LLVM 23.0.0git
TargetTransformInfo.h
Go to the documentation of this file.
1//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This pass exposes codegen information to IR-level passes. Every
10/// transformation that uses codegen information is broken into three parts:
11/// 1. The IR-level analysis pass.
12/// 2. The IR-level transformation interface which provides the needed
13/// information.
14/// 3. Codegen-level implementation which uses target-specific hooks.
15///
16/// This file defines #2, which is the interface that IR-level transformations
17/// use for querying the codegen.
18///
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/Uniformity.h"
30#include "llvm/IR/FMF.h"
31#include "llvm/IR/InstrTypes.h"
32#include "llvm/IR/PassManager.h"
33#include "llvm/Pass.h"
38#include <functional>
39#include <optional>
40#include <utility>
41
42namespace llvm {
43
44namespace Intrinsic {
45typedef unsigned ID;
46}
47
48class AllocaInst;
49class AssumptionCache;
51class DominatorTree;
52class BranchInst;
53class Function;
54class GlobalValue;
55class InstCombiner;
58class IntrinsicInst;
59class LoadInst;
60class Loop;
61class LoopInfo;
65class SCEV;
66class ScalarEvolution;
67class SmallBitVector;
68class StoreInst;
69class SwitchInst;
71class Type;
72class VPIntrinsic;
73struct KnownBits;
74
75/// Information about a load/store intrinsic defined by the target.
77 /// This is the pointer that the intrinsic is loading from or storing to.
78 /// If this is non-null, then analysis/optimization passes can assume that
79 /// this intrinsic is functionally equivalent to a load/store from this
80 /// pointer.
81 Value *PtrVal = nullptr;
82
83 // Ordering for atomic operations.
85
86 // Same Id is set by the target for corresponding load/store intrinsics.
87 unsigned short MatchingId = 0;
88
89 bool ReadMem = false;
90 bool WriteMem = false;
91 bool IsVolatile = false;
92
94
100};
101
102/// Attributes of a target dependent hardware loop.
106 Loop *L = nullptr;
109 const SCEV *ExitCount = nullptr;
111 Value *LoopDecrement = nullptr; // Decrement the loop counter by this
112 // value in every iteration.
113 bool IsNestingLegal = false; // Can a hardware loop be a parent to
114 // another hardware loop?
115 bool CounterInReg = false; // Should loop counter be updated in
116 // the loop via a phi?
117 bool PerformEntryTest = false; // Generate the intrinsic which also performs
118 // icmp ne zero on the loop counter value and
119 // produces an i1 to guard the loop entry.
121 DominatorTree &DT,
122 bool ForceNestedLoop = false,
123 bool ForceHardwareLoopPHI = false);
124 LLVM_ABI bool canAnalyze(LoopInfo &LI);
125};
126
127/// Information for memory intrinsic cost model.
129 /// Optional context instruction, if one exists, e.g. the
130 /// load/store to transform to the intrinsic.
131 const Instruction *I = nullptr;
132
133 /// Address in memory.
134 const Value *Ptr = nullptr;
135
136 /// Vector type of the data to be loaded or stored.
137 Type *DataTy = nullptr;
138
139 /// ID of the memory intrinsic.
140 Intrinsic::ID IID;
141
142 /// True when the memory access is predicated with a mask
143 /// that is not a compile-time constant.
144 bool VariableMask = true;
145
146 /// Address space of the pointer.
147 unsigned AddressSpace = 0;
148
149 /// Alignment of single element.
150 Align Alignment;
151
152public:
154 const Value *Ptr, bool VariableMask,
155 Align Alignment,
156 const Instruction *I = nullptr)
157 : I(I), Ptr(Ptr), DataTy(DataTy), IID(Id), VariableMask(VariableMask),
158 Alignment(Alignment) {}
159
161 Align Alignment,
162 unsigned AddressSpace = 0)
163 : DataTy(DataTy), IID(Id), AddressSpace(AddressSpace),
164 Alignment(Alignment) {}
165
167 bool VariableMask, Align Alignment,
168 const Instruction *I = nullptr)
169 : I(I), DataTy(DataTy), IID(Id), VariableMask(VariableMask),
170 Alignment(Alignment) {}
171
172 Intrinsic::ID getID() const { return IID; }
173 const Instruction *getInst() const { return I; }
174 const Value *getPointer() const { return Ptr; }
175 Type *getDataType() const { return DataTy; }
176 bool getVariableMask() const { return VariableMask; }
177 unsigned getAddressSpace() const { return AddressSpace; }
178 Align getAlignment() const { return Alignment; }
179};
180
182 const IntrinsicInst *II = nullptr;
183 Type *RetTy = nullptr;
184 Intrinsic::ID IID;
185 SmallVector<Type *, 4> ParamTys;
187 FastMathFlags FMF;
188 // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
189 // arguments and the return value will be computed based on types.
190 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
191 TargetLibraryInfo const *LibInfo = nullptr;
192
193public:
195 Intrinsic::ID Id, const CallBase &CI,
197 bool TypeBasedOnly = false, TargetLibraryInfo const *LibInfo = nullptr);
198
200 Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
201 FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
203
206
210 const IntrinsicInst *I = nullptr,
212 TargetLibraryInfo const *LibInfo = nullptr);
213
214 Intrinsic::ID getID() const { return IID; }
215 const IntrinsicInst *getInst() const { return II; }
216 Type *getReturnType() const { return RetTy; }
217 FastMathFlags getFlags() const { return FMF; }
218 InstructionCost getScalarizationCost() const { return ScalarizationCost; }
219 const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
220 const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
221 const TargetLibraryInfo *getLibInfo() const { return LibInfo; }
222
223 bool isTypeBasedOnly() const {
224 return Arguments.empty();
225 }
226
227 bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
228};
229
231 /// Don't use tail folding
233 /// Use predicate only to mask operations on data in the loop.
234 /// When the VL is not known to be a power-of-2, this method requires a
235 /// runtime overflow check for the i + VL in the loop because it compares the
236 /// scalar induction variable against the tripcount rounded up by VL which may
237 /// overflow. When the VL is a power-of-2, both the increment and uprounded
238 /// tripcount will overflow to 0, which does not require a runtime check
239 /// since the loop is exited when the loop induction variable equals the
240 /// uprounded trip-count, which are both 0.
242 /// Same as Data, but avoids using the get.active.lane.mask intrinsic to
243 /// calculate the mask and instead implements this with a
244 /// splat/stepvector/cmp.
245 /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the
246 /// active.lane.mask intrinsic when it is not natively supported?
248 /// Use predicate to control both data and control flow.
249 /// This method always requires a runtime overflow check for the i + VL
250 /// increment inside the loop, because it uses the result direclty in the
251 /// active.lane.mask to calculate the mask for the next iteration. If the
252 /// increment overflows, the mask is no longer correct.
254 /// Use predicate to control both data and control flow, but modify
255 /// the trip count so that a runtime overflow check can be avoided
256 /// and such that the scalar epilogue loop can always be removed.
258 /// Use predicated EVL instructions for tail-folding.
259 /// Indicates that VP intrinsics should be used.
261};
262
271
272class TargetTransformInfo;
275
276/// This pass provides access to the codegen interfaces that are needed
277/// for IR-level transformations.
279public:
281
282 /// Get the kind of extension that an instruction represents.
285 /// Get the kind of extension that a cast opcode represents.
288
289 /// Construct a TTI object using a type implementing the \c Concept
290 /// API below.
291 ///
292 /// This is used by targets to construct a TTI wrapping their target-specific
293 /// implementation that encodes appropriate costs for their target.
295 std::unique_ptr<const TargetTransformInfoImplBase> Impl);
296
297 /// Construct a baseline TTI object using a minimal implementation of
298 /// the \c Concept API below.
299 ///
300 /// The TTI implementation will reflect the information in the DataLayout
301 /// provided if non-null.
302 LLVM_ABI explicit TargetTransformInfo(const DataLayout &DL);
303
304 // Provide move semantics.
307
308 // We need to define the destructor out-of-line to define our sub-classes
309 // out-of-line.
311
312 /// Handle the invalidation of this information.
313 ///
314 /// When used as a result of \c TargetIRAnalysis this method will be called
315 /// when the function this was computed for changes. When it returns false,
316 /// the information is preserved across those changes.
318 FunctionAnalysisManager::Invalidator &) {
319 // FIXME: We should probably in some way ensure that the subtarget
320 // information for a function hasn't changed.
321 return false;
322 }
323
324 /// \name Generic Target Information
325 /// @{
326
327 /// The kind of cost model.
328 ///
329 /// There are several different cost models that can be customized by the
330 /// target. The normalization of each cost model may be target specific.
331 /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
332 /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
334 TCK_RecipThroughput, ///< Reciprocal throughput.
335 TCK_Latency, ///< The latency of instruction.
336 TCK_CodeSize, ///< Instruction code size.
337 TCK_SizeAndLatency ///< The weighted sum of size and latency.
338 };
339
340 /// Underlying constants for 'cost' values in this interface.
341 ///
342 /// Many APIs in this interface return a cost. This enum defines the
343 /// fundamental values that should be used to interpret (and produce) those
344 /// costs. The costs are returned as an int rather than a member of this
345 /// enumeration because it is expected that the cost of one IR instruction
346 /// may have a multiplicative factor to it or otherwise won't fit directly
347 /// into the enum. Moreover, it is common to sum or average costs which works
348 /// better as simple integral values. Thus this enum only provides constants.
349 /// Also note that the returned costs are signed integers to make it natural
350 /// to add, subtract, and test with zero (a common boundary condition). It is
351 /// not expected that 2^32 is a realistic cost to be modeling at any point.
352 ///
353 /// Note that these costs should usually reflect the intersection of code-size
354 /// cost and execution cost. A free instruction is typically one that folds
355 /// into another instruction. For example, reg-to-reg moves can often be
356 /// skipped by renaming the registers in the CPU, but they still are encoded
357 /// and thus wouldn't be considered 'free' here.
359 TCC_Free = 0, ///< Expected to fold away in lowering.
360 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
361 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
362 };
363
364 /// Estimate the cost of a GEP operation when lowered.
365 ///
366 /// \p PointeeType is the source element type of the GEP.
367 /// \p Ptr is the base pointer operand.
368 /// \p Operands is the list of indices following the base pointer.
369 ///
370 /// \p AccessType is a hint as to what type of memory might be accessed by
371 /// users of the GEP. getGEPCost will use it to determine if the GEP can be
372 /// folded into the addressing mode of a load/store. If AccessType is null,
373 /// then the resulting target type based off of PointeeType will be used as an
374 /// approximation.
376 getGEPCost(Type *PointeeType, const Value *Ptr,
377 ArrayRef<const Value *> Operands, Type *AccessType = nullptr,
378 TargetCostKind CostKind = TCK_SizeAndLatency) const;
379
380 /// Describe known properties for a set of pointers.
382 /// All the GEPs in a set have same base address.
383 unsigned IsSameBaseAddress : 1;
384 /// These properties only valid if SameBaseAddress is set.
385 /// True if all pointers are separated by a unit stride.
386 unsigned IsUnitStride : 1;
387 /// True if distance between any two neigbouring pointers is a known value.
388 unsigned IsKnownStride : 1;
389 unsigned Reserved : 29;
390
391 bool isSameBase() const { return IsSameBaseAddress; }
392 bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; }
394
396 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1,
397 /*IsKnownStride=*/1, 0};
398 }
400 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
401 /*IsKnownStride=*/1, 0};
402 }
404 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
405 /*IsKnownStride=*/0, 0};
406 }
407 };
408 static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?");
409
410 /// Estimate the cost of a chain of pointers (typically pointer operands of a
411 /// chain of loads or stores within same block) operations set when lowered.
412 /// \p AccessTy is the type of the loads/stores that will ultimately use the
413 /// \p Ptrs.
416 const PointersChainInfo &Info, Type *AccessTy,
417 TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
418
419 /// \returns A value by which our inlining threshold should be multiplied.
420 /// This is primarily used to bump up the inlining threshold wholesale on
421 /// targets where calls are unusually expensive.
422 ///
423 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
424 /// individual classes of instructions would be better.
426
429
430 /// \returns The bonus of inlining the last call to a static function.
