LLVM  10.0.0svn
CloneFunction.cpp
Go to the documentation of this file.
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CloneFunctionInto interface, which is used as the
10 // low-level function cloner. This is used by the CloneFunction and function
11 // inliner to do the dirty work of copying the body of a function around.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
36 #include <map>
37 using namespace llvm;
38 
39 /// See comments in Cloning.h.
41  const Twine &NameSuffix, Function *F,
42  ClonedCodeInfo *CodeInfo,
43  DebugInfoFinder *DIFinder) {
45  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46  if (BB->hasName())
47  NewBB->setName(BB->getName() + NameSuffix);
48 
49  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
50  Module *TheModule = F ? F->getParent() : nullptr;
51 
52  // Loop over all instructions, and copy them over.
53  for (const Instruction &I : *BB) {
54  if (DIFinder && TheModule)
55  DIFinder->processInstruction(*TheModule, I);
56 
57  Instruction *NewInst = I.clone();
58  if (I.hasName())
59  NewInst->setName(I.getName() + NameSuffix);
60  NewBB->getInstList().push_back(NewInst);
61  VMap[&I] = NewInst; // Add instruction map to value.
62 
63  hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
64  if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
65  if (isa<ConstantInt>(AI->getArraySize()))
66  hasStaticAllocas = true;
67  else
68  hasDynamicAllocas = true;
69  }
70  }
71 
72  if (CodeInfo) {
73  CodeInfo->ContainsCalls |= hasCalls;
74  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
75  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
76  BB != &BB->getParent()->getEntryBlock();
77  }
78  return NewBB;
79 }
80 
81 // Clone OldFunc into NewFunc, transforming the old arguments into references to
82 // VMap values.
83 //
84 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
85  ValueToValueMapTy &VMap,
86  bool ModuleLevelChanges,
88  const char *NameSuffix, ClonedCodeInfo *CodeInfo,
89  ValueMapTypeRemapper *TypeMapper,
90  ValueMaterializer *Materializer) {
91  assert(NameSuffix && "NameSuffix cannot be null!");
92 
93 #ifndef NDEBUG
94  for (const Argument &I : OldFunc->args())
95  assert(VMap.count(&I) && "No mapping from source argument specified!");
96 #endif
97 
98  // Copy all attributes other than those stored in the AttributeList. We need
99  // to remap the parameter indices of the AttributeList.
100  AttributeList NewAttrs = NewFunc->getAttributes();
101  NewFunc->copyAttributesFrom(OldFunc);
102  NewFunc->setAttributes(NewAttrs);
103 
104  // Fix up the personality function that got copied over.
105  if (OldFunc->hasPersonalityFn())
106  NewFunc->setPersonalityFn(
107  MapValue(OldFunc->getPersonalityFn(), VMap,
108  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
109  TypeMapper, Materializer));
110 
111  SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
112  AttributeList OldAttrs = OldFunc->getAttributes();
113 
114  // Clone any argument attributes that are present in the VMap.
115  for (const Argument &OldArg : OldFunc->args()) {
116  if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
117  NewArgAttrs[NewArg->getArgNo()] =
118  OldAttrs.getParamAttributes(OldArg.getArgNo());
119  }
120  }
121 
122  NewFunc->setAttributes(
123  AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
124  OldAttrs.getRetAttributes(), NewArgAttrs));
125 
126  bool MustCloneSP =
127  OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
128  DISubprogram *SP = OldFunc->getSubprogram();
129  if (SP) {
130  assert(!MustCloneSP || ModuleLevelChanges);
131  // Add mappings for some DebugInfo nodes that we don't want duplicated
132  // even if they're distinct.
133  auto &MD = VMap.MD();
134  MD[SP->getUnit()].reset(SP->getUnit());
135  MD[SP->getType()].reset(SP->getType());
136  MD[SP->getFile()].reset(SP->getFile());
137  // If we're not cloning into the same module, no need to clone the
138  // subprogram
139  if (!MustCloneSP)
140  MD[SP].reset(SP);
141  }
142 
144  OldFunc->getAllMetadata(MDs);
145  for (auto MD : MDs) {
146  NewFunc->addMetadata(
147  MD.first,
148  *MapMetadata(MD.second, VMap,
149  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
150  TypeMapper, Materializer));
151  }
152 
153  // When we remap instructions, we want to avoid duplicating inlined
154  // DISubprograms, so record all subprograms we find as we duplicate
155  // instructions and then freeze them in the MD map.
156  // We also record information about dbg.value and dbg.declare to avoid
157  // duplicating the types.
158  DebugInfoFinder DIFinder;
159 
160  // Loop over all of the basic blocks in the function, cloning them as
161  // appropriate. Note that we save BE this way in order to handle cloning of
162  // recursive functions into themselves.
163  //
164  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
165  BI != BE; ++BI) {
166  const BasicBlock &BB = *BI;
167 
168  // Create a new basic block and copy instructions into it!
169  BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
170  ModuleLevelChanges ? &DIFinder : nullptr);
171 
172  // Add basic block mapping.
