LLVM 19.0.0git
LoopUnroll.cpp
Go to the documentation of this file.
1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements some loop unrolling utilities. It does not define any
10// actual pass or policy, but provides a single function to perform loop
11// unrolling.
12//
13// The process of unrolling can produce extraneous basic blocks linked with
14// unconditional branches. This will be corrected in the future.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SetVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/Twine.h"
37#include "llvm/IR/BasicBlock.h"
38#include "llvm/IR/CFG.h"
39#include "llvm/IR/Constants.h"
41#include "llvm/IR/DebugLoc.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Metadata.h"
49#include "llvm/IR/Module.h"
51#include "llvm/IR/Use.h"
52#include "llvm/IR/User.h"
53#include "llvm/IR/ValueHandle.h"
54#include "llvm/IR/ValueMap.h"
57#include "llvm/Support/Debug.h"
69#include <algorithm>
70#include <assert.h>
71#include <numeric>
72#include <type_traits>
73#include <vector>
74
75namespace llvm {
76class DataLayout;
77class Value;
78} // namespace llvm
79
80using namespace llvm;
81
82#define DEBUG_TYPE "loop-unroll"
83
84// TODO: Should these be here or in LoopUnroll?
85STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
86STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
87STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
88 "latch (completely or otherwise)");
89
90static cl::opt<bool>
91UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
92 cl::desc("Allow runtime unrolled loops to be unrolled "
93 "with epilog instead of prolog."));
94
95static cl::opt<bool>
96UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
97 cl::desc("Verify domtree after unrolling"),
98#ifdef EXPENSIVE_CHECKS
99 cl::init(true)
100#else
101 cl::init(false)
102#endif
103 );
104
105static cl::opt<bool>
106UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
107 cl::desc("Verify loopinfo after unrolling"),
108#ifdef EXPENSIVE_CHECKS
109 cl::init(true)
110#else
111 cl::init(false)
112#endif
113 );
114
115
116/// Check if unrolling created a situation where we need to insert phi nodes to
117/// preserve LCSSA form.
118/// \param Blocks is a vector of basic blocks representing unrolled loop.
119/// \param L is the outer loop.
120/// It's possible that some of the blocks are in L, and some are not. In this
121/// case, if there is a use is outside L, and definition is inside L, we need to
122/// insert a phi-node, otherwise LCSSA will be broken.
123/// The function is just a helper function for llvm::UnrollLoop that returns
124/// true if this situation occurs, indicating that LCSSA needs to be fixed.
126 const std::vector<BasicBlock *> &Blocks,
127 LoopInfo *LI) {
128 for (BasicBlock *BB : Blocks) {
129 if (LI->getLoopFor(BB) == L)
130 continue;
131 for (Instruction &I : *BB) {
132 for (Use &U : I.operands()) {
133 if (const auto *Def = dyn_cast<Instruction>(U)) {
134 Loop *DefLoop = LI->getLoopFor(Def->getParent());
135 if (!DefLoop)
136 continue;
137 if (DefLoop->contains(L))
138 return true;
139 }
140 }
141 }
142 }
143 return false;
144}
145
146/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
147/// and adds a mapping from the original loop to the new loop to NewLoops.
148/// Returns nullptr if no new loop was created and a pointer to the
149/// original loop OriginalBB was part of otherwise.
151 BasicBlock *ClonedBB, LoopInfo *LI,
152 NewLoopsMap &NewLoops) {
153 // Figure out which loop New is in.
154 const Loop *OldLoop = LI->getLoopFor(OriginalBB);
155 assert(OldLoop && "Should (at least) be in the loop being unrolled!");
156
157 Loop *&NewLoop = NewLoops[OldLoop];
158 if (!NewLoop) {
159 // Found a new sub-loop.
160 assert(OriginalBB == OldLoop->getHeader() &&
161 "Header should be first in RPO");
162
163 NewLoop = LI->AllocateLoop();
164 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
165
166 if (NewLoopParent)
167 NewLoopParent->addChildLoop(NewLoop);
168 else
169 LI->addTopLevelLoop(NewLoop);
170
171 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
172 return OldLoop;
173 } else {
174 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
175 return nullptr;
176 }
177}
178
179/// The function chooses which type of unroll (epilog or prolog) is more
180/// profitabale.
181/// Epilog unroll is more profitable when there is PHI that starts from
182/// constant. In this case epilog will leave PHI start from constant,
183/// but prolog will convert it to non-constant.
184///
185/// loop:
186/// PN = PHI [I, Latch], [CI, PreHeader]
187/// I = foo(PN)
188/// ...
189///
190/// Epilog unroll case.
191/// loop:
192/// PN = PHI [I2, Latch], [CI, PreHeader]
193/// I1 = foo(PN)
194/// I2 = foo(I1)
195/// ...
196/// Prolog unroll case.
197/// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
198/// loop:
199/// PN = PHI [I2, Latch], [NewPN, PreHeader]
200/// I1 = foo(PN)
201/// I2 = foo(I1)
202/// ...
203///
204static bool isEpilogProfitable(Loop *L) {
205 BasicBlock *PreHeader = L->getLoopPreheader();
206 BasicBlock *Header = L->getHeader();
207 assert(PreHeader && Header);
208 for (const PHINode &PN : Header->phis()) {
209 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
210 return true;
211 }
212 return false;
213}
214
215struct LoadValue {
216 Instruction *DefI = nullptr;
217 unsigned Generation = 0;
218 LoadValue() = default;
220 : DefI(Inst), Generation(Generation) {}
221};
222
225 unsigned CurrentGeneration;
226 unsigned ChildGeneration;
227 DomTreeNode *Node;
230 bool Processed = false;
231
232public:
234 unsigned cg, DomTreeNode *N, DomTreeNode::const_iterator Child,
236 : LoadScope(AvailableLoads), CurrentGeneration(cg), ChildGeneration(cg),
237 Node(N), ChildIter(Child), EndIter(End) {}
238 // Accessors.
