52#include "llvm/Config/llvm-config.h"
76#define DEBUG_TYPE "machine-scheduler"
79 "Number of instructions in source order after pre-RA scheduling");
81 "Number of instructions in source order after post-RA scheduling");
83 "Number of instructions scheduled by pre-RA scheduler");
85 "Number of instructions scheduled by post-RA scheduler");
86STATISTIC(NumClustered,
"Number of load/store pairs clustered");
89 "Number of scheduling units chosen from top queue pre-RA");
91 "Number of scheduling units chosen from bottom queue pre-RA");
93 "Number of scheduling units chosen for NoCand heuristic pre-RA");
95 "Number of scheduling units chosen for Only1 heuristic pre-RA");
97 "Number of scheduling units chosen for PhysReg heuristic pre-RA");
99 "Number of scheduling units chosen for RegExcess heuristic pre-RA");
101 "Number of scheduling units chosen for RegCritical heuristic pre-RA");
103 "Number of scheduling units chosen for Stall heuristic pre-RA");
105 "Number of scheduling units chosen for Cluster heuristic pre-RA");
107 "Number of scheduling units chosen for Weak heuristic pre-RA");
109 "Number of scheduling units chosen for RegMax heuristic pre-RA");
111 NumResourceReducePreRA,
112 "Number of scheduling units chosen for ResourceReduce heuristic pre-RA");
114 NumResourceDemandPreRA,
115 "Number of scheduling units chosen for ResourceDemand heuristic pre-RA");
117 NumTopDepthReducePreRA,
118 "Number of scheduling units chosen for TopDepthReduce heuristic pre-RA");
120 NumTopPathReducePreRA,
121 "Number of scheduling units chosen for TopPathReduce heuristic pre-RA");
123 NumBotHeightReducePreRA,
124 "Number of scheduling units chosen for BotHeightReduce heuristic pre-RA");
126 NumBotPathReducePreRA,
127 "Number of scheduling units chosen for BotPathReduce heuristic pre-RA");
129 "Number of scheduling units chosen for NodeOrder heuristic pre-RA");
131 "Number of scheduling units chosen for FirstValid heuristic pre-RA");
134 "Number of scheduling units chosen from top queue post-RA");
136 "Number of scheduling units chosen from bottom queue post-RA");
138 "Number of scheduling units chosen for NoCand heuristic post-RA");
140 "Number of scheduling units chosen for Only1 heuristic post-RA");
142 "Number of scheduling units chosen for PhysReg heuristic post-RA");
144 "Number of scheduling units chosen for RegExcess heuristic post-RA");
146 NumRegCriticalPostRA,
147 "Number of scheduling units chosen for RegCritical heuristic post-RA");
149 "Number of scheduling units chosen for Stall heuristic post-RA");
151 "Number of scheduling units chosen for Cluster heuristic post-RA");
153 "Number of scheduling units chosen for Weak heuristic post-RA");
155 "Number of scheduling units chosen for RegMax heuristic post-RA");
157 NumResourceReducePostRA,
158 "Number of scheduling units chosen for ResourceReduce heuristic post-RA");
160 NumResourceDemandPostRA,
161 "Number of scheduling units chosen for ResourceDemand heuristic post-RA");
163 NumTopDepthReducePostRA,
164 "Number of scheduling units chosen for TopDepthReduce heuristic post-RA");
166 NumTopPathReducePostRA,
167 "Number of scheduling units chosen for TopPathReduce heuristic post-RA");
169 NumBotHeightReducePostRA,
170 "Number of scheduling units chosen for BotHeightReduce heuristic post-RA");
172 NumBotPathReducePostRA,
173 "Number of scheduling units chosen for BotPathReduce heuristic post-RA");
175 "Number of scheduling units chosen for NodeOrder heuristic post-RA");
177 "Number of scheduling units chosen for FirstValid heuristic post-RA");
181 cl::desc(
"Pre reg-alloc list scheduling direction"),
185 "Force top-down pre reg-alloc list scheduling"),
187 "Force bottom-up pre reg-alloc list scheduling"),
189 "Force bidirectional pre reg-alloc list scheduling")));
193 cl::desc(
"Post reg-alloc list scheduling direction"),
197 "Force top-down post reg-alloc list scheduling"),
199 "Force bottom-up post reg-alloc list scheduling"),
201 "Force bidirectional post reg-alloc list scheduling")));
205 cl::desc(
"Print critical path length to stdout"));
209 cl::desc(
"Verify machine instrs before and after machine scheduling"));
214 cl::desc(
"Pop up a window to show MISched dags after they are processed"));
219 cl::desc(
"Dump resource usage at schedule boundary."));
222 cl::desc(
"Show details of invoking getNextResoufceCycle."));
227#ifdef LLVM_ENABLE_DUMP
236 cl::desc(
"Hide nodes with more predecessor/successor than cutoff"));
242 cl::desc(
"Only schedule this function"));
244 cl::desc(
"Only schedule this MBB#"));
259 cl::desc(
"Enable memop clustering."),
263 cl::desc(
"Switch to fast cluster algorithm with the lost "
264 "of some fusion opportunities"),
268 cl::desc(
"The threshold for fast cluster"),
271#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
274 cl::desc(
"Dump resource usage at schedule boundary."));
277 cl::desc(
"Set width of the columns with "
278 "the resources and schedule units"),
282 cl::desc(
"Set width of the columns showing resource booking."),
286 cl::desc(
"Sort the resources printed in the dump trace"));
297void MachineSchedStrategy::anchor() {}
299void ScheduleDAGMutation::anchor() {}
343 const RequiredAnalyses &Analyses);
367 const RequiredAnalyses &Analyses);
383 MachineSchedulerImpl Impl;
386 MachineSchedulerLegacy();
387 void getAnalysisUsage(AnalysisUsage &AU)
const override;
388 bool runOnMachineFunction(MachineFunction&)
override;
395 PostMachineSchedulerImpl Impl;
398 PostMachineSchedulerLegacy();
399 void getAnalysisUsage(AnalysisUsage &AU)
const override;
400 bool runOnMachineFunction(MachineFunction &)
override;
407char MachineSchedulerLegacy::ID = 0;
412 "Machine Instruction Scheduler",
false,
false)
425void MachineSchedulerLegacy::getAnalysisUsage(
AnalysisUsage &AU)
const {
438char PostMachineSchedulerLegacy::ID = 0;
443 "PostRA Machine Instruction Scheduler",
false,
false)
448 "PostRA Machine Instruction Scheduler",
false,
false)
450PostMachineSchedulerLegacy::PostMachineSchedulerLegacy()
455void PostMachineSchedulerLegacy::getAnalysisUsage(
AnalysisUsage &AU)
const {
478 cl::desc(
"Machine instruction scheduler to use"));
486 cl::desc(
"Enable the machine instruction scheduling pass."),
cl::init(
true),
490 "enable-post-misched",
491 cl::desc(
"Enable the post-ra machine instruction scheduling pass."),
498 assert(
I != Beg &&
"reached the top of the region, cannot decrement");
500 if (!
I->isDebugOrPseudoInstr())
519 for(;
I != End; ++
I) {
520 if (!
I->isDebugOrPseudoInstr())
561 const char *MSchedBanner =
"Before machine scheduling.";
563 MF->verify(P, MSchedBanner, &
errs());
565 MF->verify(*MFAM, MSchedBanner, &
errs());
576 const char *MSchedBanner =
"After machine scheduling.";
578 MF->verify(P, MSchedBanner, &
errs());
580 MF->verify(*MFAM, MSchedBanner, &
errs());
607 const char *PostMSchedBanner =
"Before post machine scheduling.";
609 MF->verify(P, PostMSchedBanner, &
errs());
611 MF->verify(*MFAM, PostMSchedBanner, &
errs());
620 const char *PostMSchedBanner =
"After post machine scheduling.";
622 MF->verify(P, PostMSchedBanner, &
errs());
624 MF->verify(*MFAM, PostMSchedBanner, &
errs());
645bool MachineSchedulerLegacy::runOnMachineFunction(
MachineFunction &MF) {
658 auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
659 auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
660 auto &TM = getAnalysis<TargetPassConfig>().getTM<
TargetMachine>();
661 auto &
AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
662 auto &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS();
663 Impl.setLegacyPass(
this);
664 return Impl.run(MF, TM, {MLI, MDT,
AA, LIS});
668 : Impl(
std::make_unique<MachineSchedulerImpl>()), TM(TM) {}
674 : Impl(
std::make_unique<PostMachineSchedulerImpl>()), TM(TM) {}
696 Impl->setMFAM(&MFAM);
697 bool Changed = Impl->run(MF, *TM, {MLI, MDT,
AA, LIS});
703 .preserve<SlotIndexesAnalysis>()
707bool PostMachineSchedulerLegacy::runOnMachineFunction(
MachineFunction &MF) {
719 auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
721 auto &
AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
722 Impl.setLegacyPass(
this);
723 return Impl.run(MF, TM, {MLI,
AA});
742 Impl->setMFAM(&MFAM);
743 bool Changed = Impl->run(MF, *TM, {MLI,
AA});
766 return MI->isCall() ||
TII->isSchedulingBoundary(*
MI,
MBB, *MF) ||
775 bool RegionsTopDown) {
781 RegionEnd !=
MBB->begin(); RegionEnd =
I) {
784 if (RegionEnd !=
MBB->end() ||
791 unsigned NumRegionInstrs = 0;
793 for (;
I !=
MBB->begin(); --
I) {
797 if (!
MI.isDebugOrPseudoInstr()) {
806 if (NumRegionInstrs != 0)
811 std::reverse(Regions.
begin(), Regions.
