LLVM  9.0.0svn
STLExtras.h
Go to the documentation of this file.
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains some templates that are useful if you are working with the
10 // STL at all.
11 //
12 // No library is required when using these functions.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_STLEXTRAS_H
17 #define LLVM_ADT_STLEXTRAS_H
18 
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator.h"
23 #include "llvm/Config/abi-breaking.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstddef>
28 #include <cstdint>
29 #include <cstdlib>
30 #include <functional>
31 #include <initializer_list>
32 #include <iterator>
33 #include <limits>
34 #include <memory>
35 #include <tuple>
36 #include <type_traits>
37 #include <utility>
38 
39 #ifdef EXPENSIVE_CHECKS
40 #include <random> // for std::mt19937
41 #endif
42 
43 namespace llvm {
44 
45 // Only used by compiler if both template types are the same. Useful when
46 // using SFINAE to test for the existence of member functions.
47 template <typename T, T> struct SameType;
48 
49 namespace detail {
50 
51 template <typename RangeT>
52 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53 
54 template <typename RangeT>
55 using ValueOfRange = typename std::remove_reference<decltype(
56  *std::begin(std::declval<RangeT &>()))>::type;
57 
58 } // end namespace detail
59 
60 //===----------------------------------------------------------------------===//
61 // Extra additions to <type_traits>
62 //===----------------------------------------------------------------------===//
63 
64 template <typename T>
65 struct negation : std::integral_constant<bool, !bool(T::value)> {};
66 
67 template <typename...> struct conjunction : std::true_type {};
68 template <typename B1> struct conjunction<B1> : B1 {};
69 template <typename B1, typename... Bn>
70 struct conjunction<B1, Bn...>
71  : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
72 
73 template <typename T> struct make_const_ptr {
74  using type =
75  typename std::add_pointer<typename std::add_const<T>::type>::type;
76 };
77 
78 template <typename T> struct make_const_ref {
79  using type = typename std::add_lvalue_reference<
80  typename std::add_const<T>::type>::type;
81 };
82 
83 //===----------------------------------------------------------------------===//
84 // Extra additions to <functional>
85 //===----------------------------------------------------------------------===//
86 
87 template <class Ty> struct identity {
88  using argument_type = Ty;
89 
90  Ty &operator()(Ty &self) const {
91  return self;
92  }
93  const Ty &operator()(const Ty &self) const {
94  return self;
95  }
96 };
97 
98 template <class Ty> struct less_ptr {
99  bool operator()(const Ty* left, const Ty* right) const {
100  return *left < *right;
101  }
102 };
103 
104 template <class Ty> struct greater_ptr {
105  bool operator()(const Ty* left, const Ty* right) const {
106  return *right < *left;
107  }
108 };
109 
110 /// An efficient, type-erasing, non-owning reference to a callable. This is
111 /// intended for use as the type of a function parameter that is not used
112 /// after the function in question returns.
113 ///
114 /// This class does not own the callable, so it is not in general safe to store
115 /// a function_ref.
116 template<typename Fn> class function_ref;
117 
118 template<typename Ret, typename ...Params>
119 class function_ref<Ret(Params...)> {
120  Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
121  intptr_t callable;
122 
123  template<typename Callable>
124  static Ret callback_fn(intptr_t callable, Params ...params) {
125  return (*reinterpret_cast<Callable*>(callable))(
126  std::forward<Params>(params)...);
127  }
128 
129 public:
130  function_ref() = default;
131  function_ref(std::nullptr_t) {}
132 
133  template <typename Callable>
134  function_ref(Callable &&callable,
135  typename std::enable_if<
136  !std::is_same<typename std::remove_reference<Callable>::type,
137  function_ref>::value>::type * = nullptr)
138  : callback(callback_fn<typename std::remove_reference<Callable>::type>),
139  callable(reinterpret_cast<intptr_t>(&callable)) {}
140 
141  Ret operator()(Params ...params) const {
142  return callback(callable, std::forward<Params>(params)...);
143  }
144 
145  operator bool() const { return callback; }
146 };
147 
148 // deleter - Very very very simple method that is used to invoke operator
149 // delete on something. It is used like this:
150 //
151 // for_each(V.begin(), B.end(), deleter<Interval>);
152 template <class T>
153 inline void deleter(T *Ptr) {
154  delete Ptr;
155 }
156 
157 //===----------------------------------------------------------------------===//
158 // Extra additions to <iterator>
159 //===----------------------------------------------------------------------===//
160 
161 namespace adl_detail {
162 
163 using std::begin;
164 
165 template <typename ContainerTy>
166 auto adl_begin(ContainerTy &&container)
167  -> decltype(begin(std::forward<ContainerTy>(container))) {
168  return begin(std::forward<ContainerTy>(container));
169 }
170 
171 using std::end;
172 
173 template <typename ContainerTy>
174 auto adl_end(ContainerTy &&container)
175  -> decltype(end(std::forward<ContainerTy>(container))) {
176  return end(std::forward<ContainerTy>(container));
177 }
178 
179 using std::swap;
180 
181 template <typename T>
182 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
183  std::declval<T>()))) {
184  swap(std::forward<T>(lhs), std::forward<T>(rhs));
185 }
186 
187 } // end namespace adl_detail
188 
189 template <typename ContainerTy>
190 auto adl_begin(ContainerTy &&container)
191  -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
192  return adl_detail::adl_begin(std::forward<ContainerTy>(container));
193 }
194 
195 template <typename ContainerTy>
196 auto adl_end(ContainerTy &&container)
197  -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
198  return adl_detail::adl_end(std::forward<ContainerTy>(container));
199 }
200 
201 template <typename T>
202 void adl_swap(T &&lhs, T &&rhs) noexcept(
203  noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
204  adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
205 }
206 
207 /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
208 template <typename T>
209 constexpr bool empty(const T &RangeOrContainer) {
210  return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
211 }
212 
213 // mapped_iterator - This is a simple iterator adapter that causes a function to
214 // be applied whenever operator* is invoked on the iterator.
215 
216 template <typename ItTy, typename FuncTy,
217  typename FuncReturnTy =
218  decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
220  : public iterator_adaptor_base<
221  mapped_iterator<ItTy, FuncTy>, ItTy,
222  typename std::iterator_traits<ItTy>::iterator_category,
223  typename std::remove_reference<FuncReturnTy>::type> {
224 public:
225  mapped_iterator(ItTy U, FuncTy F)
226  : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
227 
228  ItTy getCurrent() { return this->I; }
229 
230  FuncReturnTy operator*() { return F(*this->I); }
231 
232 private:
233  FuncTy F;
234 };
235 
236 // map_iterator - Provide a convenient way to create mapped_iterators, just like
237 // make_pair is useful for creating pairs...
238 template <class ItTy, class FuncTy>
240  return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
241 }
242 
243 template <class ContainerTy, class FuncTy>
244 auto map_range(ContainerTy &&C, FuncTy F)
245  -> decltype(make_range(map_iterator(C.begin(), F),
246  map_iterator(C.end(), F))) {
247  return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
248 }
249 
250 /// Helper to determine if type T has a member called rbegin().
251 template <typename Ty> class has_rbegin_impl {
252  using yes = char[1];
253  using no = char[2];
254 
255  template <typename Inner>
256  static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
257 
258  template <typename>
259  static no& test(...);
260 
261 public:
262  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
263 };
264 
265 /// Metafunction to determine if T& or T has a member called rbegin().
266 template <typename Ty>
267 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
268 };
269 
270 // Returns an iterator_range over the given container which iterates in reverse.
271 // Note that the container must have rbegin()/rend() methods for this to work.
272 template <typename ContainerTy>
273 auto reverse(ContainerTy &&C,
274  typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
275  nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
276  return make_range(C.rbegin(), C.rend());
277 }
278 
279 // Returns a std::reverse_iterator wrapped around the given iterator.
280 template <typename IteratorTy>
281 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
282  return std::reverse_iterator<IteratorTy>(It);
283 }
284 
285 // Returns an iterator_range over the given container which iterates in reverse.
286 // Note that the container must have begin()/end() methods which return
287 // bidirectional iterators for this to work.
288 template <typename ContainerTy>
289 auto reverse(
290  ContainerTy &&C,
291  typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
296 }
297 
298 /// An iterator adaptor that filters the elements of given inner iterators.
299 ///
300 /// The predicate parameter should be a callable object that accepts the wrapped
301 /// iterator's reference type and returns a bool. When incrementing or
302 /// decrementing the iterator, it will call the predicate on each element and
303 /// skip any where it returns false.
304 ///
305 /// \code
306 /// int A[] = { 1, 2, 3, 4 };
307 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
308 /// // R contains { 1, 3 }.