432
433 /// \returns A value to be added to the inlining threshold.
434 LLVM_ABI unsigned adjustInliningThreshold(const CallBase *CB) const;
435
436 /// \returns The cost of having an Alloca in the caller if not inlined, to be
437 /// added to the threshold
438 LLVM_ABI unsigned getCallerAllocaCost(const CallBase *CB,
439 const AllocaInst *AI) const;
440
441 /// \returns Vector bonus in percent.
442 ///
443 /// Vector bonuses: We want to more aggressively inline vector-dense kernels
444 /// and apply this bonus based on the percentage of vector instructions. A
445 /// bonus is applied if the vector instructions exceed 50% and half that
446 /// amount is applied if it exceeds 10%. Note that these bonuses are some what
447 /// arbitrary and evolved over time by accident as much as because they are
448 /// principled bonuses.
449 /// FIXME: It would be nice to base the bonus values on something more
450 /// scientific. A target may has no bonus on vector instructions.
452
453 /// \return the expected cost of a memcpy, which could e.g. depend on the
454 /// source/destination type and alignment and the number of bytes copied.
456
457 /// Returns the maximum memset / memcpy size in bytes that still makes it
458 /// profitable to inline the call.
460
461 /// \return The estimated number of case clusters when lowering \p 'SI'.
462 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
463 /// table.
464 LLVM_ABI unsigned
465 getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
467 BlockFrequencyInfo *BFI) const;
468
469 /// Estimate the cost of a given IR user when lowered.
470 ///
471 /// This can estimate the cost of either a ConstantExpr or Instruction when
472 /// lowered.
473 ///
474 /// \p Operands is a list of operands which can be a result of transformations
475 /// of the current operands. The number of the operands on the list must equal
476 /// to the number of the current operands the IR user has. Their order on the
477 /// list must be the same as the order of the current operands the IR user
478 /// has.
479 ///
480 /// The returned cost is defined in terms of \c TargetCostConstants, see its
481 /// comments for a detailed explanation of the cost values.
484 TargetCostKind CostKind) const;
485
486 /// This is a helper function which calls the three-argument
487 /// getInstructionCost with \p Operands which are the current operands U has.
489 TargetCostKind CostKind) const {
490 SmallVector<const Value *, 4> Operands(U->operand_values());
491 return getInstructionCost(U, Operands, CostKind);
492 }
493
494 /// If a branch or a select condition is skewed in one direction by more than
495 /// this factor, it is very likely to be predicted correctly.
497
498 /// Returns estimated penalty of a branch misprediction in latency. Indicates
499 /// how aggressive the target wants for eliminating unpredictable branches. A
500 /// zero return value means extra optimization applied to them should be
501 /// minimal.
503
504 /// Return true if branch divergence exists.
505 ///
506 /// Branch divergence has a significantly negative impact on GPU performance
507 /// when threads in the same wavefront take different paths due to conditional
508 /// branches.
509 ///
510 /// If \p F is passed, provides a context function. If \p F is known to only
511 /// execute in a single threaded environment, the target may choose to skip
512 /// uniformity analysis and assume all values are uniform.
513 LLVM_ABI bool hasBranchDivergence(const Function *F = nullptr) const;
514
515 /// Get target-specific uniformity information for an instruction.
516 /// This allows targets to provide more fine-grained control over
517 /// uniformity analysis by specifying whether specific instructions
518 /// should always or never be considered uniform, or require custom
519 /// operand-based analysis.
520 /// \param V The value to query for uniformity information.
521 /// \return InstructionUniformity.
523
524 /// Query the target whether the specified address space cast from FromAS to
525 /// ToAS is valid.
526 LLVM_ABI bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
527
528 /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address.
529 LLVM_ABI bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const;
530
531 /// Returns the address space ID for a target's 'flat' address space. Note
532 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
533 /// refers to as the generic address space. The flat address space is a
534 /// generic address space that can be used access multiple segments of memory
535 /// with different address spaces. Access of a memory location through a
536 /// pointer with this address space is expected to be legal but slower
537 /// compared to the same memory location accessed through a pointer with a
538 /// different address space.
539 //
540 /// This is for targets with different pointer representations which can
541 /// be converted with the addrspacecast instruction. If a pointer is converted
542 /// to this address space, optimizations should attempt to replace the access
543 /// with the source address space.
544 ///
545 /// \returns ~0u if the target does not have such a flat address space to
546 /// optimize away.
547 LLVM_ABI unsigned getFlatAddressSpace() const;
548
549 /// Return any intrinsic address operand indexes which may be rewritten if
550 /// they use a flat address space pointer.
551 ///
552 /// \returns true if the intrinsic was handled.
554 Intrinsic::ID IID) const;
555
556 LLVM_ABI bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
557
558 // Given an address space cast of the given pointer value, calculate the known
559 // bits of the source pointer in the source addrspace and the destination
560 // pointer in the destination addrspace.
561 LLVM_ABI std::pair<KnownBits, KnownBits>
562 computeKnownBitsAddrSpaceCast(unsigned ToAS, const Value &PtrOp) const;
563
564 // Given an address space cast, calculate the known bits of the resulting ptr
565 // in the destination addrspace using the known bits of the source pointer in
566 // the source addrspace.
568 unsigned FromAS, unsigned ToAS, const KnownBits &FromPtrBits) const;
569
570 /// Return true if globals in this address space can have initializers other
571 /// than `undef`.
572 LLVM_ABI bool
574
575 LLVM_ABI unsigned getAssumedAddrSpace(const Value *V) const;
576
577 LLVM_ABI bool isSingleThreaded() const;
578
579 LLVM_ABI std::pair<const Value *, unsigned>
580 getPredicatedAddrSpace(const Value *V) const;
581
582 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
583 /// NewV, which has a different address space. This should happen for every
584 /// operand index that collectFlatAddressOperands returned for the intrinsic.
585 /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
586 /// new value (which may be the original \p II with modified operands).
588 Value *OldV,
589 Value *NewV) const;
590
591 /// Test whether calls to a function lower to actual program function
592 /// calls.
593 ///
594 /// The idea is to test whether the program is likely to require a 'call'
595 /// instruction or equivalent in order to call the given function.
596 ///
597 /// FIXME: It's not clear that this is a good or useful query API. Client's
598 /// should probably move to simpler cost metrics using the above.
599 /// Alternatively, we could split the cost interface into distinct code-size
600 /// and execution-speed costs. This would allow modelling the core of this
601 /// query more accurately as a call is a single small instruction, but
602 /// incurs significant execution cost.
603 LLVM_ABI bool isLoweredToCall(const Function *F) const;
604
605 struct LSRCost {
606 /// TODO: Some of these could be merged. Also, a lexical ordering
607 /// isn't always optimal.
608 unsigned Insns;
609 unsigned NumRegs;
610 unsigned AddRecCost;
611 unsigned NumIVMuls;
612 unsigned NumBaseAdds;
613 unsigned ImmCost;
614 unsigned SetupCost;
615 unsigned ScaleCost;
616 };
617
618 /// Parameters that control the generic loop unrolling transformation.
620 /// The cost threshold for the unrolled loop. Should be relative to the
621 /// getInstructionCost values returned by this API, and the expectation is
622 /// that the unrolled loop's instructions when run through that interface
623 /// should not exceed this cost. However, this is only an estimate. Also,
624 /// specific loops may be unrolled even with a cost above this threshold if
625 /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
626 /// restriction.
627 unsigned Threshold;
628 /// If complete unrolling will reduce the cost of the loop, we will boost
629 /// the Threshold by a certain percent to allow more aggressive complete
630 /// unrolling. This value provides the maximum boost percentage that we
631 /// can apply to Threshold (The value should be no less than 100).
632 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
633 /// MaxPercentThresholdBoost / 100)
634 /// E.g. if complete unrolling reduces the loop execution time by 50%
635 /// then we boost the threshold by the factor of 2x. If unrolling is not
636 /// expected to reduce the running time, then we do not increase the
637 /// threshold.
639 /// The cost threshold for the unrolled loop when optimizing for size (set
640 /// to UINT_MAX to disable).
642 /// The cost threshold for the unrolled loop, like Threshold, but used
643 /// for partial/runtime unrolling (set to UINT_MAX to disable).
645 /// The cost threshold for the unrolled loop when optimizing for size, like
646 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
647 /// UINT_MAX to disable).
649 /// A forced unrolling factor (the number of concatenated bodies of the
650 /// original loop in the unrolled loop body). When set to 0, the unrolling
651 /// transformation will select an unrolling factor based on the current cost
652 /// threshold and other factors.
653 unsigned Count;
654 /// Default unroll count for loops with run-time trip count.
656 // Set the maximum unrolling factor. The unrolling factor may be selected
657 // using the appropriate cost threshold, but may not exceed this number
658 // (set to UINT_MAX to disable). This does not apply in cases where the
659 // loop is being fully unrolled.
660 unsigned MaxCount;
661 /// Set the maximum upper bound of trip count. Allowing the MaxUpperBound
662 /// to be overrided by a target gives more flexiblity on certain cases.
663 /// By default, MaxUpperBound uses UnrollMaxUpperBound which value is 8.
665 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
666 /// applies even if full unrolling is selected. This allows a target to fall
667 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
669 // Represents number of instructions optimized when "back edge"
670 // becomes "fall through" in unrolled loop.
671 // For now we count a conditional branch on a backedge and a comparison
672 // feeding it.
673 unsigned BEInsns;
674 /// Allow partial unrolling (unrolling of loops to expand the size of the
675 /// loop body, not only to eliminate small constant-trip-count loops).
677 /// Allow runtime unrolling (unrolling of loops to expand the size of the
678 /// loop body even when the number of loop iterations is not known at
679 /// compile time).
681 /// Allow generation of a loop remainder (extra iterations after unroll).
683 /// Allow emitting expensive instructions (such as divisions) when computing
684 /// the trip count of a loop for runtime unrolling.
686 /// Apply loop unroll on any kind of loop
687 /// (mainly to loops that fail runtime unrolling).
688 bool Force;
689 /// Allow using trip count upper bound to unroll loops.
691 /// Allow unrolling of all the iterations of the runtime loop remainder.
693 /// Allow unroll and jam. Used to enable unroll and jam for the target.
695 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
696 /// value above is used during unroll and jam for the outer loop size.
697 /// This value is used in the same manner to limit the size of the inner
698 /// loop.
700 /// Don't allow loop unrolling to simulate more than this number of
701 /// iterations when checking full unroll profitability
703 /// Don't disable runtime unroll for the loops which were vectorized.
705 /// Don't allow runtime unrolling if expanding the trip count takes more
706 /// than SCEVExpansionBudget.
708 /// Allow runtime unrolling multi-exit loops. Should only be set if the
709 /// target determined that multi-exit unrolling is profitable for the loop.
710 /// Fall back to the generic logic to determine whether multi-exit unrolling
711 /// is profitable if set to false.
713 /// Allow unrolling to add parallel reduction phis.
715 };
716
717 /// Get target-customized preferences for the generic loop unrolling
718 /// transformation. The caller will initialize UP with the current
719 /// target-independent defaults.
722 OptimizationRemarkEmitter *ORE) const;
723
724 /// Query the target whether it would be profitable to convert the given loop
725 /// into a hardware loop.
727 AssumptionCache &AC,
728 TargetLibraryInfo *LibInfo,
729 HardwareLoopInfo &HWLoopInfo) const;
730
731 // Query the target for which minimum vectorization factor epilogue
732 // vectorization should be considered.
734
735 /// Query the target whether it would be prefered to create a predicated
736 /// vector loop, which can avoid the need to emit a scalar epilogue loop.
738
739 /// Query the target what the preferred style of tail folding is.
740 /// \param IVUpdateMayOverflow Tells whether it is known if the IV update
741 /// may (or will never) overflow for the suggested VF/UF in the given loop.
742 /// Targets can use this information to select a more optimal tail folding
743 /// style. The value conservatively defaults to true, such that no assumptions
744 /// are made on overflow.
746 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const;
747
748 // Parameters that control the loop peeling transformation
750 /// A forced peeling factor (the number of bodied of the original loop
751 /// that should be peeled off before the loop body). When set to 0, the
752 /// a peeling factor based on profile information and other factors.
