LLVM 20.0.0git
GVNHoist.cpp
Go to the documentation of this file.
1//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass hoists expressions from branches to a common dominator. It uses
10// GVN (global value numbering) to discover expressions computing the same
11// values. The primary goals of code-hoisting are:
12// 1. To reduce the code size.
13// 2. In some cases reduce critical path (by exposing more ILP).
14//
15// The algorithm factors out the reachability of values such that multiple
16// queries to find reachability of values are fast. This is based on finding the
17// ANTIC points in the CFG which do not change during hoisting. The ANTIC points
18// are basically the dominance-frontiers in the inverse graph. So we introduce a
19// data structure (CHI nodes) to keep track of values flowing out of a basic
20// block. We only do this for values with multiple occurrences in the function
21// as they are the potential hoistable candidates. This approach allows us to
22// hoist instructions to a basic block with more than two successors, as well as
23// deal with infinite loops in a trivial way.
24//
25// Limitations: This pass does not hoist fully redundant expressions because
26// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
27// and after gvn-pre because gvn-pre creates opportunities for more instructions
28// to be hoisted.
29//
30// Hoisting may affect the performance in some cases. To mitigate that, hoisting
31// is disabled in the following cases.
32// 1. Scalars across calls.
33// 2. geps when corresponding load/store cannot be hoisted.
34//===----------------------------------------------------------------------===//
35
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/DenseSet.h"
38#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/Statistic.h"
51#include "llvm/IR/Argument.h"
52#include "llvm/IR/BasicBlock.h"
53#include "llvm/IR/CFG.h"
54#include "llvm/IR/Constants.h"
55#include "llvm/IR/Dominators.h"
56#include "llvm/IR/Function.h"
57#include "llvm/IR/Instruction.h"
60#include "llvm/IR/LLVMContext.h"
61#include "llvm/IR/PassManager.h"
62#include "llvm/IR/Use.h"
63#include "llvm/IR/User.h"
64#include "llvm/IR/Value.h"
67#include "llvm/Support/Debug.h"
71#include <algorithm>
72#include <cassert>
73#include <iterator>
74#include <memory>
75#include <utility>
76#include <vector>
77
78using namespace llvm;
79
80#define DEBUG_TYPE "gvn-hoist"
81
82STATISTIC(NumHoisted, "Number of instructions hoisted");
83STATISTIC(NumRemoved, "Number of instructions removed");
84STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
85STATISTIC(NumLoadsRemoved, "Number of loads removed");
86STATISTIC(NumStoresHoisted, "Number of stores hoisted");
87STATISTIC(NumStoresRemoved, "Number of stores removed");
88STATISTIC(NumCallsHoisted, "Number of calls hoisted");
89STATISTIC(NumCallsRemoved, "Number of calls removed");
90
91static cl::opt<int>
92 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
93 cl::desc("Max number of instructions to hoist "
94 "(default unlimited = -1)"));
95
97 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
98 cl::desc("Max number of basic blocks on the path between "
99 "hoisting locations (default = 4, unlimited = -1)"));
100
102 "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
103 cl::desc("Hoist instructions from the beginning of the BB up to the "
104 "maximum specified depth (default = 100, unlimited = -1)"));
105
106static cl::opt<int>
107 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
108 cl::desc("Maximum length of dependent chains to hoist "
109 "(default = 10, unlimited = -1)"));
110
111namespace llvm {
112
116
117// Each element of a hoisting list contains the basic block where to hoist and
118// a list of instructions to be hoisted.
119using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
120
122
123// A map from a pair of VNs to all the instructions with those VNs.
124using VNType = std::pair<unsigned, uintptr_t>;
125
127
128// CHI keeps information about values flowing out of a basic block. It is
129// similar to PHI but in the inverse graph, and used for outgoing values on each
130// edge. For conciseness, it is computed only for instructions with multiple
131// occurrences in the CFG because they are the only hoistable candidates.
132// A (CHI[{V, B, I1}, {V, C, I2}]
133// / \
134// / \
135// B(I1) C (I2)
136// The Value number for both I1 and I2 is V, the CHI node will save the
137// instruction as well as the edge where the value is flowing to.
138struct CHIArg {
140
141 // Edge destination (shows the direction of flow), may not be where the I is.
143
144 // The instruction (VN) which uses the values flowing out of CHI.
146
147 bool operator==(const CHIArg &A) const { return VN == A.VN; }
148 bool operator!=(const CHIArg &A) const { return !(*this == A); }
149};
150
156
157// An invalid value number Used when inserting a single value number into
158// VNtoInsns.
159enum : uintptr_t { InvalidVN = ~(uintptr_t)2 };
160
161// Records all scalar instructions candidate for code hoisting.
162class InsnInfo {
163 VNtoInsns VNtoScalars;
164
165public:
166 // Inserts I and its value number in VNtoScalars.
168 // Scalar instruction.
169 unsigned V = VN.lookupOrAdd(I);
170 VNtoScalars[{V, InvalidVN}].push_back(I);
171 }
172
173 const VNtoInsns &getVNTable() const { return VNtoScalars; }
174};
175
176// Records all load instructions candidate for code hoisting.
177class LoadInfo {
178 VNtoInsns VNtoLoads;
179
180public:
181 // Insert Load and the value number of its memory address in VNtoLoads.
183 if (Load->isSimple()) {
184 unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
185 // With opaque pointers we may have loads from the same pointer with
186 // different result types, which should be disambiguated.
187 VNtoLoads[{V, (uintptr_t)Load->getType()}].push_back(Load);
188 }
189 }
190
191 const VNtoInsns &getVNTable() const { return VNtoLoads; }
192};
193
194// Records all store instructions candidate for code hoisting.
196 VNtoInsns VNtoStores;
197
198public:
199 // Insert the Store and a hash number of the store address and the stored
200 // value in VNtoStores.
202 if (!Store->isSimple())
203 return;
204 // Hash the store address and the stored value.
