LLVM 20.0.0git
InstrRefBasedImpl.h
Go to the documentation of this file.
1//===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
10#define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
11
12#include "llvm/ADT/DenseMap.h"
13#include "llvm/ADT/IndexedMap.h"
22#include <optional>
23
24#include "LiveDebugValues.h"
25
26class TransferTracker;
27
28// Forward dec of unit test class, so that we can peer into the LDV object.
29class InstrRefLDVTest;
30
31namespace LiveDebugValues {
32
33class MLocTracker;
34class DbgOpIDMap;
35
36using namespace llvm;
37
39using VarAndLoc = std::pair<DebugVariable, const DILocation *>;
40
41/// Mapping from DebugVariable to/from a unique identifying number. Each
42/// DebugVariable consists of three pointers, and after a small amount of
43/// work to identify overlapping fragments of variables we mostly only use
44/// DebugVariables as identities of variables. It's much more compile-time
45/// efficient to use an ID number instead, which this class provides.
49
50public:
52 auto It = VarToIdx.find(Var);
53 assert(It != VarToIdx.end());
54 return It->second;
55 }
56
58 unsigned Size = VarToIdx.size();
59 auto ItPair = VarToIdx.insert({Var, Size});
60 if (ItPair.second) {
61 IdxToVar.push_back({Var, Loc});
62 return Size;
63 }
64
65 return ItPair.first->second;
66 }
67
68 const VarAndLoc &lookupDVID(DebugVariableID ID) const { return IdxToVar[ID]; }
69
70 void clear() {
71 VarToIdx.clear();
72 IdxToVar.clear();
73 }
74};
75
76/// Handle-class for a particular "location". This value-type uniquely
77/// symbolises a register or stack location, allowing manipulation of locations
78/// without concern for where that location is. Practically, this allows us to
79/// treat the state of the machine at a particular point as an array of values,
80/// rather than a map of values.
81class LocIdx {
82 unsigned Location;
83
84 // Default constructor is private, initializing to an illegal location number.
85 // Use only for "not an entry" elements in IndexedMaps.
86 LocIdx() : Location(UINT_MAX) {}
87
88public:
89#define NUM_LOC_BITS 24
90 LocIdx(unsigned L) : Location(L) {
91 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
92 }
93
94 static LocIdx MakeIllegalLoc() { return LocIdx(); }
96 LocIdx L = LocIdx();
97 --L.Location;
98 return L;
99 }
100
101 bool isIllegal() const { return Location == UINT_MAX; }
102
103 uint64_t asU64() const { return Location; }
104
105 bool operator==(unsigned L) const { return Location == L; }
106
107 bool operator==(const LocIdx &L) const { return Location == L.Location; }
108
109 bool operator!=(unsigned L) const { return !(*this == L); }
110
111 bool operator!=(const LocIdx &L) const { return !(*this == L); }
112
113 bool operator<(const LocIdx &Other) const {
114 return Location < Other.Location;
115 }
116};
117
118// The location at which a spilled value resides. It consists of a register and
119// an offset.
120struct SpillLoc {
121 unsigned SpillBase;
123 bool operator==(const SpillLoc &Other) const {
124 return std::make_pair(SpillBase, SpillOffset) ==
125 std::make_pair(Other.SpillBase, Other.SpillOffset);
126 }
127 bool operator<(const SpillLoc &Other) const {
128 return std::make_tuple(SpillBase, SpillOffset.getFixed(),
130 std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
131 Other.SpillOffset.getScalable());
132 }
133};
134
135/// Unique identifier for a value defined by an instruction, as a value type.
136/// Casts back and forth to a uint64_t. Probably replacable with something less
137/// bit-constrained. Each value identifies the instruction and machine location
138/// where the value is defined, although there may be no corresponding machine
139/// operand for it (ex: regmasks clobbering values). The instructions are
140/// one-based, and definitions that are PHIs have instruction number zero.
141///
142/// The obvious limits of a 1M block function or 1M instruction blocks are
143/// problematic; but by that point we should probably have bailed out of
144/// trying to analyse the function.
146 union {
147 struct {
148 uint64_t BlockNo : 20; /// The block where the def happens.
149 uint64_t InstNo : 20; /// The Instruction where the def happens.
150 /// One based, is distance from start of block.
152 : NUM_LOC_BITS; /// The machine location where the def happens.
153 } s;
155 } u;
156
157 static_assert(sizeof(u) == 8, "Badly packed ValueIDNum?");
158
159public:
160 // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
161 // of values to work.
162 ValueIDNum() { u.Value = EmptyValue.asU64(); }
163
165 u.s = {Block, Inst, Loc};
166 }
167
169 u.s = {Block, Inst, Loc.asU64()};
170 }
171
172 uint64_t getBlock() const { return u.s.BlockNo; }
173 uint64_t getInst() const { return u.s.InstNo; }
174 uint64_t getLoc() const { return u.s.LocNo; }
175 bool isPHI() const { return u.s.InstNo == 0; }
176
177 uint64_t asU64() const { return u.Value; }
178
180 ValueIDNum Val;
181 Val.u.Value = v;
182 return Val;
183 }
184
185 bool operator<(const ValueIDNum &Other) const {
186 return asU64() < Other.asU64();
187 }
188
189 bool operator==(const ValueIDNum &Other) const {
190 return u.Value == Other.u.Value;
191 }
192
193 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
194
195 std::string asString(const std::string &mlocname) const {
196 return Twine("Value{bb: ")
197 .concat(Twine(u.s.BlockNo)
198 .concat(Twine(", inst: ")
199 .concat((u.s.InstNo ? Twine(u.s.InstNo)
200 : Twine("live-in"))
201 .concat(Twine(", loc: ").concat(
202 Twine(mlocname)))
203 .concat(Twine("}")))))
204 .str();
205 }
206
209};
210
211} // End namespace LiveDebugValues
212
213namespace llvm {
214using namespace LiveDebugValues;
215
216template <> struct DenseMapInfo<LocIdx> {
217 static inline LocIdx getEmptyKey() { return LocIdx::MakeIllegalLoc(); }
218 static inline LocIdx getTombstoneKey() { return LocIdx::MakeTombstoneLoc(); }
219
220 static unsigned getHashValue(const LocIdx &Loc) { return Loc.asU64(); }
221
222 static bool isEqual(const LocIdx &A, const LocIdx &B) { return A == B; }
223};
224
225template <> struct DenseMapInfo<ValueIDNum> {
227 static inline ValueIDNum getTombstoneKey() {
229 }
230
231 static unsigned getHashValue(const ValueIDNum &Val) {
232 return hash_value(Val.asU64());
233 }
234
235 static bool isEqual(const ValueIDNum &A, const ValueIDNum &B) {
236 return A == B;
237 }
238};
239
240} // end namespace llvm
241
242namespace LiveDebugValues {
243using namespace llvm;
244
245/// Type for a table of values in a block.
247
248/// A collection of ValueTables, one per BB in a function, with convenient
249/// accessor methods.
251 FuncValueTable(int NumBBs, int NumLocs) {
252 Storage.reserve(NumBBs);
253 for (int i = 0; i != NumBBs; ++i)
254 Storage.push_back(
255 std::make_unique<ValueTable>(NumLocs, ValueIDNum::EmptyValue));
256 }
257
258 /// Returns the ValueTable associated with MBB.
260 return (*this)[MBB.getNumber()];
261 }
262
263 /// Returns the ValueTable associated with the MachineBasicBlock whose number
264 /// is MBBNum.
265 ValueTable &operator[](int MBBNum) const {
266 auto &TablePtr = Storage[MBBNum];
267 assert(TablePtr && "Trying to access a deleted table");
268 return *TablePtr;
269 }
270
271 /// Returns the ValueTable associated with the entry MachineBasicBlock.
272 ValueTable &tableForEntryMBB() const { return (*this)[0]; }
273
274 /// Returns true if the ValueTable associated with MBB has not been freed.
276 return Storage[MBB.getNumber()] != nullptr;
277 }
278
279 /// Frees the memory of the ValueTable associated with MBB.
281 Storage[MBB.getNumber()].reset();
282 }
283
284private:
285 /// ValueTables are stored as unique_ptrs to allow for deallocation during
286 /// LDV; this was measured to have a significant impact on compiler memory
287 /// usage.
289};
290
291/// Thin wrapper around an integer -- designed to give more type safety to
292/// spill location numbers.