end());
850 bool ScheduleSingleMI =
Scheduler.shouldScheduleSingleMIRegions();
854 unsigned NumRegionInstrs = R.NumRegionInstrs;
862 if (
I == RegionEnd || (!ScheduleSingleMI &&
I == std::prev(RegionEnd))) {
870 <<
" " <<
MBB->getName() <<
"\n From: " << *
I
872 if (RegionEnd !=
MBB->end())
dbgs() << *RegionEnd;
873 else dbgs() <<
"End\n";
874 dbgs() <<
" RegionInstrs: " << NumRegionInstrs <<
'\n');
877 errs() <<
":%bb. " <<
MBB->getNumber();
878 errs() <<
" " <<
MBB->getName() <<
" \n";
898#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
900 dbgs() <<
"Queue " << Name <<
": ";
901 for (
const SUnit *SU : Queue)
902 dbgs() << SU->NodeNum <<
" ";
929 dbgs() <<
"*** Scheduling failed! ***\n";
931 dbgs() <<
" has been released too many times!\n";
964 dbgs() <<
"*** Scheduling failed! ***\n";
966 dbgs() <<
" has been released too many times!\n";
1003 unsigned regioninstrs)
1013 else if (
SchedImpl->getPolicy().OnlyBottomUp)
1029 BB->splice(InsertPos,
BB,
MI);
1033 LIS->handleMove(*
MI,
true);
1041#if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)
1046 ++NumInstrsScheduled;
1078 bool IsTopNode =
false;
1083 LLVM_DEBUG(
dbgs() <<
"** ScheduleDAGMI::schedule picking next node\n");
1100 if (&*priorII ==
MI)
1122 dbgs() <<
"*** Final schedule for "
1139 assert(!SU.isBoundaryNode() &&
"Boundary node should not be in SUnits");
1142 SU.biasCriticalPath();
1145 if (!SU.NumPredsLeft)
1148 if (!SU.NumSuccsLeft)
1151 ExitSU.biasCriticalPath();
1161 for (
SUnit *SU : TopRoots)
1200 for (std::vector<std::pair<MachineInstr *, MachineInstr *>>
::iterator
1202 std::pair<MachineInstr *, MachineInstr *>
P = *std::prev(DI);
1213#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1225 dbgs() <<
" * Schedule table (TopDown):\n";
1243 for (
unsigned C = FirstCycle;
C <= LastCycle; ++
C)
1250 dbgs() <<
"Missing SUnit\n";
1253 std::string NodeName(
"SU(");
1254 NodeName += std::to_string(SU->
NodeNum) +
")";
1256 unsigned C = FirstCycle;
1257 for (;
C <= LastCycle; ++
C) {
1275 return std::tie(LHS.AcquireAtCycle, LHS.ReleaseAtCycle) <
1276 std::tie(RHS.AcquireAtCycle, RHS.ReleaseAtCycle);
1280 const std::string ResName =
1281 SchedModel.getResourceName(PI.ProcResourceIdx);
1286 for (
unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle;
I != E;
1289 while (
C++ <= LastCycle)
1306 dbgs() <<
" * Schedule table (BottomUp):\n";
1319 if ((
int)SU->
BotReadyCycle - PI->ReleaseAtCycle + 1 < LastCycle)
1320 LastCycle = (int)SU->
BotReadyCycle - PI->ReleaseAtCycle + 1;
1325 for (
int C = FirstCycle;
C >= LastCycle; --
C)
1332 dbgs() <<
"Missing SUnit\n";
1335 std::string NodeName(
"SU(");
1336 NodeName += std::to_string(SU->
NodeNum) +
")";
1339 for (;
C >= LastCycle; --
C) {
1356 return std::tie(LHS.AcquireAtCycle, LHS.ReleaseAtCycle) <
1357 std::tie(RHS.AcquireAtCycle, RHS.ReleaseAtCycle);
1361 const std::string ResName =
1362 SchedModel.getResourceName(PI.ProcResourceIdx);
1367 for (
unsigned I = 0, E = PI.ReleaseAtCycle - PI.AcquireAtCycle;
I != E;
1370 while (
C-- >= LastCycle)
1379#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1387 dbgs() <<
"* Schedule table (Bidirectional): not implemented\n";
1389 dbgs() <<
"* Schedule table: DumpDirection not set.\n";
1397 dbgs() <<
"Missing SUnit\n";
1422 if (!Reg.isVirtual())
1427 bool FoundDef =
false;
1429 if (MO2.getReg() == Reg && !MO2.isDead()) {
1440 for (; UI !=
VRegUses.end(); ++UI) {
1456 unsigned regioninstrs)
1470 "ShouldTrackLaneMasks requires ShouldTrackPressure");
1521 dbgs() <<
"Bottom Pressure: ";
1527 "Can't find the region bottom");
1535 unsigned Limit =
RegClassInfo->getRegPressureSetLimit(i);
1544 dbgs() <<
"Excess PSets: ";
1546 dbgs() <<
TRI->getRegPressureSetName(RCPS.getPSet()) <<
" ";
1554 const std::vector<unsigned> &NewMaxPressure) {
1560 unsigned ID = PC.getPSet();
1565 && NewMaxPressure[
ID] <= (
unsigned)std::numeric_limits<int16_t>::max())
1569 if (NewMaxPressure[
ID] >= Limit - 2) {
1571 << NewMaxPressure[
ID]
1572 << ((NewMaxPressure[
ID] > Limit) ?
" > " :
" <= ")
1585 if (!Reg.isVirtual())
1593 bool Decrement =
P.LaneMask.any();
1597 SUnit &SU = *V2SU.SU;
1607 <<
" UpdateRegPressure: SU(" << SU.
NodeNum <<
") "
1630 assert(VNI &&
"No live value at use.");
1633 SUnit *SU = V2SU.SU;
1657#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1658 if (
EntrySU.getInstr() !=
nullptr)
1663 dbgs() <<
" Pressure Diff : ";
1666 dbgs() <<
" Single Issue : ";
1667 if (
SchedModel.mustBeginGroup(SU.getInstr()) &&
1674 if (
ExitSU.getInstr() !=
nullptr)
1710 bool IsTopNode =
false;
1715 LLVM_DEBUG(
dbgs() <<
"** ScheduleDAGMILive::schedule picking next node\n");
1724 unsigned SubtreeID =
DFSResult->getSubtreeID(SU);
1742 dbgs() <<
"*** Final schedule for "
1811 if (!
BB->isSuccessor(
BB))
1814 unsigned MaxCyclicLatency = 0;
1818 if (!Reg.isVirtual())
1830 unsigned LiveOutHeight = DefSU->
getHeight();
1835 SUnit *SU = V2SU.SU;
1847 unsigned CyclicLatency = 0;
1849 CyclicLatency = LiveOutDepth - SU->
getDepth();
1852 if (LiveInHeight > LiveOutHeight) {
1853 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1854 CyclicLatency = LiveInHeight - LiveOutHeight;
1859 << SU->
NodeNum <<
") = " << CyclicLatency <<
"c\n");
1860 if (CyclicLatency > MaxCyclicLatency)
1861 MaxCyclicLatency = CyclicLatency;
1864 LLVM_DEBUG(
dbgs() <<
"Cyclic Critical Path: " << MaxCyclicLatency <<
"c\n");
1865 return MaxCyclicLatency;
1900 SlotIndex SlotIdx =
LIS->getInstructionIndex(*MI).getRegSlot();
1918 if (&*priorII ==
MI)
1935 SlotIndex SlotIdx =
LIS->getInstructionIndex(*MI).getRegSlot();
1970 bool OffsetIsScalable;
1974 : SU(SU), BaseOps(BaseOps),
Offset(
Offset), Width(Width),
1975 OffsetIsScalable(OffsetIsScalable) {}
1979 if (
A->getType() !=
B->getType())
1980 return A->getType() <
B->getType();
1982 return A->getReg() <
B->getReg();
1988 return StackGrowsDown ?
A->getIndex() >
B->getIndex()
1989 :
A->getIndex() <
B->getIndex();
1999 if (std::lexicographical_compare(BaseOps.
begin(), BaseOps.
end(),
2000 RHS.BaseOps.begin(),
RHS.BaseOps.end(),
2003 if (std::lexicographical_compare(
RHS.BaseOps.begin(),
RHS.BaseOps.end(),
2004 BaseOps.
begin(), BaseOps.
end(), Compare))
2012 const TargetInstrInfo *
TII;
2013 const TargetRegisterInfo *
TRI;
2015 bool ReorderWhileClustering;
2018 BaseMemOpClusterMutation(
const TargetInstrInfo *tii,
2019 const TargetRegisterInfo *tri,
bool IsLoad,
2020 bool ReorderWhileClustering)
2021 :
TII(tii),
TRI(tri), IsLoad(IsLoad),
2022 ReorderWhileClustering(ReorderWhileClustering) {}
2024 void apply(ScheduleDAGInstrs *DAGInstrs)
override;
2028 ScheduleDAGInstrs *DAG);
2029 void collectMemOpRecords(std::vector<SUnit> &SUnits,
2030 SmallVectorImpl<MemOpInfo> &MemOpRecords);
2035class StoreClusterMutation :
public BaseMemOpClusterMutation {
2037 StoreClusterMutation(
const TargetInstrInfo *tii,
2038 const TargetRegisterInfo *tri,
2039 bool ReorderWhileClustering)
2040 : BaseMemOpClusterMutation(tii, tri,
false, ReorderWhileClustering) {}
2043class LoadClusterMutation :
public BaseMemOpClusterMutation {
2045 LoadClusterMutation(
const TargetInstrInfo *tii,
const TargetRegisterInfo *tri,
2046 bool ReorderWhileClustering)
2047 : BaseMemOpClusterMutation(tii, tri,
true, ReorderWhileClustering) {}
2052std::unique_ptr<ScheduleDAGMutation>
2055 bool ReorderWhileClustering) {
2057 TII,
TRI, ReorderWhileClustering)
2061std::unique_ptr<ScheduleDAGMutation>
2064 bool ReorderWhileClustering) {
2066 TII,
TRI, ReorderWhileClustering)
2075void BaseMemOpClusterMutation::clusterNeighboringMemOps(
2084 for (
unsigned Idx = 0, End = MemOpRecords.
size(); Idx < (End - 1); ++Idx) {
2086 auto MemOpa = MemOpRecords[Idx];
2089 unsigned NextIdx = Idx + 1;
2090 for (; NextIdx < End; ++NextIdx)
2093 if (!SUnit2ClusterInfo.
count(MemOpRecords[NextIdx].SU->NodeNum) &&
2095 (!DAG->
IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) &&
2096 !DAG->
IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU))))
2101 auto MemOpb = MemOpRecords[NextIdx];
2102 unsigned ClusterLength = 2;
2103 unsigned CurrentClusterBytes = MemOpa.Width.getValue().getKnownMinValue() +
2104 MemOpb.Width.getValue().getKnownMinValue();
2105 auto It = SUnit2ClusterInfo.
find(MemOpa.SU->NodeNum);
2106 if (It != SUnit2ClusterInfo.
end()) {
2107 const auto &[Len, Bytes] = It->second;
2108 ClusterLength = Len + 1;
2109 CurrentClusterBytes = Bytes + MemOpb.Width.getValue().getKnownMinValue();
2112 if (!
TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpa.Offset,
2113 MemOpa.OffsetIsScalable, MemOpb.BaseOps,
2114 MemOpb.Offset, MemOpb.OffsetIsScalable,
2115 ClusterLength, CurrentClusterBytes))
2118 SUnit *SUa = MemOpa.SU;
2119 SUnit *SUb = MemOpb.SU;
2161 SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength,
2162 CurrentClusterBytes};
2165 <<
", Curr cluster bytes: " << CurrentClusterBytes
2176 unsigned ClusterIdx = AllClusters.size();
2178 MemberI->ParentClusterIdx = ClusterIdx;
2181 AllClusters.push_back(Group);
2185void BaseMemOpClusterMutation::collectMemOpRecords(
2187 for (
auto &SU : SUnits) {
2195 bool OffsetIsScalable;
2198 OffsetIsScalable, Width,
TRI)) {
2203 MemOpInfo(&SU, BaseOps,
Offset, OffsetIsScalable, Width));
2206 <<
Offset <<
", OffsetIsScalable: " << OffsetIsScalable
2207 <<
", Width: " << Width <<
"\n");
2210 for (
const auto *
Op : BaseOps)
2216bool BaseMemOpClusterMutation::groupMemOps(
2223 for (
const auto &
MemOp : MemOps) {
2224 unsigned ChainPredID = DAG->
SUnits.size();
2226 for (
const SDep &Pred :
MemOp.SU->Preds) {
2250 collectMemOpRecords(DAG->
SUnits, MemOpRecords);
2252 if (MemOpRecords.
size() < 2)
2259 bool FastCluster = groupMemOps(MemOpRecords, DAG,
Groups);
2261 for (
auto &Group :
Groups) {
2267 clusterNeighboringMemOps(Group.second, FastCluster, DAG);
2282 SlotIndex RegionBeginIdx;
2286 SlotIndex RegionEndIdx;
2289 CopyConstrain(
const TargetInstrInfo *,
const TargetRegisterInfo *) {}
2291 void apply(ScheduleDAGInstrs *DAGInstrs)
override;
2294 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
2299std::unique_ptr<ScheduleDAGMutation>
2302 return std::make_unique<CopyConstrain>(
TII,
TRI);
2345 unsigned LocalReg = SrcReg;
2346 unsigned GlobalReg = DstReg;
2348 if (!LocalLI->
isLocal(RegionBeginIdx, RegionEndIdx)) {
2352 if (!LocalLI->
isLocal(RegionBeginIdx, RegionEndIdx))
2363 if (GlobalSegment == GlobalLI->
end())
2370 if (GlobalSegment->contains(LocalLI->
beginIndex()))
2373 if (GlobalSegment == GlobalLI->
end())
2377 if (GlobalSegment != GlobalLI->
begin()) {
2380 GlobalSegment->start)) {
2391 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
2392 "Disconnected LRG within the scheduling region.");
2408 for (
const SDep &Succ : LastLocalSU->
Succs) {
2423 for (
const SDep &Pred : GlobalSU->
Preds) {
2426 if (Pred.
