32#include "llvm/IR/IntrinsicsLoongArch.h"
42#define DEBUG_TYPE "loongarch-isel-lowering"
57 cl::desc(
"Maximum number of instructions used (including code sequence "
58 "to generate the value and moving the value to FPR) when "
59 "materializing floating-point immediates (default = 3)"),
63 "Materialize FP immediate within 2 instructions"),
65 "Materialize FP immediate within 3 instructions"),
67 "Materialize FP immediate within 4 instructions"),
69 "Materialize FP immediate within 5 instructions"),
71 "Materialize FP immediate within 6 instructions "
72 "(behaves same as 5 on loongarch64)")));
75 cl::desc(
"Trap on integer division by zero."),
82 MVT GRLenVT = Subtarget.getGRLenVT();
87 if (Subtarget.hasBasicF())
89 if (Subtarget.hasBasicD())
93 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, MVT::v2f64};
95 MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, MVT::v8f32, MVT::v4f64};
97 if (Subtarget.hasExtLSX())
101 if (Subtarget.hasExtLASX())
102 for (
MVT VT : LASXVTs)
170 if (Subtarget.is64Bit()) {
198 if (!Subtarget.is64Bit()) {
204 if (Subtarget.hasBasicD())
216 if (Subtarget.hasBasicF()) {
248 if (Subtarget.is64Bit())
251 if (!Subtarget.hasBasicD()) {
253 if (Subtarget.is64Bit()) {
262 if (Subtarget.hasBasicD()) {
295 if (Subtarget.is64Bit())
301 if (Subtarget.hasExtLSX()) {
316 for (
MVT VT : LSXVTs) {
330 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) {
354 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
356 for (
MVT VT : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
358 for (
MVT VT : {MVT::v4i32, MVT::v2i64}) {
362 for (
MVT VT : {MVT::v4f32, MVT::v2f64}) {
386 {MVT::v16i8, MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v8i16, MVT::v4i16,
387 MVT::v2i16, MVT::v4i32, MVT::v2i32, MVT::v2i64}) {
402 if (Subtarget.hasExtLASX()) {
403 for (
MVT VT : LASXVTs) {
418 for (
MVT VT : {MVT::v4i64, MVT::v8i32, MVT::v16i16, MVT::v32i8}) {
443 for (
MVT VT : {MVT::v32i8, MVT::v16i16, MVT::v8i32})
445 for (
MVT VT : {MVT::v16i16, MVT::v8i32, MVT::v4i64})
447 for (
MVT VT : {MVT::v8i32, MVT::v4i32, MVT::v4i64}) {
451 for (
MVT VT : {MVT::v8f32, MVT::v4f64}) {
471 if (Subtarget.hasBasicF()) {
482 if (Subtarget.hasExtLSX()) {
489 if (Subtarget.hasExtLASX())
512 if (Subtarget.hasLAMCAS())
515 if (Subtarget.hasSCQ()) {
535 switch (
Op.getOpcode()) {
537 return lowerATOMIC_FENCE(
Op, DAG);
539 return lowerEH_DWARF_CFA(
Op, DAG);
541 return lowerGlobalAddress(
Op, DAG);
543 return lowerGlobalTLSAddress(
Op, DAG);
545 return lowerINTRINSIC_WO_CHAIN(
Op, DAG);
547 return lowerINTRINSIC_W_CHAIN(
Op, DAG);
549 return lowerINTRINSIC_VOID(
Op, DAG);
551 return lowerBlockAddress(
Op, DAG);
553 return lowerJumpTable(
Op, DAG);
555 return lowerShiftLeftParts(
Op, DAG);
557 return lowerShiftRightParts(
Op, DAG,
true);
559 return lowerShiftRightParts(
Op, DAG,
false);
561 return lowerConstantPool(
Op, DAG);
563 return lowerFP_TO_SINT(
Op, DAG);
565 return lowerBITCAST(
Op, DAG);
567 return lowerUINT_TO_FP(
Op, DAG);
569 return lowerSINT_TO_FP(
Op, DAG);
571 return lowerVASTART(
Op, DAG);
573 return lowerFRAMEADDR(
Op, DAG);
575 return lowerRETURNADDR(
Op, DAG);
577 return lowerWRITE_REGISTER(
Op, DAG);
579 return lowerINSERT_VECTOR_ELT(
Op, DAG);
581 return lowerEXTRACT_VECTOR_ELT(
Op, DAG);
583 return lowerBUILD_VECTOR(
Op, DAG);
585 return lowerCONCAT_VECTORS(
Op, DAG);
587 return lowerVECTOR_SHUFFLE(
Op, DAG);
589 return lowerBITREVERSE(
Op, DAG);
591 return lowerSCALAR_TO_VECTOR(
Op, DAG);
593 return lowerPREFETCH(
Op, DAG);
595 return lowerSELECT(
Op, DAG);
597 return lowerBRCOND(
Op, DAG);
599 return lowerFP_TO_FP16(
Op, DAG);
601 return lowerFP16_TO_FP(
Op, DAG);
603 return lowerFP_TO_BF16(
Op, DAG);
605 return lowerBF16_TO_FP(
Op, DAG);
607 return lowerVECREDUCE_ADD(
Op, DAG);
610 return lowerRotate(
Op, DAG);
618 return lowerVECREDUCE(
Op, DAG);
620 return lowerConstantFP(
Op, DAG);
629 EVT VT = V.getValueType();
635 return V.getOperand(0);
639 (
isNullConstant(V.getOperand(1)) || V.getOperand(0).hasOneUse())) {
641 Not = DAG.
getBitcast(V.getOperand(0).getValueType(), Not);
651 if (!V->isOnlyUserOf(SplatValue.getNode()))
655 Not = DAG.
getBitcast(V.getOperand(0).getValueType(), Not);
663 V.getOperand(0).hasOneUse() && V.getOperand(1).hasOneUse()) {
680 EVT VT =
Op.getValueType();
685 assert((VT == MVT::f32 && Subtarget.hasBasicF()) ||
686 (VT == MVT::f64 && Subtarget.hasBasicD()));
703 int InsNum = Seq.size() + ((VT == MVT::f64 && !Subtarget.is64Bit()) ? 2 : 1);
713 if (Subtarget.is64Bit())
715 return DAG.
getNode(Subtarget.is64Bit() ? LoongArchISD::MOVGR2FR_W_LA64
716 : LoongArchISD::MOVGR2FR_W,
720 if (Subtarget.is64Bit()) {
722 return DAG.
getNode(LoongArchISD::MOVGR2FR_D,
DL, VT, NewVal);
726 return DAG.
getNode(LoongArchISD::MOVGR2FR_D_LO_HI,
DL, VT,
Lo,
Hi);
745 MVT OpVT =
Op.getSimpleValueType();
752 unsigned LegalVecSize = 128;
753 bool isLASX256Vector =
763 if (isLASX256Vector) {
768 for (
unsigned i = 1; i < NumEles; i *= 2, EleBits *= 2) {
771 Val = DAG.
getNode(LoongArchISD::VHADDW,
DL, VecTy, Val, Val);
774 if (isLASX256Vector) {
800 MVT OpVT =
Op.getSimpleValueType();
813 MVT GRLenVT = Subtarget.getGRLenVT();
815 for (
int i = NumEles; i > 1; i /= 2) {
818 Val = DAG.
getNode(Opcode,
DL, VecTy, Tmp, Val);
827 unsigned IsData =
Op.getConstantOperandVal(4);
832 return Op.getOperand(0);
839 MVT VT =
Op.getSimpleValueType();
845 unsigned Opcode =
Op.getOpcode();
848 auto checkCstSplat = [](
SDValue V, APInt &CstSplatValue) {
854 CstSplatValue =
C->getAPIntValue();
863 bool IsCstSplat = checkCstSplat(Amt, CstSplatValue);
867 if (IsCstSplat && CstSplatValue.
urem(EltSizeInBits) == 0)
883 return DAG.
getNode(Opcode,
DL, VT, R, Urem);
899 if (
LHS == LHS2 &&
RHS == RHS2) {
904 }
else if (
LHS == RHS2 &&
RHS == LHS2) {
920 MVT VT =
N->getSimpleValueType(0);
951 if (~TrueVal == FalseVal) {
991 unsigned SelOpNo = 0;
1001 unsigned ConstSelOpNo = 1;
1002 unsigned OtherSelOpNo = 2;
1009 if (!ConstSelOpNode || ConstSelOpNode->
isOpaque())
1014 if (!ConstBinOpNode || ConstBinOpNode->
isOpaque())
1020 SDValue NewConstOps[2] = {ConstSelOp, ConstBinOp};
1022 std::swap(NewConstOps[0], NewConstOps[1]);
1034 SDValue NewNonConstOps[2] = {OtherSelOp, ConstBinOp};
1036 std::swap(NewNonConstOps[0], NewNonConstOps[1]);
1039 SDValue NewT = (ConstSelOpNo == 1) ? NewConstOp : NewNonConstOp;
1040 SDValue NewF = (ConstSelOpNo == 1) ? NewNonConstOp : NewConstOp;
1060 ShAmt =
LHS.getValueSizeInBits() - 1 -
Log2_64(Mask);
1074 int64_t
C = RHSC->getSExtValue();
1117 MVT VT =
Op.getSimpleValueType();
1118 MVT GRLenVT = Subtarget.getGRLenVT();
1123 if (
Op.hasOneUse()) {
1124 unsigned UseOpc =
Op->user_begin()->getOpcode();
1126 SDNode *BinOp = *
Op->user_begin();
1133 return lowerSELECT(NewSel, DAG);
1150 return DAG.
getNode(LoongArchISD::SELECT_CC,
DL, VT,
Ops);
1173 if (TrueVal - 1 == FalseVal)
1175 if (TrueVal + 1 == FalseVal)
1182 RHS == TrueV &&
LHS == FalseV) {
1207 return DAG.
getNode(LoongArchISD::SELECT_CC,
DL, VT,
Ops);
1214 MVT GRLenVT = Subtarget.getGRLenVT();
1225 return DAG.
getNode(LoongArchISD::BR_CC,
DL,
Op.getValueType(),
1226 Op.getOperand(0),
LHS,
RHS, TargetCC,
1229 return DAG.
getNode(LoongArchISD::BRCOND,
DL,
Op.getValueType(),
1230 Op.getOperand(0), CondV,
Op.getOperand(2));
1234 return DAG.
getNode(LoongArchISD::BR_CC,
DL,
Op.getValueType(),
1240LoongArchTargetLowering::lowerSCALAR_TO_VECTOR(
SDValue Op,
1243 MVT OpVT =
Op.getSimpleValueType();
1254 EVT ResTy =
Op->getValueType(0);
1259 if (!Subtarget.is64Bit() && (ResTy == MVT::v16i8 || ResTy == MVT::v32i8))
1269 for (
unsigned int i = 0; i < NewEltNum; i++) {
1272 unsigned RevOp = (ResTy == MVT::v16i8 || ResTy == MVT::v32i8)
1273 ? (
unsigned)LoongArchISD::BITREV_8B
1291 for (
unsigned int i = 0; i < NewEltNum; i++)
1292 for (
int j = OrigEltNum / NewEltNum - 1;
j >= 0;
j--)
1293 Mask.push_back(j + (OrigEltNum / NewEltNum) * i);
1311 if (EltBits > 32 || EltBits == 1)
1339 int MaskOffset,
const APInt &Zeroable) {
1340 int Size = Mask.size();
1341 unsigned SizeInBits =
Size * ScalarSizeInBits;
1343 auto CheckZeros = [&](
int Shift,
int Scale,
bool Left) {
1344 for (
int i = 0; i <
Size; i += Scale)
1345 for (
int j = 0; j < Shift; ++j)
1346 if (!Zeroable[i + j + (
Left ? 0 : (Scale - Shift))])
1354 for (
unsigned i = Pos, e = Pos +
Size; i != e; ++i,
Low += Step)
1355 if (!(Mask[i] == -1 || Mask[i] ==
Low))
1360 auto MatchShift = [&](
int Shift,
int Scale,
bool Left) {
1361 for (
int i = 0; i !=
Size; i += Scale) {
1362 unsigned Pos =
Left ? i + Shift : i;
1363 unsigned Low =
Left ? i : i + Shift;
1364 unsigned Len = Scale - Shift;
1369 int ShiftEltBits = ScalarSizeInBits * Scale;
1370 bool ByteShift = ShiftEltBits > 64;
1371 Opcode =
Left ? (ByteShift ? LoongArchISD::VBSLL : LoongArchISD::VSLLI)
1372 : (ByteShift ? LoongArchISD::VBSRL : LoongArchISD::VSRLI);
1373 int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1);
1377 Scale = ByteShift ? Scale / 2 : Scale;
1383 return (
int)ShiftAmt;
1386 unsigned MaxWidth = 128;
1387 for (
int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2)
1388 for (
int Shift = 1; Shift != Scale; ++Shift)
1389 for (
bool Left : {
true,
false})
1390 if (CheckZeros(Shift, Scale,
Left)) {
1391 int ShiftAmt = MatchShift(Shift, Scale,
Left);
1416 const APInt &Zeroable) {
1417 int Size = Mask.size();
1431 Mask,
Size, Zeroable);
1439 "Illegal integer vector type");
1448template <
typename ValType>
1451 unsigned CheckStride,
1453 ValType ExpectedIndex,
unsigned ExpectedIndexStride) {
1457 if (*
I != -1 && *
I != ExpectedIndex)
1459 ExpectedIndex += ExpectedIndexStride;
1463 for (
unsigned n = 0; n < CheckStride &&
I != End; ++n, ++
I)
1475 int Size = Mask.size();
1485 int ScalarSizeInBits = VectorSizeInBits /
Size;
1486 assert(!(VectorSizeInBits % ScalarSizeInBits) &&
"Illegal shuffle mask size");
1487 (void)ScalarSizeInBits;
1489 for (
int i = 0; i <
Size; ++i) {
1495 if ((M >= 0 && M <
Size && V1IsZero) || (M >=
Size && V2IsZero)) {
1512 RepeatedMask.
assign(LaneSize, -1);
1513 int Size = Mask.size();
1514 for (
int i = 0; i <
Size; ++i) {
1515 assert(Mask[i] == -1 || Mask[i] >= 0);
1518 if ((Mask[i] %
Size) / LaneSize != i / LaneSize)
1525 Mask[i] <
Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize;
1526 if (RepeatedMask[i % LaneSize] < 0)
1528 RepeatedMask[i % LaneSize] = LocalM;
1529 else if (RepeatedMask[i % LaneSize] != LocalM)
1546 int NumElts = RepeatedMask.
size();
1548 int Scale = 16 / NumElts;
1550 for (
int i = 0; i < NumElts; ++i) {
1551 int M = RepeatedMask[i];
1552 assert((M == -1 || (0 <= M && M < (2 * NumElts))) &&
1553 "Unexpected mask index.");
1558 int StartIdx = i - (M % NumElts);
1565 int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx;
1568 Rotation = CandidateRotation;
1569 else if (Rotation != CandidateRotation)
1573 SDValue MaskV = M < NumElts ? V1 : V2;
1584 else if (TargetV != MaskV)
1589 assert(Rotation != 0 &&
"Failed to locate a viable rotation!");
1590 assert((
Lo ||
Hi) &&
"Failed to find a rotated input vector!");
1599 return Rotation * Scale;
1618 if (ByteRotation <= 0)
1625 int LoByteShift = 16 - ByteRotation;
1626 int HiByteShift = ByteRotation;
1649 const APInt &Zeroable) {
1663 for (
int i = 0; i < NumElements; i++) {
1667 if (i % Scale != 0) {
1678 SDValue V = M < NumElements ? V1 : V2;
1679 M = M % NumElements;
1682 Offset = M - (i / Scale);
1685 if (
Offset % (NumElements / Scale))
1687 }
else if (InputV != V)
1690 if (M != (
Offset + (i / Scale)))
1700 unsigned VilVLoHi = LoongArchISD::VILVL;
1701 if (
Offset >= (NumElements / 2)) {
1702 VilVLoHi = LoongArchISD::VILVH;
1703 Offset -= (NumElements / 2);
1710 InputV = DAG.
getNode(VilVLoHi,
DL, InputVT, Ext, InputV);
1714 }
while (Scale > 1);
1720 for (
int NumExtElements = Bits / 64; NumExtElements < NumElements;
1721 NumExtElements *= 2) {
1741 int SplatIndex = -1;
1742 for (
const auto &M : Mask) {
1749 if (SplatIndex == -1)
1752 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
1754 return DAG.
getNode(LoongArchISD::VREPLVEI,
DL, VT, V1,
1784 unsigned SubVecSize = 4;
1785 if (VT == MVT::v2f64 || VT == MVT::v2i64)
1788 int SubMask[4] = {-1, -1, -1, -1};
1789 for (
unsigned i = 0; i < SubVecSize; ++i) {
1790 for (
unsigned j = i; j < Mask.size(); j += SubVecSize) {
1796 M -= 4 * (j / SubVecSize);
1797 if (M < 0 || M >= 4)
1803 if (SubMask[i] == -1)
1807 else if (M != -1 && M != SubMask[i])
1814 for (
int i = SubVecSize - 1; i >= 0; --i) {
1827 if (VT == MVT::v2f64 || VT == MVT::v2i64)
1828 return DAG.
getNode(LoongArchISD::VSHUF4I_D,
DL, VT, V1, V2,
1831 return DAG.
getNode(LoongArchISD::VSHUF4I,
DL, VT, V1,
1849 if (VT != MVT::v16i8 && VT != MVT::v8i16 && VT != MVT::v32i8 &&
1858 for (
int i = 0; i < WidenNumElts; ++i)
1859 WidenMask[i] = WidenNumElts - 1 - i;
1867 return DAG.
getNode(LoongArchISD::VSHUF4I,
DL, VT,
1891 const auto &Begin = Mask.begin();
1892 const auto &End = Mask.end();
1893 SDValue OriV1 = V1, OriV2 = V2;
1909 return DAG.
getNode(LoongArchISD::VPACKEV,
DL, VT, V2, V1);
1931 const auto &Begin = Mask.begin();
1932 const auto &End = Mask.end();
1933 SDValue OriV1 = V1, OriV2 = V2;
1949 return DAG.
getNode(LoongArchISD::VPACKOD,
DL, VT, V2, V1);
1972 const auto &Begin = Mask.begin();
1973 const auto &End = Mask.end();
1974 unsigned HalfSize = Mask.size() / 2;
1975 SDValue OriV1 = V1, OriV2 = V2;
1992 return DAG.
getNode(LoongArchISD::VILVH,
DL, VT, V2, V1);
2015 const auto &Begin = Mask.begin();
2016 const auto &End = Mask.end();
2017 SDValue OriV1 = V1, OriV2 = V2;
2033 return DAG.
getNode(LoongArchISD::VILVL,
DL, VT, V2, V1);
2055 const auto &Begin = Mask.begin();
2056 const auto &Mid = Mask.begin() + Mask.size() / 2;
2057 const auto &End = Mask.end();
2058 SDValue OriV1 = V1, OriV2 = V2;
2075 return DAG.
getNode(LoongArchISD::VPICKEV,
DL, VT, V2, V1);
2097 const auto &Begin = Mask.begin();
2098 const auto &Mid = Mask.begin() + Mask.size() / 2;
2099 const auto &End = Mask.end();
2100 SDValue OriV1 = V1, OriV2 = V2;
2116 return DAG.
getNode(LoongArchISD::VPICKOD,
DL, VT, V2, V1);
2142 return DAG.
getNode(LoongArchISD::VSHUF,
DL, VT, MaskVec, V2, V1);
2155 "Vector type is unsupported for lsx!");
2157 "Two operands have different types!");
2159 "Unexpected mask size for shuffle!");
2160 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
2162 APInt KnownUndef, KnownZero;
2164 APInt Zeroable = KnownUndef | KnownZero;
2231 int SplatIndex = -1;
2232 for (
const auto &M : Mask) {
2239 if (SplatIndex == -1)
2242 const auto &Begin = Mask.begin();
2243 const auto &End = Mask.end();
2244 int HalfSize = Mask.size() / 2;
2246 if (SplatIndex >= HalfSize)
2249 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
2253 return DAG.
getNode(LoongArchISD::VREPLVEI,
DL, VT, V1,
2267 if (Mask.size() <= 4)
2278 if (Mask.size() != 4 || (VT != MVT::v4i64 && VT != MVT::v4f64))
2281 unsigned MaskImm = 0;
2282 for (
unsigned i = 0; i < Mask.size(); ++i) {
2285 MaskImm |= Mask[i] << (i * 2);
2288 return DAG.
getNode(LoongArchISD::XVPERMI,
DL, VT, V1,
2297 if (Mask.size() != 8 || (VT != MVT::v8i32 && VT != MVT::v8f32))
2301 unsigned HalfSize = NumElts / 2;
2302 bool FrontLo =
true, FrontHi =
true;
2303 bool BackLo =
true, BackHi =
true;
2305 auto inRange = [](
int val,
int low,
int high) {
2306 return (val == -1) || (val >= low && val < high);
2309 for (
unsigned i = 0; i < HalfSize; ++i) {
2310 int Fronti = Mask[i];
2311 int Backi = Mask[i + HalfSize];
2313 FrontLo &=
inRange(Fronti, 0, HalfSize);
2314 FrontHi &=
inRange(Fronti, HalfSize, NumElts);
2315 BackLo &=
inRange(Backi, 0, HalfSize);
2316 BackHi &=
inRange(Backi, HalfSize, NumElts);
2322 if ((FrontLo || FrontHi) && (BackLo || BackHi))
2327 for (
unsigned i = 0; i < NumElts; ++i)
2332 return DAG.
