LLVM 22.0.0git
TargetTransformInfo.h
Go to the documentation of this file.
1//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This pass exposes codegen information to IR-level passes. Every
10/// transformation that uses codegen information is broken into three parts:
11/// 1. The IR-level analysis pass.
12/// 2. The IR-level transformation interface which provides the needed
13/// information.
14/// 3. Codegen-level implementation which uses target-specific hooks.
15///
16/// This file defines #2, which is the interface that IR-level transformations
17/// use for querying the codegen.
18///
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/ArrayRef.h"
29#include "llvm/IR/FMF.h"
30#include "llvm/IR/InstrTypes.h"
31#include "llvm/IR/PassManager.h"
32#include "llvm/Pass.h"
37#include <functional>
38#include <optional>
39#include <utility>
40
41namespace llvm {
42
43namespace Intrinsic {
44typedef unsigned ID;
45}
46
47class AllocaInst;
48class AssumptionCache;
50class DominatorTree;
51class BranchInst;
52class Function;
53class GlobalValue;
54class InstCombiner;
57class IntrinsicInst;
58class LoadInst;
59class Loop;
60class LoopInfo;
64class SCEV;
65class ScalarEvolution;
66class SmallBitVector;
67class StoreInst;
68class SwitchInst;
70class Type;
71class VPIntrinsic;
72struct KnownBits;
73
74/// Information about a load/store intrinsic defined by the target.
76 /// This is the pointer that the intrinsic is loading from or storing to.
77 /// If this is non-null, then analysis/optimization passes can assume that
78 /// this intrinsic is functionally equivalent to a load/store from this
79 /// pointer.
80 Value *PtrVal = nullptr;
81
82 // Ordering for atomic operations.
84
85 // Same Id is set by the target for corresponding load/store intrinsics.
86 unsigned short MatchingId = 0;
87
88 bool ReadMem = false;
89 bool WriteMem = false;
90 bool IsVolatile = false;
91
93
99};
100
101/// Attributes of a target dependent hardware loop.
105 Loop *L = nullptr;
108 const SCEV *ExitCount = nullptr;
110 Value *LoopDecrement = nullptr; // Decrement the loop counter by this
111 // value in every iteration.
112 bool IsNestingLegal = false; // Can a hardware loop be a parent to
113 // another hardware loop?
114 bool CounterInReg = false; // Should loop counter be updated in
115 // the loop via a phi?
116 bool PerformEntryTest = false; // Generate the intrinsic which also performs
117 // icmp ne zero on the loop counter value and
118 // produces an i1 to guard the loop entry.
120 DominatorTree &DT,
121 bool ForceNestedLoop = false,
122 bool ForceHardwareLoopPHI = false);
123 LLVM_ABI bool canAnalyze(LoopInfo &LI);
124};
125
127 const IntrinsicInst *II = nullptr;
128 Type *RetTy = nullptr;
129 Intrinsic::ID IID;
130 SmallVector<Type *, 4> ParamTys;
132 FastMathFlags FMF;
133 // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
134 // arguments and the return value will be computed based on types.
135 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
136 TargetLibraryInfo const *LibInfo = nullptr;
137
138public:
140 Intrinsic::ID Id, const CallBase &CI,
142 bool TypeBasedOnly = false, TargetLibraryInfo const *LibInfo = nullptr);
143
145 Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
146 FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
148
151
155 const IntrinsicInst *I = nullptr,
157 TargetLibraryInfo const *LibInfo = nullptr);
158
159 Intrinsic::ID getID() const { return IID; }
160 const IntrinsicInst *getInst() const { return II; }
161 Type *getReturnType() const { return RetTy; }
162 FastMathFlags getFlags() const { return FMF; }
163 InstructionCost getScalarizationCost() const { return ScalarizationCost; }
164 const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
165 const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
166 const TargetLibraryInfo *getLibInfo() const { return LibInfo; }
167
168 bool isTypeBasedOnly() const {
169 return Arguments.empty();
170 }
171
172 bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
173};
174
176 /// Don't use tail folding
178 /// Use predicate only to mask operations on data in the loop.
179 /// When the VL is not known to be a power-of-2, this method requires a
180 /// runtime overflow check for the i + VL in the loop because it compares the
181 /// scalar induction variable against the tripcount rounded up by VL which may
182 /// overflow. When the VL is a power-of-2, both the increment and uprounded
183 /// tripcount will overflow to 0, which does not require a runtime check
184 /// since the loop is exited when the loop induction variable equals the
185 /// uprounded trip-count, which are both 0.
187 /// Same as Data, but avoids using the get.active.lane.mask intrinsic to
188 /// calculate the mask and instead implements this with a
189 /// splat/stepvector/cmp.
190 /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the
191 /// active.lane.mask intrinsic when it is not natively supported?
193 /// Use predicate to control both data and control flow.
194 /// This method always requires a runtime overflow check for the i + VL
195 /// increment inside the loop, because it uses the result direclty in the
196 /// active.lane.mask to calculate the mask for the next iteration. If the
197 /// increment overflows, the mask is no longer correct.
199 /// Use predicate to control both data and control flow, but modify
200 /// the trip count so that a runtime overflow check can be avoided
201 /// and such that the scalar epilogue loop can always be removed.
203 /// Use predicated EVL instructions for tail-folding.
204 /// Indicates that VP intrinsics should be used.
206};
207
216
217class TargetTransformInfo;
220
221/// This pass provides access to the codegen interfaces that are needed
222/// for IR-level transformations.
224public:
226
227 /// Get the kind of extension that an instruction represents.
230 /// Get the kind of extension that a cast opcode represents.
233
234 /// Construct a TTI object using a type implementing the \c Concept
235 /// API below.
236 ///
237 /// This is used by targets to construct a TTI wrapping their target-specific
238 /// implementation that encodes appropriate costs for their target.
240 std::unique_ptr<const TargetTransformInfoImplBase> Impl);
241
242 /// Construct a baseline TTI object using a minimal implementation of
243 /// the \c Concept API below.
244 ///
245 /// The TTI implementation will reflect the information in the DataLayout
246 /// provided if non-null.
247 LLVM_ABI explicit TargetTransformInfo(const DataLayout &DL);
248
249 // Provide move semantics.
252
253 // We need to define the destructor out-of-line to define our sub-classes
254 // out-of-line.
256
257 /// Handle the invalidation of this information.
258 ///
259 /// When used as a result of \c TargetIRAnalysis this method will be called
260 /// when the function this was computed for changes. When it returns false,
261 /// the information is preserved across those changes.
263 FunctionAnalysisManager::Invalidator &) {
264 // FIXME: We should probably in some way ensure that the subtarget
265 // information for a function hasn't changed.
266 return false;
267 }
268
269 /// \name Generic Target Information
270 /// @{
271
272 /// The kind of cost model.
273 ///
274 /// There are several different cost models that can be customized by the
275 /// target. The normalization of each cost model may be target specific.
276 /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
277 /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
279 TCK_RecipThroughput, ///< Reciprocal throughput.
280 TCK_Latency, ///< The latency of instruction.
281 TCK_CodeSize, ///< Instruction code size.
282 TCK_SizeAndLatency ///< The weighted sum of size and latency.
283 };
284
285 /// Underlying constants for 'cost' values in this interface.
286 ///
287 /// Many APIs in this interface return a cost. This enum defines the
288 /// fundamental values that should be used to interpret (and produce) those
289 /// costs. The costs are returned as an int rather than a member of this
290 /// enumeration because it is expected that the cost of one IR instruction
291 /// may have a multiplicative factor to it or otherwise won't fit directly
292 /// into the enum. Moreover, it is common to sum or average costs which works
293 /// better as simple integral values. Thus this enum only provides constants.
294 /// Also note that the returned costs are signed integers to make it natural
295 /// to add, subtract, and test with zero (a common boundary condition). It is
296 /// not expected that 2^32 is a realistic cost to be modeling at any point.
297 ///
298 /// Note that these costs should usually reflect the intersection of code-size
299 /// cost and execution cost. A free instruction is typically one that folds
300 /// into another instruction. For example, reg-to-reg moves can often be
301 /// skipped by renaming the registers in the CPU, but they still are encoded
302 /// and thus wouldn't be considered 'free' here.
304 TCC_Free = 0, ///< Expected to fold away in lowering.
305 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
306 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
307 };
308
309 /// Estimate the cost of a GEP operation when lowered.
310 ///
311 /// \p PointeeType is the source element type of the GEP.
312 /// \p Ptr is the base pointer operand.
313 /// \p Operands is the list of indices following the base pointer.
314 ///
315 /// \p AccessType is a hint as to what type of memory might be accessed by
316 /// users of the GEP. getGEPCost will use it to determine if the GEP can be
317 /// folded into the addressing mode of a load/store. If AccessType is null,
318 /// then the resulting target type based off of PointeeType will be used as an
319 /// approximation.
321 getGEPCost(Type *PointeeType, const Value *Ptr,
322 ArrayRef<const Value *> Operands, Type *AccessType = nullptr,
323 TargetCostKind CostKind = TCK_SizeAndLatency) const;
324
325 /// Describe known properties for a set of pointers.
327 /// All the GEPs in a set have same base address.
328 unsigned IsSameBaseAddress : 1;
329 /// These properties only valid if SameBaseAddress is set.
330 /// True if all pointers are separated by a unit stride.
331 unsigned IsUnitStride : 1;
332 /// True if distance between any two neigbouring pointers is a known value.
333 unsigned IsKnownStride : 1;
334 unsigned Reserved : 29;
335
336 bool isSameBase() const { return IsSameBaseAddress; }
337 bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; }
339
341 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1,
342 /*IsKnownStride=*/1, 0};
343 }
345 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
346 /*IsKnownStride=*/1, 0};
347 }
349 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
350 /*IsKnownStride=*/0, 0};
351 }
352 };
353 static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?");
354
355 /// Estimate the cost of a chain of pointers (typically pointer operands of a
356 /// chain of loads or stores within same block) operations set when lowered.
357 /// \p AccessTy is the type of the loads/stores that will ultimately use the
358 /// \p Ptrs.
361 const PointersChainInfo &Info, Type *AccessTy,
362 TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
363
364 /// \returns A value by which our inlining threshold should be multiplied.
365 /// This is primarily used to bump up the inlining threshold wholesale on
366 /// targets where calls are unusually expensive.
367 ///
368 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
369 /// individual classes of instructions would be better.
371
374
375 /// \returns The bonus of inlining the last call to a static function.
377
378 /// \returns A value to be added to the inlining threshold.
379 LLVM_ABI unsigned adjustInliningThreshold(const CallBase *CB) const;
380
381 /// \returns The cost of having an Alloca in the caller if not inlined, to be
382 /// added to the threshold
383 LLVM_ABI unsigned getCallerAllocaCost(const CallBase *CB,
384 const AllocaInst *AI) const;
385
386 /// \returns Vector bonus in percent.
387 ///
388 /// Vector bonuses: We want to more aggressively inline vector-dense kernels
389 /// and apply this bonus based on the percentage of vector instructions. A
390 /// bonus is applied if the vector instructions exceed 50% and half that
391 /// amount is applied if it exceeds 10%. Note that these bonuses are some what
392 /// arbitrary and evolved over time by accident as much as because they are
393 /// principled bonuses.
394 /// FIXME: It would be nice to base the bonus values on something more
395 /// scientific. A target may has no bonus on vector instructions.
397
398 /// \return the expected cost of a memcpy, which could e.g. depend on the
399 /// source/destination type and alignment and the number of bytes copied.
401
402 /// Returns the maximum memset / memcpy size in bytes that still makes it
403 /// profitable to inline the call.
405
406 /// \return The estimated number of case clusters when lowering \p 'SI'.
407 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
408 /// table.
409 LLVM_ABI unsigned
410 getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
412 BlockFrequencyInfo *BFI) const;
413
414 /// Estimate the cost of a given IR user when lowered.