294public:
295 explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
296 unsigned SpillNo;
297 unsigned id() const { return SpillNo; }
298
299 bool operator<(const SpillLocationNo &Other) const {
300 return SpillNo < Other.SpillNo;
301 }
302
303 bool operator==(const SpillLocationNo &Other) const {
304 return SpillNo == Other.SpillNo;
305 }
306 bool operator!=(const SpillLocationNo &Other) const {
307 return !(*this == Other);
308 }
309};
310
311/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
312/// the value, and Boolean of whether or not it's indirect.
314public:
317
318 /// Extract properties from an existing DBG_VALUE instruction.
320 assert(MI.isDebugValue());
321 assert(MI.getDebugExpression()->getNumLocationOperands() == 0 ||
322 MI.isDebugValueList() || MI.isUndefDebugValue());
323 IsVariadic = MI.isDebugValueList();
324 DIExpr = MI.getDebugExpression();
325 Indirect = MI.isDebugOffsetImm();
326 }
327
330 Other.Indirect);
331 }
332
334 return std::tie(DIExpr, Indirect, IsVariadic) ==
335 std::tie(Other.DIExpr, Other.Indirect, Other.IsVariadic);
336 }
337
339 return !(*this == Other);
340 }
341
342 unsigned getLocationOpCount() const {
344 }
345
349};
350
351/// TODO: Might pack better if we changed this to a Struct of Arrays, since
352/// MachineOperand is width 32, making this struct width 33. We could also
353/// potentially avoid storing the whole MachineOperand (sizeof=32), instead
354/// choosing to store just the contents portion (sizeof=8) and a Kind enum,
355/// since we already know it is some type of immediate value.
356/// Stores a single debug operand, which can either be a MachineOperand for
357/// directly storing immediate values, or a ValueIDNum representing some value
358/// computed at some point in the program. IsConst is used as a discriminator.
359struct DbgOp {
360 union {
363 };
365
366 DbgOp() : ID(ValueIDNum::EmptyValue), IsConst(false) {}
369
370 bool isUndef() const { return !IsConst && ID == ValueIDNum::EmptyValue; }
371
372#ifndef NDEBUG
373 void dump(const MLocTracker *MTrack) const;
374#endif
375};
376
377/// A DbgOp whose ID (if any) has resolved to an actual location, LocIdx. Used
378/// when working with concrete debug values, i.e. when joining MLocs and VLocs
379/// in the TransferTracker or emitting DBG_VALUE/DBG_VALUE_LIST instructions in
380/// the MLocTracker.
382 union {
385 };
387
390
391 bool operator==(const ResolvedDbgOp &Other) const {
392 if (IsConst != Other.IsConst)
393 return false;
394 if (IsConst)
395 return MO.isIdenticalTo(Other.MO);
396 return Loc == Other.Loc;
397 }
398
399#ifndef NDEBUG
400 void dump(const MLocTracker *MTrack) const;
401#endif
402};
403
404/// An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp. This is used
405/// in place of actual DbgOps inside of a DbgValue to reduce its size, as
406/// DbgValue is very frequently used and passed around, and the actual DbgOp is
407/// over 8x larger than this class, due to storing a MachineOperand. This ID
408/// should be equal for all equal DbgOps, and also encodes whether the mapped
409/// DbgOp is a constant, meaning that for simple equality or const-ness checks
410/// it is not necessary to lookup this ID.
411struct DbgOpID {
415 };
416
417 union {
420 };
421
423 static_assert(sizeof(DbgOpID) == 4, "DbgOpID should fit within 4 bytes.");
424 }
426 DbgOpID(bool IsConst, uint32_t Index) : ID({IsConst, Index}) {}
427
429
430 bool operator==(const DbgOpID &Other) const { return RawID == Other.RawID; }
431 bool operator!=(const DbgOpID &Other) const { return !(*this == Other); }
432
433 uint32_t asU32() const { return RawID; }
434
435 bool isUndef() const { return *this == UndefID; }
436 bool isConst() const { return ID.IsConst && !isUndef(); }
437 uint32_t getIndex() const { return ID.Index; }
438
439#ifndef NDEBUG
440 void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const;
441#endif
442};
443
444/// Class storing the complete set of values that are observed by DbgValues
445/// within the current function. Allows 2-way lookup, with `find` returning the
446/// Op for a given ID and `insert` returning the ID for a given Op (creating one
447/// if none exists).
449
452
455
456public:
457 /// If \p Op does not already exist in this map, it is inserted and the
458 /// corresponding DbgOpID is returned. If Op already exists in this map, then
459 /// no change is made and the existing ID for Op is returned.
460 /// Calling this with the undef DbgOp will always return DbgOpID::UndefID.
462 if (Op.isUndef())
463 return DbgOpID::UndefID;
464 if (Op.IsConst)
465 return insertConstOp(Op.MO);
466 return insertValueOp(Op.ID);
467 }
468 /// Returns the DbgOp associated with \p ID. Should only be used for IDs
469 /// returned from calling `insert` from this map or DbgOpID::UndefID.
471 if (ID == DbgOpID::UndefID)
472 return DbgOp();
473 if (ID.isConst())
474 return DbgOp(ConstOps[ID.getIndex()]);
475 return DbgOp(ValueOps[ID.getIndex()]);
476 }
477
478 void clear() {
479 ValueOps.clear();
480 ConstOps.clear();
481 ValueOpToID.clear();
482 ConstOpToID.clear();
483 }
484
485private:
486 DbgOpID insertConstOp(MachineOperand &MO) {
487 auto [It, Inserted] = ConstOpToID.try_emplace(MO, true, ConstOps.size());
488 if (Inserted)
489 ConstOps.push_back(MO);
490 return It->second;
491 }
492 DbgOpID insertValueOp(ValueIDNum VID) {
493 auto [It, Inserted] = ValueOpToID.try_emplace(VID, false, ValueOps.size());
494 if (Inserted)
495 ValueOps.push_back(VID);
496 return It->second;
497 }
498};
499
500// We set the maximum number of operands that we will handle to keep DbgValue
501// within a reasonable size (64 bytes), as we store and pass a lot of them
502// around.
503#define MAX_DBG_OPS 8
504
505/// Class recording the (high level) _value_ of a variable. Identifies the value
506/// of the variable as a list of ValueIDNums and constant MachineOperands, or as
507/// an empty list for undef debug values or VPHI values which we have not found
508/// valid locations for.
509/// This class also stores meta-information about how the value is qualified.
510/// Used to reason about variable values when performing the second
511/// (DebugVariable specific) dataflow analysis.
512class DbgValue {
513private:
514 /// If Kind is Def or VPHI, the set of IDs corresponding to the DbgOps that
515 /// are used. VPHIs set every ID to EmptyID when we have not found a valid
516 /// machine-value for every operand, and sets them to the corresponding
517 /// machine-values when we have found all of them.
518 DbgOpID DbgOps[MAX_DBG_OPS];
519 unsigned OpCount;
520
521public:
522 /// For a NoVal or VPHI DbgValue, which block it was generated in.
524
525 /// Qualifiers for the ValueIDNum above.
527
528 typedef enum {
529 Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
530 Def, // This value is defined by some combination of constants,
531 // instructions, or PHI values.
532 VPHI, // Incoming values to BlockNo differ, those values must be joined by
533 // a PHI in this block.
534 NoVal, // Empty DbgValue indicating an unknown value. Used as initializer,
535 // before dominating blocks values are propagated in.
536 } KindT;
537 /// Discriminator for whether this is a constant or an in-program value.
539
541 : OpCount(DbgOps.size()), BlockNo(0), Properties(Prop), Kind(Def) {
542 static_assert(sizeof(DbgValue) <= 64,
543 "DbgValue should fit within 64 bytes.");
544 assert(DbgOps.size() == Prop.getLocationOpCount());
545 if (DbgOps.size() > MAX_DBG_OPS ||
546 any_of(DbgOps, [](DbgOpID ID) { return ID.isUndef(); })) {
547 Kind = Undef;
548 OpCount = 0;
549#define DEBUG_TYPE "LiveDebugValues"
550 if (DbgOps.size() > MAX_DBG_OPS) {
551 LLVM_DEBUG(dbgs() << "Found DbgValue with more than maximum allowed "
552 "operands.\n");
553 }
554#undef DEBUG_TYPE
555 } else {
556 for (unsigned Idx = 0; Idx < DbgOps.size(); ++Idx)
557 this->DbgOps[Idx] = DbgOps[Idx];
558 }
559 }
560
562 : OpCount(0), BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
563 assert(Kind == NoVal || Kind == VPHI);
564 }
565
567 : OpCount(0), BlockNo(0), Properties(Prop), Kind(Kind) {
568 assert(Kind == Undef &&
569 "Empty DbgValue constructor must pass in Undef kind");
570 }
571
572#ifndef NDEBUG
573 void dump(const MLocTracker *MTrack = nullptr,
574 const DbgOpIDMap *OpStore = nullptr) const;
575#endif
576
577 bool operator==(const DbgValue &Other) const {
578 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
579 return false;
580 else if (Kind == Def && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
581 return false;
582 else if (Kind == NoVal && BlockNo != Other.BlockNo)
583 return false;
584 else if (Kind == VPHI && BlockNo != Other.BlockNo)
585 return false;
586 else if (Kind == VPHI && !equal(getDbgOpIDs(), Other.getDbgOpIDs()))
587 return false;
588
589 return true;
590 }
591
592 bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
593
594 // Returns an array of all the machine values used to calculate this variable
595 // value, or an empty list for an Undef or unjoined VPHI.