getNode(LoongArchISD::XVPERM,
DL, VT, V1, MaskVec);
2354 const auto &Begin = Mask.begin();
2355 const auto &End = Mask.end();
2356 unsigned HalfSize = Mask.size() / 2;
2357 unsigned LeftSize = HalfSize / 2;
2358 SDValue OriV1 = V1, OriV2 = V2;
2365 Mask.size() + HalfSize - LeftSize, 1) &&
2367 Mask.size() + HalfSize + LeftSize, 1))
2378 Mask.size() + HalfSize - LeftSize, 1) &&
2380 Mask.size() + HalfSize + LeftSize, 1))
2385 return DAG.
getNode(LoongArchISD::VILVH,
DL, VT, V2, V1);
2393 const auto &Begin = Mask.begin();
2394 const auto &End = Mask.end();
2395 unsigned HalfSize = Mask.size() / 2;
2396 SDValue OriV1 = V1, OriV2 = V2;
2403 Mask.size() + HalfSize, 1))
2414 Mask.size() + HalfSize, 1))
2419 return DAG.
getNode(LoongArchISD::VILVL,
DL, VT, V2, V1);
2427 const auto &Begin = Mask.begin();
2428 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
2429 const auto &Mid = Mask.begin() + Mask.size() / 2;
2430 const auto &RightMid = Mask.end() - Mask.size() / 4;
2431 const auto &End = Mask.end();
2432 unsigned HalfSize = Mask.size() / 2;
2433 SDValue OriV1 = V1, OriV2 = V2;
2454 return DAG.
getNode(LoongArchISD::VPICKEV,
DL, VT, V2, V1);
2462 const auto &Begin = Mask.begin();
2463 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
2464 const auto &Mid = Mask.begin() + Mask.size() / 2;
2465 const auto &RightMid = Mask.end() - Mask.size() / 4;
2466 const auto &End = Mask.end();
2467 unsigned HalfSize = Mask.size() / 2;
2468 SDValue OriV1 = V1, OriV2 = V2;
2490 return DAG.
getNode(LoongArchISD::VPICKOD,
DL, VT, V2, V1);
2499 if (VT != MVT::v8i32 && VT != MVT::v8f32 && VT != MVT::v4i64 &&
2504 int MaskSize = Mask.size();
2510 auto checkReplaceOne = [&](
int Base,
int Replaced) ->
int {
2512 for (
int i = 0; i < MaskSize; ++i) {
2513 if (Mask[i] ==
Base + i || Mask[i] == -1)
2515 if (Mask[i] != Replaced)
2526 int Idx = checkReplaceOne(0, MaskSize);
2528 return DAG.
getNode(LoongArchISD::XVINSVE0,
DL, VT, V1, V2,
2532 Idx = checkReplaceOne(MaskSize, 0);
2534 return DAG.
getNode(LoongArchISD::XVINSVE0,
DL, VT, V2, V1,
2545 int MaskSize = Mask.size();
2546 int HalfSize = Mask.size() / 2;
2547 const auto &Begin = Mask.begin();
2548 const auto &Mid = Mask.begin() + HalfSize;
2549 const auto &End = Mask.end();
2561 for (
auto it = Begin; it < Mid; it++) {
2564 else if ((*it >= 0 && *it < HalfSize) ||
2565 (*it >= MaskSize && *it < MaskSize + HalfSize)) {
2566 int M = *it < HalfSize ? *it : *it - HalfSize;
2571 assert((
int)MaskAlloc.
size() == HalfSize &&
"xvshuf convert failed!");
2573 for (
auto it = Mid; it < End; it++) {
2576 else if ((*it >= HalfSize && *it < MaskSize) ||
2577 (*it >= MaskSize + HalfSize && *it < MaskSize * 2)) {
2578 int M = *it < MaskSize ? *it - HalfSize : *it - MaskSize;
2583 assert((
int)MaskAlloc.
size() == MaskSize &&
"xvshuf convert failed!");
2587 return DAG.
getNode(LoongArchISD::VSHUF,
DL, VT, MaskVec, V2, V1);
2615 enum HalfMaskType { HighLaneTy, LowLaneTy,
None };
2617 int MaskSize = Mask.size();
2618 int HalfSize = Mask.size() / 2;
2621 HalfMaskType preMask =
None, postMask =
None;
2623 if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
2624 return M < 0 || (M >= 0 && M < HalfSize) ||
2625 (M >= MaskSize && M < MaskSize + HalfSize);
2627 preMask = HighLaneTy;
2628 else if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
2629 return M < 0 || (M >= HalfSize && M < MaskSize) ||
2630 (M >= MaskSize + HalfSize && M < MaskSize * 2);
2632 preMask = LowLaneTy;
2634 if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
2635 return M < 0 || (M >= HalfSize && M < MaskSize) ||
2636 (M >= MaskSize + HalfSize && M < MaskSize * 2);
2638 postMask = LowLaneTy;
2639 else if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
2640 return M < 0 || (M >= 0 && M < HalfSize) ||
2641 (M >= MaskSize && M < MaskSize + HalfSize);
2643 postMask = HighLaneTy;
2651 if (preMask == HighLaneTy && postMask == LowLaneTy) {
2654 if (preMask == LowLaneTy && postMask == HighLaneTy) {
2656 V1 = DAG.
getNode(LoongArchISD::XVPERMI,
DL, MVT::v4i64, V1,
2662 V2 = DAG.
getNode(LoongArchISD::XVPERMI,
DL, MVT::v4i64, V2,
2667 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
2668 *it = *it < 0 ? *it : *it - HalfSize;
2670 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
2671 *it = *it < 0 ? *it : *it + HalfSize;
2673 }
else if (preMask == LowLaneTy && postMask == LowLaneTy) {
2675 V1 = DAG.
getNode(LoongArchISD::XVPERMI,
DL, MVT::v4i64, V1,
2681 V2 = DAG.
getNode(LoongArchISD::XVPERMI,
DL, MVT::v4i64, V2,
2686 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
2687 *it = *it < 0 ? *it : *it - HalfSize;
2689 }
else if (preMask == HighLaneTy && postMask == HighLaneTy) {
2691 V1 = DAG.
getNode(LoongArchISD::XVPERMI,
DL, MVT::v4i64, V1,
2697 V2 = DAG.
getNode(LoongArchISD::XVPERMI,
DL, MVT::v4i64, V2,
2702 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
2703 *it = *it < 0 ? *it : *it + HalfSize;
2728 int Size = Mask.size();
2729 int LaneSize =
Size / 2;
2731 bool LaneCrossing[2] = {
false,
false};
2732 for (
int i = 0; i <
Size; ++i)
2733 if (Mask[i] >= 0 && ((Mask[i] %
Size) / LaneSize) != (i / LaneSize))
2734 LaneCrossing[(Mask[i] %
Size) / LaneSize] =
true;
2737 if (!LaneCrossing[0] && !LaneCrossing[1])
2741 InLaneMask.
assign(Mask.begin(), Mask.end());
2742 for (
int i = 0; i <
Size; ++i) {
2743 int &M = InLaneMask[i];
2746 if (((M %
Size) / LaneSize) != (i / LaneSize))
2747 M = (M % LaneSize) + ((i / LaneSize) * LaneSize) +
Size;
2752 DAG.
getUNDEF(MVT::v4i64), {2, 3, 0, 1});
2767 "Vector type is unsupported for lasx!");
2769 "Two operands have different types!");
2771 "Unexpected mask size for shuffle!");
2772 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
2773 assert(Mask.size() >= 4 &&
"Mask size is less than 4.");
2775 APInt KnownUndef, KnownZero;
2777 APInt Zeroable = KnownUndef | KnownZero;
2854 ArrayRef<int> OrigMask = SVOp->
getMask();
2857 MVT VT =
Op.getSimpleValueType();
2861 bool V1IsUndef = V1.
isUndef();
2862 bool V2IsUndef = V2.
isUndef();
2863 if (V1IsUndef && V2IsUndef)
2876 any_of(OrigMask, [NumElements](
int M) {
return M >= NumElements; })) {
2877 SmallVector<int, 8> NewMask(OrigMask);
2878 for (
int &M : NewMask)
2879 if (M >= NumElements)
2885 int MaskUpperLimit = OrigMask.
size() * (V2IsUndef ? 1 : 2);
2886 (void)MaskUpperLimit;
2888 [&](
int M) {
return -1 <=
M &&
M < MaskUpperLimit; }) &&
2889 "Out of bounds shuffle index");
2911 std::tie(Res, Chain) =
2912 makeLibCall(DAG, LC, MVT::f32, Op0, CallOptions,
DL, Chain);
2913 if (Subtarget.is64Bit())
2914 return DAG.
getNode(LoongArchISD::MOVFR2GR_S_LA64,
DL, MVT::i64, Res);
2926 SDValue Arg = Subtarget.is64Bit() ? DAG.
getNode(LoongArchISD::MOVGR2FR_W_LA64,
2930 std::tie(Res, Chain) =
makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Arg,
2931 CallOptions,
DL, Chain);
2937 assert(Subtarget.hasBasicF() &&
"Unexpected custom legalization");
2943 makeLibCall(DAG, LC, MVT::f32,
Op.getOperand(0), CallOptions,
DL).first;
2944 if (Subtarget.is64Bit())
2945 return DAG.
getNode(LoongArchISD::MOVFR2GR_S_LA64,
DL, MVT::i64, Res);
2951 assert(Subtarget.hasBasicF() &&
"Unexpected custom legalization");
2952 MVT VT =
Op.getSimpleValueType();
2957 SDValue Res = Subtarget.is64Bit() ? DAG.
getNode(LoongArchISD::MOVGR2FR_W_LA64,
2978 "Unsupported vector type for broadcast.");
2981 bool IsIdeneity =
true;
2983 for (
int i = 0; i !=
NumOps; i++) {
2985 if (
Op.getOpcode() !=
ISD::LOAD || (IdentitySrc &&
Op != IdentitySrc)) {
2997 auto ExtType = LN->getExtensionType();
3002 assert(LN->isUnindexed() &&
"Unexpected indexed load.");
3007 SDValue Ops[] = {LN->getChain(), LN->getBasePtr()};
3025 for (
unsigned i = 1; i <
Ops.size(); ++i) {
3039 EVT ResTy,
unsigned first) {
3042 assert(first + NumElts <= Node->getSimpleValueType(0).getVectorNumElements());
3045 Node->op_begin() + first + NumElts);
3054 MVT VT =
Node->getSimpleValueType(0);
3055 EVT ResTy =
Op->getValueType(0);
3058 APInt SplatValue, SplatUndef;
3059 unsigned SplatBitSize;
3062 bool UseSameConstant =
true;
3067 if ((!Subtarget.hasExtLSX() || !Is128Vec) &&
3068 (!Subtarget.hasExtLASX() || !Is256Vec))
3074 if (
Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
3076 SplatBitSize <= 64) {
3078 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
3082 if (SplatBitSize == 64 && !Subtarget.is64Bit()) {
3089 if ((Is128Vec && ResTy == MVT::v4i32) ||
3090 (Is256Vec && ResTy == MVT::v8i32))
3096 switch (SplatBitSize) {
3100 ViaVecTy = Is128Vec ? MVT::v16i8 : MVT::v32i8;
3103 ViaVecTy = Is128Vec ? MVT::v8i16 : MVT::v16i16;
3106 ViaVecTy = Is128Vec ? MVT::v4i32 : MVT::v8i32;
3109 ViaVecTy = Is128Vec ? MVT::v2i64 : MVT::v4i64;
3117 if (ViaVecTy != ResTy)
3126 for (
unsigned i = 0; i < NumElts; ++i) {
3131 ConstantValue = Opi;
3132 else if (ConstantValue != Opi)
3133 UseSameConstant =
false;
3138 if (IsConstant && UseSameConstant && ResTy != MVT::v2f64) {
3140 for (
unsigned i = 0; i < NumElts; ++i) {
3158 BitVector UndefElements;
3159 if (
Node->getRepeatedSequence(Sequence, &UndefElements) &&
3160 UndefElements.
count() == 0) {
3164 EVT FillTy = Is256Vec
3170 fillVector(Sequence, DAG,
DL, Subtarget, FillVec, FillTy);
3173 unsigned SplatLen = NumElts / SeqLen;
3179 if (SplatEltTy == MVT::i128)
3180 SplatTy = MVT::v4i64;
3188 DAG.
getNode((SplatEltTy == MVT::i128) ? LoongArchISD::XVREPLVE0Q
3189 : LoongArchISD::XVREPLVE0,
3190 DL, SplatTy, SrcVec);
3192 SplatVec = DAG.
getNode(LoongArchISD::VREPLVEI,
DL, SplatTy, SrcVec,
3205 if (ResTy == MVT::v8i32 || ResTy == MVT::v8f32 || ResTy == MVT::v4i64 ||
3206 ResTy == MVT::v4f64) {
3207 unsigned NonUndefCount = 0;
3208 for (
unsigned i = NumElts / 2; i < NumElts; ++i) {
3209 if (!
Node->getOperand(i).isUndef()) {
3211 if (NonUndefCount > 1)
3215 if (NonUndefCount == 1)
3228 VecTy, NumElts / 2);
3239 MVT ResVT =
Op.getSimpleValueType();
3243 unsigned NumFreezeUndef = 0;
3244 unsigned NumZero = 0;
3245 unsigned NumNonZero = 0;
3246 unsigned NonZeros = 0;
3247 SmallSet<SDValue, 4> Undefs;
3248 for (
unsigned i = 0; i != NumOperands; ++i) {
3263 assert(i <
sizeof(NonZeros) * CHAR_BIT);
3270 if (NumNonZero > 2) {
3274 Ops.slice(0, NumOperands / 2));
3276 Ops.slice(NumOperands / 2));
3289 MVT SubVT =
Op.getOperand(0).getSimpleValueType();
3291 for (
unsigned i = 0; i != NumOperands; ++i) {
3292 if ((NonZeros & (1 << i)) == 0)
3303LoongArchTargetLowering::lowerEXTRACT_VECTOR_ELT(
SDValue Op,
3305 MVT EltVT =
Op.getSimpleValueType();
3310 MVT GRLenVT = Subtarget.getGRLenVT();
3338 ? DAG.
getNode(LoongArchISD::MOVGR2FR_W_LA64,
DL, MVT::f32, Idx)
3342 DAG.
getBitcast((VecTy == MVT::v4f64) ? MVT::v4i64 : VecTy, IdxVec);
3344 DAG.
getNode(LoongArchISD::VSHUF,
DL, VecTy, MaskVec, TmpVec, Vec);
3353 DAG.
getNode(LoongArchISD::XVPERM,
DL, VecTy, Vec, SplatIdx);
3362LoongArchTargetLowering::lowerINSERT_VECTOR_ELT(
SDValue Op,
3364 MVT VT =
Op.getSimpleValueType();
3387 if (!Subtarget.is64Bit() && IdxTy == MVT::i64) {
3389 for (
unsigned i = 0; i < NumElts; ++i) {
3397 for (
unsigned i = 0; i < NumElts; ++i) {
3406 for (
unsigned i = 0; i < NumElts; ++i)
3438 if (Subtarget.is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i32) {
3440 "On LA64, only 64-bit registers can be written.");
3441 return Op.getOperand(0);
3444 if (!Subtarget.is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i64) {
3446 "On LA32, only 32-bit registers can be written.");
3447 return Op.getOperand(0);
3457 "be a constant integer");
3463 Register FrameReg = Subtarget.getRegisterInfo()->getFrameRegister(MF);
3464 EVT VT =
Op.getValueType();
3467 unsigned Depth =
Op.getConstantOperandVal(0);
3468 int GRLenInBytes = Subtarget.getGRLen() / 8;
3471 int Offset = -(GRLenInBytes * 2);
3483 if (
Op.getConstantOperandVal(0) != 0) {
3485 "return address can only be determined for the current frame");
3491 MVT GRLenVT = Subtarget.getGRLenVT();
3503 auto Size = Subtarget.getGRLen() / 8;
3511 auto *FuncInfo = MF.
getInfo<LoongArchMachineFunctionInfo>();
3521 MachinePointerInfo(SV));
3526 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
3527 !Subtarget.hasBasicD() &&
"unexpected target features");
3533 if (
C &&
C->getZExtValue() < UINT64_C(0xFFFFFFFF))
3537 if (Op0->
getOpcode() == LoongArchISD::BSTRPICK &&
3547 EVT RetVT =
Op.getValueType();
3553 std::tie(Result, Chain) =
3560 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
3561 !Subtarget.hasBasicD() &&
"unexpected target features");
3572 EVT RetVT =
Op.getValueType();
3578 std::tie(Result, Chain) =
3587 EVT VT =
Op.getValueType();
3591 if (
Op.getValueType() == MVT::f32 && Op0VT == MVT::i32 &&
3592 Subtarget.is64Bit() && Subtarget.hasBasicF()) {
3594 return DAG.
getNode(LoongArchISD::MOVGR2FR_W_LA64,
DL, MVT::f32, NewOp0);
3596 if (VT == MVT::f64 && Op0VT == MVT::i64 && !Subtarget.is64Bit()) {
3599 return DAG.
getNode(LoongArchISD::BUILD_PAIR_F64,
DL, MVT::f64,
Lo,
Hi);
3613 if (
Op.getValueSizeInBits() > 32 && Subtarget.hasBasicF() &&
3614 !Subtarget.hasBasicD()) {
3616 return DAG.
