LLVM 19.0.0git
SelectionDAGNodes.h
Go to the documentation of this file.
1//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SDNode class and derived classes, which are used to
10// represent the nodes and operations present in a SelectionDAG. These nodes
11// and operations are machine code level operations, with some similarities to
12// the GCC RTL representation.
13//
14// Clients should include the SelectionDAG.h file instead of this file directly.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19#define LLVM_CODEGEN_SELECTIONDAGNODES_H
20
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/FoldingSet.h"
28#include "llvm/ADT/ilist_node.h"
29#include "llvm/ADT/iterator.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/DebugLoc.h"
38#include "llvm/IR/Instruction.h"
40#include "llvm/IR/Metadata.h"
41#include "llvm/IR/Operator.h"
47#include <algorithm>
48#include <cassert>
49#include <climits>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <iterator>
54#include <string>
55#include <tuple>
56#include <utility>
57
58namespace llvm {
59
60class APInt;
61class Constant;
62class GlobalValue;
63class MachineBasicBlock;
64class MachineConstantPoolValue;
65class MCSymbol;
66class raw_ostream;
67class SDNode;
68class SelectionDAG;
69class Type;
70class Value;
71
72void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73 bool force = false);
74
75/// This represents a list of ValueType's that has been intern'd by
76/// a SelectionDAG. Instances of this simple value class are returned by
77/// SelectionDAG::getVTList(...).
78///
79struct SDVTList {
80 const EVT *VTs;
81 unsigned int NumVTs;
82};
83
84namespace ISD {
85
86 /// Node predicates
87
88/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89/// same constant or undefined, return true and return the constant value in
90/// \p SplatValue.
91bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92
93/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95/// true, it only checks BUILD_VECTOR.
97 bool BuildVectorOnly = false);
98
99/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101/// only checks BUILD_VECTOR.
103 bool BuildVectorOnly = false);
104
105/// Return true if the specified node is a BUILD_VECTOR where all of the
106/// elements are ~0 or undef.
107bool isBuildVectorAllOnes(const SDNode *N);
108
109/// Return true if the specified node is a BUILD_VECTOR where all of the
110/// elements are 0 or undef.
111bool isBuildVectorAllZeros(const SDNode *N);
112
113/// Return true if the specified node is a BUILD_VECTOR node of all
114/// ConstantSDNode or undef.
116
117/// Return true if the specified node is a BUILD_VECTOR node of all
118/// ConstantFPSDNode or undef.
120
121/// Returns true if the specified node is a vector where all elements can
122/// be truncated to the specified element size without a loss in meaning.
123bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed);
124
125/// Return true if the node has at least one operand and all operands of the
126/// specified node are ISD::UNDEF.
127bool allOperandsUndef(const SDNode *N);
128
129/// Return true if the specified node is FREEZE(UNDEF).
130bool isFreezeUndef(const SDNode *N);
131
132} // end namespace ISD
133
134//===----------------------------------------------------------------------===//
135/// Unlike LLVM values, Selection DAG nodes may return multiple
136/// values as the result of a computation. Many nodes return multiple values,
137/// from loads (which define a token and a return value) to ADDC (which returns
138/// a result and a carry value), to calls (which may return an arbitrary number
139/// of values).
140///
141/// As such, each use of a SelectionDAG computation must indicate the node that
142/// computes it as well as which return value to use from that node. This pair
143/// of information is represented with the SDValue value type.
144///
145class SDValue {
146 friend struct DenseMapInfo<SDValue>;
147
148 SDNode *Node = nullptr; // The node defining the value we are using.
149 unsigned ResNo = 0; // Which return value of the node we are using.
150
151public:
152 SDValue() = default;
153 SDValue(SDNode *node, unsigned resno);
154
155 /// get the index which selects a specific result in the SDNode
156 unsigned getResNo() const { return ResNo; }
157
158 /// get the SDNode which holds the desired result
159 SDNode *getNode() const { return Node; }
160
161 /// set the SDNode
162 void setNode(SDNode *N) { Node = N; }
163
164 inline SDNode *operator->() const { return Node; }
165
166 bool operator==(const SDValue &O) const {
167 return Node == O.Node && ResNo == O.ResNo;
168 }
169 bool operator!=(const SDValue &O) const {
170 return !operator==(O);
171 }
172 bool operator<(const SDValue &O) const {
173 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
174 }
175 explicit operator bool() const {
176 return Node != nullptr;
177 }
178
179 SDValue getValue(unsigned R) const {
180 return SDValue(Node, R);
181 }
182
183 /// Return true if this node is an operand of N.
184 bool isOperandOf(const SDNode *N) const;
185
186 /// Return the ValueType of the referenced return value.
187 inline EVT getValueType() const;
188
189 /// Return the simple ValueType of the referenced return value.
191 return getValueType().getSimpleVT();
192 }
193
194 /// Returns the size of the value in bits.
195 ///
196 /// If the value type is a scalable vector type, the scalable property will
197 /// be set and the runtime size will be a positive integer multiple of the
198 /// base size.
200 return getValueType().getSizeInBits();
201 }
202
205 }
206
207 // Forwarding methods - These forward to the corresponding methods in SDNode.
208 inline unsigned getOpcode() const;
209 inline unsigned getNumOperands() const;
210 inline const SDValue &getOperand(unsigned i) const;
211 inline uint64_t getConstantOperandVal(unsigned i) const;
212 inline const APInt &getConstantOperandAPInt(unsigned i) const;
213 inline bool isTargetMemoryOpcode() const;
214 inline bool isTargetOpcode() const;
215 inline bool isMachineOpcode() const;
216 inline bool isUndef() const;
217 inline unsigned getMachineOpcode() const;
218 inline const DebugLoc &getDebugLoc() const;
219 inline void dump() const;
220 inline void dump(const SelectionDAG *G) const;
221 inline void dumpr() const;
222 inline void dumpr(const SelectionDAG *G) const;
223
224 /// Return true if this operand (which must be a chain) reaches the
225 /// specified operand without crossing any side-effecting instructions.
226 /// In practice, this looks through token factors and non-volatile loads.
227 /// In order to remain efficient, this only
228 /// looks a couple of nodes in, it does not do an exhaustive search.
230 unsigned Depth = 2) const;
231
232 /// Return true if there are no nodes using value ResNo of Node.
233 inline bool use_empty() const;
234
235 /// Return true if there is exactly one node using value ResNo of Node.
236 inline bool hasOneUse() const;
237};
238
239template<> struct DenseMapInfo<SDValue> {
240 static inline SDValue getEmptyKey() {
241 SDValue V;
242 V.ResNo = -1U;
243 return V;
244 }
245
246 static inline SDValue getTombstoneKey() {
247 SDValue V;
248 V.ResNo = -2U;
249 return V;
250 }
251
252 static unsigned getHashValue(const SDValue &Val) {
253 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
254 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
255 }
256
257 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
258 return LHS == RHS;
259 }
260};
261
262/// Allow casting operators to work directly on
263/// SDValues as if they were SDNode*'s.
264template<> struct simplify_type<SDValue> {
266
268 return Val.getNode();
269 }
270};
271template<> struct simplify_type<const SDValue> {
272 using SimpleType = /*const*/ SDNode *;
273
275 return Val.getNode();
276 }
277};
278
279/// Represents a use of a SDNode. This class holds an SDValue,
280/// which records the SDNode being used and the result number, a
281/// pointer to the SDNode using the value, and Next and Prev pointers,
282/// which link together all the uses of an SDNode.
283///
284class SDUse {
285 /// Val - The value being used.
286 SDValue Val;
287 /// User - The user of this value.
288 SDNode *User = nullptr;
289 /// Prev, Next - Pointers to the uses list of the SDNode referred by
290 /// this operand.
291 SDUse **Prev = nullptr;
292 SDUse *Next = nullptr;
293
294public:
295 SDUse() = default;
296 SDUse(const SDUse &U) = delete;
297 SDUse &operator=(const SDUse &) = delete;
298
299 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
300 operator const SDValue&() const { return Val; }
301
302 /// If implicit conversion to SDValue doesn't work, the get() method returns
303 /// the SDValue.
304 const SDValue &get() const { return Val; }
305
306 /// This returns the SDNode that contains this Use.
307 SDNode *getUser() { return User; }
308 const SDNode *getUser() const { return User; }
309
310 /// Get the next SDUse in the use list.
311 SDUse *getNext() const { return Next; }
312
313 /// Convenience function for get().getNode().
314 SDNode *getNode() const { return Val.getNode(); }
315 /// Convenience function for get().getResNo().
316 unsigned getResNo() const { return Val.getResNo(); }
317 /// Convenience function for get().getValueType().
318 EVT getValueType() const { return Val.getValueType(); }
319
320 /// Convenience function for get().operator==
321 bool operator==(const SDValue &V) const {
322 return Val == V;
323 }
324
325 /// Convenience function for get().operator!=
326 bool operator!=(const SDValue &V) const {
327 return Val != V;
328 }
329
330 /// Convenience function for get().operator<
331 bool operator<(const SDValue &V) const {
332 return Val < V;
333 }
334
335private:
336 friend class SelectionDAG;
337 friend class SDNode;
338 // TODO: unfriend HandleSDNode once we fix its operand handling.
339 friend class HandleSDNode;
340
341 void setUser(SDNode *p) { User = p; }
342
343 /// Remove this use from its existing use list, assign it the
344 /// given value, and add it to the new value's node's use list.
345 inline void set(const SDValue &V);
346 /// Like set, but only supports initializing a newly-allocated
347 /// SDUse with a non-null value.
348 inline void setInitial(const SDValue &V);
349 /// Like set, but only sets the Node portion of the value,
350 /// leaving the ResNo portion unmodified.
351 inline void setNode(SDNode *N);
352
353 void addToList(SDUse **List) {
354 Next = *List;
355 if (Next) Next->Prev = &Next;
356 Prev = List;
357 *List = this;
358 }
359
360 void removeFromList() {
361 *Prev = Next;
362 if (Next) Next->Prev = Prev;
363 }
364};
365
366/// simplify_type specializations - Allow casting operators to work directly on
367/// SDValues as if they were SDNode*'s.
368template<> struct simplify_type<SDUse> {
370
372 return Val.getNode();
373 }
374};
375
376/// These are IR-level optimization flags that may be propagated to SDNodes.
377/// TODO: This data structure should be shared by the IR optimizer and the
378/// the backend.
380private:
381 bool NoUnsignedWrap : 1;
382 bool NoSignedWrap : 1;
383 bool Exact : 1;
384 bool Disjoint : 1;
385 bool NonNeg : 1;
386 bool NoNaNs : 1;
387 bool NoInfs : 1;
388 bool NoSignedZeros : 1;
389 bool AllowReciprocal : 1;
390 bool AllowContract : 1;
391 bool ApproximateFuncs : 1;
392 bool AllowReassociation : 1;
393
394 // We assume instructions do not raise floating-point exceptions by default,
395 // and only those marked explicitly may do so. We could choose to represent
396 // this via a positive "FPExcept" flags like on the MI level, but having a
397 // negative "NoFPExcept" flag here makes the flag intersection logic more
398 // straightforward.
399 bool NoFPExcept : 1;
400 // Instructions with attached 'unpredictable' metadata on IR level.
401 bool Unpredictable : 1;
402
403public:
404 /// Default constructor turns off all optimization flags.
406 : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false),
407 Disjoint(false), NonNeg(false), NoNaNs(false), NoInfs(false),
408 NoSignedZeros(false), AllowReciprocal(false), AllowContract(false),
409 ApproximateFuncs(false), AllowReassociation(false), NoFPExcept(false),
410 Unpredictable(false) {}
411
412 /// Propagate the fast-math-flags from an IR FPMathOperator.
413 void copyFMF(const FPMathOperator &FPMO) {
414 setNoNaNs(FPMO.hasNoNaNs());
415 setNoInfs(FPMO.hasNoInfs());
421 }
422
423 // These are mutators for each flag.
424 void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
425 void setNoSignedWrap(bool b) { NoSignedWrap = b; }
426 void setExact(bool b) { Exact = b; }
427 void setDisjoint(bool b) { Disjoint = b; }
428 void setNonNeg(bool b) { NonNeg = b; }
429 void setNoNaNs(bool b) { NoNaNs = b; }
430 void setNoInfs(bool b) { NoInfs = b; }
431 void setNoSignedZeros(bool b) { NoSignedZeros = b; }
432 void setAllowReciprocal(bool b) { AllowReciprocal = b; }
433 void setAllowContract(bool b) { AllowContract = b; }
434 void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
435 void setAllowReassociation(bool b) { AllowReassociation = b; }
436 void setNoFPExcept(bool b) { NoFPExcept = b; }
437 void setUnpredictable(bool b) { Unpredictable = b; }
438
439 // These are accessors for each flag.
440 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
441 bool hasNoSignedWrap() const { return NoSignedWrap; }
442 bool hasExact() const { return Exact; }
443 bool hasDisjoint() const { return Disjoint; }
444 bool hasNonNeg() const { return NonNeg; }
445 bool hasNoNaNs() const { return NoNaNs; }
446 bool hasNoInfs() const { return NoInfs; }
447 bool hasNoSignedZeros() const { return NoSignedZeros; }
448 bool hasAllowReciprocal() const { return AllowReciprocal; }
449 bool hasAllowContract() const { return AllowContract; }
450 bool hasApproximateFuncs() const { return ApproximateFuncs; }
451 bool hasAllowReassociation() const { return AllowReassociation; }
452 bool hasNoFPExcept() const { return NoFPExcept; }
453 bool hasUnpredictable() const { return Unpredictable; }
454
455 /// Clear any flags in this flag set that aren't also set in Flags. All
456 /// flags will be cleared if Flags are undefined.
457 void intersectWith(const SDNodeFlags Flags) {
458 NoUnsignedWrap &= Flags.NoUnsignedWrap;
459 NoSignedWrap &= Flags.NoSignedWrap;
460 Exact &= Flags.Exact;
461 Disjoint &= Flags.Disjoint;
462 NonNeg &= Flags.NonNeg;
463 NoNaNs &= Flags.NoNaNs;
464 NoInfs &= Flags.NoInfs;
465 NoSignedZeros &= Flags.NoSignedZeros;
466 AllowReciprocal &= Flags.AllowReciprocal;
467 AllowContract &= Flags.AllowContract;
468 ApproximateFuncs &= Flags.ApproximateFuncs;
469 AllowReassociation &= Flags.AllowReassociation;
470 NoFPExcept &= Flags.NoFPExcept;
471 Unpredictable &= Flags.Unpredictable;
472 }
473};
474
475/// Represents one node in the SelectionDAG.
476///
477class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
478private:
479 /// The operation that this node performs.
480 int32_t NodeType;
481
482public:
483 /// Unique and persistent id per SDNode in the DAG. Used for debug printing.
484 /// We do not place that under `#if LLVM_ENABLE_ABI_BREAKING_CHECKS`
485 /// intentionally because it adds unneeded complexity without noticeable
486 /// benefits (see discussion with @thakis in D120714).
488
489protected:
490 // We define a set of mini-helper classes to help us interpret the bits in our
491 // SubclassData. These are designed to fit within a uint16_t so they pack
492 // with PersistentId.
493
494#if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
495// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
496// and give the `pack` pragma push semantics.
497#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
498#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
499#else
500#define BEGIN_TWO_BYTE_PACK()
501#define END_TWO_BYTE_PACK()
502#endif
503
506 friend class SDNode;
507 friend class MemIntrinsicSDNode;
508 friend class MemSDNode;
509 friend class SelectionDAG;
510
511 uint16_t HasDebugValue : 1;
512 uint16_t IsMemIntrinsic : 1;
513 uint16_t IsDivergent : 1;
514 };
515 enum { NumSDNodeBits = 3 };
516
518 friend class ConstantSDNode;
519
521
522 uint16_t IsOpaque : 1;
523 };
524
526 friend class MemSDNode;
527 friend class MemIntrinsicSDNode;
528 friend class AtomicSDNode;
529
531
532 uint16_t IsVolatile : 1;
533 uint16_t IsNonTemporal : 1;
534 uint16_t IsDereferenceable : 1;
535 uint16_t IsInvariant : 1;
536 };
538
540 friend class LSBaseSDNode;
545
547
548 // This storage is shared between disparate class hierarchies to hold an
549 // enumeration specific to the class hierarchy in use.
