LLVM  6.0.0svn
DenseMap.h
Go to the documentation of this file.
1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DenseMap class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_DENSEMAP_H
15 #define LLVM_ADT_DENSEMAP_H
16 
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/EpochTracker.h"
19 #include "llvm/Support/AlignOf.h"
20 #include "llvm/Support/Compiler.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <cstddef>
26 #include <cstring>
27 #include <iterator>
28 #include <new>
29 #include <type_traits>
30 #include <utility>
31 
32 namespace llvm {
33 
34 namespace detail {
35 
36 // We extend a pair to allow users to override the bucket type with their own
37 // implementation without requiring two members.
38 template <typename KeyT, typename ValueT>
39 struct DenseMapPair : public std::pair<KeyT, ValueT> {
41  const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
44 };
45 
46 } // end namespace detail
47 
48 template <
49  typename KeyT, typename ValueT, typename KeyInfoT = DenseMapInfo<KeyT>,
50  typename Bucket = detail::DenseMapPair<KeyT, ValueT>, bool IsConst = false>
52 
53 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
54  typename BucketT>
55 class DenseMapBase : public DebugEpochBase {
56  template <typename T>
57  using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
58 
59 public:
61  using key_type = KeyT;
62  using mapped_type = ValueT;
63  using value_type = BucketT;
64 
66  using const_iterator =
68 
69  inline iterator begin() {
70  // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
71  return empty() ? end() : iterator(getBuckets(), getBucketsEnd(), *this);
72  }
73  inline iterator end() {
74  return iterator(getBucketsEnd(), getBucketsEnd(), *this, true);
75  }
76  inline const_iterator begin() const {
77  return empty() ? end()
78  : const_iterator(getBuckets(), getBucketsEnd(), *this);
79  }
80  inline const_iterator end() const {
81  return const_iterator(getBucketsEnd(), getBucketsEnd(), *this, true);
82  }
83 
84  LLVM_NODISCARD bool empty() const {
85  return getNumEntries() == 0;
86  }
87  unsigned size() const { return getNumEntries(); }
88 
89  /// Grow the densemap so that it can contain at least \p NumEntries items
90  /// before resizing again.
91  void reserve(size_type NumEntries) {
92  auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
93  incrementEpoch();
94  if (NumBuckets > getNumBuckets())
95  grow(NumBuckets);
96  }
97 
98  void clear() {
99  incrementEpoch();
100  if (getNumEntries() == 0 && getNumTombstones() == 0) return;
101 
102  // If the capacity of the array is huge, and the # elements used is small,
103  // shrink the array.
104  if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
105  shrink_and_clear();
106  return;
107  }
108 
109  const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
110  unsigned NumEntries = getNumEntries();
111  for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
112  if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
113  if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
114  P->getSecond().~ValueT();
115  --NumEntries;
116  }
117  P->getFirst() = EmptyKey;
118  }
119  }
120  assert(NumEntries == 0 && "Node count imbalance!");
121  setNumEntries(0);
122  setNumTombstones(0);
123  }
124 
125  /// Return 1 if the specified key is in the map, 0 otherwise.
126  size_type count(const_arg_type_t<KeyT> Val) const {
127  const BucketT *TheBucket;
128  return LookupBucketFor(Val, TheBucket) ? 1 : 0;
129  }
130 
131  iterator find(const_arg_type_t<KeyT> Val) {
132  BucketT *TheBucket;
133  if (LookupBucketFor(Val, TheBucket))
134  return iterator(TheBucket, getBucketsEnd(), *this, true);
135  return end();
136  }
137  const_iterator find(const_arg_type_t<KeyT> Val) const {
138  const BucketT *TheBucket;
139  if (LookupBucketFor(Val, TheBucket))
140  return const_iterator(TheBucket, getBucketsEnd(), *this, true);
141  return end();
142  }
143 
144  /// Alternate version of find() which allows a different, and possibly
145  /// less expensive, key type.
146  /// The DenseMapInfo is responsible for supplying methods
147  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
148  /// type used.
149  template<class LookupKeyT>
150  iterator find_as(const LookupKeyT &Val) {
151  BucketT *TheBucket;
152  if (LookupBucketFor(Val, TheBucket))
153  return iterator(TheBucket, getBucketsEnd(), *this, true);
154  return end();
155  }
156  template<class LookupKeyT>
157  const_iterator find_as(const LookupKeyT &Val) const {
158  const BucketT *TheBucket;
159  if (LookupBucketFor(Val, TheBucket))
160  return const_iterator(TheBucket, getBucketsEnd(), *this, true);
161  return end();
162  }
163 
164  /// lookup - Return the entry for the specified key, or a default
165  /// constructed value if no such entry exists.
166  ValueT lookup(const_arg_type_t<KeyT> Val) const {
167  const BucketT *TheBucket;
168  if (LookupBucketFor(Val, TheBucket))
169  return TheBucket->getSecond();
170  return ValueT();
171  }
172 
173  // Inserts key,value pair into the map if the key isn't already in the map.
174  // If the key is already in the map, it returns false and doesn't update the
175  // value.
176  std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
177  return try_emplace(KV.first, KV.second);
178  }
179 
180  // Inserts key,value pair into the map if the key isn't already in the map.
