LLVM  9.0.0svn
Operator.h
Go to the documentation of this file.
1 //===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various classes for working with Instructions and
10 // ConstantExprs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_OPERATOR_H
15 #define LLVM_IR_OPERATOR_H
16 
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/Type.h"
22 #include "llvm/IR/Value.h"
23 #include "llvm/Support/Casting.h"
24 #include <cstddef>
25 
26 namespace llvm {
27 
28 /// This is a utility class that provides an abstraction for the common
29 /// functionality between Instructions and ConstantExprs.
30 class Operator : public User {
31 public:
32  // The Operator class is intended to be used as a utility, and is never itself
33  // instantiated.
34  Operator() = delete;
35  ~Operator() = delete;
36 
37  void *operator new(size_t s) = delete;
38 
39  /// Return the opcode for this Instruction or ConstantExpr.
40  unsigned getOpcode() const {
41  if (const Instruction *I = dyn_cast<Instruction>(this))
42  return I->getOpcode();
43  return cast<ConstantExpr>(this)->getOpcode();
44  }
45 
46  /// If V is an Instruction or ConstantExpr, return its opcode.
47  /// Otherwise return UserOp1.
48  static unsigned getOpcode(const Value *V) {
49  if (const Instruction *I = dyn_cast<Instruction>(V))
50  return I->getOpcode();
51  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
52  return CE->getOpcode();
53  return Instruction::UserOp1;
54  }
55 
56  static bool classof(const Instruction *) { return true; }
57  static bool classof(const ConstantExpr *) { return true; }
58  static bool classof(const Value *V) {
59  return isa<Instruction>(V) || isa<ConstantExpr>(V);
60  }
61 };
62 
63 /// Utility class for integer operators which may exhibit overflow - Add, Sub,
64 /// Mul, and Shl. It does not include SDiv, despite that operator having the
65 /// potential for overflow.
67 public:
68  enum {
69  NoUnsignedWrap = (1 << 0),
70  NoSignedWrap = (1 << 1)
71  };
72 
73 private:
74  friend class Instruction;
75  friend class ConstantExpr;
76 
77  void setHasNoUnsignedWrap(bool B) {
79  (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
80  }
81  void setHasNoSignedWrap(bool B) {
83  (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
84  }
85 
86 public:
87  /// Test whether this operation is known to never
88  /// undergo unsigned overflow, aka the nuw property.
89  bool hasNoUnsignedWrap() const {
90  return SubclassOptionalData & NoUnsignedWrap;
91  }
92 
93  /// Test whether this operation is known to never
94  /// undergo signed overflow, aka the nsw property.
95  bool hasNoSignedWrap() const {
96  return (SubclassOptionalData & NoSignedWrap) != 0;
97  }
98 
99  static bool classof(const Instruction *I) {
100  return I->getOpcode() == Instruction::Add ||
101  I->getOpcode() == Instruction::Sub ||
102  I->getOpcode() == Instruction::Mul ||
103  I->getOpcode() == Instruction::Shl;
104  }
105  static bool classof(const ConstantExpr *CE) {
106  return CE->getOpcode() == Instruction::Add ||
107  CE->getOpcode() == Instruction::Sub ||
108  CE->getOpcode() == Instruction::Mul ||
109  CE->getOpcode() == Instruction::Shl;
110  }
111  static bool classof(const Value *V) {
112  return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
113  (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
114  }
115 };
116 
117 /// A udiv or sdiv instruction, which can be marked as "exact",
118 /// indicating that no bits are destroyed.
120 public:
121  enum {
122  IsExact = (1 << 0)
123  };
124 
125 private:
126  friend class Instruction;
127  friend class ConstantExpr;
128 
129  void setIsExact(bool B) {
130  SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
131  }
132 
133 public:
134  /// Test whether this division is known to be exact, with zero remainder.