getSUnit() == FirstLocalSU)
2434 for (
SUnit *LU : LocalUses) {
2435 LLVM_DEBUG(
dbgs() <<
" Local use SU(" << LU->NodeNum <<
") -> SU("
2436 << GlobalSU->
NodeNum <<
")\n");
2439 for (
SUnit *GU : GlobalUses) {
2440 LLVM_DEBUG(
dbgs() <<
" Global use SU(" << GU->NodeNum <<
") -> SU("
2441 << FirstLocalSU->
NodeNum <<
")\n");
2453 if (FirstPos == DAG->
end())
2481 unsigned Latency,
bool AfterSchedNode) {
2484 return ResCntFactor >= (int)LFactor;
2486 return ResCntFactor > (int)LFactor;
2499 CheckPending =
false;
2502 MinReadyCycle = std::numeric_limits<unsigned>::max();
2503 ExpectedLatency = 0;
2504 DependentLatency = 0;
2506 MaxExecutedResCount = 0;
2508 IsResourceLimited =
false;
2509 ReservedCycles.clear();
2510 ReservedResourceSegments.clear();
2511 ReservedCyclesIndex.clear();
2512 ResourceGroupSubUnitMasks.clear();
2513#if LLVM_ENABLE_ABI_BREAKING_CHECKS
2517 MaxObservedStall = 0;
2520 ExecutedResCounts.resize(1);
2521 assert(!ExecutedResCounts[0] &&
"nonzero count for bad resource");
2537 unsigned PIdx = PI->ProcResourceIdx;
2539 assert(PI->ReleaseAtCycle >= PI->AcquireAtCycle);
2541 (Factor * (PI->ReleaseAtCycle - PI->AcquireAtCycle));
2553 unsigned ResourceCount =
SchedModel->getNumProcResourceKinds();
2554 ReservedCyclesIndex.resize(ResourceCount);
2555 ExecutedResCounts.resize(ResourceCount);
2556 ResourceGroupSubUnitMasks.resize(ResourceCount,
APInt(ResourceCount, 0));
2557 unsigned NumUnits = 0;
2559 for (
unsigned i = 0; i < ResourceCount; ++i) {
2560 ReservedCyclesIndex[i] = NumUnits;
2561 NumUnits +=
SchedModel->getProcResource(i)->NumUnits;
2563 auto SubUnits =
SchedModel->getProcResource(i)->SubUnitsIdxBegin;
2564 for (
unsigned U = 0, UE =
SchedModel->getProcResource(i)->NumUnits;
2566 ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]);
2586 if (ReadyCycle > CurrCycle)
2587 return ReadyCycle - CurrCycle;
2594 unsigned ReleaseAtCycle,
2595 unsigned AcquireAtCycle) {
2598 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromTop(
2599 CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2601 return ReservedResourceSegments[InstanceIdx].getFirstAvailableAtFromBottom(
2602 CurrCycle, AcquireAtCycle, ReleaseAtCycle);
2605 unsigned NextUnreserved = ReservedCycles[InstanceIdx];
2611 NextUnreserved = std::max(CurrCycle, NextUnreserved + ReleaseAtCycle);
2612 return NextUnreserved;
2618std::pair<unsigned, unsigned>
2620 unsigned ReleaseAtCycle,
2621 unsigned AcquireAtCycle) {
2623 LLVM_DEBUG(
dbgs() <<
" Resource booking (@" << CurrCycle <<
"c): \n");
2625 LLVM_DEBUG(
dbgs() <<
" getNextResourceCycle (@" << CurrCycle <<
"c): \n");
2628 unsigned InstanceIdx = 0;
2629 unsigned StartIndex = ReservedCyclesIndex[PIdx];
2630 unsigned NumberOfInstances =
SchedModel->getProcResource(PIdx)->NumUnits;
2631 assert(NumberOfInstances > 0 &&
2632 "Cannot have zero instances of a ProcResource");
2649 if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx])
2651 StartIndex, ReleaseAtCycle, AcquireAtCycle),
2654 auto SubUnits =
SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin;
2655 for (
unsigned I = 0, End = NumberOfInstances;
I < End; ++
I) {
2656 unsigned NextUnreserved, NextInstanceIdx;
2657 std::tie(NextUnreserved, NextInstanceIdx) =
2659 if (MinNextUnreserved > NextUnreserved) {
2660 InstanceIdx = NextInstanceIdx;
2661 MinNextUnreserved = NextUnreserved;
2664 return std::make_pair(MinNextUnreserved, InstanceIdx);
2667 for (
unsigned I = StartIndex, End = StartIndex + NumberOfInstances;
I < End;
2669 unsigned NextUnreserved =
2673 << NextUnreserved <<
"c\n");
2674 if (MinNextUnreserved > NextUnreserved) {
2676 MinNextUnreserved = NextUnreserved;
2681 <<
"[" << InstanceIdx - StartIndex <<
"]"
2682 <<
" available @" << MinNextUnreserved <<
"c"
2684 return std::make_pair(MinNextUnreserved, InstanceIdx);
2704 <<
"hazard: SU(" << SU->
NodeNum <<
") reported by HazardRec\n");
2709 if ((CurrMOps > 0) && (CurrMOps + uops >
SchedModel->getIssueWidth())) {
2711 << uops <<
", CurrMOps = " << CurrMOps <<
", "
2712 <<
"CurrMOps + uops > issue width of "
2721 << (
isTop() ?
"begin" :
"end") <<
" group\n");
2730 unsigned ResIdx = PE.ProcResourceIdx;
2731 unsigned ReleaseAtCycle = PE.ReleaseAtCycle;
2732 unsigned AcquireAtCycle = PE.AcquireAtCycle;
2733 unsigned NRCycle, InstanceIdx;
2734 std::tie(NRCycle, InstanceIdx) =
2736 if (NRCycle > CurrCycle) {
2737#if LLVM_ENABLE_ABI_BREAKING_CHECKS
2738 MaxObservedStall = std::max(ReleaseAtCycle, MaxObservedStall);
2741 <<
"hazard: SU(" << SU->
NodeNum <<
") "
2742 <<
SchedModel->getResourceName(ResIdx) <<
'['
2743 << InstanceIdx - ReservedCyclesIndex[ResIdx] <<
']' <<
"="
2744 << NRCycle <<
"c, is later than "
2745 <<
"CurrCycle = " << CurrCycle <<
"c\n");
2756 SUnit *LateSU =
nullptr;
2757 unsigned RemLatency = 0;
2758 for (
SUnit *SU : ReadySUs) {
2760 if (L > RemLatency) {
2767 << LateSU->
NodeNum <<
") " << RemLatency <<
"c\n");
2781 unsigned OtherCritCount =
Rem->RemIssueCount
2782 + (RetiredMOps *
SchedModel->getMicroOpFactor());
2784 << OtherCritCount /
SchedModel->getMicroOpFactor() <<
'\n');
2785 for (
unsigned PIdx = 1, PEnd =
SchedModel->getNumProcResourceKinds();
2786 PIdx != PEnd; ++PIdx) {
2788 if (OtherCount > OtherCritCount) {
2789 OtherCritCount = OtherCount;
2790 OtherCritIdx = PIdx;
2795 dbgs() <<
" " <<
Available.getName() <<
" + Remain CritRes: "
2796 << OtherCritCount /
SchedModel->getResourceFactor(OtherCritIdx)
2797 <<
" " <<
SchedModel->getResourceName(OtherCritIdx) <<
"\n");
2799 return OtherCritCount;
2806#if LLVM_ENABLE_ABI_BREAKING_CHECKS
2810 if (ReadyCycle > CurrCycle)
2811 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
2814 if (ReadyCycle < MinReadyCycle)
2815 MinReadyCycle = ReadyCycle;
2819 bool IsBuffered =
SchedModel->getMicroOpBufferSize() != 0;
2820 bool HazardDetected = !IsBuffered && ReadyCycle > CurrCycle;
2823 <<
") ReadyCycle = " << ReadyCycle
2824 <<
" is later than CurrCycle = " << CurrCycle
2825 <<
" on an unbuffered resource" <<
"\n");
2830 HazardDetected =
true;
2835 if (!HazardDetected) {
2838 <<
"Move SU(" << SU->
NodeNum <<
") into Available Q\n");
2851 if (
SchedModel->getMicroOpBufferSize() == 0) {
2852 assert(MinReadyCycle < std::numeric_limits<unsigned>::max() &&
2853 "MinReadyCycle uninitialized");
2854 if (MinReadyCycle > NextCycle)
2855 NextCycle = MinReadyCycle;
2858 unsigned DecMOps =
SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2859 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2862 if ((NextCycle - CurrCycle) > DependentLatency)
2863 DependentLatency = 0;
2865 DependentLatency -= (NextCycle - CurrCycle);
2869 CurrCycle = NextCycle;
2872 for (; CurrCycle != NextCycle; ++CurrCycle) {
2879 CheckPending =
true;
2889 ExecutedResCounts[PIdx] +=
Count;
2890 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2891 MaxExecutedResCount = ExecutedResCounts[PIdx];
2905 unsigned ReleaseAtCycle,
2907 unsigned AcquireAtCycle) {
2908 unsigned Factor =
SchedModel->getResourceFactor(PIdx);
2909 unsigned Count = Factor * (ReleaseAtCycle- AcquireAtCycle);
2911 << ReleaseAtCycle <<
"x" << Factor <<
"u\n");
2915 assert(
Rem->RemainingCounts[PIdx] >=
Count &&
"resource double counted");
2916 Rem->RemainingCounts[PIdx] -=
Count;
2921 ZoneCritResIdx = PIdx;
2928 unsigned NextAvailable, InstanceIdx;
2929 std::tie(NextAvailable, InstanceIdx) =
2931 if (NextAvailable > CurrCycle) {
2934 <<
'[' << InstanceIdx - ReservedCyclesIndex[PIdx] <<
']'
2935 <<
" reserved until @" << NextAvailable <<
"\n");
2937 return NextAvailable;
2951 CheckPending =
true;
2958 (CurrMOps == 0 || (CurrMOps + IncMOps) <=
SchedModel->getIssueWidth()) &&
2959 "Cannot schedule this instruction's MicroOps in the current cycle.");
2964 unsigned NextCycle = CurrCycle;
2965 switch (
SchedModel->getMicroOpBufferSize()) {
2967 assert(ReadyCycle <= CurrCycle &&
"Broken PendingQueue");
2970 if (ReadyCycle > NextCycle) {
2971 NextCycle = ReadyCycle;
2972 LLVM_DEBUG(
dbgs() <<
" *** Stall until: " << ReadyCycle <<
"\n");
2981 NextCycle = ReadyCycle;
2984 RetiredMOps += IncMOps;
2988 unsigned DecRemIssue = IncMOps *
SchedModel->getMicroOpFactor();
2989 assert(
Rem->RemIssueCount >= DecRemIssue &&
"MOps double counted");
2990 Rem->RemIssueCount -= DecRemIssue;
2991 if (ZoneCritResIdx) {
2993 unsigned ScaledMOps =
2994 RetiredMOps *
SchedModel->getMicroOpFactor();
3002 << ScaledMOps /
SchedModel->getLatencyFactor()
3008 PE =
SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
3010 countResource(SC, PI->ProcResourceIdx, PI->ReleaseAtCycle, NextCycle,
