57 if (
F.getFnAttribute(
"disable-tail-calls").getValueAsBool())
63 AttrBuilder CallerAttrs(
F.getContext(),
F.getAttributes().getRetAttrs());
64 for (
const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65 Attribute::DereferenceableOrNull, Attribute::NoAlias,
66 Attribute::NonNull, Attribute::NoUndef,
67 Attribute::Range, Attribute::NoFPClass})
74 if (CallerAttrs.
contains(Attribute::ZExt) ||
75 CallerAttrs.
contains(Attribute::SExt))
86 for (
unsigned I = 0, E = ArgLocs.
size();
I != E; ++
I) {
102 Register ArgReg = cast<RegisterSDNode>(
Value->getOperand(1))->getReg();
103 if (
MRI.getLiveInPhysReg(ArgReg) != Reg)
113 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
114 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
115 IsNoExt = Call->paramHasAttr(ArgIdx, Attribute::NoExt);
116 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
117 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
118 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
119 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
120 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
121 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
122 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
123 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
124 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
125 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
126 Alignment = Call->getParamStackAlign(ArgIdx);
129 "multiple ABI attributes?");
145std::pair<SDValue, SDValue>
155 Args.reserve(Ops.
size());
158 for (
unsigned i = 0; i < Ops.
size(); ++i) {
161 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.
getContext());
164 Entry.IsZExt = !Entry.IsSExt;
168 Entry.IsSExt = Entry.IsZExt =
false;
170 Args.push_back(Entry);
173 if (LC == RTLIB::UNKNOWN_LIBCALL)
181 bool zeroExtend = !signExtend;
185 signExtend = zeroExtend =
false;
196 return LowerCallTo(CLI);
200 std::vector<EVT> &MemOps,
unsigned Limit,
const MemOp &
Op,
unsigned DstAS,
202 if (Limit != ~
unsigned(0) &&
Op.isMemcpyWithFixedDstAlign() &&
203 Op.getSrcAlign() <
Op.getDstAlign())
208 if (VT == MVT::Other) {
212 VT = MVT::LAST_INTEGER_VALUETYPE;
213 if (
Op.isFixedDstAlign())
220 MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
231 unsigned NumMemOps = 0;
235 while (VTSize >
Size) {
246 else if (NewVT == MVT::i64 &&
258 if (NewVT == MVT::i8)
267 if (NumMemOps &&
Op.allowOverlap() && NewVTSize <
Size &&
269 VT, DstAS,
Op.isFixedDstAlign() ?
Op.getDstAlign() :
Align(1),
279 if (++NumMemOps > Limit)
282 MemOps.push_back(VT);
297 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
307 bool IsSignaling)
const {
312 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
313 &&
"Unsupported setcc type!");
316 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
317 bool ShouldInvertCC =
false;
321 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
322 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
323 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
327 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
328 (VT == MVT::f64) ? RTLIB::UNE_F64 :
329 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
333 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
334 (VT == MVT::f64) ? RTLIB::OGE_F64 :
335 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
339 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
340 (VT == MVT::f64) ? RTLIB::OLT_F64 :
341 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
345 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
346 (VT == MVT::f64) ? RTLIB::OLE_F64 :
347 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
351 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
352 (VT == MVT::f64) ? RTLIB::OGT_F64 :
353 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
356 ShouldInvertCC =
true;
359 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
360 (VT == MVT::f64) ? RTLIB::UO_F64 :
361 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
365 ShouldInvertCC =
true;
368 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
369 (VT == MVT::f64) ? RTLIB::UO_F64 :
370 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
371 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
372 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
373 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
377 ShouldInvertCC =
true;
380 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
381 (VT == MVT::f64) ? RTLIB::OGE_F64 :
382 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
385 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
386 (VT == MVT::f64) ? RTLIB::OGT_F64 :
387 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
390 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
391 (VT == MVT::f64) ? RTLIB::OLE_F64 :
392 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
395 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
396 (VT == MVT::f64) ? RTLIB::OLT_F64 :
397 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
405 SDValue Ops[2] = {NewLHS, NewRHS};
410 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
415 if (ShouldInvertCC) {
417 CCCode = getSetCCInverse(CCCode, RetVT);
420 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
427 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
430 CCCode = getSetCCInverse(CCCode, RetVT);
431 NewLHS = DAG.
getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
445 if (!isPositionIndependent())
459 unsigned JTEncoding = getJumpTableEncoding();
495 if (!TM.shouldAssumeDSOLocal(GV))
499 if (isPositionIndependent())
515 const APInt &DemandedElts,
518 unsigned Opcode =
Op.getOpcode();
526 if (targetShrinkDemandedConstant(
Op,
DemandedBits, DemandedElts, TLO))
536 auto *Op1C = dyn_cast<ConstantSDNode>(
Op.getOperand(1));
537 if (!Op1C || Op1C->isOpaque())
541 const APInt &
C = Op1C->getAPIntValue();
546 EVT VT =
Op.getValueType();
563 EVT VT =
Op.getValueType();
578 "ShrinkDemandedOp only supports binary operators!");
579 assert(
Op.getNode()->getNumValues() == 1 &&
580 "ShrinkDemandedOp only supports nodes with one result!");
582 EVT VT =
Op.getValueType();
591 Op.getOperand(1).getValueType().getScalarSizeInBits() ==
BitWidth &&
592 "ShrinkDemandedOp only supports operands that have the same size!");
596 if (!
Op.getNode()->hasOneUse())
613 Op.getOpcode(), dl, SmallVT,
616 assert(DemandedSize <= SmallVTBits &&
"Narrowed below demanded bits?");
631 bool Simplified = SimplifyDemandedBits(
Op,
DemandedBits, Known, TLO);
640 const APInt &DemandedElts,
660 bool AssumeSingleUse)
const {
661 EVT VT =
Op.getValueType();
677 EVT VT =
Op.getValueType();
695 switch (
Op.getOpcode()) {
701 EVT SrcVT = Src.getValueType();
702 EVT DstVT =
Op.getValueType();
708 if (NumSrcEltBits == NumDstEltBits)
709 if (
SDValue V = SimplifyMultipleUseDemandedBits(
713 if (SrcVT.
isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
714 unsigned Scale = NumDstEltBits / NumSrcEltBits;
718 for (
unsigned i = 0; i != Scale; ++i) {
719 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
720 unsigned BitOffset = EltOffset * NumSrcEltBits;
723 DemandedSrcBits |= Sub;
724 for (
unsigned j = 0; j != NumElts; ++j)
726 DemandedSrcElts.
setBit((j * Scale) + i);
730 if (
SDValue V = SimplifyMultipleUseDemandedBits(
731 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
736 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
737 unsigned Scale = NumSrcEltBits / NumDstEltBits;
741 for (
unsigned i = 0; i != NumElts; ++i)
742 if (DemandedElts[i]) {
743 unsigned Offset = (i % Scale) * NumDstEltBits;
745 DemandedSrcElts.
setBit(i / Scale);
748 if (
SDValue V = SimplifyMultipleUseDemandedBits(
749 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
770 return Op.getOperand(0);
772 return Op.getOperand(1);
783 return Op.getOperand(0);
785 return Op.getOperand(1);
795 return Op.getOperand(0);
797 return Op.getOperand(1);
803 return Op.getOperand(0);
807 return Op.getOperand(1);
813 if (std::optional<uint64_t> MaxSA =
816 unsigned ShAmt = *MaxSA;
817 unsigned NumSignBits =
820 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
828 if (std::optional<uint64_t> MaxSA =
831 unsigned ShAmt = *MaxSA;
835 unsigned NumSignBits =
867 EVT ExVT = cast<VTSDNode>(
Op.getOperand(1))->getVT();
874 if (NumSignBits >= (
BitWidth - ExBits + 1))
887 EVT SrcVT = Src.getValueType();
888 EVT DstVT =
Op.getValueType();
889 if (IsLE && DemandedElts == 1 &&
902 auto *CIdx = dyn_cast<ConstantSDNode>(
Op.getOperand(2));
905 !DemandedElts[CIdx->getZExtValue()])
919 if (DemandedSubElts == 0)
929 bool AllUndef =
true, IdentityLHS =
true, IdentityRHS =
true;
930 for (
unsigned i = 0; i != NumElts; ++i) {
931 int M = ShuffleMask[i];
932 if (M < 0 || !DemandedElts[i])
935 IdentityLHS &= (M == (int)i);
936 IdentityRHS &= ((M - NumElts) == i);
942 return Op.getOperand(0);
944 return Op.getOperand(1);
954 if (
SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
964 unsigned Depth)
const {
965 EVT VT =
Op.getValueType();
972 return SimplifyMultipleUseDemandedBits(
Op,
DemandedBits, DemandedElts, DAG,
978 unsigned Depth)
const {
980 return SimplifyMultipleUseDemandedBits(
Op,
DemandedBits, DemandedElts, DAG,
992 "SRL or SRA node is required here!");
995 if (!N1C || !N1C->
isOne())
1042 unsigned ShiftOpc =
Op.getOpcode();
1043 bool IsSigned =
false;
1047 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1052 unsigned NumZero = std::min(NumZeroA, NumZeroB);
1058 if (NumZero >= 2 && NumSigned < NumZero) {
1063 if (NumSigned >= 1) {
1071 if (NumZero >= 1 && NumSigned < NumZero) {
1091 EVT VT =
Op.getValueType();
1105 Add.getOperand(1)) &&
1116 (isa<ConstantSDNode>(ExtOpA) || isa<ConstantSDNode>(ExtOpB)))
1136 unsigned Depth,
bool AssumeSingleUse)
const {
1139 "Mask size mismatches value type size!");
1144 EVT VT =
Op.getValueType();
1146 unsigned NumElts = OriginalDemandedElts.
getBitWidth();
1148 "Unexpected vector size");
1151 APInt DemandedElts = OriginalDemandedElts;
1171 cast<ConstantFPSDNode>(
Op)->getValueAPF().bitcastToAPInt());
1176 bool HasMultiUse =
false;
1177 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse()) {
1186 }
else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1195 switch (
Op.getOpcode()) {
1199 if (!DemandedElts[0])
1204 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1206 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO,
Depth + 1))
1211 if (DemandedElts == 1)
1224 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO,
Depth + 1))
1233 auto *LD = cast<LoadSDNode>(
Op);
1234 if (getTargetConstantFromLoad(LD)) {
1240 EVT MemVT = LD->getMemoryVT();
1252 auto *CIdx = dyn_cast<ConstantSDNode>(
Op.getOperand(2));
1257 APInt DemandedVecElts(DemandedElts);
1259 unsigned Idx = CIdx->getZExtValue();
1263 if (!DemandedElts[
Idx])
1270 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO,
Depth + 1))
1276 if (SimplifyDemandedBits(Vec,
DemandedBits, DemandedVecElts, KnownVec, TLO,
1280 if (!!DemandedVecElts)
1295 APInt DemandedSrcElts = DemandedElts;
1299 if (SimplifyDemandedBits(Sub,
DemandedBits, DemandedSubElts, KnownSub, TLO,
1302 if (SimplifyDemandedBits(Src,
DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1308 if (!!DemandedSubElts)
1310 if (!!DemandedSrcElts)
1316 SDValue NewSub = SimplifyMultipleUseDemandedBits(
1318 SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1320 if (NewSub || NewSrc) {
1321 NewSub = NewSub ? NewSub : Sub;
1322 NewSrc = NewSrc ? NewSrc : Src;
1335 if (Src.getValueType().isScalableVector())
1338 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1341 if (SimplifyDemandedBits(Src,
DemandedBits, DemandedSrcElts, Known, TLO,
1347 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1362 EVT SubVT =
Op.getOperand(0).getValueType();
1365 for (
unsigned i = 0; i != NumSubVecs; ++i) {
1366 APInt DemandedSubElts =
1367 DemandedElts.
extractBits(NumSubElts, i * NumSubElts);
1368 if (SimplifyDemandedBits(
Op.getOperand(i),
DemandedBits, DemandedSubElts,
1369 Known2, TLO,
Depth + 1))
1372 if (!!DemandedSubElts)
1382 APInt DemandedLHS, DemandedRHS;
1387 if (!!DemandedLHS || !!DemandedRHS) {
1393 if (!!DemandedLHS) {
1394 if (SimplifyDemandedBits(Op0,
DemandedBits, DemandedLHS, Known2, TLO,
1399 if (!!DemandedRHS) {
1400 if (SimplifyDemandedBits(Op1,
DemandedBits, DemandedRHS, Known2, TLO,
1407 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1409 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1411 if (DemandedOp0 || DemandedOp1) {
1412 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1413 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1448 LHSKnown.