205 Value *Ptr = Store->getPointerOperand();
206 Value *Val = Store->getValueOperand();
207 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
208 }
209
210 const VNtoInsns &getVNTable() const { return VNtoStores; }
211};
212
213// Records all call instructions candidate for code hoisting.
214class CallInfo {
215 VNtoInsns VNtoCallsScalars;
216 VNtoInsns VNtoCallsLoads;
217 VNtoInsns VNtoCallsStores;
218
219public:
220 // Insert Call and its value numbering in one of the VNtoCalls* containers.
222 // A call that doesNotAccessMemory is handled as a Scalar,
223 // onlyReadsMemory will be handled as a Load instruction,
224 // all other calls will be handled as stores.
225 unsigned V = VN.lookupOrAdd(Call);
226 auto Entry = std::make_pair(V, InvalidVN);
227
228 if (Call->doesNotAccessMemory())
229 VNtoCallsScalars[Entry].push_back(Call);
230 else if (Call->onlyReadsMemory())
231 VNtoCallsLoads[Entry].push_back(Call);
232 else
233 VNtoCallsStores[Entry].push_back(Call);
234 }
235
236 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
237 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
238 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
239};
240
241// This pass hoists common computations across branches sharing common
242// dominator. The primary goal is to reduce the code size, and in some
243// cases reduce critical path (by exposing more ILP).
244class GVNHoist {
245public:
248 : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
249 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {
250 MSSA->ensureOptimizedUses();
251 }
252
253 bool run(Function &F);
254
255 // Copied from NewGVN.cpp
256 // This function provides global ranking of operations so that we can place
257 // them in a canonical order. Note that rank alone is not necessarily enough
258 // for a complete ordering, as constants all have the same rank. However,
259 // generally, we will simplify an operation with all constants so that it
260 // doesn't matter what order they appear in.
261 unsigned int rank(const Value *V) const;
262
263private:
265 DominatorTree *DT;
267 AliasAnalysis *AA;
269 MemorySSA *MSSA;
270 std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
272 BBSideEffectsSet BBSideEffects;
273 DenseSet<const BasicBlock *> HoistBarrier;
275 unsigned NumFuncArgs;
276 const bool HoistingGeps = false;
277
278 enum InsKind { Unknown, Scalar, Load, Store };
279
280 // Return true when there are exception handling in BB.
281 bool hasEH(const BasicBlock *BB);
282
283 // Return true when I1 appears before I2 in the instructions of BB.
284 bool firstInBB(const Instruction *I1, const Instruction *I2) {
285 assert(I1->getParent() == I2->getParent());
286 unsigned I1DFS = DFSNumber.lookup(I1);
287 unsigned I2DFS = DFSNumber.lookup(I2);
288 assert(I1DFS && I2DFS);
289 return I1DFS < I2DFS;
290 }
291
292 // Return true when there are memory uses of Def in BB.
293 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
294 const BasicBlock *BB);
295
296 bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
297 int &NBBsOnAllPaths);
298
299 // Return true when there are exception handling or loads of memory Def
300 // between Def and NewPt. This function is only called for stores: Def is
301 // the MemoryDef of the store to be hoisted.
302
303 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
304 // return true when the counter NBBsOnAllPaths reaces 0, except when it is
305 // initialized to -1 which is unlimited.
306 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
307 int &NBBsOnAllPaths);
308
309 // Return true when there are exception handling between HoistPt and BB.
310 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
311 // return true when the counter NBBsOnAllPaths reaches 0, except when it is
312 // initialized to -1 which is unlimited.
313 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
314 int &NBBsOnAllPaths);
315
316 // Return true when it is safe to hoist a memory load or store U from OldPt
317 // to NewPt.
318 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
319 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths);
320
321 // Return true when it is safe to hoist scalar instructions from all blocks in
322 // WL to HoistBB.
323 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
324 int &NBBsOnAllPaths) {
325 return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
326 }
327
328 // In the inverse CFG, the dominance frontier of basic block (BB) is the
329 // point where ANTIC needs to be computed for instructions which are going
330 // to be hoisted. Since this point does not change during gvn-hoist,
331 // we compute it only once (on demand).
332 // The ides is inspired from:
333 // "Partial Redundancy Elimination in SSA Form"
334 // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
335 // They use similar idea in the forward graph to find fully redundant and
336 // partially redundant expressions, here it is used in the inverse graph to
337 // find fully anticipable instructions at merge point (post-dominator in
338 // the inverse CFG).
339 // Returns the edge via which an instruction in BB will get the values from.
340
341 // Returns true when the values are flowing out to each edge.
342 bool valueAnticipable(CHIArgs C, Instruction *TI) const;
343
344 // Check if it is safe to hoist values tracked by CHI in the range
345 // [Begin, End) and accumulate them in Safe.
346 void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
348
349 using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
350
351 // Push all the VNs corresponding to BB into RenameStack.
352 void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
353 RenameStackType &RenameStack);
354
355 void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
356 RenameStackType &RenameStack);
357
358 // Walk the post-dominator tree top-down and use a stack for each value to
359 // store the last value you see. When you hit a CHI from a given edge, the
360 // value to use as the argument is at the top of the stack, add the value to
361 // CHI and pop.
362 void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
363 auto Root = PDT->getNode(nullptr);
364 if (!Root)
365 return;
366 // Depth first walk on PDom tree to fill the CHIargs at each PDF.
367 for (auto *Node : depth_first(Root)) {
368 BasicBlock *BB = Node->getBlock();
369 if (!BB)
370 continue;
371
372 RenameStackType RenameStack;
373 // Collect all values in BB and push to stack.
374 fillRenameStack(BB, ValueBBs, RenameStack);
375
376 // Fill outgoing values in each CHI corresponding to BB.
377 fillChiArgs(BB, CHIBBs, RenameStack);
378 }
379 }
380
381 // Walk all the CHI-nodes to find ones which have a empty-entry and remove
382 // them Then collect all the instructions which are safe to hoist and see if
383 // they form a list of anticipable values. OutValues contains CHIs
384 // corresponding to each basic block.
