReg();
1576 while (RegistersToReduce.
size() > 1)
1595 if (!
MI.getNumOperands() || !
MI.getOperand(0).isReg())
1603 if (DefReg.
isVirtual() &&
MI.getOperand(0).getSubReg() &&
1604 MI.readsVirtualRegister(DefReg))
1616 if (
MI.isNotDuplicable() ||
MI.mayStore() ||
MI.mayRaiseFPException() ||
1617 MI.hasUnmodeledSideEffects())
1622 if (
MI.isInlineAsm())
1626 if (
MI.mayLoad() && !
MI.isDereferenceableInvariantLoad())
1632 if (!MO.isReg())
continue;
1638 if (Reg.isPhysical()) {
1643 if (!
MRI.isConstantPhysReg(Reg))
1654 if (MO.isDef() && Reg != DefReg)
1665 bool StackGrowsDown =
1676 if ((!StackGrowsDown &&
MI.getOpcode() == FrameSetupOpcode) ||
1677 (StackGrowsDown &&
MI.getOpcode() == FrameDestroyOpcode))
1690 if (
MI.isTerminator() ||
MI.isPosition())
1694 if (
MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1741 BaseOps.
size() != 1)
1743 BaseOp = BaseOps.
front();
1751std::optional<unsigned>
1753 SDNode *DefNode,
unsigned DefIdx,
1754 SDNode *UseNode,
unsigned UseIdx)
const {
1755 if (!ItinData || ItinData->
isEmpty())
1756 return std::nullopt;
1759 return std::nullopt;
1770 if (!ItinData || ItinData->
isEmpty())
1773 if (!
N->isMachineOpcode())
1785 if (!ItinData || ItinData->
isEmpty())
1788 unsigned Class =
MI.getDesc().getSchedClass();
1801 if (
DefMI.isTransient())
1803 if (
DefMI.mayLoad())
1816 unsigned *PredCost)
const {
1820 return MI.mayLoad() ? 2 : 1;
1827 unsigned DefIdx)
const {
1829 if (!ItinData || ItinData->
isEmpty())
1832 unsigned DefClass =
DefMI.getDesc().getSchedClass();
1833 std::optional<unsigned> DefCycle =
1835 return DefCycle && DefCycle <= 1U;
1849 if (SectionPrefix &&
1850 (*SectionPrefix ==
"unlikely" || *SectionPrefix ==
"unknown")) {
1857std::optional<ParamLoadedValue>
1863 bool OffsetIsScalable;
1870 Register DestReg = DestSrc->Destination->getReg();
1881 return std::nullopt;
1887 }
else if (
MI.hasOneMemOperand()) {
1898 return std::nullopt;
1902 return std::nullopt;
1905 if (OffsetIsScalable)
1906 return std::nullopt;
1914 if (
MI.getNumExplicitDefs() != 1)
1915 return std::nullopt;
1921 Ops.push_back(dwarf::DW_OP_deref_size);
1928 return std::nullopt;
1944 return MBB->getCallFrameSize();
1952 unsigned DefClass =
DefMI.getDesc().getSchedClass();
1953 unsigned UseClass =
UseMI.getDesc().getSchedClass();
1961 MI.isRegSequenceLike()) &&
"Instruction do not have the proper type");
1963 if (!
MI.isRegSequence())
1968 assert(DefIdx == 0 &&
"REG_SEQUENCE only has one def");
1969 for (
unsigned OpIdx = 1, EndOpIdx =
MI.getNumOperands();
OpIdx != EndOpIdx;
1976 "One of the subindex of the reg_sequence is not an immediate");
1979 (
unsigned)MOSubIdx.
getImm()));
1988 MI.isExtractSubregLike()) &&
"Instruction do not have the proper type");
1990 if (!
MI.isExtractSubreg())
1995 assert(DefIdx == 0 &&
"EXTRACT_SUBREG only has one def");
2001 "The subindex of the extract_subreg is not an immediate");
2013 MI.isInsertSubregLike()) &&
"Instruction do not have the proper type");
2015 if (!