One == ~RHSC->getAPIntValue()) {
1460 unsigned NumSubElts =
1477 if (SimplifyDemandedBits(Op1,
DemandedBits, DemandedElts, Known, TLO,
1481 Known2, TLO,
Depth + 1))
1503 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1505 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1507 if (DemandedOp0 || DemandedOp1) {
1508 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1509 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1521 if (SimplifyDemandedBits(Op1,
DemandedBits, DemandedElts, Known, TLO,
1527 if (SimplifyDemandedBits(Op0, ~Known.
One &
DemandedBits, DemandedElts,
1528 Known2, TLO,
Depth + 1)) {
1548 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1550 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1552 if (DemandedOp0 || DemandedOp1) {
1553 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1554 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1565 for (
int I = 0;
I != 2; ++
I) {
1568 SDValue Alt =
Op.getOperand(1 -
I).getOperand(0);
1569 SDValue C2 =
Op.getOperand(1 -
I).getOperand(1);
1571 for (
int J = 0; J != 2; ++J) {
1594 if (SimplifyDemandedBits(Op1,
DemandedBits, DemandedElts, Known, TLO,
1597 if (SimplifyDemandedBits(Op0,
DemandedBits, DemandedElts, Known2, TLO,
1624 if (
C->getAPIntValue() == Known2.
One) {
1633 if (!
C->isAllOnes() &&
DemandedBits.isSubsetOf(
C->getAPIntValue())) {
1645 if (ShiftC->getAPIntValue().ult(
BitWidth)) {
1646 uint64_t ShiftAmt = ShiftC->getZExtValue();
1649 : Ones.
lshr(ShiftAmt);
1651 isDesirableToCommuteXorWithShift(
Op.getNode())) {
1666 if (!
C || !
C->isAllOnes())
1672 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1674 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1676 if (DemandedOp0 || DemandedOp1) {
1677 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1678 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1688 if (SimplifyDemandedBits(
Op.getOperand(2),
DemandedBits, DemandedElts,
1689 Known, TLO,
Depth + 1))
1691 if (SimplifyDemandedBits(
Op.getOperand(1),
DemandedBits, DemandedElts,
1692 Known2, TLO,
Depth + 1))
1703 if (SimplifyDemandedBits(
Op.getOperand(2),
DemandedBits, DemandedElts,
1704 Known, TLO,
Depth + 1))
1706 if (SimplifyDemandedBits(
Op.getOperand(1),
DemandedBits, DemandedElts,
1707 Known2, TLO,
Depth + 1))
1714 if (SimplifyDemandedBits(
Op.getOperand(3),
DemandedBits, DemandedElts,
1715 Known, TLO,
Depth + 1))
1717 if (SimplifyDemandedBits(
Op.getOperand(2),
DemandedBits, DemandedElts,
1718 Known2, TLO,
Depth + 1))
1761 if (std::optional<uint64_t> KnownSA =
1763 unsigned ShAmt = *KnownSA;
1773 if (std::optional<uint64_t> InnerSA =
1775 unsigned C1 = *InnerSA;
1777 int Diff = ShAmt - C1;
1796 if (ShAmt < InnerBits &&
DemandedBits.getActiveBits() <= InnerBits &&
1797 isTypeDesirableForOp(
ISD::SHL, InnerVT)) {
1814 InnerOp, DemandedElts,
Depth + 2)) {
1815 unsigned InnerShAmt = *SA2;
1816 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1818 (InnerBits - InnerShAmt + ShAmt) &&
1832 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1839 Known.
Zero <<= ShAmt;
1840 Known.
One <<= ShAmt;
1846 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1847 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
1858 Op.getNode()->hasOneUse()) {
1866 isTypeDesirableForOp(
ISD::SHL, SmallVT) &&
1869 assert(DemandedSize <= SmallVTBits &&
1870 "Narrowed below demanded bits?");
1890 isTypeDesirableForOp(
ISD::SHL, HalfVT) &&
1899 Flags.setNoSignedWrap(IsNSW);
1900 Flags.setNoUnsignedWrap(IsNUW);
1905 NewShiftAmt, Flags);
1918 if (SimplifyDemandedBits(Op0, DemandedFromOp, DemandedElts, Known, TLO,
1931 if (std::optional<uint64_t> MaxSA =
1933 unsigned ShAmt = *MaxSA;
1934 unsigned NumSignBits =
1937 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1947 if (std::optional<uint64_t> KnownSA =
1949 unsigned ShAmt = *KnownSA;
1959 if (std::optional<uint64_t> InnerSA =
1961 unsigned C1 = *InnerSA;
1963 int Diff = ShAmt - C1;
1979 if (std::optional<uint64_t> InnerSA =
1981 unsigned C1 = *InnerSA;
1983 unsigned Combined = std::min(C1 + ShAmt,
BitWidth - 1);
1995 if (
Op->getFlags().hasExact())
2004 isTypeDesirableForOp(
ISD::SRL, HalfVT) &&
2020 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2030 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2031 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2045 if (std::optional<uint64_t> MaxSA =
2047 unsigned ShAmt = *MaxSA;
2051 unsigned NumSignBits =
2060 DemandedElts,
Depth + 1))
2084 if (std::optional<uint64_t> KnownSA =
2086 unsigned ShAmt = *KnownSA;
2093 if (std::optional<uint64_t> InnerSA =
2095 unsigned LowBits =
BitWidth - ShAmt;
2101 if (*InnerSA == ShAmt) {
2111 unsigned NumSignBits =
2113 if (NumSignBits > ShAmt)
2123 if (
Op->getFlags().hasExact())
2131 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
2142 Flags.setExact(
Op->getFlags().hasExact());
2160 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2161 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2171 DemandedElts,
Depth + 1))
2184 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2189 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1,
DemandedBits, DemandedElts,
2190 Known, TLO,
Depth + 1))
2199 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2202 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
2215 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2216 Op0, Demanded0, DemandedElts, TLO.
DAG,
Depth + 1);
2217 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2218 Op1, Demanded1, DemandedElts, TLO.
DAG,
Depth + 1);
2219 if (DemandedOp0 || DemandedOp1) {
2220 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2221 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2232 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
2233 Known2, TLO,
Depth + 1))
2249 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2255 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
2265 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2270 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2279 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
2289 unsigned Opc =
Op.getOpcode();
2296 unsigned NumSignBits =
2300 if (NumSignBits >= NumDemandedUpperBits)
2341 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2367 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2375 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2395 EVT ExVT = cast<VTSDNode>(
Op.getOperand(1))->getVT();
2400 unsigned MinSignedBits =
2402 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2405 if (!AlreadySignExtended) {
2423 InputDemandedBits.
setBit(ExVTBits - 1);
2425 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO,
2433 if (Known.
Zero[ExVTBits - 1])
2437 if (Known.
One[ExVTBits - 1]) {
2447 EVT HalfVT =
Op.getOperand(0).getValueType();
2455 if (SimplifyDemandedBits(
Op.getOperand(0), MaskLo, KnownLo, TLO,
Depth + 1))
2458 if (SimplifyDemandedBits(
Op.getOperand(1), MaskHi, KnownHi, TLO,
Depth + 1))
2461 Known = KnownHi.
concat(KnownLo);
2470 EVT SrcVT = Src.getValueType();
2479 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2490 APInt InDemandedElts = DemandedElts.
zext(InElts);
2491 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2500 if (
SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2501 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2511 EVT SrcVT = Src.getValueType();
2516 APInt InDemandedElts = DemandedElts.
zext(InElts);
2521 InDemandedBits.
setBit(InBits - 1);
2527 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2542 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2563 if (
SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2564 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2574 EVT SrcVT = Src.getValueType();
2581 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2586 APInt InDemandedElts = DemandedElts.
zext(InElts);
2587 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2594 if (
SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2595 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2604 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2606 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2616 if (
SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2617 Src, TruncMask, DemandedElts, TLO.
DAG,
Depth + 1))
2622 switch (Src.getOpcode()) {
2633 if (Src.getNode()->hasOneUse()) {
2645 std::optional<uint64_t> ShAmtC =
2647 if (!ShAmtC || *ShAmtC >=
BitWidth)
2673 EVT ZVT = cast<VTSDNode>(
Op.getOperand(1))->getVT();
2675 if (SimplifyDemandedBits(
Op.getOperand(0), ~InMask |
DemandedBits, Known,
2679 Known.
Zero |= ~InMask;
2680 Known.
One &= (~Known.Zero);
2686 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2687 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2695 if (
auto *CIdx = dyn_cast<ConstantSDNode>(
Idx))
2696 if (CIdx->getAPIntValue().ult(NumSrcElts))
2703 DemandedSrcBits = DemandedSrcBits.
trunc(EltBitWidth);
2705 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2711 if (
SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2712 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2728 EVT SrcVT = Src.getValueType();
2738 if ((OpVTLegal || i32Legal) && VT.
isSimple() && SrcVT != MVT::f16 &&
2739 SrcVT != MVT::f128) {
2741 EVT Ty = OpVTLegal ? VT : MVT::i32;
2745 unsigned OpVTSizeInBits =
Op.getValueSizeInBits();
2746 if (!OpVTLegal && OpVTSizeInBits > 32)
2748 unsigned ShVal =
Op.getValueSizeInBits() - 1;
2758 unsigned Scale =
BitWidth / NumSrcEltBits;
2762 for (
unsigned i = 0; i != Scale; ++i) {
2763 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2764 unsigned BitOffset = EltOffset * NumSrcEltBits;
2767 DemandedSrcBits |= Sub;
2768 for (
unsigned j = 0; j != NumElts; ++j)
2769 if (DemandedElts[j])
2770 DemandedSrcElts.
setBit((j * Scale) + i);
2774 APInt KnownSrcUndef, KnownSrcZero;
2775 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2776 KnownSrcZero, TLO,
Depth + 1))
2780 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2781 KnownSrcBits, TLO,
Depth + 1))
2783 }
else if (IsLE && (NumSrcEltBits %
BitWidth) == 0) {
2785 unsigned Scale = NumSrcEltBits /
BitWidth;
2789 for (
unsigned i = 0; i != NumElts; ++i)
2790 if (DemandedElts[i]) {
2793 DemandedSrcElts.
setBit(i / Scale);
2797 APInt KnownSrcUndef, KnownSrcZero;
2798 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2799 KnownSrcZero, TLO,
Depth + 1))
2804 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2805 KnownSrcBits, TLO,
Depth + 1))
2810 if (
SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2811 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2833 if (
C &&
C->getAPIntValue().countr_zero() == CTZ) {
2852 SDValue Op0 =
Op.getOperand(0), Op1 =
Op.getOperand(1);
2857 auto GetDemandedBitsLHSMask = [&](
APInt Demanded,
2863 if (SimplifyDemandedBits(Op1, LoMask, DemandedElts, KnownOp1, TLO,
2865 SimplifyDemandedBits(Op0, GetDemandedBitsLHSMask(LoMask, KnownOp1),
2866 DemandedElts, KnownOp0, TLO,
Depth + 1) ||
2882 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2883 Op0, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2884 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2885 Op1, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2886 if (DemandedOp0 || DemandedOp1) {
2887 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2888 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2902 if (
C && !
C->isAllOnes() && !
C->isOne() &&
2903 (
C->getAPIntValue() | HighMask).isAllOnes()) {
2915 auto getShiftLeftAmt = [&HighMask](
SDValue Mul) ->
unsigned {
2942 if (
unsigned ShAmt = getShiftLeftAmt(Op0))
2945 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2946 return foldMul(
ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2950 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2951 return foldMul(
ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2959 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
2960 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
2970 if (
Op.getValueType().isScalableVector())
2972 if (SimplifyDemandedBitsForTargetNode(
Op,
DemandedBits, DemandedElts,
2985 if (!isTargetCanonicalConstantNode(
Op) &&
2989 auto *C = dyn_cast<ConstantSDNode>(V);
2990 return C && C->isOpaque();
3011 const APInt &DemandedElts,
3017 APInt KnownUndef, KnownZero;
3019 SimplifyDemandedVectorElts(
Op, DemandedElts, KnownUndef, KnownZero, TLO);
3031 const APInt &UndefOp0,
3032 const APInt &UndefOp1) {
3035 "Vector binop only");
3040 UndefOp1.
getBitWidth() == NumElts &&
"Bad type for undef analysis");
3042 auto getUndefOrConstantElt = [&](
SDValue V,
unsigned Index,
3043 const APInt &UndefVals) {
3044 if (UndefVals[Index])
3047 if (
auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
3051 auto *
C = dyn_cast<ConstantSDNode>(Elt);
3052 if (isa<ConstantFPSDNode>(Elt) || Elt.
isUndef() || (
C && !
