47#define DEBUG_TYPE "loop-unroll"
50 "Number of loops unrolled with run-time trip counts");
53 cl::desc(
"Allow runtime unrolling for loops with multiple exits, when "
54 "epilog is generated"));
57 cl::desc(
"Assume the non latch exit block to be predictable"));
102 assert(Latch &&
"Loop must have a latch");
103 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
111 for (
PHINode &PN : Succ->phis()) {
123 if (L->contains(&PN)) {
125 NewPN->
addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
132 Value *V = PN.getIncomingValueForBlock(Latch);
134 if (L->contains(
I)) {
145 if (L->contains(&PN))
146 PN.setIncomingValueForBlock(NewPreHeader, NewPN);
148 PN.addIncoming(NewPN, PrologExit);
162 nullptr, PreserveLCSSA);
170 assert(Count != 0 &&
"nonsensical Count!");
177 B.CreateICmpULT(BECount, ConstantInt::get(BECount->
getType(), Count - 1));
181 nullptr, PreserveLCSSA);
183 MDNode *BranchWeights =
nullptr;
189 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader,
218 assert(Latch &&
"Loop must have a latch");
219 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
251 assert(PN.hasOneUse() &&
"The phi should have 1 use");
252 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
253 assert(EpilogPN->
getParent() == Exit &&
"EpilogPN should be in Exit block");
259 Value *V = PN.getIncomingValueForBlock(Latch);
261 if (
I && L->contains(
I))
269 "EpilogPN should have EpilogPreHeader incoming block");
285 if (!L->contains(Succ))
287 for (
PHINode &PN : Succ->phis()) {
293 NewPN->
addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
295 NewPN->
addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
299 PHINode *VPN = cast<PHINode>(VMap[&PN]);
306 Value *BrLoopExit =
B.CreateIsNotNull(ModVal,
"lcmp.mod");
307 assert(Exit &&
"Loop must have a single exit block only");
313 MDNode *BranchWeights =
nullptr;
319 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit, BranchWeights);
340 const bool UnrollRemainder,
343 std::vector<BasicBlock *> &NewBlocks,
346 StringRef suffix = UseEpilogRemainder ?
"epil" :
"prol";
352 Loop *ParentLoop = L->getParentLoop();
354 NewLoops[ParentLoop] = ParentLoop;
360 NewBlocks.push_back(NewBB);
378 DT->
addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
384 VMap.
erase((*BB)->getTerminator());
388 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
394 auto *Zero = ConstantInt::get(NewIdx->
getType(), 0);
395 auto *One = ConstantInt::get(NewIdx->
getType(), 1);
399 MDNode *BranchWeights =
nullptr;
408 BackEdgeWeight = (Count - 2) / 2;
418 Builder.
CreateCondBr(IdxCmp, FirstLoopBB, InsertBot, BranchWeights);
428 PHINode *NewPHI = cast<PHINode>(VMap[&*
I]);
431 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
439 Loop *NewLoop = NewLoops[L];
440 assert(NewLoop &&
"L should have been cloned");
467 bool UseEpilogRemainder) {
489 L->getExitingBlocks(ExitingBlocks);
490 if (ExitingBlocks.
size() > 2)
494 if (OtherExits.
size() == 0)
503 return (OtherExits.
size() == 1 &&
505 OtherExits[0]->getPostdominatingDeoptimizeCall()));
518 Value *TripCount,
unsigned Count) {
530 return B.CreateAnd(TripCount, Count - 1,
"xtraiter");
535 Value *ModValTmp =
B.CreateURem(BECount, CountC);
536 Value *ModValAdd =
B.CreateAdd(ModValTmp,
537 ConstantInt::get(ModValTmp->
getType(), 1));
540 return B.CreateURem(ModValAdd, CountC,
"xtraiter");
583 Loop *L,
unsigned Count,
bool AllowExpensiveTripCount,
584 bool UseEpilogRemainder,
bool UnrollRemainder,
bool ForgetAllSCEV,
589 LLVM_DEBUG(UseEpilogRemainder ?
dbgs() <<
"Using epilog remainder.\n"
590 :
dbgs() <<
"Using prolog remainder.\n");
593 if (!L->isLoopSimplifyForm()) {
608 <<
"Loop latch not terminated by a conditional branch.\n");
612 unsigned ExitIndex = LatchBR->
getSuccessor(0) == Header ? 1 : 0;
615 if (L->contains(LatchExit)) {
620 <<
"One of the loop latch successors must be the exit block.\n");
626 L->getUniqueNonLatchExitBlocks(OtherExits);
629 if (!L->getExitingBlock() || OtherExits.