385 void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
386 HoistingPointList &HPL);
387
388 // Compute insertion points for each values which can be fully anticipated at
389 // a dominator. HPL contains all such values.
390 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
391 InsKind K) {
392 // Sort VNs based on their rankings
393 std::vector<VNType> Ranks;
394 for (const auto &Entry : Map) {
395 Ranks.push_back(Entry.first);
396 }
397
398 // TODO: Remove fully-redundant expressions.
399 // Get instruction from the Map, assume that all the Instructions
400 // with same VNs have same rank (this is an approximation).
401 llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
402 return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
403 });
404
405 // - Sort VNs according to their rank, and start with lowest ranked VN
406 // - Take a VN and for each instruction with same VN
407 // - Find the dominance frontier in the inverse graph (PDF)
408 // - Insert the chi-node at PDF
409 // - Remove the chi-nodes with missing entries
410 // - Remove values from CHI-nodes which do not truly flow out, e.g.,
411 // modified along the path.
412 // - Collect the remaining values that are still anticipable
414 ReverseIDFCalculator IDFs(*PDT);
415 OutValuesType OutValue;
416 InValuesType InValue;
417 for (const auto &R : Ranks) {
418 const SmallVecInsn &V = Map.lookup(R);
419 if (V.size() < 2)
420 continue;
421 const VNType &VN = R;
423 for (const auto &I : V) {
424 BasicBlock *BBI = I->getParent();
425 if (!hasEH(BBI))
426 VNBlocks.insert(BBI);
427 }
428 // Compute the Post Dominance Frontiers of each basic block
429 // The dominance frontier of a live block X in the reverse
430 // control graph is the set of blocks upon which X is control
431 // dependent. The following sequence computes the set of blocks
432 // which currently have dead terminators that are control
433 // dependence sources of a block which is in NewLiveBlocks.
434 IDFs.setDefiningBlocks(VNBlocks);
435 IDFBlocks.clear();
436 IDFs.calculate(IDFBlocks);
437
438 // Make a map of BB vs instructions to be hoisted.
439 for (unsigned i = 0; i < V.size(); ++i) {
440 InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
441 }
442 // Insert empty CHI node for this VN. This is used to factor out
443 // basic blocks where the ANTIC can potentially change.
444 CHIArg EmptyChi = {VN, nullptr, nullptr};
445 for (auto *IDFBB : IDFBlocks) {
446 for (unsigned i = 0; i < V.size(); ++i) {
447 // Ignore spurious PDFs.
448 if (DT->properlyDominates(IDFBB, V[i]->getParent())) {
449 OutValue[IDFBB].push_back(EmptyChi);
450 LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: "
451 << IDFBB->getName() << ", for Insn: " << *V[i]);
452 }
453 }
454 }
455 }
456
457 // Insert CHI args at each PDF to iterate on factored graph of
458 // control dependence.
459 insertCHI(InValue, OutValue);
460 // Using the CHI args inserted at each PDF, find fully anticipable values.
461 findHoistableCandidates(OutValue, K, HPL);
462 }
463
464 // Return true when all operands of Instr are available at insertion point
465 // HoistPt. When limiting the number of hoisted expressions, one could hoist
466 // a load without hoisting its access function. So before hoisting any
467 // expression, make sure that all its operands are available at insert point.
468 bool allOperandsAvailable(const Instruction *I,
469 const BasicBlock *HoistPt) const;
470
471 // Same as allOperandsAvailable with recursive check for GEP operands.
472 bool allGepOperandsAvailable(const Instruction *I,
473 const BasicBlock *HoistPt) const;
474
475 // Make all operands of the GEP available.
476 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
477 const SmallVecInsn &InstructionsToHoist,
478 Instruction *Gep) const;
479
480 void updateAlignment(Instruction *I, Instruction *Repl);
481
482 // Remove all the instructions in Candidates and replace their usage with
483 // Repl. Returns the number of instructions removed.
484 unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
485 MemoryUseOrDef *NewMemAcc);
486
487 // Replace all Memory PHI usage with NewMemAcc.
488 void raMPHIuw(MemoryUseOrDef *NewMemAcc);
489
490 // Remove all other instructions and replace them with Repl.
491 unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
492 BasicBlock *DestBB, bool MoveAccess);
493
494 // In the case Repl is a load or a store, we make all their GEPs
495 // available: GEPs are not hoisted by default to avoid the address
496 // computations to be hoisted without the associated load or store.
497 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
498 const SmallVecInsn &InstructionsToHoist) const;
499
500 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL);
501
502 // Hoist all expressions. Returns Number of scalars hoisted
503 // and number of non-scalars hoisted.
504 std::pair<unsigned, unsigned> hoistExpressions(Function &F);
505};
506
508 NumFuncArgs = F.arg_size();
509 VN.setDomTree(DT);
510 VN.setAliasAnalysis(AA);
511 VN.setMemDep(MD);
512 bool Res = false;
513 // Perform DFS Numbering of instructions.
514 unsigned BBI = 0;
515 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
516 DFSNumber[BB] = ++BBI;
517 unsigned I = 0;
518 for (const auto &Inst : *BB)
519 DFSNumber[&Inst] = ++I;
520 }
521
522 int ChainLength = 0;
523
524 // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
525 while (true) {
526 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
527 return Res;
528
529 auto HoistStat = hoistExpressions(F);
530 if (HoistStat.first + HoistStat.second == 0)
531 return Res;
532
533 if (HoistStat.second > 0)
534 // To address a limitation of the current GVN, we need to rerun the
535 // hoisting after we hoisted loads or stores in order to be able to
536 // hoist all scalars dependent on the hoisted ld/st.
537 VN.clear();
538
539 Res = true;
540 }
541
542 return Res;
543}
544
545unsigned int GVNHoist::rank(const Value *V) const {
546 // Prefer constants to undef to anything else
547 // Undef is a constant, have to check it first.