MI.isInsertSubreg())
2020 assert(DefIdx == 0 &&
"INSERT_SUBREG only has one def");
2027 "One of the subindex of the reg_sequence is not an immediate");
2028 BaseReg.Reg = MOBaseReg.
getReg();
2031 InsertedReg.
Reg = MOInsertedReg.
getReg();
2042 if (!
MI.isInlineAsm())
2050 unsigned ExtraInfo =
Op.getImm();
2062 int FlagIdx =
MI.findInlineAsmFlagIdx(
OpIdx);
2063 if (FlagIdx < 0 || (
unsigned)FlagIdx !=
OpIdx)
2066 assert(
Op.isImm() &&
"Expected flag operand to be an immediate");
2068 unsigned Flag =
Op.getImm();
2070 OS <<
F.getKindName();
2073 if (!
F.isImmKind() && !
F.isMemKind() &&
F.hasRegClassConstraint(RCID))
2074 OS <<
':' <<
TRI.getRegClassName(
TRI.getRegClass(RCID));
2076 if (
F.isMemKind()) {
2082 if (
F.isUseOperandTiedToDef(TiedTo))
2083 OS <<
" tiedto:$" << TiedTo;
2085 if ((
F.isRegDefKind() ||
F.isRegDefEarlyClobberKind() ||
F.isRegUseKind()) &&
2086 F.getRegMayBeFolded())
2095 Function &
F, std::vector<outliner::Candidate> &Candidates)
const {
2109 return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind);
2111 F.addFnAttr(Attribute::NoUnwind);
2117 unsigned Flags)
const {
2122 if (
MI.isCFIInstruction())
2127 if (
MI.isInlineAsm())
2135 if (
MI.isDebugInstr())
2139 switch (
MI.getOpcode()) {
2140 case TargetOpcode::IMPLICIT_DEF:
2141 case TargetOpcode::KILL:
2142 case TargetOpcode::LIFETIME_START:
2143 case TargetOpcode::LIFETIME_END:
2150 if (
MI.isTerminator()) {
2152 if (!
MI.getParent()->succ_empty())
2177 assert(!MOP.isTargetIndex() &&
"This isn't used quite yet!");
2180 assert(!MOP.isCFIIndex() &&
"CFI instructions handled elsewhere!");
2183 assert(!MOP.isFI() &&
"FrameIndex instructions should be gone by now!");
2185 if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI())
2194 unsigned &Flags)
const {
2197 auto First =
MBB.getFirstNonDebugInstr();
2201 if (
First->getOpcode() == TargetOpcode::FENTRY_CALL ||
2202 First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER)
2207 auto Last =
MBB.getLastNonDebugInstr();
2208 if (
Last->getOpcode() == TargetOpcode::PATCHABLE_RET ||
2209 Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
2214 if (
Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT ||
2215 Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL)
2222 return MI->isCall() ||
MI->hasUnmodeledSideEffects() ||
2223 (
MI->hasOrderedMemoryRef() && !
MI->isDereferenceableInvariantLoad());
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
SmallVector< int16_t, MAX_SRC_OPERANDS_NUM > OperandIndices
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
DXIL Forward Handle Accesses
This file contains constants used for implementing Dwarf debug support.
const HexagonInstrInfo * TII
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static MCRegister getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
TargetInstrInfo::RegSubRegPairAndIdx RegSubRegPairAndIdx
This file defines the SmallSet class.
static bool isAsmComment(const char *Str, const MCAsmInfo &MAI)
static void transferImplicitOperands(MachineInstr *MI, const TargetRegisterInfo *TRI)
transferImplicitOperands - MI is a pseudo-instruction, and the lowered replacement instructions immed...