415 ///
416 /// This can estimate the cost of either a ConstantExpr or Instruction when
417 /// lowered.
418 ///
419 /// \p Operands is a list of operands which can be a result of transformations
420 /// of the current operands. The number of the operands on the list must equal
421 /// to the number of the current operands the IR user has. Their order on the
422 /// list must be the same as the order of the current operands the IR user
423 /// has.
424 ///
425 /// The returned cost is defined in terms of \c TargetCostConstants, see its
426 /// comments for a detailed explanation of the cost values.
429 TargetCostKind CostKind) const;
430
431 /// This is a helper function which calls the three-argument
432 /// getInstructionCost with \p Operands which are the current operands U has.
434 TargetCostKind CostKind) const {
435 SmallVector<const Value *, 4> Operands(U->operand_values());
436 return getInstructionCost(U, Operands, CostKind);
437 }
438
439 /// If a branch or a select condition is skewed in one direction by more than
440 /// this factor, it is very likely to be predicted correctly.
442
443 /// Returns estimated penalty of a branch misprediction in latency. Indicates
444 /// how aggressive the target wants for eliminating unpredictable branches. A
445 /// zero return value means extra optimization applied to them should be
446 /// minimal.
448
449 /// Return true if branch divergence exists.
450 ///
451 /// Branch divergence has a significantly negative impact on GPU performance
452 /// when threads in the same wavefront take different paths due to conditional
453 /// branches.
454 ///
455 /// If \p F is passed, provides a context function. If \p F is known to only
456 /// execute in a single threaded environment, the target may choose to skip
457 /// uniformity analysis and assume all values are uniform.
458 LLVM_ABI bool hasBranchDivergence(const Function *F = nullptr) const;
459
460 /// Returns whether V is a source of divergence.
461 ///
462 /// This function provides the target-dependent information for
463 /// the target-independent UniformityAnalysis.
464 LLVM_ABI bool isSourceOfDivergence(const Value *V) const;
465
466 // Returns true for the target specific
467 // set of operations which produce uniform result
468 // even taking non-uniform arguments
469 LLVM_ABI bool isAlwaysUniform(const Value *V) const;
470
471 /// Query the target whether the specified address space cast from FromAS to
472 /// ToAS is valid.
473 LLVM_ABI bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
474
475 /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address.
476 LLVM_ABI bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const;
477
478 /// Returns the address space ID for a target's 'flat' address space. Note
479 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
480 /// refers to as the generic address space. The flat address space is a
481 /// generic address space that can be used access multiple segments of memory
482 /// with different address spaces. Access of a memory location through a
483 /// pointer with this address space is expected to be legal but slower
484 /// compared to the same memory location accessed through a pointer with a
485 /// different address space.
486 //
487 /// This is for targets with different pointer representations which can
488 /// be converted with the addrspacecast instruction. If a pointer is converted
489 /// to this address space, optimizations should attempt to replace the access
490 /// with the source address space.
491 ///
492 /// \returns ~0u if the target does not have such a flat address space to
493 /// optimize away.
494 LLVM_ABI unsigned getFlatAddressSpace() const;
495
496 /// Return any intrinsic address operand indexes which may be rewritten if
497 /// they use a flat address space pointer.
498 ///
499 /// \returns true if the intrinsic was handled.
501 Intrinsic::ID IID) const;
502
503 LLVM_ABI bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
504
505 /// Return true if globals in this address space can have initializers other
506 /// than `undef`.
507 LLVM_ABI bool
509
510 LLVM_ABI unsigned getAssumedAddrSpace(const Value *V) const;
511
512 LLVM_ABI bool isSingleThreaded() const;
513
514 LLVM_ABI std::pair<const Value *, unsigned>
515 getPredicatedAddrSpace(const Value *V) const;
516
517 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
518 /// NewV, which has a different address space. This should happen for every
519 /// operand index that collectFlatAddressOperands returned for the intrinsic.
520 /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
521 /// new value (which may be the original \p II with modified operands).
523 Value *OldV,
524 Value *NewV) const;
525
526 /// Test whether calls to a function lower to actual program function
527 /// calls.
528 ///
529 /// The idea is to test whether the program is likely to require a 'call'
530 /// instruction or equivalent in order to call the given function.
531 ///
532 /// FIXME: It's not clear that this is a good or useful query API. Client's
533 /// should probably move to simpler cost metrics using the above.
534 /// Alternatively, we could split the cost interface into distinct code-size
535 /// and execution-speed costs. This would allow modelling the core of this
536 /// query more accurately as a call is a single small instruction, but
537 /// incurs significant execution cost.
538 LLVM_ABI bool isLoweredToCall(const Function *F) const;
539
540 struct LSRCost {
541 /// TODO: Some of these could be merged. Also, a lexical ordering
542 /// isn't always optimal.
543 unsigned Insns;
544 unsigned NumRegs;
545 unsigned AddRecCost;
546 unsigned NumIVMuls;
547 unsigned NumBaseAdds;
548 unsigned ImmCost;
549 unsigned SetupCost;
550 unsigned ScaleCost;
551 };
552
553 /// Parameters that control the generic loop unrolling transformation.
555 /// The cost threshold for the unrolled loop. Should be relative to the
556 /// getInstructionCost values returned by this API, and the expectation is
557 /// that the unrolled loop's instructions when run through that interface
558 /// should not exceed this cost. However, this is only an estimate. Also,
559 /// specific loops may be unrolled even with a cost above this threshold if
560 /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
561 /// restriction.
562 unsigned Threshold;
563 /// If complete unrolling will reduce the cost of the loop, we will boost
564 /// the Threshold by a certain percent to allow more aggressive complete
565 /// unrolling. This value provides the maximum boost percentage that we
566 /// can apply to Threshold (The value should be no less than 100).
567 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
568 /// MaxPercentThresholdBoost / 100)
569 /// E.g. if complete unrolling reduces the loop execution time by 50%
570 /// then we boost the threshold by the factor of 2x. If unrolling is not
571 /// expected to reduce the running time, then we do not increase the
572 /// threshold.
574 /// The cost threshold for the unrolled loop when optimizing for size (set
575 /// to UINT_MAX to disable).
577 /// The cost threshold for the unrolled loop, like Threshold, but used
578 /// for partial/runtime unrolling (set to UINT_MAX to disable).
580 /// The cost threshold for the unrolled loop when optimizing for size, like
581 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
582 /// UINT_MAX to disable).
584 /// A forced unrolling factor (the number of concatenated bodies of the
585 /// original loop in the unrolled loop body). When set to 0, the unrolling
586 /// transformation will select an unrolling factor based on the current cost
587 /// threshold and other factors.
588 unsigned Count;
589 /// Default unroll count for loops with run-time trip count.
591 // Set the maximum unrolling factor. The unrolling factor may be selected
592 // using the appropriate cost threshold, but may not exceed this number
593 // (set to UINT_MAX to disable). This does not apply in cases where the
594 // loop is being fully unrolled.
595 unsigned MaxCount;
596 /// Set the maximum upper bound of trip count. Allowing the MaxUpperBound
597 /// to be overrided by a target gives more flexiblity on certain cases.
598 /// By default, MaxUpperBound uses UnrollMaxUpperBound which value is 8.
600 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
601 /// applies even if full unrolling is selected. This allows a target to fall
602 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
604 // Represents number of instructions optimized when "back edge"
605 // becomes "fall through" in unrolled loop.
606 // For now we count a conditional branch on a backedge and a comparison
607 // feeding it.
608 unsigned BEInsns;
609 /// Allow partial unrolling (unrolling of loops to expand the size of the
610 /// loop body, not only to eliminate small constant-trip-count loops).
612 /// Allow runtime unrolling (unrolling of loops to expand the size of the
613 /// loop body even when the number of loop iterations is not known at
614 /// compile time).
616 /// Allow generation of a loop remainder (extra iterations after unroll).
618 /// Allow emitting expensive instructions (such as divisions) when computing
619 /// the trip count of a loop for runtime unrolling.
621 /// Apply loop unroll on any kind of loop
622 /// (mainly to loops that fail runtime unrolling).
623 bool Force;
624 /// Allow using trip count upper bound to unroll loops.
626 /// Allow unrolling of all the iterations of the runtime loop remainder.
628 /// Allow unroll and jam. Used to enable unroll and jam for the target.
630 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
631 /// value above is used during unroll and jam for the outer loop size.
632 /// This value is used in the same manner to limit the size of the inner
633 /// loop.
635 /// Don't allow loop unrolling to simulate more than this number of
636 /// iterations when checking full unroll profitability
638 /// Don't disable runtime unroll for the loops which were vectorized.
640 /// Don't allow runtime unrolling if expanding the trip count takes more
641 /// than SCEVExpansionBudget.
643 /// Allow runtime unrolling multi-exit loops. Should only be set if the
644 /// target determined that multi-exit unrolling is profitable for the loop.
645 /// Fall back to the generic logic to determine whether multi-exit unrolling
646 /// is profitable if set to false.
648 /// Allow unrolling to add parallel reduction phis.
650 };
651
652 /// Get target-customized preferences for the generic loop unrolling
653 /// transformation. The caller will initialize UP with the current
654 /// target-independent defaults.
657 OptimizationRemarkEmitter *ORE) const;
658
659 /// Query the target whether it would be profitable to convert the given loop
660 /// into a hardware loop.
662 AssumptionCache &AC,
663 TargetLibraryInfo *LibInfo,
664 HardwareLoopInfo &HWLoopInfo) const;
665
666 // Query the target for which minimum vectorization factor epilogue
667 // vectorization should be considered.
669
670 /// Query the target whether it would be prefered to create a predicated
671 /// vector loop, which can avoid the need to emit a scalar epilogue loop.
673
674 /// Query the target what the preferred style of tail folding is.
675 /// \param IVUpdateMayOverflow Tells whether it is known if the IV update
676 /// may (or will never) overflow for the suggested VF/UF in the given loop.
677 /// Targets can use this information to select a more optimal tail folding
678 /// style. The value conservatively defaults to true, such that no assumptions
679 /// are made on overflow.
681 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const;
682
683 // Parameters that control the loop peeling transformation
685 /// A forced peeling factor (the number of bodied of the original loop
686 /// that should be peeled off before the loop body). When set to 0, the
687 /// a peeling factor based on profile information and other factors.
688 unsigned PeelCount;
689 /// Allow peeling off loop iterations.
691 /// Allow peeling off loop iterations for loop nests.
693 /// Allow peeling basing on profile. Uses to enable peeling off all
694 /// iterations basing on provided profile.
695 /// If the value is true the peeling cost model can decide to peel only
696 /// some iterations and in this case it will set this to false.
698
699 /// Peel off the last PeelCount loop iterations.
701 };
702
703 /// Get target-customized preferences for the generic loop peeling
704 /// transformation. The caller will initialize \p PP with the current
705 /// target-independent defaults with information from \p L and \p SE.
707 PeelingPreferences &PP) const;
708
709 /// Targets can implement their own combinations for target-specific
710 /// intrinsics. This function will be called from the InstCombine pass every
711 /// time a target-specific intrinsic is encountered.
712 ///
713 /// \returns std::nullopt to not do anything target specific or a value that
714 /// will be returned from the InstCombiner. It is possible to return null and
715 /// stop further processing of the intrinsic by returning nullptr.
716 LLVM_ABI std::optional<Instruction *>
718 /// Can be used to implement target-specific instruction combining.
719 /// \see instCombineIntrinsic
720 LLVM_ABI std::optional<Value *>
722 APInt DemandedMask, KnownBits &Known,
723 bool &KnownBitsComputed) const;
724 /// Can be used to implement target-specific instruction combining.
725 /// \see instCombineIntrinsic
726 LLVM_ABI std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
727 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
728 APInt &UndefElts2, APInt &UndefElts3,
729 std::function<void(Instruction *, unsigned, APInt, APInt &)>
730 SimplifyAndSetOp) const;
731 /// @}
732
733 /// \name Scalar Target Information
734 /// @{
735
736 /// Flags indicating the kind of support for population count.