596 ArrayRef<DbgOpID> getDbgOpIDs() const { return {DbgOps, OpCount}; }
597
598 // Returns either DbgOps[Index] if this DbgValue has Debug Operands, or
599 // the ID for ValueIDNum::EmptyValue otherwise (i.e. if this is an Undef,
600 // NoVal, or an unjoined VPHI).
601 DbgOpID getDbgOpID(unsigned Index) const {
602 if (!OpCount)
603 return DbgOpID::UndefID;
604 assert(Index < OpCount);
605 return DbgOps[Index];
606 }
607 // Replaces this DbgValue's existing DbgOpIDs (if any) with the contents of
608 // \p NewIDs. The number of DbgOpIDs passed must be equal to the number of
609 // arguments expected by this DbgValue's properties (the return value of
610 // `getLocationOpCount()`).
612 // We can go from no ops to some ops, but not from some ops to no ops.
613 assert(NewIDs.size() == getLocationOpCount() &&
614 "Incorrect number of Debug Operands for this DbgValue.");
615 OpCount = NewIDs.size();
616 for (unsigned Idx = 0; Idx < NewIDs.size(); ++Idx)
617 DbgOps[Idx] = NewIDs[Idx];
618 }
619
620 // The number of debug operands expected by this DbgValue's expression.
621 // getDbgOpIDs() should return an array of this length, unless this is an
622 // Undef or an unjoined VPHI.
623 unsigned getLocationOpCount() const {
625 }
626
627 // Returns true if this or Other are unjoined PHIs, which do not have defined
628 // Loc Ops, or if the `n`th Loc Op for this has a different constness to the
629 // `n`th Loc Op for Other.
630 bool hasJoinableLocOps(const DbgValue &Other) const {
631 if (isUnjoinedPHI() || Other.isUnjoinedPHI())
632 return true;
633 for (unsigned Idx = 0; Idx < getLocationOpCount(); ++Idx) {
634 if (getDbgOpID(Idx).isConst() != Other.getDbgOpID(Idx).isConst())
635 return false;
636 }
637 return true;
638 }
639
640 bool isUnjoinedPHI() const { return Kind == VPHI && OpCount == 0; }
641
643 if (!OpCount)
644 return false;
645 return equal(getDbgOpIDs(), Other.getDbgOpIDs());
646 }
647};
648
650public:
652 unsigned operator()(const LocIdx &L) const { return L.asU64(); }
653};
654
655/// Tracker for what values are in machine locations. Listens to the Things
656/// being Done by various instructions, and maintains a table of what machine
657/// locations have what values (as defined by a ValueIDNum).
658///
659/// There are potentially a much larger number of machine locations on the
660/// target machine than the actual working-set size of the function. On x86 for
661/// example, we're extremely unlikely to want to track values through control
662/// or debug registers. To avoid doing so, MLocTracker has several layers of
663/// indirection going on, described below, to avoid unnecessarily tracking
664/// any location.
665///
666/// Here's a sort of diagram of the indexes, read from the bottom up:
667///
668/// Size on stack Offset on stack
669/// \ /
670/// Stack Idx (Where in slot is this?)
671/// /
672/// /
673/// Slot Num (%stack.0) /
674/// FrameIdx => SpillNum /
675/// \ /
676/// SpillID (int) Register number (int)
677/// \ /
678/// LocationID => LocIdx
679/// |
680/// LocIdx => ValueIDNum
681///
682/// The aim here is that the LocIdx => ValueIDNum vector is just an array of
683/// values in numbered locations, so that later analyses can ignore whether the
684/// location is a register or otherwise. To map a register / spill location to
685/// a LocIdx, you have to use the (sparse) LocationID => LocIdx map. And to
686/// build a LocationID for a stack slot, you need to combine identifiers for
687/// which stack slot it is and where within that slot is being described.
688///
689/// Register mask operands cause trouble by technically defining every register;
690/// various hacks are used to avoid tracking registers that are never read and
691/// only written by regmasks.
693public:
698
699 /// IndexedMap type, mapping from LocIdx to ValueIDNum.
701
702 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
703 /// packed, entries only exist for locations that are being tracked.
705
706 /// "Map" of machine location IDs (i.e., raw register or spill number) to the
707 /// LocIdx key / number for that location. There are always at least as many
708 /// as the number of registers on the target -- if the value in the register
709 /// is not being tracked, then the LocIdx value will be zero. New entries are
710 /// appended if a new spill slot begins being tracked.
711 /// This, and the corresponding reverse map persist for the analysis of the
712 /// whole function, and is necessarying for decoding various vectors of
713 /// values.
714 std::vector<LocIdx> LocIDToLocIdx;
715
716 /// Inverse map of LocIDToLocIdx.
718
719 /// When clobbering register masks, we chose to not believe the machine model
720 /// and don't clobber SP. Do the same for SP aliases, and for efficiency,
721 /// keep a set of them here.
723
724 /// Unique-ification of spill. Used to number them -- their LocID number is
725 /// the index in SpillLocs minus one plus NumRegs.
727
728 // If we discover a new machine location, assign it an mphi with this
729 // block number.
730 unsigned CurBB = -1;
731
732 /// Cached local copy of the number of registers the target has.
733 unsigned NumRegs;
734
735 /// Number of slot indexes the target has -- distinct segments of a stack
736 /// slot that can take on the value of a subregister, when a super-register
737 /// is written to the stack.
738 unsigned NumSlotIdxes;
739
740 /// Collection of register mask operands that have been observed. Second part
741 /// of pair indicates the instruction that they happened in. Used to
742 /// reconstruct where defs happened if we start tracking a location later
743 /// on.
745
746 /// Pair for describing a position within a stack slot -- first the size in
747 /// bits, then the offset.
748 typedef std::pair<unsigned short, unsigned short> StackSlotPos;
749
750 /// Map from a size/offset pair describing a position in a stack slot, to a
751 /// numeric identifier for that position. Allows easier identification of
752 /// individual positions.
754
755 /// Inverse of StackSlotIdxes.
757
758 /// Iterator for locations and the values they contain. Dereferencing
759 /// produces a struct/pair containing the LocIdx key for this location,
760 /// and a reference to the value currently stored. Simplifies the process
761 /// of seeking a particular location.
764 LocIdx Idx;
765
766 public:
768 public:
770 const LocIdx Idx; /// Read-only index of this location.
771 ValueIDNum &Value; /// Reference to the stored value at this location.
772 };
773
775 : ValueMap(ValueMap), Idx(Idx) {}
776
777 bool operator==(const MLocIterator &Other) const {
778 assert(&ValueMap == &Other.ValueMap);
779 return Idx == Other.Idx;
780 }
781
782 bool operator!=(const MLocIterator &Other) const {
783 return !(*this == Other);
784 }
785
786 void operator++() { Idx = LocIdx(Idx.asU64() + 1); }
787
789 };
790
793
794 /// Produce location ID number for a Register. Provides some small amount of
795 /// type safety.
796 /// \param Reg The register we're looking up.
797 unsigned getLocID(Register Reg) { return Reg.id(); }
798
799 /// Produce location ID number for a spill position.
800 /// \param Spill The number of the spill we're fetching the location for.
801 /// \param SpillSubReg Subregister within the spill we're addressing.
802 unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg) {
803 unsigned short Size = TRI.getSubRegIdxSize(SpillSubReg);
804 unsigned short Offs = TRI.getSubRegIdxOffset(SpillSubReg);
805 return getLocID(Spill, {Size, Offs});
806 }
807
808 /// Produce location ID number for a spill position.
809 /// \param Spill The number of the spill we're fetching the location for.
810 /// \apram SpillIdx size/offset within the spill slot to be addressed.