181  // If the key is already in the map, it returns false and doesn't update the
182  // value.
183  std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
184  return try_emplace(std::move(KV.first), std::move(KV.second));
185  }
186 
187  // Inserts key,value pair into the map if the key isn't already in the map.
188  // The value is constructed in-place if the key is not in the map, otherwise
189  // it is not moved.
190  template <typename... Ts>
191  std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
192  BucketT *TheBucket;
193  if (LookupBucketFor(Key, TheBucket))
194  return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
195  false); // Already in map.
196 
197  // Otherwise, insert the new element.
198  TheBucket =
199  InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
200  return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
201  true);
202  }
203 
204  // Inserts key,value pair into the map if the key isn't already in the map.
205  // The value is constructed in-place if the key is not in the map, otherwise
206  // it is not moved.
207  template <typename... Ts>
208  std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
209  BucketT *TheBucket;
210  if (LookupBucketFor(Key, TheBucket))
211  return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
212  false); // Already in map.
213 
214  // Otherwise, insert the new element.
215  TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
216  return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
217  true);
218  }
219 
220  /// Alternate version of insert() which allows a different, and possibly
221  /// less expensive, key type.
222  /// The DenseMapInfo is responsible for supplying methods
223  /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
224  /// type used.
225  template <typename LookupKeyT>
226  std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
227  const LookupKeyT &Val) {
228  BucketT *TheBucket;
229  if (LookupBucketFor(Val, TheBucket))
230  return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
231  false); // Already in map.
232 
233  // Otherwise, insert the new element.
234  TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
235  std::move(KV.second), Val);
236  return std::make_pair(iterator(TheBucket, getBucketsEnd(), *this, true),
237  true);
238  }
239 
240  /// insert - Range insertion of pairs.
241  template<typename InputIt>
242  void insert(InputIt I, InputIt E) {
243  for (; I != E; ++I)
244  insert(*I);
245  }
246 
247  bool erase(const KeyT &Val) {
248  BucketT *TheBucket;
249  if (!LookupBucketFor(Val, TheBucket))
250  return false; // not in map.
251 
252  TheBucket->getSecond().~ValueT();
253  TheBucket->getFirst() = getTombstoneKey();
254  decrementNumEntries();
255  incrementNumTombstones();
256  return true;
257  }
258  void erase(iterator I) {
259  BucketT *TheBucket = &*I;
260  TheBucket->getSecond().~ValueT();
261  TheBucket->getFirst() = getTombstoneKey();
262  decrementNumEntries();
263  incrementNumTombstones();
264  }
265 
266  value_type& FindAndConstruct(const KeyT &Key) {
267  BucketT *TheBucket;
268  if (LookupBucketFor(Key, TheBucket))
269  return *TheBucket;
270 
271  return *InsertIntoBucket(TheBucket, Key);
272  }
273 
274  ValueT &operator[](const KeyT &Key) {
275  return FindAndConstruct(Key).second;
276  }
277 
279  BucketT *TheBucket;
280  if (LookupBucketFor(Key, TheBucket))
281  return *TheBucket;
282 
283  return *InsertIntoBucket(TheBucket, std::move(Key));
284  }
285 
286  ValueT &operator[](KeyT &&Key) {
287  return FindAndConstruct(std::move(Key)).second;
288  }
289 
290  /// isPointerIntoBucketsArray - Return true if the specified pointer points
291  /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
292  /// value in the DenseMap).
293  bool isPointerIntoBucketsArray(const void *Ptr) const {
294  return Ptr >= getBuckets() && Ptr < getBucketsEnd();
295  }
296 
297  /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
298  /// array. In conjunction with the previous method, this can be used to
299  /// determine whether an insertion caused the DenseMap to reallocate.
300  const void *getPointerIntoBucketsArray() const { return getBuckets(); }
301 
302 protected:
303  DenseMapBase() = default;
304 
305  void destroyAll() {
306  if (getNumBuckets() == 0) // Nothing to do.
307  return;
308 
309  const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
310  for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
311  if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
312  !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
313  P->getSecond().~ValueT();
314  P->getFirst().~KeyT();
315  }
316  }
317 
318  void initEmpty() {
319  setNumEntries(0);
320  setNumTombstones(0);
321 
322  assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
323  "# initial buckets must be a power of two!");
324  const KeyT EmptyKey = getEmptyKey();
325  for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
326  ::new (&B->getFirst()) KeyT(EmptyKey);
327  }
328 
329  /// Returns the number of buckets to allocate to ensure that the DenseMap can
330  /// accommodate \p NumEntries without need to grow().
331  unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
332  // Ensure that "NumEntries * 4 < NumBuckets * 3"
333  if (NumEntries == 0)
334  return 0;
335  // +1 is required because of the strict equality.
336  // For example if NumEntries is 48, we need to return 401.
337  return NextPowerOf2(NumEntries * 4 / 3 + 1);
338  }
339 
340  void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
341  initEmpty();
342 
343  // Insert all the old elements.
344  const KeyT EmptyKey = getEmptyKey();
345  const KeyT TombstoneKey = getTombstoneKey();
346  for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
347  if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
348  !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
349  // Insert the key/value into the new table.
350  BucketT *DestBucket;
351  bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
352  (void)FoundVal; // silence warning.