753 unsigned PeelCount;
754 /// Allow peeling off loop iterations.
756 /// Allow peeling off loop iterations for loop nests.
758 /// Allow peeling basing on profile. Uses to enable peeling off all
759 /// iterations basing on provided profile.
760 /// If the value is true the peeling cost model can decide to peel only
761 /// some iterations and in this case it will set this to false.
763
764 /// Peel off the last PeelCount loop iterations.
766 };
767
768 /// Get target-customized preferences for the generic loop peeling
769 /// transformation. The caller will initialize \p PP with the current
770 /// target-independent defaults with information from \p L and \p SE.
772 PeelingPreferences &PP) const;
773
774 /// Targets can implement their own combinations for target-specific
775 /// intrinsics. This function will be called from the InstCombine pass every
776 /// time a target-specific intrinsic is encountered.
777 ///
778 /// \returns std::nullopt to not do anything target specific or a value that
779 /// will be returned from the InstCombiner. It is possible to return null and
780 /// stop further processing of the intrinsic by returning nullptr.
781 LLVM_ABI std::optional<Instruction *>
783 /// Can be used to implement target-specific instruction combining.
784 /// \see instCombineIntrinsic
785 LLVM_ABI std::optional<Value *>
787 APInt DemandedMask, KnownBits &Known,
788 bool &KnownBitsComputed) const;
789 /// Can be used to implement target-specific instruction combining.
790 /// \see instCombineIntrinsic
791 LLVM_ABI std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
792 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
793 APInt &UndefElts2, APInt &UndefElts3,
794 std::function<void(Instruction *, unsigned, APInt, APInt &)>
795 SimplifyAndSetOp) const;
796 /// @}
797
798 /// \name Scalar Target Information
799 /// @{
800
801 /// Flags indicating the kind of support for population count.
802 ///
803 /// Compared to the SW implementation, HW support is supposed to
804 /// significantly boost the performance when the population is dense, and it
805 /// may or may not degrade performance if the population is sparse. A HW
806 /// support is considered as "Fast" if it can outperform, or is on a par
807 /// with, SW implementation when the population is sparse; otherwise, it is
808 /// considered as "Slow".
810
811 /// Return true if the specified immediate is legal add immediate, that
812 /// is the target has add instructions which can add a register with the
813 /// immediate without having to materialize the immediate into a register.
814 LLVM_ABI bool isLegalAddImmediate(int64_t Imm) const;
815
816 /// Return true if adding the specified scalable immediate is legal, that is
817 /// the target has add instructions which can add a register with the
818 /// immediate (multiplied by vscale) without having to materialize the
819 /// immediate into a register.
820 LLVM_ABI bool isLegalAddScalableImmediate(int64_t Imm) const;
821
822 /// Return true if the specified immediate is legal icmp immediate,
823 /// that is the target has icmp instructions which can compare a register
824 /// against the immediate without having to materialize the immediate into a
825 /// register.
826 LLVM_ABI bool isLegalICmpImmediate(int64_t Imm) const;
827
828 /// Return true if the addressing mode represented by AM is legal for
829 /// this target, for a load/store of the specified type.
830 /// The type may be VoidTy, in which case only return true if the addressing
831 /// mode is legal for a load/store of any legal type.
832 /// If target returns true in LSRWithInstrQueries(), I may be valid.
833 /// \param ScalableOffset represents a quantity of bytes multiplied by vscale,
834 /// an invariant value known only at runtime. Most targets should not accept
835 /// a scalable offset.
836 ///
837 /// TODO: Handle pre/postinc as well.
839 int64_t BaseOffset, bool HasBaseReg,
840 int64_t Scale, unsigned AddrSpace = 0,
841 Instruction *I = nullptr,
842 int64_t ScalableOffset = 0) const;
843
844 /// Return true if LSR cost of C1 is lower than C2.
846 const TargetTransformInfo::LSRCost &C2) const;
847
848 /// Return true if LSR major cost is number of registers. Targets which
849 /// implement their own isLSRCostLess and unset number of registers as major
850 /// cost should return false, otherwise return true.
852
853 /// Return true if LSR should drop a found solution if it's calculated to be
854 /// less profitable than the baseline.
856
857 /// \returns true if LSR should not optimize a chain that includes \p I.
859
860 /// Return true if the target can fuse a compare and branch.
861 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
862 /// calculation for the instructions in a loop.
863 LLVM_ABI bool canMacroFuseCmp() const;
864
865 /// Return true if the target can save a compare for loop count, for example
866 /// hardware loop saves a compare.
869 TargetLibraryInfo *LibInfo) const;
870
871 /// Which addressing mode Loop Strength Reduction will try to generate.
873 AMK_None = 0x0, ///< Don't prefer any addressing mode
874 AMK_PreIndexed = 0x1, ///< Prefer pre-indexed addressing mode
875 AMK_PostIndexed = 0x2, ///< Prefer post-indexed addressing mode
876 AMK_All = 0x3, ///< Consider all addressing modes
877 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/AMK_All)
878 };
879
880 /// Return the preferred addressing mode LSR should make efforts to generate.
883
884 /// Some targets only support masked load/store with a constant mask.
889
890 /// Return true if the target supports masked store.
891 LLVM_ABI bool
892 isLegalMaskedStore(Type *DataType, Align Alignment, unsigned AddressSpace,
894 /// Return true if the target supports masked load.
895 LLVM_ABI bool
896 isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned AddressSpace,
898
899 /// Return true if the target supports nontemporal store.
900 LLVM_ABI bool isLegalNTStore(Type *DataType, Align Alignment) const;
901 /// Return true if the target supports nontemporal load.
902 LLVM_ABI bool isLegalNTLoad(Type *DataType, Align Alignment) const;
903
904 /// \Returns true if the target supports broadcasting a load to a vector of
905 /// type <NumElements x ElementTy>.
906 LLVM_ABI bool isLegalBroadcastLoad(Type *ElementTy,
907 ElementCount NumElements) const;
908
909 /// Return true if the target supports masked scatter.
910 LLVM_ABI bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
911 /// Return true if the target supports masked gather.
912 LLVM_ABI bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
913 /// Return true if the target forces scalarizing of llvm.masked.gather
914 /// intrinsics.
916 Align Alignment) const;
917 /// Return true if the target forces scalarizing of llvm.masked.scatter
918 /// intrinsics.
920 Align Alignment) const;
921
922 /// Return true if the target supports masked compress store.
924 Align Alignment) const;
925 /// Return true if the target supports masked expand load.
926 LLVM_ABI bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const;
927
928 /// Return true if the target supports strided load.
929 LLVM_ABI bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const;
930
931 /// Return true is the target supports interleaved access for the given vector
932 /// type \p VTy, interleave factor \p Factor, alignment \p Alignment and
933 /// address space \p AddrSpace.
934 LLVM_ABI bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
935 Align Alignment,
936 unsigned AddrSpace) const;
937
938 // Return true if the target supports masked vector histograms.
940 Type *DataType) const;
941
942 /// Return true if this is an alternating opcode pattern that can be lowered
943 /// to a single instruction on the target. In X86 this is for the addsub
944 /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
945 /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
946 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
947 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
948 /// \p VecTy is the vector type of the instruction to be generated.
949 LLVM_ABI bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
950 unsigned Opcode1,
951 const SmallBitVector &OpcodeMask) const;
952
953 /// Return true if we should be enabling ordered reductions for the target.
955
956 /// Return true if the target has a unified operation to calculate division
957 /// and remainder. If so, the additional implicit multiplication and
958 /// subtraction required to calculate a remainder from division are free. This
959 /// can enable more aggressive transformations for division and remainder than
960 /// would typically be allowed using throughput or size cost models.
961 LLVM_ABI bool hasDivRemOp(Type *DataType, bool IsSigned) const;
962
963 /// Return true if the given instruction (assumed to be a memory access
964 /// instruction) has a volatile variant. If that's the case then we can avoid
965 /// addrspacecast to generic AS for volatile loads/stores. Default
966 /// implementation returns false, which prevents address space inference for
967 /// volatile loads/stores.
968 LLVM_ABI bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
969
970 /// Return true if target doesn't mind addresses in vectors.
972
973 /// Return the cost of the scaling factor used in the addressing
974 /// mode represented by AM for this target, for a load/store
975 /// of the specified type.
976 /// If the AM is supported, the return value must be >= 0.
977 /// If the AM is not supported, it returns a negative value.
978 /// TODO: Handle pre/postinc as well.
980 StackOffset BaseOffset,
981 bool HasBaseReg, int64_t Scale,
982 unsigned AddrSpace = 0) const;
983
984 /// Return true if the loop strength reduce pass should make
985 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
986 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
987 /// immediate offset and no index register.
988 LLVM_ABI bool LSRWithInstrQueries() const;
989
990 /// Return true if it's free to truncate a value of type Ty1 to type
991 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
992 /// by referencing its sub-register AX.
993 LLVM_ABI bool isTruncateFree(Type *Ty1, Type *Ty2) const;
994
995 /// Return true if it is profitable to hoist instruction in the
996 /// then/else to before if.
998
999 LLVM_ABI bool useAA() const;
1000
1001 /// Return true if this type is legal.
1002 LLVM_ABI bool isTypeLegal(Type *Ty) const;
1003
1004 /// Returns the estimated number of registers required to represent \p Ty.
1005 LLVM_ABI unsigned getRegUsageForType(Type *Ty) const;
1006
1007 /// Return true if switches should be turned into lookup tables for the
1008 /// target.
1009 LLVM_ABI bool shouldBuildLookupTables() const;
1010
1011 /// Return true if switches should be turned into lookup tables
1012 /// containing this constant value for the target.
1014
1015 /// Return true if lookup tables should be turned into relative lookup tables.
1017
1018 /// Return true if the input function which is cold at all call sites,
1019 /// should use coldcc calling convention.
1021
1022 /// Return true if the input function is internal, should use fastcc calling
1023 /// convention.
1025
1027
1028 /// Identifies if the vector form of the intrinsic has a scalar operand.
1030 unsigned ScalarOpdIdx) const;
1031
1032 /// Identifies if the vector form of the intrinsic is overloaded on the type
1033 /// of the operand at index \p OpdIdx, or on the return type if \p OpdIdx is
1034 /// -1.
1036 int OpdIdx) const;
1037
1038 /// Identifies if the vector form of the intrinsic that returns a struct is
1039 /// overloaded at the struct element index \p RetIdx.
1040 LLVM_ABI bool
1042 int RetIdx) const;
1043
1044 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
1045 /// are set if the demanded result elements need to be inserted and/or
1046 /// extracted from vectors. The involved values may be passed in VL if
1047 /// Insert is true.
1049 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
1050 TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
1051 ArrayRef<Value *> VL = {}) const;
1052
1053 /// Estimate the overhead of scalarizing operands with the given types. The
1054 /// (potentially vector) types to use for each of argument are passes via Tys.
1057
1058 /// If target has efficient vector element load/store instructions, it can
1059 /// return true here so that insertion/extraction costs are not added to
1060 /// the scalarization cost of a load/store.
1062
1063 /// If the target supports tail calls.
1064 LLVM_ABI bool supportsTailCalls() const;
1065
1066 /// If target supports tail call on \p CB
1067 LLVM_ABI bool supportsTailCallFor(const CallBase *CB) const;
1068
1069 /// Don't restrict interleaved unrolling to small loops.
1070 LLVM_ABI bool enableAggressiveInterleaving(bool LoopHasReductions) const;
1071
1072 /// Returns options for expansion of memcmp. IsZeroCmp is
1073 // true if this is the expansion of memcmp(p1, p2, s) == 0.
1075 // Return true if memcmp expansion is enabled.
1076 operator bool() const { return MaxNumLoads > 0; }
1077
1078 // Maximum number of load operations.
1079 unsigned MaxNumLoads = 0;
1080
1081 // The list of available load sizes (in bytes), sorted in decreasing order.
1083
1084 // For memcmp expansion when the memcmp result is only compared equal or
1085 // not-equal to 0, allow up to this number of load pairs per block. As an
1086 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
1087 // a0 = load2bytes &a[0]
1088 // b0 = load2bytes &b[0]
1089 // a2 = load1byte &a[2]
1090 // b2 = load1byte &b[2]
1091 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
1092 unsigned NumLoadsPerBlock = 1;
1093
1094 // Set to true to allow overlapping loads. For example, 7-byte compares can
1095 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
1096 // requires all loads in LoadSizes to be doable in an unaligned way.