239 unsigned currentGeneration() const { return CurrentGeneration; }
240 unsigned childGeneration() const { return ChildGeneration; }
241 void childGeneration(unsigned generation) { ChildGeneration = generation; }
242 DomTreeNode *node() { return Node; }
243 DomTreeNode::const_iterator childIter() const { return ChildIter; }
244
246 DomTreeNode *Child = *ChildIter;
247 ++ChildIter;
248 return Child;
249 }
250
251 DomTreeNode::const_iterator end() const { return EndIter; }
252 bool isProcessed() const { return Processed; }
253 void process() { Processed = true; }
254};
255
256Value *getMatchingValue(LoadValue LV, LoadInst *LI, unsigned CurrentGeneration,
257 BatchAAResults &BAA,
258 function_ref<MemorySSA *()> GetMSSA) {
259 if (!LV.DefI)
260 return nullptr;
261 if (LV.DefI->getType() != LI->getType())
262 return nullptr;
263 if (LV.Generation != CurrentGeneration) {
264 MemorySSA *MSSA = GetMSSA();
265 if (!MSSA)
266 return nullptr;
267 auto *EarlierMA = MSSA->getMemoryAccess(LV.DefI);
268 MemoryAccess *LaterDef =
269 MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA);
270 if (!MSSA->dominates(LaterDef, EarlierMA))
271 return nullptr;
272 }
273 return LV.DefI;
274}
275
277 BatchAAResults &BAA, function_ref<MemorySSA *()> GetMSSA) {
280 DomTreeNode *HeaderD = DT.getNode(L->getHeader());
281 NodesToProcess.emplace_back(new StackNode(AvailableLoads, 0, HeaderD,
282 HeaderD->begin(), HeaderD->end()));
283
284 unsigned CurrentGeneration = 0;
285 while (!NodesToProcess.empty()) {
286 StackNode *NodeToProcess = &*NodesToProcess.back();
287
288 CurrentGeneration = NodeToProcess->currentGeneration();
289
290 if (!NodeToProcess->isProcessed()) {
291 // Process the node.
292
293 // If this block has a single predecessor, then the predecessor is the
294 // parent
295 // of the domtree node and all of the live out memory values are still
296 // current in this block. If this block has multiple predecessors, then
297 // they could have invalidated the live-out memory values of our parent
298 // value. For now, just be conservative and invalidate memory if this
299 // block has multiple predecessors.
300 if (!NodeToProcess->node()->getBlock()->getSinglePredecessor())
301 ++CurrentGeneration;
302 for (auto &I : make_early_inc_range(*NodeToProcess->node()->getBlock())) {
303
304 auto *Load = dyn_cast<LoadInst>(&I);
305 if (!Load || !Load->isSimple()) {
306 if (I.mayWriteToMemory())
307 CurrentGeneration++;
308 continue;
309 }
310
311 const SCEV *PtrSCEV = SE.getSCEV(Load->getPointerOperand());
312 LoadValue LV = AvailableLoads.lookup(PtrSCEV);
313 if (Value *M =
314 getMatchingValue(LV, Load, CurrentGeneration, BAA, GetMSSA)) {
315 if (LI.replacementPreservesLCSSAForm(Load, M)) {
316 Load->replaceAllUsesWith(M);
317 Load->eraseFromParent();
318 }
319 } else {
320 AvailableLoads.insert(PtrSCEV, LoadValue(Load, CurrentGeneration));
321 }
322 }
323 NodeToProcess->childGeneration(CurrentGeneration);
324 NodeToProcess->process();
325 } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
326 // Push the next child onto the stack.
327 DomTreeNode *Child = NodeToProcess->nextChild();
328 if (!L->contains(Child->getBlock()))
329 continue;
330 NodesToProcess.emplace_back(
331 new StackNode(AvailableLoads, NodeToProcess->childGeneration(), Child,
332 Child->begin(), Child->end()));
333 } else {
334 // It has been processed, and there are no more children to process,
335 // so delete it and pop it off the stack.
336 NodesToProcess.pop_back();
337 }
338 }
339}
340
341/// Perform some cleanup and simplifications on loops after unrolling. It is
342/// useful to simplify the IV's in the new loop, as well as do a quick
343/// simplify/dce pass of the instructions.
344void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
346 AssumptionCache *AC,
348 AAResults *AA) {
349 using namespace llvm::PatternMatch;
350
351 // Simplify any new induction variables in the partially unrolled loop.
352 if (SE && SimplifyIVs) {
354 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
355
356 // Aggressively clean up dead instructions that simplifyLoopIVs already
357 // identified. Any remaining should be cleaned up below.
358 while (!DeadInsts.empty()) {
359 Value *V = DeadInsts.pop_back_val();
360 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
362 }
363
364 if (AA) {
365 std::unique_ptr<MemorySSA> MSSA = nullptr;
366 BatchAAResults BAA(*AA);
367 loadCSE(L, *DT, *SE, *LI, BAA, [L, AA, DT, &MSSA]() -> MemorySSA * {
368 if (!MSSA)
369 MSSA.reset(new MemorySSA(*L, AA, DT));
370 return &*MSSA;
371 });
372 }
373 }
374
375 // At this point, the code is well formed. Perform constprop, instsimplify,
376 // and dce.
377 const DataLayout &DL = L->getHeader()->getDataLayout();
379 for (BasicBlock *BB : L->getBlocks()) {
380 // Remove repeated debug instructions after loop unrolling.
381 if (BB->getParent()->getSubprogram())
383
384 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
385 if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
386 if (LI->replacementPreservesLCSSAForm(&Inst, V))
387 Inst.replaceAllUsesWith(V);
389 DeadInsts.emplace_back(&Inst);
390
391 // Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in
392 // unrolled loops, and handling this early allows following code to
393 // identify the IV as a "simple recurrence" without first folding away
394 // a long chain of adds.