812 unsigned SlotNo = Spill.id() - 1;
813 SlotNo *= NumSlotIdxes;
815 SlotNo += StackSlotIdxes[Idx];
816 SlotNo += NumRegs;
817 return SlotNo;
818 }
819
820 /// Given a spill number, and a slot within the spill, calculate the ID number
821 /// for that location.
822 unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx) {
823 unsigned SlotNo = Spill.id() - 1;
824 SlotNo *= NumSlotIdxes;
825 SlotNo += Idx;
826 SlotNo += NumRegs;
827 return SlotNo;
828 }
829
830 /// Return the spill number that a location ID corresponds to.
832 assert(ID >= NumRegs);
833 ID -= NumRegs;
834 // Truncate away the index part, leaving only the spill number.
835 ID /= NumSlotIdxes;
836 return SpillLocationNo(ID + 1); // The UniqueVector is one-based.
837 }
838
839 /// Returns the spill-slot size/offs that a location ID corresponds to.
841 assert(ID >= NumRegs);
842 ID -= NumRegs;
843 unsigned Idx = ID % NumSlotIdxes;
844 return StackIdxesToPos.find(Idx)->second;
845 }
846
847 unsigned getNumLocs() const { return LocIdxToIDNum.size(); }
848
849 /// Reset all locations to contain a PHI value at the designated block. Used
850 /// sometimes for actual PHI values, othertimes to indicate the block entry
851 /// value (before any more information is known).
852 void setMPhis(unsigned NewCurBB) {
853 CurBB = NewCurBB;
854 for (auto Location : locations())
855 Location.Value = {CurBB, 0, Location.Idx};
856 }
857
858 /// Load values for each location from array of ValueIDNums. Take current
859 /// bbnum just in case we read a value from a hitherto untouched register.
860 void loadFromArray(ValueTable &Locs, unsigned NewCurBB) {
861 CurBB = NewCurBB;
862 // Iterate over all tracked locations, and load each locations live-in
863 // value into our local index.
864 for (auto Location : locations())
865 Location.Value = Locs[Location.Idx.asU64()];
866 }
867
868 /// Wipe any un-necessary location records after traversing a block.
869 void reset() {
870 // We could reset all the location values too; however either loadFromArray
871 // or setMPhis should be called before this object is re-used. Just
872 // clear Masks, they're definitely not needed.
873 Masks.clear();
874 }
875
876 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
877 /// the information in this pass uninterpretable.
878 void clear() {
879 reset();
880 LocIDToLocIdx.clear();
881 LocIdxToLocID.clear();
883 // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
884 // 0
885 SpillLocs = decltype(SpillLocs)();
888
890 }
891
892 /// Set a locaiton to a certain value.
893 void setMLoc(LocIdx L, ValueIDNum Num) {
894 assert(L.asU64() < LocIdxToIDNum.size());
895 LocIdxToIDNum[L] = Num;
896 }
897
898 /// Read the value of a particular location
900 assert(L.asU64() < LocIdxToIDNum.size());
901 return LocIdxToIDNum[L];
902 }
903
904 /// Create a LocIdx for an untracked register ID. Initialize it to either an
905 /// mphi value representing a live-in, or a recent register mask clobber.
906 LocIdx trackRegister(unsigned ID);
907
910 if (Index.isIllegal())
912 return Index;
913 }
914
915 /// Is register R currently tracked by MLocTracker?
918 return !Index.isIllegal();
919 }
920
921 /// Record a definition of the specified register at the given block / inst.
922 /// This doesn't take a ValueIDNum, because the definition and its location
923 /// are synonymous.
924 void defReg(Register R, unsigned BB, unsigned Inst) {
925 unsigned ID = getLocID(R);
927 ValueIDNum ValueID = {BB, Inst, Idx};
928 LocIdxToIDNum[Idx] = ValueID;
929 }
930
931 /// Set a register to a value number. To be used if the value number is
932 /// known in advance.
933 void setReg(Register R, ValueIDNum ValueID) {
934 unsigned ID = getLocID(R);
936 LocIdxToIDNum[Idx] = ValueID;
937 }
938
940 unsigned ID = getLocID(R);
942 return LocIdxToIDNum[Idx];
943 }
944
945 /// Reset a register value to zero / empty. Needed to replicate the
946 /// VarLoc implementation where a copy to/from a register effectively
947 /// clears the contents of the source register. (Values can only have one
948 /// machine location in VarLocBasedImpl).
950 unsigned ID = getLocID(R);
953 }
954
955 /// Determine the LocIdx of an existing register.
957 unsigned ID = getLocID(R);
958 assert(ID < LocIDToLocIdx.size());
959 assert(LocIDToLocIdx[ID] != UINT_MAX); // Sentinel for IndexedMap.
960 return LocIDToLocIdx[ID];
961 }
962
963 /// Record a RegMask operand being executed. Defs any register we currently
964 /// track, stores a pointer to the mask in case we have to account for it
965 /// later.
966 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);
967
968 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
969 /// Returns std::nullopt when in scenarios where a spill slot could be
970 /// tracked, but we would likely run into resource limitations.
971 std::optional<SpillLocationNo> getOrTrackSpillLoc(SpillLoc L);
972
973 // Get LocIdx of a spill ID.
974 LocIdx getSpillMLoc(unsigned SpillID) {
975 assert(LocIDToLocIdx[SpillID] != UINT_MAX); // Sentinel for IndexedMap.
976 return LocIDToLocIdx[SpillID];
977 }
978
979 /// Return true if Idx is a spill machine location.
980 bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }
981
982 /// How large is this location (aka, how wide is a value defined there?).
983 unsigned getLocSizeInBits(LocIdx L) const {
984 unsigned ID = LocIdxToLocID[L];
985 if (!isSpill(L)) {
987 } else {
988 // The slot location on the stack is uninteresting, we care about the
989 // position of the value within the slot (which comes with a size).
991 return Pos.first;
992 }
993 }
994
996
999 }
1000
1001 /// Return a range over all locations currently tracked.
1003 return llvm::make_range(begin(), end());
1004 }
1005
1006 std::string LocIdxToName(LocIdx Idx) const;
1007
1008 std::string IDAsString(const ValueIDNum &Num) const;
1009
1010#ifndef NDEBUG
1011 LLVM_DUMP_METHOD void dump();
1012
1014#endif
1015
1016 /// Create a DBG_VALUE based on debug operands \p DbgOps. Qualify it with the
1017 /// information in \pProperties, for variable Var. Don't insert it anywhere,
1018 /// just return the builder for it.
1020 const DebugVariable &Var, const DILocation *DILoc,
1021 const DbgValueProperties &Properties);
1022};
1023
1024/// Types for recording sets of variable fragments that overlap. For a given
1025/// local variable, we record all other fragments of that variable that could
1026/// overlap it, to reduce search time.
1028 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
1031
1032/// Collection of DBG_VALUEs observed when traversing a block. Records each
1033/// variable and the value the DBG_VALUE refers to. Requires the machine value
1034/// location dataflow algorithm to have run already, so that values can be
1035/// identified.
1037public:
1038 /// Ref to function-wide map of DebugVariable <=> ID-numbers.
1040 /// Map DebugVariable to the latest Value it's defined to have.
1041 /// Needs to be a MapVector because we determine order-in-the-input-MIR from
1042 /// the order in this container. (FIXME: likely no longer true as the ordering
1043 /// is now provided by DebugVariableMap).
1044 /// We only retain the last DbgValue in each block for each variable, to
1045 /// determine the blocks live-out variable value. The Vars container forms the
1046 /// transfer function for this block, as part of the dataflow analysis. The
1047 /// movement of values between locations inside of a block is handled at a
1048 /// much later stage, in the TransferTracker class.
1054
1055public:
1057 const DIExpression *EmptyExpr)
1059 EmptyProperties(EmptyExpr, false, false) {}
1060
1061 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1062 const SmallVectorImpl<DbgOpID> &DebugOps) {
1063 assert(MI.isDebugValueLike());
1064 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1065 MI.getDebugLoc()->getInlinedAt());
1066 // Either insert or fetch an ID number for this variable.
1067 DebugVariableID VarID = DVMap.insertDVID(Var, MI.getDebugLoc().get());
1068 DbgValue Rec = (DebugOps.size() > 0)
1069 ? DbgValue(DebugOps, Properties)
1070 : DbgValue(Properties, DbgValue::Undef);
1071
1072 // Attempt insertion; overwrite if it's already mapped.