309 /// \endcode
310 ///
311 /// Note: filter_iterator_base implements support for forward iteration.
312 /// filter_iterator_impl exists to provide support for bidirectional iteration,
313 /// conditional on whether the wrapped iterator supports it.
314 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
316  : public iterator_adaptor_base<
317  filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
318  WrappedIteratorT,
319  typename std::common_type<
320  IterTag, typename std::iterator_traits<
321  WrappedIteratorT>::iterator_category>::type> {
324  WrappedIteratorT,
325  typename std::common_type<
326  IterTag, typename std::iterator_traits<
327  WrappedIteratorT>::iterator_category>::type>;
328 
329 protected:
330  WrappedIteratorT End;
331  PredicateT Pred;
332 
333  void findNextValid() {
334  while (this->I != End && !Pred(*this->I))
335  BaseT::operator++();
336  }
337 
338  // Construct the iterator. The begin iterator needs to know where the end
339  // is, so that it can properly stop when it gets there. The end iterator only
340  // needs the predicate to support bidirectional iteration.
341  filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
342  PredicateT Pred)
343  : BaseT(Begin), End(End), Pred(Pred) {
344  findNextValid();
345  }
346 
347 public:
348  using BaseT::operator++;
349 
351  BaseT::operator++();
352  findNextValid();
353  return *this;
354  }
355 };
356 
357 /// Specialization of filter_iterator_base for forward iteration only.
358 template <typename WrappedIteratorT, typename PredicateT,
359  typename IterTag = std::forward_iterator_tag>
361  : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
363 
364 public:
365  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
366  PredicateT Pred)
367  : BaseT(Begin, End, Pred) {}
368 };
369 
370 /// Specialization of filter_iterator_base for bidirectional iteration.
371 template <typename WrappedIteratorT, typename PredicateT>
372 class filter_iterator_impl<WrappedIteratorT, PredicateT,
373  std::bidirectional_iterator_tag>
374  : public filter_iterator_base<WrappedIteratorT, PredicateT,
375  std::bidirectional_iterator_tag> {
376  using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
377  std::bidirectional_iterator_tag>;
378  void findPrevValid() {
379  while (!this->Pred(*this->I))
380  BaseT::operator--();
381  }
382 
383 public:
384  using BaseT::operator--;
385 
386  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
387  PredicateT Pred)
388  : BaseT(Begin, End, Pred) {}
389 
391  BaseT::operator--();
392  findPrevValid();
393  return *this;
394  }
395 };
396 
397 namespace detail {
398 
399 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
400  using type = std::forward_iterator_tag;
401 };
402 
403 template <> struct fwd_or_bidi_tag_impl<true> {
404  using type = std::bidirectional_iterator_tag;
405 };
406 
407 /// Helper which sets its type member to forward_iterator_tag if the category
408 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
409 /// bidirectional_iterator_tag otherwise.
410 template <typename IterT> struct fwd_or_bidi_tag {
411  using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
412  std::bidirectional_iterator_tag,
413  typename std::iterator_traits<IterT>::iterator_category>::value>::type;
414 };
415 
416 } // namespace detail
417 
418 /// Defines filter_iterator to a suitable specialization of
419 /// filter_iterator_impl, based on the underlying iterator's category.
420 template <typename WrappedIteratorT, typename PredicateT>
422  WrappedIteratorT, PredicateT,
424 
425 /// Convenience function that takes a range of elements and a predicate,
426 /// and return a new filter_iterator range.
427 ///
428 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
429 /// lifetime of that temporary is not kept by the returned range object, and the
430 /// temporary is going to be dropped on the floor after the make_iterator_range
431 /// full expression that contains this function call.
432 template <typename RangeT, typename PredicateT>
434 make_filter_range(RangeT &&Range, PredicateT Pred) {
435  using FilterIteratorT =
437  return make_range(
438  FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
439  std::end(std::forward<RangeT>(Range)), Pred),
440  FilterIteratorT(std::end(std::forward<RangeT>(Range)),
441  std::end(std::forward<RangeT>(Range)), Pred));
442 }
443 
444 /// A pseudo-iterator adaptor that is designed to implement "early increment"
445 /// style loops.
446 ///
447 /// This is *not a normal iterator* and should almost never be used directly. It
448 /// is intended primarily to be used with range based for loops and some range
449 /// algorithms.
450 ///
451 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
452 /// somewhere between them. The constraints of these iterators are:
453 ///
454 /// - On construction or after being incremented, it is comparable and
455 /// dereferencable. It is *not* incrementable.
456 /// - After being dereferenced, it is neither comparable nor dereferencable, it
457 /// is only incrementable.
458 ///
459 /// This means you can only dereference the iterator once, and you can only
460 /// increment it once between dereferences.
461 template <typename WrappedIteratorT>
463  : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
464  WrappedIteratorT, std::input_iterator_tag> {
465  using BaseT =
467  WrappedIteratorT, std::input_iterator_tag>;
468 
469  using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
470 
471 protected:
472 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
473  bool IsEarlyIncremented = false;
474 #endif
475 
476 public:
477  early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
478 
479  using BaseT::operator*;
480  typename BaseT::reference operator*() {
481 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
482  assert(!IsEarlyIncremented && "Cannot dereference twice!");
483  IsEarlyIncremented = true;
484 #endif
485  return *(this->I)++;
486  }
487 
488  using BaseT::operator++;
490 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
491  assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
492  IsEarlyIncremented = false;
493 #endif
494  return *this;
495  }
496 
497  using BaseT::operator==;
498  bool operator==(const early_inc_iterator_impl &RHS) const {
499 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
500  assert(!IsEarlyIncremented && "Cannot compare after dereferencing!");
501 #endif
502  return BaseT::operator==(RHS);
503  }
504 };
505 
506 /// Make a range that does early increment to allow mutation of the underlying
507 /// range without disrupting iteration.
508 ///
509 /// The underlying iterator will be incremented immediately after it is
510 /// dereferenced, allowing deletion of the current node or insertion of nodes to
511 /// not disrupt iteration provided they do not invalidate the *next* iterator --
512 /// the current iterator can be invalidated.
513 ///
514 /// This requires a very exact pattern of use that is only really suitable to
515 /// range based for loops and other range algorithms that explicitly guarantee
516 /// to dereference exactly once each element, and to increment exactly once each
517 /// element.
518 template <typename RangeT>
520 make_early_inc_range(RangeT &&Range) {
521  using EarlyIncIteratorT =
523  return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
524  EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
525 }
526 
527 // forward declarations required by zip_shortest/zip_first/zip_longest
528 template <typename R, typename UnaryPredicate>
529 bool all_of(R &&range, UnaryPredicate P);
530 template <typename R, typename UnaryPredicate>
531 bool any_of(R &&range, UnaryPredicate P);
532 
533 template <size_t... I> struct index_sequence;
534 
535 template <class... Ts> struct index_sequence_for;
536 
537 namespace detail {
538 
539 using std::declval;
540 
541 // We have to alias this since inlining the actual type at the usage site
542 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
543 template<typename... Iters> struct ZipTupleType {
544  using type = std::tuple<decltype(*declval<Iters>())...>;
545 };
546 
547 template <typename ZipType, typename... Iters>
549  ZipType, typename std::common_type<std::bidirectional_iterator_tag,
550  typename std::iterator_traits<
551  Iters>::iterator_category...>::type,
552  // ^ TODO: Implement random access methods.
553  typename ZipTupleType<Iters...>::type,
554  typename std::iterator_traits<typename std::tuple_element<
555  0, std::tuple<Iters...>>::type>::difference_type,
556  // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
557  // inner iterators have the same difference_type. It would fail if, for
558  // instance, the second field's difference_type were non-numeric while the
559  // first is.