548 // Prefer smaller constants to constantexprs
549 if (isa<ConstantExpr>(V))
550 return 2;
551 if (isa<UndefValue>(V))
552 return 1;
553 if (isa<Constant>(V))
554 return 0;
555 else if (auto *A = dyn_cast<Argument>(V))
556 return 3 + A->getArgNo();
557
558 // Need to shift the instruction DFS by number of arguments + 3 to account
559 // for the constant and argument ranking above.
560 auto Result = DFSNumber.lookup(V);
561 if (Result > 0)
562 return 4 + NumFuncArgs + Result;
563 // Unreachable or something else, just return a really large number.
564 return ~0;
565}
566
567bool GVNHoist::hasEH(const BasicBlock *BB) {
568 auto It = BBSideEffects.find(BB);
569 if (It != BBSideEffects.end())
570 return It->second;
571
572 if (BB->isEHPad() || BB->hasAddressTaken()) {
573 BBSideEffects[BB] = true;
574 return true;
575 }
576
577 if (BB->getTerminator()->mayThrow()) {
578 BBSideEffects[BB] = true;
579 return true;
580 }
581
582 BBSideEffects[BB] = false;
583 return false;
584}
585
586bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
587 const BasicBlock *BB) {
588 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
589 if (!Acc)
590 return false;
591
592 Instruction *OldPt = Def->getMemoryInst();
593 const BasicBlock *OldBB = OldPt->getParent();
594 const BasicBlock *NewBB = NewPt->getParent();
595 bool ReachedNewPt = false;
596
597 for (const MemoryAccess &MA : *Acc)
598 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
599 Instruction *Insn = MU->getMemoryInst();
600
601 // Do not check whether MU aliases Def when MU occurs after OldPt.
602 if (BB == OldBB && firstInBB(OldPt, Insn))
603 break;
604
605 // Do not check whether MU aliases Def when MU occurs before NewPt.
606 if (BB == NewBB) {
607 if (!ReachedNewPt) {
608 if (firstInBB(Insn, NewPt))
609 continue;
610 ReachedNewPt = true;
611 }
612 }
613 if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
614 return true;
615 }
616
617 return false;
618}
619
620bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
621 int &NBBsOnAllPaths) {
622 // Stop walk once the limit is reached.
623 if (NBBsOnAllPaths == 0)
624 return true;
625
626 // Impossible to hoist with exceptions on the path.
627 if (hasEH(BB))
628 return true;
629
630 // No such instruction after HoistBarrier in a basic block was
631 // selected for hoisting so instructions selected within basic block with
632 // a hoist barrier can be hoisted.
633 if ((BB != SrcBB) && HoistBarrier.count(BB))
634 return true;
635
636 return false;
637}
638
639bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
640 int &NBBsOnAllPaths) {
641 const BasicBlock *NewBB = NewPt->getParent();
642 const BasicBlock *OldBB = Def->getBlock();
643 assert(DT->dominates(NewBB, OldBB) && "invalid path");
644 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
645 "def does not dominate new hoisting point");
646
647 // Walk all basic blocks reachable in depth-first iteration on the inverse
648 // CFG from OldBB to NewBB. These blocks are all the blocks that may be
649 // executed between the execution of NewBB and OldBB. Hoisting an expression
650 // from OldBB into NewBB has to be safe on all execution paths.
651 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
652 const BasicBlock *BB = *I;
653 if (BB == NewBB) {
654 // Stop traversal when reaching HoistPt.
655 I.skipChildren();
656 continue;
657 }
658
659 if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
660 return true;
661
662 // Check that we do not move a store past loads.
663 if (hasMemoryUse(NewPt, Def, BB))
664 return true;
665
666 // -1 is unlimited number of blocks on all paths.
667 if (NBBsOnAllPaths != -1)
668 --NBBsOnAllPaths;
669
670 ++I;
671 }
672
673 return false;
674}
675
676bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
677 int &NBBsOnAllPaths) {
678 assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
679
680 // Walk all basic blocks reachable in depth-first iteration on
681 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
682 // blocks that may be executed between the execution of NewHoistPt and
683 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
684 // on all execution paths.
685 for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
686 const BasicBlock *BB = *I;
687 if (BB == HoistPt) {
688 // Stop traversal when reaching NewHoistPt.
689 I.skipChildren();
690 continue;
691 }
692
693 if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
694 return true;
695
696 // -1 is unlimited number of blocks on all paths.
697 if (NBBsOnAllPaths != -1)
698 --NBBsOnAllPaths;
699
700 ++I;
701 }
702
703 return false;
704}
705
706bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt,
707 const Instruction *OldPt, MemoryUseOrDef *U,
708 GVNHoist::InsKind K, int &NBBsOnAllPaths) {
709 // In place hoisting is safe.
710 if (NewPt == OldPt)
711 return true;
712
713 const BasicBlock *NewBB = NewPt->getParent();
714 const BasicBlock *OldBB = OldPt->getParent();
715 const BasicBlock *UBB = U->getBlock();
716
717 // Check for dependences on the Memory SSA.
718 MemoryAccess *D = U->getDefiningAccess();
719 BasicBlock *DBB = D->getBlock();
720 if (DT->properlyDominates(NewBB, DBB))
721 // Cannot move the load or store to NewBB above its definition in DBB.
722 return false;
723
724 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
725 if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
726 if (!firstInBB(UD->getMemoryInst(), NewPt))
727 // Cannot move the load or store to NewPt above its definition in D.
728 return false;
729
730 // Check for unsafe hoistings due to side effects.
731 if (K == InsKind::Store) {
732 if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths))
733 return false;
734 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
735 return false;
736
737 if (UBB == NewBB) {
738 if (DT->properlyDominates(DBB, NewBB))
739 return true;
740 assert(UBB == DBB);
741 assert(MSSA->locallyDominates(D, U));
742 }
743
744 // No side effects: it is safe to hoist.