3011 PI->AcquireAtCycle);
3012 if (RCycle > NextCycle)
3022 PE =
SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
3023 unsigned PIdx = PI->ProcResourceIdx;
3024 if (
SchedModel->getProcResource(PIdx)->BufferSize == 0) {
3027 unsigned ReservedUntil, InstanceIdx;
3029 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
3031 ReservedResourceSegments[InstanceIdx].add(
3033 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
3036 ReservedResourceSegments[InstanceIdx].add(
3038 NextCycle, PI->AcquireAtCycle, PI->ReleaseAtCycle),
3043 unsigned ReservedUntil, InstanceIdx;
3045 SC, PIdx, PI->ReleaseAtCycle, PI->AcquireAtCycle);
3047 ReservedCycles[InstanceIdx] =
3048 std::max(ReservedUntil, NextCycle + PI->ReleaseAtCycle);
3050 ReservedCycles[InstanceIdx] = NextCycle;
3057 unsigned &TopLatency =
isTop() ? ExpectedLatency : DependentLatency;
3058 unsigned &BotLatency =
isTop() ? DependentLatency : ExpectedLatency;
3062 << SU->
NodeNum <<
") " << TopLatency <<
"c\n");
3067 << SU->
NodeNum <<
") " << BotLatency <<
"c\n");
3070 if (NextCycle > CurrCycle)
3083 CurrMOps += IncMOps;
3096 while (CurrMOps >=
SchedModel->getIssueWidth()) {
3097 LLVM_DEBUG(
dbgs() <<
" *** Max MOps " << CurrMOps <<
" at cycle "
3098 << CurrCycle <<
'\n');
3109 MinReadyCycle = std::numeric_limits<unsigned>::max();
3113 for (
unsigned I = 0, E =
Pending.size();
I < E; ++
I) {
3119 if (ReadyCycle < MinReadyCycle)
3120 MinReadyCycle = ReadyCycle;
3131 CheckPending =
false;
3160 for (
unsigned i = 0;
Available.empty(); ++i) {
3177#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3186 unsigned ResourceCount =
SchedModel->getNumProcResourceKinds();
3187 unsigned StartIdx = 0;
3189 for (
unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) {
3190 const unsigned NumUnits =
SchedModel->getProcResource(ResIdx)->NumUnits;
3191 std::string ResName =
SchedModel->getResourceName(ResIdx);
3192 for (
unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) {
3193 dbgs() << ResName <<
"(" << UnitIdx <<
") = ";
3195 if (ReservedResourceSegments.count(StartIdx + UnitIdx))
3196 dbgs() << ReservedResourceSegments.at(StartIdx + UnitIdx);
3200 dbgs() << ReservedCycles[StartIdx + UnitIdx] <<
"\n";
3202 StartIdx += NumUnits;
3211 if (ZoneCritResIdx) {
3212 ResFactor =
SchedModel->getResourceFactor(ZoneCritResIdx);
3216 ResCount = RetiredMOps * ResFactor;
3218 unsigned LFactor =
SchedModel->getLatencyFactor();
3220 <<
" Retired: " << RetiredMOps;
3222 dbgs() <<
"\n Critical: " << ResCount / LFactor <<
"c, "
3223 << ResCount / ResFactor <<
" "
3224 <<
SchedModel->getResourceName(ZoneCritResIdx)
3225 <<
"\n ExpectedLatency: " << ExpectedLatency <<
"c\n"
3226 << (IsResourceLimited ?
" - Resource" :
" - Latency")
3246 PE =
SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
3247 if (PI->ProcResourceIdx ==
Policy.ReduceResIdx)
3248 ResDelta.CritResources += PI->ReleaseAtCycle;
3249 if (PI->ProcResourceIdx ==
Policy.DemandResIdx)
3250 ResDelta.DemandedResources += PI->ReleaseAtCycle;
3272 RemLatency = std::max(RemLatency,
3274 RemLatency = std::max(RemLatency,
3281bool GenericSchedulerBase::shouldReduceLatency(
const CandPolicy &Policy,
3282 SchedBoundary &CurrZone,
3283 bool ComputeRemLatency,
3284 unsigned &RemLatency)
const {
3294 if (ComputeRemLatency)
3310 unsigned OtherCritIdx = 0;
3311 unsigned OtherCount =
3314 bool OtherResLimited =
false;
3315 unsigned RemLatency = 0;
3316 bool RemLatencyComputed =
false;
3317 if (
SchedModel->hasInstrSchedModel() && OtherCount != 0) {
3319 RemLatencyComputed =
true;
3321 OtherCount, RemLatency,
false);
3327 if (!OtherResLimited &&
3328 (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed,
3332 <<
" RemainingLatency " << RemLatency <<
" + "
3334 <<
Rem.CriticalPath <<
"\n");
3341 dbgs() <<
" " << CurrZone.Available.getName() <<
" ResourceLimited: "
3342 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) <<
"\n";
3343 }
if (OtherResLimited)
dbgs()
3344 <<
" RemainingLimit: "
3345 <<
SchedModel->getResourceName(OtherCritIdx) <<
"\n";
3347 <<
" Latency limited both directions.\n");
3352 if (OtherResLimited)
3361 case NoCand:
return "NOCAND ";
3362 case Only1:
return "ONLY1 ";
3363 case PhysReg:
return "PHYS-REG ";
3366 case Stall:
return "STALL ";
3367 case Cluster:
return "CLUSTER ";
3368 case Weak:
return "WEAK ";
3369 case RegMax:
return "REG-MAX ";
3385 unsigned ResIdx = 0;
3420 dbgs() <<
" " <<
TRI->getRegPressureSetName(
P.getPSet())
3421 <<
":" <<
P.getUnitInc() <<
" ";
3425 dbgs() <<
" " <<
SchedModel->getProcResource(ResIdx)->Name <<
" ";
3443 if (TryVal < CandVal) {
3447 if (TryVal > CandVal) {
3448 if (Cand.
Reason > Reason)
3459 if (TryVal > CandVal) {
3463 if (TryVal < CandVal) {
3464 if (Cand.
Reason > Reason)
3505 bool IsPostRA =
false) {
3508 << (IsPostRA ?
"post-RA" :
"pre-RA") <<
"]\n");
3527 NumRegExcessPostRA++;
3530 NumRegCriticalPostRA++;
3545 NumResourceReducePostRA++;
3548 NumResourceDemandPostRA++;
3551 NumTopDepthReducePostRA++;
3554 NumTopPathReducePostRA++;
3557 NumBotHeightReducePostRA++;
3560 NumBotPathReducePostRA++;
3563 NumNodeOrderPostRA++;
3566 NumFirstValidPostRA++;
3586 NumRegExcessPreRA++;
3589 NumRegCriticalPreRA++;
3604 NumResourceReducePreRA++;
3607 NumResourceDemandPreRA++;
3610 NumTopDepthReducePreRA++;
3613 NumTopPathReducePreRA++;
3616 NumBotHeightReducePreRA++;
3619 NumBotPathReducePreRA++;
3622 NumNodeOrderPreRA++;
3625 NumFirstValidPreRA++;
3633 bool IsPostRA =
false) {
3639 "(PreRA)GenericScheduler needs vreg liveness");
3645 DAG->computeDFSResult();
3656 if (!
Top.HazardRec) {
3657 Top.HazardRec =
DAG->TII->CreateTargetMIHazardRecognizer(Itin,
DAG);
3659 if (!
Bot.HazardRec) {
3660 Bot.HazardRec =
DAG->TII->CreateTargetMIHazardRecognizer(Itin,
DAG);
3681 for (
unsigned VT = MVT::i64; VT > (
unsigned)MVT::i1; --VT) {
3684 unsigned NIntRegs =
Context->RegClassInfo->getNumAllocatableRegs(
3722#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3723 dbgs() <<
"GenericScheduler RegionPolicy: "
3724 <<
" ShouldTrackPressure=" <<
RegionPolicy.ShouldTrackPressure
3741 if (
Rem.CyclicCritPath == 0 ||
Rem.CyclicCritPath >=
Rem.CriticalPath)
3745 unsigned IterCount =
3746 std::max(
Rem.CyclicCritPath *
SchedModel->getLatencyFactor(),
3749 unsigned AcyclicCount =
Rem.CriticalPath *
SchedModel->getLatencyFactor();
3751 unsigned InFlightCount =
3752 (AcyclicCount *
Rem.RemIssueCount + IterCount-1) / IterCount;
3753 unsigned BufferLimit =
3756 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
3759 dbgs() <<
"IssueCycles="
3760 <<
Rem.RemIssueCount /
SchedModel->getLatencyFactor() <<
"c "
3761 <<
"IterCycles=" << IterCount /
SchedModel->getLatencyFactor()
3762 <<
"c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount
3763 <<
" InFlight=" << InFlightCount /
SchedModel->getMicroOpFactor()
3764 <<
"m BufferLim=" <<
SchedModel->getMicroOpBufferSize() <<
"m\n";
3765 if (
Rem.IsAcyclicLatencyLimited)
dbgs() <<
" ACYCLIC LATENCY LIMIT\n");
3769 Rem.CriticalPath =
DAG->ExitSU.getDepth();
3772 for (
const SUnit *SU :
Bot.Available) {
3778 errs() <<
"Critical Path(GS-RR ): " <<
Rem.CriticalPath <<
" \n";
3782 Rem.CyclicCritPath =
DAG->computeCyclicCriticalPath();
3808 if (TryPSet == CandPSet) {
3813 int TryRank = TryP.
isValid() ?
TRI->getRegPressureSetScore(MF, TryPSet) :
3814 std::numeric_limits<int>::max();
3816 int CandRank = CandP.
isValid() ?
TRI->getRegPressureSetScore(MF, CandPSet) :
3817 std::numeric_limits<int>::max();
3822 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
3840 unsigned ScheduledOper = isTop ? 1 : 0;
3841 unsigned UnscheduledOper = isTop ? 0 : 1;
3844 if (
MI->getOperand(ScheduledOper).getReg().isPhysical())
3849 if (
MI->getOperand(UnscheduledOper).getReg().isPhysical())
3850 return AtBoundary ? -1 : 1;
3853 if (
MI->isMoveImmediate()) {
3859 if (
Op.isReg() && !
Op.getReg().isPhysical()) {
3866 return isTop ? -1 : 1;
3878 if (
DAG->isTrackingPressure()) {
3883 DAG->getRegionCriticalPSets(),
3884 DAG->getRegPressure().MaxSetPressure);
3889 &
DAG->getPressureDiff(Cand.
SU),
3891 DAG->getRegionCriticalPSets(),
3892 DAG->getRegPressure().MaxSetPressure);
3896 DAG->getPressureDiff(Cand.
SU),
3898 DAG->getRegionCriticalPSets(),
3899 DAG->getRegPressure().MaxSetPressure);
3904 <<
" Try SU(" << Cand.
SU->
NodeNum <<
") "
3953 bool SameBoundary = Zone !=
nullptr;
3976 bool CandIsClusterSucc =
3978 bool TryCandIsClusterSucc =
3981 if (
tryGreater(TryCandIsClusterSucc, CandIsClusterSucc, TryCand, Cand,
3989 TryCand, Cand,
Weak))
4014 !
