LLVM  6.0.0svn
Instructions.h
Go to the documentation of this file.
1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file exposes the class definitions of all of the subclasses of the
11 // Instruction class. This is meant to be an easy way to get access to all
12 // instruction subclasses.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_IR_INSTRUCTIONS_H
17 #define LLVM_IR_INSTRUCTIONS_H
18 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/OperandTraits.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
43 #include <cassert>
44 #include <cstddef>
45 #include <cstdint>
46 #include <iterator>
47 
48 namespace llvm {
49 
50 class APInt;
51 class ConstantInt;
52 class DataLayout;
53 class LLVMContext;
54 
55 //===----------------------------------------------------------------------===//
56 // AllocaInst Class
57 //===----------------------------------------------------------------------===//
58 
59 /// an instruction to allocate memory on the stack
60 class AllocaInst : public UnaryInstruction {
61  Type *AllocatedType;
62 
63 protected:
64  // Note: Instruction needs to be a friend here to call cloneImpl.
65  friend class Instruction;
66 
67  AllocaInst *cloneImpl() const;
68 
69 public:
70  explicit AllocaInst(Type *Ty, unsigned AddrSpace,
71  Value *ArraySize = nullptr,
72  const Twine &Name = "",
73  Instruction *InsertBefore = nullptr);
74  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
75  const Twine &Name, BasicBlock *InsertAtEnd);
76 
77  AllocaInst(Type *Ty, unsigned AddrSpace,
78  const Twine &Name, Instruction *InsertBefore = nullptr);
79  AllocaInst(Type *Ty, unsigned AddrSpace,
80  const Twine &Name, BasicBlock *InsertAtEnd);
81 
82  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
83  const Twine &Name = "", Instruction *InsertBefore = nullptr);
84  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
85  const Twine &Name, BasicBlock *InsertAtEnd);
86 
87  /// Return true if there is an allocation size parameter to the allocation
88  /// instruction that is not 1.
89  bool isArrayAllocation() const;
90 
91  /// Get the number of elements allocated. For a simple allocation of a single
92  /// element, this will return a constant 1 value.
93  const Value *getArraySize() const { return getOperand(0); }
94  Value *getArraySize() { return getOperand(0); }
95 
96  /// Overload to return most specific pointer type.
97  PointerType *getType() const {
98  return cast<PointerType>(Instruction::getType());
99  }
100 
101  /// Return the type that is being allocated by the instruction.
102  Type *getAllocatedType() const { return AllocatedType; }
103  /// for use only in special circumstances that need to generically
104  /// transform a whole instruction (eg: IR linking and vectorization).
105  void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
106 
107  /// Return the alignment of the memory that is being allocated by the
108  /// instruction.
109  unsigned getAlignment() const {
110  return (1u << (getSubclassDataFromInstruction() & 31)) >> 1;
111  }
112  void setAlignment(unsigned Align);
113 
114  /// Return true if this alloca is in the entry block of the function and is a
115  /// constant size. If so, the code generator will fold it into the
116  /// prolog/epilog code, so it is basically free.
117  bool isStaticAlloca() const;
118 
119  /// Return true if this alloca is used as an inalloca argument to a call. Such
120  /// allocas are never considered static even if they are in the entry block.
121  bool isUsedWithInAlloca() const {
122  return getSubclassDataFromInstruction() & 32;
123  }
124 
125  /// Specify whether this alloca is used to represent the arguments to a call.
126  void setUsedWithInAlloca(bool V) {
127  setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
128  (V ? 32 : 0));
129  }
130 
131  /// Return true if this alloca is used as a swifterror argument to a call.
132  bool isSwiftError() const {
133  return getSubclassDataFromInstruction() & 64;
134  }
135 
136  /// Specify whether this alloca is used to represent a swifterror.
137  void setSwiftError(bool V) {
138  setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
139  (V ? 64 : 0));
140  }
141 
142  // Methods for support type inquiry through isa, cast, and dyn_cast:
143  static bool classof(const Instruction *I) {
144  return (I->getOpcode() == Instruction::Alloca);
145  }
146  static bool classof(const Value *V) {
147  return isa<Instruction>(V) && classof(cast<Instruction>(V));
148  }
149 
150 private:
151  // Shadow Instruction::setInstructionSubclassData with a private forwarding
152  // method so that subclasses cannot accidentally use it.
153  void setInstructionSubclassData(unsigned short D) {
155  }
156 };
157 
158 //===----------------------------------------------------------------------===//
159 // LoadInst Class
160 //===----------------------------------------------------------------------===//
161 
162 /// An instruction for reading from memory. This uses the SubclassData field in
163 /// Value to store whether or not the load is volatile.