135  bool isExact() const {
136  return SubclassOptionalData & IsExact;
137  }
138 
139  static bool isPossiblyExactOpcode(unsigned OpC) {
140  return OpC == Instruction::SDiv ||
141  OpC == Instruction::UDiv ||
142  OpC == Instruction::AShr ||
143  OpC == Instruction::LShr;
144  }
145 
146  static bool classof(const ConstantExpr *CE) {
147  return isPossiblyExactOpcode(CE->getOpcode());
148  }
149  static bool classof(const Instruction *I) {
150  return isPossiblyExactOpcode(I->getOpcode());
151  }
152  static bool classof(const Value *V) {
153  return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
154  (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
155  }
156 };
157 
158 /// Convenience struct for specifying and reasoning about fast-math flags.
160 private:
161  friend class FPMathOperator;
162 
163  unsigned Flags = 0;
164 
165  FastMathFlags(unsigned F) {
166  // If all 7 bits are set, turn this into -1. If the number of bits grows,
167  // this must be updated. This is intended to provide some forward binary
168  // compatibility insurance for the meaning of 'fast' in case bits are added.
169  if (F == 0x7F) Flags = ~0U;
170  else Flags = F;
171  }
172 
173 public:
174  // This is how the bits are used in Value::SubclassOptionalData so they
175  // should fit there too.
176  // WARNING: We're out of space. SubclassOptionalData only has 7 bits. New
177  // functionality will require a change in how this information is stored.
178  enum {
179  AllowReassoc = (1 << 0),
180  NoNaNs = (1 << 1),
181  NoInfs = (1 << 2),
182  NoSignedZeros = (1 << 3),
183  AllowReciprocal = (1 << 4),
184  AllowContract = (1 << 5),
185  ApproxFunc = (1 << 6)
186  };
187 
188  FastMathFlags() = default;
189 
190  bool any() const { return Flags != 0; }
191  bool none() const { return Flags == 0; }
192  bool all() const { return Flags == ~0U; }
193 
194  void clear() { Flags = 0; }
195  void set() { Flags = ~0U; }
196 
197  /// Flag queries
198  bool allowReassoc() const { return 0 != (Flags & AllowReassoc); }
199  bool noNaNs() const { return 0 != (Flags & NoNaNs); }
200  bool noInfs() const { return 0 != (Flags & NoInfs); }
201  bool noSignedZeros() const { return 0 != (Flags & NoSignedZeros); }
202  bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); }
203  bool allowContract() const { return 0 != (Flags & AllowContract); }
204  bool approxFunc() const { return 0 != (Flags & ApproxFunc); }
205  /// 'Fast' means all bits are set.
206  bool isFast() const { return all(); }
207 
208  /// Flag setters
209  void setAllowReassoc(bool B = true) {
210  Flags = (Flags & ~AllowReassoc) | B * AllowReassoc;
211  }
212  void setNoNaNs(bool B = true) {
213  Flags = (Flags & ~NoNaNs) | B * NoNaNs;
214  }
215  void setNoInfs(bool B = true) {
216  Flags = (Flags & ~NoInfs) | B * NoInfs;
217  }
218  void setNoSignedZeros(bool B = true) {
219  Flags = (Flags & ~NoSignedZeros) | B * NoSignedZeros;
220  }
221  void setAllowReciprocal(bool B = true) {
222  Flags = (Flags & ~AllowReciprocal) | B * AllowReciprocal;
223  }
224  void setAllowContract(bool B = true) {
225  Flags = (Flags & ~AllowContract) | B * AllowContract;
226  }
227  void setApproxFunc(bool B = true) {
228  Flags = (Flags & ~ApproxFunc) | B * ApproxFunc;
229  }
230  void setFast(bool B = true) { B ? set() : clear(); }
231 
232  void operator&=(const FastMathFlags &OtherFlags) {
233  Flags &= OtherFlags.Flags;
234  }
235 };
236 
237 /// Utility class for floating point operations which can have
238 /// information about relaxed accuracy requirements attached to them.