173  VMap[&BB] = CBB;
174 
175  // It is only legal to clone a function if a block address within that
176  // function is never referenced outside of the function. Given that, we
177  // want to map block addresses from the old function to block addresses in
178  // the clone. (This is different from the generic ValueMapper
179  // implementation, which generates an invalid blockaddress when
180  // cloning a function.)
181  if (BB.hasAddressTaken()) {
182  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
183  const_cast<BasicBlock*>(&BB));
184  VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
185  }
186 
187  // Note return instructions for the caller.
188  if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
189  Returns.push_back(RI);
190  }
191 
192  for (DISubprogram *ISP : DIFinder.subprograms())
193  if (ISP != SP)
194  VMap.MD()[ISP].reset(ISP);
195 
196  for (DICompileUnit *CU : DIFinder.compile_units())
197  VMap.MD()[CU].reset(CU);
198 
199  for (DIType *Type : DIFinder.types())
200  VMap.MD()[Type].reset(Type);
201 
202  // Loop over all of the instructions in the function, fixing up operand
203  // references as we go. This uses VMap to do all the hard work.
204  for (Function::iterator BB =
205  cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
206  BE = NewFunc->end();
207  BB != BE; ++BB)
208  // Loop over all instructions, fixing each one as we find it...
209  for (Instruction &II : *BB)
210  RemapInstruction(&II, VMap,
211  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
212  TypeMapper, Materializer);
213 
214  // Register all DICompileUnits of the old parent module in the new parent module
215  auto* OldModule = OldFunc->getParent();
216  auto* NewModule = NewFunc->getParent();
217  if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) {
218  auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
219  // Avoid multiple insertions of the same DICompileUnit to NMD.
221  for (auto* Operand : NMD->operands())
222  Visited.insert(Operand);
223  for (auto* Unit : DIFinder.compile_units())
224  // VMap.MD()[Unit] == Unit
225  if (Visited.insert(Unit).second)
226  NMD->addOperand(Unit);
227  }
228 }
229 
230 /// Return a copy of the specified function and add it to that function's
231 /// module. Also, any references specified in the VMap are changed to refer to
232 /// their mapped value instead of the original one. If any of the arguments to
233 /// the function are in the VMap, the arguments are deleted from the resultant
234 /// function. The VMap is updated to include mappings from all of the
235 /// instructions and basicblocks in the function from their old to new values.
236 ///
238  ClonedCodeInfo *CodeInfo) {
239  std::vector<Type*> ArgTypes;
240 
241  // The user might be deleting arguments to the function by specifying them in
242  // the VMap. If so, we need to not add the arguments to the arg ty vector
243  //
244  for (const Argument &I : F->args())
245  if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
246  ArgTypes.push_back(I.getType());
247 
248  // Create a new function type...
250  ArgTypes, F->getFunctionType()->isVarArg());
251 
252  // Create the new function...
253  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
254  F->getName(), F->getParent());
255 
256  // Loop over the arguments, copying the names of the mapped arguments over...
257  Function::arg_iterator DestI = NewF->arg_begin();
258  for (const Argument & I : F->args())
259  if (VMap.count(&I) == 0) { // Is this argument preserved?
260  DestI->setName(I.getName()); // Copy the name over...
261  VMap[&I] = &*DestI++; // Add mapping to VMap
262  }
263 
264  SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
265  CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
266  CodeInfo);
267 
268  return NewF;
269 }
270 
271 
272 
273 namespace {
274  /// This is a private class used to implement CloneAndPruneFunctionInto.
275  struct PruningFunctionCloner {
276  Function *NewFunc;
277  const Function *OldFunc;
278  ValueToValueMapTy &VMap;
279  bool ModuleLevelChanges;
280  const char *NameSuffix;
281  ClonedCodeInfo *CodeInfo;
282 
283  public:
284  PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
285  ValueToValueMapTy &valueMap, bool moduleLevelChanges,
286  const char *nameSuffix, ClonedCodeInfo *codeInfo)
287  : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
288  ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
289  CodeInfo(codeInfo) {}
290 
291  /// The specified block is found to be reachable, clone it and
292  /// anything that it can reach.
293  void CloneBlock(const BasicBlock *BB,
294  BasicBlock::const_iterator StartingInst,
295  std::vector<const BasicBlock*> &ToClone);
296  };
297 }
298 
299 /// The specified block is found to be reachable, clone it and
300 /// anything that it can reach.
301 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
302  BasicBlock::const_iterator StartingInst,
303  std::vector<const BasicBlock*> &ToClone){
304  WeakTrackingVH &BBEntry = VMap[BB];
305 
306  // Have we already cloned this block?
307  if (BBEntry) return;
308 
309  // Nope, clone it now.
310  BasicBlock *NewBB;
311  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
312  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
313 
314  // It is only legal to clone a function if a block address within that
315  // function is never referenced outside of the function. Given that, we
316  // want to map block addresses from the old function to block addresses in
317  // the clone. (This is different from the generic ValueMapper
318  // implementation, which generates an invalid blockaddress when
319  // cloning a function.)