737 ///
738 /// Compared to the SW implementation, HW support is supposed to
739 /// significantly boost the performance when the population is dense, and it
740 /// may or may not degrade performance if the population is sparse. A HW
741 /// support is considered as "Fast" if it can outperform, or is on a par
742 /// with, SW implementation when the population is sparse; otherwise, it is
743 /// considered as "Slow".
745
746 /// Return true if the specified immediate is legal add immediate, that
747 /// is the target has add instructions which can add a register with the
748 /// immediate without having to materialize the immediate into a register.
749 LLVM_ABI bool isLegalAddImmediate(int64_t Imm) const;
750
751 /// Return true if adding the specified scalable immediate is legal, that is
752 /// the target has add instructions which can add a register with the
753 /// immediate (multiplied by vscale) without having to materialize the
754 /// immediate into a register.
755 LLVM_ABI bool isLegalAddScalableImmediate(int64_t Imm) const;
756
757 /// Return true if the specified immediate is legal icmp immediate,
758 /// that is the target has icmp instructions which can compare a register
759 /// against the immediate without having to materialize the immediate into a
760 /// register.
761 LLVM_ABI bool isLegalICmpImmediate(int64_t Imm) const;
762
763 /// Return true if the addressing mode represented by AM is legal for
764 /// this target, for a load/store of the specified type.
765 /// The type may be VoidTy, in which case only return true if the addressing
766 /// mode is legal for a load/store of any legal type.
767 /// If target returns true in LSRWithInstrQueries(), I may be valid.
768 /// \param ScalableOffset represents a quantity of bytes multiplied by vscale,
769 /// an invariant value known only at runtime. Most targets should not accept
770 /// a scalable offset.
771 ///
772 /// TODO: Handle pre/postinc as well.
774 int64_t BaseOffset, bool HasBaseReg,
775 int64_t Scale, unsigned AddrSpace = 0,
776 Instruction *I = nullptr,
777 int64_t ScalableOffset = 0) const;
778
779 /// Return true if LSR cost of C1 is lower than C2.
781 const TargetTransformInfo::LSRCost &C2) const;
782
783 /// Return true if LSR major cost is number of registers. Targets which
784 /// implement their own isLSRCostLess and unset number of registers as major
785 /// cost should return false, otherwise return true.
787
788 /// Return true if LSR should drop a found solution if it's calculated to be
789 /// less profitable than the baseline.
791
792 /// \returns true if LSR should not optimize a chain that includes \p I.
794
795 /// Return true if the target can fuse a compare and branch.
796 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
797 /// calculation for the instructions in a loop.
798 LLVM_ABI bool canMacroFuseCmp() const;
799
800 /// Return true if the target can save a compare for loop count, for example
801 /// hardware loop saves a compare.
804 TargetLibraryInfo *LibInfo) const;
805
806 /// Which addressing mode Loop Strength Reduction will try to generate.
808 AMK_None = 0x0, ///< Don't prefer any addressing mode
809 AMK_PreIndexed = 0x1, ///< Prefer pre-indexed addressing mode
810 AMK_PostIndexed = 0x2, ///< Prefer post-indexed addressing mode
811 AMK_All = 0x3, ///< Consider all addressing modes
812 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/AMK_All)
813 };
814
815 /// Return the preferred addressing mode LSR should make efforts to generate.
818
819 /// Return true if the target supports masked store.
820 LLVM_ABI bool isLegalMaskedStore(Type *DataType, Align Alignment,
821 unsigned AddressSpace) const;
822 /// Return true if the target supports masked load.
823 LLVM_ABI bool isLegalMaskedLoad(Type *DataType, Align Alignment,
824 unsigned AddressSpace) const;
825
826 /// Return true if the target supports nontemporal store.
827 LLVM_ABI bool isLegalNTStore(Type *DataType, Align Alignment) const;
828 /// Return true if the target supports nontemporal load.
829 LLVM_ABI bool isLegalNTLoad(Type *DataType, Align Alignment) const;
830
831 /// \Returns true if the target supports broadcasting a load to a vector of
832 /// type <NumElements x ElementTy>.
833 LLVM_ABI bool isLegalBroadcastLoad(Type *ElementTy,
834 ElementCount NumElements) const;
835
836 /// Return true if the target supports masked scatter.
837 LLVM_ABI bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
838 /// Return true if the target supports masked gather.
839 LLVM_ABI bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
840 /// Return true if the target forces scalarizing of llvm.masked.gather
841 /// intrinsics.
843 Align Alignment) const;
844 /// Return true if the target forces scalarizing of llvm.masked.scatter
845 /// intrinsics.
847 Align Alignment) const;
848
849 /// Return true if the target supports masked compress store.
851 Align Alignment) const;
852 /// Return true if the target supports masked expand load.
853 LLVM_ABI bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const;
854
855 /// Return true if the target supports strided load.
856 LLVM_ABI bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const;
857
858 /// Return true is the target supports interleaved access for the given vector
859 /// type \p VTy, interleave factor \p Factor, alignment \p Alignment and
860 /// address space \p AddrSpace.
861 LLVM_ABI bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
862 Align Alignment,
863 unsigned AddrSpace) const;
864
865 // Return true if the target supports masked vector histograms.
867 Type *DataType) const;
868
869 /// Return true if this is an alternating opcode pattern that can be lowered
870 /// to a single instruction on the target. In X86 this is for the addsub
871 /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
872 /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
873 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
874 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
875 /// \p VecTy is the vector type of the instruction to be generated.
876 LLVM_ABI bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
877 unsigned Opcode1,
878 const SmallBitVector &OpcodeMask) const;
879
880 /// Return true if we should be enabling ordered reductions for the target.
882
883 /// Return true if the target has a unified operation to calculate division
884 /// and remainder. If so, the additional implicit multiplication and
885 /// subtraction required to calculate a remainder from division are free. This
886 /// can enable more aggressive transformations for division and remainder than
887 /// would typically be allowed using throughput or size cost models.
888 LLVM_ABI bool hasDivRemOp(Type *DataType, bool IsSigned) const;
889
890 /// Return true if the given instruction (assumed to be a memory access
891 /// instruction) has a volatile variant. If that's the case then we can avoid
892 /// addrspacecast to generic AS for volatile loads/stores. Default
893 /// implementation returns false, which prevents address space inference for
894 /// volatile loads/stores.
895 LLVM_ABI bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
896
897 /// Return true if target doesn't mind addresses in vectors.
899
900 /// Return the cost of the scaling factor used in the addressing
901 /// mode represented by AM for this target, for a load/store
902 /// of the specified type.
903 /// If the AM is supported, the return value must be >= 0.
904 /// If the AM is not supported, it returns a negative value.
905 /// TODO: Handle pre/postinc as well.
907 StackOffset BaseOffset,
908 bool HasBaseReg, int64_t Scale,
909 unsigned AddrSpace = 0) const;
910
911 /// Return true if the loop strength reduce pass should make
912 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
913 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
914 /// immediate offset and no index register.
915 LLVM_ABI bool LSRWithInstrQueries() const;
916
917 /// Return true if it's free to truncate a value of type Ty1 to type
918 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
919 /// by referencing its sub-register AX.
920 LLVM_ABI bool isTruncateFree(Type *Ty1, Type *Ty2) const;
921
922 /// Return true if it is profitable to hoist instruction in the
923 /// then/else to before if.
925
926 LLVM_ABI bool useAA() const;
927
928 /// Return true if this type is legal.
929 LLVM_ABI bool isTypeLegal(Type *Ty) const;
930
931 /// Returns the estimated number of registers required to represent \p Ty.
932 LLVM_ABI unsigned getRegUsageForType(Type *Ty) const;
933
934 /// Return true if switches should be turned into lookup tables for the
935 /// target.
937
938 /// Return true if switches should be turned into lookup tables
939 /// containing this constant value for the target.
941
942 /// Return true if lookup tables should be turned into relative lookup tables.
944
945 /// Return true if the input function which is cold at all call sites,
946 /// should use coldcc calling convention.
948
950
951 /// Identifies if the vector form of the intrinsic has a scalar operand.
953 unsigned ScalarOpdIdx) const;
954
955 /// Identifies if the vector form of the intrinsic is overloaded on the type
956 /// of the operand at index \p OpdIdx, or on the return type if \p OpdIdx is
957 /// -1.
959 int OpdIdx) const;
960
961 /// Identifies if the vector form of the intrinsic that returns a struct is
962 /// overloaded at the struct element index \p RetIdx.
963 LLVM_ABI bool
965 int RetIdx) const;
966
967 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
968 /// are set if the demanded result elements need to be inserted and/or
969 /// extracted from vectors. The involved values may be passed in VL if
970 /// Insert is true.
972 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
973 TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
974 ArrayRef<Value *> VL = {}) const;
975
976 /// Estimate the overhead of scalarizing operands with the given types. The
977 /// (potentially vector) types to use for each of argument are passes via Tys.
980
981 /// If target has efficient vector element load/store instructions, it can
982 /// return true here so that insertion/extraction costs are not added to
983 /// the scalarization cost of a load/store.
985
986 /// If the target supports tail calls.
987 LLVM_ABI bool supportsTailCalls() const;
988
989 /// If target supports tail call on \p CB
990 LLVM_ABI bool supportsTailCallFor(const CallBase *CB) const;
991
992 /// Don't restrict interleaved unrolling to small loops.
993 LLVM_ABI bool enableAggressiveInterleaving(bool LoopHasReductions) const;
994
995 /// Returns options for expansion of memcmp. IsZeroCmp is
996 // true if this is the expansion of memcmp(p1, p2, s) == 0.
998 // Return true if memcmp expansion is enabled.
999 operator bool() const { return MaxNumLoads > 0; }
1000
1001 // Maximum number of load operations.
1002 unsigned MaxNumLoads = 0;
1003
1004 // The list of available load sizes (in bytes), sorted in decreasing order.
1006
1007 // For memcmp expansion when the memcmp result is only compared equal or
1008 // not-equal to 0, allow up to this number of load pairs per block. As an
1009 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
1010 // a0 = load2bytes &a[0]
1011 // b0 = load2bytes &b[0]
1012 // a2 = load1byte &a[2]
1013 // b2 = load1byte &b[2]
1014 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
1015 unsigned NumLoadsPerBlock = 1;
1016
1017 // Set to true to allow overlapping loads. For example, 7-byte compares can
1018 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
1019 // requires all loads in LoadSizes to be doable in an unaligned way.
1021
1022 // Sometimes, the amount of data that needs to be compared is smaller than
1023 // the standard register size, but it cannot be loaded with just one load
1024 // instruction. For example, if the size of the memory comparison is 6
1025 // bytes, we can handle it more efficiently by loading all 6 bytes in a
1026 // single block and generating an 8-byte number, instead of generating two
1027 // separate blocks with conditional jumps for 4 and 2 byte loads. This
1028 // approach simplifies the process and produces the comparison result as
1029 // normal. This array lists the allowed sizes of memcmp tails that can be
1030 // merged into one block
1032 };
1034 bool IsZeroCmp) const;
1035
1036 /// Should the Select Optimization pass be enabled and ran.
1037 LLVM_ABI bool enableSelectOptimize() const;
1038
1039 /// Should the Select Optimization pass treat the given instruction like a
1040 /// select, potentially converting it to a conditional branch. This can
1041 /// include select-like instructions like or(zext(c), x) that can be converted
1042 /// to selects.
1044
1045 /// Enable matching of interleaved access groups.
1047
1048 /// Enable matching of interleaved access groups that contain predicated
1049 /// accesses or gaps and therefore vectorized using masked
1050 /// vector loads/stores.
1052
1053 /// Indicate that it is potentially unsafe to automatically vectorize
1054 /// floating-point operations because the semantics of vector and scalar
1055 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
1056 /// does not support IEEE-754 denormal numbers, while depending on the
1057 /// platform, scalar floating-point math does.