550 // LSBaseSDNode => enum ISD::MemIndexedMode
551 // VPLoadStoreBaseSDNode => enum ISD::MemIndexedMode
552 // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
553 // VPGatherScatterSDNode => enum ISD::MemIndexType
554 // MaskedGatherScatterSDNode => enum ISD::MemIndexType
556 };
558
560 friend class LoadSDNode;
561 friend class AtomicSDNode;
562 friend class VPLoadSDNode;
564 friend class MaskedLoadSDNode;
565 friend class MaskedGatherSDNode;
566 friend class VPGatherSDNode;
567
569
570 uint16_t ExtTy : 2; // enum ISD::LoadExtType
571 uint16_t IsExpanding : 1;
572 };
573
575 friend class StoreSDNode;
576 friend class VPStoreSDNode;
578 friend class MaskedStoreSDNode;
580 friend class VPScatterSDNode;
581
583
584 uint16_t IsTruncating : 1;
585 uint16_t IsCompressing : 1;
586 };
587
588 union {
589 char RawSDNodeBits[sizeof(uint16_t)];
596 };
598#undef BEGIN_TWO_BYTE_PACK
599#undef END_TWO_BYTE_PACK
600
601 // RawSDNodeBits must cover the entirety of the union. This means that all of
602 // the union's members must have size <= RawSDNodeBits. We write the RHS as
603 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
604 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
605 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
606 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
607 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
608 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
609 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
610
611private:
612 friend class SelectionDAG;
613 // TODO: unfriend HandleSDNode once we fix its operand handling.
614 friend class HandleSDNode;
615
616 /// Unique id per SDNode in the DAG.
617 int NodeId = -1;
618
619 /// The values that are used by this operation.
620 SDUse *OperandList = nullptr;
621
622 /// The types of the values this node defines. SDNode's may
623 /// define multiple values simultaneously.
624 const EVT *ValueList;
625
626 /// List of uses for this SDNode.
627 SDUse *UseList = nullptr;
628
629 /// The number of entries in the Operand/Value list.
630 unsigned short NumOperands = 0;
631 unsigned short NumValues;
632
633 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
634 // original LLVM instructions.
635 // This is used for turning off scheduling, because we'll forgo
636 // the normal scheduling algorithms and output the instructions according to
637 // this ordering.
638 unsigned IROrder;
639
640 /// Source line information.
641 DebugLoc debugLoc;
642
643 /// Return a pointer to the specified value type.
644 static const EVT *getValueTypeList(EVT VT);
645
646 SDNodeFlags Flags;
647
648 uint32_t CFIType = 0;
649
650public:
651 //===--------------------------------------------------------------------===//
652 // Accessors
653 //
654
655 /// Return the SelectionDAG opcode value for this node. For
656 /// pre-isel nodes (those for which isMachineOpcode returns false), these
657 /// are the opcode values in the ISD and <target>ISD namespaces. For
658 /// post-isel opcodes, see getMachineOpcode.
659 unsigned getOpcode() const { return (unsigned)NodeType; }
660
661 /// Test if this node has a target-specific opcode (in the
662 /// <target>ISD namespace).
663 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
664
665 /// Test if this node has a target-specific opcode that may raise
666 /// FP exceptions (in the <target>ISD namespace and greater than
667 /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory
668 /// opcode are currently automatically considered to possibly raise
669 /// FP exceptions as well.
671 return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
672 }
673
674 /// Test if this node has a target-specific
675 /// memory-referencing opcode (in the <target>ISD namespace and
676 /// greater than FIRST_TARGET_MEMORY_OPCODE).
677 bool isTargetMemoryOpcode() const {
678 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
679 }
680
681 /// Return true if the type of the node type undefined.
682 bool isUndef() const { return NodeType == ISD::UNDEF; }
683
684 /// Test if this node is a memory intrinsic (with valid pointer information).
685 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
686 /// non-memory intrinsics (with chains) that are not really instances of
687 /// MemSDNode. For such nodes, we need some extra state to determine the
688 /// proper classof relationship.
689 bool isMemIntrinsic() const {
690 return (NodeType == ISD::INTRINSIC_W_CHAIN ||
691 NodeType == ISD::INTRINSIC_VOID) &&
692 SDNodeBits.IsMemIntrinsic;
693 }
694
695 /// Test if this node is a strict floating point pseudo-op.
697 switch (NodeType) {
698 default:
699 return false;
704#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
705 case ISD::STRICT_##DAGN:
706#include "llvm/IR/ConstrainedOps.def"
707 return true;
708 }
709 }
710
711 /// Test if this node is a vector predication operation.
712 bool isVPOpcode() const { return ISD::isVPOpcode(getOpcode()); }
713
714 /// Test if this node has a post-isel opcode, directly
715 /// corresponding to a MachineInstr opcode.
716 bool isMachineOpcode() const { return NodeType < 0; }
717
718 /// This may only be called if isMachineOpcode returns
719 /// true. It returns the MachineInstr opcode value that the node's opcode
720 /// corresponds to.
721 unsigned getMachineOpcode() const {
722 assert(isMachineOpcode() && "Not a MachineInstr opcode!");
723 return ~NodeType;
724 }
725
726 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
727 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
728
729 bool isDivergent() const { return SDNodeBits.IsDivergent; }
730
731 /// Return true if there are no uses of this node.
732 bool use_empty() const { return UseList == nullptr; }
733
734 /// Return true if there is exactly one use of this node.
735 bool hasOneUse() const { return hasSingleElement(uses()); }
736
737 /// Return the number of uses of this node. This method takes
738 /// time proportional to the number of uses.
739 size_t use_size() const { return std::distance(use_begin(), use_end()); }
740
741 /// Return the unique node id.
742 int getNodeId() const { return NodeId; }
743
744 /// Set unique node id.
745 void setNodeId(int Id) { NodeId = Id; }
746
747 /// Return the node ordering.
748 unsigned getIROrder() const { return IROrder; }
749
750 /// Set the node ordering.
751 void setIROrder(unsigned Order) { IROrder = Order; }
752
753 /// Return the source location info.
754 const DebugLoc &getDebugLoc() const { return debugLoc; }
755
756 /// Set source location info. Try to avoid this, putting
757 /// it in the constructor is preferable.
758 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
759
760 /// This class provides iterator support for SDUse
761 /// operands that use a specific SDNode.
763 friend class SDNode;
764
765 SDUse *Op = nullptr;
766
767 explicit use_iterator(SDUse *op) : Op(op) {}
768
769 public:
770 using iterator_category = std::forward_iterator_tag;
772 using difference_type = std::ptrdiff_t;
775
776 use_iterator() = default;
777 use_iterator(const use_iterator &I) = default;
779
780 bool operator==(const use_iterator &x) const { return Op == x.Op; }
781 bool operator!=(const use_iterator &x) const {
782 return !operator==(x);
783 }
784
785 /// Return true if this iterator is at the end of uses list.
786 bool atEnd() const { return Op == nullptr; }
787
788 // Iterator traversal: forward iteration only.
789 use_iterator &operator++() { // Preincrement
790 assert(Op && "Cannot increment end iterator!");
791 Op = Op->getNext();
792 return *this;
793 }
794
795 use_iterator operator++(int) { // Postincrement
796 use_iterator tmp = *this; ++*this; return tmp;
797 }
798
799 /// Retrieve a pointer to the current user node.
800 SDNode *operator*() const {
801 assert(Op && "Cannot dereference end iterator!");
802 return Op->getUser();
803 }
804
805 SDNode *operator->() const { return operator*(); }
806
807 SDUse &getUse() const { return *Op; }
808
809 /// Retrieve the operand # of this use in its user.
810 unsigned getOperandNo() const {
811 assert(Op && "Cannot dereference end iterator!");
812 return (unsigned)(Op - Op->getUser()->OperandList);
813 }
814 };
815
816 /// Provide iteration support to walk over all uses of an SDNode.
818 return use_iterator(UseList);
819 }
820
821 static use_iterator use_end() { return use_iterator(nullptr); }
822
824 return make_range(use_begin(), use_end());
825 }
827 return make_range(use_begin(), use_end());
828 }
829
830 /// Return true if there are exactly NUSES uses of the indicated value.
831 /// This method ignores uses of other values defined by this operation.
832 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
833
834 /// Return true if there are any use of the indicated value.
835 /// This method ignores uses of other values defined by this operation.
836 bool hasAnyUseOfValue(unsigned Value) const;
837
838 /// Return true if this node is the only use of N.
839 bool isOnlyUserOf(const SDNode *N) const;
840
841 /// Return true if this node is an operand of N.
842 bool isOperandOf(const SDNode *N) const;
843
844 /// Return true if this node is a predecessor of N.
845 /// NOTE: Implemented on top of hasPredecessor and every bit as
846 /// expensive. Use carefully.
847 bool isPredecessorOf(const SDNode *N) const {
848 return N->hasPredecessor(this);
849 }
850
851 /// Return true if N is a predecessor of this node.
852 /// N is either an operand of this node, or can be reached by recursively
853 /// traversing up the operands.
854 /// NOTE: This is an expensive method. Use it carefully.
855 bool hasPredecessor(const SDNode *N) const;
856
857 /// Returns true if N is a predecessor of any node in Worklist. This
858 /// helper keeps Visited and Worklist sets externally to allow unions
859 /// searches to be performed in parallel, caching of results across
860 /// queries and incremental addition to Worklist. Stops early if N is
861 /// found but will resume. Remember to clear Visited and Worklists
862 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
863 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
864 /// topologically ordered (Operands have strictly smaller node id) and search
865 /// can be pruned leveraging this.
866 static bool hasPredecessorHelper(const SDNode *N,
869 unsigned int MaxSteps = 0,
870 bool TopologicalPrune = false) {
871 SmallVector<const SDNode *, 8> DeferredNodes;
872 if (Visited.count(N))
873 return true;
874
875 // Node Id's are assigned in three places: As a topological
876 // ordering (> 0), during legalization (results in values set to
877 // 0), new nodes (set to -1). If N has a topolgical id then we
878 // know that all nodes with ids smaller than it cannot be
879 // successors and we need not check them. Filter out all node
880 // that can't be matches. We add them to the worklist before exit
881 // in case of multiple calls. Note that during selection the topological id
882 // may be violated if a node's predecessor is selected before it. We mark
883 // this at selection negating the id of unselected successors and
884 // restricting topological pruning to positive ids.
885
886 int NId = N->getNodeId();
887 // If we Invalidated the Id, reconstruct original NId.
888 if (NId < -1)
889 NId = -(NId + 1);
890
891 bool Found = false;
892 while (!Worklist.empty()) {
893 const SDNode *M = Worklist.pop_back_val();
894 int MId = M->getNodeId();
895 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
896 (MId > 0) && (MId < NId)) {
897 DeferredNodes.push_back(M);
898 continue;
899 }
900 for (const SDValue &OpV : M->op_values()) {
901 SDNode *Op = OpV.getNode();
902 if (Visited.insert(Op).second)
903 Worklist.push_back(Op);
904 if (Op == N)
905 Found = true;
906 }
907 if (Found)
908 break;
909 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
910 break;
911 }
912 // Push deferred nodes back on worklist.
913 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
914 // If we bailed early, conservatively return found.
915 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
916 return true;
917 return Found;
918 }
919
920 /// Return true if all the users of N are contained in Nodes.
921 /// NOTE: Requires at least one match, but doesn't require them all.
922 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
923
924 /// Return the number of values used by this operation.
925 unsigned getNumOperands() const { return NumOperands; }
926
927 /// Return the maximum number of operands that a SDNode can hold.
928 static constexpr size_t getMaxNumOperands() {
929 return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
930 }
931
932 /// Helper method returns the integer value of a ConstantSDNode operand.
933 inline uint64_t getConstantOperandVal(unsigned Num) const;
934
935 /// Helper method returns the zero-extended integer value of a ConstantSDNode.
936 inline uint64_t getAsZExtVal() const;
937
938 /// Helper method returns the APInt of a ConstantSDNode operand.
939 inline const APInt &getConstantOperandAPInt(unsigned Num) const;
940
941 /// Helper method returns the APInt value of a ConstantSDNode.
942 inline const APInt &getAsAPIntVal() const;
943
944 const SDValue &getOperand(unsigned Num) const {
945 assert(Num < NumOperands && "Invalid child # of SDNode!");
946 return OperandList[Num];
947 }
948
950
951 op_iterator op_begin() const { return OperandList; }
952 op_iterator op_end() const { return OperandList+NumOperands; }
953 ArrayRef<SDUse> ops() const { return ArrayRef(op_begin(), op_end()); }
954
955 /// Iterator for directly iterating over the operand SDValue's.
957 : iterator_adaptor_base<value_op_iterator, op_iterator,
958 std::random_access_iterator_tag, SDValue,
959 ptrdiff_t, value_op_iterator *,
960 value_op_iterator *> {
961 explicit value_op_iterator(SDUse *U = nullptr)
963
964 const SDValue &operator*() const { return I->get(); }
965 };
966
970 }
971
973 SDVTList X = { ValueList, NumValues };
974 return X;
975 }
976
977 /// If this node has a glue operand, return the node
978 /// to which the glue operand points. Otherwise return NULL.
980 if (getNumOperands() != 0 &&
981 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
982 return getOperand(getNumOperands()-1).getNode();
983 return nullptr;
984 }
985
986 /// If this node has a glue value with a user, return
987 /// the user (there is at most one). Otherwise return NULL.
989 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
990 if (UI.getUse().get().getValueType() == MVT::Glue)
991 return *UI;
992 return nullptr;
993 }
994
995 SDNodeFlags getFlags() const { return Flags; }
996 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
997
998 /// Clear any flags in this node that aren't also set in Flags.
999 /// If Flags is not in a defined state then this has no effect.
1000 void intersectFlagsWith(const SDNodeFlags Flags);
1001
1003 SDNodeFlags Flags = getFlags();
1004 return Flags.hasNoUnsignedWrap() || Flags.hasNoSignedWrap() ||
1005 Flags.hasExact() || Flags.hasDisjoint() || Flags.hasNonNeg() ||
1006 Flags.hasNoNaNs() || Flags.hasNoInfs();
1007 }
1008
1009 void setCFIType(uint32_t Type) { CFIType = Type; }
1010 uint32_t getCFIType() const { return CFIType; }
1011
1012 /// Return the number of values defined/returned by this operator.
1013 unsigned getNumValues() const { return NumValues; }
1014
1015 /// Return the type of a specified result.
1016 EVT getValueType(unsigned ResNo) const {
1017 assert(ResNo < NumValues && "Illegal result number!");
1018 return ValueList[ResNo];
1019 }
1020
1021 /// Return the type of a specified result as a simple type.
1022 MVT getSimpleValueType(unsigned ResNo) const {
1023 return getValueType(ResNo).getSimpleVT();
1024 }
1025
1026 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
1027 ///
1028 /// If the value type is a scalable vector type, the scalable property will
1029 /// be set and the runtime size will be a positive integer multiple of the
1030 /// base size.
1031 TypeSize getValueSizeInBits(unsigned ResNo) const {
1032 return getValueType(ResNo).getSizeInBits();
1033 }
1034
1035 using value_iterator = const EVT *;
1036
1037 value_iterator value_begin() const { return ValueList; }
1038 value_iterator value_end() const { return ValueList+NumValues; }
1041 }
1042
1043 /// Return the opcode of this operation for printing.
1044 std::string getOperationName(const SelectionDAG *G = nullptr) const;
1045 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1046 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1047 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1048 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1049 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1050
1051 /// Print a SelectionDAG node and all children down to
1052 /// the leaves. The given SelectionDAG allows target-specific nodes
1053 /// to be printed in human-readable form. Unlike printr, this will
1054 /// print the whole DAG, including children that appear multiple
1055 /// times.