1073 Vars.insert_or_assign(VarID, Rec);
1074 Scopes[VarID] = MI.getDebugLoc().get();
1075
1076 considerOverlaps(Var, MI.getDebugLoc().get());
1077 }
1078
1079 void considerOverlaps(const DebugVariable &Var, const DILocation *Loc) {
1080 auto Overlaps = OverlappingFragments.find(
1081 {Var.getVariable(), Var.getFragmentOrDefault()});
1082 if (Overlaps == OverlappingFragments.end())
1083 return;
1084
1085 // Otherwise: terminate any overlapped variable locations.
1086 for (auto FragmentInfo : Overlaps->second) {
1087 // The "empty" fragment is stored as DebugVariable::DefaultFragment, so
1088 // that it overlaps with everything, however its cannonical representation
1089 // in a DebugVariable is as "None".
1090 std::optional<DIExpression::FragmentInfo> OptFragmentInfo = FragmentInfo;
1091 if (DebugVariable::isDefaultFragment(FragmentInfo))
1092 OptFragmentInfo = std::nullopt;
1093
1094 DebugVariable Overlapped(Var.getVariable(), OptFragmentInfo,
1095 Var.getInlinedAt());
1096 // Produce an ID number for this overlapping fragment of a variable.
1097 DebugVariableID OverlappedID = DVMap.insertDVID(Overlapped, Loc);
1099
1100 // Attempt insertion; overwrite if it's already mapped.
1101 Vars.insert_or_assign(OverlappedID, Rec);
1102 Scopes[OverlappedID] = Loc;
1103 }
1104 }
1105
1106 void clear() {
1107 Vars.clear();
1108 Scopes.clear();
1109 }
1110};
1111
1112// XXX XXX docs
1114public:
1115 friend class ::InstrRefLDVTest;
1116
1118 using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>;
1119
1120 // Helper while building OverlapMap, a map of all fragments seen for a given
1121 // DILocalVariable.
1124
1125 /// Machine location/value transfer function, a mapping of which locations
1126 /// are assigned which new values.
1128
1129 /// Live in/out structure for the variable values: a per-block map of
1130 /// variables to their values.
1132
1133 using VarAndLoc = std::pair<DebugVariableID, DbgValue>;
1134
1135 /// Type for a live-in value: the predecessor block, and its value.
1136 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
1137
1138 /// Vector (per block) of a collection (inner smallvector) of live-ins.
1139 /// Used as the result type for the variable value dataflow problem.
1141
1142 /// Mapping from lexical scopes to a DILocation in that scope.
1144
1145 /// Mapping from lexical scopes to variables in that scope.
1148
1149 /// Mapping from lexical scopes to blocks where variables in that scope are
1150 /// assigned. Such blocks aren't necessarily "in" the lexical scope, it's
1151 /// just a block where an assignment happens.
1153
1154private:
1155 MachineDominatorTree *DomTree;
1156 const TargetRegisterInfo *TRI;
1157 const MachineRegisterInfo *MRI;
1158 const TargetInstrInfo *TII;
1159 const TargetFrameLowering *TFI;
1160 const MachineFrameInfo *MFI;
1161 BitVector CalleeSavedRegs;
1162 LexicalScopes LS;
1163 TargetPassConfig *TPC;
1164
1165 // An empty DIExpression. Used default / placeholder DbgValueProperties
1166 // objects, as we can't have null expressions.
1167 const DIExpression *EmptyExpr;
1168
1169 /// Object to track machine locations as we step through a block. Could
1170 /// probably be a field rather than a pointer, as it's always used.
1171 MLocTracker *MTracker = nullptr;
1172
1173 /// Number of the current block LiveDebugValues is stepping through.
1174 unsigned CurBB = -1;
1175
1176 /// Number of the current instruction LiveDebugValues is evaluating.
1177 unsigned CurInst;
1178
1179 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1180 /// steps through a block. Reads the values at each location from the
1181 /// MLocTracker object.
1182 VLocTracker *VTracker = nullptr;
1183
1184 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1185 /// between locations during stepping, creates new DBG_VALUEs when values move
1186 /// location.
1187 TransferTracker *TTracker = nullptr;
1188
1189 /// Blocks which are artificial, i.e. blocks which exclusively contain
1190 /// instructions without DebugLocs, or with line 0 locations.
1191 SmallPtrSet<MachineBasicBlock *, 16> ArtificialBlocks;
1192
1193 // Mapping of blocks to and from their RPOT order.
1197
1198 /// Pair of MachineInstr, and its 1-based offset into the containing block.
1199 using InstAndNum = std::pair<const MachineInstr *, unsigned>;
1200 /// Map from debug instruction number to the MachineInstr labelled with that
1201 /// number, and its location within the function. Used to transform
1202 /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1203 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1204
1205 /// Record of where we observed a DBG_PHI instruction.
1206 class DebugPHIRecord {
1207 public:
1208 /// Instruction number of this DBG_PHI.
1209 uint64_t InstrNum;
1210 /// Block where DBG_PHI occurred.
1212 /// The value number read by the DBG_PHI -- or std::nullopt if it didn't
1213 /// refer to a value.
1214 std::optional<ValueIDNum> ValueRead;
1215 /// Register/Stack location the DBG_PHI reads -- or std::nullopt if it
1216 /// referred to something unexpected.
1217 std::optional<LocIdx> ReadLoc;
1218
1219 operator unsigned() const { return InstrNum; }
1220 };
1221
1222 /// Map from instruction numbers defined by DBG_PHIs to a record of what that
1223 /// DBG_PHI read and where. Populated and edited during the machine value
1224 /// location problem -- we use LLVMs SSA Updater to fix changes by
1225 /// optimizations that destroy PHI instructions.
1226 SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
1227
1228 // Map of overlapping variable fragments.
1229 OverlapMap OverlapFragments;
1230 VarToFragments SeenFragments;
1231
1232 /// Mapping of DBG_INSTR_REF instructions to their values, for those
1233 /// DBG_INSTR_REFs that call resolveDbgPHIs. These variable references solve
1234 /// a mini SSA problem caused by DBG_PHIs being cloned, this collection caches
1235 /// the result.
1236 DenseMap<std::pair<MachineInstr *, unsigned>, std::optional<ValueIDNum>>
1237 SeenDbgPHIs;
1238
1239 DbgOpIDMap DbgOpStore;
1240
1241 /// Mapping between DebugVariables and unique ID numbers. This is a more
1242 /// efficient way to represent the identity of a variable, versus a plain
1243 /// DebugVariable.
1244 DebugVariableMap DVMap;
1245
1246 /// True if we need to examine call instructions for stack clobbers. We
1247 /// normally assume that they don't clobber SP, but stack probes on Windows
1248 /// do.
1249 bool AdjustsStackInCalls = false;
1250
1251 /// If AdjustsStackInCalls is true, this holds the name of the target's stack
1252 /// probe function, which is the function we expect will alter the stack
1253 /// pointer.
1254 StringRef StackProbeSymbolName;
1255
1256 /// Tests whether this instruction is a spill to a stack slot.
1257 std::optional<SpillLocationNo> isSpillInstruction(const MachineInstr &MI,
1258 MachineFunction *MF);
1259
1260 /// Decide if @MI is a spill instruction and return true if it is. We use 2
1261 /// criteria to make this decision:
1262 /// - Is this instruction a store to a spill slot?
1263 /// - Is there a register operand that is both used and killed?
1264 /// TODO: Store optimization can fold spills into other stores (including
1265 /// other spills). We do not handle this yet (more than one memory operand).
1266 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1267 unsigned &Reg);
1268
1269 /// If a given instruction is identified as a spill, return the spill slot
1270 /// and set \p Reg to the spilled register.
1271 std::optional<SpillLocationNo> isRestoreInstruction(const MachineInstr &MI,
1272 MachineFunction *MF,
1273 unsigned &Reg);
1274
1275 /// Given a spill instruction, extract the spill slot information, ensure it's
1276 /// tracked, and return the spill number.
1277 std::optional<SpillLocationNo>
1278 extractSpillBaseRegAndOffset(const MachineInstr &MI);
1279
1280 /// For an instruction reference given by \p InstNo and \p OpNo in instruction
1281 /// \p MI returns the Value pointed to by that instruction reference if any
1282 /// exists, otherwise returns std::nullopt.
1283 std::optional<ValueIDNum> getValueForInstrRef(unsigned InstNo, unsigned OpNo,
1285 const FuncValueTable *MLiveOuts,
1286 const FuncValueTable *MLiveIns);
1287
1288 /// Observe a single instruction while stepping through a block.
1289 void process(MachineInstr &MI, const FuncValueTable *MLiveOuts,
1290 const FuncValueTable *MLiveIns);
1291
1292 /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1293 /// \returns true if MI was recognized and processed.