Rem.IsAcyclicLatencyLimited &&
tryLatency(TryCand, Cand, *Zone))
4041 for (
SUnit *SU : Q) {
4061 if (
SUnit *SU =
Bot.pickOnlyChoice()) {
4066 if (
SUnit *SU =
Top.pickOnlyChoice()) {
4083 BotCand.Policy != BotPolicy) {
4095 "Last pick result should correspond to re-picking right now");
4103 TopCand.Policy != TopPolicy) {
4115 "Last pick result should correspond to re-picking right now");
4130 IsTopNode = Cand.
AtTop;
4137 if (
DAG->top() ==
DAG->bottom()) {
4139 Bot.Available.empty() &&
Bot.Pending.empty() &&
"ReadyQ garbage");
4144 SU =
Top.pickOnlyChoice();
4155 SU =
Bot.pickOnlyChoice();
4186 Top.removeReady(SU);
4188 Bot.removeReady(SU);
4195 ++NumInstrsInSourceOrderPreRA;
4199 ++NumInstrsInSourceOrderPreRA;
4202 NumInstrsScheduledPreRA += 1;
4215 for (
SDep &Dep : Deps) {
4216 if (Dep.getKind() !=
SDep::Data || !Dep.getReg().isPhysical())
4218 SUnit *DepSU = Dep.getSUnit();
4219 if (isTop ? DepSU->
Succs.size() > 1 : DepSU->
Preds.size() > 1)
4222 if (!Copy->isCopy() && !Copy->isMoveImmediate())
4225 DAG->dumpNode(*Dep.getSUnit()));
4226 DAG->moveInstruction(Copy, InsertPos);
4244 dbgs() <<
" Top Cluster: ";
4245 for (
auto *
N : *TopCluster)
4246 dbgs() <<
N->NodeNum <<
'\t';
4259 dbgs() <<
" Bot Cluster: ";
4260 for (
auto *
N : *BotCluster)
4261 dbgs() <<
N->NodeNum <<
'\t';
4275static MachineSchedRegistry
4295 if (!
Top.HazardRec) {
4296 Top.HazardRec =
DAG->TII->CreateTargetMIHazardRecognizer(Itin,
DAG);
4298 if (!
Bot.HazardRec) {
4299 Bot.HazardRec =
DAG->TII->CreateTargetMIHazardRecognizer(Itin,
DAG);
4336 Rem.CriticalPath =
DAG->ExitSU.getDepth();
4339 for (
const SUnit *SU :
Bot.Available) {
4345 errs() <<
"Critical Path(PGS-RR ): " <<
Rem.CriticalPath <<
" \n";
4364 Top.getLatencyStallCycles(Cand.
SU), TryCand, Cand,
Stall))
4370 bool CandIsClusterSucc =
4372 bool TryCandIsClusterSucc =
4375 if (
tryGreater(TryCandIsClusterSucc, CandIsClusterSucc, TryCand, Cand,
4408 for (
SUnit *SU : Q) {
4427 if (
SUnit *SU =
Bot.pickOnlyChoice()) {
4432 if (
SUnit *SU =
Top.pickOnlyChoice()) {
4449 BotCand.Policy != BotPolicy) {
4461 "Last pick result should correspond to re-picking right now");
4469 TopCand.Policy != TopPolicy) {
4481 "Last pick result should correspond to re-picking right now");
4496 IsTopNode = Cand.
AtTop;
4503 if (
DAG->top() ==
DAG->bottom()) {
4505 Bot.Available.empty() &&
Bot.Pending.empty() &&
"ReadyQ garbage");
4510 SU =
Bot.pickOnlyChoice();
4526 SU =
Top.pickOnlyChoice();
4547 Top.removeReady(SU);
4549 Bot.removeReady(SU);
4556 ++NumInstrsInSourceOrderPostRA;
4560 ++NumInstrsInSourceOrderPostRA;
4563 NumInstrsScheduledPostRA += 1;
4591 const BitVector *ScheduledTrees =
nullptr;
4594 ILPOrder(
bool MaxILP) : MaximizeILP(MaxILP) {}
4599 bool operator()(
const SUnit *
A,
const SUnit *
B)
const {
4602 if (SchedTreeA != SchedTreeB) {
4604 if (ScheduledTrees->
test(SchedTreeA) != ScheduledTrees->
test(SchedTreeB))
4605 return ScheduledTrees->
test(SchedTreeB);
4622class ILPScheduler :
public MachineSchedStrategy {
4623 ScheduleDAGMILive *DAG =
nullptr;
4626 std::vector<SUnit*> ReadyQ;
4629 ILPScheduler(
bool MaximizeILP) :
Cmp(MaximizeILP) {}
4631 void initialize(ScheduleDAGMI *dag)
override {
4633 DAG =
static_cast<ScheduleDAGMILive*
>(dag);
4640 void registerRoots()
override {
4642 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4649 SUnit *pickNode(
bool &IsTopNode)
override {
4650 if (ReadyQ.empty())
return nullptr;
4651 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4652 SUnit *SU = ReadyQ.back();
4656 <<
"SU(" << SU->
NodeNum <<
") "
4663 <<
"Scheduling " << *SU->
getInstr());
4668 void scheduleTree(
unsigned SubtreeID)
override {
4669 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4674 void schedNode(SUnit *SU,
bool IsTopNode)
override {
4675 assert(!IsTopNode &&
"SchedDFSResult needs bottom-up");
4678 void releaseTopNode(SUnit *)
override { }
4680 void releaseBottomNode(SUnit *SU)
override {
4681 ReadyQ.push_back(SU);
4682 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
4709template<
bool IsReverse>
4713 return A->NodeNum >
B->NodeNum;
4715 return A->NodeNum <
B->NodeNum;
4720class InstructionShuffler :
public MachineSchedStrategy {
4727 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>>
4731 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>>
4735 InstructionShuffler(
bool alternate,
bool topdown)
4736 : IsAlternating(alternate), IsTopDown(topdown) {}
4746 SUnit *pickNode(
bool &IsTopNode)
override {
4750 if (TopQ.empty())
return nullptr;
4757 if (BottomQ.empty())
return nullptr;
4764 IsTopDown = !IsTopDown;
4768 void schedNode(SUnit *SU,
bool IsTopNode)
override {}
4770 void releaseTopNode(SUnit *SU)
override {
4773 void releaseBottomNode(SUnit *SU)
override {
4785 C, std::make_unique<InstructionShuffler>(Alternate, TopDown));
4789 "shuffle",
"Shuffle machine instructions alternating directions",
4808 return std::string(
G->MF.getName());
4828 return "color=cyan,style=dashed";
4830 return "color=blue,style=dashed";
4847 return G->getGraphNodeLabel(SU);
4851 std::string Str(
"shape=Mrecord");
4856 Str +=
",style=filled,fillcolor=\"#";
4872 errs() <<
"ScheduleDAGMI::viewGraph is only available in debug builds on "
4873 <<
"systems with Graphviz or gv!\n";
4888 return A.first <
B.first;
4891unsigned ResourceSegments::getFirstAvailableAt(
4892 unsigned CurrCycle,
unsigned AcquireAtCycle,
unsigned ReleaseAtCycle,
4894 IntervalBuilder)
const {
4896 "Cannot execute on an un-sorted set of intervals.");
4900 if (AcquireAtCycle == ReleaseAtCycle)
4903 unsigned RetCycle = CurrCycle;
4905 IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4906 for (
auto &
Interval : _Intervals) {
4913 "Invalid intervals configuration.");
4914 RetCycle += (unsigned)
Interval.second - (
unsigned)NewInterval.first;
4915 NewInterval = IntervalBuilder(RetCycle, AcquireAtCycle, ReleaseAtCycle);
4921 const unsigned CutOff) {
4922 assert(
A.first <=
A.second &&
"Cannot add negative resource usage");
4923 assert(CutOff > 0 &&
"0-size interval history has no use.");
4929 if (
A.first ==
A.second)
4936 "A resource is being overwritten");
4937 _Intervals.push_back(
A);
4943 while (_Intervals.size() > CutOff)
4944 _Intervals.pop_front();
4949 assert(
A.first <=
A.second &&
"Invalid interval");
4950 assert(
B.first <=
B.second &&
"Invalid interval");
4953 if ((
A.first ==
B.first) || (
A.second ==
B.second))
4958 if ((
A.first >
B.first) && (
A.second <
B.second))
4963 if ((
A.first >
B.first) && (
A.first <
B.second) && (
A.second >
B.second))
4968 if ((
A.first <
B.first) && (
B.first <
A.second) && (
B.second >
B.first))
4974void ResourceSegments::sortAndMerge() {
4975 if (_Intervals.size() <= 1)
4982 auto next = std::next(std::begin(_Intervals));
4983 auto E = std::end(_Intervals);
4984 for (; next != E; ++next) {
4985 if (std::prev(next)->second >= next->first) {
4986 next->first = std::prev(next)->first;
4987 _Intervals.erase(std::prev(next));
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Function Alias Analysis false
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
static std::optional< ArrayRef< InsnRange >::iterator > intersects(const MachineInstr *StartMI, const MachineInstr *EndMI, const ArrayRef< InsnRange > &Ranges, const InstructionOrdering &Ordering)
Check if the instruction range [StartMI, EndMI] intersects any instruction range in Ranges.
This file defines the DenseMap class.
Generic implementation of equivalence classes through the use Tarjan's efficient union-find algorithm...
const HexagonInstrInfo * TII
A common definition of LaneBitmask for use in TableGen and CodeGen.
static cl::opt< MISched::Direction > PostRADirection("misched-postra-direction", cl::Hidden, cl::desc("Post reg-alloc list scheduling direction"), cl::init(MISched::Unspecified), cl::values(clEnumValN(MISched::TopDown, "topdown", "Force top-down post reg-alloc list scheduling"), clEnumValN(MISched::BottomUp, "bottomup", "Force bottom-up post reg-alloc list scheduling"), clEnumValN(MISched::Bidirectional, "bidirectional", "Force bidirectional post reg-alloc list scheduling")))
static bool isSchedBoundary(MachineBasicBlock::iterator MI, MachineBasicBlock *MBB, MachineFunction *MF, const TargetInstrInfo *TII)
Return true of the given instruction should not be included in a scheduling region.
static MachineSchedRegistry ILPMaxRegistry("ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler)
static cl::opt< bool > EnableMemOpCluster("misched-cluster", cl::Hidden, cl::desc("Enable memop clustering."), cl::init(true))
Machine Instruction Scheduler
static MachineBasicBlock::const_iterator nextIfDebug(MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator End)
If this iterator is a debug value, increment until reaching the End or a non-debug instruction.
static const unsigned MinSubtreeSize
static const unsigned InvalidCycle
static cl::opt< bool > MISchedSortResourcesInTrace("misched-sort-resources-in-trace", cl::Hidden, cl::init(true), cl::desc("Sort the resources printed in the dump trace"))
static cl::opt< bool > EnableCyclicPath("misched-cyclicpath", cl::Hidden, cl::desc("Enable cyclic critical path analysis."), cl::init(true))
static MachineBasicBlock::const_iterator priorNonDebug(MachineBasicBlock::const_iterator I, MachineBasicBlock::const_iterator Beg)
Decrement this iterator until reaching the top or a non-debug instr.
static cl::opt< MachineSchedRegistry::ScheduleDAGCtor, false, RegisterPassParser< MachineSchedRegistry > > MachineSchedOpt("misched", cl::init(&useDefaultMachineSched), cl::Hidden, cl::desc("Machine instruction scheduler to use"))
MachineSchedOpt allows command line selection of the scheduler.