164 class LoadInst : public UnaryInstruction {
165  void AssertOK();
166 
167 protected:
168  // Note: Instruction needs to be a friend here to call cloneImpl.
169  friend class Instruction;
170 
171  LoadInst *cloneImpl() const;
172 
173 public:
174  LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore);
175  LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
176  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile = false,
177  Instruction *InsertBefore = nullptr);
178  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false,
179  Instruction *InsertBefore = nullptr)
180  : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr,
181  NameStr, isVolatile, InsertBefore) {}
182  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
183  BasicBlock *InsertAtEnd);
184  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
185  Instruction *InsertBefore = nullptr)
186  : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr,
187  NameStr, isVolatile, Align, InsertBefore) {}
188  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
189  unsigned Align, Instruction *InsertBefore = nullptr);
190  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
191  unsigned Align, BasicBlock *InsertAtEnd);
192  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
194  Instruction *InsertBefore = nullptr)
195  : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr,
196  NameStr, isVolatile, Align, Order, SSID, InsertBefore) {}
197  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198  unsigned Align, AtomicOrdering Order,
200  Instruction *InsertBefore = nullptr);
201  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
202  unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
203  BasicBlock *InsertAtEnd);
204  LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore);
205  LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd);
206  LoadInst(Type *Ty, Value *Ptr, const char *NameStr = nullptr,
207  bool isVolatile = false, Instruction *InsertBefore = nullptr);
208  explicit LoadInst(Value *Ptr, const char *NameStr = nullptr,
209  bool isVolatile = false,
210  Instruction *InsertBefore = nullptr)
211  : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr,
212  NameStr, isVolatile, InsertBefore) {}
213  LoadInst(Value *Ptr, const char *NameStr, bool isVolatile,
214  BasicBlock *InsertAtEnd);
215 
216  /// Return true if this is a load from a volatile memory location.
217  bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
218 
219  /// Specify whether this is a volatile load or not.
220  void setVolatile(bool V) {
221  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
222  (V ? 1 : 0));
223  }
224 
225  /// Return the alignment of the access that is being performed.
226  unsigned getAlignment() const {
227  return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
228  }
229 
230  void setAlignment(unsigned Align);
231 
232  /// Returns the ordering constraint of this load instruction.
234  return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
235  }
236 
237  /// Sets the ordering constraint of this load instruction. May not be Release
238  /// or AcquireRelease.
239  void setOrdering(AtomicOrdering Ordering) {
240  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
241  ((unsigned)Ordering << 7));
242  }
243 
244  /// Returns the synchronization scope ID of this load instruction.
246  return SSID;
247  }
248 
249  /// Sets the synchronization scope ID of this load instruction.
251  this->SSID = SSID;
252  }
253 
254  /// Sets the ordering constraint and the synchronization scope ID of this load
255  /// instruction.
256  void setAtomic(AtomicOrdering Ordering,
258  setOrdering(Ordering);
259  setSyncScopeID(SSID);
260  }
261 
262  bool isSimple() const { return !isAtomic() && !isVolatile(); }
263 
264  bool isUnordered() const {
265  return (getOrdering() == AtomicOrdering::NotAtomic ||
266  getOrdering() == AtomicOrdering::Unordered) &&
267  !isVolatile();
268  }
269 
271  const Value *getPointerOperand() const { return getOperand(0); }
272  static unsigned getPointerOperandIndex() { return 0U; }
273  Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
274 
275  /// Returns the address space of the pointer operand.
276  unsigned getPointerAddressSpace() const {
277  return getPointerOperandType()->getPointerAddressSpace();
278  }
279 
280  // Methods for support type inquiry through isa, cast, and dyn_cast:
281  static bool classof(const Instruction *I) {
282  return I->getOpcode() == Instruction::Load;
283  }
284  static bool classof(const Value *V) {
285  return isa<Instruction>(V) && classof(cast<Instruction>(V));
286  }
287 
288 private:
289  // Shadow Instruction::setInstructionSubclassData with a private forwarding
290  // method so that subclasses cannot accidentally use it.
291  void setInstructionSubclassData(unsigned short D) {
293  }
294 
295  /// The synchronization scope ID of this load instruction. Not quite enough
296  /// room in SubClassData for everything, so synchronization scope ID gets its
297  /// own field.
298  SyncScope::ID SSID;
299 };
300 
301 //===----------------------------------------------------------------------===//
302 // StoreInst Class
303 //===----------------------------------------------------------------------===//
304 
305 /// An instruction for storing to memory.