1058 /// This applies to floating-point math operations and calls, not memory
1059 /// operations, shuffles, or casts.
1061
1062 /// Determine if the target supports unaligned memory accesses.
1064 unsigned BitWidth,
1065 unsigned AddressSpace = 0,
1066 Align Alignment = Align(1),
1067 unsigned *Fast = nullptr) const;
1068
1069 /// Return hardware support for population count.
1070 LLVM_ABI PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
1071
1072 /// Return true if the hardware has a fast square-root instruction.
1073 LLVM_ABI bool haveFastSqrt(Type *Ty) const;
1074
1075 /// Return true if the cost of the instruction is too high to speculatively
1076 /// execute and should be kept behind a branch.
1077 /// This normally just wraps around a getInstructionCost() call, but some
1078 /// targets might report a low TCK_SizeAndLatency value that is incompatible
1079 /// with the fixed TCC_Expensive value.
1080 /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
1082
1083 /// Return true if it is faster to check if a floating-point value is NaN
1084 /// (or not-NaN) versus a comparison against a constant FP zero value.
1085 /// Targets should override this if materializing a 0.0 for comparison is
1086 /// generally as cheap as checking for ordered/unordered.
1088
1089 /// Return the expected cost of supporting the floating point operation
1090 /// of the specified type.
1092
1093 /// Return the expected cost of materializing for the given integer
1094 /// immediate of the specified type.
1096 TargetCostKind CostKind) const;
1097
1098 /// Return the expected cost of materialization for the given integer
1099 /// immediate of the specified type for a given instruction. The cost can be
1100 /// zero if the immediate can be folded into the specified instruction.
1101 LLVM_ABI InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1102 const APInt &Imm, Type *Ty,
1104 Instruction *Inst = nullptr) const;
1106 const APInt &Imm, Type *Ty,
1107 TargetCostKind CostKind) const;
1108
1109 /// Return the expected cost for the given integer when optimising
1110 /// for size. This is different than the other integer immediate cost
1111 /// functions in that it is subtarget agnostic. This is useful when you e.g.
1112 /// target one ISA such as Aarch32 but smaller encodings could be possible
1113 /// with another such as Thumb. This return value is used as a penalty when
1114 /// the total costs for a constant is calculated (the bigger the cost, the
1115 /// more beneficial constant hoisting is).
1116 LLVM_ABI InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1117 const APInt &Imm,
1118 Type *Ty) const;
1119
1120 /// It can be advantageous to detach complex constants from their uses to make
1121 /// their generation cheaper. This hook allows targets to report when such
1122 /// transformations might negatively effect the code generation of the
1123 /// underlying operation. The motivating example is divides whereby hoisting
1124 /// constants prevents the code generator's ability to transform them into
1125 /// combinations of simpler operations.
1127 const Function &Fn) const;
1128
1129 /// @}
1130
1131 /// \name Vector Target Information
1132 /// @{
1133
1134 /// The various kinds of shuffle patterns for vector queries.
1136 SK_Broadcast, ///< Broadcast element 0 to all other elements.
1137 SK_Reverse, ///< Reverse the order of the vector.
1138 SK_Select, ///< Selects elements from the corresponding lane of
1139 ///< either source operand. This is equivalent to a
1140 ///< vector select with a constant condition operand.
1141 SK_Transpose, ///< Transpose two vectors.
1142 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
1143 SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
1144 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
1145 ///< with any shuffle mask.
1146 SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
1147 ///< shuffle mask.
1148 SK_Splice ///< Concatenates elements from the first input vector
1149 ///< with elements of the second input vector. Returning
1150 ///< a vector of the same type as the input vectors.
1151 ///< Index indicates start offset in first input vector.
1152 };
1153
1154 /// Additional information about an operand's possible values.
1156 OK_AnyValue, // Operand can have any value.
1157 OK_UniformValue, // Operand is uniform (splat of a value).
1158 OK_UniformConstantValue, // Operand is uniform constant.
1159 OK_NonUniformConstantValue // Operand is a non uniform constant value.
1160 };
1161
1162 /// Additional properties of an operand's values.
1168
1169 // Describe the values an operand can take. We're in the process
1170 // of migrating uses of OperandValueKind and OperandValueProperties
1171 // to use this class, and then will change the internal representation.
1175
1176 bool isConstant() const {
1178 }
1179 bool isUniform() const {
1181 }
1182 bool isPowerOf2() const {
1183 return Properties == OP_PowerOf2;
1184 }
1185 bool isNegatedPowerOf2() const {
1187 }
1188
1190 return {Kind, OP_None};
1191 }
1192 };
1193
1194 /// \return the number of registers in the target-provided register class.
1195 LLVM_ABI unsigned getNumberOfRegisters(unsigned ClassID) const;
1196
1197 /// \return true if the target supports load/store that enables fault
1198 /// suppression of memory operands when the source condition is false.
1199 LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const;
1200
1201 /// \return the target-provided register class ID for the provided type,
1202 /// accounting for type promotion and other type-legalization techniques that
1203 /// the target might apply. However, it specifically does not account for the
1204 /// scalarization or splitting of vector types. Should a vector type require
1205 /// scalarization or splitting into multiple underlying vector registers, that
1206 /// type should be mapped to a register class containing no registers.
1207 /// Specifically, this is designed to provide a simple, high-level view of the
1208 /// register allocation later performed by the backend. These register classes
1209 /// don't necessarily map onto the register classes used by the backend.
1210 /// FIXME: It's not currently possible to determine how many registers
1211 /// are used by the provided type.
1213 Type *Ty = nullptr) const;
1214
1215 /// \return the target-provided register class name
1216 LLVM_ABI const char *getRegisterClassName(unsigned ClassID) const;
1217
1219
1220 /// \return The width of the largest scalar or vector register type.
1221 LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const;
1222
1223 /// \return The width of the smallest vector register type.
1224 LLVM_ABI unsigned getMinVectorRegisterBitWidth() const;
1225
1226 /// \return The maximum value of vscale if the target specifies an
1227 /// architectural maximum vector length, and std::nullopt otherwise.
1228 LLVM_ABI std::optional<unsigned> getMaxVScale() const;
1229
1230 /// \return the value of vscale to tune the cost model for.
1231 LLVM_ABI std::optional<unsigned> getVScaleForTuning() const;
1232
1233 /// \return true if vscale is known to be a power of 2
1235
1236 /// \return True if the vectorization factor should be chosen to
1237 /// make the vector of the smallest element type match the size of a
1238 /// vector register. For wider element types, this could result in
1239 /// creating vectors that span multiple vector registers.
1240 /// If false, the vectorization factor will be chosen based on the
1241 /// size of the widest element type.
1242 /// \p K Register Kind for vectorization.
1243 LLVM_ABI bool
1245
1246 /// \return The minimum vectorization factor for types of given element
1247 /// bit width, or 0 if there is no minimum VF. The returned value only
1248 /// applies when shouldMaximizeVectorBandwidth returns true.
1249 /// If IsScalable is true, the returned ElementCount must be a scalable VF.
1250 LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
1251
1252 /// \return The maximum vectorization factor for types of given element
1253 /// bit width and opcode, or 0 if there is no maximum VF.
1254 /// Currently only used by the SLP vectorizer.
1255 LLVM_ABI unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
1256
1257 /// \return The minimum vectorization factor for the store instruction. Given
1258 /// the initial estimation of the minimum vector factor and store value type,
1259 /// it tries to find possible lowest VF, which still might be profitable for
1260 /// the vectorization.
1261 /// \param VF Initial estimation of the minimum vector factor.
1262 /// \param ScalarMemTy Scalar memory type of the store operation.
1263 /// \param ScalarValTy Scalar type of the stored value.
1264 /// Currently only used by the SLP vectorizer.
1265 LLVM_ABI unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1266 Type *ScalarValTy) const;
1267
1268 /// \return True if it should be considered for address type promotion.
1269 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
1270 /// profitable without finding other extensions fed by the same input.
1272 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
1273
1274 /// \return The size of a cache line in bytes.
1275 LLVM_ABI unsigned getCacheLineSize() const;
1276
1277 /// The possible cache levels
1278 enum class CacheLevel {
1279 L1D, // The L1 data cache
1280 L2D, // The L2 data cache
1281
1282 // We currently do not model L3 caches, as their sizes differ widely between
1283 // microarchitectures. Also, we currently do not have a use for L3 cache
1284 // size modeling yet.
1285 };
1286
1287 /// \return The size of the cache level in bytes, if available.
1288 LLVM_ABI std::optional<unsigned> getCacheSize(CacheLevel Level) const;
1289
1290 /// \return The associativity of the cache level, if available.
1291 LLVM_ABI std::optional<unsigned>
1292 getCacheAssociativity(CacheLevel Level) const;
1293
1294 /// \return The minimum architectural page size for the target.
1295 LLVM_ABI std::optional<unsigned> getMinPageSize() const;
1296
1297 /// \return How much before a load we should place the prefetch
1298 /// instruction. This is currently measured in number of
1299 /// instructions.
1300 LLVM_ABI unsigned getPrefetchDistance() const;
1301
1302 /// Some HW prefetchers can handle accesses up to a certain constant stride.
1303 /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
1304 /// and the arguments provided are meant to serve as a basis for deciding this
1305 /// for a particular loop.
1306 ///
1307 /// \param NumMemAccesses Number of memory accesses in the loop.
1308 /// \param NumStridedMemAccesses Number of the memory accesses that
1309 /// ScalarEvolution could find a known stride
1310 /// for.
1311 /// \param NumPrefetches Number of software prefetches that will be
1312 /// emitted as determined by the addresses
1313 /// involved and the cache line size.
1314 /// \param HasCall True if the loop contains a call.
1315 ///
1316 /// \return This is the minimum stride in bytes where it makes sense to start
1317 /// adding SW prefetches. The default is 1, i.e. prefetch with any
1318 /// stride.
1319 LLVM_ABI unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1320 unsigned NumStridedMemAccesses,
1321 unsigned NumPrefetches,
1322 bool HasCall) const;
1323
1324 /// \return The maximum number of iterations to prefetch ahead. If
1325 /// the required number of iterations is more than this number, no
1326 /// prefetching is performed.
1327 LLVM_ABI unsigned getMaxPrefetchIterationsAhead() const;
1328
1329 /// \return True if prefetching should also be done for writes.
1330 LLVM_ABI bool enableWritePrefetching() const;
1331
1332 /// \return if target want to issue a prefetch in address space \p AS.
1333 LLVM_ABI bool shouldPrefetchAddressSpace(unsigned AS) const;
1334
1335 /// \return The cost of a partial reduction, which is a reduction from a
1336 /// vector to another vector with fewer elements of larger size. They are
1337 /// represented by the llvm.vector.partial.reduce.add intrinsic, which
1338 /// takes an accumulator of type \p AccumType and a second vector operand to
1339 /// be accumulated, whose element count is specified by \p VF. The type of
1340 /// reduction is specified by \p Opcode. The second operand passed to the
1341 /// intrinsic could be the result of an extend, such as sext or zext. In
1342 /// this case \p BinOp is nullopt, \p InputTypeA represents the type being
1343 /// extended and \p OpAExtend the operation, i.e. sign- or zero-extend.
1344 /// Also, \p InputTypeB should be nullptr and OpBExtend should be None.
1345 /// Alternatively, the second operand could be the result of a binary
1346 /// operation performed on two extends, i.e.
1347 /// mul(zext i8 %a -> i32, zext i8 %b -> i32).
1348 /// In this case \p BinOp may specify the opcode of the binary operation,
1349 /// \p InputTypeA and \p InputTypeB the types being extended, and
1350 /// \p OpAExtend, \p OpBExtend the form of extensions. An example of an
1351 /// operation that uses a partial reduction is a dot product, which reduces
1352 /// two vectors in binary mul operation to another of 4 times fewer and 4
1353 /// times larger elements.