size()) {
636 UseEpilogRemainder)) {
639 <<
"Multiple exit/exiting blocks in loop and multi-exit unrolling not "
655 if (isa<SCEVCouldNotCompute>(BECountSC)) {
660 unsigned BEWidth = cast<IntegerType>(BECountSC->
getType())->getBitWidth();
664 const SCEV *TripCountSC =
666 if (isa<SCEVCouldNotCompute>(TripCountSC)) {
671 BasicBlock *PreHeader = L->getLoopPreheader();
675 if (!AllowExpensiveTripCount &&
678 LLVM_DEBUG(
dbgs() <<
"High cost for expanding trip count scev!\n");
684 if (
Log2_32(Count) > BEWidth) {
687 <<
"Count failed constraint on overflow trip count calculation.\n");
705 if (UseEpilogRemainder) {
712 nullptr, PreserveLCSSA);
717 NewExitTerminator->
setDebugLoc(Header->getTerminator()->getDebugLoc());
719 EpilogPreHeader =
SplitBlock(NewExit, NewExitTerminator, DT, LI);
720 EpilogPreHeader->
setName(Header->getName() +
".epil.preheader");
728 if (
auto *ParentL = L->getParentLoop())
729 if (LI->getLoopFor(LatchExit) != ParentL) {
730 LI->removeBlock(NewExit);
731 ParentL->addBasicBlockToLoop(NewExit, *LI);
732 LI->removeBlock(EpilogPreHeader);
733 ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI);
739 PrologPreHeader =
SplitEdge(PreHeader, Header, DT, LI);
740 PrologPreHeader->
setName(Header->getName() +
".prol.preheader");
743 PrologExit->
setName(Header->getName() +
".prol.loopexit");
777 TripCount =
B.CreateFreeze(TripCount);
790 UseEpilogRemainder ?
B.CreateICmpULT(BECount,
791 ConstantInt::get(BECount->
getType(),
793 B.CreateIsNotNull(ModVal,
"lcmp.mod");
794 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
795 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
797 MDNode *BranchWeights =
nullptr;
803 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop, BranchWeights);
806 if (UseEpilogRemainder)
822 std::vector<BasicBlock *> NewBlocks;
828 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
829 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
831 L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot,
832 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI, Count);
835 F->splice(InsertBot->
getIterator(),
F, NewBlocks[0]->getIterator(),
F->end());
841 for (
auto *BB : OtherExits) {
845 for (
PHINode &PN : BB->phis()) {
846 unsigned oldNumOperands = PN.getNumIncomingValues();
849 for (
unsigned i = 0; i < oldNumOperands; i++){
850 auto *PredBB =PN.getIncomingBlock(i);
854 if (!L->contains(PredBB))
859 auto *V = PN.getIncomingValue(i);
863 PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
866#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
869 "Breaks the definition of dedicated exits!");
880 if (DT && !L->getExitingBlock()) {
886 for (
auto *BB : L->blocks()) {
887 auto *DomNodeBB = DT->
getNode(BB);
888 for (
auto *DomChild : DomNodeBB->children()) {
889 auto *DomChildBB = DomChild->
getBlock();
894 for (
auto *BB : ChildrenToUpdate)
916 Module *M = BB->getModule();
925 if (UseEpilogRemainder) {
928 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, EpilogPreHeader,
929 NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE, Count);
941 auto *Zero = ConstantInt::get(NewIdx->
getType(), 0);
942 auto *One = ConstantInt::get(NewIdx->
getType(), 1);
944 auto Pred = LatchBR->
getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
952 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
953 NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE);
961#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
963 assert(DT->
verify(DominatorTree::VerificationLevel::Full));
969 if (Count == 2 && DT && LI && SE) {
976 remainderLoop =
nullptr;
985 Inst.replaceAllUsesWith(V);
997 assert(ExitBB &&
"required after breaking cond br backedge");
1005 if (OtherExits.
size() > 0) {
1015 auto UnrollResult = LoopUnrollResult::Unmodified;
1016 if (remainderLoop && UnrollRemainder) {
1019 ULO.
Count = Count - 1;
1026 "A loop with a convergence heart does not allow runtime unrolling.");
1027 UnrollResult =
UnrollLoop(remainderLoop, ULO, LI, SE, DT, AC,
TTI,
1028 nullptr, PreserveLCSSA);
1031 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1032 *ResultLoop = remainderLoop;
1033 NumRuntimeUnrolled++;
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static bool canProfitablyUnrollMultiExitLoop(Loop *L, SmallVectorImpl< BasicBlock * > &OtherExits, BasicBlock *LatchExit, bool UseEpilogRemainder)
Returns true if we can profitably unroll the multi-exit loop L.
static Loop * CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder, const bool UnrollRemainder, BasicBlock *InsertTop, BasicBlock *InsertBot, BasicBlock *Preheader, std::vector< BasicBlock * > &NewBlocks, LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI, unsigned Count)
Create a clone of the blocks in a loop and connect them together.
static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit, BasicBlock *Exit, BasicBlock *PreHeader, BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA, ScalarEvolution &SE, unsigned Count)
Connect the unrolling epilog code to the original loop.