C->isOpaque()))
3060 for (
unsigned i = 0; i != NumElts; ++i) {
3079 bool AssumeSingleUse)
const {
3080 EVT VT =
Op.getValueType();
3081 unsigned Opcode =
Op.getOpcode();
3082 APInt DemandedElts = OriginalDemandedElts;
3088 if (!shouldSimplifyDemandedVectorElts(
Op, TLO))
3096 "Mask size mismatches value type element count!");
3105 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse())
3109 if (DemandedElts == 0) {
3124 auto SimplifyDemandedVectorEltsBinOp = [&](
SDValue Op0,
SDValue Op1) {
3125 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
3127 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
3129 if (NewOp0 || NewOp1) {
3132 NewOp1 ? NewOp1 : Op1,
Op->getFlags());
3140 if (!DemandedElts[0]) {
3148 EVT SrcVT = Src.getValueType();
3160 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3170 EVT SrcVT = Src.getValueType();
3179 if (NumSrcElts == NumElts)
3180 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
3181 KnownZero, TLO,
Depth + 1);
3183 APInt SrcDemandedElts, SrcZero, SrcUndef;
3187 if ((NumElts % NumSrcElts) == 0) {
3188 unsigned Scale = NumElts / NumSrcElts;
3190 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3200 for (
unsigned i = 0; i != NumElts; ++i)
3201 if (DemandedElts[i]) {
3202 unsigned Ofs = (i % Scale) * EltSizeInBits;
3203 SrcDemandedBits.
setBits(Ofs, Ofs + EltSizeInBits);
3207 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
3215 for (
unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3219 for (
unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3220 unsigned Elt = Scale * SrcElt + SubElt;
3221 if (DemandedElts[Elt])
3229 for (
unsigned i = 0; i != NumSrcElts; ++i) {
3230 if (SrcDemandedElts[i]) {
3232 KnownZero.
setBits(i * Scale, (i + 1) * Scale);
3234 KnownUndef.
setBits(i * Scale, (i + 1) * Scale);
3242 if ((NumSrcElts % NumElts) == 0) {
3243 unsigned Scale = NumSrcElts / NumElts;
3245 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
3251 for (
unsigned i = 0; i != NumElts; ++i) {
3252 if (DemandedElts[i]) {
3281 [&](
SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3283 bool Updated =
false;
3284 for (
unsigned i = 0; i != NumElts; ++i) {
3285 if (!DemandedElts[i] && !Ops[i].
isUndef()) {
3295 for (
unsigned i = 0; i != NumElts; ++i) {
3297 if (
SrcOp.isUndef()) {
3299 }
else if (EltSizeInBits ==
SrcOp.getScalarValueSizeInBits() &&
3307 EVT SubVT =
Op.getOperand(0).getValueType();
3310 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3313 APInt SubUndef, SubZero;
3314 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
3317 KnownUndef.
insertBits(SubUndef, i * NumSubElts);
3318 KnownZero.
insertBits(SubZero, i * NumSubElts);
3323 bool FoundNewSub =
false;
3325 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3328 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
3329 SubOp, SubElts, TLO.
DAG,
Depth + 1);
3330 DemandedSubOps.
push_back(NewSubOp ? NewSubOp : SubOp);
3331 FoundNewSub = NewSubOp ?
true : FoundNewSub;
3349 APInt DemandedSrcElts = DemandedElts;
3352 APInt SubUndef, SubZero;
3353 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
3358 if (!DemandedSrcElts && !Src.isUndef())
3363 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
3371 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3372 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3373 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
3374 Sub, DemandedSubElts, TLO.
DAG,
Depth + 1);
3375 if (NewSrc || NewSub) {
3376 NewSrc = NewSrc ? NewSrc : Src;
3377 NewSub = NewSub ? NewSub : Sub;
3379 NewSub,
Op.getOperand(2));
3388 if (Src.getValueType().isScalableVector())
3391 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3394 APInt SrcUndef, SrcZero;
3395 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3403 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
3404 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3416 auto *CIdx = dyn_cast<ConstantSDNode>(
Op.getOperand(2));
3420 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3421 unsigned Idx = CIdx->getZExtValue();
3422 if (!DemandedElts[
Idx])
3425 APInt DemandedVecElts(DemandedElts);
3427 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3428 KnownZero, TLO,
Depth + 1))
3437 APInt VecUndef, VecZero;
3438 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3451 APInt UndefSel, ZeroSel;
3452 if (SimplifyDemandedVectorElts(Sel, DemandedElts, UndefSel, ZeroSel, TLO,
3457 APInt DemandedLHS(DemandedElts);
3458 APInt DemandedRHS(DemandedElts);
3459 APInt UndefLHS, ZeroLHS;
3460 APInt UndefRHS, ZeroRHS;
3461 if (SimplifyDemandedVectorElts(
LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3464 if (SimplifyDemandedVectorElts(
RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3468 KnownUndef = UndefLHS & UndefRHS;
3469 KnownZero = ZeroLHS & ZeroRHS;
3473 APInt DemandedSel = DemandedElts & ~KnownZero;
3474 if (DemandedSel != DemandedElts)
3475 if (SimplifyDemandedVectorElts(Sel, DemandedSel, UndefSel, ZeroSel, TLO,
3487 APInt DemandedLHS(NumElts, 0);
3488 APInt DemandedRHS(NumElts, 0);
3489 for (
unsigned i = 0; i != NumElts; ++i) {
3490 int M = ShuffleMask[i];
3491 if (M < 0 || !DemandedElts[i])
3493 assert(0 <= M && M < (
int)(2 * NumElts) &&
"Shuffle index out of range");
3494 if (M < (
int)NumElts)
3497 DemandedRHS.
setBit(M - NumElts);
3501 APInt UndefLHS, ZeroLHS;
3502 APInt UndefRHS, ZeroRHS;
3503 if (SimplifyDemandedVectorElts(
LHS, DemandedLHS, UndefLHS, ZeroLHS, TLO,
3506 if (SimplifyDemandedVectorElts(
RHS, DemandedRHS, UndefRHS, ZeroRHS, TLO,
3511 bool Updated =
false;
3512 bool IdentityLHS =
true, IdentityRHS =
true;
3514 for (
unsigned i = 0; i != NumElts; ++i) {
3515 int &M = NewMask[i];
3518 if (!DemandedElts[i] || (M < (
int)NumElts && UndefLHS[M]) ||
3519 (M >= (
int)NumElts && UndefRHS[M - NumElts])) {
3523 IdentityLHS &= (M < 0) || (M == (
int)i);
3524 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3529 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.
LegalOps) {
3531 buildLegalVectorShuffle(VT,
DL,
LHS,
RHS, NewMask, TLO.
DAG);
3537 for (
unsigned i = 0; i != NumElts; ++i) {
3538 int M = ShuffleMask[i];
3541 }
else if (M < (
int)NumElts) {
3547 if (UndefRHS[M - NumElts])
3549 if (ZeroRHS[M - NumElts])
3558 APInt SrcUndef, SrcZero;
3560 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3561 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3562 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3569 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3570 DemandedSrcElts == 1) {
3583 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() ==
ISD::AND &&
3584 Op->isOnlyUserOf(Src.getNode()) &&
3585 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3587 EVT SrcVT = Src.getValueType();
3594 ISD::AND,
DL, SrcVT, {Src.getOperand(1), Mask})) {
3608 if (Op0 == Op1 &&
Op->isOnlyUserOf(Op0.
getNode())) {
3609 APInt UndefLHS, ZeroLHS;
3610 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3631 APInt UndefRHS, ZeroRHS;
3632 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3635 APInt UndefLHS, ZeroLHS;
3636 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3640 KnownZero = ZeroLHS & ZeroRHS;
3646 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3658 APInt UndefRHS, ZeroRHS;
3659 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3662 APInt UndefLHS, ZeroLHS;
3663 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3667 KnownZero = ZeroLHS;
3668 KnownUndef = UndefLHS & UndefRHS;
3673 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3684 APInt SrcUndef, SrcZero;
3685 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3690 APInt DemandedElts0 = DemandedElts & ~SrcZero;
3691 if (SimplifyDemandedVectorElts(Op0, DemandedElts0, KnownUndef, KnownZero,
3695 KnownUndef &= DemandedElts0;
3696 KnownZero &= DemandedElts0;
3701 if (DemandedElts.
isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3708 KnownZero |= SrcZero;
3709 KnownUndef &= SrcUndef;
3710 KnownUndef &= ~KnownZero;
3714 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3721 if (SimplifyDemandedVectorElts(
Op.getOperand(0), DemandedElts, KnownUndef,
3722 KnownZero, TLO,
Depth + 1))
3726 if (
SDValue NewOp = SimplifyMultipleUseDemandedVectorElts(
3727 Op.getOperand(0), DemandedElts, TLO.
DAG,
Depth + 1))
3741 if (SimplifyDemandedVectorElts(
Op.getOperand(0), DemandedElts, KnownUndef,
3742 KnownZero, TLO,
Depth + 1))
3748 if (SimplifyDemandedVectorEltsForTargetNode(
Op, DemandedElts, KnownUndef,
3749 KnownZero, TLO,
Depth))
3754 if (SimplifyDemandedBits(
Op,
DemandedBits, OriginalDemandedElts, Known,
3755 TLO,
Depth, AssumeSingleUse))
3761 assert((KnownUndef & KnownZero) == 0 &&
"Elements flagged as undef AND zero");
3775 const APInt &DemandedElts,
3777 unsigned Depth)
const {
3782 "Should use MaskedValueIsZero if you don't know whether Op"
3783 " is a target node!");
3790 unsigned Depth)
const {
3802 unsigned Depth)
const {
3811 unsigned Depth)
const {
3816 "Should use ComputeNumSignBits if you don't know whether Op"
3817 " is a target node!");
3834 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3835 " is a target node!");
3846 "Should use SimplifyDemandedBits if you don't know whether Op"
3847 " is a target node!");
3848 computeKnownBitsForTargetNode(
Op, Known, DemandedElts, TLO.
DAG,
Depth);
3860 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3861 " is a target node!");
3894 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3895 " is a target node!");
3899 return !canCreateUndefOrPoisonForTargetNode(
Op, DemandedElts, DAG,
PoisonOnly,
3902 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
3914 "Should use canCreateUndefOrPoison if you don't know whether Op"
3915 " is a target node!");
3923 unsigned Depth)
const {
3928 "Should use isKnownNeverNaN if you don't know whether Op"
3929 " is a target node!");
3934 const APInt &DemandedElts,
3937 unsigned Depth)
const {
3942 "Should use isSplatValue if you don't know whether Op"
3943 " is a target node!");
3958 CVal = CN->getAPIntValue();
3959 EltWidth =
N.getValueType().getScalarSizeInBits();
3966 CVal = CVal.
trunc(EltWidth);
3972 return CVal.
isOne();
4014 return (
N->isOne() && !SExt) || (SExt && (
N->getValueType(0) != MVT::i1));
4017 return N->isAllOnes() && SExt;
4026 DAGCombinerInfo &DCI)
const {
4054 auto *AndC = dyn_cast<ConstantSDNode>(N0.
getOperand(1));
4055 if (AndC &&
isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4058 AndC->getAPIntValue().getActiveBits());
4085 if (isXAndYEqZeroPreferableToXAndYEqY(
Cond, OpVT) &&
4093 if (DCI.isBeforeLegalizeOps() ||
4127SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4132 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
4141 if (!(C01 = dyn_cast<ConstantSDNode>(N0->
getOperand(1))))
4145 EVT XVT =
X.getValueType();
4169 auto checkConstants = [&
I1, &I01]() ->
bool {
4174 if (checkConstants()) {
4182 if (!checkConstants())
4188 const unsigned KeptBits =
I1.logBase2();
4189 const unsigned KeptBitsMinusOne = I01.
logBase2();
4192 if (KeptBits != (KeptBitsMinusOne + 1))
4206 return DAG.