1355 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
1357 PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
1359
1360 /// \return The maximum interleave factor that any transform should try to
1361 /// perform for this target. This number depends on the level of parallelism
1362 /// and the number of execution units in the CPU.
1363 LLVM_ABI unsigned getMaxInterleaveFactor(ElementCount VF) const;
1364
1365 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1366 LLVM_ABI static OperandValueInfo getOperandInfo(const Value *V);
1367
1368 /// This is an approximation of reciprocal throughput of a math/logic op.
1369 /// A higher cost indicates less expected throughput.
1370 /// From Agner Fog's guides, reciprocal throughput is "the average number of
1371 /// clock cycles per instruction when the instructions are not part of a
1372 /// limiting dependency chain."
1373 /// Therefore, costs should be scaled to account for multiple execution units
1374 /// on the target that can process this type of instruction. For example, if
1375 /// there are 5 scalar integer units and 2 vector integer units that can
1376 /// calculate an 'add' in a single cycle, this model should indicate that the
1377 /// cost of the vector add instruction is 2.5 times the cost of the scalar
1378 /// add instruction.
1379 /// \p Args is an optional argument which holds the instruction operands
1380 /// values so the TTI can analyze those values searching for special
1381 /// cases or optimizations based on those values.
1382 /// \p CxtI is the optional original context instruction, if one exists, to
1383 /// provide even more information.
1384 /// \p TLibInfo is used to search for platform specific vector library
1385 /// functions for instructions that might be converted to calls (e.g. frem).
1387 unsigned Opcode, Type *Ty,
1391 ArrayRef<const Value *> Args = {}, const Instruction *CxtI = nullptr,
1392 const TargetLibraryInfo *TLibInfo = nullptr) const;
1393
1394 /// Returns the cost estimation for alternating opcode pattern that can be
1395 /// lowered to a single instruction on the target. In X86 this is for the
1396 /// addsub instruction which corrsponds to a Shuffle + Fadd + FSub pattern in
1397 /// IR. This function expects two opcodes: \p Opcode1 and \p Opcode2 being
1398 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
1399 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
1400 /// \p VecTy is the vector type of the instruction to be generated.
1402 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
1403 const SmallBitVector &OpcodeMask,
1405
1406 /// \return The cost of a shuffle instruction of kind Kind with inputs of type
1407 /// SrcTy, producing a vector of type DstTy. The exact mask may be passed as
1408 /// Mask, or else the array will be empty. The Index and SubTp parameters
1409 /// are used by the subvector insertions shuffle kinds to show the insert
1410 /// point and the type of the subvector being inserted. The operands of the
1411 /// shuffle can be passed through \p Args, which helps improve the cost
1412 /// estimation in some cases, like in broadcast loads.
1414 ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy,
1415 ArrayRef<int> Mask = {},
1417 VectorType *SubTp = nullptr, ArrayRef<const Value *> Args = {},
1418 const Instruction *CxtI = nullptr) const;
1419
1420 /// Represents a hint about the context in which a cast is used.
1421 ///
1422 /// For zext/sext, the context of the cast is the operand, which must be a
1423 /// load of some kind. For trunc, the context is of the cast is the single
1424 /// user of the instruction, which must be a store of some kind.
1425 ///
1426 /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1427 /// type of cast it's dealing with, as not every cast is equal. For instance,
1428 /// the zext of a load may be free, but the zext of an interleaving load can
1429 //// be (very) expensive!
1430 ///
1431 /// See \c getCastContextHint to compute a CastContextHint from a cast
1432 /// Instruction*. Callers can use it if they don't need to override the
1433 /// context and just want it to be calculated from the instruction.
1434 ///
1435 /// FIXME: This handles the types of load/store that the vectorizer can
1436 /// produce, which are the cases where the context instruction is most
1437 /// likely to be incorrect. There are other situations where that can happen
1438 /// too, which might be handled here but in the long run a more general
1439 /// solution of costing multiple instructions at the same times may be better.
1441 None, ///< The cast is not used with a load/store of any kind.
1442 Normal, ///< The cast is used with a normal load/store.
1443 Masked, ///< The cast is used with a masked load/store.
1444 GatherScatter, ///< The cast is used with a gather/scatter.
1445 Interleave, ///< The cast is used with an interleaved load/store.
1446 Reversed, ///< The cast is used with a reversed load/store.
1447 };
1448
1449 /// Calculates a CastContextHint from \p I.
1450 /// This should be used by callers of getCastInstrCost if they wish to
1451 /// determine the context from some instruction.
1452 /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1453 /// or if it's another type of cast.
1455
1456 /// \return The expected cost of cast instructions, such as bitcast, trunc,
1457 /// zext, etc. If there is an existing instruction that holds Opcode, it
1458 /// may be passed in the 'I' parameter.
1460 unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH,
1462 const Instruction *I = nullptr) const;
1463
1464 /// \return The expected cost of a sign- or zero-extended vector extract. Use
1465 /// Index = -1 to indicate that there is no information about the index value.
1467 getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1468 unsigned Index, TTI::TargetCostKind CostKind) const;
1469
1470 /// \return The expected cost of control-flow related instructions such as
1471 /// Phi, Ret, Br, Switch.
1474 const Instruction *I = nullptr) const;
1475
1476 /// \returns The expected cost of compare and select instructions. If there
1477 /// is an existing instruction that holds Opcode, it may be passed in the
1478 /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1479 /// is using a compare with the specified predicate as condition. When vector
1480 /// types are passed, \p VecPred must be used for all lanes. For a
1481 /// comparison, the two operands are the natural values. For a select, the
1482 /// two operands are the *value* operands, not the condition operand.
1484 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
1486 OperandValueInfo Op1Info = {OK_AnyValue, OP_None},
1487 OperandValueInfo Op2Info = {OK_AnyValue, OP_None},
1488 const Instruction *I = nullptr) const;
1489
1490 /// \return The expected cost of vector Insert and Extract.
1491 /// Use -1 to indicate that there is no information on the index value.
1492 /// This is used when the instruction is not available; a typical use
1493 /// case is to provision the cost of vectorization/scalarization in
1494 /// vectorizer passes.
1495 LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1497 unsigned Index = -1,
1498 const Value *Op0 = nullptr,
1499 const Value *Op1 = nullptr) const;
1500
1501 /// \return The expected cost of vector Insert and Extract.
1502 /// Use -1 to indicate that there is no information on the index value.
1503 /// This is used when the instruction is not available; a typical use
1504 /// case is to provision the cost of vectorization/scalarization in
1505 /// vectorizer passes.
1506 /// \param ScalarUserAndIdx encodes the information about extracts from a
1507 /// vector with 'Scalar' being the value being extracted,'User' being the user
1508 /// of the extract(nullptr if user is not known before vectorization) and
1509 /// 'Idx' being the extract lane.
1511 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
1512 Value *Scalar,
1513 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) const;
1514
1515 /// \return The expected cost of vector Insert and Extract.
1516 /// This is used when instruction is available, and implementation
1517 /// asserts 'I' is not nullptr.
1518 ///
1519 /// A typical suitable use case is cost estimation when vector instruction
1520 /// exists (e.g., from basic blocks during transformation).
1521 LLVM_ABI InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1523 unsigned Index = -1) const;
1524
1525 /// \return The expected cost of inserting or extracting a lane that is \p
1526 /// Index elements from the end of a vector, i.e. the mathematical expression
1527 /// for the lane is (VF - 1 - Index). This is required for scalable vectors
1528 /// where the exact lane index is unknown at compile time.
1530 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind,
1531 unsigned Index) const;
1532
1533 /// \return The expected cost of aggregate inserts and extracts. This is
1534 /// used when the instruction is not available; a typical use case is to
1535 /// provision the cost of vectorization/scalarization in vectorizer passes.
1537 unsigned Opcode, TTI::TargetCostKind CostKind) const;
1538
1539 /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
1540 /// \p ReplicationFactor times.
1541 ///
1542 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
1543 /// <0,0,0,1,1,1,2,2,2,3,3,3>
1545 Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
1547
1548 /// \return The cost of Load and Store instructions. The operand info
1549 /// \p OpdInfo should refer to the stored value for stores and the address
1550 /// for loads.
1552 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1555 const Instruction *I = nullptr) const;
1556
1557 /// \return The cost of masked Load and Store instructions.
1559 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1561
1562 /// \return The cost of Gather or Scatter operation
1563 /// \p Opcode - is a type of memory access Load or Store
1564 /// \p DataTy - a vector type of the data to be loaded or stored
1565 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1566 /// \p VariableMask - true when the memory access is predicated with a mask
1567 /// that is not a compile-time constant
1568 /// \p Alignment - alignment of single element
1569 /// \p I - the optional original context instruction, if one exists, e.g. the
1570 /// load/store to transform or the call to the gather/scatter intrinsic
1572 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1574 const Instruction *I = nullptr) const;
1575
1576 /// \return The cost of Expand Load or Compress Store operation
1577 /// \p Opcode - is a type of memory access Load or Store
1578 /// \p Src - a vector type of the data to be loaded or stored
1579 /// \p VariableMask - true when the memory access is predicated with a mask
1580 /// that is not a compile-time constant
1581 /// \p Alignment - alignment of single element
1582 /// \p I - the optional original context instruction, if one exists, e.g. the
1583 /// load/store to transform or the call to the gather/scatter intrinsic
1585 unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment,
1587 const Instruction *I = nullptr) const;
1588
1589 /// \return The cost of strided memory operations.
1590 /// \p Opcode - is a type of memory access Load or Store
1591 /// \p DataTy - a vector type of the data to be loaded or stored
1592 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1593 /// \p VariableMask - true when the memory access is predicated with a mask
1594 /// that is not a compile-time constant
1595 /// \p Alignment - alignment of single element
1596 /// \p I - the optional original context instruction, if one exists, e.g. the
1597 /// load/store to transform or the call to the gather/scatter intrinsic
1599 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1601 const Instruction *I = nullptr) const;
1602
1603 /// \return The cost of the interleaved memory operation.
1604 /// \p Opcode is the memory operation code
1605 /// \p VecTy is the vector type of the interleaved access.
1606 /// \p Factor is the interleave factor
1607 /// \p Indices is the indices for interleaved load members (as interleaved
1608 /// load allows gaps)
1609 /// \p Alignment is the alignment of the memory operation
1610 /// \p AddressSpace is address space of the pointer.
1611 /// \p UseMaskForCond indicates if the memory access is predicated.
1612 /// \p UseMaskForGaps indicates if gaps should be masked.
1614 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1615 Align Alignment, unsigned AddressSpace,
1617 bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1618
1619 /// A helper function to determine the type of reduction algorithm used
1620 /// for a given \p Opcode and set of FastMathFlags \p FMF.
1621 static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
1622 return FMF && !(*FMF).allowReassoc();
1623 }
1624
1625 /// Calculate the cost of vector reduction intrinsics.
1626 ///
1627 /// This is the cost of reducing the vector value of type \p Ty to a scalar
1628 /// value using the operation denoted by \p Opcode. The FastMathFlags
1629 /// parameter \p FMF indicates what type of reduction we are performing:
1630 /// 1. Tree-wise. This is the typical 'fast' reduction performed that
1631 /// involves successively splitting a vector into half and doing the
1632 /// operation on the pair of halves until you have a scalar value. For
1633 /// example:
1634 /// (v0, v1, v2, v3)
1635 /// ((v0+v2), (v1+v3), undef, undef)
1636 /// ((v0+v2+v1+v3), undef, undef, undef)
1637 /// This is the default behaviour for integer operations, whereas for
1638 /// floating point we only do this if \p FMF indicates that
1639 /// reassociation is allowed.
1640 /// 2. Ordered. For a vector with N elements this involves performing N
1641 /// operations in lane order, starting with an initial scalar value, i.e.
1642 /// result = InitVal + v0
1643 /// result = result + v1
1644 /// result = result + v2
1645 /// result = result + v3
1646 /// This is only the case for FP operations and when reassociation is not
1647 /// allowed.