1098
1099 // Sometimes, the amount of data that needs to be compared is smaller than
1100 // the standard register size, but it cannot be loaded with just one load
1101 // instruction. For example, if the size of the memory comparison is 6
1102 // bytes, we can handle it more efficiently by loading all 6 bytes in a
1103 // single block and generating an 8-byte number, instead of generating two
1104 // separate blocks with conditional jumps for 4 and 2 byte loads. This
1105 // approach simplifies the process and produces the comparison result as
1106 // normal. This array lists the allowed sizes of memcmp tails that can be
1107 // merged into one block
1109 };
1111 bool IsZeroCmp) const;
1112
1113 /// Should the Select Optimization pass be enabled and ran.
1114 LLVM_ABI bool enableSelectOptimize() const;
1115
1116 /// Should the Select Optimization pass treat the given instruction like a
1117 /// select, potentially converting it to a conditional branch. This can
1118 /// include select-like instructions like or(zext(c), x) that can be converted
1119 /// to selects.
1121
1122 /// Enable matching of interleaved access groups.
1124
1125 /// Enable matching of interleaved access groups that contain predicated
1126 /// accesses or gaps and therefore vectorized using masked
1127 /// vector loads/stores.
1129
1130 /// Indicate that it is potentially unsafe to automatically vectorize
1131 /// floating-point operations because the semantics of vector and scalar
1132 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
1133 /// does not support IEEE-754 denormal numbers, while depending on the
1134 /// platform, scalar floating-point math does.
1135 /// This applies to floating-point math operations and calls, not memory
1136 /// operations, shuffles, or casts.
1138
1139 /// Determine if the target supports unaligned memory accesses.
1141 unsigned BitWidth,
1142 unsigned AddressSpace = 0,
1143 Align Alignment = Align(1),
1144 unsigned *Fast = nullptr) const;
1145
1146 /// Return hardware support for population count.
1147 LLVM_ABI PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
1148
1149 /// Return true if the hardware has a fast square-root instruction.
1150 LLVM_ABI bool haveFastSqrt(Type *Ty) const;
1151
1152 /// Return true if the cost of the instruction is too high to speculatively
1153 /// execute and should be kept behind a branch.
1154 /// This normally just wraps around a getInstructionCost() call, but some
1155 /// targets might report a low TCK_SizeAndLatency value that is incompatible
1156 /// with the fixed TCC_Expensive value.
1157 /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
1159
1160 /// Return true if it is faster to check if a floating-point value is NaN
1161 /// (or not-NaN) versus a comparison against a constant FP zero value.
1162 /// Targets should override this if materializing a 0.0 for comparison is
1163 /// generally as cheap as checking for ordered/unordered.
1165
1166 /// Return the expected cost of supporting the floating point operation
1167 /// of the specified type.
1169
1170 /// Return the expected cost of materializing for the given integer
1171 /// immediate of the specified type.
1173 TargetCostKind CostKind) const;
1174
1175 /// Return the expected cost of materialization for the given integer
1176 /// immediate of the specified type for a given instruction. The cost can be
1177 /// zero if the immediate can be folded into the specified instruction.
1178 LLVM_ABI InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1179 const APInt &Imm, Type *Ty,
1181 Instruction *Inst = nullptr) const;
1183 const APInt &Imm, Type *Ty,
1184 TargetCostKind CostKind) const;
1185
1186 /// Return the expected cost for the given integer when optimising
1187 /// for size. This is different than the other integer immediate cost
1188 /// functions in that it is subtarget agnostic. This is useful when you e.g.
1189 /// target one ISA such as Aarch32 but smaller encodings could be possible
1190 /// with another such as Thumb. This return value is used as a penalty when
1191 /// the total costs for a constant is calculated (the bigger the cost, the
1192 /// more beneficial constant hoisting is).
1193 LLVM_ABI InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1194 const APInt &Imm,
1195 Type *Ty) const;
1196
1197 /// It can be advantageous to detach complex constants from their uses to make
1198 /// their generation cheaper. This hook allows targets to report when such
1199 /// transformations might negatively effect the code generation of the
1200 /// underlying operation. The motivating example is divides whereby hoisting
1201 /// constants prevents the code generator's ability to transform them into
1202 /// combinations of simpler operations.
1204 const Function &Fn) const;
1205
1206 /// @}
1207
1208 /// \name Vector Target Information
1209 /// @{
1210
1211 /// The various kinds of shuffle patterns for vector queries.
1213 SK_Broadcast, ///< Broadcast element 0 to all other elements.
1214 SK_Reverse, ///< Reverse the order of the vector.
1215 SK_Select, ///< Selects elements from the corresponding lane of
1216 ///< either source operand. This is equivalent to a
1217 ///< vector select with a constant condition operand.
1218 SK_Transpose, ///< Transpose two vectors.
1219 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
1220 SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
1221 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
1222 ///< with any shuffle mask.
1223 SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
1224 ///< shuffle mask.
1225 SK_Splice ///< Concatenates elements from the first input vector
1226 ///< with elements of the second input vector. Returning
1227 ///< a vector of the same type as the input vectors.
1228 ///< Index indicates start offset in first input vector.
1229 };
1230
1231 /// Additional information about an operand's possible values.
1233 OK_AnyValue, // Operand can have any value.
1234 OK_UniformValue, // Operand is uniform (splat of a value).
1235 OK_UniformConstantValue, // Operand is uniform constant.
1236 OK_NonUniformConstantValue // Operand is a non uniform constant value.
1237 };
1238
1239 /// Additional properties of an operand's values.
1245
1246 // Describe the values an operand can take. We're in the process
1247 // of migrating uses of OperandValueKind and OperandValueProperties
1248 // to use this class, and then will change the internal representation.
1252
1253 bool isConstant() const {
1255 }
1256 bool isUniform() const {
1258 }
1259 bool isPowerOf2() const {
1260 return Properties == OP_PowerOf2;
1261 }
1262 bool isNegatedPowerOf2() const {
1264 }
1265
1267 return {Kind, OP_None};
1268 }
1269 };
1270
1271 /// \return the number of registers in the target-provided register class.
1272 LLVM_ABI unsigned getNumberOfRegisters(unsigned ClassID) const;
1273
1274 /// \return true if the target supports load/store that enables fault
1275 /// suppression of memory operands when the source condition is false.
1276 LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const;
1277
1278 /// \return the target-provided register class ID for the provided type,
1279 /// accounting for type promotion and other type-legalization techniques that
1280 /// the target might apply. However, it specifically does not account for the
1281 /// scalarization or splitting of vector types. Should a vector type require
1282 /// scalarization or splitting into multiple underlying vector registers, that
1283 /// type should be mapped to a register class containing no registers.
1284 /// Specifically, this is designed to provide a simple, high-level view of the
1285 /// register allocation later performed by the backend. These register classes
1286 /// don't necessarily map onto the register classes used by the backend.
1287 /// FIXME: It's not currently possible to determine how many registers
1288 /// are used by the provided type.
1290 Type *Ty = nullptr) const;
1291
1292 /// \return the target-provided register class name
1293 LLVM_ABI const char *getRegisterClassName(unsigned ClassID) const;
1294
1296
1297 /// \return The width of the largest scalar or vector register type.
1298 LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const;
1299
1300 /// \return The width of the smallest vector register type.
1301 LLVM_ABI unsigned getMinVectorRegisterBitWidth() const;
1302
1303 /// \return The maximum value of vscale if the target specifies an
1304 /// architectural maximum vector length, and std::nullopt otherwise.
1305 LLVM_ABI std::optional<unsigned> getMaxVScale() const;
1306
1307 /// \return the value of vscale to tune the cost model for.
1308 LLVM_ABI std::optional<unsigned> getVScaleForTuning() const;
1309
1310 /// \return true if vscale is known to be a power of 2
1312
1313 /// \return True if the vectorization factor should be chosen to
1314 /// make the vector of the smallest element type match the size of a
1315 /// vector register. For wider element types, this could result in
1316 /// creating vectors that span multiple vector registers.
1317 /// If false, the vectorization factor will be chosen based on the
1318 /// size of the widest element type.
1319 /// \p K Register Kind for vectorization.
1320 LLVM_ABI bool
1322
1323 /// \return The minimum vectorization factor for types of given element
1324 /// bit width, or 0 if there is no minimum VF. The returned value only
1325 /// applies when shouldMaximizeVectorBandwidth returns true.
1326 /// If IsScalable is true, the returned ElementCount must be a scalable VF.
1327 LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
1328
1329 /// \return The maximum vectorization factor for types of given element
1330 /// bit width and opcode, or 0 if there is no maximum VF.
1331 /// Currently only used by the SLP vectorizer.
1332 LLVM_ABI unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
1333
1334 /// \return The minimum vectorization factor for the store instruction. Given
1335 /// the initial estimation of the minimum vector factor and store value type,
1336 /// it tries to find possible lowest VF, which still might be profitable for
1337 /// the vectorization.
1338 /// \param VF Initial estimation of the minimum vector factor.
1339 /// \param ScalarMemTy Scalar memory type of the store operation.
1340 /// \param ScalarValTy Scalar type of the stored value.
1341 /// Currently only used by the SLP vectorizer.
1342 LLVM_ABI unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1343 Type *ScalarValTy) const;
1344
1345 /// \return True if it should be considered for address type promotion.
1346 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
1347 /// profitable without finding other extensions fed by the same input.
1349 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
1350
1351 /// \return The size of a cache line in bytes.
1352 LLVM_ABI unsigned getCacheLineSize() const;
1353
1354 /// The possible cache levels
1355 enum class CacheLevel {
1356 L1D, // The L1 data cache
1357 L2D, // The L2 data cache
1358
1359 // We currently do not model L3 caches, as their sizes differ widely between
1360 // microarchitectures. Also, we currently do not have a use for L3 cache
1361 // size modeling yet.
1362 };
1363
1364 /// \return The size of the cache level in bytes, if available.
1365 LLVM_ABI std::optional<unsigned> getCacheSize(CacheLevel Level) const;
1366
1367 /// \return The associativity of the cache level, if available.
1368 LLVM_ABI std::optional<unsigned>
1369 getCacheAssociativity(CacheLevel Level) const;
1370
1371 /// \return The minimum architectural page size for the target.
1372 LLVM_ABI std::optional<unsigned> getMinPageSize() const;
1373
1374 /// \return How much before a load we should place the prefetch
1375 /// instruction. This is currently measured in number of
1376 /// instructions.
1377 LLVM_ABI unsigned getPrefetchDistance() const;
1378
1379 /// Some HW prefetchers can handle accesses up to a certain constant stride.
1380 /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
1381 /// and the arguments provided are meant to serve as a basis for deciding this
1382 /// for a particular loop.
1383 ///
1384 /// \param NumMemAccesses Number of memory accesses in the loop.
1385 /// \param NumStridedMemAccesses Number of the memory accesses that
1386 /// ScalarEvolution could find a known stride
1387 /// for.
1388 /// \param NumPrefetches Number of software prefetches that will be
1389 /// emitted as determined by the addresses
1390 /// involved and the cache line size.
1391 /// \param HasCall True if the loop contains a call.
1392 ///
1393 /// \return This is the minimum stride in bytes where it makes sense to start
1394 /// adding SW prefetches. The default is 1, i.e. prefetch with any
1395 /// stride.
1396 LLVM_ABI unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1397 unsigned NumStridedMemAccesses,
1398 unsigned NumPrefetches,
1399 bool HasCall) const;
1400
1401 /// \return The maximum number of iterations to prefetch ahead. If
1402 /// the required number of iterations is more than this number, no
1403 /// prefetching is performed.
1404 LLVM_ABI unsigned getMaxPrefetchIterationsAhead() const;
1405
1406 /// \return True if prefetching should also be done for writes.
1407 LLVM_ABI bool enableWritePrefetching() const;
1408
1409 /// \return if target want to issue a prefetch in address space \p AS.