560  typename ZipTupleType<Iters...>::type *,
561  typename ZipTupleType<Iters...>::type>;
562 
563 template <typename ZipType, typename... Iters>
564 struct zip_common : public zip_traits<ZipType, Iters...> {
565  using Base = zip_traits<ZipType, Iters...>;
566  using value_type = typename Base::value_type;
567 
568  std::tuple<Iters...> iterators;
569 
570 protected:
571  template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
572  return value_type(*std::get<Ns>(iterators)...);
573  }
574 
575  template <size_t... Ns>
576  decltype(iterators) tup_inc(index_sequence<Ns...>) const {
577  return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
578  }
579 
580  template <size_t... Ns>
581  decltype(iterators) tup_dec(index_sequence<Ns...>) const {
582  return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
583  }
584 
585 public:
586  zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
587 
589 
590  const value_type operator*() const {
592  }
593 
594  ZipType &operator++() {
595  iterators = tup_inc(index_sequence_for<Iters...>{});
596  return *reinterpret_cast<ZipType *>(this);
597  }
598 
599  ZipType &operator--() {
600  static_assert(Base::IsBidirectional,
601  "All inner iterators must be at least bidirectional.");
602  iterators = tup_dec(index_sequence_for<Iters...>{});
603  return *reinterpret_cast<ZipType *>(this);
604  }
605 };
606 
607 template <typename... Iters>
608 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
609  using Base = zip_common<zip_first<Iters...>, Iters...>;
610 
611  bool operator==(const zip_first<Iters...> &other) const {
612  return std::get<0>(this->iterators) == std::get<0>(other.iterators);
613  }
614 
615  zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
616 };
617 
618 template <typename... Iters>
619 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
620  template <size_t... Ns>
621  bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
622  return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
623  std::get<Ns>(other.iterators)...},
624  identity<bool>{});
625  }
626 
627 public:
628  using Base = zip_common<zip_shortest<Iters...>, Iters...>;
629 
630  zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
631 
632  bool operator==(const zip_shortest<Iters...> &other) const {
633  return !test(other, index_sequence_for<Iters...>{});
634  }
635 };
636 
637 template <template <typename...> class ItType, typename... Args> class zippy {
638 public:
640  using iterator_category = typename iterator::iterator_category;
641  using value_type = typename iterator::value_type;
642  using difference_type = typename iterator::difference_type;
643  using pointer = typename iterator::pointer;
644  using reference = typename iterator::reference;
645 
646 private:
647  std::tuple<Args...> ts;
648 
649  template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
650  return iterator(std::begin(std::get<Ns>(ts))...);
651  }
652  template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
653  return iterator(std::end(std::get<Ns>(ts))...);
654  }
655 
656 public:
657  zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
658 
659  iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
660  iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
661 };
662 
663 } // end namespace detail
664 
665 /// zip iterator for two or more iteratable types.
666 template <typename T, typename U, typename... Args>
668  Args &&... args) {
669  return detail::zippy<detail::zip_shortest, T, U, Args...>(
670  std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
671 }
672 
673 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
674 /// be the shortest.
675 template <typename T, typename U, typename... Args>
677  Args &&... args) {
678  return detail::zippy<detail::zip_first, T, U, Args...>(
679  std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
680 }
681 
682 namespace detail {
683 template <typename Iter>
684 static Iter next_or_end(const Iter &I, const Iter &End) {
685  if (I == End)
686  return End;
687  return std::next(I);
688 }
689 
690 template <typename Iter>
691 static auto deref_or_none(const Iter &I, const Iter &End)
692  -> llvm::Optional<typename std::remove_const<
693  typename std::remove_reference<decltype(*I)>::type>::type> {
694  if (I == End)
695  return None;
696  return *I;
697 }
698 
699 template <typename Iter> struct ZipLongestItemType {
700  using type =
701  llvm::Optional<typename std::remove_const<typename std::remove_reference<
702  decltype(*std::declval<Iter>())>::type>::type>;
703 };
704 
705 template <typename... Iters> struct ZipLongestTupleType {
706  using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
707 };
708 
709 template <typename... Iters>
711  : public iterator_facade_base<
712  zip_longest_iterator<Iters...>,
713  typename std::common_type<
714  std::forward_iterator_tag,
715  typename std::iterator_traits<Iters>::iterator_category...>::type,
716  typename ZipLongestTupleType<Iters...>::type,
717  typename std::iterator_traits<typename std::tuple_element<
718  0, std::tuple<Iters...>>::type>::difference_type,
719  typename ZipLongestTupleType<Iters...>::type *,
720  typename ZipLongestTupleType<Iters...>::type> {
721 public:
722  using value_type = typename ZipLongestTupleType<Iters...>::type;
723 
724 private:
725  std::tuple<Iters...> iterators;
726  std::tuple<Iters...> end_iterators;
727 
728  template <size_t... Ns>
729  bool test(const zip_longest_iterator<Iters...> &other,
730  index_sequence<Ns...>) const {
731  return llvm::any_of(
732  std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
733  std::get<Ns>(other.iterators)...},
734  identity<bool>{});
735  }
736 
737  template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
738  return value_type(
739  deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
740  }
741 
742  template <size_t... Ns>
743  decltype(iterators) tup_inc(index_sequence<Ns...>) const {
744  return std::tuple<Iters...>(
745  next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
746  }
747 
748 public:
749  zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
750  : iterators(std::forward<Iters>(ts.first)...),
751  end_iterators(std::forward<Iters>(ts.second)...) {}
752 
754 
756 
758  iterators = tup_inc(index_sequence_for<Iters...>{});
759  return *this;
760  }
761 
762  bool operator==(const zip_longest_iterator<Iters...> &other) const {
763  return !test(other, index_sequence_for<Iters...>{});
764  }
765 };
766 
767 template <typename... Args> class zip_longest_range {
768 public:
769  using iterator =
771  using iterator_category = typename iterator::iterator_category;
773  using difference_type = typename iterator::difference_type;
774  using pointer = typename iterator::pointer;
775  using reference = typename iterator::reference;
776 
777 private:
778  std::tuple<Args...> ts;
779 
780  template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
781  return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
782  adl_end(std::get<Ns>(ts)))...);
783  }
784 
785  template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
786  return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
787  adl_end(std::get<Ns>(ts)))...);
788  }
789 
790 public:
791  zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
792 
793  iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
794  iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
795 };
796 } // namespace detail
797 
798 /// Iterate over two or more iterators at the same time. Iteration continues
799 /// until all iterators reach the end. The llvm::Optional only contains a value
800 /// if the iterator has not reached the end.
801 template <typename T, typename U, typename... Args>
803  Args &&... args) {
804  return detail::zip_longest_range<T, U, Args...>(
805  std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
806 }
807 
808 /// Iterator wrapper that concatenates sequences together.
809 ///
810 /// This can concatenate different iterators, even with different types, into
811 /// a single iterator provided the value types of all the concatenated
812 /// iterators expose `reference` and `pointer` types that can be converted to
813 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
814 /// interesting/customized pointer or reference types.
815 ///
816 /// Currently this only supports forward or higher iterator categories as
817 /// inputs and always exposes a forward iterator interface.
818 template <typename ValueT, typename... IterTs>
820  : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
821  std::forward_iterator_tag, ValueT> {
822  using BaseT = typename concat_iterator::iterator_facade_base;
823 
824  /// We store both the current and end iterators for each concatenated
825  /// sequence in a tuple of pairs.
826  ///
827  /// Note that something like iterator_range seems nice at first here, but the
828  /// range properties are of little benefit and end up getting in the way
829  /// because we need to do mutation on the current iterators.
830  std::tuple<IterTs...> Begins;
831  std::tuple<IterTs...> Ends;
832 
833  /// Attempts to increment a specific iterator.
834  ///
835  /// Returns true if it was able to increment the iterator. Returns false if
836  /// the iterator is already at the end iterator.
837  template <size_t Index> bool incrementHelper() {
838  auto &Begin = std::get<Index>(Begins);
839  auto &End = std::get<Index>(Ends);
840  if (Begin == End)
841  return false;
842 
843  ++Begin;
844  return true;
845  }
846 
847  /// Increments the first non-end iterator.
848  ///
849  /// It is an error to call this with all iterators at the end.
850  template <size_t... Ns> void increment(index_sequence<Ns...>) {
851  // Build a sequence of functions to increment each iterator if possible.
852  bool (concat_iterator::*IncrementHelperFns[])() = {
853  &concat_iterator::incrementHelper<Ns>...};
854 
855  // Loop over them, and stop as soon as we succeed at incrementing one.
856  for (auto &IncrementHelperFn : IncrementHelperFns)
857  if ((this->*IncrementHelperFn)())
858  return;
859 
860  llvm_unreachable("Attempted to increment an end concat iterator!");
861  }
862 
863  /// Returns null if the specified iterator is at the end. Otherwise,
864  /// dereferences the iterator and returns the address of the resulting
865  /// reference.
866  template <size_t Index> ValueT *getHelper() const {
867  auto &Begin = std::get<Index>(Begins);
868  auto &End = std::get<Index>(Ends);
869  if (Begin == End)
870  return nullptr;
871 
872  return &*Begin;
873  }
874 
875  /// Finds the first non-end iterator, dereferences, and returns the resulting
876  /// reference.
877  ///
878  /// It is an error to call this with all iterators at the end.
879  template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
880  // Build a sequence of functions to get from iterator if possible.
881  ValueT *(concat_iterator::*GetHelperFns[])() const = {
882  &concat_iterator::getHelper<Ns>...};
883 
884  // Loop over them, and return the first result we find.