1648 ///
1650 unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1652
1656
1657 /// Calculate the cost of an extended reduction pattern, similar to
1658 /// getArithmeticReductionCost of an Add/Sub reduction with multiply and
1659 /// optional extensions. This is the cost of as:
1660 /// * ResTy vecreduce.add/sub(mul (A, B)) or,
1661 /// * ResTy vecreduce.add/sub(mul(ext(Ty A), ext(Ty B)).
1663 bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty,
1665
1666 /// Calculate the cost of an extended reduction pattern, similar to
1667 /// getArithmeticReductionCost of a reduction with an extension.
1668 /// This is the cost of as:
1669 /// ResTy vecreduce.opcode(ext(Ty A)).
1671 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1672 std::optional<FastMathFlags> FMF,
1674
1675 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1676 /// Three cases are handled: 1. scalar instruction 2. vector instruction
1677 /// 3. scalar instruction which is to be vectorized.
1680
1681 /// \returns The cost of Call instructions.
1683 Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1685
1686 /// \returns The number of pieces into which the provided type must be
1687 /// split during legalization. Zero is returned when the answer is unknown.
1688 LLVM_ABI unsigned getNumberOfParts(Type *Tp) const;
1689
1690 /// \returns The cost of the address computation. For most targets this can be
1691 /// merged into the instruction indexing mode. Some targets might want to
1692 /// distinguish between address computation for memory operations with vector
1693 /// pointer types and scalar pointer types. Such targets should override this
1694 /// function. \p SE holds the pointer for the scalar evolution object which
1695 /// was used in order to get the Ptr step value. \p Ptr holds the SCEV of the
1696 /// access pointer.
1700
1701 /// \returns The cost, if any, of keeping values of the given types alive
1702 /// over a callsite.
1703 ///
1704 /// Some types may require the use of register classes that do not have
1705 /// any callee-saved registers, so would require a spill and fill.
1708
1709 /// \returns True if the intrinsic is a supported memory intrinsic. Info
1710 /// will contain additional information - whether the intrinsic may write
1711 /// or read to memory, volatility and the pointer. Info is undefined
1712 /// if false is returned.
1714 MemIntrinsicInfo &Info) const;
1715
1716 /// \returns The maximum element size, in bytes, for an element
1717 /// unordered-atomic memory intrinsic.
1719
1720 /// \returns A value which is the result of the given memory intrinsic. If \p
1721 /// CanCreate is true, new instructions may be created to extract the result
1722 /// from the given intrinsic memory operation. Returns nullptr if the target
1723 /// cannot create a result from the given intrinsic.
1724 LLVM_ABI Value *
1726 bool CanCreate = true) const;
1727
1728 /// \returns The type to use in a loop expansion of a memcpy call.
1730 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1731 unsigned DestAddrSpace, Align SrcAlign, Align DestAlign,
1732 std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
1733
1734 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1735 /// \param RemainingBytes The number of bytes to copy.
1736 ///
1737 /// Calculates the operand types to use when copying \p RemainingBytes of
1738 /// memory, where source and destination alignments are \p SrcAlign and
1739 /// \p DestAlign respectively.
1741 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1742 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1743 Align SrcAlign, Align DestAlign,
1744 std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
1745
1746 /// \returns True if the two functions have compatible attributes for inlining
1747 /// purposes.
1748 LLVM_ABI bool areInlineCompatible(const Function *Caller,
1749 const Function *Callee) const;
1750
1751 /// Returns a penalty for invoking call \p Call in \p F.
1752 /// For example, if a function F calls a function G, which in turn calls
1753 /// function H, then getInlineCallPenalty(F, H()) would return the
1754 /// penalty of calling H from F, e.g. after inlining G into F.
1755 /// \p DefaultCallPenalty is passed to give a default penalty that
1756 /// the target can amend or override.
1757 LLVM_ABI unsigned getInlineCallPenalty(const Function *F,
1758 const CallBase &Call,
1759 unsigned DefaultCallPenalty) const;
1760
1761 /// \returns True if the caller and callee agree on how \p Types will be
1762 /// passed to or returned from the callee.
1763 /// to the callee.
1764 /// \param Types List of types to check.
1765 LLVM_ABI bool areTypesABICompatible(const Function *Caller,
1766 const Function *Callee,
1767 const ArrayRef<Type *> &Types) const;
1768
1769 /// The type of load/store indexing.
1771 MIM_Unindexed, ///< No indexing.
1772 MIM_PreInc, ///< Pre-incrementing.
1773 MIM_PreDec, ///< Pre-decrementing.
1774 MIM_PostInc, ///< Post-incrementing.
1775 MIM_PostDec ///< Post-decrementing.
1776 };
1777
1778 /// \returns True if the specified indexed load for the given type is legal.
1779 LLVM_ABI bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1780
1781 /// \returns True if the specified indexed store for the given type is legal.
1782 LLVM_ABI bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1783
1784 /// \returns The bitwidth of the largest vector type that should be used to
1785 /// load/store in the given address space.
1786 LLVM_ABI unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1787
1788 /// \returns True if the load instruction is legal to vectorize.
1790
1791 /// \returns True if the store instruction is legal to vectorize.
1793
1794 /// \returns True if it is legal to vectorize the given load chain.
1795 LLVM_ABI bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1796 Align Alignment,
1797 unsigned AddrSpace) const;
1798
1799 /// \returns True if it is legal to vectorize the given store chain.
1800 LLVM_ABI bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1801 Align Alignment,
1802 unsigned AddrSpace) const;
1803
1804 /// \returns True if it is legal to vectorize the given reduction kind.
1806 ElementCount VF) const;
1807
1808 /// \returns True if the given type is supported for scalable vectors
1810
1811 /// \returns The new vector factor value if the target doesn't support \p
1812 /// SizeInBytes loads or has a better vector factor.
1813 LLVM_ABI unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1814 unsigned ChainSizeInBytes,
1815 VectorType *VecTy) const;
1816
1817 /// \returns The new vector factor value if the target doesn't support \p
1818 /// SizeInBytes stores or has a better vector factor.
1819 LLVM_ABI unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1820 unsigned ChainSizeInBytes,
1821 VectorType *VecTy) const;
1822
1823 /// \returns True if the target prefers fixed width vectorization if the
1824 /// loop vectorizer's cost-model assigns an equal cost to the fixed and
1825 /// scalable version of the vectorized loop.
1826 /// \p IsEpilogue is true if the decision is for the epilogue loop.
1827 LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const;
1828
1829 /// \returns True if target prefers SLP vectorizer with altermate opcode
1830 /// vectorization, false - otherwise.
1832
1833 /// \returns True if the target prefers reductions of \p Kind to be performed
1834 /// in the loop.
1835 LLVM_ABI bool preferInLoopReduction(RecurKind Kind, Type *Ty) const;
1836
1837 /// \returns True if the target prefers reductions select kept in the loop
1838 /// when tail folding. i.e.
1839 /// loop:
1840 /// p = phi (0, s)
1841 /// a = add (p, x)
1842 /// s = select (mask, a, p)
1843 /// vecreduce.add(s)
1844 ///
1845 /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1846 /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1847 /// by the target, this can lead to cleaner code generation.
1849
1850 /// Return true if the loop vectorizer should consider vectorizing an
1851 /// otherwise scalar epilogue loop.
1853
1854 /// \returns True if the loop vectorizer should discard any VFs where the
1855 /// maximum register pressure exceeds getNumberOfRegisters.
1857
1858 /// \returns True if the target wants to expand the given reduction intrinsic
1859 /// into a shuffle sequence.
1861
1863
1864 /// \returns The shuffle sequence pattern used to expand the given reduction
1865 /// intrinsic.
1868
1869 /// \returns the size cost of rematerializing a GlobalValue address relative
1870 /// to a stack reload.
1871 LLVM_ABI unsigned getGISelRematGlobalCost() const;
1872
1873 /// \returns the lower bound of a trip count to decide on vectorization
1874 /// while tail-folding.
1876
1877 /// \returns True if the target supports scalable vectors.
1878 LLVM_ABI bool supportsScalableVectors() const;
1879
1880 /// \return true when scalable vectorization is preferred.
1882
1883 /// \name Vector Predication Information
1884 /// @{
1885 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1886 /// in hardware. (see LLVM Language Reference - "Vector Predication
1887 /// Intrinsics"). Use of %evl is discouraged when that is not the case.
1888 LLVM_ABI bool hasActiveVectorLength() const;
1889
1890 /// Return true if sinking I's operands to the same basic block as I is
1891 /// profitable, e.g. because the operands can be folded into a target
1892 /// instruction during instruction selection. After calling the function
1893 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
1894 /// come first).
1897
1898 /// Return true if it's significantly cheaper to shift a vector by a uniform
1899 /// scalar than by an amount which will vary across each lane. On x86 before
1900 /// AVX2 for example, there is a "psllw" instruction for the former case, but
1901 /// no simple instruction for a general "a << b" operation on vectors.
1902 /// This should also apply to lowering for vector funnel shifts (rotates).
1904
1907 // keep the predicating parameter
1909 // where legal, discard the predicate parameter
1911 // transform into something else that is also predicating
1913 };
1914
1915 // How to transform the EVL parameter.
1916 // Legal: keep the EVL parameter as it is.
1917 // Discard: Ignore the EVL parameter where it is safe to do so.
1918 // Convert: Fold the EVL into the mask parameter.
1920
1921 // How to transform the operator.
1922 // Legal: The target supports this operator.
1923 // Convert: Convert this to a non-VP operation.
1924 // The 'Discard' strategy is invalid.
1926
1927 bool shouldDoNothing() const {
1928 return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
1929 }
1932 };
1933
1934 /// \returns How the target needs this vector-predicated operation to be
1935 /// transformed.
1937 getVPLegalizationStrategy(const VPIntrinsic &PI) const;
1938 /// @}
1939
1940 /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb
1941 /// state.
1942 ///
1943 /// Used by the LowerTypeTests pass, which constructs an IR inline assembler
1944 /// node containing a jump table in a format suitable for the target, so it
1945 /// needs to know what format of jump table it can legally use.
1946 ///
1947 /// For non-Arm targets, this function isn't used. It defaults to returning
1948 /// false, but it shouldn't matter what it returns anyway.
1949 LLVM_ABI bool hasArmWideBranch(bool Thumb) const;
1950
1951 /// Returns a bitmask constructed from the target-features or fmv-features
1952 /// metadata of a function.
1953 LLVM_ABI APInt getFeatureMask(const Function &F) const;
1954
1955 /// Returns true if this is an instance of a function with multiple versions.
1956 LLVM_ABI bool isMultiversionedFunction(const Function &F) const;
1957
1958 /// \return The maximum number of function arguments the target supports.
1959 LLVM_ABI unsigned getMaxNumArgs() const;
1960
1961 /// \return For an array of given Size, return alignment boundary to
1962 /// pad to. Default is no padding.
1963 LLVM_ABI unsigned getNumBytesToPadGlobalArray(unsigned Size,
1964 Type *ArrayType) const;
1965
1966 /// @}
1967
1968 /// Collect kernel launch bounds for \p F into \p LB.
1970 const Function &F,
1971 SmallVectorImpl<std::pair<StringRef, int64_t>> &LB) const;
1972
1973 /// Returns true if GEP should not be used to index into vectors for this
1974 /// target.
1976
1977private:
1978 std::unique_ptr<const TargetTransformInfoImplBase> TTIImpl;
1979};
1980
1981/// Analysis pass providing the \c TargetTransformInfo.
1982///
1983/// The core idea of the TargetIRAnalysis is to expose an interface through
1984/// which LLVM targets can analyze and provide information about the middle
1985/// end's target-independent IR. This supports use cases such as target-aware
1986/// cost modeling of IR constructs.