320  //
321  // Note that we don't need to fix the mapping for unreachable blocks;
322  // the default mapping there is safe.
323  if (BB->hasAddressTaken()) {
324  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
325  const_cast<BasicBlock*>(BB));
326  VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
327  }
328 
329  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
330 
331  // Loop over all instructions, and copy them over, DCE'ing as we go. This
332  // loop doesn't include the terminator.
333  for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
334  II != IE; ++II) {
335 
336  Instruction *NewInst = II->clone();
337 
338  // Eagerly remap operands to the newly cloned instruction, except for PHI
339  // nodes for which we defer processing until we update the CFG.
340  if (!isa<PHINode>(NewInst)) {
341  RemapInstruction(NewInst, VMap,
342  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
343 
344  // If we can simplify this instruction to some other value, simply add
345  // a mapping to that value rather than inserting a new instruction into
346  // the basic block.
347  if (Value *V =
348  SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
349  // On the off-chance that this simplifies to an instruction in the old
350  // function, map it back into the new function.
351  if (NewFunc != OldFunc)
352  if (Value *MappedV = VMap.lookup(V))
353  V = MappedV;
354 
355  if (!NewInst->mayHaveSideEffects()) {
356  VMap[&*II] = V;
357  NewInst->deleteValue();
358  continue;
359  }
360  }
361  }
362 
363  if (II->hasName())
364  NewInst->setName(II->getName()+NameSuffix);
365  VMap[&*II] = NewInst; // Add instruction map to value.
366  NewBB->getInstList().push_back(NewInst);
367  hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
368 
369  if (CodeInfo)
370  if (auto CS = ImmutableCallSite(&*II))
371  if (CS.hasOperandBundles())
372  CodeInfo->OperandBundleCallSites.push_back(NewInst);
373 
374  if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
375  if (isa<ConstantInt>(AI->getArraySize()))
376  hasStaticAllocas = true;
377  else
378  hasDynamicAllocas = true;
379  }
380  }
381 
382  // Finally, clone over the terminator.
383  const Instruction *OldTI = BB->getTerminator();
384  bool TerminatorDone = false;
385  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
386  if (BI->isConditional()) {
387  // If the condition was a known constant in the callee...
388  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
389  // Or is a known constant in the caller...
390  if (!Cond) {
391  Value *V = VMap.lookup(BI->getCondition());
392  Cond = dyn_cast_or_null<ConstantInt>(V);
393  }
394 
395  // Constant fold to uncond branch!
396  if (Cond) {
397  BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
398  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
399  ToClone.push_back(Dest);
400  TerminatorDone = true;
401  }
402  }
403  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
404  // If switching on a value known constant in the caller.
405  ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
406  if (!Cond) { // Or known constant after constant prop in the callee...
407  Value *V = VMap.lookup(SI->getCondition());
408  Cond = dyn_cast_or_null<ConstantInt>(V);
409  }
410  if (Cond) { // Constant fold to uncond branch!
411  SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
412  BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
413  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
414  ToClone.push_back(Dest);
415  TerminatorDone = true;
416  }
417  }
418 
419  if (!TerminatorDone) {
420  Instruction *NewInst = OldTI->clone();
421  if (OldTI->hasName())
422  NewInst->setName(OldTI->getName()+NameSuffix);
423  NewBB->getInstList().push_back(NewInst);
424  VMap[OldTI] = NewInst; // Add instruction map to value.
425 
426  if (CodeInfo)
427  if (auto CS = ImmutableCallSite(OldTI))
428  if (CS.hasOperandBundles())
429  CodeInfo->OperandBundleCallSites.push_back(NewInst);
430 
431  // Recursively clone any reachable successor blocks.
432  const Instruction *TI = BB->getTerminator();
433  for (const BasicBlock *Succ : successors(TI))
434  ToClone.push_back(Succ);
435  }
436 
437  if (CodeInfo) {
438  CodeInfo->ContainsCalls |= hasCalls;
439  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
440  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
441  BB != &BB->getParent()->front();
442  }
443 }
444 
445 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
446 /// entire function. Instead it starts at an instruction provided by the caller
447 /// and copies (and prunes) only the code reachable from that instruction.
448 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
449  const Instruction *StartingInst,
450  ValueToValueMapTy &VMap,
451  bool ModuleLevelChanges,
453  const char *NameSuffix,
454  ClonedCodeInfo *CodeInfo) {
455  assert(NameSuffix && "NameSuffix cannot be null!");
456 
457  ValueMapTypeRemapper *TypeMapper = nullptr;
458  ValueMaterializer *Materializer = nullptr;
459 
460 #ifndef NDEBUG
461  // If the cloning starts at the beginning of the function, verify that
462  // the function arguments are mapped.