1410 LLVM_ABI bool shouldPrefetchAddressSpace(unsigned AS) const;
1411
1412 /// \return The cost of a partial reduction, which is a reduction from a
1413 /// vector to another vector with fewer elements of larger size. They are
1414 /// represented by the llvm.vector.partial.reduce.add intrinsic, which
1415 /// takes an accumulator of type \p AccumType and a second vector operand to
1416 /// be accumulated, whose element count is specified by \p VF. The type of
1417 /// reduction is specified by \p Opcode. The second operand passed to the
1418 /// intrinsic could be the result of an extend, such as sext or zext. In
1419 /// this case \p BinOp is nullopt, \p InputTypeA represents the type being
1420 /// extended and \p OpAExtend the operation, i.e. sign- or zero-extend.
1421 /// Also, \p InputTypeB should be nullptr and OpBExtend should be None.
1422 /// Alternatively, the second operand could be the result of a binary
1423 /// operation performed on two extends, i.e.
1424 /// mul(zext i8 %a -> i32, zext i8 %b -> i32).
1425 /// In this case \p BinOp may specify the opcode of the binary operation,
1426 /// \p InputTypeA and \p InputTypeB the types being extended, and
1427 /// \p OpAExtend, \p OpBExtend the form of extensions. An example of an
1428 /// operation that uses a partial reduction is a dot product, which reduces
1429 /// two vectors in binary mul operation to another of 4 times fewer and 4
1430 /// times larger elements.
1432 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
1434 PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
1436
1437 /// \return The maximum interleave factor that any transform should try to
1438 /// perform for this target. This number depends on the level of parallelism
1439 /// and the number of execution units in the CPU.
1440 LLVM_ABI unsigned getMaxInterleaveFactor(ElementCount VF) const;
1441
1442 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1443 LLVM_ABI static OperandValueInfo getOperandInfo(const Value *V);
1444
1445 /// This is an approximation of reciprocal throughput of a math/logic op.
1446 /// A higher cost indicates less expected throughput.
1447 /// From Agner Fog's guides, reciprocal throughput is "the average number of
1448 /// clock cycles per instruction when the instructions are not part of a
1449 /// limiting dependency chain."
1450 /// Therefore, costs should be scaled to account for multiple execution units
1451 /// on the target that can process this type of instruction. For example, if
1452 /// there are 5 scalar integer units and 2 vector integer units that can
1453 /// calculate an 'add' in a single cycle, this model should indicate that the
1454 /// cost of the vector add instruction is 2.5 times the cost of the scalar
1455 /// add instruction.
1456 /// \p Args is an optional argument which holds the instruction operands
1457 /// values so the TTI can analyze those values searching for special
1458 /// cases or optimizations based on those values.
1459 /// \p CxtI is the optional original context instruction, if one exists, to
1460 /// provide even more information.
1461 /// \p TLibInfo is used to search for platform specific vector library
1462 /// functions for instructions that might be converted to calls (e.g. frem).
1464 unsigned Opcode, Type *Ty,
1468 ArrayRef<const Value *> Args = {}, const Instruction *CxtI = nullptr,
1469 const TargetLibraryInfo *TLibInfo = nullptr) const;
1470
1471 /// Returns the cost estimation for alternating opcode pattern that can be
1472 /// lowered to a single instruction on the target. In X86 this is for the
1473 /// addsub instruction which corrsponds to a Shuffle + Fadd + FSub pattern in
1474 /// IR. This function expects two opcodes: \p Opcode1 and \p Opcode2 being
1475 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
1476 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
1477 /// \p VecTy is the vector type of the instruction to be generated.
1479 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
1480 const SmallBitVector &OpcodeMask,
1482
1483 /// \return The cost of a shuffle instruction of kind Kind with inputs of type
1484 /// SrcTy, producing a vector of type DstTy. The exact mask may be passed as
1485 /// Mask, or else the array will be empty. The Index and SubTp parameters
1486 /// are used by the subvector insertions shuffle kinds to show the insert
1487 /// point and the type of the subvector being inserted. The operands of the
1488 /// shuffle can be passed through \p Args, which helps improve the cost
1489 /// estimation in some cases, like in broadcast loads.
1491 ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy,
1492 ArrayRef<int> Mask = {},
1494 VectorType *SubTp = nullptr, ArrayRef<const Value *> Args = {},
1495 const Instruction *CxtI = nullptr) const;
1496
1497 /// Represents a hint about the context in which a cast is used.
1498 ///
1499 /// For zext/sext, the context of the cast is the operand, which must be a
1500 /// load of some kind. For trunc, the context is of the cast is the single
1501 /// user of the instruction, which must be a store of some kind.
1502 ///
1503 /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1504 /// type of cast it's dealing with, as not every cast is equal. For instance,
1505 /// the zext of a load may be free, but the zext of an interleaving load can
1506 //// be (very) expensive!
1507 ///
1508 /// See \c getCastContextHint to compute a CastContextHint from a cast
1509 /// Instruction*. Callers can use it if they don't need to override the
1510 /// context and just want it to be calculated from the instruction.
1511 ///
1512 /// FIXME: This handles the types of load/store that the vectorizer can
1513 /// produce, which are the cases where the context instruction is most
1514 /// likely to be incorrect. There are other situations where that can happen
1515 /// too, which might be handled here but in the long run a more general
1516 /// solution of costing multiple instructions at the same times may be better.
1518 None, ///< The cast is not used with a load/store of any kind.
1519 Normal, ///< The cast is used with a normal load/store.
1520 Masked, ///< The cast is used with a masked load/store.
1521 GatherScatter, ///< The cast is used with a gather/scatter.
1522 Interleave, ///< The cast is used with an interleaved load/store.
1523 Reversed, ///< The cast is used with a reversed load/store.
1524 };
1525
1526 /// Calculates a CastContextHint from \p I.
1527 /// This should be used by callers of getCastInstrCost if they wish to
1528 /// determine the context from some instruction.
1529 /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1530 /// or if it's another type of cast.
1532
1533 /// \return The expected cost of cast instructions, such as bitcast, trunc,
1534 /// zext, etc. If there is an existing instruction that holds Opcode, it
1535 /// may be passed in the 'I' parameter.
1537 unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH,
1539 const Instruction *I = nullptr) const;
1540
1541 /// \return The expected cost of a sign- or zero-extended vector extract. Use
1542 /// Index = -1 to indicate that there is no information about the index value.
1544 getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1545 unsigned Index, TTI::TargetCostKind CostKind) const;
1546
1547 /// \return The expected cost of control-flow related instructions such as
1548 /// Phi, Ret, Br, Switch.
1551 const Instruction *I = nullptr) const;
1552
1553 /// \returns The expected cost of compare and select instructions. If there
1554 /// is an existing instruction that holds Opcode, it may be passed in the
1555 /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1556 /// is using a compare with the specified predicate as condition. When vector
1557 /// types are passed, \p VecPred must be used for all lanes. For a
1558 /// comparison, the two operands are the natural values. For a select, the
1559 /// two operands are the *value* operands, not the condition operand.
1561 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
1563 OperandValueInfo Op1Info = {OK_AnyValue, OP_None},
1564 OperandValueInfo Op2Info = {OK_AnyValue, OP_None},
1565 const Instruction *I = nullptr) const;
1566
1567 /// \return The expected cost of vector Insert and Extract.
1568 /// Use -1 to indicate that there is no information on the index value.
1569 /// This is used when the instruction is not available; a typical use
1570 /// case is to provision the cost of vectorization/scalarization in
1571 /// vectorizer passes.
1572 LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1574 unsigned Index = -1,
1575 const Value *Op0 = nullptr,
1576 const Value *Op1 = nullptr) const;
1577
1578 /// \return The expected cost of vector Insert and Extract.
1579 /// Use -1 to indicate that there is no information on the index value.
1580 /// This is used when the instruction is not available; a typical use
1581 /// case is to provision the cost of vectorization/scalarization in
1582 /// vectorizer passes.
1583 /// \param ScalarUserAndIdx encodes the information about extracts from a
1584 /// vector with 'Scalar' being the value being extracted,'User' being the user
1585 /// of the extract(nullptr if user is not known before vectorization) and
1586 /// 'Idx' being the extract lane.
1588 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
1589 Value *Scalar,
1590 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) const;
1591
1592 /// \return The expected cost of vector Insert and Extract.
1593 /// This is used when instruction is available, and implementation
1594 /// asserts 'I' is not nullptr.
1595 ///
1596 /// A typical suitable use case is cost estimation when vector instruction
1597 /// exists (e.g., from basic blocks during transformation).
1598 LLVM_ABI InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1600 unsigned Index = -1) const;
1601
1602 /// \return The expected cost of inserting or extracting a lane that is \p
1603 /// Index elements from the end of a vector, i.e. the mathematical expression
1604 /// for the lane is (VF - 1 - Index). This is required for scalable vectors
1605 /// where the exact lane index is unknown at compile time.
1607 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind,
1608 unsigned Index) const;
1609
1610 /// \return The expected cost of aggregate inserts and extracts. This is
1611 /// used when the instruction is not available; a typical use case is to
1612 /// provision the cost of vectorization/scalarization in vectorizer passes.
1614 unsigned Opcode, TTI::TargetCostKind CostKind) const;
1615
1616 /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
1617 /// \p ReplicationFactor times.
1618 ///
1619 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
1620 /// <0,0,0,1,1,1,2,2,2,3,3,3>
1622 Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
1624
1625 /// \return The cost of Load and Store instructions. The operand info
1626 /// \p OpdInfo should refer to the stored value for stores and the address
1627 /// for loads.
1629 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1632 const Instruction *I = nullptr) const;
1633
1634 /// \return The cost of the interleaved memory operation.
1635 /// \p Opcode is the memory operation code
1636 /// \p VecTy is the vector type of the interleaved access.
1637 /// \p Factor is the interleave factor
1638 /// \p Indices is the indices for interleaved load members (as interleaved
1639 /// load allows gaps)
1640 /// \p Alignment is the alignment of the memory operation
1641 /// \p AddressSpace is address space of the pointer.
1642 /// \p UseMaskForCond indicates if the memory access is predicated.
1643 /// \p UseMaskForGaps indicates if gaps should be masked.
1645 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1646 Align Alignment, unsigned AddressSpace,
1648 bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1649
1650 /// A helper function to determine the type of reduction algorithm used
1651 /// for a given \p Opcode and set of FastMathFlags \p FMF.
1652 static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
1653 return FMF && !(*FMF).allowReassoc();
1654 }
1655
1656 /// Calculate the cost of vector reduction intrinsics.
1657 ///
1658 /// This is the cost of reducing the vector value of type \p Ty to a scalar
1659 /// value using the operation denoted by \p Opcode. The FastMathFlags
1660 /// parameter \p FMF indicates what type of reduction we are performing:
1661 /// 1. Tree-wise. This is the typical 'fast' reduction performed that
1662 /// involves successively splitting a vector into half and doing the
1663 /// operation on the pair of halves until you have a scalar value. For
1664 /// example:
1665 /// (v0, v1, v2, v3)
1666 /// ((v0+v2), (v1+v3), undef, undef)
1667 /// ((v0+v2+v1+v3), undef, undef, undef)
1668 /// This is the default behaviour for integer operations, whereas for
1669 /// floating point we only do this if \p FMF indicates that
1670 /// reassociation is allowed.
1671 /// 2. Ordered. For a vector with N elements this involves performing N
1672 /// operations in lane order, starting with an initial scalar value, i.e.
1673 /// result = InitVal + v0
1674 /// result = result + v1
1675 /// result = result + v2
1676 /// result = result + v3
1677 /// This is only the case for FP operations and when reassociation is not
1678 /// allowed.
1679 ///
1681 unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1683
1687
1688 /// Calculate the cost of an extended reduction pattern, similar to
1689 /// getArithmeticReductionCost of an Add/Sub reduction with multiply and
1690 /// optional extensions. This is the cost of as:
1691 /// * ResTy vecreduce.add/sub(mul (A, B)) or,
1692 /// * ResTy vecreduce.add/sub(mul(ext(Ty A), ext(Ty B)).
1694 bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty,
1696
1697 /// Calculate the cost of an extended reduction pattern, similar to
1698 /// getArithmeticReductionCost of a reduction with an extension.