353  assert(!FoundVal && "Key already in new map?");
354  DestBucket->getFirst() = std::move(B->getFirst());
355  ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
356  incrementNumEntries();
357 
358  // Free the value.
359  B->getSecond().~ValueT();
360  }
361  B->getFirst().~KeyT();
362  }
363  }
364 
365  template <typename OtherBaseT>
366  void copyFrom(
368  assert(&other != this);
369  assert(getNumBuckets() == other.getNumBuckets());
370 
371  setNumEntries(other.getNumEntries());
372  setNumTombstones(other.getNumTombstones());
373 
375  memcpy(getBuckets(), other.getBuckets(),
376  getNumBuckets() * sizeof(BucketT));
377  else
378  for (size_t i = 0; i < getNumBuckets(); ++i) {
379  ::new (&getBuckets()[i].getFirst())
380  KeyT(other.getBuckets()[i].getFirst());
381  if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
382  !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
383  ::new (&getBuckets()[i].getSecond())
384  ValueT(other.getBuckets()[i].getSecond());
385  }
386  }
387 
388  static unsigned getHashValue(const KeyT &Val) {
389  return KeyInfoT::getHashValue(Val);
390  }
391 
392  template<typename LookupKeyT>
393  static unsigned getHashValue(const LookupKeyT &Val) {
394  return KeyInfoT::getHashValue(Val);
395  }
396 
397  static const KeyT getEmptyKey() {
398  static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
399  "Must pass the derived type to this template!");
400  return KeyInfoT::getEmptyKey();
401  }
402 
403  static const KeyT getTombstoneKey() {
404  return KeyInfoT::getTombstoneKey();
405  }
406 
407 private:
408  unsigned getNumEntries() const {
409  return static_cast<const DerivedT *>(this)->getNumEntries();
410  }
411 
412  void setNumEntries(unsigned Num) {
413  static_cast<DerivedT *>(this)->setNumEntries(Num);
414  }
415 
416  void incrementNumEntries() {
417  setNumEntries(getNumEntries() + 1);
418  }
419 
420  void decrementNumEntries() {
421  setNumEntries(getNumEntries() - 1);
422  }
423 
424  unsigned getNumTombstones() const {
425  return static_cast<const DerivedT *>(this)->getNumTombstones();
426  }
427 
428  void setNumTombstones(unsigned Num) {
429  static_cast<DerivedT *>(this)->setNumTombstones(Num);
430  }
431 
432  void incrementNumTombstones() {
433  setNumTombstones(getNumTombstones() + 1);
434  }
435 
436  void decrementNumTombstones() {
437  setNumTombstones(getNumTombstones() - 1);
438  }
439 
440  const BucketT *getBuckets() const {
441  return static_cast<const DerivedT *>(this)->getBuckets();
442  }
443 
444  BucketT *getBuckets() {
445  return static_cast<DerivedT *>(this)->getBuckets();
446  }
447 
448  unsigned getNumBuckets() const {
449  return static_cast<const DerivedT *>(this)->getNumBuckets();
450  }
451 
452  BucketT *getBucketsEnd() {
453  return getBuckets() + getNumBuckets();
454  }
455 
456  const BucketT *getBucketsEnd() const {
457  return getBuckets() + getNumBuckets();
458  }
459 
460  void grow(unsigned AtLeast) {
461  static_cast<DerivedT *>(this)->grow(AtLeast);
462  }
463 
464  void shrink_and_clear() {
465  static_cast<DerivedT *>(this)->shrink_and_clear();
466  }
467 
468  template <typename KeyArg, typename... ValueArgs>
469  BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
470  ValueArgs &&... Values) {
471  TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
472 
473  TheBucket->getFirst() = std::forward<KeyArg>(Key);
474  ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
475  return TheBucket;
476  }
477 
478  template <typename LookupKeyT>
479  BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
480  ValueT &&Value, LookupKeyT &Lookup) {
481  TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
482 
483  TheBucket->getFirst() = std::move(Key);
484  ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
485  return TheBucket;
486  }
487 
488  template <typename LookupKeyT>
489  BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
490  BucketT *TheBucket) {
491  incrementEpoch();
492 
493  // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
494  // the buckets are empty (meaning that many are filled with tombstones),
495  // grow the table.
496  //
497  // The later case is tricky. For example, if we had one empty bucket with
498  // tons of tombstones, failing lookups (e.g. for insertion) would have to
499  // probe almost the entire table until it found the empty bucket. If the
500  // table completely filled with tombstones, no lookup would ever succeed,
501  // causing infinite loops in lookup.
502  unsigned NewNumEntries = getNumEntries() + 1;
503  unsigned NumBuckets = getNumBuckets();
504  if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
505  this->grow(NumBuckets * 2);
506  LookupBucketFor(Lookup, TheBucket);
507  NumBuckets = getNumBuckets();
508  } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
509  NumBuckets/8)) {
510  this->grow(NumBuckets);
511  LookupBucketFor(Lookup, TheBucket);
512  }
513  assert(TheBucket);
514 
515  // Only update the state after we've grown our bucket space appropriately
516  // so that when growing buckets we have self-consistent entry count.
517  incrementNumEntries();
518 
519  // If we are writing over a tombstone, remember this.