745 return true;
746}
747
748bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const {
749 if (TI->getNumSuccessors() > (unsigned)size(C))
750 return false; // Not enough args in this CHI.
751
752 for (auto CHI : C) {
753 // Find if all the edges have values flowing out of BB.
754 if (!llvm::is_contained(successors(TI), CHI.Dest))
755 return false;
756 }
757 return true;
758}
759
760void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K,
762 int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
763 const Instruction *T = BB->getTerminator();
764 for (auto CHI : C) {
765 Instruction *Insn = CHI.I;
766 if (!Insn) // No instruction was inserted in this CHI.
767 continue;
768 // If the Terminator is some kind of "exotic terminator" that produces a
769 // value (such as InvokeInst, CallBrInst, or CatchSwitchInst) which the CHI
770 // uses, it is not safe to hoist the use above the def.
771 if (!T->use_empty() && is_contained(Insn->operands(), cast<const Value>(T)))
772 continue;
773 if (K == InsKind::Scalar) {
774 if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
775 Safe.push_back(CHI);
776 } else {
777 if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn))
778 if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths))
779 Safe.push_back(CHI);
780 }
781 }
782}
783
784void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
785 GVNHoist::RenameStackType &RenameStack) {
786 auto it1 = ValueBBs.find(BB);
787 if (it1 != ValueBBs.end()) {
788 // Iterate in reverse order to keep lower ranked values on the top.
789 LLVM_DEBUG(dbgs() << "\nVisiting: " << BB->getName()
790 << " for pushing instructions on stack";);
791 for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
792 // Get the value of instruction I
793 LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
794 RenameStack[VI.first].push_back(VI.second);
795 }
796 }
797}
798
799void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
800 GVNHoist::RenameStackType &RenameStack) {
801 // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
802 for (auto *Pred : predecessors(BB)) {
803 auto P = CHIBBs.find(Pred);
804 if (P == CHIBBs.end()) {
805 continue;
806 }
807 LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
808 // A CHI is found (BB -> Pred is an edge in the CFG)
809 // Pop the stack until Top(V) = Ve.
810 auto &VCHI = P->second;
811 for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
812 CHIArg &C = *It;
813 if (!C.Dest) {
814 auto si = RenameStack.find(C.VN);
815 // The Basic Block where CHI is must dominate the value we want to
816 // track in a CHI. In the PDom walk, there can be values in the
817 // stack which are not control dependent e.g., nested loop.
818 if (si != RenameStack.end() && si->second.size() &&
819 DT->properlyDominates(Pred, si->second.back()->getParent())) {
820 C.Dest = BB; // Assign the edge
821 C.I = si->second.pop_back_val(); // Assign the argument
823 << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
824 << ", VN: " << C.VN.first << ", " << C.VN.second);
825 }
826 // Move to next CHI of a different value
827 It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; });
828 } else
829 ++It;
830 }
831 }
832}
833
834void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs,
835 GVNHoist::InsKind K,
836 HoistingPointList &HPL) {
837 auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
838
839 // CHIArgs now have the outgoing values, so check for anticipability and
840 // accumulate hoistable candidates in HPL.
841 for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
842 BasicBlock *BB = A.first;
843 SmallVectorImpl<CHIArg> &CHIs = A.second;
844 // Vector of PHIs contains PHIs for different instructions.
845 // Sort the args according to their VNs, such that identical
846 // instructions are together.
847 llvm::stable_sort(CHIs, cmpVN);
848 auto TI = BB->getTerminator();
849 auto B = CHIs.begin();
850 // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
851 auto PHIIt = llvm::find_if(CHIs, [B](CHIArg &A) { return A != *B; });
852 auto PrevIt = CHIs.begin();
853 while (PrevIt != PHIIt) {
854 // Collect values which satisfy safety checks.
856 // We check for safety first because there might be multiple values in
857 // the same path, some of which are not safe to be hoisted, but overall
858 // each edge has at least one value which can be hoisted, making the
859 // value anticipable along that path.
860 checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
861
862 // List of safe values should be anticipable at TI.
863 if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
864 HPL.push_back({BB, SmallVecInsn()});
865 SmallVecInsn &V = HPL.back().second;
866 for (auto B : Safe)
867 V.push_back(B.I);
868 }
869
870 // Check other VNs
871 PrevIt = PHIIt;
872 PHIIt = std::find_if(PrevIt, CHIs.end(),
873 [PrevIt](CHIArg &A) { return A != *PrevIt; });
874 }
875 }
876}
877
878bool GVNHoist::allOperandsAvailable(const Instruction *I,
879 const BasicBlock *HoistPt) const {
880 for (const Use &Op : I->operands())
881 if (const auto *Inst = dyn_cast<Instruction>(&Op))
882 if (!DT->dominates(Inst->getParent(), HoistPt))
883 return false;
884
885 return true;
886}
887
888bool GVNHoist::allGepOperandsAvailable(const Instruction *I,
889 const BasicBlock *HoistPt) const {
890 for (const Use &Op : I->operands())
891 if (const auto *Inst = dyn_cast<Instruction>(&Op))
892 if (!DT->dominates(Inst->getParent(), HoistPt)) {
893 if (const GetElementPtrInst *GepOp =
894 dyn_cast<GetElementPtrInst>(Inst)) {
895 if (!allGepOperandsAvailable(GepOp, HoistPt))
896 return false;
897 // Gep is available if all operands of GepOp are available.
898 } else {
899 // Gep is not available if it has operands other than GEPs that are
900 // defined in blocks not dominating HoistPt.
901 return false;
902 }
903 }
904 return true;
905}
906
907void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
908 const SmallVecInsn &InstructionsToHoist,
909 Instruction *Gep) const {
910 assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available");
911
912 Instruction *ClonedGep = Gep->clone();
913 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
914 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
915 // Check whether the operand is already available.