1699 /// This is the cost of as:
1700 /// ResTy vecreduce.opcode(ext(Ty A)).
1702 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1703 std::optional<FastMathFlags> FMF,
1705
1706 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1707 /// Three cases are handled: 1. scalar instruction 2. vector instruction
1708 /// 3. scalar instruction which is to be vectorized.
1711
1712 /// \returns The cost of memory intrinsic instructions.
1713 /// Used when IntrinsicInst is not materialized.
1717
1718 /// \returns The cost of Call instructions.
1720 Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1722
1723 /// \returns The number of pieces into which the provided type must be
1724 /// split during legalization. Zero is returned when the answer is unknown.
1725 LLVM_ABI unsigned getNumberOfParts(Type *Tp) const;
1726
1727 /// \returns The cost of the address computation. For most targets this can be
1728 /// merged into the instruction indexing mode. Some targets might want to
1729 /// distinguish between address computation for memory operations with vector
1730 /// pointer types and scalar pointer types. Such targets should override this
1731 /// function. \p SE holds the pointer for the scalar evolution object which
1732 /// was used in order to get the Ptr step value. \p Ptr holds the SCEV of the
1733 /// access pointer.
1735 getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr,
1737
1738 /// \returns The cost, if any, of keeping values of the given types alive
1739 /// over a callsite.
1740 ///
1741 /// Some types may require the use of register classes that do not have
1742 /// any callee-saved registers, so would require a spill and fill.
1745
1746 /// \returns True if the intrinsic is a supported memory intrinsic. Info
1747 /// will contain additional information - whether the intrinsic may write
1748 /// or read to memory, volatility and the pointer. Info is undefined
1749 /// if false is returned.
1751 MemIntrinsicInfo &Info) const;
1752
1753 /// \returns The maximum element size, in bytes, for an element
1754 /// unordered-atomic memory intrinsic.
1756
1757 /// \returns A value which is the result of the given memory intrinsic. If \p
1758 /// CanCreate is true, new instructions may be created to extract the result
1759 /// from the given intrinsic memory operation. Returns nullptr if the target
1760 /// cannot create a result from the given intrinsic.
1761 LLVM_ABI Value *
1763 bool CanCreate = true) const;
1764
1765 /// \returns The type to use in a loop expansion of a memcpy call.
1767 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1768 unsigned DestAddrSpace, Align SrcAlign, Align DestAlign,
1769 std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
1770
1771 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1772 /// \param RemainingBytes The number of bytes to copy.
1773 ///
1774 /// Calculates the operand types to use when copying \p RemainingBytes of
1775 /// memory, where source and destination alignments are \p SrcAlign and
1776 /// \p DestAlign respectively.
1778 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1779 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1780 Align SrcAlign, Align DestAlign,
1781 std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
1782
1783 /// \returns True if the two functions have compatible attributes for inlining
1784 /// purposes.
1785 LLVM_ABI bool areInlineCompatible(const Function *Caller,
1786 const Function *Callee) const;
1787
1788 /// Returns a penalty for invoking call \p Call in \p F.
1789 /// For example, if a function F calls a function G, which in turn calls
1790 /// function H, then getInlineCallPenalty(F, H()) would return the
1791 /// penalty of calling H from F, e.g. after inlining G into F.
1792 /// \p DefaultCallPenalty is passed to give a default penalty that
1793 /// the target can amend or override.
1794 LLVM_ABI unsigned getInlineCallPenalty(const Function *F,
1795 const CallBase &Call,
1796 unsigned DefaultCallPenalty) const;
1797
1798 /// \returns True if the caller and callee agree on how \p Types will be
1799 /// passed to or returned from the callee.
1800 /// to the callee.
1801 /// \param Types List of types to check.
1802 LLVM_ABI bool areTypesABICompatible(const Function *Caller,
1803 const Function *Callee,
1804 ArrayRef<Type *> Types) const;
1805
1806 /// The type of load/store indexing.
1808 MIM_Unindexed, ///< No indexing.
1809 MIM_PreInc, ///< Pre-incrementing.
1810 MIM_PreDec, ///< Pre-decrementing.
1811 MIM_PostInc, ///< Post-incrementing.
1812 MIM_PostDec ///< Post-decrementing.
1813 };
1814
1815 /// \returns True if the specified indexed load for the given type is legal.
1816 LLVM_ABI bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1817
1818 /// \returns True if the specified indexed store for the given type is legal.
1819 LLVM_ABI bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1820
1821 /// \returns The bitwidth of the largest vector type that should be used to
1822 /// load/store in the given address space.
1823 LLVM_ABI unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1824
1825 /// \returns True if the load instruction is legal to vectorize.
1827
1828 /// \returns True if the store instruction is legal to vectorize.
1830
1831 /// \returns True if it is legal to vectorize the given load chain.
1832 LLVM_ABI bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1833 Align Alignment,
1834 unsigned AddrSpace) const;
1835
1836 /// \returns True if it is legal to vectorize the given store chain.
1837 LLVM_ABI bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1838 Align Alignment,
1839 unsigned AddrSpace) const;
1840
1841 /// \returns True if it is legal to vectorize the given reduction kind.
1843 ElementCount VF) const;
1844
1845 /// \returns True if the given type is supported for scalable vectors
1847
1848 /// \returns The new vector factor value if the target doesn't support \p
1849 /// SizeInBytes loads or has a better vector factor.
1850 LLVM_ABI unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1851 unsigned ChainSizeInBytes,
1852 VectorType *VecTy) const;
1853
1854 /// \returns The new vector factor value if the target doesn't support \p
1855 /// SizeInBytes stores or has a better vector factor.
1856 LLVM_ABI unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1857 unsigned ChainSizeInBytes,
1858 VectorType *VecTy) const;
1859
1860 /// \returns True if the target prefers fixed width vectorization if the
1861 /// loop vectorizer's cost-model assigns an equal cost to the fixed and
1862 /// scalable version of the vectorized loop.
1863 /// \p IsEpilogue is true if the decision is for the epilogue loop.
1864 LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const;
1865
1866 /// \returns True if target prefers SLP vectorizer with altermate opcode
1867 /// vectorization, false - otherwise.
1869
1870 /// \returns True if the target prefers reductions of \p Kind to be performed
1871 /// in the loop.
1872 LLVM_ABI bool preferInLoopReduction(RecurKind Kind, Type *Ty) const;
1873
1874 /// \returns True if the target prefers reductions select kept in the loop
1875 /// when tail folding. i.e.
1876 /// loop:
1877 /// p = phi (0, s)
1878 /// a = add (p, x)
1879 /// s = select (mask, a, p)
1880 /// vecreduce.add(s)
1881 ///
1882 /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1883 /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1884 /// by the target, this can lead to cleaner code generation.
1886
1887 /// Return true if the loop vectorizer should consider vectorizing an
1888 /// otherwise scalar epilogue loop.
1890
1891 /// \returns True if the loop vectorizer should discard any VFs where the
1892 /// maximum register pressure exceeds getNumberOfRegisters.
1894
1895 /// \returns True if the target wants to expand the given reduction intrinsic
1896 /// into a shuffle sequence.
1898
1900
1901 /// \returns The shuffle sequence pattern used to expand the given reduction
1902 /// intrinsic.
1905
1906 /// \returns the size cost of rematerializing a GlobalValue address relative
1907 /// to a stack reload.
1908 LLVM_ABI unsigned getGISelRematGlobalCost() const;
1909
1910 /// \returns the lower bound of a trip count to decide on vectorization
1911 /// while tail-folding.
1913
1914 /// \returns True if the target supports scalable vectors.
1915 LLVM_ABI bool supportsScalableVectors() const;
1916
1917 /// \return true when scalable vectorization is preferred.
1919
1920 /// \name Vector Predication Information
1921 /// @{
1922 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1923 /// in hardware. (see LLVM Language Reference - "Vector Predication
1924 /// Intrinsics"). Use of %evl is discouraged when that is not the case.
1925 LLVM_ABI bool hasActiveVectorLength() const;
1926
1927 /// Return true if sinking I's operands to the same basic block as I is
1928 /// profitable, e.g. because the operands can be folded into a target
1929 /// instruction during instruction selection. After calling the function
1930 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
1931 /// come first).
1934
1935 /// Return true if it's significantly cheaper to shift a vector by a uniform
1936 /// scalar than by an amount which will vary across each lane. On x86 before
1937 /// AVX2 for example, there is a "psllw" instruction for the former case, but
1938 /// no simple instruction for a general "a << b" operation on vectors.
1939 /// This should also apply to lowering for vector funnel shifts (rotates).
1941
1944 // keep the predicating parameter
1946 // where legal, discard the predicate parameter
1948 // transform into something else that is also predicating
1950 };
1951
1952 // How to transform the EVL parameter.
1953 // Legal: keep the EVL parameter as it is.
1954 // Discard: Ignore the EVL parameter where it is safe to do so.
1955 // Convert: Fold the EVL into the mask parameter.
1957
1958 // How to transform the operator.
1959 // Legal: The target supports this operator.
1960 // Convert: Convert this to a non-VP operation.
1961 // The 'Discard' strategy is invalid.
1963
1964 bool shouldDoNothing() const {
1965 return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
1966 }
1969 };
1970
1971 /// \returns How the target needs this vector-predicated operation to be
1972 /// transformed.
1974 getVPLegalizationStrategy(const VPIntrinsic &PI) const;
1975 /// @}
1976
1977 /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb
1978 /// state.
1979 ///
1980 /// Used by the LowerTypeTests pass, which constructs an IR inline assembler
1981 /// node containing a jump table in a format suitable for the target, so it
1982 /// needs to know what format of jump table it can legally use.
1983 ///
1984 /// For non-Arm targets, this function isn't used. It defaults to returning
1985 /// false, but it shouldn't matter what it returns anyway.
1986 LLVM_ABI bool hasArmWideBranch(bool Thumb) const;
1987
1988 /// Returns a bitmask constructed from the target-features or fmv-features
1989 /// metadata of a function corresponding to its Arch Extensions.
1990 LLVM_ABI APInt getFeatureMask(const Function &F) const;
1991
1992 /// Returns a bitmask constructed from the target-features or fmv-features
1993 /// metadata of a function corresponding to its FMV priority.
1994 LLVM_ABI APInt getPriorityMask(const Function &F) const;
1995
1996 /// Returns true if this is an instance of a function with multiple versions.
1997 LLVM_ABI bool isMultiversionedFunction(const Function &F) const;
1998
1999 /// \return The maximum number of function arguments the target supports.
2000 LLVM_ABI unsigned getMaxNumArgs() const;
2001
2002 /// \return For an array of given Size, return alignment boundary to
2003 /// pad to. Default is no padding.
2004 LLVM_ABI unsigned getNumBytesToPadGlobalArray(unsigned Size,
2005 Type *ArrayType) const;
2006
2007 /// @}
2008
2009 /// Collect kernel launch bounds for \p F into \p LB.
2011 const Function &F,
2012 SmallVectorImpl<std::pair<StringRef, int64_t>> &LB) const;
2013
2014 /// Returns true if GEP should not be used to index into vectors for this
2015 /// target.
2017
2018private:
2019 std::unique_ptr<const TargetTransformInfoImplBase> TTIImpl;
2020};
2021
2022/// Analysis pass providing the \c TargetTransformInfo.
2023///
2024/// The core idea of the TargetIRAnalysis is to expose an interface through
2025/// which LLVM targets can analyze and provide information about the middle
2026/// end's target-independent IR. This supports use cases such as target-aware
2027/// cost modeling of IR constructs.
2028///
2029/// This is a function analysis because much of the cost modeling for targets
2030/// is done in a subtarget specific way and LLVM supports compiling different
2031/// functions targeting different subtargets in order to support runtime
2032/// dispatch according to the observed subtarget.
2033class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
2034public:
2036
2037 /// Default construct a target IR analysis.
2038 ///
2039 /// This will use the module's datalayout to construct a baseline
2040 /// conservative TTI result.
2042
2043 /// Construct an IR analysis pass around a target-provide callback.
2044 ///
2045 /// The callback will be called with a particular function for which the TTI
2046 /// is needed and must return a TTI object for that function.