static cl::opt< bool > EnableMachineSched("enable-misched", cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), cl::Hidden)
static unsigned computeRemLatency(SchedBoundary &CurrZone)
Compute remaining latency.
static cl::opt< unsigned > MISchedCutoff("misched-cutoff", cl::Hidden, cl::desc("Stop scheduling after N instructions"), cl::init(~0U))
static cl::opt< unsigned > SchedOnlyBlock("misched-only-block", cl::Hidden, cl::desc("Only schedule this MBB#"))
static cl::opt< bool > EnableRegPressure("misched-regpressure", cl::Hidden, cl::desc("Enable register pressure scheduling."), cl::init(true))
static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop, bool IsPostRA=false)
static MachineSchedRegistry GenericSchedRegistry("converge", "Standard converging scheduler.", createConvergingSched)
static cl::opt< unsigned > HeaderColWidth("misched-dump-schedule-trace-col-header-width", cl::Hidden, cl::desc("Set width of the columns with " "the resources and schedule units"), cl::init(19))
static cl::opt< bool > ForceFastCluster("force-fast-cluster", cl::Hidden, cl::desc("Switch to fast cluster algorithm with the lost " "of some fusion opportunities"), cl::init(false))
static cl::opt< unsigned > FastClusterThreshold("fast-cluster-threshold", cl::Hidden, cl::desc("The threshold for fast cluster"), cl::init(1000))
static bool checkResourceLimit(unsigned LFactor, unsigned Count, unsigned Latency, bool AfterSchedNode)
Given a Count of resource usage and a Latency value, return true if a SchedBoundary becomes resource ...
static ScheduleDAGInstrs * createInstructionShuffler(MachineSchedContext *C)
static ScheduleDAGInstrs * useDefaultMachineSched(MachineSchedContext *C)
A dummy default scheduler factory indicates whether the scheduler is overridden on the command line.
static bool sortIntervals(const ResourceSegments::IntervalTy &A, const ResourceSegments::IntervalTy &B)
Sort predicate for the intervals stored in an instance of ResourceSegments.
static cl::opt< unsigned > ColWidth("misched-dump-schedule-trace-col-width", cl::Hidden, cl::desc("Set width of the columns showing resource booking."), cl::init(5))
static MachineSchedRegistry DefaultSchedRegistry("default", "Use the target's default scheduler choice.", useDefaultMachineSched)
static cl::opt< std::string > SchedOnlyFunc("misched-only-func", cl::Hidden, cl::desc("Only schedule this function"))
static const char * scheduleTableLegend
static ScheduleDAGInstrs * createConvergingSched(MachineSchedContext *C)
static cl::opt< bool > MischedDetailResourceBooking("misched-detail-resource-booking", cl::Hidden, cl::init(false), cl::desc("Show details of invoking getNextResoufceCycle."))
static cl::opt< unsigned > ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, cl::desc("Hide nodes with more predecessor/successor than cutoff"))
In some situations a few uninteresting nodes depend on nearly all other nodes in the graph,...
static MachineSchedRegistry ShufflerRegistry("shuffle", "Shuffle machine instructions alternating directions", createInstructionShuffler)
static cl::opt< bool > EnablePostRAMachineSched("enable-post-misched", cl::desc("Enable the post-ra machine instruction scheduling pass."), cl::init(true), cl::Hidden)
static void getSchedRegions(MachineBasicBlock *MBB, MBBRegionsVector &Regions, bool RegionsTopDown)
static cl::opt< unsigned > MIResourceCutOff("misched-resource-cutoff", cl::Hidden, cl::desc("Number of intervals to track"), cl::init(10))
static ScheduleDAGInstrs * createILPMaxScheduler(MachineSchedContext *C)
SmallVector< SchedRegion, 16 > MBBRegionsVector
static cl::opt< bool > MISchedDumpReservedCycles("misched-dump-reserved-cycles", cl::Hidden, cl::init(false), cl::desc("Dump resource usage at schedule boundary."))
static cl::opt< unsigned > ReadyListLimit("misched-limit", cl::Hidden, cl::desc("Limit ready list to N instructions"), cl::init(256))
Avoid quadratic complexity in unusually large basic blocks by limiting the size of the ready lists.
static cl::opt< bool > DumpCriticalPathLength("misched-dcpl", cl::Hidden, cl::desc("Print critical path length to stdout"))
static ScheduleDAGInstrs * createILPMinScheduler(MachineSchedContext *C)
static cl::opt< bool > MISchedDumpScheduleTrace("misched-dump-schedule-trace", cl::Hidden, cl::init(false), cl::desc("Dump resource usage at schedule boundary."))
static MachineSchedRegistry ILPMinRegistry("ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler)
Register const TargetRegisterInfo * TRI
std::pair< uint64_t, uint64_t > Interval
FunctionAnalysisManager FAM
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
This file defines the PriorityQueue class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static void initialize(TargetLibraryInfoImpl &TLI, const Triple &T, ArrayRef< StringLiteral > StandardNames)
Initialize the set of available library functions based on the specified target triple.
This file describes how to lower LLVM code to machine code.
Target-Independent Code Generator Pass Configuration Options pass.
static const X86InstrFMA3Group Groups[]
Class recording the (high level) value of a variable.
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
reverse_iterator rend() const
size_t size() const
size - Get the array size.
reverse_iterator rbegin() const
bool test(unsigned Idx) const
Represents analyses that only rely on functions' control flow.
iterator find(const_arg_type_t< KeyT > Val)
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
ECValue - The EquivalenceClasses data structure is just a set of these.
EquivalenceClasses - This represents a collection of equivalence classes and supports three efficient...
iterator_range< member_iterator > members(const ECValue &ECV) const
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
union - Merge the two equivalence sets for the specified values, inserting them if they do not alread...
void traceCandidate(const SchedCandidate &Cand)
LLVM_ABI void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone, SchedBoundary *OtherZone)
Set the CandPolicy given a scheduling zone given the current resources and latencies inside and outsi...
MachineSchedPolicy RegionPolicy
const TargetSchedModel * SchedModel
static const char * getReasonStr(GenericSchedulerBase::CandReason Reason)
const MachineSchedContext * Context
CandReason
Represent the type of SchedCandidate found within a single queue.
const TargetRegisterInfo * TRI
void checkAcyclicLatency()
Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic critical path by more cycle...
SchedCandidate BotCand
Candidate last picked from Bot boundary.
SchedCandidate TopCand
Candidate last picked from Top boundary.
virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand, SchedBoundary *Zone) const
Apply a set of heuristics to a new candidate.
void dumpPolicy() const override
void initialize(ScheduleDAGMI *dag) override
Initialize the strategy after building the DAG for a new region.
void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, const RegPressureTracker &RPTracker, RegPressureTracker &TempTracker)
void registerRoots() override
Notify this strategy that all roots have been released (including those that depend on EntrySU or Exi...
void initPolicy(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned NumRegionInstrs) override
Initialize the per-region scheduling policy.
void reschedulePhysReg(SUnit *SU, bool isTop)
SUnit * pickNode(bool &IsTopNode) override
Pick the best node to balance the schedule. Implements MachineSchedStrategy.
void pickNodeFromQueue(SchedBoundary &Zone, const CandPolicy &ZonePolicy, const RegPressureTracker &RPTracker, SchedCandidate &Candidate)
Pick the best candidate from the queue.
void schedNode(SUnit *SU, bool IsTopNode) override
Update the scheduler's state after scheduling a node.
SUnit * pickNodeBidirectional(bool &IsTopNode)
Pick the best candidate node from either the top or bottom queue.
bool getMemOperandsWithOffsetWidth(const MachineInstr &LdSt, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override
Get the base register and byte offset of a load/store instr.
Itinerary data supplied by a subtarget to be used by a target.
LiveInterval - This class represents the liveness of a register, or stack slot.
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction associated with the given index.
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
LiveInterval & getInterval(Register Reg)
Result of a LiveRange query.
VNInfo * valueIn() const
Return the value that is live-in to the instruction.
Segments::iterator iterator
LiveQueryResult Query(SlotIndex Idx) const
Query Liveness at Idx.
VNInfo * getVNInfoBefore(SlotIndex Idx) const
getVNInfoBefore - Return the VNInfo that is live up to but not necessarily including Idx,...
SlotIndex beginIndex() const
beginIndex - Return the lowest numbered slot covered.
SlotIndex endIndex() const
endNumber - return the maximum point of the range of the whole, exclusive.
bool isLocal(SlotIndex Start, SlotIndex End) const
True iff this segment is a single segment that lies between the specified boundaries,...
LLVM_ABI iterator find(SlotIndex Pos)
find - Return an iterator pointing to the first segment that ends after Pos, or end().
static LocationSize precise(uint64_t Value)
MachineInstrBundleIterator< const MachineInstr > const_iterator
MachineInstrBundleIterator< MachineInstr > iterator
Analysis pass which computes a MachineDominatorTree.
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
void print(raw_ostream &OS, const SlotIndexes *=nullptr) const
print - Print out the MachineFunction in a format suitable for debugging to the specified stream.
nonconst_iterator getNonConstIterator() const
Representation of each machine instruction.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
Analysis pass that exposes the MachineLoopInfo for a machine function.
MachineOperand class - Representation of each machine instruction operand.
MachinePassRegistry - Track the registration of machine passes.
MachineSchedRegistry provides a selection of available machine instruction schedulers.
static LLVM_ABI MachinePassRegistry< ScheduleDAGCtor > Registry
ScheduleDAGInstrs *(*)(MachineSchedContext *) ScheduleDAGCtor
LLVM_ABI PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
LLVM_ABI MachineSchedulerPass(const TargetMachine *TM)
LLVM_ABI ~MachineSchedulerPass()
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
void initPolicy(MachineBasicBlock::iterator Begin, MachineBasicBlock::iterator End, unsigned NumRegionInstrs) override
Optionally override the per-region scheduling policy.
virtual bool tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand)
Apply a set of heuristics to a new candidate for PostRA scheduling.
void schedNode(SUnit *SU, bool IsTopNode) override
Called after ScheduleDAGMI has scheduled an instruction and updated scheduled/remaining flags in the ...
SchedCandidate BotCand
Candidate last picked from Bot boundary.
void pickNodeFromQueue(SchedBoundary &Zone, SchedCandidate &Cand)
void initialize(ScheduleDAGMI *Dag) override
Initialize the strategy after building the DAG for a new region.
SchedCandidate TopCand
Candidate last picked from Top boundary.
SUnit * pickNodeBidirectional(bool &IsTopNode)
Pick the best candidate node from either the top or bottom queue.
void registerRoots() override
Notify this strategy that all roots have been released (including those that depend on EntrySU or Exi...
SUnit * pickNode(bool &IsTopNode) override
Pick the next node to schedule.
LLVM_ABI PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
LLVM_ABI PostMachineSchedulerPass(const TargetMachine *TM)
LLVM_ABI ~PostMachineSchedulerPass()
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Capture a change in pressure for a single pressure set.
unsigned getPSetOrMax() const
List of PressureChanges in order of increasing, unique PSetID.
LLVM_ABI void dump(const TargetRegisterInfo &TRI) const
LLVM_ABI void addPressureChange(Register RegUnit, bool IsDec, const MachineRegisterInfo *MRI)
Add a change in pressure to the pressure diff of a given instruction.
void clear()
clear - Erase all elements from the queue.
Helpers for implementing custom MachineSchedStrategy classes.
ArrayRef< SUnit * > elements()
LLVM_ABI void dump() const
std::vector< SUnit * >::iterator iterator
StringRef getName() const
Track the current register pressure at some position in the instruction stream, and remember the high...