395 {
396 Value *X;
397 const APInt *C1, *C2;
398 if (match(&Inst, m_Add(m_Add(m_Value(X), m_APInt(C1)), m_APInt(C2)))) {
399 auto *InnerI = dyn_cast<Instruction>(Inst.getOperand(0));
400 auto *InnerOBO = cast<OverflowingBinaryOperator>(Inst.getOperand(0));
401 bool SignedOverflow;
402 APInt NewC = C1->sadd_ov(*C2, SignedOverflow);
403 Inst.setOperand(0, X);
404 Inst.setOperand(1, ConstantInt::get(Inst.getType(), NewC));
405 Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() &&
406 InnerOBO->hasNoUnsignedWrap());
407 Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() &&
408 InnerOBO->hasNoSignedWrap() &&
409 !SignedOverflow);
410 if (InnerI && isInstructionTriviallyDead(InnerI))
411 DeadInsts.emplace_back(InnerI);
412 }
413 }
414 }
415 // We can't do recursive deletion until we're done iterating, as we might
416 // have a phi which (potentially indirectly) uses instructions later in
417 // the block we're iterating through.
419 }
420}
421
422// Loops containing convergent instructions that are uncontrolled or controlled
423// from outside the loop must have a count that divides their TripMultiple.
425static bool canHaveUnrollRemainder(const Loop *L) {
427 return false;
428
429 // Check for uncontrolled convergent operations.
430 for (auto &BB : L->blocks()) {
431 for (auto &I : *BB) {
432 if (isa<ConvergenceControlInst>(I))
433 return true;
434 if (auto *CB = dyn_cast<CallBase>(&I))
435 if (CB->isConvergent())
436 return CB->getConvergenceControlToken();
437 }
438 }
439 return true;
440}
441
442/// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
443/// can only fail when the loop's latch block is not terminated by a conditional
444/// branch instruction. However, if the trip count (and multiple) are not known,
445/// loop unrolling will mostly produce more code that is no faster.
446///
447/// If Runtime is true then UnrollLoop will try to insert a prologue or
448/// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
449/// will not runtime-unroll the loop if computing the run-time trip count will
450/// be expensive and AllowExpensiveTripCount is false.
451///
452/// The LoopInfo Analysis that is passed will be kept consistent.
453///
454/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
455/// DominatorTree if they are non-null.
456///
457/// If RemainderLoop is non-null, it will receive the remainder loop (if
458/// required and not fully unrolled).
463 bool PreserveLCSSA, Loop **RemainderLoop, AAResults *AA) {
464 assert(DT && "DomTree is required");
465
466 if (!L->getLoopPreheader()) {
467 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
468 return LoopUnrollResult::Unmodified;
469 }
470
471 if (!L->getLoopLatch()) {
472 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
473 return LoopUnrollResult::Unmodified;
474 }
475
476 // Loops with indirectbr cannot be cloned.
477 if (!L->isSafeToClone()) {
478 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
479 return LoopUnrollResult::Unmodified;
480 }
481
482 if (L->getHeader()->hasAddressTaken()) {
483 // The loop-rotate pass can be helpful to avoid this in many cases.
485 dbgs() << " Won't unroll loop: address of header block is taken.\n");
486 return LoopUnrollResult::Unmodified;
487 }
488
489 assert(ULO.Count > 0);
490
491 // All these values should be taken only after peeling because they might have
492 // changed.
493 BasicBlock *Preheader = L->getLoopPreheader();
494 BasicBlock *Header = L->getHeader();
495 BasicBlock *LatchBlock = L->getLoopLatch();
497 L->getExitBlocks(ExitBlocks);
498 std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
499
500 const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
501 const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
502 unsigned EstimatedLoopInvocationWeight = 0;
503 std::optional<unsigned> OriginalTripCount =
504 llvm::getLoopEstimatedTripCount(L, &EstimatedLoopInvocationWeight);
505
506 // Effectively "DCE" unrolled iterations that are beyond the max tripcount
507 // and will never be executed.
508 if (MaxTripCount && ULO.Count > MaxTripCount)
509 ULO.Count = MaxTripCount;
510
511 struct ExitInfo {
512 unsigned TripCount;
513 unsigned TripMultiple;
514 unsigned BreakoutTrip;
515 bool ExitOnTrue;
516 BasicBlock *FirstExitingBlock = nullptr;
517 SmallVector<BasicBlock *> ExitingBlocks;
518 };
520 SmallVector<BasicBlock *, 4> ExitingBlocks;
521 L->getExitingBlocks(ExitingBlocks);
522 for (auto *ExitingBlock : ExitingBlocks) {
523 // The folding code is not prepared to deal with non-branch instructions
524 // right now.
525 auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
526 if (!BI)
527 continue;
528
529 ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
530 Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
531 Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
532 if (Info.TripCount != 0) {
533 Info.BreakoutTrip = Info.TripCount % ULO.Count;
534 Info.TripMultiple = 0;
535 } else {
536 Info.BreakoutTrip = Info.TripMultiple =
537 (unsigned)std::gcd(ULO.Count, Info.TripMultiple);
538 }
539 Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
540 Info.ExitingBlocks.push_back(ExitingBlock);
541 LLVM_DEBUG(dbgs() << " Exiting block %" << ExitingBlock->getName()
542 << ": TripCount=" << Info.TripCount
543 << ", TripMultiple=" << Info.TripMultiple
544 << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
545 }
546
547 // Are we eliminating the loop control altogether? Note that we can know
548 // we're eliminating the backedge without knowing exactly which iteration
549 // of the unrolled body exits.
550 const bool CompletelyUnroll = ULO.Count == MaxTripCount;
551
552 const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
553
554 // There's no point in performing runtime unrolling if this unroll count
555 // results in a full unroll.