520  const KeyT EmptyKey = getEmptyKey();
521  if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
522  decrementNumTombstones();
523 
524  return TheBucket;
525  }
526 
527  /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
528  /// FoundBucket. If the bucket contains the key and a value, this returns
529  /// true, otherwise it returns a bucket with an empty marker or tombstone and
530  /// returns false.
531  template<typename LookupKeyT>
532  bool LookupBucketFor(const LookupKeyT &Val,
533  const BucketT *&FoundBucket) const {
534  const BucketT *BucketsPtr = getBuckets();
535  const unsigned NumBuckets = getNumBuckets();
536 
537  if (NumBuckets == 0) {
538  FoundBucket = nullptr;
539  return false;
540  }
541 
542  // FoundTombstone - Keep track of whether we find a tombstone while probing.
543  const BucketT *FoundTombstone = nullptr;
544  const KeyT EmptyKey = getEmptyKey();
545  const KeyT TombstoneKey = getTombstoneKey();
546  assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
547  !KeyInfoT::isEqual(Val, TombstoneKey) &&
548  "Empty/Tombstone value shouldn't be inserted into map!");
549 
550  unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
551  unsigned ProbeAmt = 1;
552  while (true) {
553  const BucketT *ThisBucket = BucketsPtr + BucketNo;
554  // Found Val's bucket? If so, return it.
555  if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
556  FoundBucket = ThisBucket;
557  return true;
558  }
559 
560  // If we found an empty bucket, the key doesn't exist in the set.
561  // Insert it and return the default value.
562  if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
563  // If we've already seen a tombstone while probing, fill it in instead
564  // of the empty bucket we eventually probed to.
565  FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
566  return false;
567  }
568 
569  // If this is a tombstone, remember it. If Val ends up not in the map, we
570  // prefer to return it than something that would require more probing.
571  if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
572  !FoundTombstone)
573  FoundTombstone = ThisBucket; // Remember the first tombstone found.
574 
575  // Otherwise, it's a hash collision or a tombstone, continue quadratic
576  // probing.
577  BucketNo += ProbeAmt++;
578  BucketNo &= (NumBuckets-1);
579  }
580  }
581 
582  template <typename LookupKeyT>
583  bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
584  const BucketT *ConstFoundBucket;
585  bool Result = const_cast<const DenseMapBase *>(this)
586  ->LookupBucketFor(Val, ConstFoundBucket);
587  FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
588  return Result;
589  }
590 
591 public:
592  /// Return the approximate size (in bytes) of the actual map.
593  /// This is just the raw memory used by DenseMap.
594  /// If entries are pointers to objects, the size of the referenced objects
595  /// are not included.
596  size_t getMemorySize() const {
597  return getNumBuckets() * sizeof(BucketT);
598  }
599 };
600 
601 template <typename KeyT, typename ValueT,
602  typename KeyInfoT = DenseMapInfo<KeyT>,
603  typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
604 class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
605  KeyT, ValueT, KeyInfoT, BucketT> {
606  friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
607 
608  // Lift some types from the dependent base class into this class for
609  // simplicity of referring to them.
611 
612  BucketT *Buckets;
613  unsigned NumEntries;
614  unsigned NumTombstones;
615  unsigned NumBuckets;
616 
617 public:
618  /// Create a DenseMap wth an optional \p InitialReserve that guarantee that
619  /// this number of elements can be inserted in the map without grow()
620  explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
621 
622  DenseMap(const DenseMap &other) : BaseT() {
623  init(0);
624  copyFrom(other);
625  }
626 
627  DenseMap(DenseMap &&other) : BaseT() {
628  init(0);
629  swap(other);
630  }
631 
632  template<typename InputIt>
633  DenseMap(const InputIt &I, const InputIt &E) {
634  init(std::distance(I, E));
635  this->insert(I, E);
636  }
637 
639  this->destroyAll();
640  operator delete(Buckets);
641  }
642 
643  void swap(DenseMap& RHS) {
644  this->incrementEpoch();
645  RHS.incrementEpoch();
646  std::swap(Buckets, RHS.Buckets);
647  std::swap(NumEntries, RHS.NumEntries);
648  std::swap(NumTombstones, RHS.NumTombstones);
649  std::swap(NumBuckets, RHS.NumBuckets);
650  }
651 
652  DenseMap& operator=(const DenseMap& other) {
653  if (&other != this)
654  copyFrom(other);
655  return *this;
656  }
657 
659  this->destroyAll();
660  operator delete(Buckets);
661  init(0);
662  swap(other);
663  return *this;
664  }
665 
666  void copyFrom(const DenseMap& other) {
667  this->destroyAll();
668  operator delete(Buckets);
669  if (allocateBuckets(other.NumBuckets)) {
670  this->BaseT::copyFrom(other);
671  } else {
672  NumEntries = 0;
673  NumTombstones = 0;
674  }
675  }
676 
677  void init(unsigned InitNumEntries) {
678  auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
679  if (allocateBuckets(InitBuckets)) {
680  this->BaseT::initEmpty();
681  } else {
682  NumEntries = 0;
683  NumTombstones = 0;
684  }
685  }
686 
687  void grow(unsigned AtLeast) {
688  unsigned OldNumBuckets = NumBuckets;
689  BucketT *OldBuckets = Buckets;
690 
691  allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
692  assert(Buckets);
693  if (!OldBuckets) {
694  this->BaseT::initEmpty();
695  return;
696  }
697 
698  this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
699 
700  // Free the old table.