239 class FPMathOperator : public Operator {
240 private:
241  friend class Instruction;
242 
243  /// 'Fast' means all bits are set.
244  void setFast(bool B) {
245  setHasAllowReassoc(B);
246  setHasNoNaNs(B);
247  setHasNoInfs(B);
248  setHasNoSignedZeros(B);
249  setHasAllowReciprocal(B);
250  setHasAllowContract(B);
251  setHasApproxFunc(B);
252  }
253 
254  void setHasAllowReassoc(bool B) {
258  }
259 
260  void setHasNoNaNs(bool B) {
263  (B * FastMathFlags::NoNaNs);
264  }
265 
266  void setHasNoInfs(bool B) {
269  (B * FastMathFlags::NoInfs);
270  }
271 
272  void setHasNoSignedZeros(bool B) {
276  }
277 
278  void setHasAllowReciprocal(bool B) {
282  }
283 
284  void setHasAllowContract(bool B) {
288  }
289 
290  void setHasApproxFunc(bool B) {
294  }
295 
296  /// Convenience function for setting multiple fast-math flags.
297  /// FMF is a mask of the bits to set.
298  void setFastMathFlags(FastMathFlags FMF) {
299  SubclassOptionalData |= FMF.Flags;
300  }
301 
302  /// Convenience function for copying all fast-math flags.
303  /// All values in FMF are transferred to this operator.
304  void copyFastMathFlags(FastMathFlags FMF) {
305  SubclassOptionalData = FMF.Flags;
306  }
307 
308 public:
309  /// Test if this operation allows all non-strict floating-point transforms.
310  bool isFast() const {
318  }
319 
320  /// Test if this operation may be simplified with reassociative transforms.
321  bool hasAllowReassoc() const {
323  }
324 
325  /// Test if this operation's arguments and results are assumed not-NaN.
326  bool hasNoNaNs() const {
328  }
329 
330  /// Test if this operation's arguments and results are assumed not-infinite.
331  bool hasNoInfs() const {
333  }
334 
335  /// Test if this operation can ignore the sign of zero.
336  bool hasNoSignedZeros() const {
338  }
339 
340  /// Test if this operation can use reciprocal multiply instead of division.
341  bool hasAllowReciprocal() const {
343  }
344 
345  /// Test if this operation can be floating-point contracted (FMA).
346  bool hasAllowContract() const {
348  }
349 
350  /// Test if this operation allows approximations of math library functions or
351  /// intrinsics.
352  bool hasApproxFunc() const {
354  }
355 
356  /// Convenience function for getting all the fast-math flags
359  }
360 
361  /// Get the maximum error permitted by this operation in ULPs. An accuracy of
362  /// 0.0 means that the operation should be performed with the default
363  /// precision.
364  float getFPAccuracy() const;
365 
366  static bool classof(const Value *V) {
367  unsigned Opcode;
368  if (auto *I = dyn_cast<Instruction>(V))
369  Opcode = I->getOpcode();
370  else if (auto *CE = dyn_cast<ConstantExpr>(V))
371  Opcode = CE->getOpcode();
372  else
373  return false;
374 
375  switch (Opcode) {
376  case Instruction::FCmp:
377  return true;
378  // non math FP Operators (no FMF)
379  case Instruction::ExtractElement:
380  case Instruction::ShuffleVector:
381  case Instruction::InsertElement:
382  return false;
383  default:
384  return V->getType()->isFPOrFPVectorTy();
385  }
386  }
387 };
388 
389 /// A helper template for defining operators for individual opcodes.