static cl::opt< bool > EnableAccReassociation("acc-reassoc", cl::Hidden, cl::init(true), cl::desc("Enable reassociation of accumulation chains"))
static std::pair< bool, bool > mustSwapOperands(unsigned Pattern)
static const TargetRegisterClass * canFoldCopy(const MachineInstr &MI, const TargetInstrInfo &TII, unsigned FoldIdx)
static cl::opt< unsigned int > MinAccumulatorDepth("acc-min-depth", cl::Hidden, cl::init(8), cl::desc("Minimum length of accumulator chains " "required for the optimization to kick in"))
static void foldInlineAsmMemOperand(MachineInstr *MI, unsigned OpNo, int FI, const TargetInstrInfo &TII)
static cl::opt< unsigned int > MaxAccumulatorWidth("acc-max-width", cl::Hidden, cl::init(3), cl::desc("Maximum number of branches in the accumulator tree"))
static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO, unsigned CombineOpc=0)
static cl::opt< bool > DisableHazardRecognizer("disable-sched-hazard", cl::Hidden, cl::init(false), cl::desc("Disable hazard detection during preRA scheduling"))
static MachineInstr * foldPatchpoint(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, int FrameIndex, const TargetInstrInfo &TII)
This file describes how to lower LLVM code to machine code.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
bool isLittleEndian() const
Layout endianness...
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
LLVM_ABI std::optional< StringRef > getSectionPrefix() const
Get the section prefix for this global object.
bool hasSection() const
Check if this global has a custom object file section.
static std::vector< StringRef > getExtraInfoNames(unsigned ExtraInfo)
static StringRef getMemConstraintName(ConstraintCode C)
Itinerary data supplied by a subtarget to be used by a target.
std::optional< unsigned > getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const
Return the cycle for the given class and operand.
unsigned getStageLatency(unsigned ItinClassIndx) const
Return the total stage latency of the given class.
std::optional< unsigned > getOperandLatency(unsigned DefClass, unsigned DefIdx, unsigned UseClass, unsigned UseIdx) const
Compute and return the use operand latency of a given itinerary class and operand index if the value ...
const InstrItinerary * Itineraries
Array of itineraries selected.
bool isEmpty() const
Returns true if there are no itineraries.
static LocationSize precise(uint64_t Value)
TypeSize getValue() const
This class is intended to be used as a base class for asm properties and features specific to the tar...
virtual unsigned getMaxInstLength(const MCSubtargetInfo *STI=nullptr) const
Returns the maximum possible encoded instruction size in bytes.
StringRef getCommentString() const
const char * getSeparatorString() const
Instances of this class represent a single low-level machine instruction.
Describe properties that are true of each instruction in the target description file.
unsigned getSchedClass() const
Return the scheduling class for this instruction.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
This holds information about one operand of a machine instruction, indicating the register class for ...
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isImmutableObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to an immutable object.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
const MachineFunctionProperties & getProperties() const
Get the function properties.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & copyImplicitOps(const MachineInstr &OtherMI) const
Copy all the implicit operands from OtherMI onto this one.
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
const MachineInstrBuilder & copyMIMetadata(const MIMetadata &MIMD) const
Representation of each machine instruction.
ArrayRef< MachineMemOperand * >::iterator mmo_iterator
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineBasicBlock * getParent() const
void setFlags(unsigned flags)
unsigned getNumOperands() const
Retuns the total number of operands.
void setDebugInstrNum(unsigned Num)
Set instruction number of this MachineInstr.
mmo_iterator memoperands_end() const
Access to memory operands of the instruction.
unsigned peekDebugInstrNum() const
Examine the instruction number of this MachineInstr.
LLVM_ABI void setMemRefs(MachineFunction &MF, ArrayRef< MachineMemOperand * > MemRefs)
Assign this MachineInstr's memory reference descriptor list.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
bool isCFIInstruction() const
bool isNotDuplicable(QueryType Type=AnyInBundle) const
Return true if this instruction cannot be safely duplicated.
void clearFlag(MIFlag Flag)
clearFlag - Clear a MI flag.
mop_range explicit_operands()
LLVM_ABI void tieOperands(unsigned DefIdx, unsigned UseIdx)
Add a tie between the register operands at DefIdx and UseIdx.