701  operator delete(OldBuckets);
702  }
703 
705  unsigned OldNumEntries = NumEntries;
706  this->destroyAll();
707 
708  // Reduce the number of buckets.
709  unsigned NewNumBuckets = 0;
710  if (OldNumEntries)
711  NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
712  if (NewNumBuckets == NumBuckets) {
713  this->BaseT::initEmpty();
714  return;
715  }
716 
717  operator delete(Buckets);
718  init(NewNumBuckets);
719  }
720 
721 private:
722  unsigned getNumEntries() const {
723  return NumEntries;
724  }
725 
726  void setNumEntries(unsigned Num) {
727  NumEntries = Num;
728  }
729 
730  unsigned getNumTombstones() const {
731  return NumTombstones;
732  }
733 
734  void setNumTombstones(unsigned Num) {
735  NumTombstones = Num;
736  }
737 
738  BucketT *getBuckets() const {
739  return Buckets;
740  }
741 
742  unsigned getNumBuckets() const {
743  return NumBuckets;
744  }
745 
746  bool allocateBuckets(unsigned Num) {
747  NumBuckets = Num;
748  if (NumBuckets == 0) {
749  Buckets = nullptr;
750  return false;
751  }
752 
753  Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
754  return true;
755  }
756 };
757 
758 template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
759  typename KeyInfoT = DenseMapInfo<KeyT>,
760  typename BucketT = detail::DenseMapPair<KeyT, ValueT>>
762  : public DenseMapBase<
763  SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
764  ValueT, KeyInfoT, BucketT> {
765  friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
766 
767  // Lift some types from the dependent base class into this class for
768  // simplicity of referring to them.
770 
771  static_assert(isPowerOf2_64(InlineBuckets),
772  "InlineBuckets must be a power of 2.");
773 
774  unsigned Small : 1;
775  unsigned NumEntries : 31;
776  unsigned NumTombstones;
777 
778  struct LargeRep {
779  BucketT *Buckets;
780  unsigned NumBuckets;
781  };
782 
783  /// A "union" of an inline bucket array and the struct representing
784  /// a large bucket. This union will be discriminated by the 'Small' bit.
786 
787 public:
788  explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
789  init(NumInitBuckets);
790  }
791 
792  SmallDenseMap(const SmallDenseMap &other) : BaseT() {
793  init(0);
794  copyFrom(other);
795  }
796 
797  SmallDenseMap(SmallDenseMap &&other) : BaseT() {
798  init(0);
799  swap(other);
800  }
801 
802  template<typename InputIt>
803  SmallDenseMap(const InputIt &I, const InputIt &E) {
804  init(NextPowerOf2(std::distance(I, E)));
805  this->insert(I, E);
806  }
807 
809  this->destroyAll();
810  deallocateBuckets();
811  }
812 
813  void swap(SmallDenseMap& RHS) {
814  unsigned TmpNumEntries = RHS.NumEntries;
815  RHS.NumEntries = NumEntries;
816  NumEntries = TmpNumEntries;
817  std::swap(NumTombstones, RHS.NumTombstones);
818 
819  const KeyT EmptyKey = this->getEmptyKey();
820  const KeyT TombstoneKey = this->getTombstoneKey();
821  if (Small && RHS.Small) {
822  // If we're swapping inline bucket arrays, we have to cope with some of
823  // the tricky bits of DenseMap's storage system: the buckets are not
824  // fully initialized. Thus we swap every key, but we may have
825  // a one-directional move of the value.
826  for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
827  BucketT *LHSB = &getInlineBuckets()[i],
828  *RHSB = &RHS.getInlineBuckets()[i];
829  bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
830  !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
831  bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
832  !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
833  if (hasLHSValue && hasRHSValue) {
834  // Swap together if we can...
835  std::swap(*LHSB, *RHSB);
836  continue;
837  }
838  // Swap separately and handle any assymetry.
839  std::swap(LHSB->getFirst(), RHSB->getFirst());
840  if (hasLHSValue) {
841  ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
842  LHSB->getSecond().~ValueT();
843  } else if (hasRHSValue) {
844  ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
845  RHSB->getSecond().~ValueT();
846  }
847  }
848  return;
849  }
850  if (!Small && !RHS.Small) {
851  std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
852  std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
853  return;
854  }
855 
856  SmallDenseMap &SmallSide = Small ? *this : RHS;
857  SmallDenseMap &LargeSide = Small ? RHS : *this;
858 
859  // First stash the large side's rep and move the small side across.
860  LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
861  LargeSide.getLargeRep()->~LargeRep();
862  LargeSide.Small = true;
863  // This is similar to the standard move-from-old-buckets, but the bucket
864  // count hasn't actually rotated in this case. So we have to carefully
865  // move construct the keys and values into their new locations, but there
866  // is no need to re-hash things.
867  for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
868  BucketT *NewB = &LargeSide.getInlineBuckets()[i],
869  *OldB = &SmallSide.getInlineBuckets()[i];
870  ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
871  OldB->getFirst().~KeyT();
872  if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
873  !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
874  ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
875  OldB->getSecond().~ValueT();
876  }
877  }
878 
879  // The hard part of moving the small buckets across is done, just move
880  // the TmpRep into its new home.