885  for (auto &GetHelperFn : GetHelperFns)
886  if (ValueT *P = (this->*GetHelperFn)())
887  return *P;
888 
889  llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
890  }
891 
892 public:
893  /// Constructs an iterator from a squence of ranges.
894  ///
895  /// We need the full range to know how to switch between each of the
896  /// iterators.
897  template <typename... RangeTs>
898  explicit concat_iterator(RangeTs &&... Ranges)
899  : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
900 
901  using BaseT::operator++;
902 
904  increment(index_sequence_for<IterTs...>());
905  return *this;
906  }
907 
908  ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
909 
910  bool operator==(const concat_iterator &RHS) const {
911  return Begins == RHS.Begins && Ends == RHS.Ends;
912  }
913 };
914 
915 namespace detail {
916 
917 /// Helper to store a sequence of ranges being concatenated and access them.
918 ///
919 /// This is designed to facilitate providing actual storage when temporaries
920 /// are passed into the constructor such that we can use it as part of range
921 /// based for loops.
922 template <typename ValueT, typename... RangeTs> class concat_range {
923 public:
924  using iterator =
926  decltype(std::begin(std::declval<RangeTs &>()))...>;
927 
928 private:
929  std::tuple<RangeTs...> Ranges;
930 
931  template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
932  return iterator(std::get<Ns>(Ranges)...);
933  }
934  template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
935  return iterator(make_range(std::end(std::get<Ns>(Ranges)),
936  std::end(std::get<Ns>(Ranges)))...);
937  }
938 
939 public:
940  concat_range(RangeTs &&... Ranges)
941  : Ranges(std::forward<RangeTs>(Ranges)...) {}
942 
943  iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
944  iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
945 };
946 
947 } // end namespace detail
948 
949 /// Concatenated range across two or more ranges.
950 ///
951 /// The desired value type must be explicitly specified.
952 template <typename ValueT, typename... RangeTs>
953 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
954  static_assert(sizeof...(RangeTs) > 1,
955  "Need more than one range to concatenate!");
956  return detail::concat_range<ValueT, RangeTs...>(
957  std::forward<RangeTs>(Ranges)...);
958 }
959 
960 //===----------------------------------------------------------------------===//
961 // Extra additions to <utility>
962 //===----------------------------------------------------------------------===//
963 
964 /// Function object to check whether the first component of a std::pair
965 /// compares less than the first component of another std::pair.
966 struct less_first {
967  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
968  return lhs.first < rhs.first;
969  }
970 };
971 
972 /// Function object to check whether the second component of a std::pair
973 /// compares less than the second component of another std::pair.
974 struct less_second {
975  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
976  return lhs.second < rhs.second;
977  }
978 };
979 
980 /// \brief Function object to apply a binary function to the first component of
981 /// a std::pair.
982 template<typename FuncTy>
983 struct on_first {
984  FuncTy func;
985 
986  template <typename T>
987  auto operator()(const T &lhs, const T &rhs) const
988  -> decltype(func(lhs.first, rhs.first)) {
989  return func(lhs.first, rhs.first);
990  }
991 };
992 
993 // A subset of N3658. More stuff can be added as-needed.
994 
995 /// Represents a compile-time sequence of integers.
996 template <class T, T... I> struct integer_sequence {
997  using value_type = T;
998 
999  static constexpr size_t size() { return sizeof...(I); }
1000 };
1001 
1002 /// Alias for the common case of a sequence of size_ts.
1003 template <size_t... I>
1004 struct index_sequence : integer_sequence<std::size_t, I...> {};
1005 
1006 template <std::size_t N, std::size_t... I>
1007 struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
1008 template <std::size_t... I>
1009 struct build_index_impl<0, I...> : index_sequence<I...> {};
1010 
1011 /// Creates a compile-time integer sequence for a parameter pack.
1012 template <class... Ts>
1013 struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1014 
1015 /// Utility type to build an inheritance chain that makes it easy to rank
1016 /// overload candidates.
1017 template <int N> struct rank : rank<N - 1> {};
1018 template <> struct rank<0> {};
1019 
1020 /// traits class for checking whether type T is one of any of the given
1021 /// types in the variadic list.
1022 template <typename T, typename... Ts> struct is_one_of {
1023  static const bool value = false;
1024 };
1025 
1026 template <typename T, typename U, typename... Ts>
1027 struct is_one_of<T, U, Ts...> {
1028  static const bool value =
1029  std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1030 };
1031 
1032 /// traits class for checking whether type T is a base class for all
1033 /// the given types in the variadic list.
1034 template <typename T, typename... Ts> struct are_base_of {
1035  static const bool value = true;
1036 };
1037 
1038 template <typename T, typename U, typename... Ts>
1039 struct are_base_of<T, U, Ts...> {
1040  static const bool value =
1041  std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1042 };
1043 
1044 //===----------------------------------------------------------------------===//
1045 // Extra additions for arrays
1046 //===----------------------------------------------------------------------===//
1047 
1048 /// Find the length of an array.
1049 template <class T, std::size_t N>
1050 constexpr inline size_t array_lengthof(T (&)[N]) {
1051  return N;
1052 }
1053 
1054 /// Adapt std::less<T> for array_pod_sort.
1055 template<typename T>
1056 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1057  if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1058  *reinterpret_cast<const T*>(P2)))
1059  return -1;
1060  if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1061  *reinterpret_cast<const T*>(P1)))
1062  return 1;
1063  return 0;
1064 }
1065 
1066 /// get_array_pod_sort_comparator - This is an internal helper function used to
1067 /// get type deduction of T right.
1068 template<typename T>
1069 inline int (*get_array_pod_sort_comparator(const T &))
1070  (const void*, const void*) {
1071  return array_pod_sort_comparator<T>;
1072 }
1073 
1074 /// array_pod_sort - This sorts an array with the specified start and end
1075 /// extent. This is just like std::sort, except that it calls qsort instead of
1076 /// using an inlined template. qsort is slightly slower than std::sort, but
1077 /// most sorts are not performance critical in LLVM and std::sort has to be
1078 /// template instantiated for each type, leading to significant measured code
1079 /// bloat. This function should generally be used instead of std::sort where
1080 /// possible.
1081 ///
1082 /// This function assumes that you have simple POD-like types that can be
1083 /// compared with std::less and can be moved with memcpy. If this isn't true,
1084 /// you should use std::sort.
1085 ///
1086 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1087 /// default to std::less.
1088 template<class IteratorTy>
1089 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1090  // Don't inefficiently call qsort with one element or trigger undefined
1091  // behavior with an empty sequence.
1092  auto NElts = End - Start;
1093  if (NElts <= 1) return;
1094 #ifdef EXPENSIVE_CHECKS
1095  std::mt19937 Generator(std::random_device{}());
1096  std::shuffle(Start, End, Generator);
1097 #endif
1098  qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1099 }
1100 
1101 template <class IteratorTy>
1102 inline void array_pod_sort(
1103  IteratorTy Start, IteratorTy End,
1104  int (*Compare)(
1105  const typename std::iterator_traits<IteratorTy>::value_type *,
1106  const typename std::iterator_traits<IteratorTy>::value_type *)) {
1107  // Don't inefficiently call qsort with one element or trigger undefined
1108  // behavior with an empty sequence.
1109  auto NElts = End - Start;
1110  if (NElts <= 1) return;
1111 #ifdef EXPENSIVE_CHECKS
1112  std::mt19937 Generator(std::random_device{}());
1113  std::shuffle(Start, End, Generator);
1114 #endif
1115  qsort(&*Start, NElts, sizeof(*Start),
1116  reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1117 }
1118 
1119 // Provide wrappers to std::sort which shuffle the elements before sorting
1120 // to help uncover non-deterministic behavior (PR35135).
1121 template <typename IteratorTy>
1122 inline void sort(IteratorTy Start, IteratorTy End) {
1123 #ifdef EXPENSIVE_CHECKS
1124  std::mt19937 Generator(std::random_device{}());
1125  std::shuffle(Start, End, Generator);
1126 #endif
1127  std::sort(Start, End);
1128 }
1129 
1130 template <typename Container> inline void sort(Container &&C) {
1132 }
1133 
1134 template <typename IteratorTy, typename Compare>
1135 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1136 #ifdef EXPENSIVE_CHECKS
1137  std::mt19937 Generator(std::random_device{}());
1138  std::shuffle(Start, End, Generator);
1139 #endif
1140  std::sort(Start, End, Comp);
1141 }
1142 
1143 template <typename Container, typename Compare>
1144 inline void sort(Container &&C, Compare Comp) {
1145  llvm::sort(adl_begin(C), adl_end(C), Comp);
1146 }
1147 
1148 //===----------------------------------------------------------------------===//
1149 // Extra additions to <algorithm>
1150 //===----------------------------------------------------------------------===//
1151 
1152 /// For a container of pointers, deletes the pointers and then clears the
1153 /// container.