1056 ///
1057 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1058
1059 /// Print a SelectionDAG node and children up to
1060 /// depth "depth." The given SelectionDAG allows target-specific
1061 /// nodes to be printed in human-readable form. Unlike printr, this
1062 /// will print children that appear multiple times wherever they are
1063 /// used.
1064 ///
1065 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1066 unsigned depth = 100) const;
1067
1068 /// Dump this node, for debugging.
1069 void dump() const;
1070
1071 /// Dump (recursively) this node and its use-def subgraph.
1072 void dumpr() const;
1073
1074 /// Dump this node, for debugging.
1075 /// The given SelectionDAG allows target-specific nodes to be printed
1076 /// in human-readable form.
1077 void dump(const SelectionDAG *G) const;
1078
1079 /// Dump (recursively) this node and its use-def subgraph.
1080 /// The given SelectionDAG allows target-specific nodes to be printed
1081 /// in human-readable form.
1082 void dumpr(const SelectionDAG *G) const;
1083
1084 /// printrFull to dbgs(). The given SelectionDAG allows
1085 /// target-specific nodes to be printed in human-readable form.
1086 /// Unlike dumpr, this will print the whole DAG, including children
1087 /// that appear multiple times.
1088 void dumprFull(const SelectionDAG *G = nullptr) const;
1089
1090 /// printrWithDepth to dbgs(). The given
1091 /// SelectionDAG allows target-specific nodes to be printed in
1092 /// human-readable form. Unlike dumpr, this will print children
1093 /// that appear multiple times wherever they are used.
1094 ///
1095 void dumprWithDepth(const SelectionDAG *G = nullptr,
1096 unsigned depth = 100) const;
1097
1098 /// Gather unique data for the node.
1099 void Profile(FoldingSetNodeID &ID) const;
1100
1101 /// This method should only be used by the SDUse class.
1102 void addUse(SDUse &U) { U.addToList(&UseList); }
1103
1104protected:
1106 SDVTList Ret = { getValueTypeList(VT), 1 };
1107 return Ret;
1108 }
1109
1110 /// Create an SDNode.
1111 ///
1112 /// SDNodes are created without any operands, and never own the operand
1113 /// storage. To add operands, see SelectionDAG::createOperands.
1114 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1115 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1116 IROrder(Order), debugLoc(std::move(dl)) {
1117 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1118 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1119 assert(NumValues == VTs.NumVTs &&
1120 "NumValues wasn't wide enough for its operands!");
1121 }
1122
1123 /// Release the operands and set this node to have zero operands.
1124 void DropOperands();
1125};
1126
1127/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1128/// into SDNode creation functions.
1129/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1130/// from the original Instruction, and IROrder is the ordinal position of
1131/// the instruction.
1132/// When an SDNode is created after the DAG is being built, both DebugLoc and
1133/// the IROrder are propagated from the original SDNode.
1134/// So SDLoc class provides two constructors besides the default one, one to
1135/// be used by the DAGBuilder, the other to be used by others.
1136class SDLoc {
1137private:
1138 DebugLoc DL;
1139 int IROrder = 0;
1140
1141public:
1142 SDLoc() = default;
1143 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1144 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1145 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1146 assert(Order >= 0 && "bad IROrder");
1147 if (I)
1148 DL = I->getDebugLoc();
1149 }
1150
1151 unsigned getIROrder() const { return IROrder; }
1152 const DebugLoc &getDebugLoc() const { return DL; }
1153};
1154
1155// Define inline functions from the SDValue class.
1156
1157inline SDValue::SDValue(SDNode *node, unsigned resno)
1158 : Node(node), ResNo(resno) {
1159 // Explicitly check for !ResNo to avoid use-after-free, because there are
1160 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1161 // combines.
1162 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1163 "Invalid result number for the given node!");
1164 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1165}
1166
1167inline unsigned SDValue::getOpcode() const {
1168 return Node->getOpcode();
1169}
1170
1172 return Node->getValueType(ResNo);
1173}
1174
1175inline unsigned SDValue::getNumOperands() const {
1176 return Node->getNumOperands();
1177}
1178
1179inline const SDValue &SDValue::getOperand(unsigned i) const {
1180 return Node->getOperand(i);
1181}
1182
1184 return Node->getConstantOperandVal(i);
1185}
1186
1187inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1188 return Node->getConstantOperandAPInt(i);
1189}
1190
1191inline bool SDValue::isTargetOpcode() const {
1192 return Node->isTargetOpcode();
1193}
1194
1196 return Node->isTargetMemoryOpcode();
1197}
1198
1199inline bool SDValue::isMachineOpcode() const {
1200 return Node->isMachineOpcode();
1201}
1202
1203inline unsigned SDValue::getMachineOpcode() const {
1204 return Node->getMachineOpcode();
1205}
1206
1207inline bool SDValue::isUndef() const {
1208 return Node->isUndef();
1209}
1210
1211inline bool SDValue::use_empty() const {
1212 return !Node->hasAnyUseOfValue(ResNo);
1213}
1214
1215inline bool SDValue::hasOneUse() const {
1216 return Node->hasNUsesOfValue(1, ResNo);
1217}
1218
1219inline const DebugLoc &SDValue::getDebugLoc() const {
1220 return Node->getDebugLoc();
1221}
1222
1223inline void SDValue::dump() const {
1224 return Node->dump();
1225}
1226
1227inline void SDValue::dump(const SelectionDAG *G) const {
1228 return Node->dump(G);
1229}
1230
1231inline void SDValue::dumpr() const {
1232 return Node->dumpr();
1233}
1234
1235inline void SDValue::dumpr(const SelectionDAG *G) const {
1236 return Node->dumpr(G);
1237}
1238
1239// Define inline functions from the SDUse class.
1240
1241inline void SDUse::set(const SDValue &V) {
1242 if (Val.getNode()) removeFromList();
1243 Val = V;
1244 if (V.getNode())
1245 V->addUse(*this);
1246}
1247
1248inline void SDUse::setInitial(const SDValue &V) {
1249 Val = V;
1250 V->addUse(*this);
1251}
1252
1253inline void SDUse::setNode(SDNode *N) {
1254 if (Val.getNode()) removeFromList();
1255 Val.setNode(N);
1256 if (N) N->addUse(*this);
1257}
1258
1259/// This class is used to form a handle around another node that
1260/// is persistent and is updated across invocations of replaceAllUsesWith on its
1261/// operand. This node should be directly created by end-users and not added to
1262/// the AllNodes list.
1263class HandleSDNode : public SDNode {
1264 SDUse Op;
1265
1266public:
1268 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1269 // HandleSDNodes are never inserted into the DAG, so they won't be
1270 // auto-numbered. Use ID 65535 as a sentinel.
1271 PersistentId = 0xffff;
1272
1273 // Manually set up the operand list. This node type is special in that it's
1274 // always stack allocated and SelectionDAG does not manage its operands.
1275 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1276 // be so special.
1277 Op.setUser(this);
1278 Op.setInitial(X);
1279 NumOperands = 1;
1280 OperandList = &Op;
1281 }
1282 ~HandleSDNode();
1283
1284 const SDValue &getValue() const { return Op; }
1285};
1286
1288private:
1289 unsigned SrcAddrSpace;
1290 unsigned DestAddrSpace;
1291
1292public:
1293 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
1294 unsigned SrcAS, unsigned DestAS)
1295 : SDNode(ISD::ADDRSPACECAST, Order, dl, VTs), SrcAddrSpace(SrcAS),
1296 DestAddrSpace(DestAS) {}
1297
1298 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1299 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1300
1301 static bool classof(const SDNode *N) {
1302 return N->getOpcode() == ISD::ADDRSPACECAST;
1303 }
1304};
1305
1306/// This is an abstract virtual class for memory operations.
1307class MemSDNode : public SDNode {
1308private:
1309 // VT of in-memory value.
1310 EVT MemoryVT;
1311
1312protected:
1313 /// Memory reference information.
1315
1316public:
1317 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1318 EVT memvt, MachineMemOperand *MMO);
1319
1320 bool readMem() const { return MMO->isLoad(); }
1321 bool writeMem() const { return MMO->isStore(); }
1322
1323 /// Returns alignment and volatility of the memory access
1325 Align getAlign() const { return MMO->getAlign(); }
1326
1327 /// Return the SubclassData value, without HasDebugValue. This contains an
1328 /// encoding of the volatile flag, as well as bits used by subclasses. This
1329 /// function should only be used to compute a FoldingSetNodeID value.
1330 /// The HasDebugValue bit is masked out because CSE map needs to match
1331 /// nodes with debug info with nodes without debug info. Same is about
1332 /// isDivergent bit.
1333 unsigned getRawSubclassData() const {
1334 uint16_t Data;
1335 union {
1336 char RawSDNodeBits[sizeof(uint16_t)];
1338 };
1339 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1340 SDNodeBits.HasDebugValue = 0;
1341 SDNodeBits.IsDivergent = false;
1342 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1343 return Data;
1344 }
1345
1346 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1347 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1348 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1349 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1350
1351 // Returns the offset from the location of the access.
1352 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1353
1354 /// Returns the AA info that describes the dereference.
1355 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1356
1357 /// Returns the Ranges that describes the dereference.
1358 const MDNode *getRanges() const { return MMO->getRanges(); }
1359
1360 /// Returns the synchronization scope ID for this memory operation.
1362
1363 /// Return the atomic ordering requirements for this memory operation. For
1364 /// cmpxchg atomic operations, return the atomic ordering requirements when
1365 /// store occurs.
1367 return MMO->getSuccessOrdering();
1368 }
1369
1370 /// Return a single atomic ordering that is at least as strong as both the
1371 /// success and failure orderings for an atomic operation. (For operations
1372 /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1374
1375 /// Return true if the memory operation ordering is Unordered or higher.
1376 bool isAtomic() const { return MMO->isAtomic(); }
1377
1378 /// Returns true if the memory operation doesn't imply any ordering
1379 /// constraints on surrounding memory operations beyond the normal memory
1380 /// aliasing rules.
1381 bool isUnordered() const { return MMO->isUnordered(); }
1382
1383 /// Returns true if the memory operation is neither atomic or volatile.
1384 bool isSimple() const { return !isAtomic() && !isVolatile(); }
1385
1386 /// Return the type of the in-memory value.
1387 EVT getMemoryVT() const { return MemoryVT; }
1388
1389 /// Return a MachineMemOperand object describing the memory
1390 /// reference performed by operation.
1392
1394 return MMO->getPointerInfo();
1395 }
1396
1397 /// Return the address space for the associated pointer
1398 unsigned getAddressSpace() const {
1399 return getPointerInfo().getAddrSpace();
1400 }
1401
1402 /// Update this MemSDNode's MachineMemOperand information
1403 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1404 /// This must only be used when the new alignment applies to all users of
1405 /// this MachineMemOperand.
1407 MMO->refineAlignment(NewMMO);
1408 }
1409
1410 const SDValue &getChain() const { return getOperand(0); }
1411
1412 const SDValue &getBasePtr() const {
1413 switch (getOpcode()) {
1414 case ISD::STORE:
1415 case ISD::ATOMIC_STORE:
1416 case ISD::VP_STORE:
1417 case ISD::MSTORE:
1418 case ISD::VP_SCATTER:
1419 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1420 return getOperand(2);
1421 case ISD::MGATHER:
1422 case ISD::MSCATTER:
1423 return getOperand(3);
1424 default:
1425 return getOperand(1);
1426 }
1427 }
1428
1429 // Methods to support isa and dyn_cast
1430 static bool classof(const SDNode *N) {
1431 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1432 // with either an intrinsic or a target opcode.
1433 switch (N->getOpcode()) {
1434 case ISD::LOAD:
1435 case ISD::STORE:
1436 case ISD::PREFETCH:
1439 case ISD::ATOMIC_SWAP:
1457 case ISD::ATOMIC_LOAD:
1458 case ISD::ATOMIC_STORE:
1459 case ISD::MLOAD:
1460 case ISD::MSTORE:
1461 case ISD::MGATHER:
1462 case ISD::MSCATTER:
1463 case ISD::VP_LOAD:
1464 case ISD::VP_STORE:
1465 case ISD::VP_GATHER:
1466 case ISD::VP_SCATTER:
1467 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
1468 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1469 case ISD::GET_FPENV_MEM:
1470 case ISD::SET_FPENV_MEM:
1471 return true;
1472 default:
1473 return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
1474 }
1475 }
1476};
1477
1478/// This is an SDNode representing atomic operations.
1479class AtomicSDNode : public MemSDNode {
1480public:
1481 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1482 EVT MemVT, MachineMemOperand *MMO)
1483 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1484 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1485 MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1486 }
1487
1489 assert(getOpcode() == ISD::ATOMIC_LOAD && "Only used for atomic loads.");
1490 LoadSDNodeBits.ExtTy = ETy;
1491 }
1492
1494 assert(getOpcode() == ISD::ATOMIC_LOAD && "Only used for atomic loads.");
1495 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
1496 }
1497
1498 const SDValue &getBasePtr() const {
1499 return getOpcode() == ISD::ATOMIC_STORE ? getOperand(2) : getOperand(1);
1500 }
1501 const SDValue &getVal() const {
1502 return getOpcode() == ISD::ATOMIC_STORE ? getOperand(1) : getOperand(2);
1503 }
1504
1505 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1506 /// otherwise.
1507 bool isCompareAndSwap() const {
1508 unsigned Op = getOpcode();
1509 return Op == ISD::ATOMIC_CMP_SWAP ||
1511 }
1512
1513 /// For cmpxchg atomic operations, return the atomic ordering requirements
1514 /// when store does not occur.
1516 assert(isCompareAndSwap() && "Must be cmpxchg operation");
1517 return MMO->getFailureOrdering();
1518 }
1519
1520 // Methods to support isa and dyn_cast
1521 static bool classof(const SDNode *N) {
1522 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1523 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1524 N->getOpcode() == ISD::ATOMIC_SWAP ||
1525 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1526 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1527 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1528 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1529 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1530 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1531 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1532 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1533 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1534 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1535 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1536 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1537 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1538 N->getOpcode() == ISD::ATOMIC_LOAD_FMAX ||
1539 N->getOpcode() == ISD::ATOMIC_LOAD_FMIN ||
1540 N->getOpcode() == ISD::ATOMIC_LOAD_UINC_WRAP ||
1541 N->getOpcode() == ISD::ATOMIC_LOAD_UDEC_WRAP ||
1542 N->getOpcode() == ISD::ATOMIC_LOAD ||
1543 N->getOpcode() == ISD::ATOMIC_STORE;
1544 }
1545};
1546
1547/// This SDNode is used for target intrinsics that touch
1548/// memory and need an associated MachineMemOperand. Its opcode may be
1549/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1550/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1552public:
1553 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1554 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1555 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1556 SDNodeBits.IsMemIntrinsic = true;
1557 }
1558
1559 // Methods to support isa and dyn_cast
1560 static bool classof(const SDNode *N) {
1561 // We lower some target intrinsics to their target opcode
1562 // early a node with a target opcode can be of this class
1563 return N->isMemIntrinsic() ||
1564 N->getOpcode() == ISD::PREFETCH ||
1565 N->isTargetMemoryOpcode();
1566 }
1567};
1568
1569/// This SDNode is used to implement the code generator
1570/// support for the llvm IR shufflevector instruction. It combines elements
1571/// from two input vectors into a new input vector, with the selection and
1572/// ordering of elements determined by an array of integers, referred to as
1573/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1574/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1575/// An index of -1 is treated as undef, such that the code generator may put
1576/// any value in the corresponding element of the result.
1578 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1579 // is freed when the SelectionDAG object is destroyed.
1580 const int *Mask;
1581
1582protected:
1583 friend class SelectionDAG;
1584
1585 ShuffleVectorSDNode(SDVTList VTs, unsigned Order, const DebugLoc &dl,
1586 const int *M)
1587 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, VTs), Mask(M) {}
1588
1589public:
1591 EVT VT = getValueType(0);
1592 return ArrayRef(Mask, VT.getVectorNumElements());
1593 }
1594
1595 int getMaskElt(unsigned Idx) const {
1596 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1597 return Mask[Idx];
1598 }
1599
1600 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1601
1602 int getSplatIndex() const {
1603 assert(isSplat() && "Cannot get splat index for non-splat!");
1604 EVT VT = getValueType(0);
1605 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1606 if (Mask[i] >= 0)
1607 return Mask[i];
1608
1609 // We can choose any index value here and be correct because all elements
1610 // are undefined. Return 0 for better potential for callers to simplify.