getSetCC(
DL, SCCVT, SExtInReg,
X, NewCond);
4210SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4212 DAGCombinerInfo &DCI,
const SDLoc &
DL)
const {
4214 "Should be a comparison with 0.");
4216 "Valid only for [in]equality comparisons.");
4218 unsigned NewShiftOpcode;
4228 unsigned OldShiftOpcode =
V.getOpcode();
4229 switch (OldShiftOpcode) {
4241 C =
V.getOperand(0);
4246 Y =
V.getOperand(1);
4251 X, XC,
CC,
Y, OldShiftOpcode, NewShiftOpcode, DAG);
4268 EVT VT =
X.getValueType();
4283 DAGCombinerInfo &DCI)
const {
4286 "Unexpected binop");
4314 if (!DCI.isCalledByLegalizer())
4315 DCI.AddToWorklist(YShl1.
getNode());
4330 if (CTPOP.getOpcode() !=
ISD::CTPOP || !CTPOP.hasOneUse())
4333 EVT CTVT = CTPOP.getValueType();
4334 SDValue CTOp = CTPOP.getOperand(0);
4354 for (
unsigned i = 0; i <
Passes; i++) {
4403 auto getRotateSource = [](
SDValue X) {
4405 return X.getOperand(0);
4412 if (
SDValue R = getRotateSource(N0))
4445 if (!C1 || !C1->
isZero())
4454 if (!ShAmtC || ShAmtC->getAPIntValue().uge(
BitWidth))
4458 unsigned ShAmt = ShAmtC->getZExtValue();
4467 if (
Or.getOperand(0) ==
Other) {
4468 X =
Or.getOperand(0);
4469 Y =
Or.getOperand(1);
4472 if (
Or.getOperand(1) ==
Other) {
4473 X =
Or.getOperand(1);
4474 Y =
Or.getOperand(0);
4484 if (matchOr(F0, F1)) {
4491 if (matchOr(F1, F0)) {
4507 const SDLoc &dl)
const {
4517 bool N0ConstOrSplat =
4519 bool N1ConstOrSplat =
4527 if (N0ConstOrSplat && !N1ConstOrSplat &&
4530 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4536 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4541 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4550 const APInt &C1 = N1C->getAPIntValue();
4570 return DAG.
getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4600 if (
auto *N1C = dyn_cast<ConstantSDNode>(N1.
getNode())) {
4601 const APInt &C1 = N1C->getAPIntValue();
4616 if (
auto *
C = dyn_cast<ConstantSDNode>(N0->
getOperand(1)))
4617 if ((
C->getAPIntValue()+1).isPowerOf2()) {
4618 MinBits =
C->getAPIntValue().countr_one();
4626 }
else if (
auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4629 MinBits = LN0->getMemoryVT().getSizeInBits();
4633 MinBits = LN0->getMemoryVT().getSizeInBits();
4644 MinBits >= ReqdBits) {
4646 if (isTypeDesirableForOp(
ISD::SETCC, MinVT)) {
4649 if (MinBits == 1 && C1 == 1)
4668 if (TopSetCC.
getValueType() == MVT::i1 && VT == MVT::i1 &&
4681 cast<CondCodeSDNode>(TopSetCC.
getOperand(2))->get(),
4700 auto *Lod = cast<LoadSDNode>(N0.
getOperand(0));
4702 unsigned bestWidth = 0, bestOffset = 0;
4703 if (Lod->isSimple() && Lod->isUnindexed() &&
4704 (Lod->getMemoryVT().isByteSized() ||
4706 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4708 unsigned maskWidth = origWidth;
4712 origWidth = Lod->getMemoryVT().getSizeInBits();
4716 for (
unsigned width = 8; width < origWidth; width *= 2) {
4723 unsigned maxOffset = origWidth - width;
4724 for (
unsigned offset = 0; offset <= maxOffset; offset += 8) {
4725 if (Mask.isSubsetOf(newMask)) {
4726 unsigned ptrOffset =
4728 unsigned IsFast = 0;
4731 *DAG.
getContext(), Layout, newVT, Lod->getAddressSpace(),
4732 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4734 bestOffset = ptrOffset / 8;
4735 bestMask = Mask.lshr(offset);
4749 if (bestOffset != 0)
4753 Lod->getPointerInfo().getWithOffset(bestOffset),
4754 Lod->getOriginalAlign());
4833 ExtDstTy != ExtSrcTy &&
"Unexpected types!");
4840 return DAG.
getSetCC(dl, VT, ZextOp,
4842 }
else if ((N1C->isZero() || N1C->isOne()) &&
4889 return DAG.
getSetCC(dl, VT, Val, N1,
4892 }
else if (N1C->isOne()) {
4929 cast<VTSDNode>(Op0.
getOperand(1))->getVT() == MVT::i1)
4960 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1,
Cond, DCI, dl))
4967 const APInt &C1 = N1C->getAPIntValue();
4969 APInt MinVal, MaxVal;
4991 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5011 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5059 if (
SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5060 VT, N0, N1,
Cond, DCI, dl))
5067 bool CmpZero = N1C->isZero();
5068 bool CmpNegOne = N1C->isAllOnes();
5069 if ((CmpZero || CmpNegOne) && N0.
hasOneUse()) {
5072 unsigned EltBits = V.getScalarValueSizeInBits();
5073 if (V.getOpcode() !=
ISD::OR || (EltBits % 2) != 0)
5080 isa<ConstantSDNode>(
RHS.getOperand(1)) &&
5081 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5084 Hi =
RHS.getOperand(0);
5088 isa<ConstantSDNode>(
LHS.getOperand(1)) &&
5089 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5092 Hi =
LHS.getOperand(0);
5100 unsigned HalfBits = EltBits / 2;
5111 if (IsConcat(N0,
Lo,
Hi))
5112 return MergeConcat(
Lo,
Hi);
5149 if (
auto *N1C = dyn_cast<ConstantSDNode>(N1.
getNode())) {
5150 const APInt &C1 = N1C->getAPIntValue();
5162 if (
auto *AndRHS = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) {
5165 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5166 if (AndRHS->getAPIntValue().isPowerOf2() &&
5173 }
else if (
Cond ==
ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5192 if (
auto *AndRHS = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) {
5193 const APInt &AndRHSC = AndRHS->getAPIntValue();
5230 return DAG.
getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5236 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
5237 auto *CFP = cast<ConstantFPSDNode>(N1);
5238 assert(!CFP->getValueAPF().isNaN() &&
"Unexpected NaN value");
5259 !
isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5278 if (CFP->getValueAPF().isInfinity()) {
5279 bool IsNegInf = CFP->getValueAPF().isNegative();
5290 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5299 "Integer types should be handled by FoldSetCC");
5305 if (UOF ==
unsigned(EqTrue))
5310 if (NewCond !=
Cond &&
5313 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5320 if ((isSignedIntSetCC(
Cond) || isUnsignedIntSetCC(
Cond)) &&
5357 bool LegalRHSImm =
false;
5359 if (
auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
5360 if (
auto *LHSR = dyn_cast<ConstantSDNode>(N0.
getOperand(1))) {
5365 DAG.
getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5373 DAG.
getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5379 if (
auto *SUBC = dyn_cast<ConstantSDNode>(N0.
getOperand(0)))
5383 DAG.
getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5388 if (RHSC->getValueType(0).getSizeInBits() <= 64)
5397 if (
SDValue V = foldSetCCWithBinOp(VT, N0, N1,
Cond, dl, DCI))
5403 if (
SDValue V = foldSetCCWithBinOp(VT, N1, N0,
Cond, dl, DCI))
5406 if (
SDValue V = foldSetCCWithAnd(VT, N0, N1,
Cond, dl, DCI))
5417 if (
SDValue Folded = buildUREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5420 if (
SDValue Folded = buildSREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5433 N0 = DAG.
getNOT(dl, Temp, OpVT);
5442 Temp = DAG.
getNOT(dl, N0, OpVT);
5449 Temp = DAG.
getNOT(dl, N1, OpVT);
5456 Temp = DAG.
getNOT(dl, N0, OpVT);
5463 Temp = DAG.
getNOT(dl, N1, OpVT);
5472 N0 = DAG.
getNode(ExtendCode, dl, VT, N0);
5488 if (
auto *GASD = dyn_cast<GlobalAddressSDNode>(
N)) {
5489 GA = GASD->getGlobal();
5490 Offset += GASD->getOffset();
5498 if (
auto *V = dyn_cast<ConstantSDNode>(N2)) {
5499 Offset += V->getSExtValue();
5503 if (
auto *V = dyn_cast<ConstantSDNode>(N1)) {
5504 Offset += V->getSExtValue();
5525 unsigned S = Constraint.
size();
5528 switch (Constraint[0]) {
5531 return C_RegisterClass;
5559 if (S > 1 && Constraint[0] ==
'{' && Constraint[S - 1] ==
'}') {
5560 if (S == 8 && Constraint.
substr(1, 6) ==
"memory")
5588 std::vector<SDValue> &Ops,
5591 if (Constraint.
size() > 1)
5594 char ConstraintLetter = Constraint[0];
5595 switch (ConstraintLetter) {
5611 if ((
C = dyn_cast<ConstantSDNode>(
Op)) && ConstraintLetter !=
's') {
5615 bool IsBool =
C->getConstantIntValue()->getBitWidth() == 1;
5625 if (ConstraintLetter !=
'n') {
5626 if (
const auto *GA = dyn_cast<GlobalAddressSDNode>(
Op)) {
5628 GA->getValueType(0),
5629 Offset + GA->getOffset()));
5632 if (
const auto *BA = dyn_cast<BlockAddressSDNode>(
Op)) {
5634 BA->getBlockAddress(), BA->getValueType(0),
5635 Offset + BA->getOffset(), BA->getTargetFlags()));
5638 if (isa<BasicBlockSDNode>(
Op)) {
5643 const unsigned OpCode =
Op.getOpcode();
5645 if ((
C = dyn_cast<ConstantSDNode>(
Op.getOperand(0))))
5646 Op =
Op.getOperand(1);
5649 (
C = dyn_cast<ConstantSDNode>(
Op.getOperand(1))))
5650 Op =
Op.getOperand(0);
5667std::pair<unsigned, const TargetRegisterClass *>
5673 assert(*(Constraint.
end() - 1) ==
'}' &&
"Not a brace enclosed constraint?");
5678 std::pair<unsigned, const TargetRegisterClass *> R =
5690 std::pair<unsigned, const TargetRegisterClass *> S =
5691 std::make_pair(PR, RC);
5713 assert(!ConstraintCode.empty() &&
"No known constraint!");
5714 return isdigit(
static_cast<unsigned char>(ConstraintCode[0]));
5720 assert(!ConstraintCode.empty() &&
"No known constraint!");
5721 return atoi(ConstraintCode.c_str());
5735 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5736 unsigned maCount = 0;
5742 unsigned LabelNo = 0;
5745 ConstraintOperands.emplace_back(std::move(CI));
5755 switch (OpInfo.
Type) {
5765 assert(!Call.getType()->isVoidTy() &&
"Bad inline asm!");
5766 if (
auto *STy = dyn_cast<StructType>(Call.getType())) {
5771 assert(ResNo == 0 &&
"Asm only has one result!");
5781 OpInfo.
CallOperandVal = cast<CallBrInst>(&Call)->getIndirectDest(LabelNo);
5792 OpTy = Call.getParamElementType(ArgNo);
5793 assert(OpTy &&
"Indirect operand must have elementtype attribute");
5797 if (
StructType *STy = dyn_cast<StructType>(OpTy))
5798 if (STy->getNumElements() == 1)
5799 OpTy = STy->getElementType(0);
5804 unsigned BitSize =
DL.getTypeSizeInBits(OpTy);
5825 if (!ConstraintOperands.empty()) {
5827 unsigned bestMAIndex = 0;
5828 int bestWeight = -1;
5834 for (maIndex = 0; maIndex < maCount; ++maIndex) {
5836 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5837 cIndex != eIndex; ++cIndex) {
5858 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5863 weightSum += weight;
5866 if (weightSum > bestWeight) {
5867 bestWeight = weightSum;
5868 bestMAIndex = maIndex;
5875 cInfo.selectAlternative(bestMAIndex);
5880 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5881 cIndex != eIndex; ++cIndex) {
5892 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5895 std::pair<unsigned, const TargetRegisterClass *> InputRC =
5902 if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
5903 (MatchRC.second != InputRC.second)) {
5905 " with a matching output constraint of"
5906 " incompatible type!");
5912 return ConstraintOperands;
5947 if (maIndex >= (
int)
info.multipleAlternatives.size())
5948 rCodes = &
info.Codes;
5950 rCodes = &
info.multipleAlternatives[maIndex].Codes;
5954 for (
const std::string &rCode : *rCodes) {
5956 getSingleConstraintMatchWeight(
info, rCode.c_str());
5957 if (weight > BestWeight)
5958 BestWeight = weight;
5971 Value *CallOperandVal =
info.CallOperandVal;
5974 if (!CallOperandVal)
5977 switch (*constraint) {
5980 if (isa<ConstantInt>(CallOperandVal))
5981 weight = CW_Constant;
5984 if (isa<GlobalValue>(CallOperandVal))
5985 weight = CW_Constant;
5989 if (isa<ConstantFP>(CallOperandVal))
5990 weight = CW_Constant;
6003 weight = CW_Register;
6007 weight = CW_Default;
6041 Ret.reserve(OpInfo.
Codes.size());
6056 Ret.emplace_back(Code, CType);
6061 return getConstraintPiority(a.second) > getConstraintPiority(b.second);
6075 "need immediate or other");
6080 std::vector<SDValue> ResultOps;
6082 return !ResultOps.empty();
6090 assert(!OpInfo.