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
LLVM_ABI void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI)
Clone another MachineInstr's pre- and post- instruction symbols and replace ours with it.
LLVM_ABI bool isIdenticalTo(const MachineInstr &Other, MICheckType Check=CheckDefs) const
Return true if this instruction is identical to Other.
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
ArrayRef< MachineMemOperand * > memoperands() const
Access to memory operands of the instruction.
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
const MachineOperand & getOperand(unsigned i) const
uint32_t getFlags() const
Return the MI flags bitvector.
bool canFoldAsLoad(QueryType Type=IgnoreBundle) const
Return true for instructions that can be folded as memory operands in other instructions.
LLVM_ABI const TargetRegisterClass * getRegClassConstraint(unsigned OpIdx, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const
Compute the static register class constraint for operand OpIdx.
LLVM_ABI void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
LocationSize getSize() const
Return the size in bytes of the memory reference.
const PseudoSourceValue * getPseudoValue() const
Flags
Flags values. These may be or'd together.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
This class contains meta information specific to a module.
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
void setIsInternalRead(bool Val=true)
void setImm(int64_t immVal)
LLVM_ABI void setIsRenamable(bool Val=true)
bool isReg() const
isReg - Tests if this is a MO_Register operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void setIsKill(bool Val=true)
LLVM_ABI bool isRenamable() const
isRenamable - Returns true if this register may be renamed, i.e.
void setMBB(MachineBasicBlock *MBB)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
MI-level patchpoint operands.
Special value supplied for machine level alias analysis.
virtual bool mayAlias(const MachineFrameInfo *) const
Return true if the memory pointed to by this PseudoSourceValue can ever alias an LLVM IR Value.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Represents one node in the SelectionDAG.
bool isMachineOpcode() const
Test if this node has a post-isel opcode, directly corresponding to a MachineInstr opcode.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
HazardRecognizer - This determines whether or not an instruction can be issued this cycle,...
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
bool contains(const T &V) const
Check if the SmallSet contains the given element.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
MI-level stackmap operands.
MI-level Statepoint operands.
StringRef - Represent a constant reference to a string, i.e.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
int alignSPAdjust(int SPAdj) const
alignSPAdjust - This method aligns the stack adjustment to the correct alignment.
virtual ~PipelinerLoopInfo()
TargetInstrInfo - Interface to description of machine instruction set.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const
Target-dependent implementation for foldMemoryOperand.
virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, const MachineInstr &DefMI, unsigned DefIdx) const
Compute operand latency of a def of 'Reg'.
virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const
This is an architecture-specific helper function of reassociateOps.
const TargetRegisterInfo & TRI
virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, const MachineInstr &MI) const
Return the number of u-operations the given machine instruction will be decoded to on the target cpu.
virtual const TargetRegisterClass * getRegClass(const MCInstrDesc &MCID, unsigned OpNum) const
Given a machine instruction descriptor, returns the register class constraint for OpNum,...
virtual int getSPAdjust(const MachineInstr &MI) const
Returns the actual stack pointer adjustment made by an instruction as part of a call sequence.
virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, MachineBasicBlock *NewDest) const
Delete the instruction OldInst and everything after it, replacing it with an unconditional branch to ...
virtual bool PredicateInstruction(MachineInstr &MI, ArrayRef< MachineOperand > Pred) const
Convert the instruction into a predicated instruction.
int16_t getOpRegClassID(const MCOperandInfo &OpInfo) const
bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const
Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
virtual outliner::InstrType getOutliningTypeImpl(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MIT, unsigned Flags) const
Target-dependent implementation for getOutliningTypeImpl.
virtual bool getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const
Target-dependent implementation of getInsertSubregInputs.
outliner::InstrType getOutliningType(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MIT, unsigned Flags) const
Returns how or if MIT should be outlined.
virtual bool isThroughputPattern(unsigned Pattern) const
Return true when a code sequence can improve throughput.
bool getAccumulatorReassociationPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns) const
Find chains of accumulations that can be rewritten as a tree for increased ILP.
virtual std::pair< unsigned, unsigned > getPatchpointUnfoldableRange(const MachineInstr &MI) const
For a patchpoint, stackmap, or statepoint intrinsic, return the range of operands which can't be fold...