463  if (!StartingInst)
464  for (const Argument &II : OldFunc->args())
465  assert(VMap.count(&II) && "No mapping from source argument specified!");
466 #endif
467 
468  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
469  NameSuffix, CodeInfo);
470  const BasicBlock *StartingBB;
471  if (StartingInst)
472  StartingBB = StartingInst->getParent();
473  else {
474  StartingBB = &OldFunc->getEntryBlock();
475  StartingInst = &StartingBB->front();
476  }
477 
478  // Clone the entry block, and anything recursively reachable from it.
479  std::vector<const BasicBlock*> CloneWorklist;
480  PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
481  while (!CloneWorklist.empty()) {
482  const BasicBlock *BB = CloneWorklist.back();
483  CloneWorklist.pop_back();
484  PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
485  }
486 
487  // Loop over all of the basic blocks in the old function. If the block was
488  // reachable, we have cloned it and the old block is now in the value map:
489  // insert it into the new function in the right order. If not, ignore it.
490  //
491  // Defer PHI resolution until rest of function is resolved.
492  SmallVector<const PHINode*, 16> PHIToResolve;
493  for (const BasicBlock &BI : *OldFunc) {
494  Value *V = VMap.lookup(&BI);
495  BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
496  if (!NewBB) continue; // Dead block.
497 
498  // Add the new block to the new function.
499  NewFunc->getBasicBlockList().push_back(NewBB);
500 
501  // Handle PHI nodes specially, as we have to remove references to dead
502  // blocks.
503  for (const PHINode &PN : BI.phis()) {
504  // PHI nodes may have been remapped to non-PHI nodes by the caller or
505  // during the cloning process.
506  if (isa<PHINode>(VMap[&PN]))
507  PHIToResolve.push_back(&PN);
508  else
509  break;
510  }
511 
512  // Finally, remap the terminator instructions, as those can't be remapped
513  // until all BBs are mapped.
514  RemapInstruction(NewBB->getTerminator(), VMap,
515  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
516  TypeMapper, Materializer);
517  }
518 
519  // Defer PHI resolution until rest of function is resolved, PHI resolution
520  // requires the CFG to be up-to-date.
521  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
522  const PHINode *OPN = PHIToResolve[phino];
523  unsigned NumPreds = OPN->getNumIncomingValues();
524  const BasicBlock *OldBB = OPN->getParent();
525  BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
526 
527  // Map operands for blocks that are live and remove operands for blocks
528  // that are dead.
529  for (; phino != PHIToResolve.size() &&
530  PHIToResolve[phino]->getParent() == OldBB; ++phino) {
531  OPN = PHIToResolve[phino];
532  PHINode *PN = cast<PHINode>(VMap[OPN]);
533  for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
534  Value *V = VMap.lookup(PN->getIncomingBlock(pred));
535  if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
536  Value *InVal = MapValue(PN->getIncomingValue(pred),
537  VMap,
538  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
539  assert(InVal && "Unknown input value?");
540  PN->setIncomingValue(pred, InVal);
541  PN->setIncomingBlock(pred, MappedBlock);
542  } else {
543  PN->removeIncomingValue(pred, false);
544  --pred; // Revisit the next entry.
545  --e;
546  }
547  }
548  }
549 
550  // The loop above has removed PHI entries for those blocks that are dead
551  // and has updated others. However, if a block is live (i.e. copied over)
552  // but its terminator has been changed to not go to this block, then our
553  // phi nodes will have invalid entries. Update the PHI nodes in this
554  // case.
555  PHINode *PN = cast<PHINode>(NewBB->begin());
556  NumPreds = pred_size(NewBB);
557  if (NumPreds != PN->getNumIncomingValues()) {
558  assert(NumPreds < PN->getNumIncomingValues());
559  // Count how many times each predecessor comes to this block.
560  std::map<BasicBlock*, unsigned> PredCount;
561  for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
562  PI != E; ++PI)
563  --PredCount[*PI];
564 
565  // Figure out how many entries to remove from each PHI.
566  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
567  ++PredCount[PN->getIncomingBlock(i)];
568 
569  // At this point, the excess predecessor entries are positive in the
570  // map. Loop over all of the PHIs and remove excess predecessor
571  // entries.
572  BasicBlock::iterator I = NewBB->begin();
573  for (; (PN = dyn_cast<PHINode>(I)); ++I) {
574  for (const auto &PCI : PredCount) {
575  BasicBlock *Pred = PCI.first;
576  for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
577  PN->removeIncomingValue(Pred, false);
578  }
579  }
580  }
581 
582  // If the loops above have made these phi nodes have 0 or 1 operand,
583  // replace them with undef or the input value. We must do this for
584  // correctness, because 0-operand phis are not valid.
585  PN = cast<PHINode>(NewBB->begin());
586  if (PN->getNumIncomingValues() == 0) {
587  BasicBlock::iterator I = NewBB->begin();
588  BasicBlock::const_iterator OldI = OldBB->begin();
589  while ((PN = dyn_cast<PHINode>(I++))) {
590  Value *NV = UndefValue::get(PN->getType());
591  PN->replaceAllUsesWith(NV);
592  assert(VMap[&*OldI] == PN && "VMap mismatch");
593  VMap[&*OldI] = NV;
594  PN->eraseFromParent();
595  ++OldI;
596  }
597  }
598  }
599 
600  // Make a second pass over the PHINodes now that all of them have been
601  // remapped into the new function, simplifying the PHINode and performing any
602  // recursive simplifications exposed. This will transparently update the
603  // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
604  // two PHINodes, the iteration over the old PHIs remains valid, and the
605  // mapping will just map us to the new node (which may not even be a PHI
606  // node).