Codes.empty() &&
"Must have at least one constraint");
6093 if (OpInfo.
Codes.size() == 1) {
6101 unsigned BestIdx = 0;
6102 for (
const unsigned E =
G.size();
6109 if (BestIdx + 1 == E) {
6125 if (isa<ConstantInt>(v) || isa<Function>(v)) {
6129 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
6136 if (
const char *Repl = LowerXConstraint(OpInfo.
ConstraintVT)) {
6151 EVT VT =
N->getValueType(0);
6156 bool UseSRA =
false;
6162 APInt Divisor =
C->getAPIntValue();
6184 "Expected matchUnaryPredicate to return one element for scalable "
6189 assert(isa<ConstantSDNode>(Op1) &&
"Expected a constant");
6191 Factor = Factors[0];
6209 EVT VT =
N->getValueType(0);
6214 bool UseSRL =
false;
6220 APInt Divisor =
C->getAPIntValue();
6245 "Expected matchUnaryPredicate to return one element for scalable "
6250 assert(isa<ConstantSDNode>(Op1) &&
"Expected a constant");
6252 Factor = Factors[0];
6295 EVT VT =
N->getValueType(0);
6331 bool IsAfterLegalization,
6332 bool IsAfterLegalTypes,
6335 EVT VT =
N->getValueType(0);
6361 if (
N->getFlags().hasExact())
6370 const APInt &Divisor =
C->getAPIntValue();
6372 int NumeratorFactor = 0;
6383 NumeratorFactor = 1;
6386 NumeratorFactor = -1;
6403 SDValue MagicFactor, Factor, Shift, ShiftMask;
6411 Shifts.
size() == 1 && ShiftMasks.
size() == 1 &&
6412 "Expected matchUnaryPredicate to return one element for scalable "
6419 assert(isa<ConstantSDNode>(N1) &&
"Expected a constant");
6420 MagicFactor = MagicFactors[0];
6421 Factor = Factors[0];
6423 ShiftMask = ShiftMasks[0];
6469 SDValue Q = GetMULHS(N0, MagicFactor);
6499 bool IsAfterLegalization,
6500 bool IsAfterLegalTypes,
6503 EVT VT =
N->getValueType(0);
6529 if (
N->getFlags().hasExact())
6539 bool UseNPQ =
false, UsePreShift =
false, UsePostShift =
false;
6545 const APInt& Divisor =
C->getAPIntValue();
6547 SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6551 if (Divisor.
isOne()) {
6552 PreShift = PostShift = DAG.
getUNDEF(ShSVT);
6553 MagicFactor = NPQFactor = DAG.
getUNDEF(SVT);
6557 Divisor, std::min(KnownLeadingZeros, Divisor.
countl_zero()));
6562 "We shouldn't generate an undefined shift!");
6564 "We shouldn't generate an undefined shift!");
6566 "Unexpected pre-shift");
6573 UseNPQ |= magics.
IsAdd;
6574 UsePreShift |= magics.
PreShift != 0;
6589 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6597 NPQFactors.
size() == 1 && PostShifts.
size() == 1 &&
6598 "Expected matchUnaryPredicate to return one for scalable vectors");
6604 assert(isa<ConstantSDNode>(N1) &&
"Expected a constant");
6605 PreShift = PreShifts[0];
6606 MagicFactor = MagicFactors[0];
6607 PostShift = PostShifts[0];
6659 Q = GetMULHU(Q, MagicFactor);
6672 NPQ = GetMULHU(NPQ, NPQFactor);
6691 return DAG.
getSelect(dl, VT, IsOne, N0, Q);
6700 std::function<
bool(
SDValue)> Predicate,
6705 if (SplatValue != Values.
end()) {
6708 return Value == *SplatValue || Predicate(
Value);
6710 Replacement = *SplatValue;
6714 if (!AlternativeReplacement)
6717 Replacement = AlternativeReplacement;
6719 std::replace_if(Values.
begin(), Values.
end(), Predicate, Replacement);
6730 DAGCombinerInfo &DCI,
6733 if (
SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
6736 DCI.AddToWorklist(
N);
6744TargetLowering::prepareUREMEqFold(
EVT SETCCVT,
SDValue REMNode,
6746 DAGCombinerInfo &DCI,
const SDLoc &
DL,
6754 "Only applicable for (in)equality comparisons.");
6767 bool ComparingWithAllZeros =
true;
6768 bool AllComparisonsWithNonZerosAreTautological =
true;
6769 bool HadTautologicalLanes =
false;
6770 bool AllLanesAreTautological =
true;
6771 bool HadEvenDivisor =
false;
6772 bool AllDivisorsArePowerOfTwo =
true;
6773 bool HadTautologicalInvertedLanes =
false;
6782 const APInt &
Cmp = CCmp->getAPIntValue();
6784 ComparingWithAllZeros &=
Cmp.isZero();
6790 bool TautologicalInvertedLane =
D.ule(Cmp);
6791 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6796 bool TautologicalLane =
D.isOne() || TautologicalInvertedLane;
6797 HadTautologicalLanes |= TautologicalLane;
6798 AllLanesAreTautological &= TautologicalLane;
6804 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6807 unsigned K =
D.countr_zero();
6808 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
6812 HadEvenDivisor |= (
K != 0);
6815 AllDivisorsArePowerOfTwo &= D0.
isOne();
6819 unsigned W =
D.getBitWidth();
6821 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
6834 "We are expecting that K is always less than all-ones for ShSVT");
6837 if (TautologicalLane) {
6863 if (AllLanesAreTautological)
6868 if (AllDivisorsArePowerOfTwo)
6873 if (HadTautologicalLanes) {
6888 "Expected matchBinaryPredicate to return one element for "
6899 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6903 "Expecting that the types on LHS and RHS of comparisons match.");
6913 if (HadEvenDivisor) {
6926 if (!HadTautologicalInvertedLanes)
6932 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
6939 SDValue TautologicalInvertedChannels =
6949 DL, SETCCVT, SETCCVT);
6951 Replacement, NewCC);
6959 TautologicalInvertedChannels);
6972 DAGCombinerInfo &DCI,
6975 if (
SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
6977 assert(Built.
size() <= 7 &&
"Max size prediction failed.");
6979 DCI.AddToWorklist(
N);
6987TargetLowering::prepareSREMEqFold(
EVT SETCCVT,
SDValue REMNode,
6989 DAGCombinerInfo &DCI,
const SDLoc &
DL,
7014 "Only applicable for (in)equality comparisons.");
7030 if (!CompTarget || !CompTarget->
isZero())
7033 bool HadIntMinDivisor =
false;
7034 bool HadOneDivisor =
false;
7035 bool AllDivisorsAreOnes =
true;
7036 bool HadEvenDivisor =
false;
7037 bool NeedToApplyOffset =
false;
7038 bool AllDivisorsArePowerOfTwo =
true;
7053 HadIntMinDivisor |=
D.isMinSignedValue();
7056 HadOneDivisor |=
D.isOne();
7057 AllDivisorsAreOnes &=
D.isOne();
7060 unsigned K =
D.countr_zero();
7061 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
7064 if (!
D.isMinSignedValue()) {
7067 HadEvenDivisor |= (
K != 0);
7072 AllDivisorsArePowerOfTwo &= D0.
isOne();
7076 unsigned W =
D.getBitWidth();
7078 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
7084 if (!
D.isMinSignedValue()) {
7087 NeedToApplyOffset |=
A != 0;
7094 "We are expecting that A is always less than all-ones for SVT");
7096 "We are expecting that K is always less than all-ones for ShSVT");
7136 if (AllDivisorsAreOnes)
7141 if (AllDivisorsArePowerOfTwo)
7144 SDValue PVal, AVal, KVal, QVal;
7146 if (HadOneDivisor) {
7166 QAmts.
size() == 1 &&
7167 "Expected matchUnaryPredicate to return one element for scalable "
7174 assert(isa<ConstantSDNode>(
D) &&
"Expected a constant");
7185 if (NeedToApplyOffset) {
7197 if (HadEvenDivisor) {
7212 if (!HadIntMinDivisor)
7218 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
7253 MaskedIsZero, Fold);
7260 if (!isa<ConstantSDNode>(
Op.getOperand(0))) {
7262 "be a constant integer");
7272 EVT VT =
Op.getValueType();
7295 bool LegalOps,
bool OptForSize,
7297 unsigned Depth)
const {
7299 if (
Op.getOpcode() ==
ISD::FNEG ||
Op.getOpcode() == ISD::VP_FNEG) {
7301 return Op.getOperand(0);
7312 EVT VT =
Op.getValueType();
7313 unsigned Opcode =
Op.getOpcode();
7323 auto RemoveDeadNode = [&](
SDValue N) {
7324 if (
N &&
N.getNode()->use_empty())
7333 std::list<HandleSDNode> Handles;
7344 if (LegalOps && !IsOpLegal)
7347 APFloat V = cast<ConstantFPSDNode>(
Op)->getValueAPF();
7361 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7369 return N.isUndef() ||
7374 if (LegalOps && !IsOpLegal)
7383 APFloat V = cast<ConstantFPSDNode>(
C)->getValueAPF();
7391 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7402 getNegatedExpression(
X, DAG, LegalOps, OptForSize, CostX,
Depth);
7405 Handles.emplace_back(NegX);
7410 getNegatedExpression(
Y, DAG, LegalOps, OptForSize, CostY,
Depth);
7416 if (NegX && (CostX <= CostY)) {
7420 RemoveDeadNode(NegY);
7429 RemoveDeadNode(NegX);
7436 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7458 getNegatedExpression(
X, DAG, LegalOps, OptForSize, CostX,
Depth);
7461 Handles.emplace_back(NegX);
7466 getNegatedExpression(
Y, DAG, LegalOps, OptForSize, CostY,
Depth);
7472 if (NegX && (CostX <= CostY)) {
7476 RemoveDeadNode(NegY);
7482 if (
C->isExactlyValue(2.0) &&
Op.getOpcode() ==
ISD::FMUL)
7490 RemoveDeadNode(NegX);
7497 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7500 SDValue X =
Op.getOperand(0),
Y =
Op.getOperand(1), Z =
Op.getOperand(2);
7503 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ,
Depth);
7509 Handles.emplace_back(NegZ);
7514 getNegatedExpression(
X, DAG, LegalOps, OptForSize, CostX,
Depth);
7517 Handles.emplace_back(NegX);
7522 getNegatedExpression(
Y, DAG, LegalOps, OptForSize, CostY,
Depth);
7528 if (NegX && (CostX <= CostY)) {
7529 Cost = std::min(CostX, CostZ);
7532 RemoveDeadNode(NegY);
7538 Cost = std::min(CostY, CostZ);
7541 RemoveDeadNode(NegX);
7549 if (
SDValue NegV = getNegatedExpression(
Op.getOperand(0), DAG, LegalOps,
7551 return DAG.
getNode(Opcode,
DL, VT, NegV);
7554 if (
SDValue NegV = getNegatedExpression(
Op.getOperand(0), DAG, LegalOps,
7565 getNegatedExpression(
LHS, DAG, LegalOps, OptForSize, CostLHS,
Depth);
7567 RemoveDeadNode(NegLHS);
7572 Handles.emplace_back(NegLHS);
7577 getNegatedExpression(
RHS, DAG, LegalOps, OptForSize, CostRHS,
Depth);
7585 RemoveDeadNode(NegLHS);
7586 RemoveDeadNode(NegRHS);
7590 Cost = std::min(CostLHS, CostRHS);
7591 return DAG.
getSelect(
DL, VT,
Op.getOperand(0), NegLHS, NegRHS);
7620 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7633 if ((
Signed && HasSMUL_LOHI) || (!