getNode(LoongArchISD::MOVFR2GR_S_LA64,
DL, MVT::i64, Dst);
3638 N->getOffset(), Flags);
3646template <
class NodeTy>
3649 bool IsLocal)
const {
3660 assert(Subtarget.is64Bit() &&
"Large code model requires LA64");
3741 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
3743 const GlobalValue *GV =
N->getGlobal();
3755 unsigned Opc,
bool UseGOT,
3759 MVT GRLenVT = Subtarget.getGRLenVT();
3773 if (
Opc == LoongArch::PseudoLA_TLS_LE && !Large)
3811 Args.emplace_back(Load, CallTy);
3814 TargetLowering::CallLoweringInfo CLI(DAG);
3829 const GlobalValue *GV =
N->getGlobal();
3843LoongArchTargetLowering::lowerGlobalTLSAddress(
SDValue Op,
3850 assert((!Large || Subtarget.is64Bit()) &&
"Large code model requires LA64");
3853 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
3866 return getDynamicTLSAddr(
N, DAG,
3867 Large ? LoongArch::PseudoLA_TLS_GD_LARGE
3868 : LoongArch::PseudoLA_TLS_GD,
3875 return getDynamicTLSAddr(
N, DAG,
3876 Large ? LoongArch::PseudoLA_TLS_LD_LARGE
3877 : LoongArch::PseudoLA_TLS_LD,
3882 return getStaticTLSAddr(
N, DAG,
3883 Large ? LoongArch::PseudoLA_TLS_IE_LARGE
3884 : LoongArch::PseudoLA_TLS_IE,
3891 return getStaticTLSAddr(
N, DAG, LoongArch::PseudoLA_TLS_LE,
3895 return getTLSDescAddr(
N, DAG,
3896 Large ? LoongArch::PseudoLA_TLS_DESC_LARGE
3897 : LoongArch::PseudoLA_TLS_DESC,
3901template <
unsigned N>
3906 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
3907 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
3909 ": argument out of range.");
3916LoongArchTargetLowering::lowerINTRINSIC_WO_CHAIN(
SDValue Op,
3918 switch (
Op.getConstantOperandVal(0)) {
3921 case Intrinsic::thread_pointer: {
3925 case Intrinsic::loongarch_lsx_vpickve2gr_d:
3926 case Intrinsic::loongarch_lsx_vpickve2gr_du:
3927 case Intrinsic::loongarch_lsx_vreplvei_d:
3928 case Intrinsic::loongarch_lasx_xvrepl128vei_d:
3930 case Intrinsic::loongarch_lsx_vreplvei_w:
3931 case Intrinsic::loongarch_lasx_xvrepl128vei_w:
3932 case Intrinsic::loongarch_lasx_xvpickve2gr_d:
3933 case Intrinsic::loongarch_lasx_xvpickve2gr_du:
3934 case Intrinsic::loongarch_lasx_xvpickve_d:
3935 case Intrinsic::loongarch_lasx_xvpickve_d_f:
3937 case Intrinsic::loongarch_lasx_xvinsve0_d:
3939 case Intrinsic::loongarch_lsx_vsat_b:
3940 case Intrinsic::loongarch_lsx_vsat_bu:
3941 case Intrinsic::loongarch_lsx_vrotri_b:
3942 case Intrinsic::loongarch_lsx_vsllwil_h_b:
3943 case Intrinsic::loongarch_lsx_vsllwil_hu_bu:
3944 case Intrinsic::loongarch_lsx_vsrlri_b:
3945 case Intrinsic::loongarch_lsx_vsrari_b:
3946 case Intrinsic::loongarch_lsx_vreplvei_h:
3947 case Intrinsic::loongarch_lasx_xvsat_b:
3948 case Intrinsic::loongarch_lasx_xvsat_bu:
3949 case Intrinsic::loongarch_lasx_xvrotri_b:
3950 case Intrinsic::loongarch_lasx_xvsllwil_h_b:
3951 case Intrinsic::loongarch_lasx_xvsllwil_hu_bu:
3952 case Intrinsic::loongarch_lasx_xvsrlri_b:
3953 case Intrinsic::loongarch_lasx_xvsrari_b:
3954 case Intrinsic::loongarch_lasx_xvrepl128vei_h:
3955 case Intrinsic::loongarch_lasx_xvpickve_w:
3956 case Intrinsic::loongarch_lasx_xvpickve_w_f:
3958 case Intrinsic::loongarch_lasx_xvinsve0_w:
3960 case Intrinsic::loongarch_lsx_vsat_h:
3961 case Intrinsic::loongarch_lsx_vsat_hu:
3962 case Intrinsic::loongarch_lsx_vrotri_h:
3963 case Intrinsic::loongarch_lsx_vsllwil_w_h:
3964 case Intrinsic::loongarch_lsx_vsllwil_wu_hu:
3965 case Intrinsic::loongarch_lsx_vsrlri_h:
3966 case Intrinsic::loongarch_lsx_vsrari_h:
3967 case Intrinsic::loongarch_lsx_vreplvei_b:
3968 case Intrinsic::loongarch_lasx_xvsat_h:
3969 case Intrinsic::loongarch_lasx_xvsat_hu:
3970 case Intrinsic::loongarch_lasx_xvrotri_h:
3971 case Intrinsic::loongarch_lasx_xvsllwil_w_h:
3972 case Intrinsic::loongarch_lasx_xvsllwil_wu_hu:
3973 case Intrinsic::loongarch_lasx_xvsrlri_h:
3974 case Intrinsic::loongarch_lasx_xvsrari_h:
3975 case Intrinsic::loongarch_lasx_xvrepl128vei_b:
3977 case Intrinsic::loongarch_lsx_vsrlni_b_h:
3978 case Intrinsic::loongarch_lsx_vsrani_b_h:
3979 case Intrinsic::loongarch_lsx_vsrlrni_b_h:
3980 case Intrinsic::loongarch_lsx_vsrarni_b_h:
3981 case Intrinsic::loongarch_lsx_vssrlni_b_h:
3982 case Intrinsic::loongarch_lsx_vssrani_b_h:
3983 case Intrinsic::loongarch_lsx_vssrlni_bu_h:
3984 case Intrinsic::loongarch_lsx_vssrani_bu_h:
3985 case Intrinsic::loongarch_lsx_vssrlrni_b_h:
3986 case Intrinsic::loongarch_lsx_vssrarni_b_h:
3987 case Intrinsic::loongarch_lsx_vssrlrni_bu_h:
3988 case Intrinsic::loongarch_lsx_vssrarni_bu_h:
3989 case Intrinsic::loongarch_lasx_xvsrlni_b_h:
3990 case Intrinsic::loongarch_lasx_xvsrani_b_h:
3991 case Intrinsic::loongarch_lasx_xvsrlrni_b_h:
3992 case Intrinsic::loongarch_lasx_xvsrarni_b_h:
3993 case Intrinsic::loongarch_lasx_xvssrlni_b_h:
3994 case Intrinsic::loongarch_lasx_xvssrani_b_h:
3995 case Intrinsic::loongarch_lasx_xvssrlni_bu_h:
3996 case Intrinsic::loongarch_lasx_xvssrani_bu_h:
3997 case Intrinsic::loongarch_lasx_xvssrlrni_b_h:
3998 case Intrinsic::loongarch_lasx_xvssrarni_b_h:
3999 case Intrinsic::loongarch_lasx_xvssrlrni_bu_h:
4000 case Intrinsic::loongarch_lasx_xvssrarni_bu_h:
4002 case Intrinsic::loongarch_lsx_vsat_w:
4003 case Intrinsic::loongarch_lsx_vsat_wu:
4004 case Intrinsic::loongarch_lsx_vrotri_w:
4005 case Intrinsic::loongarch_lsx_vsllwil_d_w:
4006 case Intrinsic::loongarch_lsx_vsllwil_du_wu:
4007 case Intrinsic::loongarch_lsx_vsrlri_w:
4008 case Intrinsic::loongarch_lsx_vsrari_w:
4009 case Intrinsic::loongarch_lsx_vslei_bu:
4010 case Intrinsic::loongarch_lsx_vslei_hu:
4011 case Intrinsic::loongarch_lsx_vslei_wu:
4012 case Intrinsic::loongarch_lsx_vslei_du:
4013 case Intrinsic::loongarch_lsx_vslti_bu:
4014 case Intrinsic::loongarch_lsx_vslti_hu:
4015 case Intrinsic::loongarch_lsx_vslti_wu:
4016 case Intrinsic::loongarch_lsx_vslti_du:
4017 case Intrinsic::loongarch_lsx_vbsll_v:
4018 case Intrinsic::loongarch_lsx_vbsrl_v:
4019 case Intrinsic::loongarch_lasx_xvsat_w:
4020 case Intrinsic::loongarch_lasx_xvsat_wu:
4021 case Intrinsic::loongarch_lasx_xvrotri_w:
4022 case Intrinsic::loongarch_lasx_xvsllwil_d_w:
4023 case Intrinsic::loongarch_lasx_xvsllwil_du_wu:
4024 case Intrinsic::loongarch_lasx_xvsrlri_w:
4025 case Intrinsic::loongarch_lasx_xvsrari_w:
4026 case Intrinsic::loongarch_lasx_xvslei_bu:
4027 case Intrinsic::loongarch_lasx_xvslei_hu:
4028 case Intrinsic::loongarch_lasx_xvslei_wu:
4029 case Intrinsic::loongarch_lasx_xvslei_du:
4030 case Intrinsic::loongarch_lasx_xvslti_bu:
4031 case Intrinsic::loongarch_lasx_xvslti_hu:
4032 case Intrinsic::loongarch_lasx_xvslti_wu:
4033 case Intrinsic::loongarch_lasx_xvslti_du:
4034 case Intrinsic::loongarch_lasx_xvbsll_v:
4035 case Intrinsic::loongarch_lasx_xvbsrl_v:
4037 case Intrinsic::loongarch_lsx_vseqi_b:
4038 case Intrinsic::loongarch_lsx_vseqi_h:
4039 case Intrinsic::loongarch_lsx_vseqi_w:
4040 case Intrinsic::loongarch_lsx_vseqi_d:
4041 case Intrinsic::loongarch_lsx_vslei_b:
4042 case Intrinsic::loongarch_lsx_vslei_h:
4043 case Intrinsic::loongarch_lsx_vslei_w:
4044 case Intrinsic::loongarch_lsx_vslei_d:
4045 case Intrinsic::loongarch_lsx_vslti_b:
4046 case Intrinsic::loongarch_lsx_vslti_h:
4047 case Intrinsic::loongarch_lsx_vslti_w:
4048 case Intrinsic::loongarch_lsx_vslti_d:
4049 case Intrinsic::loongarch_lasx_xvseqi_b:
4050 case Intrinsic::loongarch_lasx_xvseqi_h:
4051 case Intrinsic::loongarch_lasx_xvseqi_w:
4052 case Intrinsic::loongarch_lasx_xvseqi_d:
4053 case Intrinsic::loongarch_lasx_xvslei_b:
4054 case Intrinsic::loongarch_lasx_xvslei_h:
4055 case Intrinsic::loongarch_lasx_xvslei_w:
4056 case Intrinsic::loongarch_lasx_xvslei_d:
4057 case Intrinsic::loongarch_lasx_xvslti_b:
4058 case Intrinsic::loongarch_lasx_xvslti_h:
4059 case Intrinsic::loongarch_lasx_xvslti_w:
4060 case Intrinsic::loongarch_lasx_xvslti_d:
4062 case Intrinsic::loongarch_lsx_vsrlni_h_w:
4063 case Intrinsic::loongarch_lsx_vsrani_h_w:
4064 case Intrinsic::loongarch_lsx_vsrlrni_h_w:
4065 case Intrinsic::loongarch_lsx_vsrarni_h_w:
4066 case Intrinsic::loongarch_lsx_vssrlni_h_w:
4067 case Intrinsic::loongarch_lsx_vssrani_h_w:
4068 case Intrinsic::loongarch_lsx_vssrlni_hu_w:
4069 case Intrinsic::loongarch_lsx_vssrani_hu_w:
4070 case Intrinsic::loongarch_lsx_vssrlrni_h_w:
4071 case Intrinsic::loongarch_lsx_vssrarni_h_w:
4072 case Intrinsic::loongarch_lsx_vssrlrni_hu_w:
4073 case Intrinsic::loongarch_lsx_vssrarni_hu_w:
4074 case Intrinsic::loongarch_lsx_vfrstpi_b:
4075 case Intrinsic::loongarch_lsx_vfrstpi_h:
4076 case Intrinsic::loongarch_lasx_xvsrlni_h_w:
4077 case Intrinsic::loongarch_lasx_xvsrani_h_w:
4078 case Intrinsic::loongarch_lasx_xvsrlrni_h_w:
4079 case Intrinsic::loongarch_lasx_xvsrarni_h_w:
4080 case Intrinsic::loongarch_lasx_xvssrlni_h_w:
4081 case Intrinsic::loongarch_lasx_xvssrani_h_w:
4082 case Intrinsic::loongarch_lasx_xvssrlni_hu_w:
4083 case Intrinsic::loongarch_lasx_xvssrani_hu_w:
4084 case Intrinsic::loongarch_lasx_xvssrlrni_h_w:
4085 case Intrinsic::loongarch_lasx_xvssrarni_h_w:
4086 case Intrinsic::loongarch_lasx_xvssrlrni_hu_w:
4087 case Intrinsic::loongarch_lasx_xvssrarni_hu_w:
4088 case Intrinsic::loongarch_lasx_xvfrstpi_b:
4089 case Intrinsic::loongarch_lasx_xvfrstpi_h:
4091 case Intrinsic::loongarch_lsx_vsat_d:
4092 case Intrinsic::loongarch_lsx_vsat_du:
4093 case Intrinsic::loongarch_lsx_vrotri_d:
4094 case Intrinsic::loongarch_lsx_vsrlri_d:
4095 case Intrinsic::loongarch_lsx_vsrari_d:
4096 case Intrinsic::loongarch_lasx_xvsat_d:
4097 case Intrinsic::loongarch_lasx_xvsat_du:
4098 case Intrinsic::loongarch_lasx_xvrotri_d:
4099 case Intrinsic::loongarch_lasx_xvsrlri_d:
4100 case Intrinsic::loongarch_lasx_xvsrari_d:
4102 case Intrinsic::loongarch_lsx_vsrlni_w_d:
4103 case Intrinsic::loongarch_lsx_vsrani_w_d:
4104 case Intrinsic::loongarch_lsx_vsrlrni_w_d:
4105 case Intrinsic::loongarch_lsx_vsrarni_w_d:
4106 case Intrinsic::loongarch_lsx_vssrlni_w_d:
4107 case Intrinsic::loongarch_lsx_vssrani_w_d:
4108 case Intrinsic::loongarch_lsx_vssrlni_wu_d:
4109 case Intrinsic::loongarch_lsx_vssrani_wu_d:
4110 case Intrinsic::loongarch_lsx_vssrlrni_w_d:
4111 case Intrinsic::loongarch_lsx_vssrarni_w_d:
4112 case Intrinsic::loongarch_lsx_vssrlrni_wu_d:
4113 case Intrinsic::loongarch_lsx_vssrarni_wu_d:
4114 case Intrinsic::loongarch_lasx_xvsrlni_w_d:
4115 case Intrinsic::loongarch_lasx_xvsrani_w_d:
4116 case Intrinsic::loongarch_lasx_xvsrlrni_w_d:
4117 case Intrinsic::loongarch_lasx_xvsrarni_w_d:
4118 case Intrinsic::loongarch_lasx_xvssrlni_w_d:
4119 case Intrinsic::loongarch_lasx_xvssrani_w_d:
4120 case Intrinsic::loongarch_lasx_xvssrlni_wu_d:
4121 case Intrinsic::loongarch_lasx_xvssrani_wu_d:
4122 case Intrinsic::loongarch_lasx_xvssrlrni_w_d:
4123 case Intrinsic::loongarch_lasx_xvssrarni_w_d:
4124 case Intrinsic::loongarch_lasx_xvssrlrni_wu_d:
4125 case Intrinsic::loongarch_lasx_xvssrarni_wu_d:
4127 case Intrinsic::loongarch_lsx_vsrlni_d_q:
4128 case Intrinsic::loongarch_lsx_vsrani_d_q:
4129 case Intrinsic::loongarch_lsx_vsrlrni_d_q:
4130 case Intrinsic::loongarch_lsx_vsrarni_d_q:
4131 case Intrinsic::loongarch_lsx_vssrlni_d_q:
4132 case Intrinsic::loongarch_lsx_vssrani_d_q:
4133 case Intrinsic::loongarch_lsx_vssrlni_du_q:
4134 case Intrinsic::loongarch_lsx_vssrani_du_q:
4135 case Intrinsic::loongarch_lsx_vssrlrni_d_q:
4136 case Intrinsic::loongarch_lsx_vssrarni_d_q:
4137 case Intrinsic::loongarch_lsx_vssrlrni_du_q:
4138 case Intrinsic::loongarch_lsx_vssrarni_du_q:
4139 case Intrinsic::loongarch_lasx_xvsrlni_d_q:
4140 case Intrinsic::loongarch_lasx_xvsrani_d_q:
4141 case Intrinsic::loongarch_lasx_xvsrlrni_d_q:
4142 case Intrinsic::loongarch_lasx_xvsrarni_d_q:
4143 case Intrinsic::loongarch_lasx_xvssrlni_d_q:
4144 case Intrinsic::loongarch_lasx_xvssrani_d_q:
4145 case Intrinsic::loongarch_lasx_xvssrlni_du_q:
4146 case Intrinsic::loongarch_lasx_xvssrani_du_q:
4147 case Intrinsic::loongarch_lasx_xvssrlrni_d_q:
4148 case Intrinsic::loongarch_lasx_xvssrarni_d_q:
4149 case Intrinsic::loongarch_lasx_xvssrlrni_du_q:
4150 case Intrinsic::loongarch_lasx_xvssrarni_du_q:
4152 case Intrinsic::loongarch_lsx_vnori_b:
4153 case Intrinsic::loongarch_lsx_vshuf4i_b:
4154 case Intrinsic::loongarch_lsx_vshuf4i_h:
4155 case Intrinsic::loongarch_lsx_vshuf4i_w:
4156 case Intrinsic::loongarch_lasx_xvnori_b:
4157 case Intrinsic::loongarch_lasx_xvshuf4i_b:
4158 case Intrinsic::loongarch_lasx_xvshuf4i_h:
4159 case Intrinsic::loongarch_lasx_xvshuf4i_w:
4160 case Intrinsic::loongarch_lasx_xvpermi_d:
4162 case Intrinsic::loongarch_lsx_vshuf4i_d:
4163 case Intrinsic::loongarch_lsx_vpermi_w:
4164 case Intrinsic::loongarch_lsx_vbitseli_b:
4165 case Intrinsic::loongarch_lsx_vextrins_b:
4166 case Intrinsic::loongarch_lsx_vextrins_h:
4167 case Intrinsic::loongarch_lsx_vextrins_w:
4168 case Intrinsic::loongarch_lsx_vextrins_d:
4169 case Intrinsic::loongarch_lasx_xvshuf4i_d:
4170 case Intrinsic::loongarch_lasx_xvpermi_w:
4171 case Intrinsic::loongarch_lasx_xvpermi_q:
4172 case Intrinsic::loongarch_lasx_xvbitseli_b:
4173 case Intrinsic::loongarch_lasx_xvextrins_b:
4174 case Intrinsic::loongarch_lasx_xvextrins_h:
4175 case Intrinsic::loongarch_lasx_xvextrins_w:
4176 case Intrinsic::loongarch_lasx_xvextrins_d:
4178 case Intrinsic::loongarch_lsx_vrepli_b:
4179 case Intrinsic::loongarch_lsx_vrepli_h:
4180 case Intrinsic::loongarch_lsx_vrepli_w:
4181 case Intrinsic::loongarch_lsx_vrepli_d:
4182 case Intrinsic::loongarch_lasx_xvrepli_b:
4183 case Intrinsic::loongarch_lasx_xvrepli_h:
4184 case Intrinsic::loongarch_lasx_xvrepli_w:
4185 case Intrinsic::loongarch_lasx_xvrepli_d:
4187 case Intrinsic::loongarch_lsx_vldi:
4188 case Intrinsic::loongarch_lasx_xvldi:
4204LoongArchTargetLowering::lowerINTRINSIC_W_CHAIN(
SDValue Op,
4207 MVT GRLenVT = Subtarget.getGRLenVT();
4208 EVT VT =
Op.getValueType();
4210 const StringRef ErrorMsgOOR =
"argument out of range";
4211 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4212 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4214 switch (
Op.getConstantOperandVal(1)) {
4217 case Intrinsic::loongarch_crc_w_b_w:
4218 case Intrinsic::loongarch_crc_w_h_w:
4219 case Intrinsic::loongarch_crc_w_w_w:
4220 case Intrinsic::loongarch_crc_w_d_w:
4221 case Intrinsic::loongarch_crcc_w_b_w:
4222 case Intrinsic::loongarch_crcc_w_h_w:
4223 case Intrinsic::loongarch_crcc_w_w_w:
4224 case Intrinsic::loongarch_crcc_w_d_w:
4226 case Intrinsic::loongarch_csrrd_w:
4227 case Intrinsic::loongarch_csrrd_d: {
4228 unsigned Imm =
Op.getConstantOperandVal(2);
4231 : DAG.
getNode(LoongArchISD::CSRRD,
DL, {GRLenVT, MVT::Other},
4234 case Intrinsic::loongarch_csrwr_w:
4235 case Intrinsic::loongarch_csrwr_d: {
4236 unsigned Imm =
Op.getConstantOperandVal(3);
4239 : DAG.
getNode(LoongArchISD::CSRWR,
DL, {GRLenVT, MVT::Other},
4240 {Chain,
Op.getOperand(2),
4243 case Intrinsic::loongarch_csrxchg_w:
4244 case Intrinsic::loongarch_csrxchg_d: {
4245 unsigned Imm =
Op.getConstantOperandVal(4);
4248 : DAG.
getNode(LoongArchISD::CSRXCHG,
DL, {GRLenVT, MVT::Other},
4249 {Chain,
Op.getOperand(2),
Op.getOperand(3),
4252 case Intrinsic::loongarch_iocsrrd_d: {
4254 LoongArchISD::IOCSRRD_D,
DL, {GRLenVT, MVT::Other},
4257#define IOCSRRD_CASE(NAME, NODE) \
4258 case Intrinsic::loongarch_##NAME: { \
4259 return DAG.getNode(LoongArchISD::NODE, DL, {GRLenVT, MVT::Other}, \
4260 {Chain, Op.getOperand(2)}); \
4266 case Intrinsic::loongarch_cpucfg: {
4267 return DAG.
getNode(LoongArchISD::CPUCFG,
DL, {GRLenVT, MVT::Other},
4268 {Chain,
Op.getOperand(2)});
4270 case Intrinsic::loongarch_lddir_d: {
4271 unsigned Imm =
Op.getConstantOperandVal(3);
4276 case Intrinsic::loongarch_movfcsr2gr: {
4277 if (!Subtarget.hasBasicF())
4279 unsigned Imm =
Op.getConstantOperandVal(2);
4282 : DAG.
