LLVM 20.0.0git
Cloning.h
Go to the documentation of this file.
1//===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines various functions that are used to clone chunks of LLVM
10// code for various purposes. This varies from copying whole modules into new
11// modules, to cloning functions with different arguments, to inlining
12// functions, to copying basic blocks to support loop unrolling or superblock
13// formation, etc.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
18#define LLVM_TRANSFORMS_UTILS_CLONING_H
19
21#include "llvm/ADT/Twine.h"
24#include "llvm/IR/BasicBlock.h"
25#include "llvm/IR/ValueHandle.h"
27#include <functional>
28#include <memory>
29#include <vector>
30
31namespace llvm {
32
33class AAResults;
34class AllocaInst;
35class BasicBlock;
36class BlockFrequencyInfo;
37class DebugInfoFinder;
38class DominatorTree;
39class Function;
40class Instruction;
41class Loop;
42class LoopInfo;
43class Module;
44class PGOContextualProfile;
45class ProfileSummaryInfo;
46class ReturnInst;
47class DomTreeUpdater;
48
49/// Return an exact copy of the specified module
50std::unique_ptr<Module> CloneModule(const Module &M);
51std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
52
53/// Return a copy of the specified module. The ShouldCloneDefinition function
54/// controls whether a specific GlobalValue's definition is cloned. If the
55/// function returns false, the module copy will contain an external reference
56/// in place of the global definition.
57std::unique_ptr<Module>
59 function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
60
61/// This struct can be used to capture information about code
62/// being cloned, while it is being cloned.
64 /// This is set to true if the cloned code contains a normal call instruction.
65 bool ContainsCalls = false;
66
67 /// This is set to true if there is memprof related metadata (memprof or
68 /// callsite metadata) in the cloned code.
70
71 /// This is set to true if the cloned code contains a 'dynamic' alloca.
72 /// Dynamic allocas are allocas that are either not in the entry block or they
73 /// are in the entry block but are not a constant size.
75
76 /// All cloned call sites that have operand bundles attached are appended to
77 /// this vector. This vector may contain nulls or undefs if some of the
78 /// originally inserted callsites were DCE'ed after they were cloned.
79 std::vector<WeakTrackingVH> OperandBundleCallSites;
80
81 /// Like VMap, but maps only unsimplified instructions. Values in the map
82 /// may be dangling, it is only intended to be used via isSimplified(), to
83 /// check whether the main VMap mapping involves simplification or not.
85
86 ClonedCodeInfo() = default;
87
88 bool isSimplified(const Value *From, const Value *To) const {
89 return OrigVMap.lookup(From) != To;
90 }
91};
92
93/// Return a copy of the specified basic block, but without
94/// embedding the block into a particular function. The block returned is an
95/// exact copy of the specified basic block, without any remapping having been
96/// performed. Because of this, this is only suitable for applications where
97/// the basic block will be inserted into the same function that it was cloned
98/// from (loop unrolling would use this, for example).
99///
100/// Also, note that this function makes a direct copy of the basic block, and
101/// can thus produce illegal LLVM code. In particular, it will copy any PHI
102/// nodes from the original block, even though there are no predecessors for the
103/// newly cloned block (thus, phi nodes will have to be updated). Also, this
104/// block will branch to the old successors of the original block: these
105/// successors will have to have any PHI nodes updated to account for the new
106/// incoming edges.
107///
108/// The correlation between instructions in the source and result basic blocks
109/// is recorded in the VMap map.
110///
111/// If you have a particular suffix you'd like to use to add to any cloned
112/// names, specify it as the optional third parameter.
113///
114/// If you would like the basic block to be auto-inserted into the end of a
115/// function, you can specify it as the optional fourth parameter.
116///
117/// If you would like to collect additional information about the cloned
118/// function, you can specify a ClonedCodeInfo object with the optional fifth
119/// parameter.
120BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
121 const Twine &NameSuffix = "", Function *F = nullptr,
122 ClonedCodeInfo *CodeInfo = nullptr);
123
124/// Return a copy of the specified function and add it to that
125/// function's module. Also, any references specified in the VMap are changed
126/// to refer to their mapped value instead of the original one. If any of the
127/// arguments to the function are in the VMap, the arguments are deleted from
128/// the resultant function. The VMap is updated to include mappings from all of
129/// the instructions and basicblocks in the function from their old to new
130/// values. The final argument captures information about the cloned code if
131/// non-null.
132///
133/// \pre VMap contains no non-identity GlobalValue mappings.
134///
135Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
136 ClonedCodeInfo *CodeInfo = nullptr);
137
143};
144
145/// Clone OldFunc into NewFunc, transforming the old arguments into references
146/// to VMap values. Note that if NewFunc already has basic blocks, the ones
147/// cloned into it will be added to the end of the function. This function
148/// fills in a list of return instructions, and can optionally remap types
149/// and/or append the specified suffix to all values cloned.
150///
151/// If \p Changes is \a CloneFunctionChangeType::LocalChangesOnly, VMap is
152/// required to contain no non-identity GlobalValue mappings. Otherwise,
153/// referenced metadata will be cloned.
154///
155/// If \p Changes is less than \a CloneFunctionChangeType::DifferentModule
156/// indicating cloning into the same module (even if it's LocalChangesOnly), if
157/// debug info metadata transitively references a \a DISubprogram, it will be
158/// cloned, effectively upgrading \p Changes to GlobalChanges while suppressing
159/// cloning of types and compile units.
160///
161/// If \p Changes is \a CloneFunctionChangeType::DifferentModule, the new
162/// module's \c !llvm.dbg.cu will get updated with any newly created compile
163/// units. (\a CloneFunctionChangeType::ClonedModule leaves that work for the
164/// caller.)
165///
166/// FIXME: Consider simplifying this function by splitting out \a
167/// CloneFunctionMetadataInto() and expecting / updating callers to call it
168/// first when / how it's needed.
169void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
171 SmallVectorImpl<ReturnInst *> &Returns,
172 const char *NameSuffix = "",
173 ClonedCodeInfo *CodeInfo = nullptr,
174 ValueMapTypeRemapper *TypeMapper = nullptr,
175 ValueMaterializer *Materializer = nullptr);
176
177/// Clone OldFunc's attributes into NewFunc, transforming values based on the
178/// mappings in VMap.
179void CloneFunctionAttributesInto(Function *NewFunc, const Function *OldFunc,
180 ValueToValueMapTy &VMap,
181 bool ModuleLevelChanges,
182 ValueMapTypeRemapper *TypeMapper = nullptr,
183 ValueMaterializer *Materializer = nullptr);
184
185/// Clone OldFunc's metadata into NewFunc.
186///
187/// The caller is expected to populate \p VMap beforehand and set an appropriate
188/// \p RemapFlag. Subprograms/CUs/types that were already mapped to themselves
189/// won't be duplicated.
190///
191/// NOTE: This function doesn't clone !llvm.dbg.cu when cloning into a different
192/// module. Use CloneFunctionInto for that behavior.
193void CloneFunctionMetadataInto(Function &NewFunc, const Function &OldFunc,
194 ValueToValueMapTy &VMap, RemapFlags RemapFlag,
195 ValueMapTypeRemapper *TypeMapper = nullptr,
196 ValueMaterializer *Materializer = nullptr,
197 const MetadataSetTy *IdentityMD = nullptr);
198
199/// Clone OldFunc's body into NewFunc.