Signed && HasUMUL_LOHI)) {
7661 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false)) {
7662 Result.push_back(
Lo);
7663 Result.push_back(
Hi);
7666 Result.push_back(Zero);
7667 Result.push_back(Zero);
7678 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
true)) {
7679 Result.push_back(
Lo);
7680 Result.push_back(
Hi);
7685 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7700 if (!MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false))
7703 Result.push_back(
Lo);
7710 Result.push_back(
Hi);
7723 if (!MakeMUL_LOHI(LL, RH,
Lo,
Hi,
false))
7730 if (!MakeMUL_LOHI(LH, RL,
Lo,
Hi,
false))
7782 bool Ok = expandMUL_LOHI(
N->getOpcode(),
N->getValueType(0),
SDLoc(
N),
7783 N->getOperand(0),
N->getOperand(1), Result, HiLoVT,
7784 DAG, Kind, LL, LH, RL, RH);
7786 assert(Result.size() == 2);
7818 unsigned Opcode =
N->getOpcode();
7819 EVT VT =
N->getValueType(0);
7826 "Unexpected opcode");
7828 auto *CN = dyn_cast<ConstantSDNode>(
N->getOperand(1));
7832 APInt Divisor = CN->getAPIntValue();
7840 if (Divisor.
uge(HalfMaxPlus1))
7858 unsigned TrailingZeros = 0;
7872 if (HalfMaxPlus1.
urem(Divisor).
isOne()) {
7873 assert(!LL == !LH &&
"Expected both input halves or no input halves!");
7875 std::tie(LL, LH) = DAG.
SplitScalar(
N->getOperand(0), dl, HiLoVT, HiLoVT);
7879 if (TrailingZeros) {
7947 std::tie(QuotL, QuotH) = DAG.
SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
7948 Result.push_back(QuotL);
7949 Result.push_back(QuotH);
7955 if (TrailingZeros) {
7961 Result.push_back(RemL);
7977 EVT VT =
Node->getValueType(0);
7987 bool IsFSHL =
Node->getOpcode() == ISD::VP_FSHL;
7990 EVT ShVT = Z.getValueType();
7996 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
7997 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitWidthC, ShAmt, Mask, VL);
7998 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, IsFSHL ? ShAmt : InvShAmt, Mask,
8000 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, IsFSHL ? InvShAmt : ShAmt, Mask,
8008 ShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, Z, BitMask, Mask, VL);
8012 InvShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, NotZ, BitMask, Mask, VL);
8015 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
8016 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitMask, ShAmt, Mask, VL);
8021 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, ShAmt, Mask, VL);
8023 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT, ShY1, InvShAmt, Mask, VL);
8026 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT, ShX1, InvShAmt, Mask, VL);
8027 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, ShAmt, Mask, VL);
8030 return DAG.
getNode(ISD::VP_OR,
DL, VT, ShX, ShY, Mask, VL);
8035 if (Node->isVPOpcode())
8038 EVT VT = Node->getValueType(0);
8048 SDValue Z = Node->getOperand(2);
8051 bool IsFSHL = Node->getOpcode() ==
ISD::FSHL;
8054 EVT ShVT = Z.getValueType();
8124 EVT VT = Node->getValueType(0);
8126 bool IsLeft = Node->getOpcode() ==
ISD::ROTL;
8127 SDValue Op0 = Node->getOperand(0);
8128 SDValue Op1 = Node->getOperand(1);
8139 return DAG.
getNode(RevRot,
DL, VT, Op0, Sub);
8142 if (!AllowVectorOps && VT.
isVector() &&
8160 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8162 HsVal = DAG.
getNode(HsOpc,
DL, VT, Op0, HsAmt);
8168 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8179 assert(Node->getNumOperands() == 3 &&
"Not a double-shift!");
8180 EVT VT = Node->getValueType(0);
8186 SDValue ShOpLo = Node->getOperand(0);
8187 SDValue ShOpHi = Node->getOperand(1);
8188 SDValue ShAmt = Node->getOperand(2);
8231 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8232 SDValue Src = Node->getOperand(OpNo);
8233 EVT SrcVT = Src.getValueType();
8234 EVT DstVT = Node->getValueType(0);
8238 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8241 if (Node->isStrictFPOpcode())
8304 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
8305 SDValue Src = Node->getOperand(OpNo);
8307 EVT SrcVT = Src.getValueType();
8308 EVT DstVT = Node->getValueType(0);
8329 if (Node->isStrictFPOpcode()) {
8331 { Node->getOperand(0), Src });
8332 Chain = Result.getValue(1);
8346 if (Node->isStrictFPOpcode()) {
8348 Node->getOperand(0),
true);
8354 bool Strict = Node->isStrictFPOpcode() ||
8373 if (Node->isStrictFPOpcode()) {
8375 { Chain, Src, FltOfs });
8397 Result = DAG.
getSelect(dl, DstVT, Sel, True, False);
8407 if (Node->isStrictFPOpcode())
8410 SDValue Src = Node->getOperand(0);
8411 EVT SrcVT = Src.getValueType();
8412 EVT DstVT = Node->getValueType(0);
8416 if (Node->getFlags().hasNonNeg() &&
8445 llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), dl, DstVT);
8464 unsigned Opcode = Node->getOpcode();
8469 if (Node->getFlags().hasNoNaNs()) {
8471 EVT VT = Node->getValueType(0);
8476 SDValue Op1 = Node->getOperand(0);
8477 SDValue Op2 = Node->getOperand(1);
8490 if (
SDValue Expanded = expandVectorNaryOpBySplitting(Node, DAG))
8493 EVT VT = Node->getValueType(0);
8496 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8503 SDValue Quiet0 = Node->getOperand(0);
8504 SDValue Quiet1 = Node->getOperand(1);
8506 if (!Node->getFlags().hasNoNaNs()) {
8519 return DAG.
getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
8525 if ((Node->getFlags().hasNoNaNs() ||
8528 (Node->getFlags().hasNoSignedZeros() ||
8531 unsigned IEEE2018Op =
8534 return DAG.
getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
8535 Node->getOperand(1), Node->getFlags());
8538 if (
SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
8546 if (
SDValue Expanded = expandVectorNaryOpBySplitting(
N, DAG))
8552 unsigned Opc =
N->getOpcode();
8553 EVT VT =
N->getValueType(0);
8566 bool MinMaxMustRespectOrderedZero =
false;
8570 MinMaxMustRespectOrderedZero =
true;
8584 if (!
N->getFlags().hasNoNaNs() &&
8593 if (!MinMaxMustRespectOrderedZero && !
N->getFlags().hasNoSignedZeros() &&
8616 unsigned Opc = Node->getOpcode();
8617 EVT VT = Node->getValueType(0);
8627 if (!Flags.hasNoNaNs()) {
8643 if (Flags.hasNoNaNs() ||
8645 unsigned IEEE2019Op =
8653 if ((Flags.hasNoNaNs() ||
8682 if (
Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() ||
8707 bool IsOrdered = NanTest ==
fcNone;
8708 bool IsUnordered = NanTest ==
fcNan;
8711 if (!IsOrdered && !IsUnordered)
8712 return std::nullopt;
8714 if (OrderedMask ==
fcZero &&
8720 return std::nullopt;
8727 EVT OperandVT =
Op.getValueType();
8739 if (OperandVT == MVT::ppcf128) {
8742 OperandVT = MVT::f64;
8749 bool IsF80 = (ScalarFloatVT == MVT::f80);
8753 if (Flags.hasNoFPExcept() &&
8756 bool IsInvertedFP =
false;
8760 FPTestMask = InvertedFPCheck;
8761 IsInvertedFP =
true;
8768 FPClassTest OrderedFPTestMask = FPTestMask & ~fcNan;
8773 OrderedFPTestMask = FPTestMask;
8775 const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8777 if (std::optional<bool> IsCmp0 =
8780 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8787 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8790 if (FPTestMask ==
fcNan &&
8796 bool IsOrderedInf = FPTestMask ==
fcInf;
8799 : UnorderedCmpOpcode,
8810 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
8815 : UnorderedCmpOpcode,
8826 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
8845 return DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal,
8846 IsOrdered ? OrderedOp : UnorderedOp);
8869 DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
8871 return DAG.
getNode(LogicOp,
DL, ResultVT, IsFinite, IsNormal);
8878 bool IsInverted =
false;
8881 Test = InvertedCheck;
8897 const unsigned ExplicitIntBitInF80 = 63;
8898 APInt ExpMask = Inf;
8900 ExpMask.
clearBit(ExplicitIntBitInF80);
8914 const auto appendResult = [&](
SDValue PartialRes) {
8924 const auto getIntBitIsSet = [&]() ->
SDValue {
8925 if (!IntBitIsSetV) {
8926 APInt IntBitMask(BitSize, 0);
8927 IntBitMask.
setBit(ExplicitIntBitInF80);
8932 return IntBitIsSetV;
8953 Test &= ~fcPosFinite;
8958 Test &= ~fcNegFinite;
8960 appendResult(PartialRes);
8969 appendResult(ExpIsZero);
8979 else if (PartialCheck ==
fcZero)
8983 appendResult(PartialRes);
8996 appendResult(PartialRes);
8999 if (
unsigned PartialCheck =
Test &
fcInf) {
9002 else if (PartialCheck ==
fcInf)
9009 appendResult(PartialRes);
9012 if (
unsigned PartialCheck =
Test &
fcNan) {
9013 APInt InfWithQnanBit = Inf | QNaNBitMask;
9015 if (PartialCheck ==
fcNan) {
9028 }
else if (PartialCheck ==
fcQNan) {
9040 appendResult(PartialRes);
9045 APInt ExpLSB = ExpMask & ~(ExpMask.
shl(1));
9048 APInt ExpLimit = ExpMask - ExpLSB;
9061 appendResult(PartialRes);
9084 EVT VT = Node->getValueType(0);
9091 if (!(Len <= 128 && Len % 8 == 0))
9150 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9161 EVT VT = Node->getValueType(0);
9164 SDValue Mask = Node->getOperand(1);
9165 SDValue VL = Node->getOperand(2);
9170 if (!(Len <= 128 && Len % 8 == 0))
9182 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9185 Tmp1 = DAG.
getNode(ISD::VP_AND, dl, VT,
9189 Op = DAG.
getNode(ISD::VP_SUB, dl, VT,
Op, Tmp1, Mask, VL);
9192 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op, Mask33, Mask, VL);
9193 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT,
9197 Op = DAG.
getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9202 Tmp5 = DAG.
getNode(ISD::VP_ADD, dl, VT,
Op, Tmp4, Mask, VL);
9203 Op = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9214 V = DAG.
getNode(ISD::VP_MUL, dl, VT,
Op, Mask01, Mask, VL);
9217 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9219 V = DAG.
getNode(ISD::VP_ADD, dl, VT, V,
9220 DAG.
getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9230 EVT VT = Node->getValueType(0);
9269 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9280 EVT VT = Node->getValueType(0);
9283 SDValue Mask = Node->getOperand(1);
9284 SDValue VL = Node->getOperand(2);
9294 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9297 DAG.
getNode(ISD::VP_SRL, dl, VT,
Op, Tmp, Mask, VL), Mask,
9302 return DAG.
getNode(ISD::VP_CTPOP, dl, VT,
Op, Mask, VL);
9311 :
APInt(64, 0x0218A392CD3D5DBFULL);
9325 for (
unsigned i = 0; i <
BitWidth; i++) {
9351 EVT VT = Node->getValueType(0);
9385 if (
SDValue V = CTTZTableLookup(Node, DAG, dl, VT,
Op, NumBitsPerElt))
9407 SDValue Mask = Node->getOperand(1);
9408 SDValue VL = Node->getOperand(2);
9410 EVT VT = Node->getValueType(0);
9417 SDValue Tmp = DAG.
getNode(ISD::VP_AND, dl, VT, Not, MinusOne, Mask, VL);
9418 return DAG.
getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9432 EVT SrcVT = Source.getValueType();
9433 EVT ResVT =
N->getValueType(0);
9442 Source = DAG.
getNode(ISD::VP_SETCC,
DL, SrcVT, Source, AllZero,
9450 DAG.
getNode(ISD::VP_SELECT,
DL, ResVecVT, Source, StepVec,
Splat, EVL);
9451 return DAG.
getNode(ISD::VP_REDUCE_UMIN,
DL, ResVT, ExtEVL,
Select, Mask, EVL);
9455 bool IsNegative)
const {
9457 EVT VT =
N->getValueType(0);
9511 EVT VT =
N->getValueType(0);
9585 EVT VT =
N->getValueType(0);
9589 unsigned Opc =
N->getOpcode();
9598 "Unknown AVG node");
9610 return DAG.
getNode(ShiftOpc, dl, VT, Sum,
9662 return DAG.