390 template<typename SuperClass, unsigned Opc>
391 class ConcreteOperator : public SuperClass {
392 public:
393  static bool classof(const Instruction *I) {
394  return I->getOpcode() == Opc;
395  }
396  static bool classof(const ConstantExpr *CE) {
397  return CE->getOpcode() == Opc;
398  }
399  static bool classof(const Value *V) {
400  return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
401  (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
402  }
403 };
404 
406  : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
407 };
409  : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
410 };
412  : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
413 };
415  : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
416 };
417 
419  : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
420 };
422  : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
423 };
425  : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
426 };
428  : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
429 };
430 
431 class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {};
432 
434  : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
435  friend class GetElementPtrInst;
436  friend class ConstantExpr;
437 
438  enum {
439  IsInBounds = (1 << 0),
440  // InRangeIndex: bits 1-6
441  };
442 
443  void setIsInBounds(bool B) {
445  (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
446  }
447 
448 public:
449  /// Test whether this is an inbounds GEP, as defined by LangRef.html.
450  bool isInBounds() const {
451  return SubclassOptionalData & IsInBounds;
452  }
453 
454  /// Returns the offset of the index with an inrange attachment, or None if
455  /// none.
457  if (SubclassOptionalData >> 1 == 0) return None;
458  return (SubclassOptionalData >> 1) - 1;
459  }
460 
461  inline op_iterator idx_begin() { return op_begin()+1; }
462  inline const_op_iterator idx_begin() const { return op_begin()+1; }
463  inline op_iterator idx_end() { return op_end(); }
464  inline const_op_iterator idx_end() const { return op_end(); }
465 
467  return getOperand(0);
468  }
469  const Value *getPointerOperand() const {
470  return getOperand(0);
471  }
472  static unsigned getPointerOperandIndex() {
473  return 0U; // get index for modifying correct operand
474  }
475 
476  /// Method to return the pointer operand as a PointerType.
478  return getPointerOperand()->getType();
479  }
480 
481  Type *getSourceElementType() const;
482  Type *getResultElementType() const;
483 
484  /// Method to return the address space of the pointer operand.
485  unsigned getPointerAddressSpace() const {
486  return getPointerOperandType()->getPointerAddressSpace();
487  }
488 
489  unsigned getNumIndices() const { // Note: always non-negative
490  return getNumOperands() - 1;
491  }
492 
493  bool hasIndices() const {
494  return getNumOperands() > 1;
495  }
496 
497  /// Return true if all of the indices of this GEP are zeros.
498  /// If so, the result pointer and the first operand have the same
499  /// value, just potentially different types.
500  bool hasAllZeroIndices() const {
501  for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
502  if (ConstantInt *C = dyn_cast<ConstantInt>(I))
503  if (C->isZero())
504  continue;
505  return false;
506  }
507  return true;
508  }
509 
510  /// Return true if all of the indices of this GEP are constant integers.
511  /// If so, the result pointer and the first operand have
512  /// a constant offset between them.
513  bool hasAllConstantIndices() const {
514  for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
515  if (!isa<ConstantInt>(I))
516  return false;
517  }
518  return true;
519  }
520 
521  unsigned countNonConstantIndices() const {
522  return count_if(make_range(idx_begin(), idx_end()), [](const Use& use) {
523  return !isa<ConstantInt>(*use);
524  });
525  }
526 
527  /// Accumulate the constant address offset of this GEP if possible.
528  ///
529  /// This routine accepts an APInt into which it will accumulate the constant
530  /// offset of this GEP if the GEP is in fact constant. If the GEP is not
531  /// all-constant, it returns false and the value of the offset APInt is
532  /// undefined (it is *not* preserved!). The APInt passed into this routine
533  /// must be at exactly as wide as the IntPtr type for the address space of the
534  /// base GEP pointer.
535  bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
536 };
537 
539  : public ConcreteOperator<Operator, Instruction::PtrToInt> {
540  friend class PtrToInt;
541  friend class ConstantExpr;
542 
543 public:
545  return getOperand(0);
546  }
547  const Value *getPointerOperand() const {
548  return getOperand(0);
549  }
550 
551  static unsigned getPointerOperandIndex() {
552  return 0U; // get index for modifying correct operand
553  }
554 
555  /// Method to return the pointer operand as a PointerType.