607  const DataLayout &DL = NewFunc->getParent()->getDataLayout();
609  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
610  if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
611  Worklist.insert(PHIToResolve[Idx]);
612 
613  // Note that we must test the size on each iteration, the worklist can grow.
614  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
615  const Value *OrigV = Worklist[Idx];
616  auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
617  if (!I)
618  continue;
619 
620  // Skip over non-intrinsic callsites, we don't want to remove any nodes from
621  // the CGSCC.
622  CallSite CS = CallSite(I);
623  if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
624  continue;
625 
626  // See if this instruction simplifies.
627  Value *SimpleV = SimplifyInstruction(I, DL);
628  if (!SimpleV)
629  continue;
630 
631  // Stash away all the uses of the old instruction so we can check them for
632  // recursive simplifications after a RAUW. This is cheaper than checking all
633  // uses of To on the recursive step in most cases.
634  for (const User *U : OrigV->users())
635  Worklist.insert(cast<Instruction>(U));
636 
637  // Replace the instruction with its simplified value.
638  I->replaceAllUsesWith(SimpleV);
639 
640  // If the original instruction had no side effects, remove it.
642  I->eraseFromParent();
643  else
644  VMap[OrigV] = I;
645  }
646 
647  // Now that the inlined function body has been fully constructed, go through
648  // and zap unconditional fall-through branches. This happens all the time when
649  // specializing code: code specialization turns conditional branches into
650  // uncond branches, and this code folds them.
651  Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
652  Function::iterator I = Begin;
653  while (I != NewFunc->end()) {
654  // We need to simplify conditional branches and switches with a constant
655  // operand. We try to prune these out when cloning, but if the
656  // simplification required looking through PHI nodes, those are only
657  // available after forming the full basic block. That may leave some here,
658  // and we still want to prune the dead code as early as possible.
659  //
660  // Do the folding before we check if the block is dead since we want code
661  // like
662  // bb:
663  // br i1 undef, label %bb, label %bb
664  // to be simplified to
665  // bb:
666  // br label %bb
667  // before we call I->getSinglePredecessor().
669 
670  // Check if this block has become dead during inlining or other
671  // simplifications. Note that the first block will appear dead, as it has
672  // not yet been wired up properly.
673  if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
674  I->getSinglePredecessor() == &*I)) {
675  BasicBlock *DeadBB = &*I++;
676  DeleteDeadBlock(DeadBB);
677  continue;
678  }
679 
680  BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
681  if (!BI || BI->isConditional()) { ++I; continue; }
682 
683  BasicBlock *Dest = BI->getSuccessor(0);
684  if (!Dest->getSinglePredecessor()) {
685  ++I; continue;
686  }
687 
688  // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
689  // above should have zapped all of them..
690  assert(!isa<PHINode>(Dest->begin()));
691 
692  // We know all single-entry PHI nodes in the inlined function have been
693  // removed, so we just need to splice the blocks.
694  BI->eraseFromParent();
695 
696  // Make all PHI nodes that referred to Dest now refer to I as their source.
697  Dest->replaceAllUsesWith(&*I);
698 
699  // Move all the instructions in the succ to the pred.
700  I->getInstList().splice(I->end(), Dest->getInstList());
701 
702  // Remove the dest block.
703  Dest->eraseFromParent();
704 
705  // Do not increment I, iteratively merge all things this block branches to.
706  }
707 
708  // Make a final pass over the basic blocks from the old function to gather
709  // any return instructions which survived folding. We have to do this here
710  // because we can iteratively remove and merge returns above.
711  for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
712  E = NewFunc->end();
713  I != E; ++I)
714  if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
715  Returns.push_back(RI);
716 }
717 
718 
719 /// This works exactly like CloneFunctionInto,
720 /// except that it does some simple constant prop and DCE on the fly. The
721 /// effect of this is to copy significantly less code in cases where (for
722 /// example) a function call with constant arguments is inlined, and those
723 /// constant arguments cause a significant amount of code in the callee to be
724 /// dead. Since this doesn't produce an exact copy of the input, it can't be
725 /// used for things like CloneFunction or CloneModule.
726 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
727  ValueToValueMapTy &VMap,
728  bool ModuleLevelChanges,
730  const char *NameSuffix,
731  ClonedCodeInfo *CodeInfo,
732  Instruction *TheCall) {
733  CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
734  ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
735 }
736 
737 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
739  const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
740  // Rewrite the code to refer to itself.
741  for (auto *BB : Blocks)
742  for (auto &Inst : *BB)
743  RemapInstruction(&Inst, VMap,
745 }
746 
747 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
748 /// Blocks.