getNode(LoongArchISD::MOVFCSR2GR,
DL, {VT, MVT::Other},
4285 case Intrinsic::loongarch_lsx_vld:
4286 case Intrinsic::loongarch_lsx_vldrepl_b:
4287 case Intrinsic::loongarch_lasx_xvld:
4288 case Intrinsic::loongarch_lasx_xvldrepl_b:
4292 case Intrinsic::loongarch_lsx_vldrepl_h:
4293 case Intrinsic::loongarch_lasx_xvldrepl_h:
4297 Op,
"argument out of range or not a multiple of 2", DAG)
4299 case Intrinsic::loongarch_lsx_vldrepl_w:
4300 case Intrinsic::loongarch_lasx_xvldrepl_w:
4304 Op,
"argument out of range or not a multiple of 4", DAG)
4306 case Intrinsic::loongarch_lsx_vldrepl_d:
4307 case Intrinsic::loongarch_lasx_xvldrepl_d:
4311 Op,
"argument out of range or not a multiple of 8", DAG)
4322 return Op.getOperand(0);
4328 MVT GRLenVT = Subtarget.getGRLenVT();
4330 uint64_t IntrinsicEnum =
Op.getConstantOperandVal(1);
4332 const StringRef ErrorMsgOOR =
"argument out of range";
4333 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4334 const StringRef ErrorMsgReqLA32 =
"requires loongarch32";
4335 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4337 switch (IntrinsicEnum) {
4341 case Intrinsic::loongarch_cacop_d:
4342 case Intrinsic::loongarch_cacop_w: {
4343 if (IntrinsicEnum == Intrinsic::loongarch_cacop_d && !Subtarget.is64Bit())
4345 if (IntrinsicEnum == Intrinsic::loongarch_cacop_w && Subtarget.is64Bit())
4354 case Intrinsic::loongarch_dbar: {
4361 case Intrinsic::loongarch_ibar: {
4368 case Intrinsic::loongarch_break: {
4375 case Intrinsic::loongarch_movgr2fcsr: {
4376 if (!Subtarget.hasBasicF())
4386 case Intrinsic::loongarch_syscall: {
4393#define IOCSRWR_CASE(NAME, NODE) \
4394 case Intrinsic::loongarch_##NAME: { \
4395 SDValue Op3 = Op.getOperand(3); \
4396 return Subtarget.is64Bit() \
4397 ? DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, \
4398 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
4399 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op3)) \
4400 : DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, Op2, \
4407 case Intrinsic::loongarch_iocsrwr_d: {
4408 return !Subtarget.is64Bit()
4415#define ASRT_LE_GT_CASE(NAME) \
4416 case Intrinsic::loongarch_##NAME: { \
4417 return !Subtarget.is64Bit() \
4418 ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG) \
4423#undef ASRT_LE_GT_CASE
4424 case Intrinsic::loongarch_ldpte_d: {
4425 unsigned Imm =
Op.getConstantOperandVal(3);
4426 return !Subtarget.is64Bit()
4431 case Intrinsic::loongarch_lsx_vst:
4432 case Intrinsic::loongarch_lasx_xvst:
4436 case Intrinsic::loongarch_lasx_xvstelm_b:
4441 case Intrinsic::loongarch_lsx_vstelm_b:
4446 case Intrinsic::loongarch_lasx_xvstelm_h:
4451 Op,
"argument out of range or not a multiple of 2", DAG)
4453 case Intrinsic::loongarch_lsx_vstelm_h:
4458 Op,
"argument out of range or not a multiple of 2", DAG)
4460 case Intrinsic::loongarch_lasx_xvstelm_w:
4465 Op,
"argument out of range or not a multiple of 4", DAG)
4467 case Intrinsic::loongarch_lsx_vstelm_w:
4472 Op,
"argument out of range or not a multiple of 4", DAG)
4474 case Intrinsic::loongarch_lasx_xvstelm_d:
4479 Op,
"argument out of range or not a multiple of 8", DAG)
4481 case Intrinsic::loongarch_lsx_vstelm_d:
4486 Op,
"argument out of range or not a multiple of 8", DAG)
4497 EVT VT =
Lo.getValueType();
4538 EVT VT =
Lo.getValueType();
4592 return LoongArchISD::DIV_W;
4594 return LoongArchISD::DIV_WU;
4596 return LoongArchISD::MOD_W;
4598 return LoongArchISD::MOD_WU;
4600 return LoongArchISD::SLL_W;
4602 return LoongArchISD::SRA_W;
4604 return LoongArchISD::SRL_W;
4607 return LoongArchISD::ROTR_W;
4609 return LoongArchISD::CTZ_W;
4611 return LoongArchISD::CLZ_W;
4630 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
4631 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0);
4635 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
4641 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0, NewOp1);
4668 StringRef ErrorMsg,
bool WithChain =
true) {
4673 Results.push_back(
N->getOperand(0));
4676template <
unsigned N>
4681 const StringRef ErrorMsgOOR =
"argument out of range";
4682 unsigned Imm =
Node->getConstantOperandVal(2);
4716 switch (
N->getConstantOperandVal(0)) {
4719 case Intrinsic::loongarch_lsx_vpickve2gr_b:
4721 LoongArchISD::VPICK_SEXT_ELT);
4723 case Intrinsic::loongarch_lsx_vpickve2gr_h:
4724 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
4726 LoongArchISD::VPICK_SEXT_ELT);
4728 case Intrinsic::loongarch_lsx_vpickve2gr_w:
4730 LoongArchISD::VPICK_SEXT_ELT);
4732 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
4734 LoongArchISD::VPICK_ZEXT_ELT);
4736 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
4737 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
4739 LoongArchISD::VPICK_ZEXT_ELT);
4741 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
4743 LoongArchISD::VPICK_ZEXT_ELT);
4745 case Intrinsic::loongarch_lsx_bz_b:
4746 case Intrinsic::loongarch_lsx_bz_h:
4747 case Intrinsic::loongarch_lsx_bz_w:
4748 case Intrinsic::loongarch_lsx_bz_d:
4749 case Intrinsic::loongarch_lasx_xbz_b:
4750 case Intrinsic::loongarch_lasx_xbz_h:
4751 case Intrinsic::loongarch_lasx_xbz_w:
4752 case Intrinsic::loongarch_lasx_xbz_d:
4754 LoongArchISD::VALL_ZERO);
4756 case Intrinsic::loongarch_lsx_bz_v:
4757 case Intrinsic::loongarch_lasx_xbz_v:
4759 LoongArchISD::VANY_ZERO);
4761 case Intrinsic::loongarch_lsx_bnz_b:
4762 case Intrinsic::loongarch_lsx_bnz_h:
4763 case Intrinsic::loongarch_lsx_bnz_w:
4764 case Intrinsic::loongarch_lsx_bnz_d:
4765 case Intrinsic::loongarch_lasx_xbnz_b:
4766 case Intrinsic::loongarch_lasx_xbnz_h:
4767 case Intrinsic::loongarch_lasx_xbnz_w:
4768 case Intrinsic::loongarch_lasx_xbnz_d:
4770 LoongArchISD::VALL_NONZERO);
4772 case Intrinsic::loongarch_lsx_bnz_v:
4773 case Intrinsic::loongarch_lasx_xbnz_v:
4775 LoongArchISD::VANY_NONZERO);
4783 assert(
N->getValueType(0) == MVT::i128 &&
4784 "AtomicCmpSwap on types less than 128 should be legal");
4788 switch (
MemOp->getMergedOrdering()) {
4792 Opcode = LoongArch::PseudoCmpXchg128Acquire;
4796 Opcode = LoongArch::PseudoCmpXchg128;
4803 auto CmpVal = DAG.
SplitScalar(
N->getOperand(2),
DL, MVT::i64, MVT::i64);
4804 auto NewVal = DAG.
SplitScalar(
N->getOperand(3),
DL, MVT::i64, MVT::i64);
4805 SDValue Ops[] = {
N->getOperand(1), CmpVal.first, CmpVal.second,
4806 NewVal.first, NewVal.second,
N->getOperand(0)};
4809 Opcode,
SDLoc(
N), DAG.
getVTList(MVT::i64, MVT::i64, MVT::i64, MVT::Other),
4820 EVT VT =
N->getValueType(0);
4821 switch (
N->getOpcode()) {
4826 assert(
N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4827 "Unexpected custom legalisation");
4834 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4835 "Unexpected custom legalisation");
4837 Subtarget.hasDiv32() && VT == MVT::i32
4844 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4845 "Unexpected custom legalisation");
4853 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4854 "Unexpected custom legalisation");
4858 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4859 "Unexpected custom legalisation");
4866 if (Src.getValueType() == MVT::f16)
4877 EVT OpVT = Src.getValueType();
4881 std::tie(Result, Chain) =
4888 EVT SrcVT = Src.getValueType();
4889 if (VT == MVT::i32 && SrcVT == MVT::f32 && Subtarget.is64Bit() &&
4890 Subtarget.hasBasicF()) {
4892 DAG.
getNode(LoongArchISD::MOVFR2GR_S_LA64,
DL, MVT::i64, Src);
4894 }
else if (VT == MVT::i64 && SrcVT == MVT::f64 && !Subtarget.is64Bit()) {
4896 DAG.
getVTList(MVT::i32, MVT::i32), Src);
4904 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4905 "Unexpected custom legalisation");
4908 TLI.expandFP_TO_UINT(
N, Tmp1, Tmp2, DAG);
4914 assert((VT == MVT::i16 || VT == MVT::i32) &&
4915 "Unexpected custom legalization");
4916 MVT GRLenVT = Subtarget.getGRLenVT();
4923 Tmp = DAG.
getNode(LoongArchISD::REVB_2H,
DL, GRLenVT, NewSrc);
4928 Tmp = DAG.
getNode(LoongArchISD::REVB_2W,
DL, GRLenVT, NewSrc);
4936 assert((VT == MVT::i8 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
4937 "Unexpected custom legalization");
4938 MVT GRLenVT = Subtarget.getGRLenVT();
4945 Tmp = DAG.
getNode(LoongArchISD::BITREV_4B,
DL, GRLenVT, NewSrc);
4948 Tmp = DAG.
getNode(LoongArchISD::BITREV_W,
DL, GRLenVT, NewSrc);
4956 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4957 "Unexpected custom legalisation");
4964 MVT GRLenVT = Subtarget.getGRLenVT();
4965 const StringRef ErrorMsgOOR =
"argument out of range";
4966 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4967 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4969 switch (
N->getConstantOperandVal(1)) {
4972 case Intrinsic::loongarch_movfcsr2gr: {
4973 if (!Subtarget.hasBasicF()) {
4983 LoongArchISD::MOVFCSR2GR,
SDLoc(
N), {MVT::i64, MVT::Other},
4990#define CRC_CASE_EXT_BINARYOP(NAME, NODE) \
4991 case Intrinsic::loongarch_##NAME: { \
4992 SDValue NODE = DAG.getNode( \
4993 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4994 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
4995 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
4996 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
4997 Results.push_back(NODE.getValue(1)); \
5006#undef CRC_CASE_EXT_BINARYOP
5008#define CRC_CASE_EXT_UNARYOP(NAME, NODE) \
5009 case Intrinsic::loongarch_##NAME: { \
5010 SDValue NODE = DAG.getNode( \
5011 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
5013 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
5014 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
5015 Results.push_back(NODE.getValue(1)); \
5020#undef CRC_CASE_EXT_UNARYOP
5021#define CSR_CASE(ID) \
5022 case Intrinsic::loongarch_##ID: { \
5023 if (!Subtarget.is64Bit()) \
5024 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqLA64); \
5032 case Intrinsic::loongarch_csrrd_w: {
5039 DAG.
getNode(LoongArchISD::CSRRD,
DL, {GRLenVT, MVT::Other},
5046 case Intrinsic::loongarch_csrwr_w: {
5047 unsigned Imm =
N->getConstantOperandVal(3);
5053 DAG.
getNode(LoongArchISD::CSRWR,
DL, {GRLenVT, MVT::Other},
5061 case Intrinsic::loongarch_csrxchg_w: {
5062 unsigned Imm =
N->getConstantOperandVal(4);
5068 LoongArchISD::CSRXCHG,
DL, {GRLenVT, MVT::Other},
5077#define IOCSRRD_CASE(NAME, NODE) \
5078 case Intrinsic::loongarch_##NAME: { \
5079 SDValue IOCSRRDResults = \
5080 DAG.getNode(LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
5081 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)}); \
5082 Results.push_back( \
5083 DAG.getNode(ISD::TRUNCATE, DL, VT, IOCSRRDResults.getValue(0))); \
5084 Results.push_back(IOCSRRDResults.getValue(1)); \
5091 case Intrinsic::loongarch_cpucfg: {
5093 DAG.
getNode(LoongArchISD::CPUCFG,
DL, {GRLenVT, MVT::Other},
5100 case Intrinsic::loongarch_lddir_d: {
5101 if (!Subtarget.is64Bit()) {
5111 if (Subtarget.is64Bit())
5113 "On LA64, only 64-bit registers can be read.");
5116 "On LA32, only 32-bit registers can be read.");
5118 Results.push_back(
N->getOperand(0));
5129 OpVT == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32;
5142 MVT VT =
N->getSimpleValueType(0);
5148 EVT InVT = In.getValueType();
5159 for (
unsigned I = 0;
I < MinElts; ++
I)
5160 TruncMask[
I] = Scale *
I;
5162 unsigned WidenNumElts = 128 / In.getScalarValueSizeInBits();
5163 MVT SVT = In.getSimpleValueType().getScalarType();
5169 "Illegal vector type in truncation");
5185 assert(
N->getOpcode() ==
ISD::AND &&
"Unexpected opcode combine into ANDN");
5187 MVT VT =
N->getSimpleValueType(0);
5206 return DAG.
getNode(LoongArchISD::VANDN,
DL, VT,
X,
Y);
5215 SDValue FirstOperand =
N->getOperand(0);
5216 SDValue SecondOperand =
N->getOperand(1);
5217 unsigned FirstOperandOpc = FirstOperand.
getOpcode();
5218 EVT ValTy =
N->getValueType(0);
5221 unsigned SMIdx, SMLen;
5230 if (!Subtarget.has32S())
5252 if (SMIdx != 0 || lsb + SMLen > ValTy.getSizeInBits())
5267 if (SMIdx + SMLen > ValTy.getSizeInBits())
5286 NewOperand = FirstOperand;
5289 msb = lsb + SMLen - 1;
5293 if (FirstOperandOpc ==
ISD::SRA || FirstOperandOpc ==
ISD::SRL || lsb == 0)
5306 if (!Subtarget.has32S())
5318 SDValue FirstOperand =
N->getOperand(0);
5320 EVT ValTy =
N->getValueType(0);
5323 unsigned MaskIdx, MaskLen;
5338 if (MaskIdx <= Shamt && Shamt <= MaskIdx + MaskLen - 1)
5339 return DAG.
getNode(LoongArchISD::BSTRPICK,
DL, ValTy,
5354 switch (Src.getOpcode()) {
5357 return Src.getOperand(0).getValueSizeInBits() ==
Size;
5367 return Src.getOperand(0).getScalarValueSizeInBits() == 1 &&
5380 switch (Src.getOpcode()) {
5390 Src.getOpcode(),
DL, SExtVT,
5396 DL, SExtVT, Src.getOperand(0),
5408 EVT VT =
N->getValueType(0);
5410 EVT SrcVT = Src.getValueType();
5412 if (Src.getOpcode() !=
ISD::SETCC || !Src.hasOneUse())
5417 EVT CmpVT = Src.getOperand(0).getValueType();
5422 else if (Subtarget.has32S() && Subtarget.hasExtLASX() &&
5435 Opc = UseLASX ? LoongArchISD::XVMSKEQZ : LoongArchISD::VMSKEQZ;
5440 Opc = UseLASX ? LoongArchISD::XVMSKGEZ : LoongArchISD::VMSKGEZ;
5445 Opc = UseLASX ? LoongArchISD::XVMSKGEZ : LoongArchISD::VMSKGEZ;
5450 (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
5452 Opc = UseLASX ? LoongArchISD::XVMSKLTZ : LoongArchISD::VMSKLTZ;
5457 (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
5459 Opc = UseLASX ? LoongArchISD::XVMSKLTZ : LoongArchISD::VMSKLTZ;
5464 Opc = UseLASX ? LoongArchISD::XVMSKNEZ : LoongArchISD::VMSKNEZ;
5481 EVT VT =
N->getValueType(0);
5483 EVT SrcVT = Src.getValueType();
5500 bool UseLASX =
false;
5501 bool PropagateSExt =
false;
5503 if (Src.getOpcode() ==
ISD::SETCC && Src.hasOneUse()) {
5504 EVT CmpVT = Src.getOperand(0).getValueType();
5513 SExtVT = MVT::v2i64;
5516 SExtVT = MVT::v4i32;
5518 SExtVT = MVT::v4i64;
5520 PropagateSExt =
true;
5524 SExtVT = MVT::v8i16;
5526 SExtVT = MVT::v8i32;
5528 PropagateSExt =
true;
5532 SExtVT = MVT::v16i8;
5534 SExtVT = MVT::v16i16;
5536 PropagateSExt =
true;
5540 SExtVT = MVT::v32i8;
5548 if (!Subtarget.has32S() || !Subtarget.hasExtLASX()) {
5549 if (Src.getSimpleValueType() == MVT::v32i8) {
5557 }
else if (UseLASX) {
5563 Opc = UseLASX ? LoongArchISD::XVMSKLTZ : LoongArchISD::VMSKLTZ;
5576 EVT ValTy =
N->getValueType(0);
5577 SDValue N0 =
N->getOperand(0), N1 =
N->getOperand(1);
5580 unsigned ValBits = ValTy.getSizeInBits();
5581 unsigned MaskIdx0, MaskLen0, MaskIdx1, MaskLen1;
5583 bool SwapAndRetried =
false;
5586 if (!Subtarget.has32S())
5592 if (ValBits != 32 && ValBits != 64)
5607 MaskIdx0 == MaskIdx1 && MaskLen0 == MaskLen1 &&
5610 (MaskIdx0 + MaskLen0 <= ValBits)) {
5631 MaskLen0 == MaskLen1 && MaskIdx1 == 0 &&
5632 (MaskIdx0 + MaskLen0 <= ValBits)) {
5649 (MaskIdx0 + MaskLen0 <= 64) &&
5657 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
5658 : (MaskIdx0 + MaskLen0 - 1),
5674 (MaskIdx0 + MaskLen0 <= ValBits)) {
5697 DAG.
getConstant(ValBits == 32 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
5698 : (MaskIdx0 + MaskLen0 - 1),
5713 unsigned MaskIdx, MaskLen;
5714 if (N1.getOpcode() ==
ISD::SHL && N1.getOperand(0).getOpcode() ==
ISD::AND &&
5723 return DAG.
getNode(LoongArchISD::BSTRINS,
DL, ValTy, N0,
5741 N1.getOperand(0).getOpcode() ==
ISD::SHL &&
5747 return DAG.
getNode(LoongArchISD::BSTRINS,
DL, ValTy, N0,
5755 if (!SwapAndRetried) {
5757 SwapAndRetried =
true;
5761 SwapAndRetried =
false;
5778 return DAG.
getNode(LoongArchISD::BSTRINS,
DL, ValTy, N0,
5787 if (!SwapAndRetried) {
5789 SwapAndRetried =
true;
5799 switch (V.getNode()->getOpcode()) {
5811 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
5819 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
5896 SDNode *AndNode =
N->getOperand(0).getNode();
5904 SDValue CmpInputValue =
N->getOperand(1);
5913 if (!CN || !CN->
isZero())
5915 AndInputValue1 = AndInputValue1.
getOperand(0);
5919 if (AndInputValue2 != CmpInputValue)
5952 TruncInputValue1, TruncInputValue2);
5954 DAG.
getSetCC(
SDLoc(
N),
N->getValueType(0), NewAnd, TruncInputValue2, CC);
5967 if (Src.getOpcode() != LoongArchISD::REVB_2W)
5970 return DAG.
getNode(LoongArchISD::BITREV_4B,
SDLoc(
N),
N->getValueType(0),
5995 LHS.getOperand(0).getValueType() == Subtarget.
getGRLenVT()) {
6023 ShAmt =
LHS.getValueSizeInBits() - 1 - ShAmt;
6056 return DAG.
getNode(LoongArchISD::BR_CC,
DL,
N->getValueType(0),
6057 N->getOperand(0),
LHS,
RHS, CC,
N->getOperand(4));
6073 EVT VT =
N->getValueType(0);
6076 if (TrueV == FalseV)
6107 return DAG.
getNode(LoongArchISD::SELECT_CC,
DL,
N->getValueType(0),
6108 {LHS, RHS, CC, TrueV, FalseV});
6113template <
unsigned N>
6117 bool IsSigned =
false) {
6121 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
6122 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
6124 ": argument out of range.");
6130template <
unsigned N>
6134 EVT ResTy =
Node->getValueType(0);
6138 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
6139 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
6141 ": argument out of range.");
6146 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
6152 EVT ResTy =
Node->getValueType(0);
6160 EVT ResTy =
Node->getValueType(0);
6169template <
unsigned N>
6172 EVT ResTy =
Node->getValueType(0);
6177 ": argument out of range.");
6187template <
unsigned N>
6190 EVT ResTy =
Node->getValueType(0);
6195 ": argument out of range.");
6204template <
unsigned N>
6207 EVT ResTy =
Node->getValueType(0);
6212 ": argument out of range.");
6221template <
unsigned W>
6224 unsigned Imm =
N->getConstantOperandVal(2);
6226 const StringRef ErrorMsg =
"argument out of range";
6228 return DAG.
getUNDEF(
N->getValueType(0));
6234 return DAG.