916 if (DT->dominates(Op->getParent(), HoistPt))
917 continue;
918
919 // As a GEP can refer to other GEPs, recursively make all the operands
920 // of this GEP available at HoistPt.
921 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
922 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
923 }
924
925 // Copy Gep and replace its uses in Repl with ClonedGep.
926 ClonedGep->insertBefore(HoistPt->getTerminator());
927
928 // Conservatively discard any optimization hints, they may differ on the
929 // other paths.
930 ClonedGep->dropUnknownNonDebugMetadata();
931
932 // If we have optimization hints which agree with each other along different
933 // paths, preserve them.
934 for (const Instruction *OtherInst : InstructionsToHoist) {
935 const GetElementPtrInst *OtherGep;
936 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
937 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
938 else
939 OtherGep = cast<GetElementPtrInst>(
940 cast<StoreInst>(OtherInst)->getPointerOperand());
941 ClonedGep->andIRFlags(OtherGep);
942
943 // Merge debug locations of GEPs, because the hoisted GEP replaces those
944 // in branches. When cloning, ClonedGep preserves the debug location of
945 // Gepd, so Gep is skipped to avoid merging it twice.
946 if (OtherGep != Gep) {
947 ClonedGep->applyMergedLocation(ClonedGep->getDebugLoc(),
948 OtherGep->getDebugLoc());
949 }
950 }
951
952 // Replace uses of Gep with ClonedGep in Repl.
953 Repl->replaceUsesOfWith(Gep, ClonedGep);
954}
955
956void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) {
957 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
958 ReplacementLoad->setAlignment(
959 std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign()));
960 ++NumLoadsRemoved;
961 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
962 ReplacementStore->setAlignment(
963 std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign()));
964 ++NumStoresRemoved;
965 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
966 ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(),
967 cast<AllocaInst>(I)->getAlign()));
968 } else if (isa<CallInst>(Repl)) {
969 ++NumCallsRemoved;
970 }
971}
972
973unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl,
974 MemoryUseOrDef *NewMemAcc) {
975 unsigned NR = 0;
976 for (Instruction *I : Candidates) {
977 if (I != Repl) {
978 ++NR;
979 updateAlignment(I, Repl);
980 if (NewMemAcc) {
981 // Update the uses of the old MSSA access with NewMemAcc.
982 MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
983 OldMA->replaceAllUsesWith(NewMemAcc);
984 MSSAUpdater->removeMemoryAccess(OldMA);
985 }
986
987 combineMetadataForCSE(Repl, I, true);
988 Repl->andIRFlags(I);
989 I->replaceAllUsesWith(Repl);
990 // Also invalidate the Alias Analysis cache.
991 MD->removeInstruction(I);
992 I->eraseFromParent();
993 }
994 }
995 return NR;
996}
997
998void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) {
1000 for (User *U : NewMemAcc->users())
1001 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
1002 UsePhis.insert(Phi);
1003
1004 for (MemoryPhi *Phi : UsePhis) {
1005 auto In = Phi->incoming_values();
1006 if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
1007 Phi->replaceAllUsesWith(NewMemAcc);
1008 MSSAUpdater->removeMemoryAccess(Phi);
1009 }
1010 }
1011}
1012
1013unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates,
1014 Instruction *Repl, BasicBlock *DestBB,
1015 bool MoveAccess) {
1016 MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
1017 if (MoveAccess && NewMemAcc) {
1018 // The definition of this ld/st will not change: ld/st hoisting is
1019 // legal when the ld/st is not moved past its current definition.
1020 MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator);
1021 }
1022
1023 // Replace all other instructions with Repl with memory access NewMemAcc.
1024 unsigned NR = rauw(Candidates, Repl, NewMemAcc);
1025
1026 // Remove MemorySSA phi nodes with the same arguments.
1027 if (NewMemAcc)
1028 raMPHIuw(NewMemAcc);
1029 return NR;
1030}
1031
1032bool GVNHoist::makeGepOperandsAvailable(
1033 Instruction *Repl, BasicBlock *HoistPt,
1034 const SmallVecInsn &InstructionsToHoist) const {
1035 // Check whether the GEP of a ld/st can be synthesized at HoistPt.
1036 GetElementPtrInst *Gep = nullptr;
1037 Instruction *Val = nullptr;
1038 if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
1039 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
1040 } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
1041 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
1042 Val = dyn_cast<Instruction>(St->getValueOperand());
1043 // Check that the stored value is available.
1044 if (Val) {
1045 if (isa<GetElementPtrInst>(Val)) {
1046 // Check whether we can compute the GEP at HoistPt.
1047 if (!allGepOperandsAvailable(Val, HoistPt))
1048 return false;
1049 } else if (!DT->dominates(Val->getParent(), HoistPt))
1050 return false;
1051 }
1052 }
1053
1054 // Check whether we can compute the Gep at HoistPt.
1055 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
1056 return false;
1057
1058 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
1059
1060 if (Val && isa<GetElementPtrInst>(Val))
1061 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
1062
1063 return true;
1064}
1065
1066std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) {
1067 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
1068 for (const HoistingPointInfo &HP : HPL) {
1069 // Find out whether we already have one of the instructions in HoistPt,
1070 // in which case we do not have to move it.
1071 BasicBlock *DestBB = HP.first;
1072 const SmallVecInsn &InstructionsToHoist = HP.second;
1073 Instruction *Repl = nullptr;
1074 for (Instruction *I : InstructionsToHoist)
1075 if (I->getParent() == DestBB)
1076 // If there are two instructions in HoistPt to be hoisted in place:
1077 // update Repl to be the first one, such that we can rename the uses
1078 // of the second based on the first.
1079 if (!Repl || firstInBB(I, Repl))
1080 Repl = I;
1081
1082 // Keep track of whether we moved the instruction so we know whether we
1083 // should move the MemoryAccess.
1084 bool MoveAccess = true;
1085 if (Repl) {
1086 // Repl is already in HoistPt: it remains in place.