1294 bool transferDebugValue(const MachineInstr &MI);
1295
1296 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1297 /// \returns true if MI was recognized and processed.
1298 bool transferDebugInstrRef(MachineInstr &MI, const FuncValueTable *MLiveOuts,
1299 const FuncValueTable *MLiveIns);
1300
1301 /// Stores value-information about where this PHI occurred, and what
1302 /// instruction number is associated with it.
1303 /// \returns true if MI was recognized and processed.
1304 bool transferDebugPHI(MachineInstr &MI);
1305
1306 /// Examines whether \p MI is copy instruction, and notifies trackers.
1307 /// \returns true if MI was recognized and processed.
1308 bool transferRegisterCopy(MachineInstr &MI);
1309
1310 /// Examines whether \p MI is stack spill or restore instruction, and
1311 /// notifies trackers. \returns true if MI was recognized and processed.
1312 bool transferSpillOrRestoreInst(MachineInstr &MI);
1313
1314 /// Examines \p MI for any registers that it defines, and notifies trackers.
1315 void transferRegisterDef(MachineInstr &MI);
1316
1317 /// Copy one location to the other, accounting for movement of subregisters
1318 /// too.
1319 void performCopy(Register Src, Register Dst);
1320
1321 void accumulateFragmentMap(MachineInstr &MI);
1322
1323 /// Determine the machine value number referred to by (potentially several)
1324 /// DBG_PHI instructions. Block duplication and tail folding can duplicate
1325 /// DBG_PHIs, shifting the position where values in registers merge, and
1326 /// forming another mini-ssa problem to solve.
1327 /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
1328 /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
1329 /// \returns The machine value number at position Here, or std::nullopt.
1330 std::optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
1331 const FuncValueTable &MLiveOuts,
1332 const FuncValueTable &MLiveIns,
1333 MachineInstr &Here,
1334 uint64_t InstrNum);
1335
1336 std::optional<ValueIDNum> resolveDbgPHIsImpl(MachineFunction &MF,
1337 const FuncValueTable &MLiveOuts,
1338 const FuncValueTable &MLiveIns,
1339 MachineInstr &Here,
1340 uint64_t InstrNum);
1341
1342 /// Step through the function, recording register definitions and movements
1343 /// in an MLocTracker. Convert the observations into a per-block transfer
1344 /// function in \p MLocTransfer, suitable for using with the machine value
1345 /// location dataflow problem.
1346 void
1347 produceMLocTransferFunction(MachineFunction &MF,
1349 unsigned MaxNumBlocks);
1350
1351 /// Solve the machine value location dataflow problem. Takes as input the
1352 /// transfer functions in \p MLocTransfer. Writes the output live-in and
1353 /// live-out arrays to the (initialized to zero) multidimensional arrays in
1354 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1355 /// number, the inner by LocIdx.
1356 void buildMLocValueMap(MachineFunction &MF, FuncValueTable &MInLocs,
1357 FuncValueTable &MOutLocs,
1358 SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1359
1360 /// Examine the stack indexes (i.e. offsets within the stack) to find the
1361 /// basic units of interference -- like reg units, but for the stack.
1362 void findStackIndexInterference(SmallVectorImpl<unsigned> &Slots);
1363
1364 /// Install PHI values into the live-in array for each block, according to
1365 /// the IDF of each register.
1366 void placeMLocPHIs(MachineFunction &MF,
1368 FuncValueTable &MInLocs,
1369 SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1370
1371 /// Propagate variable values to blocks in the common case where there's
1372 /// only one value assigned to the variable. This function has better
1373 /// performance as it doesn't have to find the dominance frontier between
1374 /// different assignments.
1375 void placePHIsForSingleVarDefinition(
1376 const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
1378 DebugVariableID Var, LiveInsT &Output);
1379
1380 /// Calculate the iterated-dominance-frontier for a set of defs, using the
1381 /// existing LLVM facilities for this. Works for a single "value" or
1382 /// machine/variable location.
1383 /// \p AllBlocks Set of blocks where we might consume the value.
1384 /// \p DefBlocks Set of blocks where the value/location is defined.
1385 /// \p PHIBlocks Output set of blocks where PHIs must be placed.
1386 void BlockPHIPlacement(const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1387 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
1389
1390 /// Perform a control flow join (lattice value meet) of the values in machine
1391 /// locations at \p MBB. Follows the algorithm described in the file-comment,
1392 /// reading live-outs of predecessors from \p OutLocs, the current live ins
1393 /// from \p InLocs, and assigning the newly computed live ins back into
1394 /// \p InLocs. \returns two bools -- the first indicates whether a change
1395 /// was made, the second whether a lattice downgrade occurred. If the latter
1396 /// is true, revisiting this block is necessary.
1397 bool mlocJoin(MachineBasicBlock &MBB,
1399 FuncValueTable &OutLocs, ValueTable &InLocs);
1400
1401 /// Produce a set of blocks that are in the current lexical scope. This means
1402 /// those blocks that contain instructions "in" the scope, blocks where
1403 /// assignments to variables in scope occur, and artificial blocks that are
1404 /// successors to any of the earlier blocks. See https://llvm.org/PR48091 for
1405 /// more commentry on what "in scope" means.
1406 /// \p DILoc A location in the scope that we're fetching blocks for.
1407 /// \p Output Set to put in-scope-blocks into.
1408 /// \p AssignBlocks Blocks known to contain assignments of variables in scope.
1409 void
1410 getBlocksForScope(const DILocation *DILoc,
1412 const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks);
1413
1414 /// Solve the variable value dataflow problem, for a single lexical scope.
1415 /// Uses the algorithm from the file comment to resolve control flow joins
1416 /// using PHI placement and value propagation. Reads the locations of machine
1417 /// values from the \p MInLocs and \p MOutLocs arrays (see buildMLocValueMap)
1418 /// and reads the variable values transfer function from \p AllTheVlocs.
1419 /// Live-in and Live-out variable values are stored locally, with the live-ins
1420 /// permanently stored to \p Output once a fixedpoint is reached.
1421 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1422 /// that we should be tracking.
1423 /// \p AssignBlocks contains the set of blocks that aren't in \p DILoc's
1424 /// scope, but which do contain DBG_VALUEs, which VarLocBasedImpl tracks
1425 /// locations through.
1426 void buildVLocValueMap(const DILocation *DILoc,
1427 const SmallSet<DebugVariableID, 4> &VarsWeCareAbout,
1429 LiveInsT &Output, FuncValueTable &MOutLocs,
1430 FuncValueTable &MInLocs,
1431 SmallVectorImpl<VLocTracker> &AllTheVLocs);
1432
1433 /// Attempt to eliminate un-necessary PHIs on entry to a block. Examines the
1434 /// live-in values coming from predecessors live-outs, and replaces any PHIs
1435 /// already present in this blocks live-ins with a live-through value if the
1436 /// PHI isn't needed.
1437 /// \p LiveIn Old live-in value, overwritten with new one if live-in changes.
1438 /// \returns true if any live-ins change value, either from value propagation
1439 /// or PHI elimination.
1440 bool vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
1442 DbgValue &LiveIn);
1443
1444 /// For the given block and live-outs feeding into it, try to find
1445 /// machine locations for each debug operand where all the values feeding
1446 /// into that operand join together.
1447 /// \returns true if a joined location was found for every value that needed
1448 /// to be joined.
1449 bool
1450 pickVPHILoc(SmallVectorImpl<DbgOpID> &OutValues, const MachineBasicBlock &MBB,
1451 const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
1453
1454 std::optional<ValueIDNum> pickOperandPHILoc(
1455 unsigned DbgOpIdx, const MachineBasicBlock &MBB, const LiveIdxT &LiveOuts,
1456 FuncValueTable &MOutLocs,
1458
1459 /// Take collections of DBG_VALUE instructions stored in TTracker, and
1460 /// install them into their output blocks.
1461 bool emitTransfers();
1462
1463 /// Boilerplate computation of some initial sets, artifical blocks and
1464 /// RPOT block ordering.
1465 void initialSetup(MachineFunction &MF);
1466
1467 /// Produce a map of the last lexical scope that uses a block, using the
1468 /// scopes DFSOut number. Mapping is block-number to DFSOut.
1469 /// \p EjectionMap Pre-allocated vector in which to install the built ma.
1470 /// \p ScopeToDILocation Mapping of LexicalScopes to their DILocations.
1471 /// \p AssignBlocks Map of blocks where assignments happen for a scope.