1611 return 0;
1612 }
1613
1614 static bool isSplatMask(const int *Mask, EVT VT);
1615
1616 /// Change values in a shuffle permute mask assuming
1617 /// the two vector operands have swapped position.
1619 unsigned NumElems = Mask.size();
1620 for (unsigned i = 0; i != NumElems; ++i) {
1621 int idx = Mask[i];
1622 if (idx < 0)
1623 continue;
1624 else if (idx < (int)NumElems)
1625 Mask[i] = idx + NumElems;
1626 else
1627 Mask[i] = idx - NumElems;
1628 }
1629 }
1630
1631 static bool classof(const SDNode *N) {
1632 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1633 }
1634};
1635
1636class ConstantSDNode : public SDNode {
1637 friend class SelectionDAG;
1638
1639 const ConstantInt *Value;
1640
1641 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val,
1642 SDVTList VTs)
1643 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1644 VTs),
1645 Value(val) {
1646 ConstantSDNodeBits.IsOpaque = isOpaque;
1647 }
1648
1649public:
1650 const ConstantInt *getConstantIntValue() const { return Value; }
1651 const APInt &getAPIntValue() const { return Value->getValue(); }
1652 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1653 int64_t getSExtValue() const { return Value->getSExtValue(); }
1655 return Value->getLimitedValue(Limit);
1656 }
1657 MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1658 Align getAlignValue() const { return Value->getAlignValue(); }
1659
1660 bool isOne() const { return Value->isOne(); }
1661 bool isZero() const { return Value->isZero(); }
1662 bool isAllOnes() const { return Value->isMinusOne(); }
1663 bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1664 bool isMinSignedValue() const { return Value->isMinValue(true); }
1665
1666 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1667
1668 static bool classof(const SDNode *N) {
1669 return N->getOpcode() == ISD::Constant ||
1670 N->getOpcode() == ISD::TargetConstant;
1671 }
1672};
1673
1675 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1676}
1677
1679 return cast<ConstantSDNode>(this)->getZExtValue();
1680}
1681
1682const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1683 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1684}
1685
1687 return cast<ConstantSDNode>(this)->getAPIntValue();
1688}
1689
1690class ConstantFPSDNode : public SDNode {
1691 friend class SelectionDAG;
1692
1693 const ConstantFP *Value;
1694
1695 ConstantFPSDNode(bool isTarget, const ConstantFP *val, SDVTList VTs)
1696 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1697 DebugLoc(), VTs),
1698 Value(val) {}
1699
1700public:
1701 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1702 const ConstantFP *getConstantFPValue() const { return Value; }
1703
1704 /// Return true if the value is positive or negative zero.
1705 bool isZero() const { return Value->isZero(); }
1706
1707 /// Return true if the value is a NaN.
1708 bool isNaN() const { return Value->isNaN(); }
1709
1710 /// Return true if the value is an infinity
1711 bool isInfinity() const { return Value->isInfinity(); }
1712
1713 /// Return true if the value is negative.
1714 bool isNegative() const { return Value->isNegative(); }
1715
1716 /// We don't rely on operator== working on double values, as
1717 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1718 /// As such, this method can be used to do an exact bit-for-bit comparison of
1719 /// two floating point values.
1720
1721 /// We leave the version with the double argument here because it's just so
1722 /// convenient to write "2.0" and the like. Without this function we'd
1723 /// have to duplicate its logic everywhere it's called.
1724 bool isExactlyValue(double V) const {
1725 return Value->getValueAPF().isExactlyValue(V);
1726 }
1727 bool isExactlyValue(const APFloat& V) const;
1728
1729 static bool isValueValidForType(EVT VT, const APFloat& Val);
1730
1731 static bool classof(const SDNode *N) {
1732 return N->getOpcode() == ISD::ConstantFP ||
1733 N->getOpcode() == ISD::TargetConstantFP;
1734 }
1735};
1736
1737/// Returns true if \p V is a constant integer zero.
1738bool isNullConstant(SDValue V);
1739
1740/// Returns true if \p V is an FP constant with a value of positive zero.
1741bool isNullFPConstant(SDValue V);
1742
1743/// Returns true if \p V is an integer constant with all bits set.
1744bool isAllOnesConstant(SDValue V);
1745
1746/// Returns true if \p V is a constant integer one.
1747bool isOneConstant(SDValue V);
1748
1749/// Returns true if \p V is a constant min signed integer value.
1750bool isMinSignedConstant(SDValue V);
1751
1752/// Returns true if \p V is a neutral element of Opc with Flags.
1753/// When OperandNo is 0, it checks that V is a left identity. Otherwise, it
1754/// checks that V is a right identity.
1755bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V,
1756 unsigned OperandNo);
1757
1758/// Return the non-bitcasted source operand of \p V if it exists.
1759/// If \p V is not a bitcasted value, it is returned as-is.
1760SDValue peekThroughBitcasts(SDValue V);
1761
1762/// Return the non-bitcasted and one-use source operand of \p V if it exists.
1763/// If \p V is not a bitcasted one-use value, it is returned as-is.
1764SDValue peekThroughOneUseBitcasts(SDValue V);
1765
1766/// Return the non-extracted vector source operand of \p V if it exists.
1767/// If \p V is not an extracted subvector, it is returned as-is.
1768SDValue peekThroughExtractSubvectors(SDValue V);
1769
1770/// Return the non-truncated source operand of \p V if it exists.
1771/// If \p V is not a truncation, it is returned as-is.
1772SDValue peekThroughTruncates(SDValue V);
1773
1774/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1775/// constant is canonicalized to be operand 1.
1776bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1777
1778/// If \p V is a bitwise not, returns the inverted operand. Otherwise returns
1779/// an empty SDValue. Only bits set in \p Mask are required to be inverted,
1780/// other bits may be arbitrary.
1781SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs);
1782
1783/// Returns the SDNode if it is a constant splat BuildVector or constant int.
1784ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1785 bool AllowTruncation = false);
1786
1787/// Returns the SDNode if it is a demanded constant splat BuildVector or
1788/// constant int.
1789ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1790 bool AllowUndefs = false,
1791 bool AllowTruncation = false);
1792
1793/// Returns the SDNode if it is a constant splat BuildVector or constant float.
1794ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1795
1796/// Returns the SDNode if it is a demanded constant splat BuildVector or
1797/// constant float.
1798ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1799 bool AllowUndefs = false);
1800
1801/// Return true if the value is a constant 0 integer or a splatted vector of
1802/// a constant 0 integer (with no undefs by default).
1803/// Build vector implicit truncation is not an issue for null values.
1804bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1805
1806/// Return true if the value is a constant 1 integer or a splatted vector of a
1807/// constant 1 integer (with no undefs).
1808/// Build vector implicit truncation is allowed, but the truncated bits need to
1809/// be zero.
1810bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1811
1812/// Return true if the value is a constant -1 integer or a splatted vector of a
1813/// constant -1 integer (with no undefs).
1814/// Does not permit build vector implicit truncation.
1815bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1816
1817/// Return true if \p V is either a integer or FP constant.
1819 return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1820}
1821
1823 friend class SelectionDAG;
1824
1825 const GlobalValue *TheGlobal;
1826 int64_t Offset;
1827 unsigned TargetFlags;
1828
1829 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1830 const GlobalValue *GA, SDVTList VTs, int64_t o,
1831 unsigned TF)
1832 : SDNode(Opc, Order, DL, VTs), TheGlobal(GA), Offset(o), TargetFlags(TF) {
1833 }
1834
1835public:
1836 const GlobalValue *getGlobal() const { return TheGlobal; }
1837 int64_t getOffset() const { return Offset; }
1838 unsigned getTargetFlags() const { return TargetFlags; }
1839 // Return the address space this GlobalAddress belongs to.
1840 unsigned getAddressSpace() const;
1841
1842 static bool classof(const SDNode *N) {
1843 return N->getOpcode() == ISD::GlobalAddress ||
1844 N->getOpcode() == ISD::TargetGlobalAddress ||
1845 N->getOpcode() == ISD::GlobalTLSAddress ||
1846 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1847 }
1848};
1849
1850class FrameIndexSDNode : public SDNode {
1851 friend class SelectionDAG;
1852
1853 int FI;
1854
1855 FrameIndexSDNode(int fi, SDVTList VTs, bool isTarg)
1856 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, 0, DebugLoc(),
1857 VTs),
1858 FI(fi) {}
1859
1860public:
1861 int getIndex() const { return FI; }
1862
1863 static bool classof(const SDNode *N) {
1864 return N->getOpcode() == ISD::FrameIndex ||
1865 N->getOpcode() == ISD::TargetFrameIndex;
1866 }
1867};
1868
1869/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1870/// the offet and size that are started/ended in the underlying FrameIndex.
1871class LifetimeSDNode : public SDNode {
1872 friend class SelectionDAG;
1873 int64_t Size;
1874 int64_t Offset; // -1 if offset is unknown.
1875
1876 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1877 SDVTList VTs, int64_t Size, int64_t Offset)
1878 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1879public:
1880 int64_t getFrameIndex() const {
1881 return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1882 }
1883
1884 bool hasOffset() const { return Offset >= 0; }
1885 int64_t getOffset() const {
1886 assert(hasOffset() && "offset is unknown");
1887 return Offset;
1888 }
1889 int64_t getSize() const {
1890 assert(hasOffset() && "offset is unknown");
1891 return Size;
1892 }
1893
1894 // Methods to support isa and dyn_cast
1895 static bool classof(const SDNode *N) {
1896 return N->getOpcode() == ISD::LIFETIME_START ||
1897 N->getOpcode() == ISD::LIFETIME_END;
1898 }
1899};
1900
1901/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1902/// the index of the basic block being probed. A pseudo probe serves as a place
1903/// holder and will be removed at the end of compilation. It does not have any
1904/// operand because we do not want the instruction selection to deal with any.
1906 friend class SelectionDAG;
1907 uint64_t Guid;
1909 uint32_t Attributes;
1910
1911 PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1912 SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1913 : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1914 Attributes(Attr) {}
1915
1916public:
1917 uint64_t getGuid() const { return Guid; }
1918 uint64_t getIndex() const { return Index; }
1920
1921 // Methods to support isa and dyn_cast
1922 static bool classof(const SDNode *N) {
1923 return N->getOpcode() == ISD::PSEUDO_PROBE;
1924 }
1925};
1926
1927class JumpTableSDNode : public SDNode {
1928 friend class SelectionDAG;
1929
1930 int JTI;
1931 unsigned TargetFlags;
1932
1933 JumpTableSDNode(int jti, SDVTList VTs, bool isTarg, unsigned TF)
1934 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, 0, DebugLoc(),
1935 VTs),
1936 JTI(jti), TargetFlags(TF) {}
1937
1938public:
1939 int getIndex() const { return JTI; }
1940 unsigned getTargetFlags() const { return TargetFlags; }
1941
1942 static bool classof(const SDNode *N) {
1943 return N->getOpcode() == ISD::JumpTable ||
1944 N->getOpcode() == ISD::TargetJumpTable;
1945 }
1946};
1947
1949 friend class SelectionDAG;
1950
1951 union {
1954 } Val;
1955 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1956 Align Alignment; // Minimum alignment requirement of CP.
1957 unsigned TargetFlags;
1958
1959 ConstantPoolSDNode(bool isTarget, const Constant *c, SDVTList VTs, int o,
1960 Align Alignment, unsigned TF)
1961 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1962 DebugLoc(), VTs),
1963 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1964 assert(Offset >= 0 && "Offset is too large");
1965 Val.ConstVal = c;
1966 }
1967
1968 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, SDVTList VTs,
1969 int o, Align Alignment, unsigned TF)
1970 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1971 DebugLoc(), VTs),
1972 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1973 assert(Offset >= 0 && "Offset is too large");
1974 Val.MachineCPVal = v;
1975 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1976 }
1977
1978public:
1980 return Offset < 0;
1981 }
1982
1983 const Constant *getConstVal() const {
1984 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1985 return Val.ConstVal;
1986 }
1987
1989 assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1990 return Val.MachineCPVal;
1991 }
1992
1993 int getOffset() const {
1994 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1995 }
1996
1997 // Return the alignment of this constant pool object, which is either 0 (for
1998 // default alignment) or the desired value.
1999 Align getAlign() const { return Alignment; }
2000 unsigned getTargetFlags() const { return TargetFlags; }
2001
2002 Type *getType() const;
2003
2004 static bool classof(const SDNode *N) {
2005 return N->getOpcode() == ISD::ConstantPool ||
2006 N->getOpcode() == ISD::TargetConstantPool;
2007 }
2008};
2009
2010/// Completely target-dependent object reference.
2012 friend class SelectionDAG;
2013
2014 unsigned TargetFlags;
2015 int Index;
2016 int64_t Offset;
2017
2018public:
2019 TargetIndexSDNode(int Idx, SDVTList VTs, int64_t Ofs, unsigned TF)
2020 : SDNode(ISD::TargetIndex, 0, DebugLoc(), VTs), TargetFlags(TF),
2021 Index(Idx), Offset(Ofs) {}
2022
2023 unsigned getTargetFlags() const { return TargetFlags; }
2024 int getIndex() const { return Index; }
2025 int64_t getOffset() const { return Offset; }
2026
2027 static bool classof(const SDNode *N) {
2028 return N->getOpcode() == ISD::TargetIndex;
2029 }
2030};
2031
2032class BasicBlockSDNode : public SDNode {
2033 friend class SelectionDAG;
2034
2036
2037 /// Debug info is meaningful and potentially useful here, but we create
2038 /// blocks out of order when they're jumped to, which makes it a bit
2039 /// harder. Let's see if we need it first.
2040 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
2041 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
2042 {}
2043
2044public:
2046
2047 static bool classof(const SDNode *N) {
2048 return N->getOpcode() == ISD::BasicBlock;
2049 }
2050};
2051
2052/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
2054public:
2055 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
2056 explicit BuildVectorSDNode() = delete;
2057
2058 /// Check if this is a constant splat, and if so, find the
2059 /// smallest element size that splats the vector. If MinSplatBits is
2060 /// nonzero, the element size must be at least that large. Note that the
2061 /// splat element may be the entire vector (i.e., a one element vector).
2062 /// Returns the splat element value in SplatValue. Any undefined bits in
2063 /// that value are zero, and the corresponding bits in the SplatUndef mask
2064 /// are set. The SplatBitSize value is set to the splat element size in
2065 /// bits. HasAnyUndefs is set to true if any bits in the vector are
2066 /// undefined. isBigEndian describes the endianness of the target.
2067 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
2068 unsigned &SplatBitSize, bool &HasAnyUndefs,
2069 unsigned MinSplatBits = 0,
2070 bool isBigEndian = false) const;
2071
2072 /// Returns the demanded splatted value or a null value if this is not a
2073 /// splat.
2074 ///
2075 /// The DemandedElts mask indicates the elements that must be in the splat.
2076 /// If passed a non-null UndefElements bitvector, it will resize it to match
2077 /// the vector width and set the bits where elements are undef.
2078 SDValue getSplatValue(const APInt &DemandedElts,
2079 BitVector *UndefElements = nullptr) const;
2080
2081 /// Returns the splatted value or a null value if this is not a splat.
2082 ///
2083 /// If passed a non-null UndefElements bitvector, it will resize it to match
2084 /// the vector width and set the bits where elements are undef.
2085 SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
2086
2087 /// Find the shortest repeating sequence of values in the build vector.
2088 ///
2089 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2090 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
2091 ///
2092 /// Currently this must be a power-of-2 build vector.
2093 /// The DemandedElts mask indicates the elements that must be present,
2094 /// undemanded elements in Sequence may be null (SDValue()). If passed a
2095 /// non-null UndefElements bitvector, it will resize it to match the original
2096 /// vector width and set the bits where elements are undef. If result is
2097 /// false, Sequence will be empty.