getNode(SumOpc, dl, VT, Sign, Shift);
9667 EVT VT =
N->getValueType(0);
9674 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9725 EVT VT =
N->getValueType(0);
9734 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9743 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9753 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9757 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9758 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9759 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9763 Tmp7 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9767 Tmp6 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9768 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
9771 Tmp5 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9772 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
9777 Tmp4 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp4,
9778 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
9781 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp3,
9782 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
9785 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9789 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
9790 Tmp6 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
9791 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9792 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9793 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
9794 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9795 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
9801 EVT VT =
N->getValueType(0);
9844 for (
unsigned I = 0, J = Sz-1;
I < Sz; ++
I, --J) {
9861 assert(
N->getOpcode() == ISD::VP_BITREVERSE);
9864 EVT VT =
N->getValueType(0);
9883 Tmp = (Sz > 8 ? DAG.
getNode(ISD::VP_BSWAP, dl, VT,
Op, Mask, EVL) :
Op);
9888 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9894 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9899 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9905 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9910 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9916 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
9922std::pair<SDValue, SDValue>
9926 SDValue Chain = LD->getChain();
9927 SDValue BasePTR = LD->getBasePtr();
9928 EVT SrcVT = LD->getMemoryVT();
9929 EVT DstVT = LD->getValueType(0);
9961 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
9962 LD->getMemOperand()->getFlags(), LD->getAAInfo());
9965 for (
unsigned Idx = 0;
Idx < NumElem; ++
Idx) {
9966 unsigned ShiftIntoIdx =
9977 Scalar = DAG.
getNode(ExtendOp, SL, DstEltVT, Scalar);
9984 return std::make_pair(
Value, Load.getValue(1));
9993 for (
unsigned Idx = 0;
Idx < NumElem; ++
Idx) {
9995 DAG.
getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
9996 LD->getPointerInfo().getWithOffset(
Idx * Stride),
9997 SrcEltVT, LD->getOriginalAlign(),
9998 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10009 return std::make_pair(
Value, NewChain);
10016 SDValue Chain = ST->getChain();
10017 SDValue BasePtr = ST->getBasePtr();
10019 EVT StVT = ST->getMemoryVT();
10045 for (
unsigned Idx = 0;
Idx < NumElem; ++
Idx) {
10050 unsigned ShiftIntoIdx =
10059 return DAG.
getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10060 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10066 assert(Stride &&
"Zero stride!");
10070 for (
unsigned Idx = 0;
Idx < NumElem; ++
Idx) {
10079 Chain, SL, Elt,
Ptr, ST->getPointerInfo().getWithOffset(
Idx * Stride),
10080 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
10089std::pair<SDValue, SDValue>
10092 "unaligned indexed loads not implemented!");
10093 SDValue Chain = LD->getChain();
10095 EVT VT = LD->getValueType(0);
10096 EVT LoadedVT = LD->getMemoryVT();
10106 return scalarizeVectorLoad(LD, DAG);
10112 LD->getMemOperand());
10114 if (LoadedVT != VT)
10118 return std::make_pair(Result, newLoad.
getValue(1));
10126 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10130 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.
getNode())->getIndex();
10132 SDValue StackPtr = StackBase;
10135 EVT PtrVT =
Ptr.getValueType();
10136 EVT StackPtrVT = StackPtr.getValueType();
10142 for (
unsigned i = 1; i < NumRegs; i++) {
10145 RegVT, dl, Chain,
Ptr, LD->getPointerInfo().getWithOffset(
Offset),
10146 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10150 Load.getValue(1), dl, Load, StackPtr,
10161 8 * (LoadedBytes -
Offset));
10164 LD->getPointerInfo().getWithOffset(
Offset), MemVT,
10165 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
10171 Load.getValue(1), dl, Load, StackPtr,
10178 Load = DAG.
getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10183 return std::make_pair(Load, TF);
10187 "Unaligned load of unsupported type.");
10196 Align Alignment = LD->getOriginalAlign();
10197 unsigned IncrementSize = NumBits / 8;
10208 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10213 LD->getPointerInfo().getWithOffset(IncrementSize),
10214 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10217 Hi = DAG.
getExtLoad(HiExtType, dl, VT, Chain,
Ptr, LD->getPointerInfo(),
10218 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10223 LD->getPointerInfo().getWithOffset(IncrementSize),
10224 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10236 return std::make_pair(Result, TF);
10242 "unaligned indexed stores not implemented!");
10243 SDValue Chain = ST->getChain();
10245 SDValue Val = ST->getValue();
10247 Align Alignment = ST->getOriginalAlign();
10249 EVT StoreMemVT = ST->getMemoryVT();
10265 Result = DAG.
getStore(Chain, dl, Result,
Ptr, ST->getPointerInfo(),
10266 Alignment, ST->getMemOperand()->getFlags());
10274 EVT PtrVT =
Ptr.getValueType();
10277 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10281 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
10285 Chain, dl, Val, StackPtr,
10288 EVT StackPtrVT = StackPtr.getValueType();
10296 for (
unsigned i = 1; i < NumRegs; i++) {
10299 RegVT, dl, Store, StackPtr,
10303 ST->getPointerInfo().getWithOffset(
Offset),
10304 ST->getOriginalAlign(),
10305 ST->getMemOperand()->getFlags()));
10325 ST->getPointerInfo().getWithOffset(
Offset), LoadMemVT,
10326 ST->getOriginalAlign(),
10327 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10334 "Unaligned store of unknown type.");
10338 unsigned IncrementSize = NumBits / 8;
10347 if (
auto *
C = dyn_cast<ConstantSDNode>(
Lo);
C && !
C->isOpaque())
10358 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10359 ST->getMemOperand()->getFlags());
10364 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10365 ST->getMemOperand()->getFlags(), ST->getAAInfo());
10376 bool IsCompressedMemory)
const {
10378 EVT AddrVT =
Addr.getValueType();
10379 EVT MaskVT = Mask.getValueType();
10381 "Incompatible types of Data and Mask");
10382 if (IsCompressedMemory) {
10385 "Cannot currently handle compressed memory with scalable vectors");
10391 MaskIntVT = MVT::i32;
10415 "Cannot index a scalable vector within a fixed-width vector");
10419 EVT IdxVT =
Idx.getValueType();
10425 if (
auto *IdxCst = dyn_cast<ConstantSDNode>(
Idx))
10426 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10440 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10448 return getVectorSubVecPointer(
10449 DAG, VecPtr, VecVT,
10467 "Converting bits to bytes lost precision");
10469 "Sub-vector must be a vector with matching element type");
10473 EVT IdxVT = Index.getValueType();
10505 assert(EmuTlsVar &&
"Cannot find EmuTlsVar ");
10507 Entry.Ty = VoidPtrType;
10508 Args.push_back(Entry);
10515 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10524 "Emulated TLS must have zero offset in GlobalAddressSDNode");
10525 return CallResult.first;
10536 EVT VT =
Op.getOperand(0).getValueType();
10538 if (VT.
bitsLT(MVT::i32)) {
10552 SDValue Op0 = Node->getOperand(0);
10553 SDValue Op1 = Node->getOperand(1);
10556 unsigned Opcode = Node->getOpcode();
10598 {Op0, Op1, DAG.getCondCode(CC)})) {
10605 {Op0, Op1, DAG.getCondCode(CC)})) {
10633 unsigned Opcode = Node->getOpcode();
10636 EVT VT =
LHS.getValueType();
10639 assert(VT ==
RHS.getValueType() &&
"Expected operands to be the same type");
10655 unsigned OverflowOp;
10670 llvm_unreachable(
"Expected method to receive signed or unsigned saturation "
10671 "addition or subtraction node.");
10679 unsigned BitWidth =
LHS.getScalarValueSizeInBits();
10682 SDValue SumDiff = Result.getValue(0);
10683 SDValue Overflow = Result.getValue(1);
10705 return DAG.
getSelect(dl, VT, Overflow, Zero, SumDiff);
10725 if (LHSIsNonNegative || RHSIsNonNegative) {
10727 return DAG.
getSelect(dl, VT, Overflow, SatMax, SumDiff);
10733 if (LHSIsNegative || RHSIsNegative) {
10735 return DAG.
getSelect(dl, VT, Overflow, SatMin, SumDiff);
10745 return DAG.
getSelect(dl, VT, Overflow, Result, SumDiff);
10749 unsigned Opcode = Node->getOpcode();
10752 EVT VT =
LHS.getValueType();
10753 EVT ResVT = Node->getValueType(0);
10784 unsigned Opcode = Node->getOpcode();
10788 EVT VT =
LHS.getValueType();
10793 "Expected a SHLSAT opcode");
10794 assert(VT ==
RHS.getValueType() &&
"Expected operands to be the same type");
10832 if (WideVT == MVT::i16)
10833 LC = RTLIB::MUL_I16;
10834 else if (WideVT == MVT::i32)
10835 LC = RTLIB::MUL_I32;
10836 else if (WideVT == MVT::i64)
10837 LC = RTLIB::MUL_I64;
10838 else if (WideVT == MVT::i128)
10839 LC = RTLIB::MUL_I128;
10848 unsigned HalfBits = Bits >> 1;
10887 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.
getDataLayout())) {
10892 SDValue Args[] = {LL, LH, RL, RH};
10893 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10895 SDValue Args[] = {LH, LL, RH, RL};
10896 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
10899 "Ret value is a collection of constituent nodes holding result.");
10902 Lo = Ret.getOperand(0);
10903 Hi = Ret.getOperand(1);
10905 Lo = Ret.getOperand(1);
10906 Hi = Ret.getOperand(0);
10915 EVT VT =
LHS.getValueType();
10916 assert(
RHS.getValueType() == VT &&
"Mismatching operand types");
10935 forceExpandWideMUL(DAG, dl,
Signed, WideVT,
LHS, HiLHS,
RHS, HiRHS,
Lo,
Hi);
10944 "Expected a fixed point multiplication opcode");
10949 EVT VT =
LHS.getValueType();
10950 unsigned Scale = Node->getConstantOperandVal(2);
10966 SDValue Product = Result.getValue(0);
10967 SDValue Overflow = Result.getValue(1);
10978 Result = DAG.
getSelect(dl, VT, ProdNeg, SatMin, SatMax);
10979 return DAG.
getSelect(dl, VT, Overflow, Result, Product);
10983 SDValue Product = Result.getValue(0);
10984 SDValue Overflow = Result.getValue(1);
10988 return DAG.
getSelect(dl, VT, Overflow, SatMax, Product);
10993 "Expected scale to be less than the number of bits if signed or at "
10994 "most the number of bits if unsigned.");
10996 "Expected both operands to be the same type");
11008 Lo = Result.getValue(0);
11009 Hi = Result.getValue(1);
11030 if (Scale == VTSize)
11076 return DAG.
getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11101 "Expected a fixed point division opcode");
11103 EVT VT =
LHS.getValueType();
11125 if (LHSLead + RHSTrail < Scale + (
unsigned)(Saturating &&
Signed))
11128 unsigned LHSShift = std::min(LHSLead, Scale);
11129 unsigned RHSShift = Scale - LHSShift;
11186 bool IsAdd = Node->getOpcode() ==
ISD::UADDO;
11192 SDValue NodeCarry = DAG.
getNode(OpcCarry, dl, Node->getVTList(),
11193 { LHS, RHS, CarryIn });
11202 EVT ResultType = Node->getValueType(1);
11213 DAG.
getSetCC(dl, SetCCType, Result,
11232 bool IsAdd = Node->getOpcode() ==
ISD::SADDO;
11237 EVT ResultType = Node->getValueType(1);
11263 DAG.
getNode(
ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11264 ResultType, ResultType);
11270 EVT VT = Node->getValueType(0);
11278 const APInt &
C = RHSC->getAPIntValue();
11280 if (
C.isPowerOf2()) {
11282 bool UseArithShift =
isSigned && !