556 if (CompletelyUnroll)
557 ULO.Runtime = false;
558
559 // Go through all exits of L and see if there are any phi-nodes there. We just
560 // conservatively assume that they're inserted to preserve LCSSA form, which
561 // means that complete unrolling might break this form. We need to either fix
562 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
563 // now we just recompute LCSSA for the outer loop, but it should be possible
564 // to fix it in-place.
565 bool NeedToFixLCSSA =
566 PreserveLCSSA && CompletelyUnroll &&
567 any_of(ExitBlocks,
568 [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
569
570 // The current loop unroll pass can unroll loops that have
571 // (1) single latch; and
572 // (2a) latch is unconditional; or
573 // (2b) latch is conditional and is an exiting block
574 // FIXME: The implementation can be extended to work with more complicated
575 // cases, e.g. loops with multiple latches.
576 BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
577
578 // A conditional branch which exits the loop, which can be optimized to an
579 // unconditional branch in the unrolled loop in some cases.
580 bool LatchIsExiting = L->isLoopExiting(LatchBlock);
581 if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
583 dbgs() << "Can't unroll; a conditional latch must exit the loop");
584 return LoopUnrollResult::Unmodified;
585 }
586
588 "Can't runtime unroll if loop contains a convergent operation.");
589
590 bool EpilogProfitability =
591 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
593
594 if (ULO.Runtime &&
596 EpilogProfitability, ULO.UnrollRemainder,
597 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
598 PreserveLCSSA, RemainderLoop)) {
599 if (ULO.Force)
600 ULO.Runtime = false;
601 else {
602 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
603 "generated when assuming runtime trip count\n");
604 return LoopUnrollResult::Unmodified;
605 }
606 }
607
608 using namespace ore;
609 // Report the unrolling decision.
610 if (CompletelyUnroll) {
611 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
612 << " with trip count " << ULO.Count << "!\n");
613 if (ORE)
614 ORE->emit([&]() {
615 return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
616 L->getHeader())
617 << "completely unrolled loop with "
618 << NV("UnrollCount", ULO.Count) << " iterations";
619 });
620 } else {
621 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
622 << ULO.Count);
623 if (ULO.Runtime)
624 LLVM_DEBUG(dbgs() << " with run-time trip count");
625 LLVM_DEBUG(dbgs() << "!\n");
626
627 if (ORE)
628 ORE->emit([&]() {
629 OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
630 L->getHeader());
631 Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
632 if (ULO.Runtime)
633 Diag << " with run-time trip count";
634 return Diag;
635 });
636 }
637
638 // We are going to make changes to this loop. SCEV may be keeping cached info
639 // about it, in particular about backedge taken count. The changes we make
640 // are guaranteed to invalidate this information for our loop. It is tempting
641 // to only invalidate the loop being unrolled, but it is incorrect as long as
642 // all exiting branches from all inner loops have impact on the outer loops,
643 // and if something changes inside them then any of outer loops may also
644 // change. When we forget outermost loop, we also forget all contained loops
645 // and this is what we need here.
646 if (SE) {
647 if (ULO.ForgetAllSCEV)
648 SE->forgetAllLoops();
649 else {
650 SE->forgetTopmostLoop(L);
652 }
653 }
654
655 if (!LatchIsExiting)
656 ++NumUnrolledNotLatch;
657
658 // For the first iteration of the loop, we should use the precloned values for
659 // PHI nodes. Insert associations now.
660 ValueToValueMapTy LastValueMap;
661 std::vector<PHINode*> OrigPHINode;
662 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
663 OrigPHINode.push_back(cast<PHINode>(I));
664 }
665
666 std::vector<BasicBlock *> Headers;
667 std::vector<BasicBlock *> Latches;
668 Headers.push_back(Header);
669 Latches.push_back(LatchBlock);
670
671 // The current on-the-fly SSA update requires blocks to be processed in
672 // reverse postorder so that LastValueMap contains the correct value at each
673 // exit.
674 LoopBlocksDFS DFS(L);
675 DFS.perform(LI);
676
677 // Stash the DFS iterators before adding blocks to the loop.
678 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
679 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
680
681 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
682
683 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
684 // might break loop-simplified form for these loops (as they, e.g., would
685 // share the same exit blocks). We'll keep track of loops for which we can
686 // break this so that later we can re-simplify them.
687 SmallSetVector<Loop *, 4> LoopsToSimplify;
688 for (Loop *SubLoop : *L)
689 LoopsToSimplify.insert(SubLoop);
690
691 // When a FSDiscriminator is enabled, we don't need to add the multiply
692 // factors to the discriminators.
693 if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
695 for (BasicBlock *BB : L->getBlocks())
696 for (Instruction &I : *BB)
697 if (!I.isDebugOrPseudoInst())
698 if (const DILocation *DIL = I.getDebugLoc()) {
699 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
700 if (NewDIL)
701 I.setDebugLoc(*NewDIL);
702 else
704 << "Failed to create new discriminator: "
705 << DIL->getFilename() << " Line: " << DIL->getLine());
706 }
707
708 // Identify what noalias metadata is inside the loop: if it is inside the
709 // loop, the associated metadata must be cloned for each iteration.
710 SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
711 identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
712
713 // We place the unrolled iterations immediately after the original loop
714 // latch. This is a reasonable default placement if we don't have block
715 // frequencies, and if we do, well the layout will be adjusted later.
716 auto BlockInsertPt = std::next(LatchBlock->getIterator());
717 for (unsigned It = 1; It != ULO.Count; ++It) {
720 NewLoops[L] = L;
721
722 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
724 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
725 Header->getParent()->insert(BlockInsertPt, New);
726
727 assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
728 "Header should not be in a sub-loop");
729 // Tell LI about New.