2098 bool getRepeatedSequence(const APInt &DemandedElts,
2099 SmallVectorImpl<SDValue> &Sequence,
2100 BitVector *UndefElements = nullptr) const;
2101
2102 /// Find the shortest repeating sequence of values in the build vector.
2103 ///
2104 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2105 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
2106 ///
2107 /// Currently this must be a power-of-2 build vector.
2108 /// If passed a non-null UndefElements bitvector, it will resize it to match
2109 /// the original vector width and set the bits where elements are undef.
2110 /// If result is false, Sequence will be empty.
2112 BitVector *UndefElements = nullptr) const;
2113
2114 /// Returns the demanded splatted constant or null if this is not a constant
2115 /// splat.
2116 ///
2117 /// The DemandedElts mask indicates the elements that must be in the splat.
2118 /// If passed a non-null UndefElements bitvector, it will resize it to match
2119 /// the vector width and set the bits where elements are undef.
2121 getConstantSplatNode(const APInt &DemandedElts,
2122 BitVector *UndefElements = nullptr) const;
2123
2124 /// Returns the splatted constant or null if this is not a constant
2125 /// splat.
2126 ///
2127 /// If passed a non-null UndefElements bitvector, it will resize it to match
2128 /// the vector width and set the bits where elements are undef.
2130 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2131
2132 /// Returns the demanded splatted constant FP or null if this is not a
2133 /// constant FP splat.
2134 ///
2135 /// The DemandedElts mask indicates the elements that must be in the splat.
2136 /// If passed a non-null UndefElements bitvector, it will resize it to match
2137 /// the vector width and set the bits where elements are undef.
2139 getConstantFPSplatNode(const APInt &DemandedElts,
2140 BitVector *UndefElements = nullptr) const;
2141
2142 /// Returns the splatted constant FP or null if this is not a constant
2143 /// FP splat.
2144 ///
2145 /// If passed a non-null UndefElements bitvector, it will resize it to match
2146 /// the vector width and set the bits where elements are undef.
2148 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2149
2150 /// If this is a constant FP splat and the splatted constant FP is an
2151 /// exact power or 2, return the log base 2 integer value. Otherwise,
2152 /// return -1.
2153 ///
2154 /// The BitWidth specifies the necessary bit precision.
2155 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2156 uint32_t BitWidth) const;
2157
2158 /// Extract the raw bit data from a build vector of Undef, Constant or
2159 /// ConstantFP node elements. Each raw bit element will be \p
2160 /// DstEltSizeInBits wide, undef elements are treated as zero, and entirely
2161 /// undefined elements are flagged in \p UndefElements.
2162 bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
2163 SmallVectorImpl<APInt> &RawBitElements,
2164 BitVector &UndefElements) const;
2165
2166 bool isConstant() const;
2167
2168 /// If this BuildVector is constant and represents the numerical series
2169 /// "<a, a+n, a+2n, a+3n, ...>" where a is integer and n is a non-zero integer,
2170 /// the value "<a,n>" is returned.
2171 std::optional<std::pair<APInt, APInt>> isConstantSequence() const;
2172
2173 /// Recast bit data \p SrcBitElements to \p DstEltSizeInBits wide elements.
2174 /// Undef elements are treated as zero, and entirely undefined elements are
2175 /// flagged in \p DstUndefElements.
2176 static void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
2177 SmallVectorImpl<APInt> &DstBitElements,
2178 ArrayRef<APInt> SrcBitElements,
2179 BitVector &DstUndefElements,
2180 const BitVector &SrcUndefElements);
2181
2182 static bool classof(const SDNode *N) {
2183 return N->getOpcode() == ISD::BUILD_VECTOR;
2184 }
2185};
2186
2187/// An SDNode that holds an arbitrary LLVM IR Value. This is
2188/// used when the SelectionDAG needs to make a simple reference to something
2189/// in the LLVM IR representation.
2190///
2191class SrcValueSDNode : public SDNode {
2192 friend class SelectionDAG;
2193
2194 const Value *V;
2195
2196 /// Create a SrcValue for a general value.
2197 explicit SrcValueSDNode(const Value *v)
2198 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2199
2200public:
2201 /// Return the contained Value.
2202 const Value *getValue() const { return V; }
2203
2204 static bool classof(const SDNode *N) {
2205 return N->getOpcode() == ISD::SRCVALUE;
2206 }
2207};
2208
2209class MDNodeSDNode : public SDNode {
2210 friend class SelectionDAG;
2211
2212 const MDNode *MD;
2213
2214 explicit MDNodeSDNode(const MDNode *md)
2215 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2216 {}
2217
2218public:
2219 const MDNode *getMD() const { return MD; }
2220
2221 static bool classof(const SDNode *N) {
2222 return N->getOpcode() == ISD::MDNODE_SDNODE;
2223 }
2224};
2225
2226class RegisterSDNode : public SDNode {
2227 friend class SelectionDAG;
2228
2229 Register Reg;
2230
2232 : SDNode(ISD::Register, 0, DebugLoc(), VTs), Reg(reg) {}
2233
2234public:
2235 Register getReg() const { return Reg; }
2236
2237 static bool classof(const SDNode *N) {
2238 return N->getOpcode() == ISD::Register;
2239 }
2240};
2241
2243 friend class SelectionDAG;
2244
2245 // The memory for RegMask is not owned by the node.
2246 const uint32_t *RegMask;
2247
2248 RegisterMaskSDNode(const uint32_t *mask)
2249 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2250 RegMask(mask) {}
2251
2252public:
2253 const uint32_t *getRegMask() const { return RegMask; }
2254
2255 static bool classof(const SDNode *N) {
2256 return N->getOpcode() == ISD::RegisterMask;
2257 }
2258};
2259
2261 friend class SelectionDAG;
2262
2263 const BlockAddress *BA;
2264 int64_t Offset;
2265 unsigned TargetFlags;
2266
2267 BlockAddressSDNode(unsigned NodeTy, SDVTList VTs, const BlockAddress *ba,
2268 int64_t o, unsigned Flags)
2269 : SDNode(NodeTy, 0, DebugLoc(), VTs), BA(ba), Offset(o),
2270 TargetFlags(Flags) {}
2271
2272public:
2273 const BlockAddress *getBlockAddress() const { return BA; }
2274 int64_t getOffset() const { return Offset; }
2275 unsigned getTargetFlags() const { return TargetFlags; }
2276
2277 static bool classof(const SDNode *N) {
2278 return N->getOpcode() == ISD::BlockAddress ||
2279 N->getOpcode() == ISD::TargetBlockAddress;
2280 }
2281};
2282
2283class LabelSDNode : public SDNode {
2284 friend class SelectionDAG;
2285
2286 MCSymbol *Label;
2287
2288 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2289 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2290 assert(LabelSDNode::classof(this) && "not a label opcode");
2291 }
2292
2293public:
2294 MCSymbol *getLabel() const { return Label; }
2295
2296 static bool classof(const SDNode *N) {
2297 return N->getOpcode() == ISD::EH_LABEL ||
2298 N->getOpcode() == ISD::ANNOTATION_LABEL;
2299 }
2300};
2301
2303 friend class SelectionDAG;
2304
2305 const char *Symbol;
2306 unsigned TargetFlags;
2307
2308 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF,
2309 SDVTList VTs)
2310 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2311 DebugLoc(), VTs),
2312 Symbol(Sym), TargetFlags(TF) {}
2313
2314public:
2315 const char *getSymbol() const { return Symbol; }
2316 unsigned getTargetFlags() const { return TargetFlags; }
2317
2318 static bool classof(const SDNode *N) {
2319 return N->getOpcode() == ISD::ExternalSymbol ||
2320 N->getOpcode() == ISD::TargetExternalSymbol;
2321 }
2322};
2323
2324class MCSymbolSDNode : public SDNode {
2325 friend class SelectionDAG;
2326
2327 MCSymbol *Symbol;
2328
2329 MCSymbolSDNode(MCSymbol *Symbol, SDVTList VTs)
2330 : SDNode(ISD::MCSymbol, 0, DebugLoc(), VTs), Symbol(Symbol) {}
2331
2332public:
2333 MCSymbol *getMCSymbol() const { return Symbol; }
2334
2335 static bool classof(const SDNode *N) {
2336 return N->getOpcode() == ISD::MCSymbol;
2337 }
2338};
2339
2340class CondCodeSDNode : public SDNode {
2341 friend class SelectionDAG;
2342
2343 ISD::CondCode Condition;
2344
2346 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2347 Condition(Cond) {}
2348
2349public:
2350 ISD::CondCode get() const { return Condition; }
2351
2352 static bool classof(const SDNode *N) {
2353 return N->getOpcode() == ISD::CONDCODE;
2354 }
2355};
2356
2357/// This class is used to represent EVT's, which are used
2358/// to parameterize some operations.
2359class VTSDNode : public SDNode {
2360 friend class SelectionDAG;
2361
2362 EVT ValueType;
2363
2364 explicit VTSDNode(EVT VT)
2365 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2366 ValueType(VT) {}
2367
2368public:
2369 EVT getVT() const { return ValueType; }
2370
2371 static bool classof(const SDNode *N) {
2372 return N->getOpcode() == ISD::VALUETYPE;
2373 }
2374};
2375
2376/// Base class for LoadSDNode and StoreSDNode
2377class LSBaseSDNode : public MemSDNode {
2378public:
2379 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2380 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2382 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2383 LSBaseSDNodeBits.AddressingMode = AM;
2384 assert(getAddressingMode() == AM && "Value truncated");
2385 }
2386
2387 const SDValue &getOffset() const {
2388 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2389 }
2390
2391 /// Return the addressing mode for this load or store:
2392 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2394 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2395 }
2396
2397 /// Return true if this is a pre/post inc/dec load/store.
2398 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2399
2400 /// Return true if this is NOT a pre/post inc/dec load/store.
2401 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2402
2403 static bool classof(const SDNode *N) {
2404 return N->getOpcode() == ISD::LOAD ||
2405 N->getOpcode() == ISD::STORE;
2406 }
2407};
2408
2409/// This class is used to represent ISD::LOAD nodes.
2410class LoadSDNode : public LSBaseSDNode {
2411 friend class SelectionDAG;
2412
2413 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2416 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2417 LoadSDNodeBits.ExtTy = ETy;
2418 assert(readMem() && "Load MachineMemOperand is not a load!");
2419 assert(!writeMem() && "Load MachineMemOperand is a store!");
2420 }
2421
2422public:
2423 /// Return whether this is a plain node,
2424 /// or one of the varieties of value-extending loads.
2426 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2427 }
2428
2429 const SDValue &getBasePtr() const { return getOperand(1); }
2430 const SDValue &getOffset() const { return getOperand(2); }
2431
2432 static bool classof(const SDNode *N) {
2433 return N->getOpcode() == ISD::LOAD;
2434 }
2435};
2436
2437/// This class is used to represent ISD::STORE nodes.
2439 friend class SelectionDAG;
2440
2441 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2442 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2444 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2445 StoreSDNodeBits.IsTruncating = isTrunc;
2446 assert(!readMem() && "Store MachineMemOperand is a load!");
2447 assert(writeMem() && "Store MachineMemOperand is not a store!");
2448 }
2449
2450public:
2451 /// Return true if the op does a truncation before store.
2452 /// For integers this is the same as doing a TRUNCATE and storing the result.
2453 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2454 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2455 void setTruncatingStore(bool Truncating) {
2456 StoreSDNodeBits.IsTruncating = Truncating;
2457 }
2458
2459 const SDValue &getValue() const { return getOperand(1); }
2460 const SDValue &getBasePtr() const { return getOperand(2); }
2461 const SDValue &getOffset() const { return getOperand(3); }
2462
2463 static bool classof(const SDNode *N) {
2464 return N->getOpcode() == ISD::STORE;
2465 }
2466};
2467
2468/// This base class is used to represent VP_LOAD, VP_STORE,
2469/// EXPERIMENTAL_VP_STRIDED_LOAD and EXPERIMENTAL_VP_STRIDED_STORE nodes
2471public:
2472 friend class SelectionDAG;
2473
2474 VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2475 const DebugLoc &DL, SDVTList VTs,
2476 ISD::MemIndexedMode AM, EVT MemVT,
2478 : MemSDNode(NodeTy, Order, DL, VTs, MemVT, MMO) {
2479 LSBaseSDNodeBits.AddressingMode = AM;
2480 assert(getAddressingMode() == AM && "Value truncated");
2481 }
2482
2483 // VPStridedStoreSDNode (Chain, Data, Ptr, Offset, Stride, Mask, EVL)
2484 // VPStoreSDNode (Chain, Data, Ptr, Offset, Mask, EVL)
2485 // VPStridedLoadSDNode (Chain, Ptr, Offset, Stride, Mask, EVL)
2486 // VPLoadSDNode (Chain, Ptr, Offset, Mask, EVL)
2487 // Mask is a vector of i1 elements;
2488 // the type of EVL is TLI.getVPExplicitVectorLengthTy().
2489 const SDValue &getOffset() const {
2490 return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2491 getOpcode() == ISD::VP_LOAD)
2492 ? 2
2493 : 3);
2494 }
2495 const SDValue &getBasePtr() const {
2496 return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2497 getOpcode() == ISD::VP_LOAD)
2498 ? 1
2499 : 2);
2500 }
2501 const SDValue &getMask() const {
2502 switch (getOpcode()) {
2503 default:
2504 llvm_unreachable("Invalid opcode");
2505 case ISD::VP_LOAD:
2506 return getOperand(3);
2507 case ISD::VP_STORE:
2508 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2509 return getOperand(4);
2510 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2511 return getOperand(5);
2512 }
2513 }
2514 const SDValue &getVectorLength() const {
2515 switch (getOpcode()) {
2516 default:
2517 llvm_unreachable("Invalid opcode");
2518 case ISD::VP_LOAD:
2519 return getOperand(4);
2520 case ISD::VP_STORE:
2521 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2522 return getOperand(5);
2523 case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2524 return getOperand(6);
2525 }
2526 }
2527
2528 /// Return the addressing mode for this load or store:
2529 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2531 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2532 }
2533
2534 /// Return true if this is a pre/post inc/dec load/store.
2535 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2536
2537 /// Return true if this is NOT a pre/post inc/dec load/store.
2538 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2539
2540 static bool classof(const SDNode *N) {
2541 return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2542 N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE ||
2543 N->getOpcode() == ISD::VP_LOAD || N->getOpcode() == ISD::VP_STORE;
2544 }
2545};
2546
2547/// This class is used to represent a VP_LOAD node
2549public:
2550 friend class SelectionDAG;
2551
2552 VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2553 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding,
2554 EVT MemVT, MachineMemOperand *MMO)
2555 : VPBaseLoadStoreSDNode(ISD::VP_LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2556 LoadSDNodeBits.ExtTy = ETy;
2557 LoadSDNodeBits.IsExpanding = isExpanding;
2558 }
2559
2561 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2562 }
2563
2564 const SDValue &getBasePtr() const { return getOperand(1); }
2565 const SDValue &getOffset() const { return getOperand(2); }
2566 const SDValue &getMask() const { return getOperand(3); }
2567 const SDValue &getVectorLength() const { return getOperand(4); }
2568
2569 static bool classof(const SDNode *N) {
2570 return N->getOpcode() == ISD::VP_LOAD;
2571 }
2572 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2573};
2574
2575/// This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
2577public:
2578 friend class SelectionDAG;
2579
2580 VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2582 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2583 : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, Order, DL, VTs,
2584 AM, MemVT, MMO) {
2585 LoadSDNodeBits.ExtTy = ETy;
2586 LoadSDNodeBits.IsExpanding = IsExpanding;
2587 }
2588
2590 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2591 }
2592
2593 const SDValue &getBasePtr() const { return getOperand(1); }
2594 const SDValue &getOffset() const { return getOperand(2); }
2595 const SDValue &getStride() const { return getOperand(3); }
2596 const SDValue &getMask() const { return getOperand(4); }
2597 const SDValue &getVectorLength() const { return getOperand(5); }
2598
2599 static bool classof(const SDNode *N) {
2600 return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD;
2601 }
2602 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2603};
2604
2605/// This class is used to represent a VP_STORE node
2607public:
2608 friend class SelectionDAG;
2609
2610 VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2611 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2612 EVT MemVT, MachineMemOperand *MMO)
2613 : VPBaseLoadStoreSDNode(ISD::VP_STORE, Order, dl, VTs, AM, MemVT, MMO) {
2614 StoreSDNodeBits.IsTruncating = isTrunc;
2615 StoreSDNodeBits.IsCompressing = isCompressing;
2616 }
2617
2618 /// Return true if this is a truncating store.