749 ///
750 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
751 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
753  Loop *OrigLoop, ValueToValueMapTy &VMap,
754  const Twine &NameSuffix, LoopInfo *LI,
755  DominatorTree *DT,
757  Function *F = OrigLoop->getHeader()->getParent();
758  Loop *ParentLoop = OrigLoop->getParentLoop();
760 
761  Loop *NewLoop = LI->AllocateLoop();
762  LMap[OrigLoop] = NewLoop;
763  if (ParentLoop)
764  ParentLoop->addChildLoop(NewLoop);
765  else
766  LI->addTopLevelLoop(NewLoop);
767 
768  BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
769  assert(OrigPH && "No preheader");
770  BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
771  // To rename the loop PHIs.
772  VMap[OrigPH] = NewPH;
773  Blocks.push_back(NewPH);
774 
775  // Update LoopInfo.
776  if (ParentLoop)
777  ParentLoop->addBasicBlockToLoop(NewPH, *LI);
778 
779  // Update DominatorTree.
780  DT->addNewBlock(NewPH, LoopDomBB);
781 
782  for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
783  Loop *&NewLoop = LMap[CurLoop];
784  if (!NewLoop) {
785  NewLoop = LI->AllocateLoop();
786 
787  // Establish the parent/child relationship.
788  Loop *OrigParent = CurLoop->getParentLoop();
789  assert(OrigParent && "Could not find the original parent loop");
790  Loop *NewParentLoop = LMap[OrigParent];
791  assert(NewParentLoop && "Could not find the new parent loop");
792 
793  NewParentLoop->addChildLoop(NewLoop);
794  }
795  }
796 
797  for (BasicBlock *BB : OrigLoop->getBlocks()) {
798  Loop *CurLoop = LI->getLoopFor(BB);
799  Loop *&NewLoop = LMap[CurLoop];
800  assert(NewLoop && "Expecting new loop to be allocated");
801 
802  BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
803  VMap[BB] = NewBB;
804 
805  // Update LoopInfo.
806  NewLoop->addBasicBlockToLoop(NewBB, *LI);
807  if (BB == CurLoop->getHeader())
808  NewLoop->moveToHeader(NewBB);
809 
810  // Add DominatorTree node. After seeing all blocks, update to correct
811  // IDom.
812  DT->addNewBlock(NewBB, NewPH);
813 
814  Blocks.push_back(NewBB);
815  }
816 
817  for (BasicBlock *BB : OrigLoop->getBlocks()) {
818  // Update DominatorTree.
819  BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
820  DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
821  cast<BasicBlock>(VMap[IDomBB]));
822  }
823 
824  // Move them physically from the end of the block list.
826  NewPH);
828  NewLoop->getHeader()->getIterator(), F->end());
829 
830  return NewLoop;
831 }
832 
833 /// Duplicate non-Phi instructions from the beginning of block up to
834 /// StopAt instruction into a split block between BB and its predecessor.
836  BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
838 
839  assert(count(successors(PredBB), BB) == 1 &&
840  "There must be a single edge between PredBB and BB!");
841  // We are going to have to map operands from the original BB block to the new
842  // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
843  // account for entry from PredBB.
844  BasicBlock::iterator BI = BB->begin();
845  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
846  ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
847 
848  BasicBlock *NewBB = SplitEdge(PredBB, BB);
849  NewBB->setName(PredBB->getName() + ".split");
850  Instruction *NewTerm = NewBB->getTerminator();
851 
852  // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
853  // in the update set here.
854  DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
855  {DominatorTree::Insert, PredBB, NewBB},
856  {DominatorTree::Insert, NewBB, BB}});
857 
858  // Clone the non-phi instructions of BB into NewBB, keeping track of the
859  // mapping and using it to remap operands in the cloned instructions.
860  // Stop once we see the terminator too. This covers the case where BB's
861  // terminator gets replaced and StopAt == BB's terminator.
862  for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
863  Instruction *New = BI->clone();
864  New->setName(BI->getName());
865  New->insertBefore(NewTerm);
866  ValueMapping[&*BI] = New;
867 
868  // Remap operands to patch up intra-block references.
869  for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
870  if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
871  auto I = ValueMapping.find(Inst);
872  if (I != ValueMapping.end())
873  New->setOperand(i, I->second);
874  }
875  }
876 
877  return NewBB;
878 }
SmallVector< const LoopT *, 4 > getLoopsInPreorder() const
Return all loops in the loop nest rooted by the loop in preorder, with siblings in forward program or...
Definition: LoopInfo.h:341
Return a value (possibly void), from a function.
bool isIntrinsic() const
isIntrinsic - Returns true if the function&#39;s name starts with "llvm.".
Definition: Function.h:198
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks &#39;this&#39; from the containing basic block and deletes it.
Definition: Instruction.cpp:67
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:111
void DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified block, which must have no predecessors.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:29
DiagnosticInfoOptimizationBase::Argument NV
BasicBlock * DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU)
Split edge between BB and PredBB and duplicate all non-Phi instructions from BB between its beginning...