1154 template<typename Container>
1155 void DeleteContainerPointers(Container &C) {
1156  for (auto V : C)
1157  delete V;
1158  C.clear();
1159 }
1160 
1161 /// In a container of pairs (usually a map) whose second element is a pointer,
1162 /// deletes the second elements and then clears the container.
1163 template<typename Container>
1164 void DeleteContainerSeconds(Container &C) {
1165  for (auto &V : C)
1166  delete V.second;
1167  C.clear();
1168 }
1169 
1170 /// Get the size of a range. This is a wrapper function around std::distance
1171 /// which is only enabled when the operation is O(1).
1172 template <typename R>
1173 auto size(R &&Range, typename std::enable_if<
1174  std::is_same<typename std::iterator_traits<decltype(
1175  Range.begin())>::iterator_category,
1176  std::random_access_iterator_tag>::value,
1177  void>::type * = nullptr)
1178  -> decltype(std::distance(Range.begin(), Range.end())) {
1179  return std::distance(Range.begin(), Range.end());
1180 }
1181 
1182 /// Provide wrappers to std::for_each which take ranges instead of having to
1183 /// pass begin/end explicitly.
1184 template <typename R, typename UnaryPredicate>
1185 UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1186  return std::for_each(adl_begin(Range), adl_end(Range), P);
1187 }
1188 
1189 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1190 /// begin/end explicitly.
1191 template <typename R, typename UnaryPredicate>
1192 bool all_of(R &&Range, UnaryPredicate P) {
1193  return std::all_of(adl_begin(Range), adl_end(Range), P);
1194 }
1195 
1196 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1197 /// begin/end explicitly.
1198 template <typename R, typename UnaryPredicate>
1199 bool any_of(R &&Range, UnaryPredicate P) {
1200  return std::any_of(adl_begin(Range), adl_end(Range), P);
1201 }
1202 
1203 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1204 /// begin/end explicitly.
1205 template <typename R, typename UnaryPredicate>
1206 bool none_of(R &&Range, UnaryPredicate P) {
1207  return std::none_of(adl_begin(Range), adl_end(Range), P);
1208 }
1209 
1210 /// Provide wrappers to std::find which take ranges instead of having to pass
1211 /// begin/end explicitly.
1212 template <typename R, typename T>
1213 auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1214  return std::find(adl_begin(Range), adl_end(Range), Val);
1215 }
1216 
1217 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1218 /// begin/end explicitly.
1219 template <typename R, typename UnaryPredicate>
1220 auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1221  return std::find_if(adl_begin(Range), adl_end(Range), P);
1222 }
1223 
1224 template <typename R, typename UnaryPredicate>
1225 auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1226  return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1227 }
1228 
1229 /// Provide wrappers to std::remove_if which take ranges instead of having to
1230 /// pass begin/end explicitly.
1231 template <typename R, typename UnaryPredicate>
1232 auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1233  return std::remove_if(adl_begin(Range), adl_end(Range), P);
1234 }
1235 
1236 /// Provide wrappers to std::copy_if which take ranges instead of having to
1237 /// pass begin/end explicitly.
1238 template <typename R, typename OutputIt, typename UnaryPredicate>
1239 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1240  return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1241 }
1242 
1243 template <typename R, typename OutputIt>
1244 OutputIt copy(R &&Range, OutputIt Out) {
1245  return std::copy(adl_begin(Range), adl_end(Range), Out);
1246 }
1247 
1248 /// Wrapper function around std::find to detect if an element exists
1249 /// in a container.
1250 template <typename R, typename E>
1251 bool is_contained(R &&Range, const E &Element) {
1252  return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1253 }
1254 
1255 /// Wrapper function around std::count to count the number of times an element
1256 /// \p Element occurs in the given range \p Range.
1257 template <typename R, typename E>
1258 auto count(R &&Range, const E &Element) ->
1259  typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1260  return std::count(adl_begin(Range), adl_end(Range), Element);
1261 }
1262 
1263 /// Wrapper function around std::count_if to count the number of times an
1264 /// element satisfying a given predicate occurs in a range.
1265 template <typename R, typename UnaryPredicate>
1266 auto count_if(R &&Range, UnaryPredicate P) ->
1267  typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1268  return std::count_if(adl_begin(Range), adl_end(Range), P);
1269 }
1270 
1271 /// Wrapper function around std::transform to apply a function to a range and
1272 /// store the result elsewhere.
1273 template <typename R, typename OutputIt, typename UnaryPredicate>
1274 OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1275  return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1276 }
1277 
1278 /// Provide wrappers to std::partition which take ranges instead of having to
1279 /// pass begin/end explicitly.
1280 template <typename R, typename UnaryPredicate>
1281 auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1282  return std::partition(adl_begin(Range), adl_end(Range), P);
1283 }
1284 
1285 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1286 /// pass begin/end explicitly.
1287 template <typename R, typename T>
1288 auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1289  return std::lower_bound(adl_begin(Range), adl_end(Range),
1290  std::forward<T>(Value));
1291 }
1292 
1293 template <typename R, typename T, typename Compare>
1294 auto lower_bound(R &&Range, T &&Value, Compare C)
1295  -> decltype(adl_begin(Range)) {
1296  return std::lower_bound(adl_begin(Range), adl_end(Range),
1297  std::forward<T>(Value), C);
1298 }
1299 
1300 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1301 /// pass begin/end explicitly.
1302 template <typename R, typename T>
1303 auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1304  return std::upper_bound(adl_begin(Range), adl_end(Range),
1305  std::forward<T>(Value));
1306 }
1307 
1308 template <typename R, typename T, typename Compare>
1309 auto upper_bound(R &&Range, T &&Value, Compare C)
1310  -> decltype(adl_begin(Range)) {
1311  return std::upper_bound(adl_begin(Range), adl_end(Range),
1312  std::forward<T>(Value), C);
1313 }
1314 
1315 template <typename R>
1316 void stable_sort(R &&Range) {
1317  std::stable_sort(adl_begin(Range), adl_end(Range));
1318 }
1319 
1320 template <typename R, typename Compare>
1321 void stable_sort(R &&Range, Compare C) {
1322  std::stable_sort(adl_begin(Range), adl_end(Range), C);
1323 }
1324 
1325 /// Binary search for the first iterator in a range where a predicate is false.
1326 /// Requires that C is always true below some limit, and always false above it.
1327 template <typename R, typename Predicate,
1328  typename Val = decltype(*adl_begin(std::declval<R>()))>
1329 auto partition_point(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
1330  return std::partition_point(adl_begin(Range), adl_end(Range), P);
1331 }
1332 
1333 /// Wrapper function around std::equal to detect if all elements
1334 /// in a container are same.
1335 template <typename R>
1336 bool is_splat(R &&Range) {
1337  size_t range_size = size(Range);
1338  return range_size != 0 && (range_size == 1 ||
1339  std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1340 }
1341 
1342 /// Given a range of type R, iterate the entire range and return a
1343 /// SmallVector with elements of the vector. This is useful, for example,
1344 /// when you want to iterate a range and then sort the results.
1345 template <unsigned Size, typename R>
1347 to_vector(R &&Range) {
1348  return {adl_begin(Range), adl_end(Range)};
1349 }
1350 
1351 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
1352 /// `erase_if` which is equivalent to:
1353 ///
1354 /// C.erase(remove_if(C, pred), C.end());
1355 ///
1356 /// This version works for any container with an erase method call accepting
1357 /// two iterators.
1358 template <typename Container, typename UnaryPredicate>
1359 void erase_if(Container &C, UnaryPredicate P) {
1360  C.erase(remove_if(C, P), C.end());
1361 }
1362 
1363 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1364 /// the range [ValIt, ValEnd) (which is not from the same container).
1365 template<typename Container, typename RandomAccessIterator>
1366 void replace(Container &Cont, typename Container::iterator ContIt,
1367  typename Container::iterator ContEnd, RandomAccessIterator ValIt,
1368  RandomAccessIterator ValEnd) {
1369  while (true) {
1370  if (ValIt == ValEnd) {
1371  Cont.erase(ContIt, ContEnd);
1372  return;
1373  } else if (ContIt == ContEnd) {
1374  Cont.insert(ContIt, ValIt, ValEnd);
1375  return;
1376  }
1377  *ContIt++ = *ValIt++;
1378  }
1379 }
1380 
1381 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1382 /// the range R.