LLVM_ABI void getMaxUpwardPressureDelta(const MachineInstr *MI, PressureDiff *PDiff, RegPressureDelta &Delta, ArrayRef< PressureChange > CriticalPSets, ArrayRef< unsigned > MaxPressureLimit)
Consider the pressure increase caused by traversing this instruction bottom-up.
LLVM_ABI void getMaxDownwardPressureDelta(const MachineInstr *MI, RegPressureDelta &Delta, ArrayRef< PressureChange > CriticalPSets, ArrayRef< unsigned > MaxPressureLimit)
Consider the pressure increase caused by traversing this instruction top-down.
LLVM_ABI void getUpwardPressureDelta(const MachineInstr *MI, PressureDiff &PDiff, RegPressureDelta &Delta, ArrayRef< PressureChange > CriticalPSets, ArrayRef< unsigned > MaxPressureLimit) const
This is the fast version of querying register pressure that does not directly depend on current liven...
List of registers defined and used by a machine instruction.
LLVM_ABI void collect(const MachineInstr &MI, const TargetRegisterInfo &TRI, const MachineRegisterInfo &MRI, bool TrackLaneMasks, bool IgnoreDead)
Analyze the given instruction MI and fill in the Uses, Defs and DeadDefs list based on the MachineOpe...
LLVM_ABI void adjustLaneLiveness(const LiveIntervals &LIS, const MachineRegisterInfo &MRI, SlotIndex Pos, MachineInstr *AddFlagsMI=nullptr)
Use liveness information to find out which uses/defs are partially undefined/dead and adjust the VReg...
LLVM_ABI void detectDeadDefs(const MachineInstr &MI, const LiveIntervals &LIS)
Use liveness information to find dead defs not marked with a dead flag and move them to the DeadDefs ...
RegisterPassParser class - Handle the addition of new machine passes.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
LLVM_ABI void add(IntervalTy A, const unsigned CutOff=10)
Adds an interval [a, b) to the collection of the instance.
static IntervalTy getResourceIntervalBottom(unsigned C, unsigned AcquireAtCycle, unsigned ReleaseAtCycle)
These function return the interval used by a resource in bottom and top scheduling.
static LLVM_ABI bool intersects(IntervalTy A, IntervalTy B)
Checks whether intervals intersect.
std::pair< int64_t, int64_t > IntervalTy
Represents an interval of discrete integer values closed on the left and open on the right: [a,...
static IntervalTy getResourceIntervalTop(unsigned C, unsigned AcquireAtCycle, unsigned ReleaseAtCycle)
Kind getKind() const
Returns an enum value representing the kind of the dependence.
@ Anti
A register anti-dependence (aka WAR).
@ Data
Regular data dependence (aka true-dependence).
bool isWeak() const
Tests if this a weak dependence.
@ Cluster
Weak DAG edge linking a chain of clustered instrs.
@ Artificial
Arbitrary strong DAG edge (no real dependence).
@ Weak
Arbitrary weak DAG edge.
unsigned getLatency() const
Returns the latency value for this edge, which roughly means the minimum number of cycles that must e...
bool isArtificial() const
Tests if this is an Order dependence that is marked as "artificial", meaning it isn't necessary for c...
bool isCtrl() const
Shorthand for getKind() != SDep::Data.
Register getReg() const
Returns the register associated with this edge.
bool isArtificialDep() const
bool isCtrlDep() const
Tests if this is not an SDep::Data dependence.
Scheduling unit. This is a node in the scheduling DAG.
bool isCall
Is a function call.
unsigned TopReadyCycle
Cycle relative to start when node is ready.
unsigned NodeNum
Entry # of node in the node vector.
bool isUnbuffered
Uses an unbuffered resource.
unsigned getHeight() const
Returns the height of this node, which is the length of the maximum path down to any node which has n...
unsigned short Latency
Node latency.
unsigned getDepth() const
Returns the depth of this node, which is the length of the maximum path up to any node which has no p...
bool isScheduled
True once scheduled.
unsigned ParentClusterIdx
The parent cluster id.
bool hasPhysRegDefs
Has physreg defs that are being used.
unsigned BotReadyCycle
Cycle relative to end when node is ready.
SmallVector< SDep, 4 > Succs
All sunit successors.
bool hasReservedResource
Uses a reserved resource.
bool isBottomReady() const
bool hasPhysRegUses
Has physreg uses.
SmallVector< SDep, 4 > Preds
All sunit predecessors.
MachineInstr * getInstr() const
Returns the representative MachineInstr for this SUnit.
Each Scheduling boundary is associated with ready queues.
LLVM_ABI unsigned getNextResourceCycleByInstance(unsigned InstanceIndex, unsigned ReleaseAtCycle, unsigned AcquireAtCycle)
Compute the next cycle at which the given processor resource unit can be scheduled.
LLVM_ABI void releasePending()
Release pending ready nodes in to the available queue.
unsigned getDependentLatency() const
unsigned getScheduledLatency() const
Get the number of latency cycles "covered" by the scheduled instructions.
LLVM_ABI void incExecutedResources(unsigned PIdx, unsigned Count)
bool isResourceLimited() const
const TargetSchedModel * SchedModel
unsigned getExecutedCount() const
Get a scaled count for the minimum execution time of the scheduled micro-ops that are ready to execut...
LLVM_ABI unsigned getLatencyStallCycles(SUnit *SU)
Get the difference between the given SUnit's ready time and the current cycle.
LLVM_ABI unsigned findMaxLatency(ArrayRef< SUnit * > ReadySUs)
LLVM_ABI void dumpReservedCycles() const
Dump the state of the information that tracks resource usage.
LLVM_ABI unsigned getOtherResourceCount(unsigned &OtherCritIdx)
LLVM_ABI void bumpNode(SUnit *SU)
Move the boundary of scheduled code by one SUnit.
unsigned getCriticalCount() const
Get the scaled count of scheduled micro-ops and resources, including executed resources.
LLVM_ABI SUnit * pickOnlyChoice()
Call this before applying any other heuristics to the Available queue.
LLVM_ABI void releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, unsigned Idx=0)
Release SU to make it ready.
LLVM_ABI unsigned countResource(const MCSchedClassDesc *SC, unsigned PIdx, unsigned Cycles, unsigned ReadyCycle, unsigned StartAtCycle)
Add the given processor resource to this scheduled zone.
LLVM_ABI ~SchedBoundary()
ScheduleHazardRecognizer * HazardRec
bool isUnbufferedGroup(unsigned PIdx) const
LLVM_ABI void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem)
unsigned getResourceCount(unsigned ResIdx) const
LLVM_ABI void bumpCycle(unsigned NextCycle)
Move the boundary of scheduled code by one cycle.
unsigned getCurrMOps() const
Micro-ops issued in the current cycle.
unsigned getCurrCycle() const
Number of cycles to issue the instructions scheduled in this zone.
LLVM_ABI bool checkHazard(SUnit *SU)
Does this SU have a hazard within the current instruction group.
LLVM_ABI std::pair< unsigned, unsigned > getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, unsigned ReleaseAtCycle, unsigned AcquireAtCycle)
Compute the next cycle at which the given processor resource can be scheduled.
LLVM_ABI void dumpScheduledState() const
LLVM_ABI void removeReady(SUnit *SU)
Remove SU from the ready set for this boundary.
unsigned getZoneCritResIdx() const
unsigned getUnscheduledLatency(SUnit *SU) const
Compute the values of each DAG node for various metrics during DFS.
unsigned getNumInstrs(const SUnit *SU) const
Get the number of instructions in the given subtree and its children.
unsigned getSubtreeID(const SUnit *SU) const
Get the ID of the subtree the given DAG node belongs to.
ILPValue getILP(const SUnit *SU) const
Get the ILP value for a DAG node.
unsigned getSubtreeLevel(unsigned SubtreeID) const
Get the connection level of a subtree.
A ScheduleDAG for scheduling lists of MachineInstr.
SmallVector< ClusterInfo > & getClusters()
Returns the array of the clusters.
virtual void finishBlock()
Cleans up after scheduling in the given block.
MachineBasicBlock::iterator end() const
Returns an iterator to the bottom of the current scheduling region.
std::string getDAGName() const override
Returns a label for the region of code covered by the DAG.
MachineBasicBlock * BB
The block in which to insert instructions.
MachineInstr * FirstDbgValue
virtual void startBlock(MachineBasicBlock *BB)
Prepares to perform scheduling in the given block.
MachineBasicBlock::iterator RegionEnd
The end of the range to be scheduled.
const MCSchedClassDesc * getSchedClass(SUnit *SU) const
Resolves and cache a resolved scheduling class for an SUnit.
DbgValueVector DbgValues
Remember instruction that precedes DBG_VALUE.
bool addEdge(SUnit *SuccSU, const SDep &PredDep)
Add a DAG edge to the given SU with the given predecessor dependence data.
DumpDirection
The direction that should be used to dump the scheduled Sequence.
bool TrackLaneMasks
Whether lane masks should get tracked.
void dumpNode(const SUnit &SU) const override
bool IsReachable(SUnit *SU, SUnit *TargetSU)
IsReachable - Checks if SU is reachable from TargetSU.
MachineBasicBlock::iterator begin() const
Returns an iterator to the top of the current scheduling region.
void buildSchedGraph(AAResults *AA, RegPressureTracker *RPTracker=nullptr, PressureDiffs *PDiffs=nullptr, LiveIntervals *LIS=nullptr, bool TrackLaneMasks=false)
Builds SUnits for the current region.
SUnit * getSUnit(MachineInstr *MI) const
Returns an existing SUnit for this MI, or nullptr.
TargetSchedModel SchedModel
TargetSchedModel provides an interface to the machine model.
bool canAddEdge(SUnit *SuccSU, SUnit *PredSU)
True if an edge can be added from PredSU to SuccSU without creating a cycle.
MachineBasicBlock::iterator RegionBegin
The beginning of the range to be scheduled.
virtual void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs)
Initialize the DAG and common scheduler state for a new scheduling region.
void dump() const override
void setDumpDirection(DumpDirection D)
ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules machine instructions while...
void scheduleMI(SUnit *SU, bool IsTopNode)
Move an instruction and update register pressure.
void schedule() override
Implement ScheduleDAGInstrs interface for scheduling a sequence of reorderable instructions.
VReg2SUnitMultiMap VRegUses
Maps vregs to the SUnits of their uses in the current scheduling region.
void computeDFSResult()
Compute a DFSResult after DAG building is complete, and before any queue comparisons.
PressureDiff & getPressureDiff(const SUnit *SU)
SchedDFSResult * DFSResult
Information about DAG subtrees.
void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs) override
Implement the ScheduleDAGInstrs interface for handling the next scheduling region.
void initQueues(ArrayRef< SUnit * > TopRoots, ArrayRef< SUnit * > BotRoots)
Release ExitSU predecessors and setup scheduler queues.
bool ShouldTrackLaneMasks
RegPressureTracker BotRPTracker
void buildDAGWithRegPressure()
Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking enabled.
std::vector< PressureChange > RegionCriticalPSets
List of pressure sets that exceed the target's pressure limit before scheduling, listed in increasing...
void updateScheduledPressure(const SUnit *SU, const std::vector< unsigned > &NewMaxPressure)
PressureDiffs SUPressureDiffs
unsigned computeCyclicCriticalPath()
Compute the cyclic critical path through the DAG.
void updatePressureDiffs(ArrayRef< VRegMaskOrUnit > LiveUses)
Update the PressureDiff array for liveness after scheduling this instruction.
void collectVRegUses(SUnit &SU)
RegisterClassInfo * RegClassInfo
const SchedDFSResult * getDFSResult() const
Return a non-null DFS result if the scheduling strategy initialized it.