730 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
731 if (OldLoop)
732 LoopsToSimplify.insert(NewLoops[OldLoop]);
733
734 if (*BB == Header) {
735 // Loop over all of the PHI nodes in the block, changing them to use
736 // the incoming values from the previous block.
737 for (PHINode *OrigPHI : OrigPHINode) {
738 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
739 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
740 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
741 if (It > 1 && L->contains(InValI))
742 InVal = LastValueMap[InValI];
743 VMap[OrigPHI] = InVal;
744 NewPHI->eraseFromParent();
745 }
746
747 // Eliminate copies of the loop heart intrinsic, if any.
748 if (ULO.Heart) {
749 auto it = VMap.find(ULO.Heart);
750 assert(it != VMap.end());
751 Instruction *heartCopy = cast<Instruction>(it->second);
752 heartCopy->eraseFromParent();
753 VMap.erase(it);
754 }
755 }
756
757 // Update our running map of newest clones
758 LastValueMap[*BB] = New;
759 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
760 VI != VE; ++VI)
761 LastValueMap[VI->first] = VI->second;
762
763 // Add phi entries for newly created values to all exit blocks.
764 for (BasicBlock *Succ : successors(*BB)) {
765 if (L->contains(Succ))
766 continue;
767 for (PHINode &PHI : Succ->phis()) {
768 Value *Incoming = PHI.getIncomingValueForBlock(*BB);
769 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
770 if (It != LastValueMap.end())
771 Incoming = It->second;
772 PHI.addIncoming(Incoming, New);
773 SE->forgetValue(&PHI);
774 }
775 }
776 // Keep track of new headers and latches as we create them, so that
777 // we can insert the proper branches later.
778 if (*BB == Header)
779 Headers.push_back(New);
780 if (*BB == LatchBlock)
781 Latches.push_back(New);
782
783 // Keep track of the exiting block and its successor block contained in
784 // the loop for the current iteration.
785 auto ExitInfoIt = ExitInfos.find(*BB);
786 if (ExitInfoIt != ExitInfos.end())
787 ExitInfoIt->second.ExitingBlocks.push_back(New);
788
789 NewBlocks.push_back(New);
790 UnrolledLoopBlocks.push_back(New);
791
792 // Update DomTree: since we just copy the loop body, and each copy has a
793 // dedicated entry block (copy of the header block), this header's copy
794 // dominates all copied blocks. That means, dominance relations in the
795 // copied body are the same as in the original body.
796 if (*BB == Header)
797 DT->addNewBlock(New, Latches[It - 1]);
798 else {
799 auto BBDomNode = DT->getNode(*BB);
800 auto BBIDom = BBDomNode->getIDom();
801 BasicBlock *OriginalBBIDom = BBIDom->getBlock();
802 DT->addNewBlock(
803 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
804 }
805 }
806
807 // Remap all instructions in the most recent iteration
808 remapInstructionsInBlocks(NewBlocks, LastValueMap);
809 for (BasicBlock *NewBlock : NewBlocks)
810 for (Instruction &I : *NewBlock)
811 if (auto *II = dyn_cast<AssumeInst>(&I))
813
814 {
815 // Identify what other metadata depends on the cloned version. After
816 // cloning, replace the metadata with the corrected version for both
817 // memory instructions and noalias intrinsics.
818 std::string ext = (Twine("It") + Twine(It)).str();
819 cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
820 Header->getContext(), ext);
821 }
822 }
823
824 // Loop over the PHI nodes in the original block, setting incoming values.
825 for (PHINode *PN : OrigPHINode) {
826 if (CompletelyUnroll) {
827 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
828 PN->eraseFromParent();
829 } else if (ULO.Count > 1) {
830 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
831 // If this value was defined in the loop, take the value defined by the
832 // last iteration of the loop.
833 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
834 if (L->contains(InValI))
835 InVal = LastValueMap[InVal];
836 }
837 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
838 PN->addIncoming(InVal, Latches.back());
839 }
840 }
841
842 // Connect latches of the unrolled iterations to the headers of the next
843 // iteration. Currently they point to the header of the same iteration.
844 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
845 unsigned j = (i + 1) % e;
846 Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
847 }
848
849 // Update dominators of blocks we might reach through exits.
850 // Immediate dominator of such block might change, because we add more
851 // routes which can lead to the exit: we can now reach it from the copied
852 // iterations too.
853 if (ULO.Count > 1) {
854 for (auto *BB : OriginalLoopBlocks) {
855 auto *BBDomNode = DT->getNode(BB);
856 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
857 for (auto *ChildDomNode : BBDomNode->children()) {
858 auto *ChildBB = ChildDomNode->getBlock();
859 if (!L->contains(ChildBB))
860 ChildrenToUpdate.push_back(ChildBB);
861 }
862 // The new idom of the block will be the nearest common dominator
863 // of all copies of the previous idom. This is equivalent to the
864 // nearest common dominator of the previous idom and the first latch,
865 // which dominates all copies of the previous idom.
866 BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
867 for (auto *ChildBB : ChildrenToUpdate)
868 DT->changeImmediateDominator(ChildBB, NewIDom);
869 }
870 }
871
873 DT->verify(DominatorTree::VerificationLevel::Fast));
874
876 auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
877 auto *Term = cast<BranchInst>(Src->getTerminator());
878 const unsigned Idx = ExitOnTrue ^ WillExit;
879 BasicBlock *Dest = Term->getSuccessor(Idx);
880 BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
881
882 // Remove predecessors from all non-Dest successors.
883 DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
884
885 // Replace the conditional branch with an unconditional one.
886 BranchInst::Create(Dest, Term->getIterator());
887 Term->eraseFromParent();
888
889 DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc);
890 };
891
892 auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
893 bool IsLatch) -> std::optional<bool> {
894 if (CompletelyUnroll) {
895 if (PreserveOnlyFirst) {
896 if (i == 0)
897 return std::nullopt;
898 return j == 0;
899 }
900 // Complete (but possibly inexact) unrolling
901 if (j == 0)
902 return true;
903 if (Info.TripCount && j != Info.TripCount)
904 return false;
905 return std::nullopt;
906 }
907
908 if (ULO.Runtime) {
909 // If runtime unrolling inserts a prologue, information about non-latch
910 // exits may be stale.