1087 assert(allOperandsAvailable(Repl, DestBB) &&
1088 "instruction depends on operands that are not available");
1089 MoveAccess = false;
1090 } else {
1091 // When we do not find Repl in HoistPt, select the first in the list
1092 // and move it to HoistPt.
1093 Repl = InstructionsToHoist.front();
1094
1095 // We can move Repl in HoistPt only when all operands are available.
1096 // The order in which hoistings are done may influence the availability
1097 // of operands.
1098 if (!allOperandsAvailable(Repl, DestBB)) {
1099 // When HoistingGeps there is nothing more we can do to make the
1100 // operands available: just continue.
1101 if (HoistingGeps)
1102 continue;
1103
1104 // When not HoistingGeps we need to copy the GEPs.
1105 if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
1106 continue;
1107 }
1108
1109 // Move the instruction at the end of HoistPt.
1110 Instruction *Last = DestBB->getTerminator();
1111 MD->removeInstruction(Repl);
1112 Repl->moveBefore(Last);
1113
1114 DFSNumber[Repl] = DFSNumber[Last]++;
1115 }
1116
1117 // Drop debug location as per debug info update guide.
1118 Repl->dropLocation();
1119 NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
1120
1121 if (isa<LoadInst>(Repl))
1122 ++NL;
1123 else if (isa<StoreInst>(Repl))
1124 ++NS;
1125 else if (isa<CallInst>(Repl))
1126 ++NC;
1127 else // Scalar
1128 ++NI;
1129 }
1130
1131 if (MSSA && VerifyMemorySSA)
1132 MSSA->verifyMemorySSA();
1133
1134 NumHoisted += NL + NS + NC + NI;
1135 NumRemoved += NR;
1136 NumLoadsHoisted += NL;
1137 NumStoresHoisted += NS;
1138 NumCallsHoisted += NC;
1139 return {NI, NL + NC + NS};
1140}
1141
1142std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) {
1143 InsnInfo II;
1144 LoadInfo LI;
1145 StoreInfo SI;
1146 CallInfo CI;
1147 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
1148 int InstructionNb = 0;
1149 for (Instruction &I1 : *BB) {
1150 // If I1 cannot guarantee progress, subsequent instructions
1151 // in BB cannot be hoisted anyways.
1153 HoistBarrier.insert(BB);
1154 break;
1155 }
1156 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
1157 // deeper may increase the register pressure and compilation time.
1158 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
1159 break;
1160
1161 // Do not value number terminator instructions.
1162 if (I1.isTerminator())
1163 break;
1164
1165 if (auto *Load = dyn_cast<LoadInst>(&I1))
1166 LI.insert(Load, VN);
1167 else if (auto *Store = dyn_cast<StoreInst>(&I1))
1168 SI.insert(Store, VN);
1169 else if (auto *Call = dyn_cast<CallInst>(&I1)) {
1170 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
1171 if (isa<DbgInfoIntrinsic>(Intr) ||
1172 Intr->getIntrinsicID() == Intrinsic::assume ||
1173 Intr->getIntrinsicID() == Intrinsic::sideeffect)
1174 continue;
1175 }
1176 if (Call->mayHaveSideEffects())
1177 break;
1178
1179 if (Call->isConvergent())
1180 break;
1181
1182 CI.insert(Call, VN);
1183 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
1184 // Do not hoist scalars past calls that may write to memory because
1185 // that could result in spills later. geps are handled separately.
1186 // TODO: We can relax this for targets like AArch64 as they have more
1187 // registers than X86.
1188 II.insert(&I1, VN);
1189 }
1190 }
1191
1193 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
1194 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
1195 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
1196 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
1197 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
1198 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
1199 return hoist(HPL);
1200}
1201
1202} // end namespace llvm
1203
1209 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
1210 GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
1211 if (!G.run(F))
1212 return PreservedAnalyses::all();
1213
1217 return PA;
1218}
SmallVector< AArch64_IMM::ImmInsnModel, 4 > Insn
unsigned Intr
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
#define NL
static cl::opt< int > MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), cl::desc("Max number of instructions to hoist " "(default unlimited = -1)"))
static cl::opt< int > MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), cl::desc("Maximum length of dependent chains to hoist " "(default = 10, unlimited = -1)"))
static cl::opt< int > MaxDepthInBB("gvn-hoist-max-depth", cl::Hidden, cl::init(100), cl::desc("Hoist instructions from the beginning of the BB up to the " "maximum specified depth (default = 100, unlimited = -1)"))
static cl::opt< int > MaxNumberOfBBSInPath("gvn-hoist-max-bbs", cl::Hidden, cl::init(4), cl::desc("Max number of basic blocks on the path between " "hoisting locations (default = 4, unlimited = -1)"))
This file provides the interface for LLVM's Global Value Numbering pass which eliminates fully redund...
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This defines the Use class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
uint64_t IntrinsicInst * II
#define P(N)
This header defines various interfaces for pass management in LLVM.
static void r2(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition: SHA1.cpp:51
static void r1(uint32_t &A, uint32_t &B, uint32_t &C, uint32_t &D, uint32_t &E, int I, uint32_t *Buf)
Definition: SHA1.cpp:45
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
A manager for alias analyses.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:405
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
Definition: BasicBlock.h:658
bool isEHPad() const
Return true if this basic block is an exception handling block.
Definition: BasicBlock.h:675
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
void insert(CallInst *Call, GVNPass::ValueTable &VN)
Definition: GVNHoist.cpp:221
const VNtoInsns & getLoadVNTable() const
Definition: GVNHoist.cpp:237
const VNtoInsns & getScalarVNTable() const
Definition: GVNHoist.cpp:236
const VNtoInsns & getStoreVNTable() const
Definition: GVNHoist.cpp:238
This class represents a function call, abstracting a target machine's calling convention.