This class represents lattice values for constants.
Definition: AllocatorList.h:23
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:77
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition: Local.cpp:109
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:66
iterator end()
Definition: Function.h:687
DIFile * getFile() const
void moveToHeader(BlockT *BB)
This method is used to move BB (which must be part of this loop) to be the loop header of the loop (t...
Definition: LoopInfo.h:423
This file contains the declarations for metadata subclasses.
BlockT * getLoopPreheader() const
If there is a preheader for this loop, return it.
Definition: LoopInfoImpl.h:160
Function * CloneFunction(Function *F, ValueToValueMapTy &VMap, ClonedCodeInfo *CodeInfo=nullptr)
Return a copy of the specified function and add it to that function&#39;s module.
NamedMDNode * getOrInsertNamedMetadata(StringRef Name)
Return the named MDNode in the module with the specified name.
Definition: Module.cpp:259
void deleteValue()
Delete a pointer to a generic Value.
Definition: Value.cpp:98
BasicBlock * getSuccessor(unsigned i) const
F(f)
FunTy * getCalledFunction() const
Return the function being called if this is a direct call, otherwise return null (if it&#39;s an indirect...
Definition: CallSite.h:111
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:144
void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode *>> &MDs) const
Appends all attachments for the global to MDs, sorting by attachment ID.
Definition: Metadata.cpp:1413
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:32
Metadata * MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Lookup or compute a mapping for a piece of metadata.
Definition: ValueMapper.h:228
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:273
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Split the edge connecting specified block.
const Module * getModule() const
Return the module owning the function this basic block belongs to, or nullptr if the function does no...
Definition: BasicBlock.cpp:140
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Clone OldFunc into NewFunc, transforming the old arguments into references to VMap values...
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
const DataLayout & getDataLayout() const
Get the data layout for the module&#39;s target platform.
Definition: Module.cpp:369
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:80
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Definition: LoopInfo.h:928
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: APFloat.h:41
Utility to find all debug info in a module.
Definition: DebugInfo.h:64
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:285
BlockT * getHeader() const
Definition: LoopInfo.h:105
Instruction * clone() const
Create a copy of &#39;this&#39; instruction that is identical in all ways except the following: ...
Subprogram description.
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, Instruction *TheCall=nullptr)
This works exactly like CloneFunctionInto, except that it does some simple constant prop and DCE on t...
Class to represent function types.
Definition: DerivedTypes.h:108
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:246
Value handle that is nullable, but tries to track the Value.
Definition: ValueHandle.h:181
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:141
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
Definition: LoopInfoImpl.h:235
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
Definition: LoopInfo.h:979
bool isVarArg() const
Definition: DerivedTypes.h:128
iterator find(const KeyT &Val)
Definition: ValueMap.h:156
iterator_range< type_iterator > types() const
Definition: DebugInfo.h:115
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:223
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:737
LinkageTypes getLinkage() const
Definition: GlobalValue.h:460
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:429
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: ValueMap.h:165
iterator begin()
Definition: Function.h:685
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree...
Definition: Dominators.h:144
Value * getOperand(unsigned i) const
Definition: User.h:169
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:72
auto count(R &&Range, const E &Element) -> typename std::iterator_traits< decltype(adl_begin(Range))>::difference_type
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition: STLExtras.h:1231
const BasicBlock & getEntryBlock() const
Definition: Function.h:669
NodeT * getBlock() const
unsigned compile_unit_count() const
Definition: DebugInfo.h:123
This is a class that can be implemented by clients to materialize Values on demand.
Definition: ValueMapper.h:50
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition: Function.h:135
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:148
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:240
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction...
Definition: Instruction.cpp:73
bool hasName() const
Definition: Value.h:252
LLVM Basic Block Representation.
Definition: BasicBlock.h:57
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
DISubprogram * getSubprogram() const
Get the attached subprogram.
Definition: Metadata.cpp:1522
Conditional or Unconditional Branch instruction.
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1465
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node&#39;s...
DomTreeNodeBase * getIDom() const
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:41
void copyAttributesFrom(const Function *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a Function) from the ...
Definition: Function.cpp:497
Value * getIncomingValueForBlock(const BasicBlock *BB) const
This file contains the declarations for the subclasses of Constant, which represent the different fla...
const Instruction & front() const
Definition: BasicBlock.h:285
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:370
bool mayHaveSideEffects() const
Return true if the instruction may have side effects.
Definition: Instruction.h:582
Interval::pred_iterator pred_begin(Interval *I)
pred_begin/pred_end - define methods so that Intervals may be used just like BasicBlocks can with the...
Definition: Interval.h:112
void splice(iterator where, iplist_impl &L2)
Definition: ilist.h:327
const Instruction & back() const
Definition: BasicBlock.h:287
unsigned getAddressSpace() const
Definition: Globals.cpp:111
constexpr double e
Definition: MathExtras.h:57
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:301
size_t arg_size() const
Definition: Function.h:733
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:115
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:99
self_iterator getIterator()
Definition: ilist_node.h:81
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, const Instruction *StartingInst, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst *> &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr)
This works like CloneAndPruneFunctionInto, except that it does not clone the entire function...
iterator_range< compile_unit_iterator > compile_units() const
Definition: DebugInfo.h:103
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function. ...