getNode(ResOp,
DL,
N->getValueType(0), Vec, Idx, EltVT);
6242 switch (
N->getConstantOperandVal(0)) {
6245 case Intrinsic::loongarch_lsx_vadd_b:
6246 case Intrinsic::loongarch_lsx_vadd_h:
6247 case Intrinsic::loongarch_lsx_vadd_w:
6248 case Intrinsic::loongarch_lsx_vadd_d:
6249 case Intrinsic::loongarch_lasx_xvadd_b:
6250 case Intrinsic::loongarch_lasx_xvadd_h:
6251 case Intrinsic::loongarch_lasx_xvadd_w:
6252 case Intrinsic::loongarch_lasx_xvadd_d:
6255 case Intrinsic::loongarch_lsx_vaddi_bu:
6256 case Intrinsic::loongarch_lsx_vaddi_hu:
6257 case Intrinsic::loongarch_lsx_vaddi_wu:
6258 case Intrinsic::loongarch_lsx_vaddi_du:
6259 case Intrinsic::loongarch_lasx_xvaddi_bu:
6260 case Intrinsic::loongarch_lasx_xvaddi_hu:
6261 case Intrinsic::loongarch_lasx_xvaddi_wu:
6262 case Intrinsic::loongarch_lasx_xvaddi_du:
6265 case Intrinsic::loongarch_lsx_vsub_b:
6266 case Intrinsic::loongarch_lsx_vsub_h:
6267 case Intrinsic::loongarch_lsx_vsub_w:
6268 case Intrinsic::loongarch_lsx_vsub_d:
6269 case Intrinsic::loongarch_lasx_xvsub_b:
6270 case Intrinsic::loongarch_lasx_xvsub_h:
6271 case Intrinsic::loongarch_lasx_xvsub_w:
6272 case Intrinsic::loongarch_lasx_xvsub_d:
6275 case Intrinsic::loongarch_lsx_vsubi_bu:
6276 case Intrinsic::loongarch_lsx_vsubi_hu:
6277 case Intrinsic::loongarch_lsx_vsubi_wu:
6278 case Intrinsic::loongarch_lsx_vsubi_du:
6279 case Intrinsic::loongarch_lasx_xvsubi_bu:
6280 case Intrinsic::loongarch_lasx_xvsubi_hu:
6281 case Intrinsic::loongarch_lasx_xvsubi_wu:
6282 case Intrinsic::loongarch_lasx_xvsubi_du:
6285 case Intrinsic::loongarch_lsx_vneg_b:
6286 case Intrinsic::loongarch_lsx_vneg_h:
6287 case Intrinsic::loongarch_lsx_vneg_w:
6288 case Intrinsic::loongarch_lsx_vneg_d:
6289 case Intrinsic::loongarch_lasx_xvneg_b:
6290 case Intrinsic::loongarch_lasx_xvneg_h:
6291 case Intrinsic::loongarch_lasx_xvneg_w:
6292 case Intrinsic::loongarch_lasx_xvneg_d:
6296 APInt(
N->getValueType(0).getScalarType().getSizeInBits(), 0,
6298 SDLoc(
N),
N->getValueType(0)),
6300 case Intrinsic::loongarch_lsx_vmax_b:
6301 case Intrinsic::loongarch_lsx_vmax_h:
6302 case Intrinsic::loongarch_lsx_vmax_w:
6303 case Intrinsic::loongarch_lsx_vmax_d:
6304 case Intrinsic::loongarch_lasx_xvmax_b:
6305 case Intrinsic::loongarch_lasx_xvmax_h:
6306 case Intrinsic::loongarch_lasx_xvmax_w:
6307 case Intrinsic::loongarch_lasx_xvmax_d:
6310 case Intrinsic::loongarch_lsx_vmax_bu:
6311 case Intrinsic::loongarch_lsx_vmax_hu:
6312 case Intrinsic::loongarch_lsx_vmax_wu:
6313 case Intrinsic::loongarch_lsx_vmax_du:
6314 case Intrinsic::loongarch_lasx_xvmax_bu:
6315 case Intrinsic::loongarch_lasx_xvmax_hu:
6316 case Intrinsic::loongarch_lasx_xvmax_wu:
6317 case Intrinsic::loongarch_lasx_xvmax_du:
6320 case Intrinsic::loongarch_lsx_vmaxi_b:
6321 case Intrinsic::loongarch_lsx_vmaxi_h:
6322 case Intrinsic::loongarch_lsx_vmaxi_w:
6323 case Intrinsic::loongarch_lsx_vmaxi_d:
6324 case Intrinsic::loongarch_lasx_xvmaxi_b:
6325 case Intrinsic::loongarch_lasx_xvmaxi_h:
6326 case Intrinsic::loongarch_lasx_xvmaxi_w:
6327 case Intrinsic::loongarch_lasx_xvmaxi_d:
6330 case Intrinsic::loongarch_lsx_vmaxi_bu:
6331 case Intrinsic::loongarch_lsx_vmaxi_hu:
6332 case Intrinsic::loongarch_lsx_vmaxi_wu:
6333 case Intrinsic::loongarch_lsx_vmaxi_du:
6334 case Intrinsic::loongarch_lasx_xvmaxi_bu:
6335 case Intrinsic::loongarch_lasx_xvmaxi_hu:
6336 case Intrinsic::loongarch_lasx_xvmaxi_wu:
6337 case Intrinsic::loongarch_lasx_xvmaxi_du:
6340 case Intrinsic::loongarch_lsx_vmin_b:
6341 case Intrinsic::loongarch_lsx_vmin_h:
6342 case Intrinsic::loongarch_lsx_vmin_w:
6343 case Intrinsic::loongarch_lsx_vmin_d:
6344 case Intrinsic::loongarch_lasx_xvmin_b:
6345 case Intrinsic::loongarch_lasx_xvmin_h:
6346 case Intrinsic::loongarch_lasx_xvmin_w:
6347 case Intrinsic::loongarch_lasx_xvmin_d:
6350 case Intrinsic::loongarch_lsx_vmin_bu:
6351 case Intrinsic::loongarch_lsx_vmin_hu:
6352 case Intrinsic::loongarch_lsx_vmin_wu:
6353 case Intrinsic::loongarch_lsx_vmin_du:
6354 case Intrinsic::loongarch_lasx_xvmin_bu:
6355 case Intrinsic::loongarch_lasx_xvmin_hu:
6356 case Intrinsic::loongarch_lasx_xvmin_wu:
6357 case Intrinsic::loongarch_lasx_xvmin_du:
6360 case Intrinsic::loongarch_lsx_vmini_b:
6361 case Intrinsic::loongarch_lsx_vmini_h:
6362 case Intrinsic::loongarch_lsx_vmini_w:
6363 case Intrinsic::loongarch_lsx_vmini_d:
6364 case Intrinsic::loongarch_lasx_xvmini_b:
6365 case Intrinsic::loongarch_lasx_xvmini_h:
6366 case Intrinsic::loongarch_lasx_xvmini_w:
6367 case Intrinsic::loongarch_lasx_xvmini_d:
6370 case Intrinsic::loongarch_lsx_vmini_bu:
6371 case Intrinsic::loongarch_lsx_vmini_hu:
6372 case Intrinsic::loongarch_lsx_vmini_wu:
6373 case Intrinsic::loongarch_lsx_vmini_du:
6374 case Intrinsic::loongarch_lasx_xvmini_bu:
6375 case Intrinsic::loongarch_lasx_xvmini_hu:
6376 case Intrinsic::loongarch_lasx_xvmini_wu:
6377 case Intrinsic::loongarch_lasx_xvmini_du:
6380 case Intrinsic::loongarch_lsx_vmul_b:
6381 case Intrinsic::loongarch_lsx_vmul_h:
6382 case Intrinsic::loongarch_lsx_vmul_w:
6383 case Intrinsic::loongarch_lsx_vmul_d:
6384 case Intrinsic::loongarch_lasx_xvmul_b:
6385 case Intrinsic::loongarch_lasx_xvmul_h:
6386 case Intrinsic::loongarch_lasx_xvmul_w:
6387 case Intrinsic::loongarch_lasx_xvmul_d:
6390 case Intrinsic::loongarch_lsx_vmadd_b:
6391 case Intrinsic::loongarch_lsx_vmadd_h:
6392 case Intrinsic::loongarch_lsx_vmadd_w:
6393 case Intrinsic::loongarch_lsx_vmadd_d:
6394 case Intrinsic::loongarch_lasx_xvmadd_b:
6395 case Intrinsic::loongarch_lasx_xvmadd_h:
6396 case Intrinsic::loongarch_lasx_xvmadd_w:
6397 case Intrinsic::loongarch_lasx_xvmadd_d: {
6398 EVT ResTy =
N->getValueType(0);
6403 case Intrinsic::loongarch_lsx_vmsub_b:
6404 case Intrinsic::loongarch_lsx_vmsub_h:
6405 case Intrinsic::loongarch_lsx_vmsub_w:
6406 case Intrinsic::loongarch_lsx_vmsub_d:
6407 case Intrinsic::loongarch_lasx_xvmsub_b:
6408 case Intrinsic::loongarch_lasx_xvmsub_h:
6409 case Intrinsic::loongarch_lasx_xvmsub_w:
6410 case Intrinsic::loongarch_lasx_xvmsub_d: {
6411 EVT ResTy =
N->getValueType(0);
6416 case Intrinsic::loongarch_lsx_vdiv_b:
6417 case Intrinsic::loongarch_lsx_vdiv_h:
6418 case Intrinsic::loongarch_lsx_vdiv_w:
6419 case Intrinsic::loongarch_lsx_vdiv_d:
6420 case Intrinsic::loongarch_lasx_xvdiv_b:
6421 case Intrinsic::loongarch_lasx_xvdiv_h:
6422 case Intrinsic::loongarch_lasx_xvdiv_w:
6423 case Intrinsic::loongarch_lasx_xvdiv_d:
6426 case Intrinsic::loongarch_lsx_vdiv_bu:
6427 case Intrinsic::loongarch_lsx_vdiv_hu:
6428 case Intrinsic::loongarch_lsx_vdiv_wu:
6429 case Intrinsic::loongarch_lsx_vdiv_du:
6430 case Intrinsic::loongarch_lasx_xvdiv_bu:
6431 case Intrinsic::loongarch_lasx_xvdiv_hu:
6432 case Intrinsic::loongarch_lasx_xvdiv_wu:
6433 case Intrinsic::loongarch_lasx_xvdiv_du:
6436 case Intrinsic::loongarch_lsx_vmod_b:
6437 case Intrinsic::loongarch_lsx_vmod_h:
6438 case Intrinsic::loongarch_lsx_vmod_w:
6439 case Intrinsic::loongarch_lsx_vmod_d:
6440 case Intrinsic::loongarch_lasx_xvmod_b:
6441 case Intrinsic::loongarch_lasx_xvmod_h:
6442 case Intrinsic::loongarch_lasx_xvmod_w:
6443 case Intrinsic::loongarch_lasx_xvmod_d:
6446 case Intrinsic::loongarch_lsx_vmod_bu:
6447 case Intrinsic::loongarch_lsx_vmod_hu:
6448 case Intrinsic::loongarch_lsx_vmod_wu:
6449 case Intrinsic::loongarch_lsx_vmod_du:
6450 case Intrinsic::loongarch_lasx_xvmod_bu:
6451 case Intrinsic::loongarch_lasx_xvmod_hu:
6452 case Intrinsic::loongarch_lasx_xvmod_wu:
6453 case Intrinsic::loongarch_lasx_xvmod_du:
6456 case Intrinsic::loongarch_lsx_vand_v:
6457 case Intrinsic::loongarch_lasx_xvand_v:
6460 case Intrinsic::loongarch_lsx_vor_v:
6461 case Intrinsic::loongarch_lasx_xvor_v:
6464 case Intrinsic::loongarch_lsx_vxor_v:
6465 case Intrinsic::loongarch_lasx_xvxor_v:
6468 case Intrinsic::loongarch_lsx_vnor_v:
6469 case Intrinsic::loongarch_lasx_xvnor_v: {
6474 case Intrinsic::loongarch_lsx_vandi_b:
6475 case Intrinsic::loongarch_lasx_xvandi_b:
6478 case Intrinsic::loongarch_lsx_vori_b:
6479 case Intrinsic::loongarch_lasx_xvori_b:
6482 case Intrinsic::loongarch_lsx_vxori_b:
6483 case Intrinsic::loongarch_lasx_xvxori_b:
6486 case Intrinsic::loongarch_lsx_vsll_b:
6487 case Intrinsic::loongarch_lsx_vsll_h:
6488 case Intrinsic::loongarch_lsx_vsll_w:
6489 case Intrinsic::loongarch_lsx_vsll_d:
6490 case Intrinsic::loongarch_lasx_xvsll_b:
6491 case Intrinsic::loongarch_lasx_xvsll_h:
6492 case Intrinsic::loongarch_lasx_xvsll_w:
6493 case Intrinsic::loongarch_lasx_xvsll_d:
6496 case Intrinsic::loongarch_lsx_vslli_b:
6497 case Intrinsic::loongarch_lasx_xvslli_b:
6500 case Intrinsic::loongarch_lsx_vslli_h:
6501 case Intrinsic::loongarch_lasx_xvslli_h:
6504 case Intrinsic::loongarch_lsx_vslli_w:
6505 case Intrinsic::loongarch_lasx_xvslli_w:
6508 case Intrinsic::loongarch_lsx_vslli_d:
6509 case Intrinsic::loongarch_lasx_xvslli_d:
6512 case Intrinsic::loongarch_lsx_vsrl_b:
6513 case Intrinsic::loongarch_lsx_vsrl_h:
6514 case Intrinsic::loongarch_lsx_vsrl_w:
6515 case Intrinsic::loongarch_lsx_vsrl_d:
6516 case Intrinsic::loongarch_lasx_xvsrl_b:
6517 case Intrinsic::loongarch_lasx_xvsrl_h:
6518 case Intrinsic::loongarch_lasx_xvsrl_w:
6519 case Intrinsic::loongarch_lasx_xvsrl_d:
6522 case Intrinsic::loongarch_lsx_vsrli_b:
6523 case Intrinsic::loongarch_lasx_xvsrli_b:
6526 case Intrinsic::loongarch_lsx_vsrli_h:
6527 case Intrinsic::loongarch_lasx_xvsrli_h:
6530 case Intrinsic::loongarch_lsx_vsrli_w:
6531 case Intrinsic::loongarch_lasx_xvsrli_w:
6534 case Intrinsic::loongarch_lsx_vsrli_d:
6535 case Intrinsic::loongarch_lasx_xvsrli_d:
6538 case Intrinsic::loongarch_lsx_vsra_b:
6539 case Intrinsic::loongarch_lsx_vsra_h:
6540 case Intrinsic::loongarch_lsx_vsra_w:
6541 case Intrinsic::loongarch_lsx_vsra_d:
6542 case Intrinsic::loongarch_lasx_xvsra_b:
6543 case Intrinsic::loongarch_lasx_xvsra_h:
6544 case Intrinsic::loongarch_lasx_xvsra_w:
6545 case Intrinsic::loongarch_lasx_xvsra_d:
6548 case Intrinsic::loongarch_lsx_vsrai_b:
6549 case Intrinsic::loongarch_lasx_xvsrai_b:
6552 case Intrinsic::loongarch_lsx_vsrai_h:
6553 case Intrinsic::loongarch_lasx_xvsrai_h:
6556 case Intrinsic::loongarch_lsx_vsrai_w:
6557 case Intrinsic::loongarch_lasx_xvsrai_w:
6560 case Intrinsic::loongarch_lsx_vsrai_d:
6561 case Intrinsic::loongarch_lasx_xvsrai_d:
6564 case Intrinsic::loongarch_lsx_vclz_b:
6565 case Intrinsic::loongarch_lsx_vclz_h:
6566 case Intrinsic::loongarch_lsx_vclz_w:
6567 case Intrinsic::loongarch_lsx_vclz_d:
6568 case Intrinsic::loongarch_lasx_xvclz_b:
6569 case Intrinsic::loongarch_lasx_xvclz_h:
6570 case Intrinsic::loongarch_lasx_xvclz_w:
6571 case Intrinsic::loongarch_lasx_xvclz_d:
6573 case Intrinsic::loongarch_lsx_vpcnt_b:
6574 case Intrinsic::loongarch_lsx_vpcnt_h:
6575 case Intrinsic::loongarch_lsx_vpcnt_w:
6576 case Intrinsic::loongarch_lsx_vpcnt_d:
6577 case Intrinsic::loongarch_lasx_xvpcnt_b:
6578 case Intrinsic::loongarch_lasx_xvpcnt_h:
6579 case Intrinsic::loongarch_lasx_xvpcnt_w:
6580 case Intrinsic::loongarch_lasx_xvpcnt_d:
6582 case Intrinsic::loongarch_lsx_vbitclr_b:
6583 case Intrinsic::loongarch_lsx_vbitclr_h:
6584 case Intrinsic::loongarch_lsx_vbitclr_w:
6585 case Intrinsic::loongarch_lsx_vbitclr_d:
6586 case Intrinsic::loongarch_lasx_xvbitclr_b:
6587 case Intrinsic::loongarch_lasx_xvbitclr_h:
6588 case Intrinsic::loongarch_lasx_xvbitclr_w:
6589 case Intrinsic::loongarch_lasx_xvbitclr_d:
6591 case Intrinsic::loongarch_lsx_vbitclri_b:
6592 case Intrinsic::loongarch_lasx_xvbitclri_b:
6594 case Intrinsic::loongarch_lsx_vbitclri_h:
6595 case Intrinsic::loongarch_lasx_xvbitclri_h:
6597 case Intrinsic::loongarch_lsx_vbitclri_w:
6598 case Intrinsic::loongarch_lasx_xvbitclri_w:
6600 case Intrinsic::loongarch_lsx_vbitclri_d:
6601 case Intrinsic::loongarch_lasx_xvbitclri_d:
6603 case Intrinsic::loongarch_lsx_vbitset_b:
6604 case Intrinsic::loongarch_lsx_vbitset_h:
6605 case Intrinsic::loongarch_lsx_vbitset_w:
6606 case Intrinsic::loongarch_lsx_vbitset_d:
6607 case Intrinsic::loongarch_lasx_xvbitset_b:
6608 case Intrinsic::loongarch_lasx_xvbitset_h:
6609 case Intrinsic::loongarch_lasx_xvbitset_w:
6610 case Intrinsic::loongarch_lasx_xvbitset_d: {
6611 EVT VecTy =
N->getValueType(0);
6617 case Intrinsic::loongarch_lsx_vbitseti_b:
6618 case Intrinsic::loongarch_lasx_xvbitseti_b:
6620 case Intrinsic::loongarch_lsx_vbitseti_h:
6621 case Intrinsic::loongarch_lasx_xvbitseti_h:
6623 case Intrinsic::loongarch_lsx_vbitseti_w:
6624 case Intrinsic::loongarch_lasx_xvbitseti_w:
6626 case Intrinsic::loongarch_lsx_vbitseti_d:
6627 case Intrinsic::loongarch_lasx_xvbitseti_d:
6629 case Intrinsic::loongarch_lsx_vbitrev_b:
6630 case Intrinsic::loongarch_lsx_vbitrev_h:
6631 case Intrinsic::loongarch_lsx_vbitrev_w:
6632 case Intrinsic::loongarch_lsx_vbitrev_d:
6633 case Intrinsic::loongarch_lasx_xvbitrev_b:
6634 case Intrinsic::loongarch_lasx_xvbitrev_h:
6635 case Intrinsic::loongarch_lasx_xvbitrev_w:
6636 case Intrinsic::loongarch_lasx_xvbitrev_d: {
6637 EVT VecTy =
N->getValueType(0);
6643 case Intrinsic::loongarch_lsx_vbitrevi_b:
6644 case Intrinsic::loongarch_lasx_xvbitrevi_b:
6646 case Intrinsic::loongarch_lsx_vbitrevi_h:
6647 case Intrinsic::loongarch_lasx_xvbitrevi_h:
6649 case Intrinsic::loongarch_lsx_vbitrevi_w:
6650 case Intrinsic::loongarch_lasx_xvbitrevi_w:
6652 case Intrinsic::loongarch_lsx_vbitrevi_d:
6653 case Intrinsic::loongarch_lasx_xvbitrevi_d:
6655 case Intrinsic::loongarch_lsx_vfadd_s:
6656 case Intrinsic::loongarch_lsx_vfadd_d:
6657 case Intrinsic::loongarch_lasx_xvfadd_s:
6658 case Intrinsic::loongarch_lasx_xvfadd_d:
6661 case Intrinsic::loongarch_lsx_vfsub_s:
6662 case Intrinsic::loongarch_lsx_vfsub_d:
6663 case Intrinsic::loongarch_lasx_xvfsub_s:
6664 case Intrinsic::loongarch_lasx_xvfsub_d:
6667 case Intrinsic::loongarch_lsx_vfmul_s:
6668 case Intrinsic::loongarch_lsx_vfmul_d:
6669 case Intrinsic::loongarch_lasx_xvfmul_s:
6670 case Intrinsic::loongarch_lasx_xvfmul_d:
6673 case Intrinsic::loongarch_lsx_vfdiv_s:
6674 case Intrinsic::loongarch_lsx_vfdiv_d:
6675 case Intrinsic::loongarch_lasx_xvfdiv_s:
6676 case Intrinsic::loongarch_lasx_xvfdiv_d:
6679 case Intrinsic::loongarch_lsx_vfmadd_s:
6680 case Intrinsic::loongarch_lsx_vfmadd_d:
6681 case Intrinsic::loongarch_lasx_xvfmadd_s:
6682 case Intrinsic::loongarch_lasx_xvfmadd_d:
6684 N->getOperand(2),
N->getOperand(3));
6685 case Intrinsic::loongarch_lsx_vinsgr2vr_b:
6687 N->getOperand(1),
N->getOperand(2),
6689 case Intrinsic::loongarch_lsx_vinsgr2vr_h:
6690 case Intrinsic::loongarch_lasx_xvinsgr2vr_w:
6692 N->getOperand(1),
N->getOperand(2),
6694 case Intrinsic::loongarch_lsx_vinsgr2vr_w:
6695 case Intrinsic::loongarch_lasx_xvinsgr2vr_d:
6697 N->getOperand(1),
N->getOperand(2),
6699 case Intrinsic::loongarch_lsx_vinsgr2vr_d:
6701 N->getOperand(1),
N->getOperand(2),
6703 case Intrinsic::loongarch_lsx_vreplgr2vr_b:
6704 case Intrinsic::loongarch_lsx_vreplgr2vr_h:
6705 case Intrinsic::loongarch_lsx_vreplgr2vr_w:
6706 case Intrinsic::loongarch_lsx_vreplgr2vr_d:
6707 case Intrinsic::loongarch_lasx_xvreplgr2vr_b:
6708 case Intrinsic::loongarch_lasx_xvreplgr2vr_h:
6709 case Intrinsic::loongarch_lasx_xvreplgr2vr_w:
6710 case Intrinsic::loongarch_lasx_xvreplgr2vr_d:
6711 return DAG.