1987///
1988/// This is a function analysis because much of the cost modeling for targets
1989/// is done in a subtarget specific way and LLVM supports compiling different
1990/// functions targeting different subtargets in order to support runtime
1991/// dispatch according to the observed subtarget.
1992class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
1993public:
1995
1996 /// Default construct a target IR analysis.
1997 ///
1998 /// This will use the module's datalayout to construct a baseline
1999 /// conservative TTI result.
2001
2002 /// Construct an IR analysis pass around a target-provide callback.
2003 ///
2004 /// The callback will be called with a particular function for which the TTI
2005 /// is needed and must return a TTI object for that function.
2006 LLVM_ABI
2007 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2008
2009 // Value semantics. We spell out the constructors for MSVC.
2011 : TTICallback(Arg.TTICallback) {}
2013 : TTICallback(std::move(Arg.TTICallback)) {}
2015 TTICallback = RHS.TTICallback;
2016 return *this;
2017 }
2019 TTICallback = std::move(RHS.TTICallback);
2020 return *this;
2021 }
2022
2024
2025private:
2027 LLVM_ABI static AnalysisKey Key;
2028
2029 /// The callback used to produce a result.
2030 ///
2031 /// We use a completely opaque callback so that targets can provide whatever
2032 /// mechanism they desire for constructing the TTI for a given function.
2033 ///
2034 /// FIXME: Should we really use std::function? It's relatively inefficient.
2035 /// It might be possible to arrange for even stateful callbacks to outlive
2036 /// the analysis and thus use a function_ref which would be lighter weight.
2037 /// This may also be less error prone as the callback is likely to reference
2038 /// the external TargetMachine, and that reference needs to never dangle.
2039 std::function<Result(const Function &)> TTICallback;
2040
2041 /// Helper function used as the callback in the default constructor.
2042 static Result getDefaultTTI(const Function &F);
2043};
2044
2045/// Wrapper pass for TargetTransformInfo.
2046///
2047/// This pass can be constructed from a TTI object which it stores internally
2048/// and is queried by passes.
2050 TargetIRAnalysis TIRA;
2051 std::optional<TargetTransformInfo> TTI;
2052
2053 virtual void anchor();
2054
2055public:
2056 static char ID;
2057
2058 /// We must provide a default constructor for the pass but it should
2059 /// never be used.
2060 ///
2061 /// Use the constructor below or call one of the creation routines.
2063
2065
2067};
2068
2069/// Create an analysis pass wrapper around a TTI object.
2070///
2071/// This analysis pass just holds the TTI instance and makes it available to
2072/// clients.
2075
2076} // namespace llvm
2077
2078#endif
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
Analysis containing CSE Info
Definition CSEInfo.cpp:27
#define LLVM_ABI
Definition Compiler.h:213
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
TargetTransformInfo::VPLegalization VPLegalization
static cl::opt< bool > ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops"))
static cl::opt< bool > ForceHardwareLoopPHI("force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi"))
This header defines various interfaces for pass management in LLVM.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
uint64_t IntrinsicInst * II
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
Value * RHS
Class for arbitrary precision integers.
Definition APInt.h:78
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
Class to represent array types.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:676
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
ImmutablePass class - This class is used to provide information that does not need to be run.
Definition Pass.h:285
ImmutablePass(char &pid)
Definition Pass.h:287
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
Class to represent integer types.
Drive the analysis of interleaved memory accesses in the loop.
const TargetLibraryInfo * getLibInfo() const
const SmallVectorImpl< Type * > & getArgTypes() const
const SmallVectorImpl< const Value * > & getArgs() const
LLVM_ABI IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarCost=InstructionCost::getInvalid(), bool TypeBasedOnly=false, TargetLibraryInfo const *LibInfo=nullptr)
InstructionCost getScalarizationCost() const
const IntrinsicInst * getInst() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
The optimization diagnostic interface.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
Definition TypeSize.h:31
An instruction for storing to memory.
Multiway switch.
Analysis pass providing the TargetTransformInfo.
TargetIRAnalysis(const TargetIRAnalysis &Arg)
TargetIRAnalysis & operator=(const TargetIRAnalysis &RHS)
LLVM_ABI Result run(const Function &F, FunctionAnalysisManager &)
LLVM_ABI TargetIRAnalysis()
Default construct a target IR analysis.
TargetIRAnalysis & operator=(TargetIRAnalysis &&RHS)
TargetIRAnalysis(TargetIRAnalysis &&Arg)
Provides information about what library functions are available for the current target.
Base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class.
TargetTransformInfoWrapperPass()
We must provide a default constructor for the pass but it should never be used.
TargetTransformInfo & getTTI(const Function &F)
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
LLVM_ABI Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType, bool CanCreate=true) const
LLVM_ABI bool isLegalToVectorizeLoad(LoadInst *LI) const
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
static LLVM_ABI CastContextHint getCastContextHint(const Instruction *I)
Calculates a CastContextHint from I.
LLVM_ABI unsigned getMaxNumArgs() const
LLVM_ABI bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const
Return false if a AS0 address cannot possibly alias a AS1 address.
LLVM_ABI bool isLegalMaskedScatter(Type *DataType, Align Alignment) const
Return true if the target supports masked scatter.
LLVM_ABI InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
LLVM_ABI bool shouldBuildLookupTables() const
Return true if switches should be turned into lookup tables for the target.
LLVM_ABI bool isLegalToVectorizeStore(StoreInst *SI) const
LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index=-1, const Value *Op0=nullptr, const Value *Op1=nullptr) const
LLVM_ABI InstructionCost getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of an Add/...
LLVM_ABI bool enableAggressiveInterleaving(bool LoopHasReductions) const
Don't restrict interleaved unrolling to small loops.
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned AddressSpace) const
Return true if the target supports masked load.
LLVM_ABI bool isMultiversionedFunction(const Function &F) const
Returns true if this is an instance of a function with multiple versions.
LLVM_ABI bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const
Return true if it is faster to check if a floating-point value is NaN (or not-NaN) versus a compariso...
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool isAlwaysUniform(const Value *V) const
LLVM_ABI unsigned getAssumedAddrSpace(const Value *V) const
LLVM_ABI bool preferAlternateOpcodeVectorization() const
LLVM_ABI bool shouldDropLSRSolutionIfLessProfitable() const
Return true if LSR should drop a found solution if it's calculated to be less profitable than the bas...
LLVM_ABI bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const
Return true if LSR cost of C1 is lower than C2.
LLVM_ABI unsigned getPrefetchDistance() const
LLVM_ABI Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicElementSize=std::nullopt) const
LLVM_ABI bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const
Return true if the target supports masked expand load.
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo Op1Info={OK_AnyValue, OP_None}, OperandValueInfo Op2Info={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI bool hasBranchDivergence(const Function *F=nullptr) const
Return true if branch divergence exists.
LLVM_ABI MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const
bool invalidate(Function &, const PreservedAnalyses &, FunctionAnalysisManager::Invalidator &)
Handle the invalidation of this information.
LLVM_ABI void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const
Get target-customized preferences for the generic loop unrolling transformation.
LLVM_ABI bool shouldBuildLookupTablesForConstant(Constant *C) const
Return true if switches should be turned into lookup tables containing this constant value for the ta...
LLVM_ABI bool supportsTailCallFor(const CallBase *CB) const
If target supports tail call on CB.
LLVM_ABI std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
Targets can implement their own combinations for target-specific intrinsics.
LLVM_ABI bool isProfitableLSRChainElement(Instruction *I) const
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const
Returns a penalty for invoking call Call in F.
LLVM_ABI bool hasActiveVectorLength() const
LLVM_ABI bool isExpensiveToSpeculativelyExecute(const Instruction *I) const
Return true if the cost of the instruction is too high to speculatively execute and should be kept be...
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI bool isLegalMaskedGather(Type *DataType, Align Alignment) const
Return true if the target supports masked gather.
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI std::optional< unsigned > getMaxVScale() const
LLVM_ABI InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) const
LLVM_ABI bool allowVectorElementIndexingUsingGEP() const
Returns true if GEP should not be used to index into vectors for this target.
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI bool isSingleThreaded() const
LLVM_ABI std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
Can be used to implement target-specific instruction combining.
LLVM_ABI bool enableOrderedReductions() const
Return true if we should be enabling ordered reductions for the target.
InstructionCost getInstructionCost(const User *U, TargetCostKind CostKind) const
This is a helper function which calls the three-argument getInstructionCost with Operands which are t...
LLVM_ABI unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
LLVM_ABI InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of vector reduction intrinsics.
LLVM_ABI unsigned getAtomicMemIntrinsicMaxElementSize() const
LLVM_ABI InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
LLVM_ABI bool LSRWithInstrQueries() const
Return true if the loop strength reduce pass should make Instruction* based TTI queries to isLegalAdd...
LLVM_ABI unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
LLVM_ABI VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
LLVM_ABI bool shouldConsiderVectorizationRegPressure() const
LLVM_ABI bool enableWritePrefetching() const
LLVM_ABI bool shouldTreatInstructionLikeSelect(const Instruction *I) const
Should the Select Optimization pass treat the given instruction like a select, potentially converting...
LLVM_ABI bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
LLVM_ABI bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
LLVM_ABI TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Query the target what the preferred style of tail folding is.
LLVM_ABI InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType=nullptr, TargetCostKind CostKind=TCK_SizeAndLatency) const
Estimate the cost of a GEP operation when lowered.
LLVM_ABI bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
LLVM_ABI bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace) const
Return true is the target supports interleaved access for the given vector type VTy,...
LLVM_ABI unsigned getRegUsageForType(Type *Ty) const
Returns the estimated number of registers required to represent Ty.
LLVM_ABI bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const
\Returns true if the target supports broadcasting a load to a vector of type <NumElements x ElementTy...
LLVM_ABI bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const
LLVM_ABI std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
LLVM_ABI InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of a reduc...
LLVM_ABI unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
LLVM_ABI ReductionShuffle getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
LLVM_ABI bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0, Instruction *I=nullptr, int64_t ScalableOffset=0) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
LLVM_ABI PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const
Return hardware support for population count.
LLVM_ABI unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.gather intrinsics.
LLVM_ABI unsigned getMaxPrefetchIterationsAhead() const
LLVM_ABI bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const
Return true if globals in this address space can have initializers other than undef.
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
LLVM_ABI InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
LLVM_ABI bool enableMaskedInterleavedAccessVectorization() const
Enable matching of interleaved access groups that contain predicated accesses or gaps and therefore v...
LLVM_ABI InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst=nullptr) const
Return the expected cost of materialization for the given integer immediate of the specified type for...
LLVM_ABI bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const
Return true if the target supports strided load.
LLVM_ABI TargetTransformInfo & operator=(TargetTransformInfo &&RHS)
LLVM_ABI InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF=FastMathFlags(), TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
LLVM_ABI bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef< Type * > &Types) const
LLVM_ABI bool enableSelectOptimize() const
Should the Select Optimization pass be enabled and ran.
LLVM_ABI bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
Return any intrinsic address operand indexes which may be rewritten if they use a flat address space ...
OperandValueProperties
Additional properties of an operand's values.
LLVM_ABI int getInliningLastCallToStaticBonus() const
LLVM_ABI InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const PointersChainInfo &Info, Type *AccessTy, TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Estimate the cost of a chain of pointers (typically pointer operands of a chain of loads or stores wi...
LLVM_ABI bool isVScaleKnownToBeAPowerOfTwo() const
LLVM_ABI bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const
LLVM_ABI unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
LLVM_ABI bool isSourceOfDivergence(const Value *V) const
Returns whether V is a source of divergence.
LLVM_ABI bool isLegalICmpImmediate(int64_t Imm) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
LLVM_ABI bool isTypeLegal(Type *Ty) const
Return true if this type is legal.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
LLVM_ABI bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const
LLVM_ABI std::optional< unsigned > getCacheAssociativity(CacheLevel Level) const
LLVM_ABI bool isLegalNTLoad(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal load.