881  SmallSide.Small = false;
882  new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
883  }
884 
886  if (&other != this)
887  copyFrom(other);
888  return *this;
889  }
890 
892  this->destroyAll();
893  deallocateBuckets();
894  init(0);
895  swap(other);
896  return *this;
897  }
898 
899  void copyFrom(const SmallDenseMap& other) {
900  this->destroyAll();
901  deallocateBuckets();
902  Small = true;
903  if (other.getNumBuckets() > InlineBuckets) {
904  Small = false;
905  new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
906  }
907  this->BaseT::copyFrom(other);
908  }
909 
910  void init(unsigned InitBuckets) {
911  Small = true;
912  if (InitBuckets > InlineBuckets) {
913  Small = false;
914  new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
915  }
916  this->BaseT::initEmpty();
917  }
918 
919  void grow(unsigned AtLeast) {
920  if (AtLeast >= InlineBuckets)
921  AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
922 
923  if (Small) {
924  if (AtLeast < InlineBuckets)
925  return; // Nothing to do.
926 
927  // First move the inline buckets into a temporary storage.
929  BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
930  BucketT *TmpEnd = TmpBegin;
931 
932  // Loop over the buckets, moving non-empty, non-tombstones into the
933  // temporary storage. Have the loop move the TmpEnd forward as it goes.
934  const KeyT EmptyKey = this->getEmptyKey();
935  const KeyT TombstoneKey = this->getTombstoneKey();
936  for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
937  if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
938  !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
939  assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
940  "Too many inline buckets!");
941  ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
942  ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
943  ++TmpEnd;
944  P->getSecond().~ValueT();
945  }
946  P->getFirst().~KeyT();
947  }
948 
949  // Now make this map use the large rep, and move all the entries back
950  // into it.
951  Small = false;
952  new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
953  this->moveFromOldBuckets(TmpBegin, TmpEnd);
954  return;
955  }
956 
957  LargeRep OldRep = std::move(*getLargeRep());
958  getLargeRep()->~LargeRep();
959  if (AtLeast <= InlineBuckets) {
960  Small = true;
961  } else {
962  new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
963  }
964 
965  this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
966 
967  // Free the old table.
968  operator delete(OldRep.Buckets);
969  }
970 
972  unsigned OldSize = this->size();
973  this->destroyAll();
974 
975  // Reduce the number of buckets.
976  unsigned NewNumBuckets = 0;
977  if (OldSize) {
978  NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
979  if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
980  NewNumBuckets = 64;
981  }
982  if ((Small && NewNumBuckets <= InlineBuckets) ||
983  (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
984  this->BaseT::initEmpty();
985  return;
986  }
987 
988  deallocateBuckets();
989  init(NewNumBuckets);
990  }
991 
992 private:
993  unsigned getNumEntries() const {
994  return NumEntries;
995  }
996 
997  void setNumEntries(unsigned Num) {
998  // NumEntries is hardcoded to be 31 bits wide.
999  assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
1000  NumEntries = Num;
1001  }
1002 
1003  unsigned getNumTombstones() const {
1004  return NumTombstones;
1005  }
1006 
1007  void setNumTombstones(unsigned Num) {
1008  NumTombstones = Num;
1009  }
1010 
1011  const BucketT *getInlineBuckets() const {
1012  assert(Small);
1013  // Note that this cast does not violate aliasing rules as we assert that
1014  // the memory's dynamic type is the small, inline bucket buffer, and the
1015  // 'storage.buffer' static type is 'char *'.
1016  return reinterpret_cast<const BucketT *>(storage.buffer);
1017  }
1018 
1019  BucketT *getInlineBuckets() {
1020  return const_cast<BucketT *>(
1021  const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
1022  }
1023 
1024  const LargeRep *getLargeRep() const {
1025  assert(!Small);
1026  // Note, same rule about aliasing as with getInlineBuckets.
1027  return reinterpret_cast<const LargeRep *>(storage.buffer);
1028  }
1029 
1030  LargeRep *getLargeRep() {
1031  return const_cast<LargeRep *>(
1032  const_cast<const SmallDenseMap *>(this)->getLargeRep());
1033  }
1034 
1035  const BucketT *getBuckets() const {
1036  return Small ? getInlineBuckets() : getLargeRep()->Buckets;
1037  }
1038 
1039  BucketT *getBuckets() {
1040  return const_cast<BucketT *>(
1041  const_cast<const SmallDenseMap *>(this)->getBuckets());
1042  }
1043 
1044  unsigned getNumBuckets() const {
1045  return Small ? InlineBuckets : getLargeRep()->NumBuckets;
1046  }
1047 
1048  void deallocateBuckets() {
1049  if (Small)
1050  return;
1051 
1052  operator delete(getLargeRep()->Buckets);
1053  getLargeRep()->~LargeRep();
1054  }
1055 
1056  LargeRep allocateBuckets(unsigned Num) {
1057  assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
1058  LargeRep Rep = {
1059  static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
1060  };
1061  return Rep;
1062  }
1063 };
1064 
1065 template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
1066  bool IsConst>
1068  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1069  friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
1070 
1072 
1073 public:
1075  using value_type =
1076  typename std::conditional<IsConst, const Bucket, Bucket>::type;
1077  using pointer = value_type *;
1079  using iterator_category = std::forward_iterator_tag;
1080 
1081 private:
1082  pointer Ptr = nullptr;
1083  pointer End = nullptr;
1084 
1085 public:
1086  DenseMapIterator() = default;
1087 
1089  bool NoAdvance = false)
1090  : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
1091  assert(isHandleInSync() && "invalid construction!");
1092  if (!NoAdvance) AdvancePastEmptyBuckets();
1093  }
1094 
1095  // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1096  // for const iterator destinations so it doesn't end up as a user defined copy
1097  // constructor.