200void CloneFunctionBodyInto(Function &NewFunc, const Function &OldFunc,
201 ValueToValueMapTy &VMap, RemapFlags RemapFlag,
202 SmallVectorImpl<ReturnInst *> &Returns,
203 const char *NameSuffix = "",
204 ClonedCodeInfo *CodeInfo = nullptr,
205 ValueMapTypeRemapper *TypeMapper = nullptr,
206 ValueMaterializer *Materializer = nullptr,
207 const MetadataSetTy *IdentityMD = nullptr);
208
209void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
210 const Instruction *StartingInst,
211 ValueToValueMapTy &VMap, bool ModuleLevelChanges,
212 SmallVectorImpl<ReturnInst *> &Returns,
213 const char *NameSuffix = "",
214 ClonedCodeInfo *CodeInfo = nullptr);
215
216/// This works exactly like CloneFunctionInto,
217/// except that it does some simple constant prop and DCE on the fly. The
218/// effect of this is to copy significantly less code in cases where (for
219/// example) a function call with constant arguments is inlined, and those
220/// constant arguments cause a significant amount of code in the callee to be
221/// dead. Since this doesn't produce an exactly copy of the input, it can't be
222/// used for things like CloneFunction or CloneModule.
223///
224/// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
225/// mappings.
226///
227void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
228 ValueToValueMapTy &VMap, bool ModuleLevelChanges,
229 SmallVectorImpl<ReturnInst*> &Returns,
230 const char *NameSuffix = "",
231 ClonedCodeInfo *CodeInfo = nullptr);
232
233/// Collect debug information such as types, compile units, and other
234/// subprograms that are reachable from \p F and can be considered global for
235/// the purposes of cloning (and hence not needing to be cloned).
236///
237/// What debug information should be processed depends on \p Changes: when
238/// cloning into the same module we process \p F's subprogram and instructions;
239/// when into a cloned module, neither of those.
240///
241/// Returns DISubprogram of the cloned function when cloning into the same
242/// module or nullptr otherwise.
243DISubprogram *CollectDebugInfoForCloning(const Function &F,
245 DebugInfoFinder &DIFinder);
246
247/// Based on \p Changes and \p DIFinder return debug info that needs to be
248/// identity mapped during Metadata cloning.
249///
250/// NOTE: Such \a MetadataSetTy can be used by \a CloneFunction* to directly
251/// specify metadata that should be identity mapped (and hence not cloned). The
252/// metadata will be identity mapped in \a ValueToValueMapTy on first use. There
253/// are several reasons for doing it this way rather than eagerly identity
254/// mapping metadata nodes in a \a ValueMap:
255/// 1. Mapping metadata is not cheap, particularly because of tracking.
256/// 2. When cloning a Function we identity map lots of global module-level
257/// metadata to avoid cloning it, while only a fraction of it is actually
258/// used by the function. Mapping on first use is a lot faster for modules
259/// with meaningful amount of debug info.
260/// 3. Eagerly identity mapping metadata makes it harder to cache module-level
261/// data (e.g. a set of metadata nodes in a \a DICompileUnit).
263 DebugInfoFinder &DIFinder,
264 DISubprogram *SPClonedWithinModule);
265
266/// This class captures the data input to the InlineFunction call, and records
267/// the auxiliary results produced by it.
269public:
272 ProfileSummaryInfo *PSI = nullptr,
273 BlockFrequencyInfo *CallerBFI = nullptr,
274 BlockFrequencyInfo *CalleeBFI = nullptr, bool UpdateProfile = true)
277
278 /// If non-null, InlineFunction will update the callgraph to reflect the
279 /// changes it makes.
283
284 /// InlineFunction fills this in with all static allocas that get copied into
285 /// the caller.
287
288 /// InlineFunction fills this in with callsites that were inlined from the
289 /// callee. This is only filled in if CG is non-null.
291
292 /// All of the new call sites inlined into the caller.
293 ///
294 /// 'InlineFunction' fills this in by scanning the inlined instructions, and
295 /// only if CG is null. If CG is non-null, instead the value handle
296 /// `InlinedCalls` above is used.