RegPressureTracker RPTracker
bool ShouldTrackPressure
Register pressure in this region computed by initRegPressure.
~ScheduleDAGMILive() override
void dump() const override
BitVector & getScheduledTrees()
MachineBasicBlock::iterator LiveRegionEnd
RegPressureTracker TopRPTracker
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
void dumpSchedule() const
dump the scheduled Sequence.
std::unique_ptr< MachineSchedStrategy > SchedImpl
void startBlock(MachineBasicBlock *bb) override
Prepares to perform scheduling in the given block.
void releasePred(SUnit *SU, SDep *PredEdge)
ReleasePred - Decrement the NumSuccsLeft count of a predecessor.
void initQueues(ArrayRef< SUnit * > TopRoots, ArrayRef< SUnit * > BotRoots)
Release ExitSU predecessors and setup scheduler queues.
void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos)
Change the position of an instruction within the basic block and update live ranges and region bounda...
void releasePredecessors(SUnit *SU)
releasePredecessors - Call releasePred on each of SU's predecessors.
void postProcessDAG()
Apply each ScheduleDAGMutation step in order.
void dumpScheduleTraceTopDown() const
Print execution trace of the schedule top-down or bottom-up.
void schedule() override
Implement ScheduleDAGInstrs interface for scheduling a sequence of reorderable instructions.
void findRootsAndBiasEdges(SmallVectorImpl< SUnit * > &TopRoots, SmallVectorImpl< SUnit * > &BotRoots)
MachineBasicBlock::iterator CurrentBottom
The bottom of the unscheduled zone.
virtual bool hasVRegLiveness() const
Return true if this DAG supports VReg liveness and RegPressure.
void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs) override
Implement the ScheduleDAGInstrs interface for handling the next scheduling region.
LiveIntervals * getLIS() const
void viewGraph(const Twine &Name, const Twine &Title) override
viewGraph - Pop up a ghostview window with the reachable parts of the DAG rendered using 'dot'.
void viewGraph() override
Out-of-line implementation with no arguments is handy for gdb.
void releaseSucc(SUnit *SU, SDep *SuccEdge)
ReleaseSucc - Decrement the NumPredsLeft count of a successor.
void dumpScheduleTraceBottomUp() const
~ScheduleDAGMI() override
void finishBlock() override
Cleans up after scheduling in the given block.
void updateQueues(SUnit *SU, bool IsTopNode)
Update scheduler DAG and queues after scheduling an instruction.
void placeDebugValues()
Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues.
MachineBasicBlock::iterator CurrentTop
The top of the unscheduled zone.
void releaseSuccessors(SUnit *SU)
releaseSuccessors - Call releaseSucc on each of SU's successors.
std::vector< std::unique_ptr< ScheduleDAGMutation > > Mutations
Ordered list of DAG postprocessing steps.
Mutate the DAG as a postpass after normal DAG building.
MachineRegisterInfo & MRI
Virtual/real register map.
std::vector< SUnit > SUnits
The scheduling units.
const TargetRegisterInfo * TRI
Target processor register info.
SUnit EntrySU
Special node for the region entry.
MachineFunction & MF
Machine function.
void dumpNodeAll(const SUnit &SU) const
SUnit ExitSU
Special node for the region exit.
SlotIndex - An opaque wrapper around machine indexes.
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
std::reverse_iterator< const_iterator > const_reverse_iterator
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
iterator_base< SparseMultiSet * > iterator
Information about stack frame layout on the target.
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
TargetInstrInfo - Interface to description of machine instruction set.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
Primary interface to the complete machine description for the target machine.
Target-Independent Code Generator Pass Configuration Options.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
unsigned getMicroOpFactor() const
Multiply number of micro-ops by this factor to normalize it relative to other resources.
ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const
LLVM_ABI bool hasInstrSchedModel() const
Return true if this machine model includes an instruction-level scheduling model.
const MCWriteProcResEntry * ProcResIter
unsigned getResourceFactor(unsigned ResIdx) const
Multiply the number of units consumed for a resource by this factor to normalize it relative to other...
LLVM_ABI unsigned getNumMicroOps(const MachineInstr *MI, const MCSchedClassDesc *SC=nullptr) const
Return the number of issue slots required for this MI.
unsigned getNumProcResourceKinds() const
Get the number of kinds of resources for this target.
ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const
virtual void overridePostRASchedPolicy(MachineSchedPolicy &Policy, const SchedRegion &Region) const
Override generic post-ra scheduling policy within a region.
virtual void overrideSchedPolicy(MachineSchedPolicy &Policy, const SchedRegion &Region) const
Override generic scheduling policy within a region.
virtual bool enableMachineScheduler() const
True if the subtarget should run MachineScheduler after aggressive coalescing.
virtual bool enablePostRAMachineScheduler() const
True if the subtarget should run a machine scheduler after register allocation.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetLowering * getTargetLowering() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
VNInfo - Value Number Information.
SlotIndex def
The index of the defining instruction.
bool isPHIDef() const
Returns true if this value is defined by a PHI instruction (or was, PHI instructions may have been el...
Base class for the machine scheduler classes.
void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags)
Main driver for both MachineScheduler and PostMachineScheduler.
Impl class for MachineScheduler.
void setMFAM(MachineFunctionAnalysisManager *MFAM)
void setLegacyPass(MachineFunctionPass *P)
bool run(MachineFunction &MF, const TargetMachine &TM, const RequiredAnalyses &Analyses)
ScheduleDAGInstrs * createMachineScheduler()
Instantiate a ScheduleDAGInstrs that will be owned by the caller.
Impl class for PostMachineScheduler.
bool run(MachineFunction &Func, const TargetMachine &TM, const RequiredAnalyses &Analyses)
void setMFAM(MachineFunctionAnalysisManager *MFAM)
PostMachineSchedulerImpl()
ScheduleDAGInstrs * createPostMachineScheduler()
Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by the caller.
void setLegacyPass(MachineFunctionPass *P)
A raw_ostream that writes to an std::string.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI StringRef getColorString(unsigned NodeNumber)
Get a color string for this node number.
void apply(Opt *O, const Mod &M, const Mods &... Ms)
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
ScheduleDAGMILive * createSchedLive(MachineSchedContext *C)
Create the standard converging machine scheduler.
bool operator<(int64_t V1, const APSInt &V2)
void stable_sort(R &&Range)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI unsigned getWeakLeft(const SUnit *SU, bool isTop)
FormattedString right_justify(StringRef Str, unsigned Width)
right_justify - add spaces before string so total output is Width characters.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Printable PrintLaneMask(LaneBitmask LaneMask)
Create Printable object to print LaneBitmasks on a raw_ostream.
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
LLVM_ABI char & MachineSchedulerID
MachineScheduler - This pass schedules machine instructions.
LLVM_ABI char & PostMachineSchedulerID
PostMachineScheduler - This pass schedules machine instructions postRA.
LLVM_ABI PreservedAnalyses getMachineFunctionPassPreservedAnalyses()
Returns the minimum set of Analyses that all machine function passes must preserve.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool tryPressure(const PressureChange &TryP, const PressureChange &CandP, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason, const TargetRegisterInfo *TRI, const MachineFunction &MF)
ScheduleDAGMI * createSchedPostRA(MachineSchedContext *C)
Create a generic scheduler with no vreg liveness or DAG mutation passes.
void sort(IteratorTy Start, IteratorTy End)
cl::opt< bool > ViewMISchedDAGs
LLVM_ABI Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI)
Create Printable object to print virtual registers and physical registers on a raw_ostream.
LLVM_ABI std::unique_ptr< ScheduleDAGMutation > createStoreClusterDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ReorderWhileClustering=false)
If ReorderWhileClustering is set to true, no attempt will be made to reduce reordering due to store c...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
FunctionAddr VTableAddr Count
LLVM_ABI cl::opt< bool > VerifyScheduling
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
LLVM_ABI bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, SchedBoundary &Zone)
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
constexpr unsigned InvalidClusterId
FormattedString left_justify(StringRef Str, unsigned Width)
left_justify - append spaces after string so total output is Width characters.
bool isTheSameCluster(unsigned A, unsigned B)
Return whether the input cluster ID's are the same and valid.
LLVM_ABI std::unique_ptr< ScheduleDAGMutation > createLoadClusterDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ReorderWhileClustering=false)
If ReorderWhileClustering is set to true, no attempt will be made to reduce reordering due to store c...
DWARFExpression::Operation Op
LLVM_ABI bool tryGreater(int TryVal, int CandVal, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason)
SmallPtrSet< SUnit *, 8 > ClusterInfo
Keep record of which SUnit are in the same cluster group.
void ViewGraph(const GraphType &G, const Twine &Name, bool ShortNames=false, const Twine &Title="", GraphProgram::Name Program=GraphProgram::DOT)
ViewGraph - Emit a dot graph, run 'dot', run gv on the postscript file, then cleanup.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI void initializeMachineSchedulerLegacyPass(PassRegistry &)
LLVM_ABI void dumpRegSetPressure(ArrayRef< unsigned > SetPressure, const TargetRegisterInfo *TRI)
LLVM_ABI bool tryLess(int TryVal, int CandVal, GenericSchedulerBase::SchedCandidate &TryCand, GenericSchedulerBase::SchedCandidate &Cand, GenericSchedulerBase::CandReason Reason)
Return true if this heuristic determines order.
LLVM_ABI std::unique_ptr< ScheduleDAGMutation > createCopyConstrainDAGMutation(const TargetInstrInfo *TII, const TargetRegisterInfo *TRI)
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
LLVM_ABI cl::opt< MISched::Direction > PreRADirection
LLVM_ABI Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
LLVM_ABI void initializePostMachineSchedulerLegacyPass(PassRegistry &)
LLVM_ABI int biasPhysReg(const SUnit *SU, bool isTop)
Minimize physical register live ranges.
cl::opt< bool > PrintDAGs
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G)
static std::string getEdgeAttributes(const SUnit *Node, SUnitIterator EI, const ScheduleDAG *Graph)
If you want to override the dot attributes printed for a particular edge, override this method.
static std::string getGraphName(const ScheduleDAG *G)
static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G)
static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G)
DOTGraphTraits(bool isSimple=false)
static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G)
static bool renderGraphFromBottomUp()
DOTGraphTraits - Template class that can be specialized to customize how graphs are converted to 'dot...
DefaultDOTGraphTraits(bool simple=false)
Policy for scheduling the next instruction in the candidate's zone.
Store the state used by GenericScheduler heuristics, required for the lifetime of one invocation of p...
void setBest(SchedCandidate &Best)
void reset(const CandPolicy &NewPolicy)
LLVM_ABI void initResourceDelta(const ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel)
SchedResourceDelta ResDelta
Status of an instruction's critical resource consumption.
unsigned DemandedResources
static constexpr LaneBitmask getNone()
Summarize the scheduling resources required for an instruction of a particular scheduling class.
Identify one of the processor resource kinds consumed by a particular scheduling class for the specif...
MachineSchedContext provides enough context from the MachineScheduler pass for the target to instanti...
const MachineDominatorTree * MDT
RegisterClassInfo * RegClassInfo
const MachineLoopInfo * MLI
virtual ~MachineSchedContext()
PressureChange CriticalMax
PressureChange CurrentMax
RegisterPressure computed within a region of instructions delimited by TopPos and BottomPos.
A region of an MBB for scheduling.
Summarize the unscheduled region.
LLVM_ABI void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel)
SmallVector< unsigned, 16 > RemainingCounts
An individual mapping from virtual register number to SUnit.
MachineDominatorTree & MDT