LLVM_ABI InstructionCost getMemcpyCost(const Instruction *I) const
LLVM_ABI unsigned adjustInliningThreshold(const CallBase *CB) const
LLVM_ABI bool isLegalAddImmediate(int64_t Imm) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
LLVM_ABI bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
LLVM_ABI unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
LLVM_ABI InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
LLVM_ABI bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const
Return true if the target can save a compare for loop count, for example hardware loop saves a compar...
LLVM_ABI bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const
LLVM_ABI Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
Rewrite intrinsic call II such that OldV will be replaced with NewV, which has a different address sp...
LLVM_ABI InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const
LLVM_ABI unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const
Some HW prefetchers can handle accesses up to a certain constant stride.
LLVM_ABI bool shouldPrefetchAddressSpace(unsigned AS) const
LLVM_ABI InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
Return the expected cost of materializing for the given integer immediate of the specified type.
LLVM_ABI unsigned getMinVectorRegisterBitWidth() const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool isLegalNTStore(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal store.
LLVM_ABI InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, PartialReductionExtendKind OpAExtend, PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const
LLVM_ABI unsigned getFlatAddressSpace() const
Returns the address space ID for a target's 'flat' address space.
LLVM_ABI bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const
It can be advantageous to detach complex constants from their uses to make their generation cheaper.
LLVM_ABI bool hasArmWideBranch(bool Thumb) const
LLVM_ABI const char * getRegisterClassName(unsigned ClassID) const
LLVM_ABI bool preferEpilogueVectorization() const
Return true if the loop vectorizer should consider vectorizing an otherwise scalar epilogue loop.
LLVM_ABI bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const
LLVM_ABI BranchProbability getPredictableBranchThreshold() const
If a branch or a select condition is skewed in one direction by more than this factor,...
LLVM_ABI TargetTransformInfo(std::unique_ptr< const TargetTransformInfoImplBase > Impl)
Construct a TTI object using a type implementing the Concept API below.
LLVM_ABI bool preferInLoopReduction(RecurKind Kind, Type *Ty) const
LLVM_ABI unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const
LLVM_ABI unsigned getCacheLineSize() const
LLVM_ABI bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace=0, Align Alignment=Align(1), unsigned *Fast=nullptr) const
Determine if the target supports unaligned memory accesses.
LLVM_ABI InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
LLVM_ABI int getInlinerVectorBonusPercent() const
LLVM_ABI unsigned getEpilogueVectorizationMinVF() const
LLVM_ABI void collectKernelLaunchBounds(const Function &F, SmallVectorImpl< std::pair< StringRef, int64_t > > &LB) const
Collect kernel launch bounds for F into LB.
PopcntSupportKind
Flags indicating the kind of support for population count.
LLVM_ABI bool preferPredicatedReductionSelect() const
LLVM_ABI InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) const
Return the expected cost for the given integer when optimising for size.
LLVM_ABI AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
Return the preferred addressing mode LSR should make efforts to generate.
LLVM_ABI bool isLoweredToCall(const Function *F) const
Test whether calls to a function lower to actual program function calls.
LLVM_ABI bool isLegalMaskedStore(Type *DataType, Align Alignment, unsigned AddressSpace) const
Return true if the target supports masked store.
LLVM_ABI bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
LLVM_ABI bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
Query the target whether it would be profitable to convert the given loop into a hardware loop.
LLVM_ABI unsigned getInliningThresholdMultiplier() const
LLVM_ABI InstructionCost getBranchMispredictPenalty() const
Returns estimated penalty of a branch misprediction in latency.
LLVM_ABI unsigned getNumberOfRegisters(unsigned ClassID) const
LLVM_ABI bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const
Return true if this is an alternating opcode pattern that can be lowered to a single instruction on t...
LLVM_ABI bool isProfitableToHoist(Instruction *I) const
Return true if it is profitable to hoist instruction in the then/else to before if.
LLVM_ABI bool supportsScalableVectors() const
LLVM_ABI bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
Return true if the given instruction (assumed to be a memory access instruction) has a volatile varia...
LLVM_ABI bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const
Return true if the target supports masked compress store.
LLVM_ABI std::optional< unsigned > getMinPageSize() const
LLVM_ABI bool isFPVectorizationPotentiallyUnsafe() const
Indicate that it is potentially unsafe to automatically vectorize floating-point operations because t...
LLVM_ABI InstructionCost getInsertExtractValueCost(unsigned Opcode, TTI::TargetCostKind CostKind) const
LLVM_ABI bool shouldBuildRelLookupTables() const
Return true if lookup tables should be turned into relative lookup tables.
LLVM_ABI unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const
LLVM_ABI std::optional< unsigned > getCacheSize(CacheLevel Level) const
LLVM_ABI std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
Can be used to implement target-specific instruction combining.
LLVM_ABI bool isLegalAddScalableImmediate(int64_t Imm) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
LLVM_ABI bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI bool hasDivRemOp(Type *DataType, bool IsSigned) const
Return true if the target has a unified operation to calculate division and remainder.
LLVM_ABI InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Returns the cost estimation for alternating opcode pattern that can be lowered to a single instructio...
TargetCostConstants
Underlying constants for 'cost' values in this interface.
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Free
Expected to fold away in lowering.
@ TCC_Basic
The cost of a typical 'add' instruction.
LLVM_ABI bool enableInterleavedAccessVectorization() const
Enable matching of interleaved access groups.
LLVM_ABI unsigned getMinTripCountTailFoldingThreshold() const
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI unsigned getMaxInterleaveFactor(ElementCount VF) const
LLVM_ABI bool enableScalableVectorization() const
LLVM_ABI bool isVectorShiftByScalarCheap(Type *Ty) const
Return true if it's significantly cheaper to shift a vector by a uniform scalar than by an amount whi...
LLVM_ABI bool isNumRegsMajorCostOfLSR() const
Return true if LSR major cost is number of registers.
LLVM_ABI unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const
LLVM_ABI bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const
LLVM_ABI InstructionCost getExpandCompressMemoryOpCost(unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
LLVM_ABI unsigned getGISelRematGlobalCost() const
LLVM_ABI unsigned getNumBytesToPadGlobalArray(unsigned Size, Type *ArrayType) const
MemIndexedMode
The type of load/store indexing.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI bool areInlineCompatible(const Function *Caller, const Function *Callee) const
LLVM_ABI bool useColdCCForColdCall(Function &F) const
Return true if the input function which is cold at all call sites, should use coldcc calling conventi...
LLVM_ABI InstructionCost getFPOpCost(Type *Ty) const
Return the expected cost of supporting the floating point operation of the specified type.
LLVM_ABI bool supportsTailCalls() const
If the target supports tail calls.
LLVM_ABI bool canMacroFuseCmp() const
Return true if the target can fuse a compare and branch.
LLVM_ABI bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Query the target whether the specified address space cast from FromAS to ToAS is valid.
LLVM_ABI unsigned getNumberOfParts(Type *Tp) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
AddressingModeKind
Which addressing mode Loop Strength Reduction will try to generate.
@ AMK_PostIndexed
Prefer post-indexed addressing mode.
@ AMK_All
Consider all addressing modes.
@ AMK_PreIndexed
Prefer pre-indexed addressing mode.
@ AMK_None
Don't prefer any addressing mode.
LLVM_ABI InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0) const
Return the cost of the scaling factor used in the addressing mode represented by AM for this target,...
LLVM_ABI bool isTruncateFree(Type *Ty1, Type *Ty2) const
Return true if it's free to truncate a value of type Ty1 to type Ty2.
LLVM_ABI bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
Return true if sinking I's operands to the same basic block as I is profitable, e....
LLVM_ABI void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize=std::nullopt) const
LLVM_ABI bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
Query the target whether it would be prefered to create a predicated vector loop, which can avoid the...
LLVM_ABI bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.scatter intrinsics.
LLVM_ABI bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
LLVM_ABI bool haveFastSqrt(Type *Ty) const
Return true if the hardware has a fast square-root instruction.
LLVM_ABI bool shouldExpandReduction(const IntrinsicInst *II) const
LLVM_ABI uint64_t getMaxMemIntrinsicInlineSizeThreshold() const
Returns the maximum memset / memcpy size in bytes that still makes it profitable to inline the call.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
LLVM_ABI APInt getFeatureMask(const Function &F) const
Returns a bitmask constructed from the target-features or fmv-features metadata of a function.
LLVM_ABI void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) const
Get target-customized preferences for the generic loop peeling transformation.
LLVM_ABI InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency) const
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
LLVM_ABI InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index, TTI::TargetCostKind CostKind) const
OperandValueKind
Additional information about an operand's possible values.
CacheLevel
The possible cache levels.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Base class of all SIMD vector types.
CallInst * Call
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
@ Length
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ LLVM_MARK_AS_BITMASK_ENUM
Definition ModRef.h:37
TargetTransformInfo TTI
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI ImmutablePass * createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)
Create an analysis pass wrapper around a TTI object.
RecurKind
These are the kinds of recurrences that we support.
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1867
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:867
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition PassManager.h:93
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
Attributes of a target dependent hardware loop.
LLVM_ABI bool canAnalyze(LoopInfo &LI)
LLVM_ABI bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
Information about a load/store intrinsic defined by the target.
SmallVector< InterestingMemoryOperand, 1 > InterestingOperands
Value * PtrVal
This is the pointer that the intrinsic is loading from or storing to.
InterleavedAccessInfo * IAI
TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL, InterleavedAccessInfo *IAI)
TargetLibraryInfo * TLI
LoopVectorizationLegality * LVL
unsigned Insns
TODO: Some of these could be merged.
Returns options for expansion of memcmp. IsZeroCmp is.
bool AllowPeeling
Allow peeling off loop iterations.
bool AllowLoopNestsPeeling
Allow peeling off loop iterations for loop nests.
bool PeelLast
Peel off the last PeelCount loop iterations.
bool PeelProfiledIterations
Allow peeling basing on profile.
unsigned PeelCount
A forced peeling factor (the number of bodied of the original loop that should be peeled off before t...
Describe known properties for a set of pointers.
unsigned IsKnownStride
True if distance between any two neigbouring pointers is a known value.
unsigned IsUnitStride
These properties only valid if SameBaseAddress is set.
unsigned IsSameBaseAddress
All the GEPs in a set have same base address.
Parameters that control the generic loop unrolling transformation.
unsigned Count
A forced unrolling factor (the number of concatenated bodies of the original loop in the unrolled loo...
bool UpperBound
Allow using trip count upper bound to unroll loops.
unsigned Threshold
The cost threshold for the unrolled loop.
bool Force
Apply loop unroll on any kind of loop (mainly to loops that fail runtime unrolling).
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
unsigned DefaultUnrollRuntimeCount
Default unroll count for loops with run-time trip count.
unsigned MaxPercentThresholdBoost
If complete unrolling will reduce the cost of the loop, we will boost the Threshold by a certain perc...
bool RuntimeUnrollMultiExit
Allow runtime unrolling multi-exit loops.
unsigned SCEVExpansionBudget
Don't allow runtime unrolling if expanding the trip count takes more than SCEVExpansionBudget.
bool AddAdditionalAccumulators
Allow unrolling to add parallel reduction phis.
unsigned UnrollAndJamInnerLoopThreshold
Threshold for unroll and jam, for inner loop size.
unsigned MaxIterationsCountToAnalyze
Don't allow loop unrolling to simulate more than this number of iterations when checking full unroll ...
bool AllowRemainder
Allow generation of a loop remainder (extra iterations after unroll).
bool UnrollAndJam
Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollRemainder
Allow unrolling of all the iterations of the runtime loop remainder.
unsigned FullUnrollMaxCount
Set the maximum unrolling factor for full unrolling.
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).
bool AllowExpensiveTripCount
Allow emitting expensive instructions (such as divisions) when computing the trip count of a loop for...
unsigned MaxUpperBound
Set the maximum upper bound of trip count.
VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)