C.isMinSignedValue();
11285 Overflow = DAG.
getSetCC(dl, SetCCVT,
11287 dl, VT, Result, ShiftAmt),
11300 static const unsigned Ops[2][3] =
11323 forceExpandWideMUL(DAG, dl,
isSigned,
LHS,
RHS, BottomHalf, TopHalf);
11326 Result = BottomHalf;
11333 Overflow = DAG.
getSetCC(dl, SetCCVT, TopHalf,
11338 EVT RType = Node->getValueType(1);
11343 "Unexpected result type for S/UMULO legalization");
11351 EVT VT =
Op.getValueType();
11355 "Expanding reductions for scalable vectors is undefined.");
11366 Op = DAG.
getNode(BaseOpcode, dl, HalfVT,
Lo,
Hi, Node->getFlags());
11378 for (
unsigned i = 1; i < NumElts; i++)
11379 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
11382 if (EltVT != Node->getValueType(0))
11389 SDValue AccOp = Node->getOperand(0);
11390 SDValue VecOp = Node->getOperand(1);
11398 "Expanding reductions for scalable vectors is undefined.");
11408 for (
unsigned i = 0; i < NumElts; i++)
11409 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
11416 EVT VT = Node->getValueType(0);
11421 SDValue Dividend = Node->getOperand(0);
11422 SDValue Divisor = Node->getOperand(1);
11425 Result = DAG.
getNode(DivRemOpc, dl, VTs, Dividend, Divisor).
getValue(1);
11430 SDValue Divide = DAG.
getNode(DivOpc, dl, VT, Dividend, Divisor);
11442 SDValue Src = Node->getOperand(0);
11445 EVT SrcVT = Src.getValueType();
11446 EVT DstVT = Node->getValueType(0);
11448 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
11451 assert(SatWidth <= DstWidth &&
11452 "Expected saturation width smaller than result width");
11456 APInt MinInt, MaxInt;
11467 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11469 SrcVT = Src.getValueType();
11491 if (AreExactFloatBounds && MinMaxLegal) {
11500 dl, DstVT, Clamped);
11512 return DAG.
getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11551 EVT OperandVT =
Op.getValueType();
11573 AbsWide = DAG.
getBitcast(OperandVT, ClearedSign);
11596 KeepNarrow = DAG.
getNode(
ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11605 SDValue Adjust = DAG.
getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11607 Op = DAG.
getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11619 EVT VT = Node->getValueType(0);
11622 if (Node->getConstantOperandVal(1) == 1) {
11625 EVT OperandVT =
Op.getValueType();
11637 EVT I32 =
F32.changeTypeToInteger();
11638 Op = expandRoundInexactToOdd(
F32,
Op, dl, DAG);
11663 EVT I16 = I32.isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11673 assert(Node->getValueType(0).isScalableVector() &&
11674 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11676 EVT VT = Node->getValueType(0);
11677 SDValue V1 = Node->getOperand(0);
11678 SDValue V2 = Node->getOperand(1);
11679 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
11698 EVT PtrVT = StackPtr.getValueType();
11700 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11715 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
11717 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr,
11740 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr2,
11747 SDValue Vec = Node->getOperand(0);
11748 SDValue Mask = Node->getOperand(1);
11749 SDValue Passthru = Node->getOperand(2);
11753 EVT MaskVT = Mask.getValueType();
11762 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
11770 bool HasPassthru = !Passthru.
isUndef();
11776 Chain = DAG.
getStore(Chain,
DL, Passthru, StackPtr, PtrInfo);
11779 APInt PassthruSplatVal;
11780 bool IsSplatPassthru =
11783 if (IsSplatPassthru) {
11787 LastWriteVal = DAG.
getConstant(PassthruSplatVal,
DL, ScalarVT);
11788 }
else if (HasPassthru) {
11800 getVectorElementPointer(DAG, StackPtr, VecVT, Popcount);
11802 ScalarVT,
DL, Chain, LastElmtPtr,
11808 for (
unsigned I = 0;
I < NumElms;
I++) {
11812 SDValue OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11814 Chain,
DL, ValI, OutPtr,
11827 if (HasPassthru &&
I == NumElms - 1) {
11833 OutPtr = getVectorElementPointer(DAG, StackPtr, VecVT, OutPos);
11837 LastWriteVal = DAG.
getSelect(
DL, ScalarVT, AllLanesSelected, ValI,
11840 Chain,
DL, LastWriteVal, OutPtr,
11845 return DAG.
getLoad(VecVT,
DL, Chain, StackPtr, PtrInfo);
11851 SDValue EVL,
bool &NeedInvert,
11853 bool IsSignaling)
const {
11854 MVT OpVT =
LHS.getSimpleValueType();
11856 NeedInvert =
false;
11857 assert(!EVL == !Mask &&
"VP Mask and EVL must either both be set or unset");
11858 bool IsNonVP = !EVL;
11873 bool NeedSwap =
false;
11874 InvCC = getSetCCInverse(CCCode, OpVT);
11890 if (OpVT == MVT::i1) {
11943 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
11948 "If SETO is expanded, SETOEQ must be legal!");
11965 NeedInvert = ((
unsigned)CCCode & 0x8U);
12006 SetCC1 = DAG.
getSetCC(dl, VT,
LHS,
RHS, CC1, Chain, IsSignaling);
12007 SetCC2 = DAG.
getSetCC(dl, VT,
LHS,
RHS, CC2, Chain, IsSignaling);
12015 SetCC1 = DAG.
getSetCC(dl, VT,
LHS,
LHS, CC1, Chain, IsSignaling);
12016 SetCC2 = DAG.
getSetCC(dl, VT,
RHS,
RHS, CC2, Chain, IsSignaling);
12026 LHS = DAG.
getNode(Opc, dl, VT, SetCC1, SetCC2);
12030 Opc = Opc ==
ISD::OR ? ISD::VP_OR : ISD::VP_AND;
12031 LHS = DAG.
getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
12043 EVT VT = Node->getValueType(0);
12055 unsigned Opcode = Node->getOpcode();
12062 for (
const SDValue &V : Node->op_values()) {
unsigned const MachineRegisterInfo * MRI
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
block Block Frequency Analysis
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
static bool isUndef(ArrayRef< int > Mask)
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, Register Reg, unsigned BW)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
unsigned const TargetRegisterInfo * TRI
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
Function const char * Passes
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, SDValue Op, SelectionDAG *DAG, const TargetLowering &TLI)
If we have an immediate, see if we can lower it.
static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG)
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, const APInt &UndefOp0, const APInt &UndefOp1)
Given a vector binary operation and known undefined elements for each input operand,...
static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact UDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, EVT VecVT, const SDLoc &dl, ElementCount SubEC)
static unsigned getConstraintPiority(TargetLowering::ConstraintType CT)
Return a number indicating our preference for chosing a type of constraint over another,...
static std::optional< bool > isFCmpEqualZero(FPClassTest Test, const fltSemantics &Semantics, const MachineFunction &MF)
Returns a true value if if this FPClassTest can be performed with an ordered fcmp to 0,...
static void turnVectorIntoSplatVector(MutableArrayRef< SDValue > Values, std::function< bool(SDValue)> Predicate, SDValue AlternativeReplacement=SDValue())
If all values in Values that don't match the predicate are same 'splat' value, then replace all value...
static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT)
static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact SDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, SDValue N0, const APInt &C1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue combineShiftToAVG(SDValue Op, TargetLowering::TargetLoweringOpt &TLO, const TargetLowering &TLI, const APInt &DemandedBits, const APInt &DemandedElts, unsigned Depth)
This file describes how to lower LLVM code to machine code.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
APInt bitcastToAPInt() const
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
void clearAllBits()
Set every bit to 0.
APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
void negate()
Negate this APInt in place.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
unsigned countLeadingZeros() const
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
void setAllBits()
Set every bit to 1.
APInt multiplicativeInverse() const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
int64_t getSExtValue() const
Get sign extended value.
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
unsigned countr_one() const
Count the number of trailing one bits.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool hasAttributes() const
Return true if the builder has IR-level attributes.
bool contains(Attribute::AttrKind A) const
Return true if the builder has the specified attribute.
AttrBuilder & removeAttribute(Attribute::AttrKind Val)
Remove an attribute from the builder.
bool hasFnAttr(Attribute::AttrKind Kind) const
Return true if the attribute exists for the function.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
ConstantFP - Floating Point Values [float, double].
const APInt & getAPIntValue() const
This is an important base class in LLVM.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
const GlobalValue * getGlobal() const
Module * getParent()
Get the module that this global value is contained inside of...
std::vector< std::string > ConstraintCodeVector
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This class is used to represent ISD::LOAD nodes.
Context object for machine code objects.
Base class for the full range of assembler expressions which are needed for parsing.
Wrapper class representing physical registers. Should be passed by value.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setAdjustsStack(bool V)
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
Function & getFunction()
Return the LLVM function that this machine code represents.
@ EK_GPRel32BlockAddress
EK_GPRel32BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
@ EK_GPRel64BlockAddress
EK_GPRel64BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
const GlobalVariable * getNamedGlobal(StringRef Name) const
Return the global variable in the module with the specified name, of arbitrary type.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
SDNodeFlags getFlags() const
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
void setFlags(SDNodeFlags NewFlags)
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
bool isKnownNeverSNaN(SDValue Op, unsigned Depth=0) const
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getGLOBAL_OFFSET_TABLE(EVT VT)
Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
bool shouldOptForSize() const
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond)
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
bool isKnownNeverNaN(SDValue Op, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
MachineFunction & getMachineFunction() const
std::optional< uint64_t > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
SDValue getCondCode(ISD::CondCode Cond)
bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
std::optional< uint64_t > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Mask, SDValue EVL)
Helper function to make it easier to build VP_SETCCs if you just have an ISD::CondCode instead of an ...
SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
virtual MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
const TargetMachine & getTargetMachine() const
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
virtual EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual bool shouldExpandCmpUsingSelects(EVT VT) const
Should we expand [US]CMP nodes using two selects and two compares, or by doing arithmetic on boolean ...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const
Return true if it is profitable to reduce a load to a smaller type.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const
Get the CondCode that's to be used to test the result of the comparison libcall against zero.
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual bool findOptimalMemOpLowering(std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, EVT WideVT, const SDValue LL, const SDValue LH, const SDValue RL, const SDValue RH, SDValue &Lo, SDValue &Hi) const
forceExpandWideMUL - Unconditionally expand a MUL into either a libcall or brute force via a wide mul...
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
TargetLowering(const TargetLowering &)=delete
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
iterator_range< regclass_iterator > regclasses() const
virtual StringRef getRegAsmName(MCRegister Reg) const
Return the assembly name for Reg.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const
Return true if the given TargetRegisterClass has the ValueType T.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
const fltSemantics & getFltSemantics() const
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SSUBO
Same for subtraction.
@ BRIND
BRIND - Indirect branch.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantSDNode predicate.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
FPClassTest invertFPClassTestIfSimpler(FPClassTest Test, bool UseFCmp)
Evaluates if the specified FP class test is better performed as the inverse (i.e.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
auto find_if_not(R &&Range, UnaryPredicate P)
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ And
Bitwise or logical AND of integers.
DWARFExpression::Operation Op
ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
bool isConstFalseVal(const TargetLowering &TLI, int64_t Val, bool IsVector, bool IsFP)
constexpr unsigned BitWidth
bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
APFloat neg(APFloat X)
Returns the negated value of the argument.
unsigned Log2(Align A)
Returns the log2 of the alignment.
bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
opStatus
IEEE-754R 7: Default exception handling.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
ConstraintPrefix Type
Type - The basic type of the constraint: input/output/clobber/label.
int MatchingInput
MatchingInput - If this is not -1, this is an output constraint where an input constraint is required...
ConstraintCodeVector Codes
Code - The constraint code, either the register name (in braces) or the constraint letter/number.
SubConstraintInfoVector multipleAlternatives
multipleAlternatives - If there are multiple alternative constraints, this array will contain them.
bool isIndirect
isIndirect - True if this operand is an indirect operand.
bool hasMatchingInput() const
hasMatchingInput - Return true if this is an output constraint that has a matching input constraint.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
bool isUnknown() const
Returns true if we don't know any bits.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
static std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
static KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
static std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
static std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
static MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasNoSignedWrap() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Magic data for optimising signed division by a constant.
unsigned ShiftAmount
shift amount
static SignedDivisionByConstantInfo get(const APInt &D)
Calculate the magic numbers required to implement a signed integer division by a constant as a sequen...
This contains information for each constraint that we are lowering.
MVT ConstraintVT
The ValueType for the operand value.
TargetLowering::ConstraintType ConstraintType
Information about the constraint code, e.g.
std::string ConstraintCode
This contains the actual string for the code, like "m".
Value * CallOperandVal
If this is the result output operand or a clobber, this is null, otherwise it is the incoming operand...
unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)
bool isBeforeLegalizeOps() const
void AddToWorklist(SDNode *N)
bool isCalledByLegalizer() const
bool isBeforeLegalize() const
void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
ArrayRef< EVT > OpsVTBeforeSoften
bool IsPostTypeLegalization
MakeLibCallOptions & setIsSigned(bool Value=true)
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT, bool Value=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)
bool LegalOperations() const
Magic data for optimising unsigned division by a constant.
unsigned PreShift
pre-shift amount
static UnsignedDivisionByConstantInfo get(const APInt &D, unsigned LeadingZeros=0, bool AllowEvenDivisorOptimization=true)
Calculate the magic numbers required to implement an unsigned integer division by a constant as a seq...
unsigned PostShift
post-shift amount