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual void mergeOutliningCandidateAttributes(Function &F, std::vector< outliner::Candidate > &Candidates) const
Optional target hook to create the LLVM IR attributes for the outlined function.
bool isUnpredicatedTerminator(const MachineInstr &MI) const
Returns true if the instruction is a terminator instruction that has not been predicated.
virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
Insert a noop into the instruction stream at the specified point.
void getAccumulatorChain(MachineInstr *CurrentInstr, SmallVectorImpl< Register > &Chain) const
Find the chain of accumulator instructions in \P MBB and return them in \P Chain.
bool isFrameInstr(const MachineInstr &I) const
Returns true if the argument is a frame pseudo instruction.
virtual bool getRegSequenceLikeInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl< RegSubRegPairAndIdx > &InputRegs) const
Target-dependent implementation of getRegSequenceInputs.
virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const
Load the specified register of the given register class from the specified stack frame index.
virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, unsigned &Size, unsigned &Offset, const MachineFunction &MF) const
Compute the size in bytes and offset within a stack slot of a spilled register or subregister.
virtual ScheduleHazardRecognizer * CreateTargetMIHazardRecognizer(const InstrItineraryData *, const ScheduleDAGMI *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a store to a stack slot, return true along with the FrameInd...
virtual bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const
Return true when \P Inst has reassociable operands in the same \P MBB.
virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const
Store the specified register of the given register class to the specified stack frame index.
virtual unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI, const TargetSubtargetInfo *STI=nullptr) const
Measure the specified inline asm to determine an approximation of its length.
virtual void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< Register, unsigned > &InstIdxForVirtReg) const
When getMachineCombinerPatterns() finds patterns, this function generates the instructions that could...
virtual std::optional< ParamLoadedValue > describeLoadedValue(const MachineInstr &MI, Register Reg) const
Produce the expression describing the MI loading a value into the physical register Reg.
void lowerCopy(MachineInstr *MI, const TargetRegisterInfo *TRI) const
This function defines the logic to lower COPY instruction to target specific instruction(s).
virtual unsigned getReduceOpcodeForAccumulator(unsigned int AccumulatorOpCode) const
Returns the opcode that should be use to reduce accumulation registers.
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct load from a stack slot, return the virtual or physic...
MachineInstr * foldMemoryOperand(MachineInstr &MI, ArrayRef< unsigned > Ops, int FI, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const
Attempt to fold a load or store of the specified stack slot into the specified machine instruction fo...
virtual MachineInstr * optimizeLoadInstr(MachineInstr &MI, const MachineRegisterInfo *MRI, Register &FoldAsLoadDefReg, MachineInstr *&DefMI) const
Try to remove the load by folding it to a register operand at the use.
virtual ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
TargetInstrInfo(const TargetRegisterInfo &TRI, unsigned CFSetupOpcode=~0u, unsigned CFDestroyOpcode=~0u, unsigned CatchRetOpcode=~0u, unsigned ReturnOpcode=~0u, const int16_t *const RegClassByHwModeTable=nullptr)
virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const
Insert branch code into the end of the specified MachineBasicBlock.
virtual void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, Register DestReg, Register SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const
Emit instructions to copy a pair of physical registers.
virtual unsigned getAccumulationStartOpcode(unsigned Opcode) const
Returns an opcode which defines the accumulator used by \P Opcode.