911 if (IsLatch && j != 0)
912 return false;
913 return std::nullopt;
914 }
915
916 if (j != Info.BreakoutTrip &&
917 (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
918 // If we know the trip count or a multiple of it, we can safely use an
919 // unconditional branch for some iterations.
920 return false;
921 }
922 return std::nullopt;
923 };
924
925 // Fold branches for iterations where we know that they will exit or not
926 // exit.
927 for (auto &Pair : ExitInfos) {
928 ExitInfo &Info = Pair.second;
929 for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
930 // The branch destination.
931 unsigned j = (i + 1) % e;
932 bool IsLatch = Pair.first == LatchBlock;
933 std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
934 if (!KnownWillExit) {
935 if (!Info.FirstExitingBlock)
936 Info.FirstExitingBlock = Info.ExitingBlocks[i];
937 continue;
938 }
939
940 // We don't fold known-exiting branches for non-latch exits here,
941 // because this ensures that both all loop blocks and all exit blocks
942 // remain reachable in the CFG.
943 // TODO: We could fold these branches, but it would require much more
944 // sophisticated updates to LoopInfo.
945 if (*KnownWillExit && !IsLatch) {
946 if (!Info.FirstExitingBlock)
947 Info.FirstExitingBlock = Info.ExitingBlocks[i];
948 continue;
949 }
950
951 SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
952 }
953 }
954
955 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
956 DomTreeUpdater *DTUToUse = &DTU;
957 if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) {
958 // Manually update the DT if there's a single exiting node. In that case
959 // there's a single exit node and it is sufficient to update the nodes
960 // immediately dominated by the original exiting block. They will become
961 // dominated by the first exiting block that leaves the loop after
962 // unrolling. Note that the CFG inside the loop does not change, so there's
963 // no need to update the DT inside the unrolled loop.
964 DTUToUse = nullptr;
965 auto &[OriginalExit, Info] = *ExitInfos.begin();
966 if (!Info.FirstExitingBlock)
967 Info.FirstExitingBlock = Info.ExitingBlocks.back();
968 for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) {
969 if (L->contains(C->getBlock()))
970 continue;
971 C->setIDom(DT->getNode(Info.FirstExitingBlock));
972 }
973 } else {
974 DTU.applyUpdates(DTUpdates);
975 }
976
977 // When completely unrolling, the last latch becomes unreachable.
978 if (!LatchIsExiting && CompletelyUnroll) {
979 // There is no need to update the DT here, because there must be a unique
980 // latch. Hence if the latch is not exiting it must directly branch back to
981 // the original loop header and does not dominate any nodes.
982 assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?");
983 changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA);
984 }
985
986 // Merge adjacent basic blocks, if possible.
987 for (BasicBlock *Latch : Latches) {
988 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
989 assert((Term ||
990 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
991 "Need a branch as terminator, except when fully unrolling with "
992 "unconditional latch");
993 if (Term && Term->isUnconditional()) {
994 BasicBlock *Dest = Term->getSuccessor(0);
995 BasicBlock *Fold = Dest->getUniquePredecessor();
996 if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI,
997 /*MSSAU=*/nullptr, /*MemDep=*/nullptr,
998 /*PredecessorWithTwoSuccessors=*/false,
999 DTUToUse ? nullptr : DT)) {
1000 // Dest has been folded into Fold. Update our worklists accordingly.
1001 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
1002 llvm::erase(UnrolledLoopBlocks, Dest);
1003 }
1004 }
1005 }
1006
1007 if (DTUToUse) {
1008 // Apply updates to the DomTree.
1009 DT = &DTU.getDomTree();
1010 }
1012 DT->verify(DominatorTree::VerificationLevel::Fast));
1013
1014 // At this point, the code is well formed. We now simplify the unrolled loop,
1015 // doing constant propagation and dead code elimination as we go.
1016 simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
1017 TTI, AA);
1018
1019 NumCompletelyUnrolled += CompletelyUnroll;
1020 ++NumUnrolled;
1021
1022 Loop *OuterL = L->getParentLoop();
1023 // Update LoopInfo if the loop is completely removed.
1024 if (CompletelyUnroll) {
1025 LI->erase(L);
1026 // We shouldn't try to use `L` anymore.
1027 L = nullptr;
1028 } else if (OriginalTripCount) {
1029 // Update the trip count. Note that the remainder has already logic
1030 // computing it in `UnrollRuntimeLoopRemainder`.
1031 setLoopEstimatedTripCount(L, *OriginalTripCount / ULO.Count,
1032 EstimatedLoopInvocationWeight);
1033 }
1034
1035 // LoopInfo should not be valid, confirm that.
1037 LI->verify(*DT);
1038
1039 // After complete unrolling most of the blocks should be contained in OuterL.
1040 // However, some of them might happen to be out of OuterL (e.g. if they
1041 // precede a loop exit). In this case we might need to insert PHI nodes in
1042 // order to preserve LCSSA form.
1043 // We don't need to check this if we already know that we need to fix LCSSA
1044 // form.
1045 // TODO: For now we just recompute LCSSA for the outer loop in this case, but
1046 // it should be possible to fix it in-place.
1047 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
1048 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
1049
1050 // Make sure that loop-simplify form is preserved. We want to simplify
1051 // at least one layer outside of the loop that was unrolled so that any
1052 // changes to the parent loop exposed by the unrolling are considered.
1053 if (OuterL) {
1054 // OuterL includes all loops for which we can break loop-simplify, so
1055 // it's sufficient to simplify only it (it'll recursively simplify inner
1056 // loops too).