1472 void makeDepthFirstEjectionMap(SmallVectorImpl<unsigned> &EjectionMap,
1473 const ScopeToDILocT &ScopeToDILocation,
1474 ScopeToAssignBlocksT &AssignBlocks);
1475
1476 /// When determining per-block variable values and emitting to DBG_VALUEs,
1477 /// this function explores by lexical scope depth. Doing so means that per
1478 /// block information can be fully computed before exploration finishes,
1479 /// allowing us to emit it and free data structures earlier than otherwise.
1480 /// It's also good for locality.
1481 bool depthFirstVLocAndEmit(unsigned MaxNumBlocks,
1482 const ScopeToDILocT &ScopeToDILocation,
1483 const ScopeToVarsT &ScopeToVars,
1484 ScopeToAssignBlocksT &ScopeToBlocks,
1485 LiveInsT &Output, FuncValueTable &MOutLocs,
1486 FuncValueTable &MInLocs,
1487 SmallVectorImpl<VLocTracker> &AllTheVLocs,
1488 MachineFunction &MF, const TargetPassConfig &TPC);
1489
1490 bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree,
1491 TargetPassConfig *TPC, unsigned InputBBLimit,
1492 unsigned InputDbgValLimit) override;
1493
1494public:
1495 /// Default construct and initialize the pass.
1497
1499 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1500
1501 bool isCalleeSaved(LocIdx L) const;
1502 bool isCalleeSavedReg(Register R) const;
1503
1505 // Instruction must have a memory operand that's a stack slot, and isn't
1506 // aliased, meaning it's a spill from regalloc instead of a variable.
1507 // If it's aliased, we can't guarantee its value.
1508 if (!MI.hasOneMemOperand())
1509 return false;
1510 auto *MemOperand = *MI.memoperands_begin();
1511 return MemOperand->isStore() &&
1512 MemOperand->getPseudoValue() &&
1513 MemOperand->getPseudoValue()->kind() == PseudoSourceValue::FixedStack
1514 && !MemOperand->getPseudoValue()->isAliased(MFI);
1515 }
1516
1517 std::optional<LocIdx> findLocationForMemOperand(const MachineInstr &MI);
1518
1519 // Utility for unit testing, don't use directly.
1521 return DVMap;
1522 }
1523};
1524
1525} // namespace LiveDebugValues
1526
1527#endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */
MachineBasicBlock & MBB
static cl::opt< unsigned > MaxNumBlocks("debug-ata-max-blocks", cl::init(10000), cl::desc("Maximum num basic blocks before debug info dropped"), cl::Hidden)
basic Basic Alias true
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:622
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
uint32_t Index
uint64_t Size
IRTranslator LLVM IR MI
This file implements an indexed map.
#define NUM_LOC_BITS
#define MAX_DBG_OPS
static cl::opt< unsigned > InputBBLimit("livedebugvalues-input-bb-limit", cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"), cl::init(10000), cl::Hidden)
unsigned Reg
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
Class storing the complete set of values that are observed by DbgValues within the current function.
DbgOp find(DbgOpID ID) const
Returns the DbgOp associated with ID.
DbgOpID insert(DbgOp Op)
If Op does not already exist in this map, it is inserted and the corresponding DbgOpID is returned.
Meta qualifiers for a value.
bool operator==(const DbgValueProperties &Other) const
DbgValueProperties(const DIExpression *DIExpr, bool Indirect, bool IsVariadic)
DbgValueProperties(const MachineInstr &MI)
Extract properties from an existing DBG_VALUE instruction.
bool isJoinable(const DbgValueProperties &Other) const
bool operator!=(const DbgValueProperties &Other) const
Class recording the (high level) value of a variable.
int BlockNo
For a NoVal or VPHI DbgValue, which block it was generated in.
DbgValueProperties Properties
Qualifiers for the ValueIDNum above.
ArrayRef< DbgOpID > getDbgOpIDs() const
void setDbgOpIDs(ArrayRef< DbgOpID > NewIDs)
bool hasJoinableLocOps(const DbgValue &Other) const
void dump(const MLocTracker *MTrack=nullptr, const DbgOpIDMap *OpStore=nullptr) const
DbgValue(ArrayRef< DbgOpID > DbgOps, const DbgValueProperties &Prop)
DbgOpID getDbgOpID(unsigned Index) const
DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
bool operator!=(const DbgValue &Other) const
DbgValue(const DbgValueProperties &Prop, KindT Kind)
KindT Kind
Discriminator for whether this is a constant or an in-program value.
unsigned getLocationOpCount() const
bool operator==(const DbgValue &Other) const
bool hasIdenticalValidLocOps(const DbgValue &Other) const
Mapping from DebugVariable to/from a unique identifying number.
const VarAndLoc & lookupDVID(DebugVariableID ID) const
DebugVariableID insertDVID(DebugVariable &Var, const DILocation *Loc)
DebugVariableID getDVID(const DebugVariable &Var) const
DenseMap< const LexicalScope *, const DILocation * > ScopeToDILocT
Mapping from lexical scopes to a DILocation in that scope.
std::optional< LocIdx > findLocationForMemOperand(const MachineInstr &MI)
std::pair< MachineBasicBlock *, DbgValue * > InValueT
Type for a live-in value: the predecessor block, and its value.
std::pair< DebugVariableID, DbgValue > VarAndLoc
SmallVector< SmallVector< VarAndLoc, 8 >, 8 > LiveInsT
Vector (per block) of a collection (inner smallvector) of live-ins.
InstrRefBasedLDV()
Default construct and initialize the pass.
DenseMap< const DILocalVariable *, SmallSet< FragmentInfo, 4 > > VarToFragments
std::optional< DIExpression::FragmentInfo > OptFragmentInfo
SmallDenseMap< const MachineBasicBlock *, DbgValue *, 16 > LiveIdxT
Live in/out structure for the variable values: a per-block map of variables to their values.
bool hasFoldedStackStore(const MachineInstr &MI)
DenseMap< const LexicalScope *, SmallPtrSet< MachineBasicBlock *, 4 > > ScopeToAssignBlocksT
Mapping from lexical scopes to blocks where variables in that scope are assigned.
LLVM_DUMP_METHOD void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const
DenseMap< const LexicalScope *, SmallSet< DebugVariableID, 4 > > ScopeToVarsT
Mapping from lexical scopes to variables in that scope.
unsigned operator()(const LocIdx &L) const
Handle-class for a particular "location".
bool operator!=(const LocIdx &L) const
bool operator<(const LocIdx &Other) const
static LocIdx MakeTombstoneLoc()
static LocIdx MakeIllegalLoc()
bool operator!=(unsigned L) const
bool operator==(unsigned L) const
bool operator==(const LocIdx &L) const
ValueIDNum & Value
Read-only index of this location.
Iterator for locations and the values they contain.
bool operator!=(const MLocIterator &Other) const
MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
bool operator==(const MLocIterator &Other) const
Tracker for what values are in machine locations.
unsigned getLocSizeInBits(LocIdx L) const
How large is this location (aka, how wide is a value defined there?).
bool isRegisterTracked(Register R)
Is register R currently tracked by MLocTracker?
std::optional< SpillLocationNo > getOrTrackSpillLoc(SpillLoc L)
Find LocIdx for SpillLoc L, creating a new one if it's not tracked.
void loadFromArray(ValueTable &Locs, unsigned NewCurBB)
Load values for each location from array of ValueIDNums.
IndexedMap< unsigned, LocIdxToIndexFunctor > LocIdxToLocID
Inverse map of LocIDToLocIdx.
unsigned getSpillIDWithIdx(SpillLocationNo Spill, unsigned Idx)
Given a spill number, and a slot within the spill, calculate the ID number for that location.
unsigned getLocID(SpillLocationNo Spill, unsigned SpillSubReg)
Produce location ID number for a spill position.
iterator_range< MLocIterator > locations()
Return a range over all locations currently tracked.
unsigned getLocID(SpillLocationNo Spill, StackSlotPos Idx)
Produce location ID number for a spill position.
SmallSet< Register, 8 > SPAliases
When clobbering register masks, we chose to not believe the machine model and don't clobber SP.
unsigned getLocID(Register Reg)
Produce location ID number for a Register.
const TargetLowering & TLI
const TargetRegisterInfo & TRI
unsigned NumRegs
Cached local copy of the number of registers the target has.
DenseMap< StackSlotPos, unsigned > StackSlotIdxes
Map from a size/offset pair describing a position in a stack slot, to a numeric identifier for that p...
LocIdx lookupOrTrackRegister(unsigned ID)
void setReg(Register R, ValueIDNum ValueID)
Set a register to a value number.