1383 template<typename Container, typename Range = std::initializer_list<
1384  typename Container::value_type>>
1385 void replace(Container &Cont, typename Container::iterator ContIt,
1386  typename Container::iterator ContEnd, Range R) {
1387  replace(Cont, ContIt, ContEnd, R.begin(), R.end());
1388 }
1389 
1390 //===----------------------------------------------------------------------===//
1391 // Extra additions to <memory>
1392 //===----------------------------------------------------------------------===//
1393 
1394 // Implement make_unique according to N3656.
1395 
1396 /// Constructs a `new T()` with the given args and returns a
1397 /// `unique_ptr<T>` which owns the object.
1398 ///
1399 /// Example:
1400 ///
1401 /// auto p = make_unique<int>();
1402 /// auto p = make_unique<std::tuple<int, int>>(0, 1);
1403 template <class T, class... Args>
1404 typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1405 make_unique(Args &&... args) {
1406  return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
1407 }
1408 
1409 /// Constructs a `new T[n]` with the given args and returns a
1410 /// `unique_ptr<T[]>` which owns the object.
1411 ///
1412 /// \param n size of the new array.
1413 ///
1414 /// Example:
1415 ///
1416 /// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1417 template <class T>
1418 typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1419  std::unique_ptr<T>>::type
1420 make_unique(size_t n) {
1421  return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1422 }
1423 
1424 /// This function isn't used and is only here to provide better compile errors.
1425 template <class T, class... Args>
1426 typename std::enable_if<std::extent<T>::value != 0>::type
1427 make_unique(Args &&...) = delete;
1428 
1429 struct FreeDeleter {
1430  void operator()(void* v) {
1431  ::free(v);
1432  }
1433 };
1434 
1435 template<typename First, typename Second>
1436 struct pair_hash {
1437  size_t operator()(const std::pair<First, Second> &P) const {
1438  return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1439  }
1440 };
1441 
1442 /// A functor like C++14's std::less<void> in its absence.
1443 struct less {
1444  template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1445  return std::forward<A>(a) < std::forward<B>(b);
1446  }
1447 };
1448 
1449 /// A functor like C++14's std::equal<void> in its absence.
1450 struct equal {
1451  template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1452  return std::forward<A>(a) == std::forward<B>(b);
1453  }
1454 };
1455 
1456 /// Binary functor that adapts to any other binary functor after dereferencing
1457 /// operands.
1458 template <typename T> struct deref {
1459  T func;
1460 
1461  // Could be further improved to cope with non-derivable functors and
1462  // non-binary functors (should be a variadic template member function
1463  // operator()).
1464  template <typename A, typename B>
1465  auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1466  assert(lhs);
1467  assert(rhs);
1468  return func(*lhs, *rhs);
1469  }
1470 };
1471 
1472 namespace detail {
1473 
1474 template <typename R> class enumerator_iter;
1475 
1476 template <typename R> struct result_pair {
1477  using value_reference =
1478  typename std::iterator_traits<IterOfRange<R>>::reference;
1479 
1480  friend class enumerator_iter<R>;
1481 
1482  result_pair() = default;
1483  result_pair(std::size_t Index, IterOfRange<R> Iter)
1484  : Index(Index), Iter(Iter) {}
1485 
1487  Index = Other.Index;
1488  Iter = Other.Iter;
1489  return *this;
1490  }
1491 
1492  std::size_t index() const { return Index; }
1493  const value_reference value() const { return *Iter; }
1494  value_reference value() { return *Iter; }
1495 
1496 private:
1498  IterOfRange<R> Iter;
1499 };
1500 
1501 template <typename R>
1502 class enumerator_iter
1503  : public iterator_facade_base<
1504  enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1505  typename std::iterator_traits<IterOfRange<R>>::difference_type,
1506  typename std::iterator_traits<IterOfRange<R>>::pointer,
1507  typename std::iterator_traits<IterOfRange<R>>::reference> {
1508  using result_type = result_pair<R>;
1509 
1510 public:
1512  : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1513 
1515  : Result(Index, Iter) {}
1516 
1517  result_type &operator*() { return Result; }
1518  const result_type &operator*() const { return Result; }
1519 
1521  assert(Result.Index != std::numeric_limits<size_t>::max());
1522  ++Result.Iter;
1523  ++Result.Index;
1524  return *this;
1525  }
1526 
1527  bool operator==(const enumerator_iter<R> &RHS) const {
1528  // Don't compare indices here, only iterators. It's possible for an end
1529  // iterator to have different indices depending on whether it was created
1530  // by calling std::end() versus incrementing a valid iterator.
1531  return Result.Iter == RHS.Result.Iter;
1532  }
1533 
1535  Result = Other.Result;
1536  return *this;
1537  }
1538 
1539 private:
1540  result_type Result;
1541 };
1542 
1543 template <typename R> class enumerator {
1544 public:
1545  explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1546 
1548  return enumerator_iter<R>(0, std::begin(TheRange));
1549  }
1550 
1552  return enumerator_iter<R>(std::end(TheRange));
1553  }
1554 
1555 private:
1556  R TheRange;
1557 };
1558 
1559 } // end namespace detail
1560 
1561 /// Given an input range, returns a new range whose values are are pair (A,B)
1562 /// such that A is the 0-based index of the item in the sequence, and B is
1563 /// the value from the original sequence. Example:
1564 ///
1565 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1566 /// for (auto X : enumerate(Items)) {
1567 /// printf("Item %d - %c\n", X.index(), X.value());
1568 /// }
1569 ///
1570 /// Output:
1571 /// Item 0 - A
1572 /// Item 1 - B
1573 /// Item 2 - C
1574 /// Item 3 - D
1575 ///
1576 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1577  return detail::enumerator<R>(std::forward<R>(TheRange));
1578 }
1579 
1580 namespace detail {
1581 
1582 template <typename F, typename Tuple, std::size_t... I>
1584  -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1585  return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1586 }
1587 
1588 } // end namespace detail
1589 
1590 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1591 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1592 /// return the result.
1593 template <typename F, typename Tuple>
1594 auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1595  std::forward<F>(f), std::forward<Tuple>(t),
1597  std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1598  using Indices = build_index_impl<
1599  std::tuple_size<typename std::decay<Tuple>::type>::value>;
1600 
1601  return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1602  Indices{});
1603 }
1604 
1605 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1606 /// time. Not meant for use with random-access iterators.
1607 template <typename IterTy>
1609  IterTy &&Begin, IterTy &&End, unsigned N,
1610  typename std::enable_if<
1611  !std::is_same<
1612  typename std::iterator_traits<typename std::remove_reference<
1613  decltype(Begin)>::type>::iterator_category,
1614  std::random_access_iterator_tag>::value,
1615  void>::type * = nullptr) {
1616  for (; N; --N, ++Begin)
1617  if (Begin == End)
1618  return false; // Too few.
1619  return Begin == End;
1620 }
1621 
1622 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1623 /// time. Not meant for use with random-access iterators.
1624 template <typename IterTy>
1626  IterTy &&Begin, IterTy &&End, unsigned N,
1627  typename std::enable_if<
1628  !std::is_same<
1629  typename std::iterator_traits<typename std::remove_reference<
1630  decltype(Begin)>::type>::iterator_category,
1631  std::random_access_iterator_tag>::value,
1632  void>::type * = nullptr) {
1633  for (; N; --N, ++Begin)
1634  if (Begin == End)
1635  return false; // Too few.
1636  return true;
1637 }
1638 
1639 /// Returns a raw pointer that represents the same address as the argument.
1640 ///
1641 /// The late bound return should be removed once we move to C++14 to better
1642 /// align with the C++20 declaration. Also, this implementation can be removed
1643 /// once we move to C++20 where it's defined as std::to_addres()
1644 ///
1645 /// The std::pointer_traits<>::to_address(p) variations of these overloads has
1646 /// not been implemented.
1647 template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
1648  return P.operator->();
1649 }
1650 template <class T> constexpr T *to_address(T *P) { return P; }
1651 
1652 } // end namespace llvm
1653 
1654 #endif // LLVM_ADT_STLEXTRAS_H
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&... Ranges)
Concatenated range across two or more ranges.
Definition: STLExtras.h:953
auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range))
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1288
result_pair(std::size_t Index, IterOfRange< R > Iter)
Definition: STLExtras.h:1483
void DeleteContainerSeconds(Container &C)
In a container of pairs (usually a map) whose second element is a pointer, deletes the second element...
Definition: STLExtras.h:1164
const NoneType None
Definition: None.h:23
uint64_t CallInst * C
void DeleteContainerPointers(Container &C)
For a container of pointers, deletes the pointers and then clears the container.