getNode(LoongArchISD::VREPLGR2VR,
DL,
N->getValueType(0),
6714 case Intrinsic::loongarch_lsx_vreplve_b:
6715 case Intrinsic::loongarch_lsx_vreplve_h:
6716 case Intrinsic::loongarch_lsx_vreplve_w:
6717 case Intrinsic::loongarch_lsx_vreplve_d:
6718 case Intrinsic::loongarch_lasx_xvreplve_b:
6719 case Intrinsic::loongarch_lasx_xvreplve_h:
6720 case Intrinsic::loongarch_lasx_xvreplve_w:
6721 case Intrinsic::loongarch_lasx_xvreplve_d:
6722 return DAG.
getNode(LoongArchISD::VREPLVE,
DL,
N->getValueType(0),
6726 case Intrinsic::loongarch_lsx_vpickve2gr_b:
6730 case Intrinsic::loongarch_lsx_vpickve2gr_h:
6731 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
6735 case Intrinsic::loongarch_lsx_vpickve2gr_w:
6739 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
6743 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
6744 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
6748 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
6752 case Intrinsic::loongarch_lsx_bz_b:
6753 case Intrinsic::loongarch_lsx_bz_h:
6754 case Intrinsic::loongarch_lsx_bz_w:
6755 case Intrinsic::loongarch_lsx_bz_d:
6756 case Intrinsic::loongarch_lasx_xbz_b:
6757 case Intrinsic::loongarch_lasx_xbz_h:
6758 case Intrinsic::loongarch_lasx_xbz_w:
6759 case Intrinsic::loongarch_lasx_xbz_d:
6761 return DAG.
getNode(LoongArchISD::VALL_ZERO,
DL,
N->getValueType(0),
6764 case Intrinsic::loongarch_lsx_bz_v:
6765 case Intrinsic::loongarch_lasx_xbz_v:
6767 return DAG.
getNode(LoongArchISD::VANY_ZERO,
DL,
N->getValueType(0),
6770 case Intrinsic::loongarch_lsx_bnz_b:
6771 case Intrinsic::loongarch_lsx_bnz_h:
6772 case Intrinsic::loongarch_lsx_bnz_w:
6773 case Intrinsic::loongarch_lsx_bnz_d:
6774 case Intrinsic::loongarch_lasx_xbnz_b:
6775 case Intrinsic::loongarch_lasx_xbnz_h:
6776 case Intrinsic::loongarch_lasx_xbnz_w:
6777 case Intrinsic::loongarch_lasx_xbnz_d:
6779 return DAG.
getNode(LoongArchISD::VALL_NONZERO,
DL,
N->getValueType(0),
6782 case Intrinsic::loongarch_lsx_bnz_v:
6783 case Intrinsic::loongarch_lasx_xbnz_v:
6785 return DAG.
getNode(LoongArchISD::VANY_NONZERO,
DL,
N->getValueType(0),
6788 case Intrinsic::loongarch_lasx_concat_128_s:
6789 case Intrinsic::loongarch_lasx_concat_128_d:
6790 case Intrinsic::loongarch_lasx_concat_128:
6792 N->getOperand(1),
N->getOperand(2));
6804 if (Op0.
getOpcode() == LoongArchISD::MOVFR2GR_S_LA64)
6816 if (Op0->
getOpcode() == LoongArchISD::MOVGR2FR_W_LA64) {
6818 "Unexpected value type!");
6827 MVT VT =
N->getSimpleValueType(0);
6848 if (Op0->
getOpcode() == LoongArchISD::BUILD_PAIR_F64)
6861 APInt V =
C->getValueAPF().bitcastToAPInt();
6877 MVT EltVT =
N->getSimpleValueType(0);
6912 MVT VT =
N->getSimpleValueType(0);
6973 EVT VT =
N->getValueType(0);
6975 if (VT != MVT::f32 && VT != MVT::f64)
6977 if (VT == MVT::f32 && !Subtarget.hasBasicF())
6979 if (VT == MVT::f64 && !Subtarget.hasBasicD())
7002 return DAG.
getNode(LoongArchISD::SITOF,
SDLoc(
N), VT, Load);
7011 switch (
N->getOpcode()) {
7026 case LoongArchISD::BITREV_W:
7028 case LoongArchISD::BR_CC:
7030 case LoongArchISD::SELECT_CC:
7034 case LoongArchISD::MOVGR2FR_W_LA64:
7036 case LoongArchISD::MOVFR2GR_S_LA64:
7038 case LoongArchISD::VMSKLTZ:
7039 case LoongArchISD::XVMSKLTZ:
7041 case LoongArchISD::SPLIT_PAIR_F64:
7045 case LoongArchISD::VANDN:
7069 MF->
insert(It, BreakMBB);
7073 SinkMBB->splice(SinkMBB->end(),
MBB, std::next(
MI.getIterator()),
MBB->end());
7074 SinkMBB->transferSuccessorsAndUpdatePHIs(
MBB);
7086 MBB->addSuccessor(BreakMBB);
7087 MBB->addSuccessor(SinkMBB);
7093 BreakMBB->addSuccessor(SinkMBB);
7105 switch (
MI.getOpcode()) {
7108 case LoongArch::PseudoVBZ:
7109 CondOpc = LoongArch::VSETEQZ_V;
7111 case LoongArch::PseudoVBZ_B:
7112 CondOpc = LoongArch::VSETANYEQZ_B;
7114 case LoongArch::PseudoVBZ_H:
7115 CondOpc = LoongArch::VSETANYEQZ_H;
7117 case LoongArch::PseudoVBZ_W:
7118 CondOpc = LoongArch::VSETANYEQZ_W;
7120 case LoongArch::PseudoVBZ_D:
7121 CondOpc = LoongArch::VSETANYEQZ_D;
7123 case LoongArch::PseudoVBNZ:
7124 CondOpc = LoongArch::VSETNEZ_V;
7126 case LoongArch::PseudoVBNZ_B:
7127 CondOpc = LoongArch::VSETALLNEZ_B;
7129 case LoongArch::PseudoVBNZ_H:
7130 CondOpc = LoongArch::VSETALLNEZ_H;
7132 case LoongArch::PseudoVBNZ_W:
7133 CondOpc = LoongArch::VSETALLNEZ_W;
7135 case LoongArch::PseudoVBNZ_D:
7136 CondOpc = LoongArch::VSETALLNEZ_D;
7138 case LoongArch::PseudoXVBZ:
7139 CondOpc = LoongArch::XVSETEQZ_V;
7141 case LoongArch::PseudoXVBZ_B:
7142 CondOpc = LoongArch::XVSETANYEQZ_B;
7144 case LoongArch::PseudoXVBZ_H:
7145 CondOpc = LoongArch::XVSETANYEQZ_H;
7147 case LoongArch::PseudoXVBZ_W:
7148 CondOpc = LoongArch::XVSETANYEQZ_W;
7150 case LoongArch::PseudoXVBZ_D:
7151 CondOpc = LoongArch::XVSETANYEQZ_D;
7153 case LoongArch::PseudoXVBNZ:
7154 CondOpc = LoongArch::XVSETNEZ_V;
7156 case LoongArch::PseudoXVBNZ_B:
7157 CondOpc = LoongArch::XVSETALLNEZ_B;
7159 case LoongArch::PseudoXVBNZ_H:
7160 CondOpc = LoongArch::XVSETALLNEZ_H;
7162 case LoongArch::PseudoXVBNZ_W:
7163 CondOpc = LoongArch::XVSETALLNEZ_W;
7165 case LoongArch::PseudoXVBNZ_D:
7166 CondOpc = LoongArch::XVSETALLNEZ_D;
7181 F->insert(It, FalseBB);
7182 F->insert(It, TrueBB);
7183 F->insert(It, SinkBB);
7186 SinkBB->
splice(SinkBB->
end(), BB, std::next(
MI.getIterator()), BB->
end());
7190 Register FCC =
MRI.createVirtualRegister(&LoongArch::CFRRegClass);
7199 Register RD1 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
7207 Register RD2 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
7215 MI.getOperand(0).getReg())
7222 MI.eraseFromParent();
7230 unsigned BroadcastOp;
7232 switch (
MI.getOpcode()) {
7235 case LoongArch::PseudoXVINSGR2VR_B:
7237 BroadcastOp = LoongArch::XVREPLGR2VR_B;
7238 InsOp = LoongArch::XVEXTRINS_B;
7240 case LoongArch::PseudoXVINSGR2VR_H:
7242 BroadcastOp = LoongArch::XVREPLGR2VR_H;
7243 InsOp = LoongArch::XVEXTRINS_H;
7255 unsigned Idx =
MI.getOperand(3).getImm();
7257 if (XSrc.
isVirtual() &&
MRI.getVRegDef(XSrc)->isImplicitDef() &&
7259 Register ScratchSubReg1 =
MRI.createVirtualRegister(SubRC);
7260 Register ScratchSubReg2 =
MRI.createVirtualRegister(SubRC);
7263 .
addReg(XSrc, 0, LoongArch::sub_128);
7265 TII->get(HalfSize == 8 ? LoongArch::VINSGR2VR_H
7266 : LoongArch::VINSGR2VR_B),
7275 .
addImm(LoongArch::sub_128);
7277 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
7278 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
7282 BuildMI(*BB,
MI,
DL,
TII->get(LoongArch::XVPERMI_Q), ScratchReg2)
7285 .
addImm(Idx >= HalfSize ? 48 : 18);
7290 .
addImm((Idx >= HalfSize ? Idx - HalfSize : Idx) * 17);
7293 MI.eraseFromParent();
7300 assert(Subtarget.hasExtLSX());
7307 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
7308 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
7309 Register ScratchReg3 =
MRI.createVirtualRegister(RC);
7313 TII->get(Subtarget.
is64Bit() ? LoongArch::VINSGR2VR_D
7314 : LoongArch::VINSGR2VR_W),
7321 TII->get(Subtarget.
is64Bit() ? LoongArch::VPCNT_D : LoongArch::VPCNT_W),
7325 TII->get(Subtarget.
is64Bit() ? LoongArch::VPICKVE2GR_D
7326 : LoongArch::VPICKVE2GR_W),
7331 MI.eraseFromParent();
7345 unsigned EleBits = 8;
7346 unsigned NotOpc = 0;
7349 switch (
MI.getOpcode()) {
7352 case LoongArch::PseudoVMSKLTZ_B:
7353 MskOpc = LoongArch::VMSKLTZ_B;
7355 case LoongArch::PseudoVMSKLTZ_H:
7356 MskOpc = LoongArch::VMSKLTZ_H;
7359 case LoongArch::PseudoVMSKLTZ_W:
7360 MskOpc = LoongArch::VMSKLTZ_W;
7363 case LoongArch::PseudoVMSKLTZ_D:
7364 MskOpc = LoongArch::VMSKLTZ_D;
7367 case LoongArch::PseudoVMSKGEZ_B:
7368 MskOpc = LoongArch::VMSKGEZ_B;
7370 case LoongArch::PseudoVMSKEQZ_B:
7371 MskOpc = LoongArch::VMSKNZ_B;
7372 NotOpc = LoongArch::VNOR_V;
7374 case LoongArch::PseudoVMSKNEZ_B:
7375 MskOpc = LoongArch::VMSKNZ_B;
7377 case LoongArch::PseudoXVMSKLTZ_B:
7378 MskOpc = LoongArch::XVMSKLTZ_B;
7379 RC = &LoongArch::LASX256RegClass;
7381 case LoongArch::PseudoXVMSKLTZ_H:
7382 MskOpc = LoongArch::XVMSKLTZ_H;
7383 RC = &LoongArch::LASX256RegClass;
7386 case LoongArch::PseudoXVMSKLTZ_W:
7387 MskOpc = LoongArch::XVMSKLTZ_W;
7388 RC = &LoongArch::LASX256RegClass;
7391 case LoongArch::PseudoXVMSKLTZ_D:
7392 MskOpc = LoongArch::XVMSKLTZ_D;
7393 RC = &LoongArch::LASX256RegClass;
7396 case LoongArch::PseudoXVMSKGEZ_B:
7397 MskOpc = LoongArch::XVMSKGEZ_B;
7398 RC = &LoongArch::LASX256RegClass;
7400 case LoongArch::PseudoXVMSKEQZ_B:
7401 MskOpc = LoongArch::XVMSKNZ_B;
7402 NotOpc = LoongArch::XVNOR_V;
7403 RC = &LoongArch::LASX256RegClass;
7405 case LoongArch::PseudoXVMSKNEZ_B:
7406 MskOpc = LoongArch::XVMSKNZ_B;
7407 RC = &LoongArch::LASX256RegClass;
7422 if (
TRI->getRegSizeInBits(*RC) > 128) {
7423 Register Lo =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
7424 Register Hi =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
7432 TII->get(Subtarget.
is64Bit() ? LoongArch::BSTRINS_D
7433 : LoongArch::BSTRINS_W),
7437 .
addImm(256 / EleBits - 1)
7445 MI.eraseFromParent();
7452 assert(
MI.getOpcode() == LoongArch::SplitPairF64Pseudo &&
7453 "Unexpected instruction");
7465 MI.eraseFromParent();
7472 assert(
MI.getOpcode() == LoongArch::BuildPairF64Pseudo &&
7473 "Unexpected instruction");
7479 Register TmpReg =
MRI.createVirtualRegister(&LoongArch::FPR64RegClass);
7489 MI.eraseFromParent();
7494 switch (
MI.getOpcode()) {
7497 case LoongArch::Select_GPR_Using_CC_GPR:
7533 if (
MI.getOperand(2).isReg())
7534 RHS =
MI.getOperand(2).getReg();
7535 auto CC =
static_cast<unsigned>(
MI.getOperand(3).
getImm());
7539 SelectDests.
insert(
MI.getOperand(0).getReg());
7543 SequenceMBBI !=
E; ++SequenceMBBI) {
7544 if (SequenceMBBI->isDebugInstr())
7547 if (SequenceMBBI->getOperand(1).getReg() !=
LHS ||
7548 !SequenceMBBI->getOperand(2).isReg() ||
7549 SequenceMBBI->getOperand(2).getReg() !=
RHS ||
7550 SequenceMBBI->getOperand(3).getImm() != CC ||
7551 SelectDests.
count(SequenceMBBI->getOperand(4).getReg()) ||
7552 SelectDests.
count(SequenceMBBI->getOperand(5).getReg()))
7554 LastSelectPseudo = &*SequenceMBBI;
7556 SelectDests.
insert(SequenceMBBI->getOperand(0).getReg());
7559 if (SequenceMBBI->hasUnmodeledSideEffects() ||
7560 SequenceMBBI->mayLoadOrStore() ||
7561 SequenceMBBI->usesCustomInsertionHook())
7564 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
7579 F->insert(
I, IfFalseMBB);
7580 F->insert(
I, TailMBB);
7583 unsigned CallFrameSize =
TII.getCallFrameSizeAt(*LastSelectPseudo);
7589 TailMBB->
push_back(DebugInstr->removeFromParent());
7593 TailMBB->
splice(TailMBB->
end(), HeadMBB,
7603 if (
MI.getOperand(2).isImm())
7615 auto SelectMBBI =
MI.getIterator();
7616 auto SelectEnd = std::next(LastSelectPseudo->
getIterator());
7618 while (SelectMBBI != SelectEnd) {
7619 auto Next = std::next(SelectMBBI);
7623 TII.get(LoongArch::PHI), SelectMBBI->getOperand(0).getReg())
7624 .
addReg(SelectMBBI->getOperand(4).getReg())
7626 .
addReg(SelectMBBI->getOperand(5).getReg())
7633 F->getProperties().resetNoPHIs();
7639 const TargetInstrInfo *
TII = Subtarget.getInstrInfo();
7642 switch (
MI.getOpcode()) {
7645 case LoongArch::DIV_W:
7646 case LoongArch::DIV_WU:
7647 case LoongArch::MOD_W:
7648 case LoongArch::MOD_WU:
7649 case LoongArch::DIV_D:
7650 case LoongArch::DIV_DU:
7651 case LoongArch::MOD_D:
7652 case LoongArch::MOD_DU:
7655 case LoongArch::WRFCSR: {
7657 LoongArch::FCSR0 +
MI.getOperand(0).getImm())
7658 .
addReg(
MI.getOperand(1).getReg());
7659 MI.eraseFromParent();
7662 case LoongArch::RDFCSR: {
7663 MachineInstr *ReadFCSR =
7665 MI.getOperand(0).getReg())
7666 .
addReg(LoongArch::FCSR0 +
MI.getOperand(1).getImm());
7668 MI.eraseFromParent();
7671 case LoongArch::Select_GPR_Using_CC_GPR:
7673 case LoongArch::BuildPairF64Pseudo:
7675 case LoongArch::SplitPairF64Pseudo:
7677 case LoongArch::PseudoVBZ:
7678 case LoongArch::PseudoVBZ_B:
7679 case LoongArch::PseudoVBZ_H:
7680 case LoongArch::PseudoVBZ_W:
7681 case LoongArch::PseudoVBZ_D:
7682 case LoongArch::PseudoVBNZ:
7683 case LoongArch::PseudoVBNZ_B:
7684 case LoongArch::PseudoVBNZ_H:
7685 case LoongArch::PseudoVBNZ_W:
7686 case LoongArch::PseudoVBNZ_D:
7687 case LoongArch::PseudoXVBZ:
7688 case LoongArch::PseudoXVBZ_B:
7689 case LoongArch::PseudoXVBZ_H:
7690 case LoongArch::PseudoXVBZ_W:
7691 case LoongArch::PseudoXVBZ_D:
7692 case LoongArch::PseudoXVBNZ:
7693 case LoongArch::PseudoXVBNZ_B:
7694 case LoongArch::PseudoXVBNZ_H:
7695 case LoongArch::PseudoXVBNZ_W:
7696 case LoongArch::PseudoXVBNZ_D:
7698 case LoongArch::PseudoXVINSGR2VR_B:
7699 case LoongArch::PseudoXVINSGR2VR_H:
7701 case LoongArch::PseudoCTPOP:
7703 case LoongArch::PseudoVMSKLTZ_B:
7704 case LoongArch::PseudoVMSKLTZ_H:
7705 case LoongArch::PseudoVMSKLTZ_W:
7706 case LoongArch::PseudoVMSKLTZ_D:
7707 case LoongArch::PseudoVMSKGEZ_B:
7708 case LoongArch::PseudoVMSKEQZ_B:
7709 case LoongArch::PseudoVMSKNEZ_B:
7710 case LoongArch::PseudoXVMSKLTZ_B:
7711 case LoongArch::PseudoXVMSKLTZ_H:
7712 case LoongArch::PseudoXVMSKLTZ_W:
7713 case LoongArch::PseudoXVMSKLTZ_D:
7714 case LoongArch::PseudoXVMSKGEZ_B:
7715 case LoongArch::PseudoXVMSKEQZ_B:
7716 case LoongArch::PseudoXVMSKNEZ_B:
7718 case TargetOpcode::STATEPOINT:
7724 MI.addOperand(*
MI.getMF(),
7726 LoongArch::R1,
true,
7729 if (!Subtarget.is64Bit())
7737 unsigned *
Fast)
const {
7738 if (!Subtarget.hasUAL())
7756 LoongArch::R7, LoongArch::R8, LoongArch::R9,
7757 LoongArch::R10, LoongArch::R11};
7761 LoongArch::F3, LoongArch::F4, LoongArch::F5,
7762 LoongArch::F6, LoongArch::F7};
7765 LoongArch::F0_64, LoongArch::F1_64, LoongArch::F2_64, LoongArch::F3_64,
7766 LoongArch::F4_64, LoongArch::F5_64, LoongArch::F6_64, LoongArch::F7_64};
7769 LoongArch::VR3, LoongArch::VR4, LoongArch::VR5,
7770 LoongArch::VR6, LoongArch::VR7};
7773 LoongArch::XR3, LoongArch::XR4, LoongArch::XR5,
7774 LoongArch::XR6, LoongArch::XR7};
7780 unsigned ValNo2,
MVT ValVT2,
MVT LocVT2,
7782 unsigned GRLenInBytes = GRLen / 8;
7793 State.AllocateStack(GRLenInBytes, StackAlign),
7796 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes,
Align(GRLenInBytes)),
7807 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes,
Align(GRLenInBytes)),
7815 unsigned ValNo,
MVT ValVT,
7818 unsigned GRLen =
DL.getLargestLegalIntTypeSizeInBits();
7819 assert((GRLen == 32 || GRLen == 64) &&
"Unspport GRLen");
7820 MVT GRLenVT = GRLen == 32 ? MVT::i32 : MVT::i64;
7825 if (IsRet && ValNo > 1)
7829 bool UseGPRForFloat =
true;
7839 UseGPRForFloat = ArgFlags.
isVarArg();
7852 unsigned TwoGRLenInBytes = (2 * GRLen) / 8;
7855 DL.getTypeAllocSize(OrigTy) == TwoGRLenInBytes) {
7856 unsigned RegIdx = State.getFirstUnallocated(
ArgGPRs);
7858 if (RegIdx != std::size(
ArgGPRs) && RegIdx % 2 == 1)
7864 State.getPendingArgFlags();
7867 "PendingLocs and PendingArgFlags out of sync");
7871 UseGPRForFloat =
true;
7873 if (UseGPRForFloat && ValVT == MVT::f32) {
7876 }
else if (UseGPRForFloat && GRLen == 64 && ValVT == MVT::f64) {
7879 }
else if (UseGPRForFloat && GRLen == 32 && ValVT == MVT::f64) {
7882 assert(PendingLocs.