2619 /// For integers this is the same as doing a TRUNCATE and storing the result.
2620 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2621 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2622
2623 /// Returns true if the op does a compression to the vector before storing.
2624 /// The node contiguously stores the active elements (integers or floats)
2625 /// in src (those with their respective bit set in writemask k) to unaligned
2626 /// memory at base_addr.
2627 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2628
2629 const SDValue &getValue() const { return getOperand(1); }
2630 const SDValue &getBasePtr() const { return getOperand(2); }
2631 const SDValue &getOffset() const { return getOperand(3); }
2632 const SDValue &getMask() const { return getOperand(4); }
2633 const SDValue &getVectorLength() const { return getOperand(5); }
2634
2635 static bool classof(const SDNode *N) {
2636 return N->getOpcode() == ISD::VP_STORE;
2637 }
2638};
2639
2640/// This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
2642public:
2643 friend class SelectionDAG;
2644
2645 VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2646 ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing,
2647 EVT MemVT, MachineMemOperand *MMO)
2648 : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_STORE, Order, DL,
2649 VTs, AM, MemVT, MMO) {
2650 StoreSDNodeBits.IsTruncating = IsTrunc;
2651 StoreSDNodeBits.IsCompressing = IsCompressing;
2652 }
2653
2654 /// Return true if this is a truncating store.
2655 /// For integers this is the same as doing a TRUNCATE and storing the result.
2656 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2657 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2658
2659 /// Returns true if the op does a compression to the vector before storing.
2660 /// The node contiguously stores the active elements (integers or floats)
2661 /// in src (those with their respective bit set in writemask k) to unaligned
2662 /// memory at base_addr.
2663 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2664
2665 const SDValue &getValue() const { return getOperand(1); }
2666 const SDValue &getBasePtr() const { return getOperand(2); }
2667 const SDValue &getOffset() const { return getOperand(3); }
2668 const SDValue &getStride() const { return getOperand(4); }
2669 const SDValue &getMask() const { return getOperand(5); }
2670 const SDValue &getVectorLength() const { return getOperand(6); }
2671
2672 static bool classof(const SDNode *N) {
2673 return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE;
2674 }
2675};
2676
2677/// This base class is used to represent MLOAD and MSTORE nodes
2679public:
2680 friend class SelectionDAG;
2681
2682 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2683 const DebugLoc &dl, SDVTList VTs,
2684 ISD::MemIndexedMode AM, EVT MemVT,
2686 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2687 LSBaseSDNodeBits.AddressingMode = AM;
2688 assert(getAddressingMode() == AM && "Value truncated");
2689 }
2690
2691 // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2692 // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2693 // Mask is a vector of i1 elements
2694 const SDValue &getOffset() const {
2695 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2696 }
2697 const SDValue &getMask() const {
2698 return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2699 }
2700
2701 /// Return the addressing mode for this load or store:
2702 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2704 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2705 }
2706
2707 /// Return true if this is a pre/post inc/dec load/store.
2708 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2709
2710 /// Return true if this is NOT a pre/post inc/dec load/store.
2711 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2712
2713 static bool classof(const SDNode *N) {
2714 return N->getOpcode() == ISD::MLOAD ||
2715 N->getOpcode() == ISD::MSTORE;
2716 }
2717};
2718
2719/// This class is used to represent an MLOAD node
2721public:
2722 friend class SelectionDAG;
2723
2724 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2726 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2727 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2728 LoadSDNodeBits.ExtTy = ETy;
2729 LoadSDNodeBits.IsExpanding = IsExpanding;
2730 }
2731
2733 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2734 }
2735
2736 const SDValue &getBasePtr() const { return getOperand(1); }
2737 const SDValue &getOffset() const { return getOperand(2); }
2738 const SDValue &getMask() const { return getOperand(3); }
2739 const SDValue &getPassThru() const { return getOperand(4); }
2740
2741 static bool classof(const SDNode *N) {
2742 return N->getOpcode() == ISD::MLOAD;
2743 }
2744
2745 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2746};
2747
2748/// This class is used to represent an MSTORE node
2750public:
2751 friend class SelectionDAG;
2752
2753 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2754 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2755 EVT MemVT, MachineMemOperand *MMO)
2756 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2757 StoreSDNodeBits.IsTruncating = isTrunc;
2758 StoreSDNodeBits.IsCompressing = isCompressing;
2759 }
2760
2761 /// Return true if the op does a truncation before store.
2762 /// For integers this is the same as doing a TRUNCATE and storing the result.
2763 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2764 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2765
2766 /// Returns true if the op does a compression to the vector before storing.
2767 /// The node contiguously stores the active elements (integers or floats)
2768 /// in src (those with their respective bit set in writemask k) to unaligned
2769 /// memory at base_addr.
2770 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2771
2772 const SDValue &getValue() const { return getOperand(1); }
2773 const SDValue &getBasePtr() const { return getOperand(2); }
2774 const SDValue &getOffset() const { return getOperand(3); }
2775 const SDValue &getMask() const { return getOperand(4); }
2776
2777 static bool classof(const SDNode *N) {
2778 return N->getOpcode() == ISD::MSTORE;
2779 }
2780};
2781
2782/// This is a base class used to represent
2783/// VP_GATHER and VP_SCATTER nodes
2784///
2786public:
2787 friend class SelectionDAG;
2788
2789 VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2790 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2792 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2793 LSBaseSDNodeBits.AddressingMode = IndexType;
2794 assert(getIndexType() == IndexType && "Value truncated");
2795 }
2796
2797 /// How is Index applied to BasePtr when computing addresses.
2799 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2800 }
2801 bool isIndexScaled() const {
2802 return !cast<ConstantSDNode>(getScale())->isOne();
2803 }
2804 bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2805
2806 // In the both nodes address is Op1, mask is Op2:
2807 // VPGatherSDNode (Chain, base, index, scale, mask, vlen)
2808 // VPScatterSDNode (Chain, value, base, index, scale, mask, vlen)
2809 // Mask is a vector of i1 elements
2810 const SDValue &getBasePtr() const {
2811 return getOperand((getOpcode() == ISD::VP_GATHER) ? 1 : 2);
2812 }
2813 const SDValue &getIndex() const {
2814 return getOperand((getOpcode() == ISD::VP_GATHER) ? 2 : 3);
2815 }
2816 const SDValue &getScale() const {
2817 return getOperand((getOpcode() == ISD::VP_GATHER) ? 3 : 4);
2818 }
2819 const SDValue &getMask() const {
2820 return getOperand((getOpcode() == ISD::VP_GATHER) ? 4 : 5);
2821 }
2822 const SDValue &getVectorLength() const {
2823 return getOperand((getOpcode() == ISD::VP_GATHER) ? 5 : 6);
2824 }
2825
2826 static bool classof(const SDNode *N) {
2827 return N->getOpcode() == ISD::VP_GATHER ||
2828 N->getOpcode() == ISD::VP_SCATTER;
2829 }
2830};
2831
2832/// This class is used to represent an VP_GATHER node
2833///
2835public:
2836 friend class SelectionDAG;
2837
2838 VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2840 : VPGatherScatterSDNode(ISD::VP_GATHER, Order, dl, VTs, MemVT, MMO,
2841 IndexType) {}
2842
2843 static bool classof(const SDNode *N) {
2844 return N->getOpcode() == ISD::VP_GATHER;
2845 }
2846};
2847
2848/// This class is used to represent an VP_SCATTER node
2849///
2851public:
2852 friend class SelectionDAG;
2853
2854 VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2856 : VPGatherScatterSDNode(ISD::VP_SCATTER, Order, dl, VTs, MemVT, MMO,
2857 IndexType) {}
2858
2859 const SDValue &getValue() const { return getOperand(1); }
2860
2861 static bool classof(const SDNode *N) {
2862 return N->getOpcode() == ISD::VP_SCATTER;
2863 }
2864};
2865
2866/// This is a base class used to represent
2867/// MGATHER and MSCATTER nodes
2868///
2870public:
2871 friend class SelectionDAG;
2872
2874 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2876 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2877 LSBaseSDNodeBits.AddressingMode = IndexType;
2878 assert(getIndexType() == IndexType && "Value truncated");
2879 }
2880
2881 /// How is Index applied to BasePtr when computing addresses.
2883 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2884 }
2885 bool isIndexScaled() const {
2886 return !cast<ConstantSDNode>(getScale())->isOne();
2887 }
2888 bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2889
2890 // In the both nodes address is Op1, mask is Op2:
2891 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2892 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2893 // Mask is a vector of i1 elements
2894 const SDValue &getBasePtr() const { return getOperand(3); }
2895 const SDValue &getIndex() const { return getOperand(4); }
2896 const SDValue &getMask() const { return getOperand(2); }
2897 const SDValue &getScale() const { return getOperand(5); }
2898
2899 static bool classof(const SDNode *N) {
2900 return N->getOpcode() == ISD::MGATHER ||
2901 N->getOpcode() == ISD::MSCATTER;
2902 }
2903};
2904
2905/// This class is used to represent an MGATHER node
2906///
2908public:
2909 friend class SelectionDAG;
2910
2911 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2912 EVT MemVT, MachineMemOperand *MMO,
2913 ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2914 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2915 IndexType) {
2916 LoadSDNodeBits.ExtTy = ETy;
2917 }
2918
2919 const SDValue &getPassThru() const { return getOperand(1); }
2920
2922 return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2923 }
2924
2925 static bool classof(const SDNode *N) {
2926 return N->getOpcode() == ISD::MGATHER;
2927 }
2928};
2929
2930/// This class is used to represent an MSCATTER node
2931///
2933public:
2934 friend class SelectionDAG;
2935
2936 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2937 EVT MemVT, MachineMemOperand *MMO,
2938 ISD::MemIndexType IndexType, bool IsTrunc)
2939 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2940 IndexType) {
2941 StoreSDNodeBits.IsTruncating = IsTrunc;
2942 }
2943
2944 /// Return true if the op does a truncation before store.
2945 /// For integers this is the same as doing a TRUNCATE and storing the result.
2946 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2947 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2948
2949 const SDValue &getValue() const { return getOperand(1); }
2950
2951 static bool classof(const SDNode *N) {
2952 return N->getOpcode() == ISD::MSCATTER;
2953 }
2954};
2955
2957public:
2958 friend class SelectionDAG;
2959
2960 FPStateAccessSDNode(unsigned NodeTy, unsigned Order, const DebugLoc &dl,
2961 SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
2962 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2963 assert((NodeTy == ISD::GET_FPENV_MEM || NodeTy == ISD::SET_FPENV_MEM) &&
2964 "Expected FP state access node");
2965 }
2966
2967 static bool classof(const SDNode *N) {
2968 return N->getOpcode() == ISD::GET_FPENV_MEM ||
2969 N->getOpcode() == ISD::SET_FPENV_MEM;
2970 }
2971};
2972
2973/// An SDNode that represents everything that will be needed
2974/// to construct a MachineInstr. These nodes are created during the
2975/// instruction selection proper phase.
2976///
2977/// Note that the only supported way to set the `memoperands` is by calling the
2978/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2979/// inside the DAG rather than in the node.
2980class MachineSDNode : public SDNode {
2981private:
2982 friend class SelectionDAG;
2983
2984 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2985 : SDNode(Opc, Order, DL, VTs) {}
2986
2987 // We use a pointer union between a single `MachineMemOperand` pointer and
2988 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2989 // the number of these is zero, the single pointer variant used when the
2990 // number is one, and the array is used for larger numbers.
2991 //
2992 // The array is allocated via the `SelectionDAG`'s allocator and so will
2993 // always live until the DAG is cleaned up and doesn't require ownership here.
2994 //
2995 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2996 // subclasses aren't managed in a conforming C++ manner. See the comments on
2997 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2998 // constraint here is that these don't manage memory with their constructor or
2999 // destructor and can be initialized to a good state even if they start off
3000 // uninitialized.
3002
3003 // Note that this could be folded into the above `MemRefs` member if doing so
3004 // is advantageous at some point. We don't need to store this in most cases.
3005 // However, at the moment this doesn't appear to make the allocation any
3006 // smaller and makes the code somewhat simpler to read.
3007 int NumMemRefs = 0;
3008
3009public:
3011
3013 // Special case the common cases.
3014 if (NumMemRefs == 0)
3015 return {};
3016 if (NumMemRefs == 1)
3017 return ArrayRef(MemRefs.getAddrOfPtr1(), 1);
3018
3019 // Otherwise we have an actual array.
3020 return ArrayRef(cast<MachineMemOperand **>(MemRefs), NumMemRefs);
3021 }
3022 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
3023 mmo_iterator memoperands_end() const { return memoperands().end(); }
3024 bool memoperands_empty() const { return memoperands().empty(); }
3025
3026 /// Clear out the memory reference descriptor list.
3028 MemRefs = nullptr;
3029 NumMemRefs = 0;
3030 }
3031
3032 static bool classof(const SDNode *N) {
3033 return N->isMachineOpcode();
3034 }
3035};
3036
3037/// An SDNode that records if a register contains a value that is guaranteed to
3038/// be aligned accordingly.
3040 Align Alignment;
3041
3042public:
3043 AssertAlignSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, Align A)
3044 : SDNode(ISD::AssertAlign, Order, DL, VTs), Alignment(A) {}
3045
3046 Align getAlign() const { return Alignment; }
3047
3048 static bool classof(const SDNode *N) {
3049 return N->getOpcode() == ISD::AssertAlign;
3050 }
3051};
3052
3054 const SDNode *Node;
3055 unsigned Operand;
3056
3057 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
3058
3059public:
3060 using iterator_category = std::forward_iterator_tag;
3062 using difference_type = std::ptrdiff_t;
3065
3066 bool operator==(const SDNodeIterator& x) const {
3067 return Operand == x.Operand;
3068 }
3069 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
3070
3072 return Node->getOperand(Operand).getNode();
3073 }
3074 pointer operator->() const { return operator*(); }
3075
3076 SDNodeIterator& operator++() { // Preincrement
3077 ++Operand;
3078 return *this;
3079 }
3080 SDNodeIterator operator++(int) { // Postincrement
3081 SDNodeIterator tmp = *this; ++*this; return tmp;
3082 }
3084 assert(Node == Other.Node &&
3085 "Cannot compare iterators of two different nodes!");
3086 return Operand - Other.Operand;
3087 }
3088
3089 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
3090 static SDNodeIterator end (const SDNode *N) {
3091 return SDNodeIterator(N, N->getNumOperands());
3092 }
3093
3094 unsigned getOperand() const { return Operand; }
3095 const SDNode *getNode() const { return Node; }
3096};
3097
3098template <> struct GraphTraits<SDNode*> {
3099 using NodeRef = SDNode *;
3101
3102 static NodeRef getEntryNode(SDNode *N) { return N; }
3103
3105 return SDNodeIterator::begin(N);
3106 }
3107
3109 return SDNodeIterator::end(N);
3110 }
3111};
3112
3113/// A representation of the largest SDNode, for use in sizeof().
3114///
3115/// This needs to be a union because the largest node differs on 32 bit systems
3116/// with 4 and 8 byte pointer alignment, respectively.
3121
3122/// The SDNode class with the greatest alignment requirement.
3124
3125namespace ISD {
3126
3127 /// Returns true if the specified node is a non-extending and unindexed load.