SpillLocationNo locIDToSpill(unsigned ID) const
Return the spill number that a location ID corresponds to.
void reset()
Wipe any un-necessary location records after traversing a block.
DenseMap< unsigned, StackSlotPos > StackIdxesToPos
Inverse of StackSlotIdxes.
std::string IDAsString(const ValueIDNum &Num) const
void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID)
Record a RegMask operand being executed.
std::pair< unsigned short, unsigned short > StackSlotPos
Pair for describing a position within a stack slot – first the size in bits, then the offset.
const TargetInstrInfo & TII
bool isSpill(LocIdx Idx) const
Return true if Idx is a spill machine location.
LocIdx getRegMLoc(Register R)
Determine the LocIdx of an existing register.
MachineInstrBuilder emitLoc(const SmallVectorImpl< ResolvedDbgOp > &DbgOps, const DebugVariable &Var, const DILocation *DILoc, const DbgValueProperties &Properties)
Create a DBG_VALUE based on debug operands DbgOps.
void wipeRegister(Register R)
Reset a register value to zero / empty.
void setMLoc(LocIdx L, ValueIDNum Num)
Set a locaiton to a certain value.
LocToValueType LocIdxToIDNum
Map of LocIdxes to the ValueIDNums that they store.
std::vector< LocIdx > LocIDToLocIdx
"Map" of machine location IDs (i.e., raw register or spill number) to the LocIdx key / number for tha...
void clear()
Clear all data.
SmallVector< std::pair< const MachineOperand *, unsigned >, 32 > Masks
Collection of register mask operands that have been observed.
unsigned NumSlotIdxes
Number of slot indexes the target has – distinct segments of a stack slot that can take on the value ...
UniqueVector< SpillLoc > SpillLocs
Unique-ification of spill.
ValueIDNum readMLoc(LocIdx L)
Read the value of a particular location.
void setMPhis(unsigned NewCurBB)
Reset all locations to contain a PHI value at the designated block.
ValueIDNum readReg(Register R)
void defReg(Register R, unsigned BB, unsigned Inst)
Record a definition of the specified register at the given block / inst.
LLVM_DUMP_METHOD void dump()
LocIdx trackRegister(unsigned ID)
Create a LocIdx for an untracked register ID.
LLVM_DUMP_METHOD void dump_mloc_map()
StackSlotPos locIDToSpillIdx(unsigned ID) const
Returns the spill-slot size/offs that a location ID corresponds to.
LocIdx getSpillMLoc(unsigned SpillID)
std::string LocIdxToName(LocIdx Idx) const
Thin wrapper around an integer – designed to give more type safety to spill location numbers.
bool operator==(const SpillLocationNo &Other) const
bool operator!=(const SpillLocationNo &Other) const
bool operator<(const SpillLocationNo &Other) const
Collection of DBG_VALUEs observed when traversing a block.
const OverlapMap & OverlappingFragments
SmallDenseMap< DebugVariableID, const DILocation *, 8 > Scopes
SmallMapVector< DebugVariableID, DbgValue, 8 > Vars
Map DebugVariable to the latest Value it's defined to have.
void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, const SmallVectorImpl< DbgOpID > &DebugOps)
void considerOverlaps(const DebugVariable &Var, const DILocation *Loc)
VLocTracker(DebugVariableMap &DVMap, const OverlapMap &O, const DIExpression *EmptyExpr)
DebugVariableMap & DVMap
Ref to function-wide map of DebugVariable <=> ID-numbers.
DbgValueProperties EmptyProperties
Unique identifier for a value defined by an instruction, as a value type.
uint64_t LocNo
The Instruction where the def happens.
ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
bool operator==(const ValueIDNum &Other) const
bool operator<(const ValueIDNum &Other) const
static ValueIDNum fromU64(uint64_t v)
std::string asString(const std::string &mlocname) const
ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
bool operator!=(const ValueIDNum &Other) const
static ValueIDNum TombstoneValue
struct LiveDebugValues::ValueIDNum::@481::@482 s
uint64_t InstNo
The block where the def happens.
Tracker for converting machine value locations and variable values into variable locations (the outpu...
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
DWARF expression.
DbgVariableFragmentInfo FragmentInfo
static bool isEqualExpression(const DIExpression *FirstExpr, bool FirstIndirect, const DIExpression *SecondExpr, bool SecondIndirect)
Determines whether two debug values should produce equivalent DWARF expressions, using their DIExpres...
uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
Debug location.
This class represents an Operation in the Expression.
Identifies a unique instance of a variable.
static bool isDefaultFragment(const FragmentInfo F)
const DILocation * getInlinedAt() const
FragmentInfo getFragmentOrDefault() const
const DILocalVariable * getVariable() const
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition: DenseMap.h:226
unsigned size() const
Definition: DenseMap.h:99
iterator end()
Definition: DenseMap.h:84
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
StorageT::size_type size() const
Definition: IndexedMap.h:79
LexicalScopes - This class provides interface to collect and use lexical scoping information from mac...
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:132
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StackOffset holds a fixed and a scalable offset in bytes.
Definition: TypeSize.h:33
static StackOffset getScalable(int64_t Scalable)
Definition: TypeSize.h:43
static StackOffset getFixed(int64_t Fixed)
Definition: TypeSize.h:42
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Information about stack frame layout on the target.
TargetInstrInfo - Interface to description of machine instruction set.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
Target-Independent Code Generator Pass Configuration Options.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TypeSize getRegSizeInBits(const TargetRegisterClass &RC) const
Return the size in bits of a register from class RC.
unsigned getSubRegIdxSize(unsigned Idx) const
Get the size of the bit range covered by a sub-register index.
unsigned getSubRegIdxOffset(unsigned Idx) const
Get the offset of the bit range covered by a sub-register index.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
std::string str() const
Return the twine contents as a std::string.
Definition: Twine.cpp:17
Twine concat(const Twine &Suffix) const
Definition: Twine.h:525
UniqueVector - This class produces a sequential ID number (base 1) for each unique entry that is adde...
Definition: UniqueVector.h:24
See the file comment.
Definition: ValueMap.h:84
LLVM Value Representation.
Definition: Value.h:74
A range adaptor for a pair of iterators.
std::pair< DebugVariable, const DILocation * > VarAndLoc
std::pair< const DILocalVariable *, DIExpression::FragmentInfo > FragmentOfVar
Types for recording sets of variable fragments that overlap.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
hash_code hash_value(const FixedPointSemantics &Val)
Definition: APFixedPoint.h:136
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
Definition: STLExtras.h:1192
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
std::tuple< const DIScope *, const DIScope *, const DILocalVariable * > VarID
A unique key that represents a debug variable.
@ Other
Any other memory.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
Definition: STLExtras.h:2067
An ID used in the DbgOpIDMap (below) to lookup a stored DbgOp.
bool operator==(const DbgOpID &Other) const
bool operator!=(const DbgOpID &Other) const
void dump(const MLocTracker *MTrack, const DbgOpIDMap *OpStore) const
DbgOpID(bool IsConst, uint32_t Index)
TODO: Might pack better if we changed this to a Struct of Arrays, since MachineOperand is width 32,...
void dump(const MLocTracker *MTrack) const
DbgOp(MachineOperand MO)
A collection of ValueTables, one per BB in a function, with convenient accessor methods.
ValueTable & operator[](int MBBNum) const
Returns the ValueTable associated with the MachineBasicBlock whose number is MBBNum.
void ejectTableForBlock(const MachineBasicBlock &MBB)
Frees the memory of the ValueTable associated with MBB.
ValueTable & tableForEntryMBB() const
Returns the ValueTable associated with the entry MachineBasicBlock.
FuncValueTable(int NumBBs, int NumLocs)
ValueTable & operator[](const MachineBasicBlock &MBB) const
Returns the ValueTable associated with MBB.
bool hasTableFor(MachineBasicBlock &MBB) const
Returns true if the ValueTable associated with MBB has not been freed.
A DbgOp whose ID (if any) has resolved to an actual location, LocIdx.
bool operator==(const ResolvedDbgOp &Other) const
void dump(const MLocTracker *MTrack) const
bool operator<(const SpillLoc &Other) const
bool operator==(const SpillLoc &Other) const
static bool isEqual(const LocIdx &A, const LocIdx &B)
static unsigned getHashValue(const LocIdx &Loc)
static unsigned getHashValue(const ValueIDNum &Val)
static bool isEqual(const ValueIDNum &A, const ValueIDNum &B)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:52
A MapVector that performs no allocations if smaller than a certain size.
Definition: MapVector.h:254