static const uint32_t UnrolledLoopHeaderWeights[]
static Value * CreateTripRemainder(IRBuilder<> &B, Value *BECount, Value *TripCount, unsigned Count)
Calculate ModVal = (BECount + 1) % Count on the abstract integer domain accounting for the possibilit...
static cl::opt< bool > UnrollRuntimeOtherExitPredictable("unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden, cl::desc("Assume the non latch exit block to be predictable"))
static const uint32_t EpilogHeaderWeights[]
static cl::opt< bool > UnrollRuntimeMultiExit("unroll-runtime-multi-exit", cl::init(false), cl::Hidden, cl::desc("Allow runtime unrolling for loops with multiple exits, when " "epilog is generated"))
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count, BasicBlock *PrologExit, BasicBlock *OriginalLoopLatchExit, BasicBlock *PreHeader, BasicBlock *NewPreHeader, ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA, ScalarEvolution &SE)
Connect the unrolling prolog code to the original loop.
Module.h This file contains the declarations for the Module class.
This file contains the declarations for profiling metadata utility functions.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
InstListType::const_iterator getFirstNonPHIIt() const
Iterator returning form of getFirstNonPHI.
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
This is an important base class in LLVM.
static Constant * getAllOnesValue(Type *Ty)
A parsed version of the target data layout string in and methods for querying it.
DomTreeNodeBase * getIDom() const
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Instruction * findNearestCommonDominator(Instruction *I1, Instruction *I2) const
Find the nearest instruction I that dominates both I1 and I2, in the sense that a result produced bef...
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
LLVMContext & getContext() const
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
void setSuccessor(unsigned Idx, BasicBlock *BB)
Update the specified successor to point at the provided block.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Store the result of a depth first search within basic blocks contained by a single loop.
RPOIterator beginRPO() const
Reverse iterate over the cached postorder blocks.
std::vector< BasicBlock * >::const_reverse_iterator RPOIterator
void perform(const LoopInfo *LI)
Traverse the loop blocks and store the DFS result.
RPOIterator endRPO() const
void verify(const DominatorTreeBase< BlockT, false > &DomTree) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
Represents a single loop in the control flow graph.
void setLoopID(MDNode *LoopID) const
Set the llvm.loop loop id metadata for this loop.
void setLoopAlreadyUnrolled()
Add llvm.loop.unroll.disable to this loop's loop id metadata.
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
void setIncomingValueForBlock(const BasicBlock *BB, Value *V)
Set every incoming value(s) for block BB to V.
void setIncomingBlock(unsigned i, BasicBlock *BB)
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class uses information about analyze scalars to rewrite expressions in canonical form.
bool isHighCostExpansion(ArrayRef< const SCEV * > Exprs, Loop *L, unsigned Budget, const TargetTransformInfo *TTI, const Instruction *At)
Return true for expressions that can't be evaluated at runtime within given Budget.
Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const SCEV * getConstant(ConstantInt *V)
bool loopHasNoAbnormalExits(const Loop *L)
Return true if the loop has no abnormal exits.
void forgetTopmostLoop(const Loop *L)
void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
bool erase(const KeyT &Val)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
void setName(const Twine &Name)
Change the name of the value.
StringRef getName() const
Return a constant reference to the value's name.
const ParentTy * getParent() const
self_iterator getIterator()
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
auto successors(const MachineBasicBlock *BB)
std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, DebugInfoFinder *DIFinder=nullptr)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
CallBase * getLoopConvergenceHeart(const Loop *TheLoop)
Find the convergence heart of the loop.
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
cl::opt< unsigned > SCEVCheapExpansionBudget
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM.
void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, MemorySSA *MSSA)
Remove the backedge of the specified loop.
BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
const char *const LLVMLoopUnrollFollowupAll
bool MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, MemoryDependenceResults *MemDep=nullptr, bool PredecessorWithTwoSuccessors=false, DominatorTree *DT=nullptr)
Attempts to merge a block into its predecessor, if possible.
bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Ensure that all exit blocks of the loop are dedicated exits.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
const char *const LLVMLoopUnrollFollowupRemainder
const Loop * addClonedBlockToLoopInfo(BasicBlock *OriginalBB, BasicBlock *ClonedBB, LoopInfo *LI, NewLoopsMap &NewLoops)
Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary and adds a mapping from the o...
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool hasBranchWeightMD(const Instruction &I)
Checks if an instructions has Branch Weight Metadata.
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
bool UnrollRuntimeLoopRemainder(Loop *L, unsigned Count, bool AllowExpensiveTripCount, bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop=nullptr)
Insert code in the prolog/epilog code when unrolling a loop with a run-time trip-count.
LoopUnrollResult UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC, const llvm::TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE, bool PreserveLCSSA, Loop **RemainderLoop=nullptr, AAResults *AA=nullptr)
Unroll the given loop by Count.
void RemapDbgRecordRange(Module *M, iterator_range< DbgRecordIterator > Range, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Remap the Values used in the DbgRecords Range using the value map VM.
bool AllowExpensiveTripCount