3128 inline bool isNormalLoad(const SDNode *N) {
3129 auto *Ld = dyn_cast<LoadSDNode>(N);
3130 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
3131 Ld->getAddressingMode() == ISD::UNINDEXED;
3132 }
3133
3134 /// Returns true if the specified node is a non-extending load.
3135 inline bool isNON_EXTLoad(const SDNode *N) {
3136 auto *Ld = dyn_cast<LoadSDNode>(N);
3137 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD;
3138 }
3139
3140 /// Returns true if the specified node is a EXTLOAD.
3141 inline bool isEXTLoad(const SDNode *N) {
3142 auto *Ld = dyn_cast<LoadSDNode>(N);
3143 return Ld && Ld->getExtensionType() == ISD::EXTLOAD;
3144 }
3145
3146 /// Returns true if the specified node is a SEXTLOAD.
3147 inline bool isSEXTLoad(const SDNode *N) {
3148 auto *Ld = dyn_cast<LoadSDNode>(N);
3149 return Ld && Ld->getExtensionType() == ISD::SEXTLOAD;
3150 }
3151
3152 /// Returns true if the specified node is a ZEXTLOAD.
3153 inline bool isZEXTLoad(const SDNode *N) {
3154 auto *Ld = dyn_cast<LoadSDNode>(N);
3155 return Ld && Ld->getExtensionType() == ISD::ZEXTLOAD;
3156 }
3157
3158 /// Returns true if the specified node is an unindexed load.
3159 inline bool isUNINDEXEDLoad(const SDNode *N) {
3160 auto *Ld = dyn_cast<LoadSDNode>(N);
3161 return Ld && Ld->getAddressingMode() == ISD::UNINDEXED;
3162 }
3163
3164 /// Returns true if the specified node is a non-truncating
3165 /// and unindexed store.
3166 inline bool isNormalStore(const SDNode *N) {
3167 auto *St = dyn_cast<StoreSDNode>(N);
3168 return St && !St->isTruncatingStore() &&
3169 St->getAddressingMode() == ISD::UNINDEXED;
3170 }
3171
3172 /// Returns true if the specified node is an unindexed store.
3173 inline bool isUNINDEXEDStore(const SDNode *N) {
3174 auto *St = dyn_cast<StoreSDNode>(N);
3175 return St && St->getAddressingMode() == ISD::UNINDEXED;
3176 }
3177
3178 /// Attempt to match a unary predicate against a scalar/splat constant or
3179 /// every element of a constant BUILD_VECTOR.
3180 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3181 template <typename ConstNodeType>
3183 std::function<bool(ConstNodeType *)> Match,
3184 bool AllowUndefs = false);
3185
3186 /// Hook for matching ConstantSDNode predicate
3188 std::function<bool(ConstantSDNode *)> Match,
3189 bool AllowUndefs = false) {
3190 return matchUnaryPredicateImpl<ConstantSDNode>(Op, Match, AllowUndefs);
3191 }
3192
3193 /// Hook for matching ConstantFPSDNode predicate
3194 inline bool
3196 std::function<bool(ConstantFPSDNode *)> Match,
3197 bool AllowUndefs = false) {
3198 return matchUnaryPredicateImpl<ConstantFPSDNode>(Op, Match, AllowUndefs);
3199 }
3200
3201 /// Attempt to match a binary predicate against a pair of scalar/splat
3202 /// constants or every element of a pair of constant BUILD_VECTORs.
3203 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3204 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
3207 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
3208 bool AllowUndefs = false, bool AllowTypeMismatch = false);
3209
3210 /// Returns true if the specified value is the overflow result from one
3211 /// of the overflow intrinsic nodes.
3213 unsigned Opc = Op.getOpcode();
3214 return (Op.getResNo() == 1 &&
3215 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3216 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
3217 }
3218
3219} // end namespace ISD
3220
3221} // end namespace llvm
3222
3223#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
aarch64 promote const
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
AMDGPU Kernel Attributes
This file declares a class to represent arbitrary precision floating point values and provide a varie...
Atomic ordering constants.
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
RelocType Type
Definition: COFFYAML.cpp:391
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint32_t Index
uint64_t Size
uint64_t Offset
Definition: ELF_riscv.cpp:478
Symbol * Sym
Definition: ELF_riscv.cpp:479
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file defines a hash set that can be used to remove duplication of nodes in a graph.
This file defines the little GraphTraits<X> template class that should be specialized by classes that...
#define op(i)
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
Load MIR Sample Profile
unsigned Reg
This file contains the declarations for metadata subclasses.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
#define END_TWO_BYTE_PACK()
#define BEGIN_TWO_BYTE_PACK()
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
Value * RHS
Value * LHS
DEMANGLE_DUMP_METHOD void dump() const
Class for arbitrary precision integers.
Definition: APInt.h:76
unsigned getSrcAddressSpace() const
AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, unsigned SrcAS, unsigned DestAS)
unsigned getDestAddressSpace() const
static bool classof(const SDNode *N)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
An SDNode that records if a register contains a value that is guaranteed to be aligned accordingly.
static bool classof(const SDNode *N)
AssertAlignSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, Align A)
This is an SDNode representing atomic operations.
void setExtensionType(ISD::LoadExtType ETy)
static bool classof(const SDNode *N)
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL, EVT MemVT, MachineMemOperand *MMO)
AtomicOrdering getFailureOrdering() const
For cmpxchg atomic operations, return the atomic ordering requirements when store does not occur.
bool isCompareAndSwap() const
Returns true if this SDNode represents cmpxchg atomic operation, false otherwise.
const SDValue & getVal() const
MachineBasicBlock * getBasicBlock() const
static bool classof(const SDNode *N)
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
static bool classof(const SDNode *N)
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
Definition: Constants.h:889
A "pseudo-class" with methods for operating on BUILD_VECTORs.
bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
static bool classof(const SDNode *N)
ISD::CondCode get() const
static bool classof(const SDNode *N)
static bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isNaN() const
Return true if the value is a NaN.
const ConstantFP * getConstantFPValue() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
bool isNegative() const
Return true if the value is negative.
bool isInfinity() const
Return true if the value is an infinity.
static bool classof(const SDNode *N)
bool isZero() const
Return true if the value is positive or negative zero.
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:268
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
static bool classof(const SDNode *N)
MachineConstantPoolValue * getMachineCPVal() const
bool isMachineConstantPoolEntry() const
MachineConstantPoolValue * MachineCPVal
const Constant * getConstVal() const
unsigned getTargetFlags() const
MaybeAlign getMaybeAlignValue() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX)
const ConstantInt * getConstantIntValue() const
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
int64_t getSExtValue() const
static bool classof(const SDNode *N)
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
bool hasTrivialDestructor() const
Check whether this has a trivial destructor.
Definition: DebugLoc.h:69
const char * getSymbol() const
static bool classof(const SDNode *N)
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:201
bool hasAllowReassoc() const
Test if this operation may be simplified with reassociative transforms.
Definition: Operator.h:283
bool hasNoNaNs() const
Test if this operation's arguments and results are assumed not-NaN.
Definition: Operator.h:288
bool hasAllowReciprocal() const
Test if this operation can use reciprocal multiply instead of division.
Definition: Operator.h:303
bool hasNoSignedZeros() const
Test if this operation can ignore the sign of zero.
Definition: Operator.h:298
bool hasAllowContract() const
Test if this operation can be floating-point contracted (FMA).
Definition: Operator.h:308
bool hasNoInfs() const
Test if this operation's arguments and results are assumed not-infinite.
Definition: Operator.h:293
bool hasApproxFunc() const
Test if this operation allows approximations of math library functions or intrinsics.
Definition: Operator.h:314
static bool classof(const SDNode *N)
FPStateAccessSDNode(unsigned NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
Node - This class is used to maintain the singly linked bucket list in a folding set.
Definition: FoldingSet.h:138
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition: FoldingSet.h:320
static bool classof(const SDNode *N)
unsigned getAddressSpace() const
static bool classof(const SDNode *N)
const GlobalValue * getGlobal() const
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static bool classof(const SDNode *N)
unsigned getTargetFlags() const
Base class for LoadSDNode and StoreSDNode.
LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, MachineMemOperand *MMO)
ISD::MemIndexedMode getAddressingMode() const
Return the addressing mode for this load or store: unindexed, pre-inc, pre-dec, post-inc,...
const SDValue & getOffset() const
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
static bool classof(const SDNode *N)
MCSymbol * getLabel() const
static bool classof(const SDNode *N)
This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate the offet and size that ar...
int64_t getFrameIndex() const
static bool classof(const SDNode *N)
int64_t getOffset() const
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
static bool classof(const SDNode *N)
MCSymbol * getMCSymbol() const
static bool classof(const SDNode *N)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:40
static bool classof(const SDNode *N)
const MDNode * getMD() const
Metadata node.
Definition: Metadata.h:1067
Machine Value Type.
Abstract base class for all machine specific constantpool value subclasses.
A description of a memory reference used in the backend.
AtomicOrdering getFailureOrdering() const
For cmpxchg atomic operations, return the atomic ordering requirements when store does not occur.
bool isUnordered() const
Returns true if this memory operation doesn't have any ordering constraints other than normal aliasin...
const MDNode * getRanges() const
Return the range tag for the memory reference.
bool isAtomic() const
Returns true if this operation has an atomic ordering requirement of unordered or higher,...
void refineAlignment(const MachineMemOperand *MMO)
Update this MachineMemOperand to reflect the alignment of MMO, if it has a greater alignment.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID for this memory operation.
AtomicOrdering getMergedOrdering() const
Return a single atomic ordering that is at least as strong as both the success and failure orderings ...
AtomicOrdering getSuccessOrdering() const
Return the atomic ordering requirements for this memory operation.
const MachinePointerInfo & getPointerInfo() const
Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
AAMDNodes getAAInfo() const
Return the AA tags for the memory reference.
Align getBaseAlign() const
Return the minimum known alignment in bytes of the base address, without the offset.
int64_t getOffset() const
For normal values, this is a byte offset added to the base address.
An SDNode that represents everything that will be needed to construct a MachineInstr.
ArrayRef< MachineMemOperand * > memoperands() const
bool memoperands_empty() const
void clearMemRefs()
Clear out the memory reference descriptor list.
mmo_iterator memoperands_begin() const
static bool classof(const SDNode *N)
mmo_iterator memoperands_end() const
This class is used to represent an MGATHER node.
static bool classof(const SDNode *N)
MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
const SDValue & getPassThru() const
ISD::LoadExtType getExtensionType() const
This is a base class used to represent MGATHER and MSCATTER nodes.
const SDValue & getIndex() const
const SDValue & getScale() const
static bool classof(const SDNode *N)
MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
const SDValue & getBasePtr() const
const SDValue & getMask() const
ISD::MemIndexType getIndexType() const
How is Index applied to BasePtr when computing addresses.
This class is used to represent an MLOAD node.
MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
const SDValue & getMask() const
const SDValue & getPassThru() const
static bool classof(const SDNode *N)
const SDValue & getOffset() const
This base class is used to represent MLOAD and MSTORE nodes.
const SDValue & getMask() const
MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, MachineMemOperand *MMO)
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
static bool classof(const SDNode *N)
const SDValue & getOffset() const
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
ISD::MemIndexedMode getAddressingMode() const
Return the addressing mode for this load or store: unindexed, pre-inc, pre-dec, post-inc,...
This class is used to represent an MSCATTER node.
MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTrunc)
const SDValue & getValue() const
static bool classof(const SDNode *N)
bool isTruncatingStore() const
Return true if the op does a truncation before store.
This class is used to represent an MSTORE node.
bool isCompressingStore() const
Returns true if the op does a compression to the vector before storing.
MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getOffset() const
const SDValue & getBasePtr() const
const SDValue & getMask() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
static bool classof(const SDNode *N)
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
static bool classof(const SDNode *N)
This is an abstract virtual class for memory operations.
MachineMemOperand * MMO
Memory reference information.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
const MDNode * getRanges() const
Returns the Ranges that describes the dereference.
Align getAlign() const
bool isVolatile() const
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID for this memory operation.
Align getOriginalAlign() const
Returns alignment and volatility of the memory access.
int64_t getSrcValueOffset() const
bool readMem() const
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
AtomicOrdering getSuccessOrdering() const
Return the atomic ordering requirements for this memory operation.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getBasePtr() const
void refineAlignment(const MachineMemOperand *NewMMO)
Update this MemSDNode's MachineMemOperand information to reflect the alignment of NewMMO,...
const MachinePointerInfo & getPointerInfo() const
AtomicOrdering getMergedOrdering() const
Return a single atomic ordering that is at least as strong as both the success and failure orderings ...
const SDValue & getChain() const
bool isNonTemporal() const
bool isInvariant() const
bool writeMem() const
bool isDereferenceable() const
bool isUnordered() const
Returns true if the memory operation doesn't imply any ordering constraints on surrounding memory ope...
bool isAtomic() const
Return true if the memory operation ordering is Unordered or higher.
static bool classof(const SDNode *N)
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:307
First const * getAddrOfPtr1() const
If the union is set to the first pointer type get an address pointing to it.
Definition: PointerUnion.h:168
This SDNode is used for PSEUDO_PROBE values, which are the function guid and the index of the basic b...
static bool classof(const SDNode *N)
uint32_t getAttributes() const
const uint32_t * getRegMask() const
static bool classof(const SDNode *N)
static bool classof(const SDNode *N)
Register getReg() const
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
SDLoc(const SDValue V)
SDLoc()=default
SDLoc(const SDNode *N)
SDLoc(const Instruction *I, int Order)
pointer operator->() const
static SDNodeIterator end(const SDNode *N)
size_t operator-(SDNodeIterator Other) const
SDNodeIterator operator++(int)
std::ptrdiff_t difference_type
std::forward_iterator_tag iterator_category
unsigned getOperand() const
pointer operator*() const
SDNodeIterator & operator++()
bool operator==(const SDNodeIterator &x) const
const SDNode * getNode() const
static SDNodeIterator begin(const SDNode *N)
bool operator!=(const SDNodeIterator &x) const
This class provides iterator support for SDUse operands that use a specific SDNode.
bool operator!=(const use_iterator &x) const
use_iterator & operator=(const use_iterator &)=default
unsigned getOperandNo() const
Retrieve the operand # of this use in its user.
std::forward_iterator_tag iterator_category
bool operator==(const use_iterator &x) const
SDNode * operator*() const
Retrieve a pointer to the current user node.
bool atEnd() const
Return true if this iterator is at the end of uses list.
use_iterator(const use_iterator &I)=default
Represents one node in the SelectionDAG.
void setDebugLoc(DebugLoc dl)
Set source location info.
uint32_t getCFIType() const
static SDVTList getSDVTList(EVT VT)
void setIROrder(unsigned Order)
Set the node ordering.
bool isStrictFPOpcode()
Test if this node is a strict floating point pseudo-op.
ArrayRef< SDUse > ops() const
char RawSDNodeBits[sizeof(uint16_t)]
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
bool isMachineOpcode() const
Test if this node has a post-isel opcode, directly corresponding to a MachineInstr opcode.
void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
int getNodeId() const
Return the unique node id.
void dump() const
Dump this node, for debugging.
iterator_range< value_iterator > values() const
iterator_range< use_iterator > uses() const
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
SDNode * getGluedUser() const
If this node has a glue value with a user, return the user (there is at most one).
bool isDivergent() const
bool hasOneUse() const
Return true if there is exactly one use of this node.
bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
static const char * getIndexedModeName(ISD::MemIndexedMode AM)
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
LoadSDNodeBitfields LoadSDNodeBits
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
value_iterator value_end() const
void setHasDebugValue(bool b)
LSBaseSDNodeBitfields LSBaseSDNodeBits
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
bool getHasDebugValue() const
void dumpr() const
Dump (recursively) this node and its use-def subgraph.
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
std::string getOperationName(const SelectionDAG *G=nullptr) const
Return the opcode of this operation for printing.
void printrFull(raw_ostream &O, const SelectionDAG *G=nullptr) const
Print a SelectionDAG node and all children down to the leaves.
size_t use_size() const
Return the number of uses of this node.
void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
void printr(raw_ostream &OS, const SelectionDAG *G=nullptr) const
StoreSDNodeBitfields StoreSDNodeBits
TypeSize getValueSizeInBits(unsigned ResNo) const
Returns MVT::getSizeInBits(getValueType(ResNo)).