1098  template <bool IsConstSrc,
1099  typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
1102  : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
1103 
1105  assert(isHandleInSync() && "invalid iterator access!");
1106  return *Ptr;
1107  }
1109  assert(isHandleInSync() && "invalid iterator access!");
1110  return Ptr;
1111  }
1112 
1113  bool operator==(const ConstIterator &RHS) const {
1114  assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1115  assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1116  assert(getEpochAddress() == RHS.getEpochAddress() &&
1117  "comparing incomparable iterators!");
1118  return Ptr == RHS.Ptr;
1119  }
1120  bool operator!=(const ConstIterator &RHS) const {
1121  assert((!Ptr || isHandleInSync()) && "handle not in sync!");
1122  assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1123  assert(getEpochAddress() == RHS.getEpochAddress() &&
1124  "comparing incomparable iterators!");
1125  return Ptr != RHS.Ptr;
1126  }
1127 
1128  inline DenseMapIterator& operator++() { // Preincrement
1129  assert(isHandleInSync() && "invalid iterator access!");
1130  ++Ptr;
1131  AdvancePastEmptyBuckets();
1132  return *this;
1133  }
1134  DenseMapIterator operator++(int) { // Postincrement
1135  assert(isHandleInSync() && "invalid iterator access!");
1136  DenseMapIterator tmp = *this; ++*this; return tmp;
1137  }
1138 
1139 private:
1140  void AdvancePastEmptyBuckets() {
1141  const KeyT Empty = KeyInfoT::getEmptyKey();
1142  const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1143 
1144  while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
1145  KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
1146  ++Ptr;
1147  }
1148 };
1149 
1150 template<typename KeyT, typename ValueT, typename KeyInfoT>
1151 static inline size_t
1153  return X.getMemorySize();
1154 }
1155 
1156 } // end namespace llvm
1157 
1158 #endif // LLVM_ADT_DENSEMAP_H
value_type & reference
Definition: DenseMap.h:1078
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition: MathExtras.h:544
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:243
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
ValueT & operator[](const KeyT &Key)
Definition: DenseMap.h:274
void copyFrom(const DenseMap &other)
Definition: DenseMap.h:666
void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd)
Definition: DenseMap.h:340
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
const KeyT & getFirst() const
Definition: DenseMap.h:41
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
void init(unsigned InitNumEntries)
Definition: DenseMap.h:677
#define LLVM_UNLIKELY(EXPR)
Definition: Compiler.h:176
#define LLVM_LIKELY(EXPR)
Definition: Compiler.h:175
typename std::conditional< IsConst, const Bucket, Bucket >::type value_type
Definition: DenseMap.h:1076
constexpr char IsConst[]
Key for Kernel::Arg::Metadata::mIsConst.
void init(unsigned InitBuckets)
Definition: DenseMap.h:910
static size_t capacity_in_bytes(const BitVector &X)
Definition: BitVector.h:914
unsigned second
static const KeyT getTombstoneKey()
Definition: DenseMap.h:403
const void * getPointerIntoBucketsArray() const
getPointerIntoBucketsArray() - Return an opaque pointer into the buckets array.
Definition: DenseMap.h:300
const_iterator end() const
Definition: DenseMap.h:80
DenseMap(unsigned InitialReserve=0)
Create a DenseMap wth an optional InitialReserve that guarantee that this number of elements can be i...
Definition: DenseMap.h:620
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:176
reference operator*() const
Definition: DenseMap.h:1104
A base class for data structure classes wishing to make iterators ("handles") pointing into themselve...
Definition: EpochTracker.h:37
static unsigned getMinBucketToReserveForEntries(unsigned NumEntries)
Returns the number of buckets to allocate to ensure that the DenseMap can accommodate NumEntries with...
Definition: StringMap.cpp:24
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
value_type * pointer
Definition: DenseMap.h:1077
void incrementEpoch()
Calling incrementEpoch invalidates all handles pointing into the calling instance.
Definition: EpochTracker.h:45
SmallDenseMap(SmallDenseMap &&other)
Definition: DenseMap.h:797
A base class for iterator classes ("handles") that wish to poll for iterator invalidating modificatio...
Definition: EpochTracker.h:59
void shrink_and_clear()
Definition: DenseMap.h:971
static bool isEqual(const Function &Caller, const Function &Callee)
unsigned getMinBucketToReserveForEntries(unsigned NumEntries)
Returns the number of buckets to allocate to ensure that the DenseMap can accommodate NumEntries with...