557  return getPointerOperand()->getType();
558  }
559 
560  /// Method to return the address space of the pointer operand.
561  unsigned getPointerAddressSpace() const {
562  return cast<PointerType>(getPointerOperandType())->getAddressSpace();
563  }
564 };
565 
567  : public ConcreteOperator<Operator, Instruction::BitCast> {
568  friend class BitCastInst;
569  friend class ConstantExpr;
570 
571 public:
572  Type *getSrcTy() const {
573  return getOperand(0)->getType();
574  }
575 
576  Type *getDestTy() const {
577  return getType();
578  }
579 };
580 
581 } // end namespace llvm
582 
583 #endif // LLVM_IR_OPERATOR_H
bool hasIndices() const
Definition: Operator.h:493
uint64_t CallInst * C
bool none() const
Definition: Operator.h:191
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:110
static bool classof(const Instruction *I)
Definition: Operator.h:393
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1209
bool hasNoNaNs() const
Test if this operation&#39;s arguments and results are assumed not-NaN.
Definition: Operator.h:326
Value * getPointerOperand(Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
bool hasNoInfs() const
Test if this operation&#39;s arguments and results are assumed not-infinite.
Definition: Operator.h:331
bool noNaNs() const
Definition: Operator.h:199
static bool classof(const Value *V)
Definition: Operator.h:58
void setFast(bool B=true)
Definition: Operator.h:230
This class represents lattice values for constants.
Definition: AllocatorList.h:23
static bool classof(const ConstantExpr *)
Definition: Operator.h:57
static unsigned getOpcode(const Value *V)
If V is an Instruction or ConstantExpr, return its opcode.
Definition: Operator.h:48
unsigned getPointerAddressSpace() const
Method to return the address space of the pointer operand.
Definition: Operator.h:561
static bool classof(const Instruction *)
Definition: Operator.h:56
Optional< unsigned > getInRangeIndex() const
Returns the offset of the index with an inrange attachment, or None if none.
Definition: Operator.h:456
unsigned getPointerAddressSpace() const
Method to return the address space of the pointer operand.
Definition: Operator.h:485
bool noInfs() const
Definition: Operator.h:200
auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits< decltype(adl_begin(Range))>::difference_type
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1259
void setNoInfs(bool B=true)
Definition: Operator.h:215
F(f)
bool hasAllowContract() const
Test if this operation can be floating-point contracted (FMA).
Definition: Operator.h:346
op_iterator idx_end()
Definition: Operator.h:463
op_iterator op_begin()
Definition: User.h:229
bool all() const
Definition: Operator.h:192
static bool classof(const Value *V)
Definition: Operator.h:111
A Use represents the edge between a Value definition and its users.
Definition: Use.h:55
static bool classof(const Instruction *I)
Definition: Operator.h:99
Type * getPointerOperandType() const
Method to return the pointer operand as a PointerType.
Definition: Operator.h:477
static bool classof(const Value *V)
Definition: Operator.h:366
bool hasAllowReciprocal() const
Test if this operation can use reciprocal multiply instead of division.
Definition: Operator.h:341
Value * getPointerOperand()
Definition: Operator.h:544
static unsigned getPointerOperandIndex()
Definition: Operator.h:472
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
Definition: Operator.h:135
static bool classof(const ConstantExpr *CE)
Definition: Operator.h:105
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:888
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:244
static bool classof(const Value *V)
Definition: Operator.h:152
unsigned getNumIndices() const
Definition: Operator.h:489
bool isInBounds() const
Test whether this is an inbounds GEP, as defined by LangRef.html.
Definition: Operator.h:450
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
This class represents a no-op cast from one type to another.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:125
bool allowContract() const
Definition: Operator.h:203
Value * getOperand(unsigned i) const
Definition: User.h:169
const Value * getPointerOperand() const
Definition: Operator.h:547
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:873
FastMathFlags getFastMathFlags() const
Convenience function for getting all the fast-math flags.