298
299 /// Update profile for callee as well as cloned version. We need to do this
300 /// for regular inlining, but not for inlining from sample profile loader.
302
303 void reset() {
304 StaticAllocas.clear();
305 InlinedCalls.clear();
306 InlinedCallSites.clear();
307 }
308};
309
310/// This function inlines the called function into the basic
311/// block of the caller. This returns false if it is not possible to inline
312/// this call. The program is still in a well defined state if this occurs
313/// though.
314///
315/// Note that this only does one level of inlining. For example, if the
316/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
317/// exists in the instruction stream. Similarly this will inline a recursive
318/// function by one level.
319///
320/// Note that while this routine is allowed to cleanup and optimize the
321/// *inlined* code to minimize the actual inserted code, it must not delete
322/// code in the caller as users of this routine may have pointers to
323/// instructions in the caller that need to remain stable.
324///
325/// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
326/// and all varargs at the callsite will be passed to any calls to
327/// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
328/// are only used by ForwardVarArgsTo.
329///
330/// The callee's function attributes are merged into the callers' if
331/// MergeAttributes is set to true.
332InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
333 bool MergeAttributes = false,
334 AAResults *CalleeAAR = nullptr,
335 bool InsertLifetime = true,
336 Function *ForwardVarArgsTo = nullptr);
337
338/// Same as above, but it will update the contextual profile. If the contextual
339/// profile is invalid (i.e. not loaded because it is not present), it defaults
340/// to the behavior of the non-contextual profile updating variant above. This
341/// makes it easy to drop-in replace uses of the non-contextual overload.
342InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
343 PGOContextualProfile &CtxProf,
344 bool MergeAttributes = false,
345 AAResults *CalleeAAR = nullptr,
346 bool InsertLifetime = true,
347 Function *ForwardVarArgsTo = nullptr);
348
349/// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
350/// Blocks.
351///
352/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
353/// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
354/// Note: Only innermost loops are supported.
355Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
356 Loop *OrigLoop, ValueToValueMapTy &VMap,
357 const Twine &NameSuffix, LoopInfo *LI,
358 DominatorTree *DT,
359 SmallVectorImpl<BasicBlock *> &Blocks);
360
361/// Remaps instructions in \p Blocks using the mapping in \p VMap.
362void remapInstructionsInBlocks(ArrayRef<BasicBlock *> Blocks,
363 ValueToValueMapTy &VMap);
364
365/// Split edge between BB and PredBB and duplicate all non-Phi instructions
366/// from BB between its beginning and the StopAt instruction into the split
367/// block. Phi nodes are not duplicated, but their uses are handled correctly:
368/// we replace them with the uses of corresponding Phi inputs. ValueMapping
369/// is used to map the original instructions from BB to their newly-created
370/// copies. Returns the split block.
371BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB,
372 BasicBlock *PredBB,
373 Instruction *StopAt,
374 ValueToValueMapTy &ValueMapping,
375 DomTreeUpdater &DTU);
376
377/// Updates profile information by adjusting the entry count by adding
378/// EntryDelta then scaling callsite information by the new count divided by the
379/// old count. VMap is used during inlinng to also update the new clone
381 Function *Callee, int64_t EntryDelta,
382 const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr);
383
384/// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
385/// basic blocks and extract their scope. These are candidates for duplication
386/// when cloning.
388 ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
389
390/// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
391/// instruction range and extract their scope. These are candidates for
392/// duplication when cloning.
395 SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
396
397/// Duplicate the specified list of noalias decl scopes.
398/// The 'Ext' string is added as an extension to the name.
399/// Afterwards, the ClonedScopes contains the mapping of the original scope
400/// MDNode onto the cloned scope.
401/// Be aware that the cloned scopes are still part of the original scope domain.
403 ArrayRef<MDNode *> NoAliasDeclScopes,
404 DenseMap<MDNode *, MDNode *> &ClonedScopes,
405 StringRef Ext, LLVMContext &Context);
406
407/// Adapt the metadata for the specified instruction according to the
408/// provided mapping. This is normally used after cloning an instruction, when
409/// some noalias scopes needed to be cloned.