Definition: DenseMap.h:331
static const KeyT getEmptyKey()
Definition: DenseMap.h:397
void copyFrom(const DenseMapBase< OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT > &other)
Definition: DenseMap.h:366
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&... Args)
Definition: DenseMap.h:208
SmallDenseMap(unsigned NumInitBuckets=0)
Definition: DenseMap.h:788
void grow(unsigned AtLeast)
Definition: DenseMap.h:919
value_type & FindAndConstruct(const KeyT &Key)
Definition: DenseMap.h:266
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:131
std::forward_iterator_tag iterator_category
Definition: DenseMap.h:1079
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:404
bool erase(const KeyT &Val)
Definition: DenseMap.h:247
const ValueT & getSecond() const
Definition: DenseMap.h:43
DenseMap(DenseMap &&other)
Definition: DenseMap.h:627
SmallDenseMap(const SmallDenseMap &other)
Definition: DenseMap.h:792
static unsigned getHashValue(const LookupKeyT &Val)
Definition: DenseMap.h:393
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
void grow(unsigned AtLeast)
Definition: DenseMap.h:687
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:426
const void * getEpochAddress() const
Returns a pointer to the epoch word stored in the data structure this handle points into...
Definition: EpochTracker.h:77
DenseMap(const DenseMap &other)
Definition: DenseMap.h:622
const_iterator begin() const
Definition: DenseMap.h:76
static const unsigned End
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again...
Definition: DenseMap.h:91
unsigned size() const
Definition: DenseMap.h:87
uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:632
void insert(InputIt I, InputIt E)
insert - Range insertion of pairs.
Definition: DenseMap.h:242
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&... Args)
Definition: DenseMap.h:191
unsigned first
SmallDenseMap & operator=(const SmallDenseMap &other)
Definition: DenseMap.h:885
bool operator==(const ConstIterator &RHS) const
Definition: DenseMap.h:1113
size_t getMemorySize() const
Return the approximate size (in bytes) of the actual map.
Definition: DenseMap.h:596
isPodLike - This is a type trait that is used to determine whether a given type can be copied around ...
Definition: ArrayRef.h:530
DenseMapIterator operator++(int)
Definition: DenseMap.h:1134
#define E
Definition: LargeTest.cpp:27
#define B
Definition: LargeTest.cpp:24
void swap(SmallDenseMap &RHS)
Definition: DenseMap.h:813
DenseMap & operator=(const DenseMap &other)
Definition: DenseMap.h:652
bool isPointerIntoBucketsArray(const void *Ptr) const
isPointerIntoBucketsArray - Return true if the specified pointer points somewhere into the DenseMap&#39;s...
Definition: DenseMap.h:293
const_iterator find(const_arg_type_t< KeyT > Val) const
Definition: DenseMap.h:137
void shrink_and_clear()
Definition: DenseMap.h:704
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:923
SmallDenseMap & operator=(SmallDenseMap &&other)
Definition: DenseMap.h:891
void copyFrom(const SmallDenseMap &other)
Definition: DenseMap.h:899
Basic Alias true
DenseMapIterator & operator++()
Definition: DenseMap.h:1128
ValueT & operator[](KeyT &&Key)
Definition: DenseMap.h:286
bool isHandleInSync() const
Returns true if the DebugEpochBase this Handle is linked to has not called incrementEpoch on itself s...
Definition: EpochTracker.h:72
void erase(iterator I)
Definition: DenseMap.h:258
iterator begin()
Definition: DenseMap.h:69
bool operator!=(const ConstIterator &RHS) const
Definition: DenseMap.h:1120
#define I(x, y, z)
Definition: MD5.cpp:58
iterator end()
Definition: DenseMap.h:73
void swap(DenseMap &RHS)
Definition: DenseMap.h:643
std::pair< iterator, bool > insert(std::pair< KeyT, ValueT > &&KV)
Definition: DenseMap.h:183
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:126
LLVM_NODISCARD bool empty() const
Definition: DenseMap.h:84
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:166
#define LLVM_NODISCARD
LLVM_NODISCARD - Warn if a type or return value is discarded.
Definition: Compiler.h:126
iterator find_as(const LookupKeyT &Val)
Alternate version of find() which allows a different, and possibly less expensive, key type.
Definition: DenseMap.h:150
value_type & FindAndConstruct(KeyT &&Key)
Definition: DenseMap.h:278
SmallDenseMap(const InputIt &I, const InputIt &E)
Definition: DenseMap.h:803
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
DenseMap(const InputIt &I, const InputIt &E)
Definition: DenseMap.h:633
LLVM Value Representation.
Definition: Value.h:73
DenseMapIterator(const DenseMapIterator< KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc > &I)
Definition: DenseMap.h:1100
DenseMap & operator=(DenseMap &&other)
Definition: DenseMap.h:658
pointer operator->() const
Definition: DenseMap.h:1108
int * Ptr
DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, bool NoAdvance=false)
Definition: DenseMap.h:1088
std::pair< iterator, bool > insert_as(std::pair< KeyT, ValueT > &&KV, const LookupKeyT &Val)
Alternate version of insert() which allows a different, and possibly less expensive, key type.
Definition: DenseMap.h:226
static unsigned getHashValue(const KeyT &Val)
Definition: DenseMap.h:388
const_iterator find_as(const LookupKeyT &Val) const
Definition: DenseMap.h:157