MVT getSimpleValueType(unsigned ResNo) const
Return the type of a specified result as a simple type.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
unsigned getMachineOpcode() const
This may only be called if isMachineOpcode returns true.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
bool isMemIntrinsic() const
Test if this node is a memory intrinsic (with valid pointer information).
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
static bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
bool isTargetStrictFPOpcode() const
Test if this node has a target-specific opcode that may raise FP exceptions (in the <target>ISD names...
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
void print(raw_ostream &OS, const SelectionDAG *G=nullptr) const
const DebugLoc & getDebugLoc() const
Return the source location info.
void printrWithDepth(raw_ostream &O, const SelectionDAG *G=nullptr, unsigned depth=100) const
Print a SelectionDAG node and children up to depth "depth." The given SelectionDAG allows target-spec...
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
uint16_t PersistentId
Unique and persistent id per SDNode in the DAG.
void dumprWithDepth(const SelectionDAG *G=nullptr, unsigned depth=100) const
printrWithDepth to dbgs().
bool isPredecessorOf(const SDNode *N) const
Return true if this node is a predecessor of N.
bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
void addUse(SDUse &U)
This method should only be used by the SDUse class.
bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
void print_details(raw_ostream &OS, const SelectionDAG *G) const
bool isTargetMemoryOpcode() const
Test if this node has a target-specific memory-referencing opcode (in the <target>ISD namespace and g...
void setCFIType(uint32_t Type)
bool isUndef() const
Return true if the type of the node type undefined.
void print_types(raw_ostream &OS, const SelectionDAG *G) const
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const
Return true if there are exactly NUSES uses of the indicated value.
bool isVPOpcode() const
Test if this node is a vector predication operation.
bool hasPoisonGeneratingFlags() const
void setFlags(SDNodeFlags NewFlags)
SDNode * getGluedNode() const
If this node has a glue operand, return the node to which the glue operand points.
bool isTargetOpcode() const
Test if this node has a target-specific opcode (in the <target>ISD namespace).
op_iterator op_end() const
ConstantSDNodeBitfields ConstantSDNodeBits
value_iterator value_begin() const
op_iterator op_begin() const
static use_iterator use_end()
void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
SDNodeBitfields SDNodeBits
Represents a use of a SDNode.
const SDNode * getUser() const
SDUse & operator=(const SDUse &)=delete
EVT getValueType() const
Convenience function for get().getValueType().
const SDValue & get() const
If implicit conversion to SDValue doesn't work, the get() method returns the SDValue.
SDUse * getNext() const
Get the next SDUse in the use list.
SDNode * getNode() const
Convenience function for get().getNode().
bool operator!=(const SDValue &V) const
Convenience function for get().operator!=.
SDUse()=default
SDUse(const SDUse &U)=delete
unsigned getResNo() const
Convenience function for get().getResNo().
bool operator==(const SDValue &V) const
Convenience function for get().operator==.
bool operator<(const SDValue &V) const
Convenience function for get().operator<.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
SDValue()=default
bool isTargetMemoryOpcode() const
bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
bool operator!=(const SDValue &O) const
SDValue getValue(unsigned R) const
void dump() const
EVT getValueType() const
Return the ValueType of the referenced return value.
bool isTargetOpcode() const
bool isMachineOpcode() const
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const DebugLoc & getDebugLoc() const
SDNode * operator->() const
bool operator==(const SDValue &O) const
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
bool operator<(const SDValue &O) const
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
void setNode(SDNode *N)
set the SDNode
unsigned getMachineOpcode() const
unsigned getOpcode() const
void dumpr() const
unsigned getNumOperands() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:225
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
static bool isSplatMask(const int *Mask, EVT VT)
int getMaskElt(unsigned Idx) const
ShuffleVectorSDNode(SDVTList VTs, unsigned Order, const DebugLoc &dl, const int *M)
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static bool classof(const SDNode *N)
size_type size() const
Definition: SmallPtrSet.h:94
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:321
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:696
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An SDNode that holds an arbitrary LLVM IR Value.
const Value * getValue() const
Return the contained Value.
static bool classof(const SDNode *N)
This class is used to represent ISD::STORE nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
void setTruncatingStore(bool Truncating)
static bool classof(const SDNode *N)
Completely target-dependent object reference.
TargetIndexSDNode(int Idx, SDVTList VTs, int64_t Ofs, unsigned TF)
static bool classof(const SDNode *N)
unsigned getTargetFlags() const
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
This base class is used to represent VP_LOAD, VP_STORE, EXPERIMENTAL_VP_STRIDED_LOAD and EXPERIMENTAL...
const SDValue & getMask() const
static bool classof(const SDNode *N)
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &DL, SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getOffset() const
ISD::MemIndexedMode getAddressingMode() const
Return the addressing mode for this load or store: unindexed, pre-inc, pre-dec, post-inc,...
const SDValue & getVectorLength() const
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
const SDValue & getBasePtr() const
This class is used to represent an VP_GATHER node.
VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
static bool classof(const SDNode *N)
This is a base class used to represent VP_GATHER and VP_SCATTER nodes.
const SDValue & getScale() const
ISD::MemIndexType getIndexType() const
How is Index applied to BasePtr when computing addresses.
const SDValue & getVectorLength() const
const SDValue & getIndex() const
VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
const SDValue & getBasePtr() const
static bool classof(const SDNode *N)
const SDValue & getMask() const
This class is used to represent a VP_LOAD node.
const SDValue & getOffset() const
const SDValue & getVectorLength() const
ISD::LoadExtType getExtensionType() const
const SDValue & getMask() const
VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getBasePtr() const
static bool classof(const SDNode *N)
bool isExpandingLoad() const
This class is used to represent an VP_SCATTER node.
static bool classof(const SDNode *N)
VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
const SDValue & getValue() const
This class is used to represent a VP_STORE node.
const SDValue & getMask() const
VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, EVT MemVT, MachineMemOperand *MMO)
static bool classof(const SDNode *N)
const SDValue & getVectorLength() const
bool isCompressingStore() const
Returns true if the op does a compression to the vector before storing.
const SDValue & getOffset() const
bool isTruncatingStore() const
Return true if this is a truncating store.
const SDValue & getBasePtr() const
const SDValue & getValue() const
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
const SDValue & getMask() const
ISD::LoadExtType getExtensionType() const
const SDValue & getStride() const
const SDValue & getOffset() const
const SDValue & getVectorLength() const
static bool classof(const SDNode *N)
const SDValue & getBasePtr() const
VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
const SDValue & getBasePtr() const
const SDValue & getMask() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if this is a truncating store.
VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing, EVT MemVT, MachineMemOperand *MMO)
const SDValue & getOffset() const
const SDValue & getVectorLength() const
static bool classof(const SDNode *N)
const SDValue & getStride() const
bool isCompressingStore() const
Returns true if the op does a compression to the vector before storing.
This class is used to represent EVT's, which are used to parameterize some operations.
static bool classof(const SDNode *N)
LLVM Value Representation.
Definition: Value.h:74
CRTP base class for adapting an iterator to a different type.
Definition: iterator.h:237
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
This file defines the ilist_node class template, which is a convenient base class for creating classe...
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define UINT64_MAX
Definition: DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:40
@ TargetConstantPool
Definition: ISDOpcodes.h:168
@ MDNODE_SDNODE
MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to reference metadata in the IR.
Definition: ISDOpcodes.h:1177
@ ATOMIC_LOAD_FMAX
Definition: ISDOpcodes.h:1282
@ ATOMIC_LOAD_NAND
Definition: ISDOpcodes.h:1275
@ TargetBlockAddress
Definition: ISDOpcodes.h:170
@ ConstantFP
Definition: ISDOpcodes.h:77
@ ATOMIC_LOAD_MAX
Definition: ISDOpcodes.h:1277
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val) This corresponds to "store atomic" instruction.
Definition: ISDOpcodes.h:1247
@ ATOMIC_LOAD_UMIN
Definition: ISDOpcodes.h:1278
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
Definition: ISDOpcodes.h:1037
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition: ISDOpcodes.h:199
@ GlobalAddress
Definition: ISDOpcodes.h:78
@ ATOMIC_CMP_SWAP_WITH_SUCCESS
Val, Success, OUTCHAIN = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap) N.b.
Definition: ISDOpcodes.h:1260
@ ATOMIC_LOAD_OR
Definition: ISDOpcodes.h:1273
@ ATOMIC_LOAD_XOR
Definition: ISDOpcodes.h:1274
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1406
@ ATOMIC_LOAD_FADD
Definition: ISDOpcodes.h:1280
@ GlobalTLSAddress
Definition: ISDOpcodes.h:79
@ SRCVALUE
SRCVALUE - This is a node type that holds a Value* that is used to make reference to a value in the L...
Definition: ISDOpcodes.h:1173
@ FrameIndex
Definition: ISDOpcodes.h:80
@ EH_LABEL
EH_LABEL - Represents a label in mid basic block used to track locations needed for debug and excepti...
Definition: ISDOpcodes.h:1108
@ ANNOTATION_LABEL
ANNOTATION_LABEL - Represents a mid basic block label used by annotations.
Definition: ISDOpcodes.h:1114
@ TargetExternalSymbol
Definition: ISDOpcodes.h:169
@ TargetJumpTable
Definition: ISDOpcodes.h:167
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
Definition: ISDOpcodes.h:177
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
Definition: ISDOpcodes.h:1227
@ ATOMIC_LOAD_FSUB
Definition: ISDOpcodes.h:1281
@ SSUBO
Same for subtraction.
Definition: ISDOpcodes.h:327
@ ATOMIC_LOAD_MIN
Definition: ISDOpcodes.h:1276
@ ATOMIC_LOAD
Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.
Definition: ISDOpcodes.h:1243
@ UNDEF
UNDEF - An undefined node.
Definition: ISDOpcodes.h:211
@ RegisterMask
Definition: ISDOpcodes.h:75
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition: ISDOpcodes.h:68
@ ATOMIC_LOAD_FMIN
Definition: ISDOpcodes.h:1283
@ BasicBlock
Various leaf nodes.
Definition: ISDOpcodes.h:71
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition: ISDOpcodes.h:323
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition: ISDOpcodes.h:164
@ STRICT_FP_TO_FP16
Definition: ISDOpcodes.h:916
@ STRICT_FP16_TO_FP
Definition: ISDOpcodes.h:915
@ ATOMIC_LOAD_CLR
Definition: ISDOpcodes.h:1272
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition: ISDOpcodes.h:600
@ ATOMIC_LOAD_AND
Definition: ISDOpcodes.h:1271
@ TargetConstantFP
Definition: ISDOpcodes.h:159
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
Definition: ISDOpcodes.h:1254
@ ATOMIC_LOAD_UMAX
Definition: ISDOpcodes.h:1279
@ SMULO
Same for multiplication.
Definition: ISDOpcodes.h:331
@ TargetFrameIndex
Definition: ISDOpcodes.h:166
@ ConstantPool
Definition: ISDOpcodes.h:82
@ LIFETIME_START
This corresponds to the llvm.lifetime.
Definition: ISDOpcodes.h:1310
@ STRICT_BF16_TO_FP
Definition: ISDOpcodes.h:924
@ ATOMIC_LOAD_UDEC_WRAP
Definition: ISDOpcodes.h:1285
@ ATOMIC_LOAD_ADD
Definition: ISDOpcodes.h:1269
@ ATOMIC_LOAD_SUB
Definition: ISDOpcodes.h:1270
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition: ISDOpcodes.h:158
@ GET_FPENV_MEM
Gets the current floating-point environment.
Definition: ISDOpcodes.h:1013
@ PSEUDO_PROBE
Pseudo probe for AutoFDO, as a place holder in a basic block to improve the sample counts quality.
Definition: ISDOpcodes.h:1330
@ STRICT_FP_TO_BF16
Definition: ISDOpcodes.h:925
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition: ISDOpcodes.h:52
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
Definition: ISDOpcodes.h:1268
@ ExternalSymbol
Definition: ISDOpcodes.h:83
@ ADDRSPACECAST
ADDRSPACECAST - This operator converts between pointers of different address spaces.
Definition: ISDOpcodes.h:907
@ BlockAddress
Definition: ISDOpcodes.h:84
@ ATOMIC_LOAD_UINC_WRAP
Definition: ISDOpcodes.h:1284
@ SET_FPENV_MEM
Sets the current floating point environment.
Definition: ISDOpcodes.h:1018
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition: ISDOpcodes.h:192
@ TargetGlobalTLSAddress
Definition: ISDOpcodes.h:165
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition: ISDOpcodes.h:515
bool isOverflowIntrOpRes(SDValue Op)
Returns true if the specified value is the overflow result from one of the overflow intrinsic nodes.
bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantSDNode predicate.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
static const int FIRST_TARGET_MEMORY_OPCODE
FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations which do not reference a specific me...
Definition: ISDOpcodes.h:1418
bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
bool isUNINDEXEDLoad(const SDNode *N)
Returns true if the specified node is an unindexed load.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
Definition: ISDOpcodes.h:1491
bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
bool isUNINDEXEDStore(const SDNode *N)
Returns true if the specified node is an unindexed store.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:1478
bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
static const int FIRST_TARGET_STRICTFP_OPCODE
FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations which cannot raise FP exceptions s...
Definition: ISDOpcodes.h:1412
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1529
bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:1509
bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
bool isNormalLoad(const SDNode *N)
Returns true if the specified node is a non-extending and unindexed load.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition: Utils.cpp:1525
SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition: Utils.cpp:1507
bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
void checkForCycles(const SelectionDAG *DAG, bool force=false)
SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
Definition: STLExtras.h:322
SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ Other
Any other memory.
ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1849
bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:760
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
A suitably aligned and sized character array member which can hold elements of any type.
Definition: AlignOf.h:27
static unsigned getHashValue(const SDValue &Val)
static bool isEqual(const SDValue &LHS, const SDValue &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:50
Extended Value Type.
Definition: ValueTypes.h:34
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:358
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:306
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition: ValueTypes.h:366
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:313
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:326
static ChildIteratorType child_begin(NodeRef N)
static ChildIteratorType child_end(NodeRef N)
static NodeRef getEntryNode(SDNode *N)
This class contains a discriminated union of information about pointers in memory operands,...
unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
These are IR-level optimization flags that may be propagated to SDNodes.
void copyFMF(const FPMathOperator &FPMO)
Propagate the fast-math-flags from an IR FPMathOperator.
bool hasNoInfs() const
void setNoFPExcept(bool b)
void setDisjoint(bool b)
void setAllowContract(bool b)
void setNoSignedZeros(bool b)
bool hasNoFPExcept() const
void setNoNaNs(bool b)
bool hasNoUnsignedWrap() const
void setAllowReassociation(bool b)
bool hasNoNaNs() const
void setUnpredictable(bool b)
void setNoInfs(bool b)
void setAllowReciprocal(bool b)
bool hasAllowContract() const
bool hasNoSignedZeros() const
bool hasDisjoint() const
void intersectWith(const SDNodeFlags Flags)
Clear any flags in this flag set that aren't also set in Flags.
bool hasApproximateFuncs() const
bool hasUnpredictable() const
void setApproximateFuncs(bool b)
bool hasNoSignedWrap() const
void setNonNeg(bool b)
bool hasAllowReciprocal() const
bool hasNonNeg() const
SDNodeFlags()
Default constructor turns off all optimization flags.
bool hasAllowReassociation() const
void setNoUnsignedWrap(bool b)
void setNoSignedWrap(bool b)
Iterator for directly iterating over the operand SDValue's.
const SDValue & operator*() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
static SimpleType getSimplifiedValue(SDUse &Val)
static SimpleType getSimplifiedValue(SDValue &Val)
static SimpleType getSimplifiedValue(const SDValue &Val)
Define a template that can be specialized by smart pointers to reflect the fact that they are automat...
Definition: Casting.h:34