unsigned getCallFrameSetupOpcode() const
These methods return the opcode of the frame setup/destroy instructions if they exist (-1 otherwise).
virtual bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const
Return true when there is potentially a faster code sequence for an instruction chain ending in Root.
virtual bool isReMaterializableImpl(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual MCInst getNop() const
Return the noop instruction to use for a noop.
unsigned getCallFrameSizeAt(MachineInstr &MI) const
virtual MachineInstr & duplicate(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const
Clones instruction or the whole instruction bundle Orig and insert into MBB before InsertBefore.
std::pair< unsigned, unsigned > getReassociationOpcodes(unsigned Pattern, const MachineInstr &Root, const MachineInstr &Prev) const
Reassociation of some instructions requires inverse operations (e.g.
virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, unsigned &Flags) const
Optional target hook that returns true if MBB is safe to outline from, and returns any target-specifi...
virtual void getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern, std::array< unsigned, 5 > &OperandIndices) const
The returned array encodes the operand index for each parameter because the operands may be commuted;...
int64_t getFrameTotalSize(const MachineInstr &I) const
Returns the total frame size, which is made up of the space set up inside the pair of frame start-sto...
MachineInstr * commuteInstruction(MachineInstr &MI, bool NewMI=false, unsigned OpIdx1=CommuteAnyOperandIndex, unsigned OpIdx2=CommuteAnyOperandIndex) const
This method commutes the operands of the given machine instruction MI.
virtual std::optional< unsigned > getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const
virtual bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert=false) const
Return true when \P Inst is both associative and commutative.
virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, unsigned SubIdx, const MachineInstr &Orig) const
Re-issue the specified 'original' instruction at the specific location targeting a new destination re...
void reassociateOps(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, ArrayRef< unsigned > OperandIndices, DenseMap< Register, unsigned > &InstrIdxForVirtReg) const
Attempt to reassociate \P Root and \P Prev according to \P Pattern to reduce critical path length.
virtual std::optional< unsigned > getInverseOpcode(unsigned Opcode) const
Return the inverse operation opcode if it exists for \P Opcode (e.g.
virtual void insertNoops(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Quantity) const
Insert noops into the instruction stream at the specified point.
unsigned getCallFrameDestroyOpcode() const
int64_t getFrameSize(const MachineInstr &I) const
Returns size of the frame associated with the given frame instruction.
virtual bool isPredicated(const MachineInstr &MI) const
Returns true if the instruction is already predicated.
bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const
Build the equivalent inputs of a INSERT_SUBREG for the given MI and DefIdx.
virtual ~TargetInstrInfo()
virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost=nullptr) const
Compute the instruction latency of a given instruction.
virtual bool produceSameValue(const MachineInstr &MI0, const MachineInstr &MI1, const MachineRegisterInfo *MRI=nullptr) const
Return true if two machine instructions would produce identical values.
virtual bool isAccumulationOpcode(unsigned Opcode) const
Return true when \P OpCode is an instruction which performs accumulation into one of its operand regi...
std::optional< DestSourcePair > isCopyInstr(const MachineInstr &MI) const
If the specific machine instruction is a instruction that moves/copies value from one register to ano...
bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const
Return true if the input \P Inst is part of a chain of dependent ops that are suitable for reassociat...
void reduceAccumulatorTree(SmallVectorImpl< Register > &RegistersToReduce, SmallVectorImpl< MachineInstr * > &InsInstrs, MachineFunction &MF, MachineInstr &Root, MachineRegisterInfo &MRI, DenseMap< Register, unsigned > &InstrIdxForVirtReg, Register ResultReg) const
Reduces branches of the accumulator tree into a single register.
virtual bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const
Test if the given instruction should be considered a scheduling boundary.
virtual bool getMemOperandsWithOffsetWidth(const MachineInstr &MI, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const
Get zero or more base operands and the byte offset of an instruction that reads/writes memory.