Definition: STLExtras.h:1155
bool operator()(const Ty *left, const Ty *right) const
Definition: STLExtras.h:105
ZipType & operator++()
Definition: STLExtras.h:594
typename iterator::pointer pointer
Definition: STLExtras.h:774
bool operator==(const enumerator_iter< R > &RHS) const
Definition: STLExtras.h:1527
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:233
bool operator==(const zip_longest_iterator< Iters... > &other) const
Definition: STLExtras.h:762
filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred)
Definition: STLExtras.h:386
zippy(Args &&... ts_)
Definition: STLExtras.h:657
const value_reference value() const
Definition: STLExtras.h:1493
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
Ret operator()(Params ...params) const
Definition: STLExtras.h:141
const_iterator begin(StringRef path, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:224
bool operator()(const T &lhs, const T &rhs) const
Definition: STLExtras.h:967
typename fwd_or_bidi_tag_impl< std::is_base_of< std::bidirectional_iterator_tag, typename std::iterator_traits< IterT >::iterator_category >::value >::type type
Definition: STLExtras.h:413
This class represents lattice values for constants.
Definition: AllocatorList.h:23
A pseudo-iterator adaptor that is designed to implement "early increment" style loops.
Definition: STLExtras.h:462
typename std::remove_reference< decltype(*std::begin(std::declval< RangeT & >()))>::type ValueOfRange
Definition: STLExtras.h:56
decltype(iterators) tup_inc(index_sequence< Ns... >) const
Definition: STLExtras.h:576
Function object to check whether the second component of a std::pair compares less than the second co...
Definition: STLExtras.h:974
OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P)
Provide wrappers to std::copy_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1239
typename iterator::value_type value_type
Definition: STLExtras.h:641
const Ty & operator()(const Ty &self) const
Definition: STLExtras.h:93
detail::zip_longest_range< T, U, Args... > zip_longest(T &&t, U &&u, Args &&... args)
Iterate over two or more iterators at the same time.
Definition: STLExtras.h:802
This provides a very simple, boring adaptor for a begin and end iterator into a range type...
filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred)
Definition: STLExtras.h:341
zip_longest_iterator(std::pair< Iters &&, Iters &&>... ts)
Definition: STLExtras.h:749
int(*)(const void *, const void *) get_array_pod_sort_comparator(const T &)
get_array_pod_sort_comparator - This is an internal helper function used to get type deduction of T r...
Definition: STLExtras.h:1069
void replace(Container &Cont, typename Container::iterator ContIt, typename Container::iterator ContEnd, RandomAccessIterator ValIt, RandomAccessIterator ValEnd)
Given a sequence container Cont, replace the range [ContIt, ContEnd) with the range [ValIt...
Definition: STLExtras.h:1366
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:520
auto operator()(const T &lhs, const T &rhs) const -> decltype(func(lhs.first, rhs.first))
Definition: STLExtras.h:987
bool operator()(const T &lhs, const T &rhs) const
Definition: STLExtras.h:975
An efficient, type-erasing, non-owning reference to a callable.
Definition: STLExtras.h:116
A functor like C++14&#39;s std::less<void> in its absence.
Definition: STLExtras.h:1443
zip_common(Iters &&... ts)
Definition: STLExtras.h:586
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(adl_detail::adl_swap(std::declval< T >(), std::declval< T >())))
Definition: STLExtras.h:202
enumerator_iter(IterOfRange< R > EndIter)
Definition: STLExtras.h:1511
auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits< decltype(adl_begin(Range))>::difference_type
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1266
auto to_address(const Ptr &P) -> decltype(P.operator->())
Returns a raw pointer that represents the same address as the argument.
Definition: STLExtras.h:1647
unsigned second
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1192
early_inc_iterator_impl(WrappedIteratorT I)
Definition: STLExtras.h:477
F(f)
auto lower_bound(R &&Range, T &&Value, Compare C) -> decltype(adl_begin(Range))
Definition: STLExtras.h:1294
block Block Frequency true
std::tuple< decltype(*declval< Iters >())... > type
Definition: STLExtras.h:544
std::enable_if<!std::is_array< T >::value, std::unique_ptr< T > >::type make_unique(Args &&... args)
Constructs a new T() with the given args and returns a unique_ptr<T> which owns the object...
Definition: STLExtras.h:1405
BaseT::reference operator*()
Definition: STLExtras.h:480
typename iterator::difference_type difference_type
Definition: STLExtras.h:773
typename iterator::pointer pointer
Definition: STLExtras.h:643
typename std::iterator_traits< IterOfRange< R > >::reference value_reference
Definition: STLExtras.h:1478
int array_pod_sort_comparator(const void *P1, const void *P2)
Adapt std::less<T> for array_pod_sort.
Definition: STLExtras.h:1056
void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval< T >(), std::declval< T >())))
Definition: STLExtras.h:182
zip_longest_range(Args &&... ts_)
Definition: STLExtras.h:791
Metafunction to determine if T& or T has a member called rbegin().
Definition: STLExtras.h:267
function_ref(Callable &&callable, typename std::enable_if< !std::is_same< typename std::remove_reference< Callable >::type, function_ref >::value >::type *=nullptr)
Definition: STLExtras.h:134
Ty & operator()(Ty &self) const
Definition: STLExtras.h:90
Definition: BitVector.h:937
void sort(Container &&C, Compare Comp)
Definition: STLExtras.h:1144
concat_range(RangeTs &&... Ranges)
Definition: STLExtras.h:940
std::bidirectional_iterator_tag type
Definition: STLExtras.h:404
void operator()(void *v)
Definition: STLExtras.h:1430
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1206
decltype(iterators) tup_dec(index_sequence< Ns... >) const
Definition: STLExtras.h:581
typename std::add_pointer< typename std::add_const< T >::type >::type type
Definition: STLExtras.h:75
SmallVector< typename std::remove_const< detail::ValueOfRange< R > >::type, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Definition: STLExtras.h:1347
Alias for the common case of a sequence of size_ts.
Definition: STLExtras.h:533
auto map_range(ContainerTy &&C, FuncTy F) -> decltype(make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F)))
Definition: STLExtras.h:244
ELFYAML::ELF_STO Other
Definition: ELFYAML.cpp:877
auto reverse(ContainerTy &&C, typename std::enable_if< has_rbegin< ContainerTy >::value >::type *=nullptr) -> decltype(make_range(C.rbegin(), C.rend()))
Definition: STLExtras.h:273
auto partition_point(R &&Range, Predicate P) -> decltype(adl_begin(Range))
Binary search for the first iterator in a range where a predicate is false.
Definition: STLExtras.h:1329
bool operator()(const Ty *left, const Ty *right) const
Definition: STLExtras.h:99
enumerator_iter< R > & operator++()
Definition: STLExtras.h:1520
auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(std::forward< F >(f), std::forward< Tuple >(t), build_index_impl< std::tuple_size< typename std::decay< Tuple >::type >::value >
Given an input tuple (a1, a2, ..., an), pass the arguments of the tuple variadically to f as if by ca...
Definition: STLExtras.h:1594
auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Provide wrappers to std::partition which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1281
CRTP base class which implements the entire standard iterator facade in terms of a minimal subset of ...
Definition: iterator.h:67
enumerator_iter(std::size_t Index, IterOfRange< R > Iter)
Definition: STLExtras.h:1514
Helper to store a sequence of ranges being concatenated and access them.
Definition: STLExtras.h:922
auto count(R &&Range, const E &Element) -> typename std::iterator_traits< decltype(adl_begin(Range))>::difference_type
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition: STLExtras.h:1258
traits class for checking whether type T is one of any of the given types in the variadic list...
Definition: STLExtras.h:1022
typename iterator::reference reference
Definition: STLExtras.h:644
#define P(N)
void array_pod_sort(IteratorTy Start, IteratorTy End)
array_pod_sort - This sorts an array with the specified start and end extent.
Definition: STLExtras.h:1089
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs))
Definition: STLExtras.h:1465
auto adl_end(ContainerTy &&container) -> decltype(end(std::forward< ContainerTy >(container)))
Definition: STLExtras.h:174
ZipType & operator--()
Definition: STLExtras.h:599
bool operator==(const early_inc_iterator_impl &RHS) const
Definition: STLExtras.h:498
bool is_splat(R &&Range)
Wrapper function around std::equal to detect if all elements in a container are same.
Definition: STLExtras.h:1336
CRTP base class for adapting an iterator to a different type.
Definition: iterator.h:205
mapped_iterator(ItTy U, FuncTy F)
Definition: STLExtras.h:225
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&... args)
zip iterator for two or more iteratable types.