1057 if (NeedToFixLCSSA) {
1058 // LCSSA must be performed on the outermost affected loop. The unrolled
1059 // loop's last loop latch is guaranteed to be in the outermost loop
1060 // after LoopInfo's been updated by LoopInfo::erase.
1061 Loop *LatchLoop = LI->getLoopFor(Latches.back());
1062 Loop *FixLCSSALoop = OuterL;
1063 if (!FixLCSSALoop->contains(LatchLoop))
1064 while (FixLCSSALoop->getParentLoop() != LatchLoop)
1065 FixLCSSALoop = FixLCSSALoop->getParentLoop();
1066
1067 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
1068 } else if (PreserveLCSSA) {
1069 assert(OuterL->isLCSSAForm(*DT) &&
1070 "Loops should be in LCSSA form after loop-unroll.");
1071 }
1072
1073 // TODO: That potentially might be compile-time expensive. We should try
1074 // to fix the loop-simplified form incrementally.
1075 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
1076 } else {
1077 // Simplify loops for which we might've broken loop-simplify form.
1078 for (Loop *SubLoop : LoopsToSimplify)
1079 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
1080 }
1081
1082 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
1083 : LoopUnrollResult::PartiallyUnrolled;
1084}
1085
1086/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
1087/// node with the given name (for example, "llvm.loop.unroll.count"). If no
1088/// such metadata node exists, then nullptr is returned.
1090 // First operand should refer to the loop id itself.
1091 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1092 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1093
1094 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1095 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1096 if (!MD)
1097 continue;
1098
1099 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1100 if (!S)
1101 continue;
1102
1103 if (Name == S->getString())
1104 return MD;
1105 }
1106 return nullptr;
1107}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Rewrite undef for PHI
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
Optimize for code generation
#define LLVM_ATTRIBUTE_USED
Definition: Compiler.h:151
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
std::string Name
bool End
Definition: ELF_riscv.cpp:480
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file defines a set of templates that efficiently compute a dominator tree over a generic graph.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
static bool needToInsertPhisForLCSSA(Loop *L, const std::vector< BasicBlock * > &Blocks, LoopInfo *LI)
Check if unrolling created a situation where we need to insert phi nodes to preserve LCSSA form.
Definition: LoopUnroll.cpp:125
static bool isEpilogProfitable(Loop *L)
The function chooses which type of unroll (epilog or prolog) is more profitabale.
Definition: LoopUnroll.cpp:204
void loadCSE(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, BatchAAResults &BAA, function_ref< MemorySSA *()> GetMSSA)
Definition: LoopUnroll.cpp:276
Value * getMatchingValue(LoadValue LV, LoadInst *LI, unsigned CurrentGeneration, BatchAAResults &BAA, function_ref< MemorySSA *()> GetMSSA)
Definition: LoopUnroll.cpp:256
static cl::opt< bool > UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden, cl::desc("Allow runtime unrolled loops to be unrolled " "with epilog instead of prolog."))
#define DEBUG_TYPE
Definition: LoopUnroll.cpp:82
static cl::opt< bool > UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden, cl::desc("Verify loopinfo after unrolling"), cl::init(false))
static cl::opt< bool > UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden, cl::desc("Verify domtree after unrolling"), cl::init(false))
static LLVM_ATTRIBUTE_USED bool canHaveUnrollRemainder(const Loop *L)
Definition: LoopUnroll.cpp:425
#define I(x, y, z)
Definition: MD5.cpp:58
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
This file contains the declarations for metadata subclasses.
Module.h This file contains the declarations for the Module class.
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
This defines the Use class.
void childGeneration(unsigned generation)
Definition: LoopUnroll.cpp:241
bool isProcessed() const
Definition: LoopUnroll.cpp:252
unsigned currentGeneration() const
Definition: LoopUnroll.cpp:239
unsigned childGeneration() const
Definition: LoopUnroll.cpp:240
StackNode(ScopedHashTable< const SCEV *, LoadValue > &AvailableLoads, unsigned cg, DomTreeNode *N, DomTreeNode::const_iterator Child, DomTreeNode::const_iterator End)
Definition: LoopUnroll.cpp:233
DomTreeNode::const_iterator end() const
Definition: LoopUnroll.cpp:251
void process()
Definition: LoopUnroll.cpp:253
DomTreeNode * nextChild()
Definition: LoopUnroll.cpp:245
DomTreeNode::const_iterator childIter() const
Definition: LoopUnroll.cpp:243
DomTreeNode * node()
Definition: LoopUnroll.cpp:242
Class for arbitrary precision integers.
Definition: APInt.h:77
APInt sadd_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1898
A cache of @llvm.assume calls within a function.
void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:438
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:457
const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
Definition: BasicBlock.cpp:465
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:487
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:167
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:229
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:514
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
Conditional or Unconditional Branch instruction.
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
Debug location.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:202
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&... Args)
Definition: DenseMap.h:235
unsigned size() const
Definition: DenseMap.h:99
iterator begin()
Definition: DenseMap.h:75
iterator end()
Definition: DenseMap.h:84
iterator_range< iterator > children()
DomTreeNodeBase * getIDom() const
NodeT * getBlock() const
typename SmallVector< DomTreeNodeBase *, 4 >::const_iterator const_iterator
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Instruction * findNearestCommonDominator(Instruction *I1, Instruction *I2) const
Find the nearest instruction I that dominates both I1 and I2, in the sense that a result produced bef...
Definition: Dominators.cpp:344
DomTreeT & getDomTree()
Flush DomTree updates and return DomTree.
void applyUpdates(ArrayRef< typename DomTreeT::UpdateType > Updates)
Submit updates to all available trees.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:92
An instruction for reading from memory.
Definition: Instructions.h:173
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getHeader() const
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
Store the result of a depth first search within basic blocks contained by a single loop.