Definition: Operator.h:357
bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
Definition: Operator.h:500
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
void setNoSignedZeros(bool B=true)
Definition: Operator.h:218
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:45
bool any() const
Definition: Operator.h:190
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Operator()=delete
A udiv or sdiv instruction, which can be marked as "exact", indicating that no bits are destroyed...
Definition: Operator.h:119
bool isFast() const
&#39;Fast&#39; means all bits are set.
Definition: Operator.h:206
op_iterator op_end()
Definition: User.h:231
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl...
Definition: Operator.h:66
Value * getPointerOperand()
Definition: Operator.h:466
bool allowReciprocal() const
Definition: Operator.h:202
static bool classof(const Value *V)
Definition: Operator.h:399
~Operator()=delete
static bool isPossiblyExactOpcode(unsigned OpC)
Definition: Operator.h:139
bool hasApproxFunc() const
Test if this operation allows approximations of math library functions or intrinsics.
Definition: Operator.h:352
op_iterator idx_begin()
Definition: Operator.h:461
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
Definition: Value.h:90
Type * getPointerOperandType() const
Method to return the pointer operand as a PointerType.
Definition: Operator.h:556
bool hasAllowReassoc() const
Test if this operation may be simplified with reassociative transforms.
Definition: Operator.h:321
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
unsigned getNumOperands() const
Definition: User.h:191
bool hasNoSignedZeros() const
Test if this operation can ignore the sign of zero.
Definition: Operator.h:336
static bool classof(const ConstantExpr *CE)
Definition: Operator.h:146
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
Type * getDestTy() const
Definition: Operator.h:576
A helper template for defining operators for individual opcodes.
Definition: Operator.h:391
Utility class for floating point operations which can have information about relaxed accuracy require...
Definition: Operator.h:239
This is a utility class that provides an abstraction for the common functionality between Instruction...
Definition: Operator.h:30
bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
Definition: Operator.h:513
void setApproxFunc(bool B=true)
Definition: Operator.h:227
Type * getSrcTy() const
Definition: Operator.h:572
void setNoNaNs(bool B=true)
Definition: Operator.h:212
Class for arbitrary precision integers.
Definition: APInt.h:69
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property...
Definition: Operator.h:95
static void clear(coro::Shape &Shape)
Definition: Coroutines.cpp:211
static bool classof(const Instruction *I)
Definition: Operator.h:149
const_op_iterator idx_end() const
Definition: Operator.h:464
void setAllowContract(bool B=true)
Definition: Operator.h:224
#define I(x, y, z)
Definition: MD5.cpp:58
const_op_iterator idx_begin() const
Definition: Operator.h:462
void setAllowReciprocal(bool B=true)
Definition: Operator.h:221
static unsigned getPointerOperandIndex()
Definition: Operator.h:551
pgo instr use
const Value * getPointerOperand() const
Definition: Operator.h:469
static bool classof(const ConstantExpr *CE)
Definition: Operator.h:396
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition: Type.h:184
LLVM Value Representation.
Definition: Value.h:72
E & operator &=(E &LHS, E RHS)
Definition: BitmaskEnum.h:133
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Definition: Operator.h:40
bool allowReassoc() const
Flag queries.
Definition: Operator.h:198
bool isFast() const
Test if this operation allows all non-strict floating-point transforms.
Definition: Operator.h:310
Convenience struct for specifying and reasoning about fast-math flags.
Definition: Operator.h:159
bool approxFunc() const
Definition: Operator.h:204
void setAllowReassoc(bool B=true)
Flag setters.
Definition: Operator.h:209
unsigned countNonConstantIndices() const
Definition: Operator.h:521
bool noSignedZeros() const
Definition: Operator.h:201
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property...
Definition: Operator.h:89