Definition: STLExtras.h:667
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
const result_type & operator*() const
Definition: STLExtras.h:1518
mapped_iterator< ItTy, FuncTy > map_iterator(ItTy I, FuncTy F)
Definition: STLExtras.h:239
auto adl_begin(ContainerTy &&container) -> decltype(adl_detail::adl_begin(std::forward< ContainerTy >(container)))
Definition: STLExtras.h:190
filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred)
Definition: STLExtras.h:365
value_type operator*() const
Definition: STLExtras.h:755
Helper to determine if type T has a member called rbegin().
Definition: STLExtras.h:251
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1199
auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1220
auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Provide wrappers to std::remove_if which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1232
bool hasNItemsOrMore(IterTy &&Begin, IterTy &&End, unsigned N, typename std::enable_if< !std::is_same< typename std::iterator_traits< typename std::remove_reference< decltype(Begin)>::type >::iterator_category, std::random_access_iterator_tag >::value, void >::type *=nullptr)
Return true if the sequence [Begin, End) has N or more items.
Definition: STLExtras.h:1625
auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range))
Definition: STLExtras.h:1225
detail::zippy< detail::zip_first, T, U, Args... > zip_first(T &&t, U &&u, Args &&... args)
zip iterator that, for the sake of efficiency, assumes the first iteratee to be the shortest...
Definition: STLExtras.h:676
auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range))
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1213
void stable_sort(R &&Range, Compare C)
Definition: STLExtras.h:1321
static auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional< typename std::remove_const< typename std::remove_reference< decltype(*I)>::type >::type >
Definition: STLExtras.h:691
zip_longest_iterator< Iters... > & operator++()
Definition: STLExtras.h:757
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static constexpr size_t size()
Definition: STLExtras.h:999
iterator end() const
Definition: STLExtras.h:660
unsigned first
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1122
constexpr bool empty(const T &RangeOrContainer)
Test whether RangeOrContainer is empty. Similar to C++17 std::empty.
Definition: STLExtras.h:209
bool operator()(A &&a, B &&b) const
Definition: STLExtras.h:1444
auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence< I... >) -> decltype(std::forward< F >(f)(std::get< I >(std::forward< Tuple >(t))...))
Definition: STLExtras.h:1583
A functor like C++14&#39;s std::equal<void> in its absence.
Definition: STLExtras.h:1450
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
value_reference value()
Definition: STLExtras.h:1494
value_type deref(index_sequence< Ns... >) const
Definition: STLExtras.h:571
auto size(R &&Range, typename std::enable_if< std::is_same< typename std::iterator_traits< decltype(Range.begin())>::iterator_category, std::random_access_iterator_tag >::value, void >::type *=nullptr) -> decltype(std::distance(Range.begin(), Range.end()))
Get the size of a range.
Definition: STLExtras.h:1173
static Iter next_or_end(const Iter &I, const Iter &End)
Definition: STLExtras.h:684
auto upper_bound(R &&Range, T &&Value, Compare C) -> decltype(adl_begin(Range))
Definition: STLExtras.h:1309
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:837
typename iterator::reference reference
Definition: STLExtras.h:775
constexpr size_t array_lengthof(T(&)[N])
Find the length of an array.
Definition: STLExtras.h:1050
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:26
An iterator adaptor that filters the elements of given inner iterators.
Definition: STLExtras.h:315
Creates a compile-time integer sequence for a parameter pack.
Definition: STLExtras.h:535
auto adl_begin(ContainerTy &&container) -> decltype(begin(std::forward< ContainerTy >(container)))
Definition: STLExtras.h:166
typename iterator::difference_type difference_type
Definition: STLExtras.h:642
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2&#39;s erase_if which is equivalent t...
Definition: STLExtras.h:1359
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:940
A range adaptor for a pair of iterators.
bool operator()(A &&a, B &&b) const
Definition: STLExtras.h:1451
std::forward_iterator_tag type
Definition: STLExtras.h:400
Represents a compile-time sequence of integers.
Definition: STLExtras.h:996
filter_iterator_base & operator++()
Definition: STLExtras.h:350
bool operator==(const StringView &LHS, const StringView &RHS)
Definition: StringView.h:119
Helper which sets its type member to forward_iterator_tag if the category of IterT does not derive fr...
Definition: STLExtras.h:410
enumerator_iter< R > & operator=(const enumerator_iter< R > &Other)
Definition: STLExtras.h:1534
concat_iterator & operator++()
Definition: STLExtras.h:903
FuncReturnTy operator*()
Definition: STLExtras.h:230
result_pair< R > & operator=(const result_pair< R > &Other)
Definition: STLExtras.h:1486
ValueT & operator*() const
Definition: STLExtras.h:908
bool operator==(const zip_first< Iters... > &other) const
Definition: STLExtras.h:611
typename ZipLongestTupleType< Iters... >::type value_type
Definition: STLExtras.h:722
WrappedIteratorT End
Definition: STLExtras.h:330
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
bool operator==(const concat_iterator &RHS) const
Definition: STLExtras.h:910
typename iterator::iterator_category iterator_category
Definition: STLExtras.h:640
typename iterator::value_type value_type
Definition: STLExtras.h:772
value_type operator*()
Definition: STLExtras.h:588
decltype(std::begin(std::declval< RangeT & >())) IterOfRange
Definition: STLExtras.h:52
uint32_t Size
Definition: Profile.cpp:46
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
Definition: STLExtras.h:434
std::tuple< Iters... > iterators
Definition: STLExtras.h:568
OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere...
Definition: STLExtras.h:1274
const value_type operator*() const
Definition: STLExtras.h:590
auto adl_end(ContainerTy &&container) -> decltype(adl_detail::adl_end(std::forward< ContainerTy >(container)))
Definition: STLExtras.h:196
typename std::add_lvalue_reference< typename std::add_const< T >::type >::type type
Definition: STLExtras.h:80
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
std::reverse_iterator< IteratorTy > make_reverse_iterator(IteratorTy It)
Definition: STLExtras.h:281
void stable_sort(R &&Range)
Definition: STLExtras.h:1316
traits class for checking whether type T is a base class for all the given types in the variadic list...
Definition: STLExtras.h:1034
LLVM Value Representation.
Definition: Value.h:72
std::tuple< typename ZipLongestItemType< Iters >::type... > type
Definition: STLExtras.h:706
enumerator_iter< R > begin()
Definition: STLExtras.h:1547
early_inc_iterator_impl & operator++()
Definition: STLExtras.h:489
Function object to apply a binary function to the first component of a std::pair. ...
Definition: STLExtras.h:983
bool hasNItems(IterTy &&Begin, IterTy &&End, unsigned N, typename std::enable_if< !std::is_same< typename std::iterator_traits< typename std::remove_reference< decltype(Begin)>::type >::iterator_category, std::random_access_iterator_tag >::value, void >::type *=nullptr)
Return true if the sequence [Begin, End) has exactly N items.
Definition: STLExtras.h:1608
enumerator_iter< R > end()
Definition: STLExtras.h:1551
Specialization of filter_iterator_base for forward iteration only.
Definition: STLExtras.h:360
iterator begin() const
Definition: STLExtras.h:659
Binary functor that adapts to any other binary functor after dereferencing operands.
Definition: STLExtras.h:1458
Iterator wrapper that concatenates sequences together.
Definition: STLExtras.h:819
Utility type to build an inheritance chain that makes it easy to rank overload candidates.
Definition: STLExtras.h:1017
zip_shortest(Iters &&... ts)
Definition: STLExtras.h:630
UnaryPredicate for_each(R &&Range, UnaryPredicate P)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1185
void deleter(T *Ptr)
Definition: STLExtras.h:153
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1244
zip_first(Iters &&... ts)
Definition: STLExtras.h:615
std::size_t index() const
Definition: STLExtras.h:1492
Function object to check whether the first component of a std::pair compares less than the first comp...
Definition: STLExtras.h:966
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
concat_iterator(RangeTs &&... Ranges)
Constructs an iterator from a squence of ranges.
Definition: STLExtras.h:898
bool operator==(const zip_shortest< Iters... > &other) const
Definition: STLExtras.h:632
detail::enumerator< R > enumerate(R &&TheRange)
Given an input range, returns a new range whose values are are pair (A,B) such that A is the 0-based ...
Definition: STLExtras.h:1576
auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range))
Provide wrappers to std::upper_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1303
typename iterator::iterator_category iterator_category
Definition: STLExtras.h:771
bool is_contained(R &&Range, const E &Element)
Wrapper function around std::find to detect if an element exists in a container.
Definition: STLExtras.h:1251
size_t operator()(const std::pair< First, Second > &P) const
Definition: STLExtras.h:1437