empty() &&
"Can't lower f64 if it is split");
7924 PendingLocs.
size() <= 2) {
7925 assert(PendingLocs.
size() == 2 &&
"Unexpected PendingLocs.size()");
7930 PendingLocs.
clear();
7931 PendingArgFlags.
clear();
7938 unsigned StoreSizeBytes = GRLen / 8;
7941 if (ValVT == MVT::f32 && !UseGPRForFloat) {
7943 }
else if (ValVT == MVT::f64 && !UseGPRForFloat) {
7947 UseGPRForFloat =
false;
7948 StoreSizeBytes = 16;
7949 StackAlign =
Align(16);
7952 UseGPRForFloat =
false;
7953 StoreSizeBytes = 32;
7954 StackAlign =
Align(32);
7960 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
7964 if (!PendingLocs.
empty()) {
7966 assert(PendingLocs.
size() > 2 &&
"Unexpected PendingLocs.size()");
7967 for (
auto &It : PendingLocs) {
7969 It.convertToReg(
Reg);
7974 PendingLocs.clear();
7975 PendingArgFlags.
clear();
7978 assert((!UseGPRForFloat || LocVT == GRLenVT) &&
7979 "Expected an GRLenVT at this stage");
7996void LoongArchTargetLowering::analyzeInputArgs(
7999 LoongArchCCAssignFn Fn)
const {
8001 for (
unsigned i = 0, e = Ins.
size(); i != e; ++i) {
8002 MVT ArgVT = Ins[i].VT;
8003 Type *ArgTy =
nullptr;
8005 ArgTy = FType->getReturnType();
8006 else if (Ins[i].isOrigArg())
8007 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
8011 CCInfo, IsRet, ArgTy)) {
8012 LLVM_DEBUG(
dbgs() <<
"InputArg #" << i <<
" has unhandled type " << ArgVT
8019void LoongArchTargetLowering::analyzeOutputArgs(
8022 CallLoweringInfo *CLI, LoongArchCCAssignFn Fn)
const {
8023 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
8024 MVT ArgVT = Outs[i].VT;
8025 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty :
nullptr;
8029 CCInfo, IsRet, OrigTy)) {
8030 LLVM_DEBUG(
dbgs() <<
"OutputArg #" << i <<
" has unhandled type " << ArgVT
8049 Val = DAG.
getNode(LoongArchISD::MOVGR2FR_W_LA64,
DL, MVT::f32, Val);
8071 if (In.isOrigArg()) {
8076 if ((
BitWidth <= 32 && In.Flags.isSExt()) ||
8077 (
BitWidth < 32 && In.Flags.isZExt())) {
8127 Register LoVReg =
RegInfo.createVirtualRegister(&LoongArch::GPRRegClass);
8140 Register HiVReg =
RegInfo.createVirtualRegister(&LoongArch::GPRRegClass);
8144 return DAG.
getNode(LoongArchISD::BUILD_PAIR_F64,
DL, MVT::f64,
Lo,
Hi);
8158 Val = DAG.
getNode(LoongArchISD::MOVFR2GR_S_LA64,
DL, MVT::i64, Val);
8170 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
8174 LoongArch::R23, LoongArch::R24, LoongArch::R25,
8175 LoongArch::R26, LoongArch::R27, LoongArch::R28,
8176 LoongArch::R29, LoongArch::R30, LoongArch::R31};
8183 if (LocVT == MVT::f32) {
8186 static const MCPhysReg FPR32List[] = {LoongArch::F24, LoongArch::F25,
8187 LoongArch::F26, LoongArch::F27};
8194 if (LocVT == MVT::f64) {
8197 static const MCPhysReg FPR64List[] = {LoongArch::F28_64, LoongArch::F29_64,
8198 LoongArch::F30_64, LoongArch::F31_64};
8229 "GHC calling convention requires the F and D extensions");
8233 MVT GRLenVT = Subtarget.getGRLenVT();
8234 unsigned GRLenInBytes = Subtarget.getGRLen() / 8;
8236 std::vector<SDValue> OutChains;
8245 analyzeInputArgs(MF, CCInfo, Ins,
false,
CC_LoongArch);
8247 for (
unsigned i = 0, e = ArgLocs.
size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
8264 unsigned ArgIndex = Ins[InsIdx].OrigArgIndex;
8265 unsigned ArgPartOffset = Ins[InsIdx].PartOffset;
8266 assert(ArgPartOffset == 0);
8267 while (i + 1 != e && Ins[InsIdx + 1].OrigArgIndex == ArgIndex) {
8269 unsigned PartOffset = Ins[InsIdx + 1].PartOffset - ArgPartOffset;
8280 if (Ins[InsIdx].Flags.isByVal())
8281 LoongArchFI->addIncomingByValArgs(ArgValue);
8294 int VaArgOffset, VarArgsSaveSize;
8298 if (ArgRegs.
size() == Idx) {
8300 VarArgsSaveSize = 0;
8302 VarArgsSaveSize = GRLenInBytes * (ArgRegs.
size() - Idx);
8303 VaArgOffset = -VarArgsSaveSize;
8309 LoongArchFI->setVarArgsFrameIndex(FI);
8317 VarArgsSaveSize += GRLenInBytes;
8322 for (
unsigned I = Idx;
I < ArgRegs.
size();
8323 ++
I, VaArgOffset += GRLenInBytes) {
8324 const Register Reg = RegInfo.createVirtualRegister(RC);
8325 RegInfo.addLiveIn(ArgRegs[
I], Reg);
8333 ->setValue((
Value *)
nullptr);
8334 OutChains.push_back(Store);
8336 LoongArchFI->setVarArgsSaveSize(VarArgsSaveSize);
8339 LoongArchFI->setArgumentStackSize(CCInfo.
getStackSize());
8343 if (!OutChains.empty()) {
8344 OutChains.push_back(Chain);
8359 if (
N->getNumValues() != 1)
8361 if (!
N->hasNUsesOfValue(1, 0))
8364 SDNode *Copy = *
N->user_begin();
8370 if (Copy->getGluedNode())
8374 bool HasRet =
false;
8376 if (
Node->getOpcode() != LoongArchISD::RET)
8384 Chain = Copy->getOperand(0);
8389bool LoongArchTargetLowering::isEligibleForTailCallOptimization(
8393 auto CalleeCC = CLI.CallConv;
8394 auto &Outs = CLI.Outs;
8396 auto CallerCC = Caller.getCallingConv();
8401 if (CCInfo.
getStackSize() > LoongArchFI->getArgumentStackSize())
8405 for (
auto &VA : ArgLocs)
8411 auto IsCallerStructRet = Caller.hasStructRetAttr();
8412 auto IsCalleeStructRet = Outs.
empty() ?
false : Outs[0].Flags.isSRet();
8413 if (IsCallerStructRet != IsCalleeStructRet)
8417 for (
unsigned i = 0, j = 0; i < Outs.
size(); i++) {
8418 if (!Outs[i].Flags.isByVal())
8420 if (j++ >= LoongArchFI->getIncomingByValArgsSize())
8422 if (LoongArchFI->getIncomingByValArgs(i).getValueType() != Outs[i].ArgVT)
8428 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
8429 if (CalleeCC != CallerCC) {
8430 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
8431 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
8438 const SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
8465 MVT GRLenVT = Subtarget.getGRLenVT();
8478 analyzeOutputArgs(MF, ArgCCInfo, Outs,
false, &CLI,
CC_LoongArch);
8482 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
8488 "site marked musttail");
8495 for (
unsigned i = 0, j = 0, e = Outs.
size(); i != e; ++i) {
8497 if (!Flags.isByVal())
8501 unsigned Size = Flags.getByValSize();
8502 Align Alignment = Flags.getNonZeroByValAlign();
8507 SDValue CallerArg = LoongArchFI->getIncomingByValArgs(j++);
8518 DAG.
getMemcpy(Chain,
DL, Dst, Arg, SizeNode, Alignment,
8520 false,
nullptr, std::nullopt,
8534 bool AfterFormalArgLoads =
false;
8540 for (
unsigned i = 0, j = 0, e = ArgLocs.size(), OutIdx = 0; i != e;
8543 SDValue ArgValue = OutVals[OutIdx];
8551 DAG.
getNode(LoongArchISD::SPLIT_PAIR_F64,
DL,
8552 DAG.
getVTList(MVT::i32, MVT::i32), ArgValue);
8564 if (!StackPtr.getNode())
8576 RegsToPass.
push_back(std::make_pair(RegHigh,
Hi));
8591 unsigned ArgIndex = Outs[OutIdx].OrigArgIndex;
8592 unsigned ArgPartOffset = Outs[OutIdx].PartOffset;
8593 assert(ArgPartOffset == 0);
8598 while (i + 1 != e && Outs[OutIdx + 1].OrigArgIndex == ArgIndex) {
8599 SDValue PartValue = OutVals[OutIdx + 1];
8600 unsigned PartOffset = Outs[OutIdx + 1].PartOffset - ArgPartOffset;
8615 for (
const auto &Part : Parts) {
8616 SDValue PartValue = Part.first;
8617 SDValue PartOffset = Part.second;
8624 ArgValue = SpillSlot;
8630 if (Flags.isByVal()) {
8634 ArgValue = ByValArgs[j++];
8647 if (!StackPtr.getNode())
8655 if (!AfterFormalArgLoads) {
8657 AfterFormalArgLoads =
true;
8667 DAG.
getStore(Chain,
DL, ArgValue, DstAddr, DstInfo));
8672 if (!MemOpChains.
empty())
8678 for (
auto &Reg : RegsToPass) {
8679 Chain = DAG.
getCopyToReg(Chain,
DL, Reg.first, Reg.second, Glue);
8701 Ops.push_back(Chain);
8702 Ops.push_back(Callee);
8706 for (
auto &Reg : RegsToPass)
8707 Ops.push_back(DAG.
getRegister(Reg.first, Reg.second.getValueType()));
8712 const uint32_t *Mask =
TRI->getCallPreservedMask(MF, CallConv);
8713 assert(Mask &&
"Missing call preserved mask for calling convention");
8719 Ops.push_back(Glue);
8728 Op = IsTailCall ? LoongArchISD::TAIL : LoongArchISD::CALL;
8731 Op = IsTailCall ? LoongArchISD::TAIL_MEDIUM : LoongArchISD::CALL_MEDIUM;
8734 assert(Subtarget.is64Bit() &&
"Large code model requires LA64");
8735 Op = IsTailCall ? LoongArchISD::TAIL_LARGE : LoongArchISD::CALL_LARGE;
8757 analyzeInputArgs(MF, RetCCInfo, Ins,
true,
CC_LoongArch);
8760 for (
unsigned i = 0, e = RVLocs.
size(); i != e; ++i) {
8761 auto &VA = RVLocs[i];
8769 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8770 assert(VA.needsCustom());
8775 RetValue = DAG.
getNode(LoongArchISD::BUILD_PAIR_F64,
DL, MVT::f64,
8776 RetValue, RetValue2);
8789 const Type *RetTy)
const {
8791 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8793 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
8797 Outs[i].Flags, CCInfo,
true,
nullptr))
8823 for (
unsigned i = 0, e = RVLocs.
size(), OutIdx = 0; i < e; ++i, ++OutIdx) {
8824 SDValue Val = OutVals[OutIdx];
8833 DAG.
getVTList(MVT::i32, MVT::i32), Val);
8837 Register RegHi = RVLocs[++i].getLocReg();
8862 return DAG.
getNode(LoongArchISD::RET,
DL, MVT::Other, RetOps);
8870 const APInt &SplatValue,
const unsigned SplatBitSize)
const {
8873 if (SplatBitSize == 16 && !(V & 0x00FF)) {
8875 RequiredImm = (0b10101 << 8) | (V >> 8);
8876 return {
true, RequiredImm};
8877 }
else if (SplatBitSize == 32) {
8879 if (!(V & 0xFFFF00FF)) {
8880 RequiredImm = (0b10001 << 8) | (V >> 8);
8881 return {
true, RequiredImm};
8884 if (!(V & 0xFF00FFFF)) {
8885 RequiredImm = (0b10010 << 8) | (V >> 16);
8886 return {
true, RequiredImm};
8889 if (!(V & 0x00FFFFFF)) {
8890 RequiredImm = (0b10011 << 8) | (V >> 24);
8891 return {
true, RequiredImm};
8894 if ((V & 0xFFFF00FF) == 0xFF) {
8895 RequiredImm = (0b10110 << 8) | (V >> 8);
8896 return {
true, RequiredImm};
8899 if ((V & 0xFF00FFFF) == 0xFFFF) {
8900 RequiredImm = (0b10111 << 8) | (V >> 16);
8901 return {
true, RequiredImm};
8904 if ((V & 0x7E07FFFF) == 0x3E000000 || (V & 0x7E07FFFF) == 0x40000000) {
8906 (0b11010 << 8) | (((V >> 24) & 0xC0) ^ 0x40) | ((V >> 19) & 0x3F);
8907 return {
true, RequiredImm};
8909 }
else if (SplatBitSize == 64) {
8911 if ((V & 0xFFFFFFFF7E07FFFFULL) == 0x3E000000ULL ||
8912 (V & 0xFFFFFFFF7E07FFFFULL) == 0x40000000ULL) {
8914 (0b11011 << 8) | (((V >> 24) & 0xC0) ^ 0x40) | ((V >> 19) & 0x3F);
8915 return {
true, RequiredImm};
8918 if ((V & 0x7FC0FFFFFFFFFFFFULL) == 0x4000000000000000ULL ||
8919 (V & 0x7FC0FFFFFFFFFFFFULL) == 0x3FC0000000000000ULL) {
8921 (0b11100 << 8) | (((V >> 56) & 0xC0) ^ 0x40) | ((V >> 48) & 0x3F);
8922 return {
true, RequiredImm};
8925 auto sameBitsPreByte = [](
uint64_t x) -> std::pair<bool, uint8_t> {
8927 for (
int i = 0; i < 8; ++i) {
8929 if (
byte == 0 ||
byte == 0xFF)
8930 res |= ((
byte & 1) << i);
8937 auto [IsSame, Suffix] = sameBitsPreByte(V);
8939 RequiredImm = (0b11001 << 8) | Suffix;
8940 return {
true, RequiredImm};
8943 return {
false, RequiredImm};
8948 if (!Subtarget.hasExtLSX())
8951 if (VT == MVT::f32) {
8952 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7e07ffff;
8953 return (masked == 0x3e000000 || masked == 0x40000000);
8956 if (VT == MVT::f64) {
8957 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7fc0ffffffffffff;
8958 return (masked == 0x3fc0000000000000 || masked == 0x4000000000000000);
8964bool LoongArchTargetLowering::isFPImmLegal(
const APFloat &Imm,
EVT VT,
8965 bool ForCodeSize)
const {
8967 if (VT == MVT::f32 && !Subtarget.hasBasicF())
8969 if (VT == MVT::f64 && !Subtarget.hasBasicD())
8971 return (Imm.isZero() || Imm.isExactlyValue(1.0) ||
isFPImmVLDILegal(Imm, VT));
8982bool LoongArchTargetLowering::shouldInsertFencesForAtomic(
8992 Type *Ty =
I->getOperand(0)->getType();
8994 unsigned Size = Ty->getIntegerBitWidth();
9010 EVT VT =
Y.getValueType();
9013 return Subtarget.hasExtLSX() && VT.
isInteger();
9025 case Intrinsic::loongarch_masked_atomicrmw_xchg_i32:
9026 case Intrinsic::loongarch_masked_atomicrmw_add_i32:
9027 case Intrinsic::loongarch_masked_atomicrmw_sub_i32:
9028 case Intrinsic::loongarch_masked_atomicrmw_nand_i32:
9030 Info.memVT = MVT::i32;
9031 Info.ptrVal =
I.getArgOperand(0);
9033 Info.align =
Align(4);
9050 "Unable to expand");
9051 unsigned MinWordSize = 4;
9063 Value *AlignedAddr = Builder.CreateIntrinsic(
9064 Intrinsic::ptrmask, {PtrTy, IntTy},
9065 {Addr, ConstantInt::get(IntTy, ~(
uint64_t)(MinWordSize - 1))},
nullptr,
9068 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
9069 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1,
"PtrLSB");
9070 Value *ShiftAmt = Builder.CreateShl(PtrLSB, 3);
9071 ShiftAmt = Builder.CreateTrunc(ShiftAmt, WordType,
"ShiftAmt");
9072 Value *Mask = Builder.CreateShl(
9073 ConstantInt::get(WordType,
9076 Value *Inv_Mask = Builder.CreateNot(Mask,
"Inv_Mask");
9077 Value *ValOperand_Shifted =
9078 Builder.CreateShl(Builder.CreateZExt(AI->
getValOperand(), WordType),
9079 ShiftAmt,
"ValOperand_Shifted");
9082 NewOperand = Builder.CreateOr(ValOperand_Shifted, Inv_Mask,
"AndOperand");
9084 NewOperand = ValOperand_Shifted;
9087 Builder.CreateAtomicRMW(
Op, AlignedAddr, NewOperand,
Align(MinWordSize),
9090 Value *Shift = Builder.CreateLShr(NewAI, ShiftAmt,
"shifted");
9091 Value *Trunc = Builder.CreateTrunc(Shift,
ValueType,
"extracted");
9111 if (Subtarget.hasLAM_BH() && Subtarget.is64Bit() &&
9119 if (Subtarget.hasLAMCAS()) {
9141 return Intrinsic::loongarch_masked_atomicrmw_xchg_i64;
9143 return Intrinsic::loongarch_masked_atomicrmw_add_i64;
9145 return Intrinsic::loongarch_masked_atomicrmw_sub_i64;
9147 return Intrinsic::loongarch_masked_atomicrmw_nand_i64;
9149 return Intrinsic::loongarch_masked_atomicrmw_umax_i64;
9151 return Intrinsic::loongarch_masked_atomicrmw_umin_i64;
9153 return Intrinsic::loongarch_masked_atomicrmw_max_i64;
9155 return Intrinsic::loongarch_masked_atomicrmw_min_i64;
9165 return Intrinsic::loongarch_masked_atomicrmw_xchg_i32;
9167 return Intrinsic::loongarch_masked_atomicrmw_add_i32;
9169 return Intrinsic::loongarch_masked_atomicrmw_sub_i32;
9171 return Intrinsic::loongarch_masked_atomicrmw_nand_i32;
9173 return Intrinsic::loongarch_masked_atomicrmw_umax_i32;
9175 return Intrinsic::loongarch_masked_atomicrmw_umin_i32;
9177 return Intrinsic::loongarch_masked_atomicrmw_max_i32;
9179 return Intrinsic::loongarch_masked_atomicrmw_min_i32;
9191 if (Subtarget.hasLAMCAS())
9203 unsigned GRLen = Subtarget.getGRLen();
9205 Value *FailureOrdering =
9206 Builder.getIntN(Subtarget.getGRLen(),
static_cast<uint64_t>(FailOrd));
9207 Intrinsic::ID CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i32;
9209 CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i64;
9210 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
9211 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
9212 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9215 Value *Result = Builder.CreateIntrinsic(
9216 CmpXchgIntrID, Tys, {AlignedAddr, CmpVal, NewVal, Mask, FailureOrdering});
9218 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9234 Builder.CreateNot(Mask,
"Inv_Mask"),
9241 unsigned GRLen = Subtarget.getGRLen();
9250 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
9251 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
9252 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
9268 Builder.CreateSub(Builder.getIntN(GRLen, GRLen - ValWidth), ShiftAmt);
9269 Result = Builder.CreateCall(LlwOpScwLoop,
9270 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
9273 Builder.CreateCall(LlwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
9277 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9300 const Constant *PersonalityFn)
const {
9301 return LoongArch::R4;
9305 const Constant *PersonalityFn)
const {
9306 return LoongArch::R5;
9317 int RefinementSteps = VT.
getScalarType() == MVT::f64 ? 2 : 1;
9318 return RefinementSteps;
9323 int &RefinementSteps,
9324 bool &UseOneConstNR,
9325 bool Reciprocal)
const {
9326 if (Subtarget.hasFrecipe()) {
9330 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
9331 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
9332 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
9333 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
9334 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
9353 int &RefinementSteps)
const {
9354 if (Subtarget.hasFrecipe()) {
9358 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
9359 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
9360 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
9361 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
9362 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
9367 return DAG.
getNode(LoongArchISD::FRECIPE,
DL, VT, Operand);
9379LoongArchTargetLowering::getConstraintType(
StringRef Constraint)
const {
9399 if (Constraint.
size() == 1) {
9400 switch (Constraint[0]) {
9416 if (Constraint ==
"ZC" || Constraint ==
"ZB")
9425 return StringSwitch<InlineAsm::ConstraintCode>(ConstraintCode)
9432std::pair<unsigned, const TargetRegisterClass *>
9433LoongArchTargetLowering::getRegForInlineAsmConstraint(
9437 if (Constraint.