Definition: Function.cpp:205
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1446
size_t size() const
Definition: SmallVector.h:52
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Value * MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Look up or compute a value in the value map.
Definition: ValueMapper.h:206
void processInstruction(const Module &M, const Instruction &I)
Process a single instruction and collect debug info anchors.
Definition: DebugInfo.cpp:106
hexagon gen pred
iterator end()
Definition: ValueMap.h:136
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc.
Definition: BasicBlock.h:396
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:338
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:297
Iterator for intrusive lists based on ilist_node.
unsigned getNumOperands() const
Definition: User.h:191
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements...
Definition: SmallPtrSet.h:417
Base class for types.
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
void setIncomingBlock(unsigned i, BasicBlock *BB)
void applyUpdates(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
iterator end()
Definition: BasicBlock.h:275
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:837
Module.h This file contains the declarations for the Module class.
void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
Definition: Metadata.cpp:1390
LoopT * AllocateLoop(ArgsTy &&... Args)
Definition: LoopInfo.h:892
Type * getReturnType() const
Definition: DerivedTypes.h:129
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
bool isConditional() const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
void setAttributes(AttributeList Attrs)
Set the attribute list for this Function.
Definition: Function.h:226
void setOperand(unsigned i, Value *Val)
Definition: User.h:174
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:163
void push_back(pointer val)
Definition: ilist.h:311
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, DebugInfoFinder *DIFinder=nullptr)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
iterator_range< user_iterator > users()
Definition: Value.h:420
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM...
Definition: ValueMapper.h:251
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition: ValueMapper.h:37
If this flag is set, the remapper ignores missing function-local entries (Argument, Instruction, BasicBlock) that are not in the value map.
Definition: ValueMapper.h:90
bool ContainsCalls
This is set to true if the cloned code contains a normal call instruction.
Definition: Cloning.h:67
LoopT * getParentLoop() const
Definition: LoopInfo.h:106
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
Definition: LoopInfo.h:375
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:509
ArrayRef< BlockT * > getBlocks() const
Get a list of the basic blocks which make up this loop.
Definition: LoopInfo.h:154
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:214
Establish a view to a call site for examination.
Definition: CallSite.h:906
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:106
unsigned pred_size(const BasicBlock *BB)
Get the number of predecessors of BB.
Definition: CFG.h:121
SymbolTableList< BasicBlock >::iterator eraseFromParent()
Unlink &#39;this&#39; from the containing function and delete it.
Definition: BasicBlock.cpp:121
#define I(x, y, z)
Definition: MD5.cpp:58
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
BasicBlockT * getCaseSuccessor() const
Resolves successor for current case.
This struct can be used to capture information about code being cloned, while it is being cloned...
Definition: Cloning.h:65
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:332
const BasicBlockListType & getBasicBlockList() const
Get the underlying elements of the Function...
Definition: Function.h:662
uint32_t Size
Definition: Profile.cpp:46
Multiway switch.
Helper struct that represents how a value is mapped through different register banks.
size_type count(const KeyT &Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: ValueMap.h:152
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool ContainsDynamicAllocas
This is set to true if the cloned code contains a &#39;dynamic&#39; alloca.
Definition: Cloning.h:72
const BasicBlock & front() const
Definition: Function.h:692
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:575
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction has no side ef...
Definition: Local.cpp:359
LLVM Value Representation.
Definition: Value.h:74
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1465
succ_range successors(Instruction *I)
Definition: CFG.h:259
iterator_range< subprogram_iterator > subprograms() const
Definition: DebugInfo.h:107
Loop * cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, Loop *OrigLoop, ValueToValueMapTy &VMap, const Twine &NameSuffix, LoopInfo *LI, DominatorTree *DT, SmallVectorImpl< BasicBlock *> &Blocks)
Clones a loop OrigLoop.
A handle to a particular switch case.
void setPersonalityFn(Constant *Fn)
Definition: Function.cpp:1470
void setIncomingValue(unsigned i, Value *V)
MDMapT & MD()
Definition: ValueMap.h:115
Value * SimplifyInstruction(Instruction *I, const SimplifyQuery &Q, OptimizationRemarkEmitter *ORE=nullptr)
See if we can compute a simplified version of this instruction.
static AttributeList get(LLVMContext &C, ArrayRef< std::pair< unsigned, Attribute >> Attrs)
Create an AttributeList with the specified parameters in it.
Definition: Attributes.cpp:972
iterator_range< arg_iterator > args()
Definition: Function.h:724
const BasicBlock * getParent() const
Definition: Instruction.h:66
an instruction to allocate memory on the stack
Definition: Instructions.h:59
void remapInstructionsInBlocks(const SmallVectorImpl< BasicBlock *> &Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.