411 llvm::Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes,
412 LLVMContext &Context);
413
414/// Clone the specified noalias decl scopes. Then adapt all instructions in the
415/// NewBlocks basicblocks to the cloned versions.
416/// 'Ext' will be added to the duplicate scope names.
417void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
418 ArrayRef<BasicBlock *> NewBlocks,
419 LLVMContext &Context, StringRef Ext);
420
421/// Clone the specified noalias decl scopes. Then adapt all instructions in the
422/// [IStart, IEnd] (IEnd included !) range to the cloned versions. 'Ext' will be
423/// added to the duplicate scope names.
424void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
425 Instruction *IStart, Instruction *IEnd,
426 LLVMContext &Context, StringRef Ext);
427} // end namespace llvm
428
429#endif // LLVM_TRANSFORMS_UTILS_CLONING_H
BlockVerifier::State From
bool End
Definition: ELF_riscv.cpp:480
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Machine Check Debug Module
This file defines the SmallVector class.
A cache of @llvm.assume calls within a function.
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
This class captures the data input to the InlineFunction call, and records the auxiliary results prod...
Definition: Cloning.h:268
ProfileSummaryInfo * PSI
Definition: Cloning.h:281
bool UpdateProfile
Update profile for callee as well as cloned version.
Definition: Cloning.h:301
function_ref< AssumptionCache &(Function &)> GetAssumptionCache
If non-null, InlineFunction will update the callgraph to reflect the changes it makes.
Definition: Cloning.h:280
BlockFrequencyInfo * CalleeBFI
Definition: Cloning.h:282
SmallVector< AllocaInst *, 4 > StaticAllocas
InlineFunction fills this in with all static allocas that get copied into the caller.
Definition: Cloning.h:286
InlineFunctionInfo(function_ref< AssumptionCache &(Function &)> GetAssumptionCache=nullptr, ProfileSummaryInfo *PSI=nullptr, BlockFrequencyInfo *CallerBFI=nullptr, BlockFrequencyInfo *CalleeBFI=nullptr, bool UpdateProfile=true)
Definition: Cloning.h:270
BlockFrequencyInfo * CallerBFI
Definition: Cloning.h:282
SmallVector< WeakTrackingVH, 8 > InlinedCalls
InlineFunction fills this in with callsites that were inlined from the callee.
Definition: Cloning.h:290
SmallVector< CallBase *, 8 > InlinedCallSites
All of the new call sites inlined into the caller.
Definition: Cloning.h:297
Analysis providing profile information.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
LLVM Value Representation.
Definition: Value.h:74
An efficient, type-erasing, non-owning reference to a callable.
@ BasicBlock
Various leaf nodes.
Definition: ISDOpcodes.h:71
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void CloneFunctionAttributesInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Clone OldFunc's attributes into NewFunc, transforming values based on the mappings in VMap.
BasicBlock * DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU)
Split edge between BB and PredBB and duplicate all non-Phi instructions from BB between its beginning...
Loop * cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, Loop *OrigLoop, ValueToValueMapTy &VMap, const Twine &NameSuffix, LoopInfo *LI, DominatorTree *DT, SmallVectorImpl< BasicBlock * > &Blocks)
Clones a loop OrigLoop.
RemapFlags
These are flags that the value mapping APIs allow.
Definition: ValueMapper.h:72
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr)
This works exactly like CloneFunctionInto, except that it does some simple constant prop and DCE on t...
void cloneNoAliasScopes(ArrayRef< MDNode * > NoAliasDeclScopes, DenseMap< MDNode *, MDNode * > &ClonedScopes, StringRef Ext, LLVMContext &Context)
Duplicate the specified list of noalias decl scopes.