Definition: LoopIterator.h:97
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
Definition: LoopIterator.h:136
std::vector< BasicBlock * >::const_reverse_iterator RPOIterator
Definition: LoopIterator.h:101
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
Definition: LoopInfo.cpp:1254
RPOIterator endRPO() const
Definition: LoopIterator.h:140
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
Definition: LoopInfo.h:444
void erase(Loop *L)
Update LoopInfo after removing the last backedge from a loop.
Definition: LoopInfo.cpp:887
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
bool isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens=true) const
Return true if the Loop is in LCSSA form.
Definition: LoopInfo.cpp:463
Metadata node.
Definition: Metadata.h:1067
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1428
unsigned getNumOperands() const
Return number of MDNode operands.
Definition: Metadata.h:1434
A single uniqued string.
Definition: Metadata.h:720
StringRef getString() const
Definition: Metadata.cpp:610
MemoryAccess * getClobberingMemoryAccess(const Instruction *I, BatchAAResults &AA)
Given a memory Mod/Ref/ModRef'ing instruction, calling this will give you the nearest dominating Memo...
Definition: MemorySSA.h:1045
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition: MemorySSA.h:701
bool dominates(const MemoryAccess *A, const MemoryAccess *B) const
Given two memory accesses in potentially different blocks, determine whether MemoryAccess A dominates...
Definition: MemorySSA.cpp:2173
MemorySSAWalker * getWalker()
Definition: MemorySSA.cpp:1590
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition: MemorySSA.h:719
The optimization diagnostic interface.
void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for applied optimization remarks.
Value * getIncomingValueForBlock(const BasicBlock *BB) const
This class represents an analyzed expression in the program.
The main scalar evolution driver.
unsigned getSmallConstantTripMultiple(const Loop *L, const SCEV *ExitCount)
Returns the largest constant divisor of the trip count as a normal unsigned value,...
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
unsigned getSmallConstantMaxTripCount(const Loop *L)
Returns the upper bound of the loop trip count as a normal unsigned value.
bool isBackedgeTakenCountMaxOrZero(const Loop *L)
Return true if the backedge taken count is either the value returned by getConstantMaxBackedgeTakenCo...
void forgetTopmostLoop(const Loop *L)
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
void insert(const K &Key, const V &Val)
V lookup(const K &Key) const
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:370
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:950
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
iterator find(const KeyT &Val)
Definition: ValueMap.h:155
iterator begin()
Definition: ValueMap.h:134
iterator end()
Definition: ValueMap.h:135
bool erase(const KeyT &Val)
Definition: ValueMap.h:190
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
Definition: ilist_node.h:132
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:299
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Simplify each loop in a loop nest recursively.
bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Returns a loop's estimated trip count based on branch weight metadata.
Definition: LoopUtils.cpp:849
void simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const TargetTransformInfo *TTI, AAResults *AA=nullptr)
Perform some cleanup and simplifications on loops after unrolling.
Definition: LoopUnroll.cpp:344
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:540
auto successors(const MachineBasicBlock *BB)
bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
Definition: LCSSA.cpp:425
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
void erase(Container &C, ValueType V)
Wrapper function to remove a value from a container:
Definition: STLExtras.h:2059
cl::opt< bool > EnableFSDiscriminator
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition: Local.cpp:400
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, DebugInfoFinder *DIFinder=nullptr)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
CallBase * getLoopConvergenceHeart(const Loop *TheLoop)
Find the convergence heart of the loop.
Definition: LoopInfo.cpp:1120
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, LoopInfo *LI, const TargetTransformInfo *TTI, SmallVectorImpl< WeakTrackingVH > &Dead)
SimplifyLoopIVs - Simplify users of induction variables within this loop.
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Definition: SmallVector.h:1312
LoopUnrollResult
Represents the result of a UnrollLoop invocation.
Definition: UnrollLoop.h:56
unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA=false, DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Insert an unreachable instruction before the specified instruction, making it and the rest of the cod...
Definition: Local.cpp:2839
bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, unsigned EstimatedLoopInvocationWeight)
Set a loop's branch weight metadata to reflect that loop has EstimatedTripCount iterations and Estima...
Definition: LoopUtils.cpp:867
void cloneAndAdaptNoAliasScopes(ArrayRef< MDNode * > NoAliasDeclScopes, ArrayRef< BasicBlock * > NewBlocks, LLVMContext &Context, StringRef Ext)
Clone the specified noalias decl scopes.
void remapInstructionsInBlocks(ArrayRef< BasicBlock * > Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.
const Loop * addClonedBlockToLoopInfo(BasicBlock *OriginalBB, BasicBlock *ClonedBB, LoopInfo *LI, NewLoopsMap &NewLoops)
Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary and adds a mapping from the o...
Definition: LoopUnroll.cpp:150
void identifyNoAliasScopesToClone(ArrayRef< BasicBlock * > BBs, SmallVectorImpl< MDNode * > &NoAliasDeclScopes)
Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified basic blocks and extract ...
MDNode * GetUnrollMetadata(MDNode *LoopID, StringRef Name)
Given an llvm.loop loop id metadata node, returns the loop hint metadata node with the given name (fo...
bool UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, bool AllowExpensiveTripCount, bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop=nullptr)
Insert code in the prolog/epilog code when unrolling a loop with a run-time trip-count.
LoopUnrollResult UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const llvm::TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE, bool PreserveLCSSA, Loop **RemainderLoop=nullptr, AAResults *AA=nullptr)
Unroll the given loop by Count.
Definition: LoopUnroll.cpp:460
#define N
Instruction * DefI
Definition: LoopUnroll.cpp:216
LoadValue()=default
unsigned Generation
Definition: LoopUnroll.cpp:217
LoadValue(Instruction *Inst, unsigned Generation)
Definition: LoopUnroll.cpp:219
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
const Instruction * Heart
Definition: UnrollLoop.h:77