2047 LLVM_ABI
2048 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2049
2050 // Value semantics. We spell out the constructors for MSVC.
2052 : TTICallback(Arg.TTICallback) {}
2054 : TTICallback(std::move(Arg.TTICallback)) {}
2056 TTICallback = RHS.TTICallback;
2057 return *this;
2058 }
2060 TTICallback = std::move(RHS.TTICallback);
2061 return *this;
2062 }
2063
2065
2066private:
2068 LLVM_ABI static AnalysisKey Key;
2069
2070 /// The callback used to produce a result.
2071 ///
2072 /// We use a completely opaque callback so that targets can provide whatever
2073 /// mechanism they desire for constructing the TTI for a given function.
2074 ///
2075 /// FIXME: Should we really use std::function? It's relatively inefficient.
2076 /// It might be possible to arrange for even stateful callbacks to outlive
2077 /// the analysis and thus use a function_ref which would be lighter weight.
2078 /// This may also be less error prone as the callback is likely to reference
2079 /// the external TargetMachine, and that reference needs to never dangle.
2080 std::function<Result(const Function &)> TTICallback;
2081
2082 /// Helper function used as the callback in the default constructor.
2083 static Result getDefaultTTI(const Function &F);
2084};
2085
2086/// Wrapper pass for TargetTransformInfo.
2087///
2088/// This pass can be constructed from a TTI object which it stores internally
2089/// and is queried by passes.
2091 TargetIRAnalysis TIRA;
2092 std::optional<TargetTransformInfo> TTI;
2093
2094 virtual void anchor();
2095
2096public:
2097 static char ID;
2098
2099 /// We must provide a default constructor for the pass but it should
2100 /// never be used.
2101 ///
2102 /// Use the constructor below or call one of the creation routines.
2104
2106
2108};
2109
2110/// Create an analysis pass wrapper around a TTI object.
2111///
2112/// This analysis pass just holds the TTI instance and makes it available to
2113/// clients.
2116
2117} // namespace llvm
2118
2119#endif
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
Analysis containing CSE Info
Definition CSEInfo.cpp:27
#define LLVM_ABI
Definition Compiler.h:213
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
TargetTransformInfo::VPLegalization VPLegalization
static cl::opt< bool > ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops"))
static cl::opt< bool > ForceHardwareLoopPHI("force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi"))
This header defines various interfaces for pass management in LLVM.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
uint64_t IntrinsicInst * II
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
Value * RHS
Class for arbitrary precision integers.
Definition APInt.h:78
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
Class to represent array types.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:164
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
ImmutablePass class - This class is used to provide information that does not need to be run.
Definition Pass.h:285
ImmutablePass(char &pid)
Definition Pass.h:287
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
Class to represent integer types.
Drive the analysis of interleaved memory accesses in the loop.
const TargetLibraryInfo * getLibInfo() const
const SmallVectorImpl< Type * > & getArgTypes() const
const SmallVectorImpl< const Value * > & getArgs() const
LLVM_ABI IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarCost=InstructionCost::getInvalid(), bool TypeBasedOnly=false, TargetLibraryInfo const *LibInfo=nullptr)
InstructionCost getScalarizationCost() const
const IntrinsicInst * getInst() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
Information for memory intrinsic cost model.
LLVM_ABI MemIntrinsicCostAttributes(Intrinsic::ID Id, Type *DataTy, bool VariableMask, Align Alignment, const Instruction *I=nullptr)
LLVM_ABI MemIntrinsicCostAttributes(Intrinsic::ID Id, Type *DataTy, Align Alignment, unsigned AddressSpace=0)
const Instruction * getInst() const
LLVM_ABI MemIntrinsicCostAttributes(Intrinsic::ID Id, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, const Instruction *I=nullptr)
The optimization diagnostic interface.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
Definition TypeSize.h:30
An instruction for storing to memory.
Multiway switch.
Analysis pass providing the TargetTransformInfo.
TargetIRAnalysis(const TargetIRAnalysis &Arg)
TargetIRAnalysis & operator=(const TargetIRAnalysis &RHS)
LLVM_ABI Result run(const Function &F, FunctionAnalysisManager &)
LLVM_ABI TargetIRAnalysis()
Default construct a target IR analysis.
TargetIRAnalysis & operator=(TargetIRAnalysis &&RHS)
TargetIRAnalysis(TargetIRAnalysis &&Arg)
Provides information about what library functions are available for the current target.
Base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class.
TargetTransformInfoWrapperPass()
We must provide a default constructor for the pass but it should never be used.
TargetTransformInfo & getTTI(const Function &F)
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
LLVM_ABI Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType, bool CanCreate=true) const
LLVM_ABI bool isLegalToVectorizeLoad(LoadInst *LI) const
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
static LLVM_ABI CastContextHint getCastContextHint(const Instruction *I)
Calculates a CastContextHint from I.
LLVM_ABI unsigned getMaxNumArgs() const
LLVM_ABI bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const
Return false if a AS0 address cannot possibly alias a AS1 address.
LLVM_ABI bool isLegalMaskedScatter(Type *DataType, Align Alignment) const
Return true if the target supports masked scatter.
LLVM_ABI bool shouldBuildLookupTables() const
Return true if switches should be turned into lookup tables for the target.
LLVM_ABI bool isLegalToVectorizeStore(StoreInst *SI) const
LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index=-1, const Value *Op0=nullptr, const Value *Op1=nullptr) const
LLVM_ABI InstructionCost getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of an Add/...
LLVM_ABI bool areTypesABICompatible(const Function *Caller, const Function *Callee, ArrayRef< Type * > Types) const
LLVM_ABI bool enableAggressiveInterleaving(bool LoopHasReductions) const
Don't restrict interleaved unrolling to small loops.
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool isMultiversionedFunction(const Function &F) const
Returns true if this is an instance of a function with multiple versions.
LLVM_ABI InstructionUniformity getInstructionUniformity(const Value *V) const
Get target-specific uniformity information for an instruction.
LLVM_ABI bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const
Return true if it is faster to check if a floating-point value is NaN (or not-NaN) versus a compariso...
LLVM_ABI bool isLegalMaskedStore(Type *DataType, Align Alignment, unsigned AddressSpace, MaskKind MaskKind=VariableOrConstantMask) const
Return true if the target supports masked store.
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI unsigned getAssumedAddrSpace(const Value *V) const
LLVM_ABI bool preferAlternateOpcodeVectorization() const
LLVM_ABI bool shouldDropLSRSolutionIfLessProfitable() const
Return true if LSR should drop a found solution if it's calculated to be less profitable than the bas...
LLVM_ABI bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const
Return true if LSR cost of C1 is lower than C2.
LLVM_ABI unsigned getPrefetchDistance() const
LLVM_ABI Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicElementSize=std::nullopt) const
LLVM_ABI bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const
Return true if the target supports masked expand load.
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo Op1Info={OK_AnyValue, OP_None}, OperandValueInfo Op2Info={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI bool hasBranchDivergence(const Function *F=nullptr) const
Return true if branch divergence exists.
LLVM_ABI MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const
bool invalidate(Function &, const PreservedAnalyses &, FunctionAnalysisManager::Invalidator &)
Handle the invalidation of this information.
LLVM_ABI void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const
Get target-customized preferences for the generic loop unrolling transformation.
LLVM_ABI bool shouldBuildLookupTablesForConstant(Constant *C) const
Return true if switches should be turned into lookup tables containing this constant value for the ta...
LLVM_ABI bool supportsTailCallFor(const CallBase *CB) const
If target supports tail call on CB.
LLVM_ABI std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
Targets can implement their own combinations for target-specific intrinsics.
LLVM_ABI bool isProfitableLSRChainElement(Instruction *I) const
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
MaskKind
Some targets only support masked load/store with a constant mask.
LLVM_ABI unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const
Returns a penalty for invoking call Call in F.
LLVM_ABI bool hasActiveVectorLength() const
LLVM_ABI bool isExpensiveToSpeculativelyExecute(const Instruction *I) const
Return true if the cost of the instruction is too high to speculatively execute and should be kept be...
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI bool isLegalMaskedGather(Type *DataType, Align Alignment) const
Return true if the target supports masked gather.
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI std::optional< unsigned > getMaxVScale() const
LLVM_ABI InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) const
LLVM_ABI bool allowVectorElementIndexingUsingGEP() const
Returns true if GEP should not be used to index into vectors for this target.
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI bool isSingleThreaded() const
LLVM_ABI std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
Can be used to implement target-specific instruction combining.
LLVM_ABI bool enableOrderedReductions() const
Return true if we should be enabling ordered reductions for the target.
InstructionCost getInstructionCost(const User *U, TargetCostKind CostKind) const
This is a helper function which calls the three-argument getInstructionCost with Operands which are t...
LLVM_ABI unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
LLVM_ABI InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of vector reduction intrinsics.
LLVM_ABI unsigned getAtomicMemIntrinsicMaxElementSize() const
LLVM_ABI InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
LLVM_ABI std::pair< KnownBits, KnownBits > computeKnownBitsAddrSpaceCast(unsigned ToAS, const Value &PtrOp) const
LLVM_ABI bool LSRWithInstrQueries() const
Return true if the loop strength reduce pass should make Instruction* based TTI queries to isLegalAdd...
LLVM_ABI unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
LLVM_ABI VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
LLVM_ABI bool shouldConsiderVectorizationRegPressure() const
LLVM_ABI bool enableWritePrefetching() const
LLVM_ABI bool shouldTreatInstructionLikeSelect(const Instruction *I) const
Should the Select Optimization pass treat the given instruction like a select, potentially converting...
LLVM_ABI bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
LLVM_ABI bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
LLVM_ABI TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Query the target what the preferred style of tail folding is.
LLVM_ABI InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType=nullptr, TargetCostKind CostKind=TCK_SizeAndLatency) const
Estimate the cost of a GEP operation when lowered.
LLVM_ABI bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
LLVM_ABI bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace) const
Return true is the target supports interleaved access for the given vector type VTy,...
LLVM_ABI unsigned getRegUsageForType(Type *Ty) const
Returns the estimated number of registers required to represent Ty.
LLVM_ABI bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const
\Returns true if the target supports broadcasting a load to a vector of type <NumElements x ElementTy...
LLVM_ABI bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const
LLVM_ABI std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
LLVM_ABI InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of a reduc...
LLVM_ABI unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
LLVM_ABI ReductionShuffle getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
LLVM_ABI bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0, Instruction *I=nullptr, int64_t ScalableOffset=0) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
LLVM_ABI PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const
Return hardware support for population count.
LLVM_ABI unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.gather intrinsics.
LLVM_ABI unsigned getMaxPrefetchIterationsAhead() const
LLVM_ABI bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const
Return true if globals in this address space can have initializers other than undef.
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
LLVM_ABI InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
LLVM_ABI bool enableMaskedInterleavedAccessVectorization() const
Enable matching of interleaved access groups that contain predicated accesses or gaps and therefore v...
LLVM_ABI InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst=nullptr) const
Return the expected cost of materialization for the given integer immediate of the specified type for...
LLVM_ABI bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const
Return true if the target supports strided load.
LLVM_ABI TargetTransformInfo & operator=(TargetTransformInfo &&RHS)
LLVM_ABI InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF=FastMathFlags(), TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
LLVM_ABI bool enableSelectOptimize() const
Should the Select Optimization pass be enabled and ran.
LLVM_ABI bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
Return any intrinsic address operand indexes which may be rewritten if they use a flat address space ...
OperandValueProperties
Additional properties of an operand's values.
LLVM_ABI int getInliningLastCallToStaticBonus() const
LLVM_ABI InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const PointersChainInfo &Info, Type *AccessTy, TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Estimate the cost of a chain of pointers (typically pointer operands of a chain of loads or stores wi...
LLVM_ABI bool isVScaleKnownToBeAPowerOfTwo() const
LLVM_ABI bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const
LLVM_ABI unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
LLVM_ABI bool isLegalICmpImmediate(int64_t Imm) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
LLVM_ABI bool isTypeLegal(Type *Ty) const
Return true if this type is legal.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
LLVM_ABI bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const
LLVM_ABI std::optional< unsigned > getCacheAssociativity(CacheLevel Level) const
LLVM_ABI bool isLegalNTLoad(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal load.