This class represents an Operation in the Expression.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
iterator end()
Definition: DenseMap.h:84
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
bool run(Function &F)
Definition: GVNHoist.cpp:507
GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA, MemoryDependenceResults *MD, MemorySSA *MSSA)
Definition: GVNHoist.cpp:246
unsigned int rank(const Value *V) const
Definition: GVNHoist.cpp:545
This class holds the mapping between values and value numbers.
Definition: GVN.h:151
uint32_t lookupOrAdd(Value *V)
lookup_or_add - Returns the value number for the specified value, assigning it a new number if it did...
Definition: GVN.cpp:601
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:915
const VNtoInsns & getVNTable() const
Definition: GVNHoist.cpp:173
void insert(Instruction *I, GVNPass::ValueTable &VN)
Definition: GVNHoist.cpp:167
bool mayThrow(bool IncludePhaseOneUnwind=false) const LLVM_READONLY
Return true if this instruction may throw an exception.
Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
void dropLocation()
Drop the instruction's debug location.
Definition: DebugInfo.cpp:984
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
Definition: Instruction.cpp:97
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:466
void andIRFlags(const Value *V)
Logical 'and' of any supported wrapping, exact, and fast-math flags of V and this instruction.
void dropUnknownNonDebugMetadata(ArrayRef< unsigned > KnownIDs=std::nullopt)
Drop all unknown metadata except for debug locations.
Definition: Metadata.cpp:1596
void applyMergedLocation(DILocation *LocA, DILocation *LocB)
Merge 2 debug locations and apply it to the Instruction.
Definition: DebugInfo.cpp:949
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
const VNtoInsns & getVNTable() const
Definition: GVNHoist.cpp:191
void insert(LoadInst *Load, GVNPass::ValueTable &VN)
Definition: GVNHoist.cpp:182
An instruction for reading from memory.
Definition: Instructions.h:174
Represents a read-write access to memory, whether it is a must-alias, or a may-alias.
Definition: MemorySSA.h:369
An analysis that produces MemoryDependenceResults for a function.
Provides a lazy, caching interface for making common memory aliasing information queries,...
void removeInstruction(Instruction *InstToRemove)
Removes an instruction from the dependence analysis, updating the dependence of instructions that pre...
Represents phi nodes for memory accesses.
Definition: MemorySSA.h:476
An analysis that produces MemorySSA for a function.
Definition: MemorySSA.h:924
static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, AliasAnalysis &AA)
Definition: MemorySSA.cpp:340
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition: MemorySSA.h:697
const AccessList * getBlockAccesses(const BasicBlock *BB) const
Return the list of MemoryAccess's for a given basic block.
Definition: MemorySSA.h:755
void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
Definition: MemorySSA.cpp:1905
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition: MemorySSA.h:715
void ensureOptimizedUses()
By default, uses are not optimized during MemorySSA construction.
Definition: MemorySSA.cpp:2200
bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in the same basic block, determine whether MemoryAccess A dominates MemoryA...
Definition: MemorySSA.cpp:2142
bool isLiveOnEntryDef(const MemoryAccess *MA) const
Return true if MA represents the live on entry value.
Definition: MemorySSA.h:735
Class that has the common methods + fields of memory uses/defs.
Definition: MemorySSA.h:249
Represents read-only accesses to memory.
Definition: MemorySSA.h:309
Analysis pass which computes a PostDominatorTree.
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void preserve()
Mark an analysis as preserved.
Definition: Analysis.h:131
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:367
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:502
typename SuperClass::iterator iterator
Definition: SmallVector.h:590
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
void insert(StoreInst *Store, GVNPass::ValueTable &VN)
Definition: GVNHoist.cpp:201
const VNtoInsns & getVNTable() const
Definition: GVNHoist.cpp:210
An instruction for storing to memory.
Definition: Instructions.h:290
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition: User.cpp:21
Value * getOperand(unsigned i) const
Definition: User.h:169
unsigned getNumOperands() const
Definition: User.h:191
LLVM Value Representation.
Definition: Value.h:74
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
iterator_range< user_iterator > users()
Definition: Value.h:421
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
const ParentTy * getParent() const
Definition: ilist_node.h:32
An intrusive list with ownership and callbacks specified/controlled by ilist_traits,...
Definition: ilist.h:328
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
@ Entry
Definition: COFF.h:826
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
NodeAddr< PhiNode * > Phi
Definition: RDFGraph.h:390
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void stable_sort(R &&Range)
Definition: STLExtras.h:2020
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1722
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1680
auto successors(const MachineBasicBlock *BB)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
@ InvalidVN
Definition: GVNHoist.cpp:159
std::pair< BasicBlock *, SmallVecInsn > HoistingPointInfo
Definition: GVNHoist.cpp:119
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:419
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1647
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
SmallVectorImpl< CHIArg >::iterator CHIIt
Definition: GVNHoist.cpp:151
idf_iterator< T > idf_end(const T &G)
void combineMetadataForCSE(Instruction *K, const Instruction *J, bool DoesKMove)
Combine the metadata of two instructions so that K can replace J.
Definition: Local.cpp:3379
bool VerifyMemorySSA
Enables verification of MemorySSA.
Definition: MemorySSA.cpp:84
idf_iterator< T > idf_begin(const T &G)
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1749
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1886
SmallVector< Instruction *, 4 > SmallVecInsn
Definition: GVNHoist.cpp:114
iterator_range< df_iterator< T > > depth_first(const T &G)
std::pair< unsigned, uintptr_t > VNType
Definition: GVNHoist.cpp:124
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define NC
Definition: regutils.h:42
bool operator!=(const CHIArg &A) const
Definition: GVNHoist.cpp:148
BasicBlock * Dest
Definition: GVNHoist.cpp:142
Instruction * I
Definition: GVNHoist.cpp:145
bool operator==(const CHIArg &A) const
Definition: GVNHoist.cpp:147
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Run the pass over the function.
Definition: GVNHoist.cpp:1204
Utility type to build an inheritance chain that makes it easy to rank overload candidates.
Definition: STLExtras.h:1479