MetadataSetTy FindDebugInfoToIdentityMap(CloneFunctionChangeType Changes, DebugInfoFinder &DIFinder, DISubprogram *SPClonedWithinModule)
Based on Changes and DIFinder return debug info that needs to be identity mapped during Metadata clon...
void CloneFunctionMetadataInto(Function &NewFunc, const Function &OldFunc, ValueToValueMapTy &VMap, RemapFlags RemapFlag, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataSetTy *IdentityMD=nullptr)
Clone OldFunc's metadata into NewFunc.
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
void updateProfileCallee(Function *Callee, int64_t EntryDelta, const ValueMap< const Value *, WeakTrackingVH > *VMap=nullptr)
Updates profile information by adjusting the entry count by adding EntryDelta then scaling callsite i...
void adaptNoAliasScopes(llvm::Instruction *I, const DenseMap< MDNode *, MDNode * > &ClonedScopes, LLVMContext &Context)
Adapt the metadata for the specified instruction according to the provided mapping.
InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI, bool MergeAttributes=false, AAResults *CalleeAAR=nullptr, bool InsertLifetime=true, Function *ForwardVarArgsTo=nullptr)
This function inlines the called function into the basic block of the caller.
void cloneAndAdaptNoAliasScopes(ArrayRef< MDNode * > NoAliasDeclScopes, ArrayRef< BasicBlock * > NewBlocks, LLVMContext &Context, StringRef Ext)
Clone the specified noalias decl scopes.
void remapInstructionsInBlocks(ArrayRef< BasicBlock * > Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.
CloneFunctionChangeType
Definition: Cloning.h:138
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, CloneFunctionChangeType Changes, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Clone OldFunc into NewFunc, transforming the old arguments into references to VMap values.
DISubprogram * CollectDebugInfoForCloning(const Function &F, CloneFunctionChangeType Changes, DebugInfoFinder &DIFinder)
Collect debug information such as types, compile units, and other subprograms that are reachable from...
void identifyNoAliasScopesToClone(ArrayRef< BasicBlock * > BBs, SmallVectorImpl< MDNode * > &NoAliasDeclScopes)
Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified basic blocks and extract ...
std::unique_ptr< Module > CloneModule(const Module &M)
Return an exact copy of the specified module.
Definition: CloneModule.cpp:39
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, const Instruction *StartingInst, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr)
This works like CloneAndPruneFunctionInto, except that it does not clone the entire function.
Function * CloneFunction(Function *F, ValueToValueMapTy &VMap, ClonedCodeInfo *CodeInfo=nullptr)
Return a copy of the specified function and add it to that function's module.
SmallPtrSet< const Metadata *, 16 > MetadataSetTy
Definition: ValueMapper.h:39
void CloneFunctionBodyInto(Function &NewFunc, const Function &OldFunc, ValueToValueMapTy &VMap, RemapFlags RemapFlag, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=nullptr, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr, const MetadataSetTy *IdentityMD=nullptr)
Clone OldFunc's body into NewFunc.
This struct can be used to capture information about code being cloned, while it is being cloned.
Definition: Cloning.h:63
ClonedCodeInfo()=default
bool ContainsDynamicAllocas
This is set to true if the cloned code contains a 'dynamic' alloca.
Definition: Cloning.h:74
bool isSimplified(const Value *From, const Value *To) const
Definition: Cloning.h:88
bool ContainsCalls
This is set to true if the cloned code contains a normal call instruction.
Definition: Cloning.h:65
bool ContainsMemProfMetadata
This is set to true if there is memprof related metadata (memprof or callsite metadata) in the cloned...
Definition: Cloning.h:69
DenseMap< const Value *, const Value * > OrigVMap
Like VMap, but maps only unsimplified instructions.
Definition: Cloning.h:84
std::vector< WeakTrackingVH > OperandBundleCallSites
All cloned call sites that have operand bundles attached are appended to this vector.
Definition: Cloning.h:79