size() == 1) {
9438 switch (Constraint[0]) {
9443 return std::make_pair(0U, &LoongArch::GPRRegClass);
9445 return std::make_pair(0U, &LoongArch::GPRNoR0R1RegClass);
9447 if (Subtarget.hasBasicF() && VT == MVT::f32)
9448 return std::make_pair(0U, &LoongArch::FPR32RegClass);
9449 if (Subtarget.hasBasicD() && VT == MVT::f64)
9450 return std::make_pair(0U, &LoongArch::FPR64RegClass);
9451 if (Subtarget.hasExtLSX() &&
9452 TRI->isTypeLegalForClass(LoongArch::LSX128RegClass, VT))
9453 return std::make_pair(0U, &LoongArch::LSX128RegClass);
9454 if (Subtarget.hasExtLASX() &&
9455 TRI->isTypeLegalForClass(LoongArch::LASX256RegClass, VT))
9456 return std::make_pair(0U, &LoongArch::LASX256RegClass);
9476 bool IsFP = Constraint[2] ==
'f';
9477 std::pair<StringRef, StringRef> Temp = Constraint.
split(
'$');
9478 std::pair<unsigned, const TargetRegisterClass *>
R;
9483 unsigned RegNo =
R.first;
9484 if (LoongArch::F0 <= RegNo && RegNo <= LoongArch::F31) {
9485 if (Subtarget.hasBasicD() && (VT == MVT::f64 || VT == MVT::Other)) {
9486 unsigned DReg = RegNo - LoongArch::F0 + LoongArch::F0_64;
9487 return std::make_pair(DReg, &LoongArch::FPR64RegClass);
9497void LoongArchTargetLowering::LowerAsmOperandForConstraint(
9501 if (Constraint.
size() == 1) {
9502 switch (Constraint[0]) {
9506 uint64_t CVal =
C->getSExtValue();
9509 Subtarget.getGRLenVT()));
9515 uint64_t CVal =
C->getSExtValue();
9518 Subtarget.getGRLenVT()));
9524 if (
C->getZExtValue() == 0)
9531 uint64_t CVal =
C->getZExtValue();
9544#define GET_REGISTER_MATCHER
9545#include "LoongArchGenAsmMatcher.inc"
9551 std::string NewRegName = Name.second.str();
9557 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9558 if (!ReservedRegs.
test(Reg))
9575 const APInt &Imm = ConstNode->getAPIntValue();
9577 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9578 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9581 if (ConstNode->hasOneUse() &&
9582 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9583 (Imm - 8).isPowerOf2() || (Imm - 16).isPowerOf2()))
9589 if (ConstNode->hasOneUse() && !(Imm.sge(-2048) && Imm.sle(4095))) {
9590 unsigned Shifts = Imm.countr_zero();
9596 APInt ImmPop = Imm.ashr(Shifts);
9597 if (ImmPop == 3 || ImmPop == 5 || ImmPop == 9 || ImmPop == 17)
9601 APInt ImmSmall =
APInt(Imm.getBitWidth(), 1ULL << Shifts,
true);
9602 if ((Imm - ImmSmall).isPowerOf2() || (Imm + ImmSmall).isPowerOf2() ||
9603 (ImmSmall - Imm).isPowerOf2())
9613 Type *Ty,
unsigned AS,
9668 EVT MemVT = LD->getMemoryVT();
9669 if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
9680 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
9689 if (
Y.getValueType().isVector())
9701 Type *Ty,
bool IsSigned)
const {
9702 if (Subtarget.is64Bit() && Ty->isIntegerTy(32))
9711 if (Subtarget.isSoftFPABI() && (
Type.isFloatingPoint() && !
Type.isVector() &&
9712 Type.getSizeInBits() < Subtarget.getGRLen()))
9722 Align &PrefAlign)
const {
9726 if (Subtarget.is64Bit()) {
9728 PrefAlign =
Align(8);
9731 PrefAlign =
Align(4);
9746bool LoongArchTargetLowering::splitValueIntoRegisterParts(
9748 unsigned NumParts,
MVT PartVT, std::optional<CallingConv::ID> CC)
const {
9749 bool IsABIRegCopy = CC.has_value();
9752 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
9753 PartVT == MVT::f32) {
9768SDValue LoongArchTargetLowering::joinRegisterPartsIntoValue(
9770 MVT PartVT,
EVT ValueVT, std::optional<CallingConv::ID> CC)
const {
9771 bool IsABIRegCopy = CC.has_value();
9773 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
9774 PartVT == MVT::f32) {
9791 if (VT == MVT::f16 && Subtarget.hasBasicF())
9797unsigned LoongArchTargetLowering::getNumRegistersForCallingConv(
9800 if (VT == MVT::f16 && Subtarget.hasBasicF())
9809 unsigned Depth)
const {
9810 EVT VT =
Op.getValueType();
9812 unsigned Opc =
Op.getOpcode();
9816 case LoongArchISD::VMSKLTZ:
9817 case LoongArchISD::XVMSKLTZ: {
9819 MVT SrcVT = Src.getSimpleValueType();
9824 if (OriginalDemandedBits.
countr_zero() >= NumElts)
9828 APInt KnownUndef, KnownZero;
9844 if (KnownSrc.
One[SrcBits - 1])
9846 else if (KnownSrc.
Zero[SrcBits - 1])
9851 Src, DemandedSrcBits, DemandedElts, TLO.
DAG,
Depth + 1))
9858 Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO,
Depth);
9881 unsigned Index)
const {
9890 unsigned Index)
const {
9894 return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
unsigned const MachineRegisterInfo * MRI
static MCRegister MatchRegisterName(StringRef Name)
static bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType)
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget, const AArch64TargetLowering &TLI)
static SDValue performANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static MCRegister MatchRegisterAltName(StringRef Name)
Maps from the set of all alternative registernames to a register number.
Function Alias Analysis Results
static uint64_t getConstant(const Value *IndexValue)
static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static MachineBasicBlock * emitSelectPseudo(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode)
static SDValue unpackFromRegLoc(const CSKYSubtarget &Subtarget, SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
const HexagonInstrInfo * TII
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static SDValue performINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
const MCPhysReg ArgFPR32s[]
static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Dispatching routine to lower various 128-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_XVSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVSHUF4I (if possible).
static SDValue lowerVECTOR_SHUFFLE_VPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKEV (if possible).
static SDValue combineSelectToBinOp(SDNode *N, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKOD (if possible).
static SDValue unpackF64OnLA32DSoftABI(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const CCValAssign &HiVA, const SDLoc &DL)
static bool fitsRegularPattern(typename SmallVectorImpl< ValType >::const_iterator Begin, unsigned CheckStride, typename SmallVectorImpl< ValType >::const_iterator End, ValType ExpectedIndex, unsigned ExpectedIndexStride)
Determine whether a range fits a regular pattern of values.
static SDValue lowerVECTOR_SHUFFLE_IsReverse(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE whose result is the reversed source vector.
static SDValue emitIntrinsicErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static cl::opt< bool > ZeroDivCheck("loongarch-check-zero-division", cl::Hidden, cl::desc("Trap on integer division by zero."), cl::init(false))
static SDValue lowerVECTOR_SHUFFLE_VSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VSHUF.
static int getEstimateRefinementSteps(EVT VT, const LoongArchSubtarget &Subtarget)
static void emitErrorAndReplaceIntrinsicResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, StringRef ErrorMsg, bool WithChain=true)
static SDValue lowerVECTOR_SHUFFLEAsByteRotate(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE as byte rotate (if possible).
static SDValue checkIntrinsicImmArg(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
static SDValue lowerVECTOR_SHUFFLE_XVINSVE0(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVINSVE0 (if possible).
static SDValue performMOVFR2GR_SCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVH (if possible).
static bool CC_LoongArch(const DataLayout &DL, LoongArchABI::ABI ABI, unsigned ValNo, MVT ValVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsRet, Type *OrigTy)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
static SDValue performSPLIT_PAIR_F64Combine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performBITCASTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static MachineBasicBlock * emitSplitPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorBitSetImm(SDNode *Node, SelectionDAG &DAG)
static SDValue performSETCC_BITCASTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKOD (if possible).
static std::optional< bool > matchSetCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue Val)
static SDValue combineAndNotIntoVANDN(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
Try to fold: (and (xor X, -1), Y) -> (vandn X, Y).
static SDValue lowerBUILD_VECTORAsBroadCastLoad(BuildVectorSDNode *BVOp, const SDLoc &DL, SelectionDAG &DAG)
#define CRC_CASE_EXT_BINARYOP(NAME, NODE)
static SDValue lowerVectorBitRevImm(SDNode *Node, SelectionDAG &DAG)
static bool checkBitcastSrcVectorSize(SDValue Src, unsigned Size, unsigned Depth)
static SDValue lowerVECTOR_SHUFFLEAsShift(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, const APInt &Zeroable)
Lower VECTOR_SHUFFLE as shift (if possible).
static SDValue lowerVECTOR_SHUFFLE_VSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VSHUF4I (if possible).
static SDValue truncateVecElts(SDNode *Node, SelectionDAG &DAG)
static bool CC_LoongArch_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
static MachineBasicBlock * insertDivByZeroTrap(MachineInstr &MI, MachineBasicBlock *MBB)
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG)
static SDValue lowerVectorBitClear(SDNode *Node, SelectionDAG &DAG)
static SDValue lowerVECTOR_SHUFFLE_VPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKEV (if possible).
static MachineBasicBlock * emitPseudoVMSKCOND(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performVANDNCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
Do target-specific dag combines on LoongArchISD::VANDN nodes.
static void replaceVPICKVE2GRResults(SDNode *Node, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
static SDValue lowerVECTOR_SHUFFLEAsZeroOrAnyExtend(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const APInt &Zeroable)
Lower VECTOR_SHUFFLE as ZERO_EXTEND Or ANY_EXTEND (if possible).
static SDValue legalizeIntrinsicImmArg(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, bool IsSigned=false)
static cl::opt< MaterializeFPImm > MaterializeFPImmInsNum("loongarch-materialize-float-imm", cl::Hidden, cl::desc("Maximum number of instructions used (including code sequence " "to generate the value and moving the value to FPR) when " "materializing floating-point immediates (default = 3)"), cl::init(MaterializeFPImm3Ins), cl::values(clEnumValN(NoMaterializeFPImm, "0", "Use constant pool"), clEnumValN(MaterializeFPImm2Ins, "2", "Materialize FP immediate within 2 instructions"), clEnumValN(MaterializeFPImm3Ins, "3", "Materialize FP immediate within 3 instructions"), clEnumValN(MaterializeFPImm4Ins, "4", "Materialize FP immediate within 4 instructions"), clEnumValN(MaterializeFPImm5Ins, "5", "Materialize FP immediate within 5 instructions"), clEnumValN(MaterializeFPImm6Ins, "6", "Materialize FP immediate within 6 instructions " "(behaves same as 5 on loongarch64)")))
static SDValue lowerVECTOR_SHUFFLE_XVPERMI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVPERMI (if possible).
static SDValue emitIntrinsicWithChainErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static bool CC_LoongArchAssign2GRLen(unsigned GRLen, CCState &State, CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, MVT ValVT2, MVT LocVT2, ISD::ArgFlagsTy ArgFlags2)
static unsigned getLoongArchWOpcode(unsigned Opcode)
const MCPhysReg ArgFPR64s[]
static MachineBasicBlock * emitPseudoCTPOP(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performMOVGR2FR_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRWR_CASE(NAME, NODE)
#define CRC_CASE_EXT_UNARYOP(NAME, NODE)
static SDValue lowerVECTOR_SHUFFLE_VPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKOD (if possible).
static SDValue signExtendBitcastSrcVector(SelectionDAG &DAG, EVT SExtVT, SDValue Src, const SDLoc &DL)
static SDValue isNOT(SDValue V, SelectionDAG &DAG)
static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Dispatching routine to lower various 256-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_VREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VREPLVEI (if possible).
static MachineBasicBlock * emitPseudoXVINSGR2VR(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static void fillVector(ArrayRef< SDValue > Ops, SelectionDAG &DAG, SDLoc DL, const LoongArchSubtarget &Subtarget, SDValue &Vector, EVT ResTy)
static SDValue performEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue fillSubVectorFromBuildVector(BuildVectorSDNode *Node, SelectionDAG &DAG, SDLoc DL, const LoongArchSubtarget &Subtarget, EVT ResTy, unsigned first)
static bool isSelectPseudo(MachineInstr &MI)
static SDValue foldBinOpIntoSelectIfProfitable(SDNode *BO, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorSplatImm(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
const MCPhysReg ArgGPRs[]
static SDValue lowerVECTOR_SHUFFLE_XVPERM(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVPERM (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVL (if possible).
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, int NumOp, unsigned ExtOpc=ISD::ANY_EXTEND)
static void replaceVecCondBranchResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
#define ASRT_LE_GT_CASE(NAME)
static SDValue lowerVECTOR_SHUFFLE_XVPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKEV (if possible).
static SDValue performBR_CCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void computeZeroableShuffleElements(ArrayRef< int > Mask, SDValue V1, SDValue V2, APInt &KnownUndef, APInt &KnownZero)
Compute whether each element of a shuffle is zeroable.
static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue widenShuffleMask(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
static MachineBasicBlock * emitVecCondBranchPseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static bool canonicalizeShuffleVectorByLane(const SDLoc &DL, MutableArrayRef< int > Mask, MVT VT, SDValue &V1, SDValue &V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Shuffle vectors by lane to generate more optimized instructions.
static SDValue lowerVECTOR_SHUFFLE_XVILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVH (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVSHUF (if possible).
static void replaceCMP_XCHG_128Results(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG)
static SDValue lowerVectorPickVE2GR(SDNode *N, SelectionDAG &DAG, unsigned ResOp)
static SDValue performBITREV_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRRD_CASE(NAME, NODE)
static int matchShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2, ArrayRef< int > Mask)
Attempts to match vector shuffle as byte rotation.
static SDValue lowerVECTOR_SHUFFLE_XVPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKEV (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVREPLVEI (if possible).
static int matchShuffleAsShift(MVT &ShiftVT, unsigned &Opcode, unsigned ScalarSizeInBits, ArrayRef< int > Mask, int MaskOffset, const APInt &Zeroable)
Attempts to match a shuffle mask against the VBSLL, VBSRL, VSLLI and VSRLI instruction.
static SDValue lowerVECTOR_SHUFFLE_VILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVL (if possible).
static SDValue lowerVectorBitClearImm(SDNode *Node, SelectionDAG &DAG)
static MachineBasicBlock * emitBuildPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLEAsLanePermuteAndShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE as lane permute and then shuffle (if possible).
static SDValue performVMSKLTZCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void replaceINTRINSIC_WO_CHAINResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKOD (if possible).
static Intrinsic::ID getIntrinsicForMaskedAtomicRMWBinOp(unsigned GRLen, AtomicRMWInst::BinOp BinOp)
static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, ISD::CondCode &CC, SelectionDAG &DAG)
static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT, ArrayRef< int > Mask, SmallVectorImpl< int > &RepeatedMask)
Test whether a shuffle mask is equivalent within each sub-lane.
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static CodeModel::Model getCodeModel(const PPCSubtarget &S, const TargetMachine &TM, const MachineOperand &MO)
This file defines the SmallSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, bool AllowSymbol=false)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static bool isSequentialOrUndefInRange(ArrayRef< int > Mask, unsigned Pos, unsigned Size, int Low, int Step=1)
Return true if every element in Mask, beginning from position Pos and ending in Pos + Size,...
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
int64_t getSExtValue() const
Get sign extended value.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getCompareOperand()
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
Value * getPointerOperand()
bool isFloatingPointOperation() const
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM Basic Block Representation.
bool test(unsigned Idx) const
size_type count() const
count - Returns the number of bits which are set.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
CCState - This class holds information needed while lowering arguments and return values.
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
LLVM_ABI void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT, LocInfo HTP, unsigned ExtraInfo=0)
Register getLocReg() const
LocInfo getLocInfo() const
static CCValAssign getReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP, bool IsCustom=false)
static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP)
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
int64_t getLocMemOffset() const
unsigned getValNo() const
static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
This class represents a function call, abstracting a target machine's calling convention.
const APFloat & getValueAPF() const
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
uint64_t getZExtValue() const
int64_t getSExtValue() const
This is an important base class in LLVM.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSizeInBits(unsigned AS=0) const
The size in bits of the pointer representation in a given address space.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Argument * getArg(unsigned i) const
Common base class shared among various IRBuilders.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
This is an important class for using LLVM in a threaded context.
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
LoongArchMachineFunctionInfo - This class is derived from MachineFunctionInfo and contains private Lo...
void addSExt32Register(Register Reg)
const LoongArchRegisterInfo * getRegisterInfo() const override
const LoongArchInstrInfo * getInstrInfo() const override
unsigned getGRLen() const
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallBase &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override
Return true if result of the specified node is used by a return node only.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(const AtomicCmpXchgInst *CI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
std::pair< bool, uint64_t > isImmVLDILegalForMode1(const APInt &SplatValue, const unsigned SplatBitSize) const
Check if a constant splat can be generated using [x]vldi, where imm[12] is 1.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
bool isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const override
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Determine if the target supports unaligned memory accesses.
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, Align &PrefAlign) const override
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
bool signExtendConstant(const ConstantInt *CI) const override
Return true if this constant should be sign extended when promoting to a larger type.
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(const AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const override
Returns true if arguments should be sign-extended in lib calls.
bool shouldScalarizeBinop(SDValue VecOp) const override
Try to convert an extract element of a vector binary operation into an extract element followed by a ...
bool isFPImmVLDILegal(const APFloat &Imm, EVT VT) const
bool shouldExtendTypeInLibCall(EVT Type) const override
Returns true if arguments should be extended in lib calls.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool hasAndNot(SDValue Y) const override
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
ISD::NodeType getExtendForAtomicCmpSwapArg() const override
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
LoongArchTargetLowering(const TargetMachine &TM, const LoongArchSubtarget &STI)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
bool hasAndNotCompare(SDValue Y) const override
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const override
Return a reciprocal estimate value for the input operand.
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context, const Type *RetTy) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
bool mayBeEmittedAsTailCall(const CallInst *CI) const override
Return true if the target may be able emit the call instruction as a tail call.
Wrapper class representing physical registers. Should be passed by value.
bool hasFeature(unsigned Feature) const
static MVT getFloatingPointVT(unsigned BitWidth)
bool is128BitVector() const
Return true if this is a 128-bit vector type.
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
bool is256BitVector() const
Return true if this is a 256-bit vector type.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
MVT getHalfNumVectorElementsVT() const
Return a VT for a vector type with the same element type but half the number of elements.
MVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
void push_back(MachineInstr *MI)
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
LLVM_ABI void collectDebugValues(SmallVectorImpl< MachineInstr * > &DbgValues)
Scan instructions immediately following MI and collect any matching DBG_VALUEs.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
MachineOperand class - Representation of each machine instruction operand.
void setIsKill(bool Val=true)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
size_t use_size() const
Return the number of uses of this node.
MVT getSimpleValueType(unsigned ResNo) const
Return the type of a specified result as a simple type.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
bool isSafeToSpeculativelyExecute(unsigned Opcode) const
Some opcodes may create immediate undefined behavior when used with some values (integer division-by-...
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
static LLVM_ABI bool isReverseMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask swaps the order of elements from exactly one source vector.
ArrayRef< int > getMask() const
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
typename SuperClass::const_iterator const_iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
TargetInstrInfo - Interface to description of machine instruction set.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setMaxBytesForAlignment(unsigned MaxBytes)
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
std::vector< ArgListEntry > ArgListTy
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
TargetLowering(const TargetLowering &)=delete
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
Primary interface to the complete machine description for the target machine.
bool useTLSDESC() const
Returns true if this target uses TLS Descriptors.
bool useEmulatedTLS() const
Returns true if this target uses emulated TLS.
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
CodeModel::Model getCodeModel() const
Returns the code model.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
This class is used to represent EVT's, which are used to parameterize some operations.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ MEMBARRIER
MEMBARRIER - Compiler barrier only; generate a no-op.
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ BR_JT
BR_JT - Jumptable branch.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ BRCOND
BRCOND - Conditional branch.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isNormalLoad(const SDNode *N)
Returns true if the specified node is a non-extending and unindexed load.
bool isIntEqualitySetCC(CondCode Code)
Return true if this is a setcc instruction that performs an equality comparison when used with intege...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
ABI getTargetABI(StringRef ABIName)
InstSeq generateInstSeq(int64_t Val)
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
@ Kill
The last use of a register.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Sequence
A sequence of states that a pointer may go through in which an objc_retain and objc_release are actua...
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr unsigned getKillRegState(bool B)
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
AtomicOrdering
Atomic ordering for LLVM's memory model.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
constexpr unsigned BitWidth
std::string join_items(Sep Separator, Args &&... Items)
Joins the strings in the parameter pack Items, adding Separator between the elements....
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
PointerUnion< const Value *, const PseudoSourceValue * > ValueType
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
static EVT getFloatingPointVT(unsigned BitWidth)
Returns the EVT that represents a floating-point type with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
Align getNonZeroOrigAlign() const
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalizeOps() const
bool isBeforeLegalize() const
LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)