virtual unsigned getPredicationCost(const MachineInstr &MI) const
virtual CombinerObjective getCombinerObjective(unsigned Pattern) const
Return the objective of a combiner pattern.
virtual MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const
This method commutes the operands of the given machine instruction MI.
virtual bool isFunctionSafeToSplit(const MachineFunction &MF) const
Return true if the function is a viable candidate for machine function splitting.
virtual MachineTraceStrategy getMachineCombinerTraceStrategy() const
Return a strategy that MachineCombiner must use when creating traces.
bool getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, SmallVectorImpl< RegSubRegPairAndIdx > &InputRegs) const
Build the equivalent inputs of a REG_SEQUENCE for the given MI and DefIdx.
virtual bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a load from a stack slot, return true along with the FrameIn...
virtual bool isGlobalMemoryObject(const MachineInstr *MI) const
Returns true if MI is an instruction we are unable to reason about (like a call or something with unm...
virtual std::optional< RegImmPair > isAddImmediate(const MachineInstr &MI, Register Reg) const
If the specific machine instruction is an instruction that adds an immediate value and a register,...
unsigned defaultDefLatency(const MCSchedModel &SchedModel, const MachineInstr &DefMI) const
Return the default expected latency for a def based on its opcode.
static const unsigned CommuteAnyOperandIndex
virtual bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const
Return true when \P Inst has reassociable sibling.
virtual std::string createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const
virtual bool isHighLatencyDef(int opc) const
Return true if this opcode has high latency to its result.
static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2, unsigned CommutableOpIdx1, unsigned CommutableOpIdx2)
Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable operand indices to (ResultIdx1,...
bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const
Build the equivalent inputs of a EXTRACT_SUBREG for the given MI and DefIdx.
virtual bool getExtractSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, RegSubRegPairAndIdx &InputReg) const
Target-dependent implementation of getExtractSubregInputs.
bool usePreRAHazardRecognizer() const
Provide a global flag for disabling the PreRA hazard recognizer that targets may choose to honor.
bool getMemOperandWithOffset(const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const
Get the base operand and byte offset of an instruction that reads/writes memory.
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
const Triple & getTargetTriple() const
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
bool hasSubClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a sub-class of or equal to this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
const InstrItineraryData * getInstrItineraries() const
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ C
The default llvm calling convention, compatible with C.
@ Define
Register definition.
initializer< Ty > init(const Ty &Val)
InstrType
Represents how an instruction should be mapped by the outliner.
This is an optimization pass for GlobalISel generic memory operations.
MachineTraceStrategy
Strategies for selecting traces.
@ TS_MinInstrCount
Select the trace through a block that has the fewest instructions.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
constexpr from_range_t from_range
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
bool isa_and_nonnull(const Y &Val)
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
auto reverse(ContainerTy &&C)
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
CombinerObjective
The combiner's goal may differ based on which pattern it is attempting to optimize.
LLVM_ABI VirtRegInfo AnalyzeVirtRegInBundle(MachineInstr &MI, Register Reg, SmallVectorImpl< std::pair< MachineInstr *, unsigned > > *Ops=nullptr)
AnalyzeVirtRegInBundle - Analyze how the current instruction or bundle uses a virtual register.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
unsigned getKillRegState(bool B)
DWARFExpression::Operation Op
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool isSpace(char C)
Checks whether character C is whitespace in the "C" locale.
std::pair< MachineOperand, DIExpression * > ParamLoadedValue
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Machine model for scheduling, bundling, and heuristics.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
A pair composed of a pair of a register and a sub-register index, and another sub-register index.
A pair composed of a register and a sub-register index.
VirtRegInfo - Information about a virtual register used by a set of operands.
bool Reads
Reads - One of the operands read the virtual register.
bool Writes
Writes - One of the operands writes the virtual register.
An individual sequence of instructions to be replaced with a call to an outlined function.
MachineFunction * getMF() const