LLVM_ABI InstructionCost getMemcpyCost(const Instruction *I) const
LLVM_ABI unsigned adjustInliningThreshold(const CallBase *CB) const
LLVM_ABI bool isLegalAddImmediate(int64_t Imm) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
LLVM_ABI bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
LLVM_ABI unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
LLVM_ABI InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
LLVM_ABI bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const
Return true if the target can save a compare for loop count, for example hardware loop saves a compar...
LLVM_ABI bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const
LLVM_ABI Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
Rewrite intrinsic call II such that OldV will be replaced with NewV, which has a different address sp...
LLVM_ABI InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const
LLVM_ABI unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const
Some HW prefetchers can handle accesses up to a certain constant stride.
LLVM_ABI bool shouldPrefetchAddressSpace(unsigned AS) const
LLVM_ABI InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
Return the expected cost of materializing for the given integer immediate of the specified type.
LLVM_ABI unsigned getMinVectorRegisterBitWidth() const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool isLegalNTStore(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal store.
LLVM_ABI InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, PartialReductionExtendKind OpAExtend, PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const
LLVM_ABI unsigned getFlatAddressSpace() const
Returns the address space ID for a target's 'flat' address space.
LLVM_ABI bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const
It can be advantageous to detach complex constants from their uses to make their generation cheaper.
LLVM_ABI bool hasArmWideBranch(bool Thumb) const
LLVM_ABI const char * getRegisterClassName(unsigned ClassID) const
LLVM_ABI bool preferEpilogueVectorization() const
Return true if the loop vectorizer should consider vectorizing an otherwise scalar epilogue loop.
LLVM_ABI bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const
LLVM_ABI APInt getPriorityMask(const Function &F) const
Returns a bitmask constructed from the target-features or fmv-features metadata of a function corresp...
LLVM_ABI BranchProbability getPredictableBranchThreshold() const
If a branch or a select condition is skewed in one direction by more than this factor,...
LLVM_ABI TargetTransformInfo(std::unique_ptr< const TargetTransformInfoImplBase > Impl)
Construct a TTI object using a type implementing the Concept API below.
LLVM_ABI bool preferInLoopReduction(RecurKind Kind, Type *Ty) const
LLVM_ABI unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const
LLVM_ABI unsigned getCacheLineSize() const
LLVM_ABI bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace=0, Align Alignment=Align(1), unsigned *Fast=nullptr) const
Determine if the target supports unaligned memory accesses.
LLVM_ABI int getInlinerVectorBonusPercent() const
LLVM_ABI unsigned getEpilogueVectorizationMinVF() const
LLVM_ABI void collectKernelLaunchBounds(const Function &F, SmallVectorImpl< std::pair< StringRef, int64_t > > &LB) const
Collect kernel launch bounds for F into LB.
PopcntSupportKind
Flags indicating the kind of support for population count.
LLVM_ABI bool preferPredicatedReductionSelect() const
LLVM_ABI InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) const
Return the expected cost for the given integer when optimising for size.
LLVM_ABI AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
Return the preferred addressing mode LSR should make efforts to generate.
LLVM_ABI bool isLoweredToCall(const Function *F) const
Test whether calls to a function lower to actual program function calls.
LLVM_ABI bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
LLVM_ABI bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
Query the target whether it would be profitable to convert the given loop into a hardware loop.
LLVM_ABI unsigned getInliningThresholdMultiplier() const
LLVM_ABI InstructionCost getBranchMispredictPenalty() const
Returns estimated penalty of a branch misprediction in latency.
LLVM_ABI unsigned getNumberOfRegisters(unsigned ClassID) const
LLVM_ABI bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const
Return true if this is an alternating opcode pattern that can be lowered to a single instruction on t...
LLVM_ABI bool isProfitableToHoist(Instruction *I) const
Return true if it is profitable to hoist instruction in the then/else to before if.
LLVM_ABI bool supportsScalableVectors() const
LLVM_ABI bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
Return true if the given instruction (assumed to be a memory access instruction) has a volatile varia...
LLVM_ABI bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const
Return true if the target supports masked compress store.
LLVM_ABI std::optional< unsigned > getMinPageSize() const
LLVM_ABI bool isFPVectorizationPotentiallyUnsafe() const
Indicate that it is potentially unsafe to automatically vectorize floating-point operations because t...
LLVM_ABI InstructionCost getInsertExtractValueCost(unsigned Opcode, TTI::TargetCostKind CostKind) const
LLVM_ABI bool shouldBuildRelLookupTables() const
Return true if lookup tables should be turned into relative lookup tables.
LLVM_ABI unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const
LLVM_ABI std::optional< unsigned > getCacheSize(CacheLevel Level) const
LLVM_ABI std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
Can be used to implement target-specific instruction combining.
LLVM_ABI bool isLegalAddScalableImmediate(int64_t Imm) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
LLVM_ABI bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI bool hasDivRemOp(Type *DataType, bool IsSigned) const
Return true if the target has a unified operation to calculate division and remainder.
LLVM_ABI InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Returns the cost estimation for alternating opcode pattern that can be lowered to a single instructio...
TargetCostConstants
Underlying constants for 'cost' values in this interface.
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Free
Expected to fold away in lowering.
@ TCC_Basic
The cost of a typical 'add' instruction.
LLVM_ABI bool enableInterleavedAccessVectorization() const
Enable matching of interleaved access groups.
LLVM_ABI unsigned getMinTripCountTailFoldingThreshold() const
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI unsigned getMaxInterleaveFactor(ElementCount VF) const
LLVM_ABI bool enableScalableVectorization() const
LLVM_ABI bool useFastCCForInternalCall(Function &F) const
Return true if the input function is internal, should use fastcc calling convention.
LLVM_ABI bool isVectorShiftByScalarCheap(Type *Ty) const
Return true if it's significantly cheaper to shift a vector by a uniform scalar than by an amount whi...
LLVM_ABI bool isNumRegsMajorCostOfLSR() const
Return true if LSR major cost is number of registers.
LLVM_ABI unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const
LLVM_ABI bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const
LLVM_ABI unsigned getGISelRematGlobalCost() const
LLVM_ABI unsigned getNumBytesToPadGlobalArray(unsigned Size, Type *ArrayType) const
MemIndexedMode
The type of load/store indexing.
LLVM_ABI bool isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned AddressSpace, MaskKind MaskKind=VariableOrConstantMask) const
Return true if the target supports masked load.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI bool areInlineCompatible(const Function *Caller, const Function *Callee) const
LLVM_ABI bool useColdCCForColdCall(Function &F) const
Return true if the input function which is cold at all call sites, should use coldcc calling conventi...
LLVM_ABI InstructionCost getFPOpCost(Type *Ty) const
Return the expected cost of supporting the floating point operation of the specified type.
LLVM_ABI bool supportsTailCalls() const
If the target supports tail calls.
LLVM_ABI bool canMacroFuseCmp() const
Return true if the target can fuse a compare and branch.
LLVM_ABI bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Query the target whether the specified address space cast from FromAS to ToAS is valid.
LLVM_ABI unsigned getNumberOfParts(Type *Tp) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
AddressingModeKind
Which addressing mode Loop Strength Reduction will try to generate.
@ AMK_PostIndexed
Prefer post-indexed addressing mode.
@ AMK_All
Consider all addressing modes.
@ AMK_PreIndexed
Prefer pre-indexed addressing mode.
@ AMK_None
Don't prefer any addressing mode.
LLVM_ABI InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0) const
Return the cost of the scaling factor used in the addressing mode represented by AM for this target,...
LLVM_ABI bool isTruncateFree(Type *Ty1, Type *Ty2) const
Return true if it's free to truncate a value of type Ty1 to type Ty2.
LLVM_ABI bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
Return true if sinking I's operands to the same basic block as I is profitable, e....
LLVM_ABI void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize=std::nullopt) const
LLVM_ABI bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
Query the target whether it would be prefered to create a predicated vector loop, which can avoid the...
LLVM_ABI bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.scatter intrinsics.
LLVM_ABI bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
LLVM_ABI bool haveFastSqrt(Type *Ty) const
Return true if the hardware has a fast square-root instruction.
LLVM_ABI bool shouldExpandReduction(const IntrinsicInst *II) const
LLVM_ABI uint64_t getMaxMemIntrinsicInlineSizeThreshold() const
Returns the maximum memset / memcpy size in bytes that still makes it profitable to inline the call.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
LLVM_ABI APInt getFeatureMask(const Function &F) const
Returns a bitmask constructed from the target-features or fmv-features metadata of a function corresp...
LLVM_ABI void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) const
Get target-customized preferences for the generic loop peeling transformation.
LLVM_ABI InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency) const
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
LLVM_ABI InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index, TTI::TargetCostKind CostKind) const
OperandValueKind
Additional information about an operand's possible values.
CacheLevel
The possible cache levels.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Base class of all SIMD vector types.
CallInst * Call
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
@ Length
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ LLVM_MARK_AS_BITMASK_ENUM
Definition ModRef.h:37
TargetTransformInfo TTI
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI ImmutablePass * createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)
Create an analysis pass wrapper around a TTI object.
RecurKind
These are the kinds of recurrences that we support.
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1915
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
InstructionUniformity
Enum describing how instructions behave with respect to uniformity and divergence,...
Definition Uniformity.h:18
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition PassManager.h:93
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
Attributes of a target dependent hardware loop.
LLVM_ABI bool canAnalyze(LoopInfo &LI)
LLVM_ABI bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
Information about a load/store intrinsic defined by the target.
SmallVector< InterestingMemoryOperand, 1 > InterestingOperands
Value * PtrVal
This is the pointer that the intrinsic is loading from or storing to.
InterleavedAccessInfo * IAI
TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL, InterleavedAccessInfo *IAI)
TargetLibraryInfo * TLI
LoopVectorizationLegality * LVL
unsigned Insns
TODO: Some of these could be merged.
Returns options for expansion of memcmp. IsZeroCmp is.
bool AllowPeeling
Allow peeling off loop iterations.
bool AllowLoopNestsPeeling
Allow peeling off loop iterations for loop nests.
bool PeelLast
Peel off the last PeelCount loop iterations.
bool PeelProfiledIterations
Allow peeling basing on profile.
unsigned PeelCount
A forced peeling factor (the number of bodied of the original loop that should be peeled off before t...
Describe known properties for a set of pointers.
unsigned IsKnownStride
True if distance between any two neigbouring pointers is a known value.
unsigned IsUnitStride
These properties only valid if SameBaseAddress is set.
unsigned IsSameBaseAddress
All the GEPs in a set have same base address.
Parameters that control the generic loop unrolling transformation.
unsigned Count
A forced unrolling factor (the number of concatenated bodies of the original loop in the unrolled loo...
bool UpperBound
Allow using trip count upper bound to unroll loops.
unsigned Threshold
The cost threshold for the unrolled loop.
bool Force
Apply loop unroll on any kind of loop (mainly to loops that fail runtime unrolling).
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
unsigned DefaultUnrollRuntimeCount
Default unroll count for loops with run-time trip count.
unsigned MaxPercentThresholdBoost
If complete unrolling will reduce the cost of the loop, we will boost the Threshold by a certain perc...
bool RuntimeUnrollMultiExit
Allow runtime unrolling multi-exit loops.
unsigned SCEVExpansionBudget
Don't allow runtime unrolling if expanding the trip count takes more than SCEVExpansionBudget.
bool AddAdditionalAccumulators
Allow unrolling to add parallel reduction phis.
unsigned UnrollAndJamInnerLoopThreshold
Threshold for unroll and jam, for inner loop size.
unsigned MaxIterationsCountToAnalyze
Don't allow loop unrolling to simulate more than this number of iterations when checking full unroll ...
bool AllowRemainder
Allow generation of a loop remainder (extra iterations after unroll).
bool UnrollAndJam
Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollRemainder
Allow unrolling of all the iterations of the runtime loop remainder.
unsigned FullUnrollMaxCount
Set the maximum unrolling factor for full unrolling.
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).
bool AllowExpensiveTripCount
Allow emitting expensive instructions (such as divisions) when computing the trip count of a loop for...
unsigned MaxUpperBound
Set the maximum upper bound of trip count.
VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)