306 class StoreInst : public Instruction {
307  void AssertOK();
308 
309 protected:
310  // Note: Instruction needs to be a friend here to call cloneImpl.
311  friend class Instruction;
312 
313  StoreInst *cloneImpl() const;
314 
315 public:
316  StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
317  StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
318  StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
319  Instruction *InsertBefore = nullptr);
320  StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
321  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
322  unsigned Align, Instruction *InsertBefore = nullptr);
323  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
324  unsigned Align, BasicBlock *InsertAtEnd);
325  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
326  unsigned Align, AtomicOrdering Order,
328  Instruction *InsertBefore = nullptr);
329  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
330  unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
331  BasicBlock *InsertAtEnd);
332 
333  // allocate space for exactly two operands
334  void *operator new(size_t s) {
335  return User::operator new(s, 2);
336  }
337 
338  /// Return true if this is a store to a volatile memory location.
339  bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
340 
341  /// Specify whether this is a volatile store or not.
342  void setVolatile(bool V) {
343  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
344  (V ? 1 : 0));
345  }
346 
347  /// Transparently provide more efficient getOperand methods.
349 
350  /// Return the alignment of the access that is being performed
351  unsigned getAlignment() const {
352  return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
353  }
354 
355  void setAlignment(unsigned Align);
356 
357  /// Returns the ordering constraint of this store instruction.
359  return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
360  }
361 
362  /// Sets the ordering constraint of this store instruction. May not be
363  /// Acquire or AcquireRelease.
364  void setOrdering(AtomicOrdering Ordering) {
365  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
366  ((unsigned)Ordering << 7));
367  }
368 
369  /// Returns the synchronization scope ID of this store instruction.
371  return SSID;
372  }
373 
374  /// Sets the synchronization scope ID of this store instruction.
376  this->SSID = SSID;
377  }
378 
379  /// Sets the ordering constraint and the synchronization scope ID of this
380  /// store instruction.
381  void setAtomic(AtomicOrdering Ordering,
383  setOrdering(Ordering);
384  setSyncScopeID(SSID);
385  }
386 
387  bool isSimple() const { return !isAtomic() && !isVolatile(); }
388 
389  bool isUnordered() const {
390  return (getOrdering() == AtomicOrdering::NotAtomic ||
391  getOrdering() == AtomicOrdering::Unordered) &&
392  !isVolatile();
393  }
394 
395  Value *getValueOperand() { return getOperand(0); }
396  const Value *getValueOperand() const { return getOperand(0); }
397 
399  const Value *getPointerOperand() const { return getOperand(1); }
400  static unsigned getPointerOperandIndex() { return 1U; }
401  Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
402 
403  /// Returns the address space of the pointer operand.
404  unsigned getPointerAddressSpace() const {
405  return getPointerOperandType()->getPointerAddressSpace();
406  }
407 
408  // Methods for support type inquiry through isa, cast, and dyn_cast:
409  static bool classof(const Instruction *I) {
410  return I->getOpcode() == Instruction::Store;
411  }
412  static bool classof(const Value *V) {
413  return isa<Instruction>(V) && classof(cast<Instruction>(V));
414  }
415 
416 private:
417  // Shadow Instruction::setInstructionSubclassData with a private forwarding
418  // method so that subclasses cannot accidentally use it.
419  void setInstructionSubclassData(unsigned short D) {
421  }
422 
423  /// The synchronization scope ID of this store instruction. Not quite enough
424  /// room in SubClassData for everything, so synchronization scope ID gets its
425  /// own field.
426  SyncScope::ID SSID;
427 };
428 
429 template <>
430 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
431 };
432 
434 
435 //===----------------------------------------------------------------------===//
436 // FenceInst Class
437 //===----------------------------------------------------------------------===//
438 
439 /// An instruction for ordering other memory operations.
440 class FenceInst : public Instruction {
441  void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
442 
443 protected:
444  // Note: Instruction needs to be a friend here to call cloneImpl.
445  friend class Instruction;
446 
447  FenceInst *cloneImpl() const;
448 
449 public:
450  // Ordering may only be Acquire, Release, AcquireRelease, or
451  // SequentiallyConsistent.
454  Instruction *InsertBefore = nullptr);
456  BasicBlock *InsertAtEnd);
457 
458  // allocate space for exactly zero operands
459  void *operator new(size_t s) {
460  return User::operator new(s, 0);
461  }
462 
463  /// Returns the ordering constraint of this fence instruction.
466  }
467 
468  /// Sets the ordering constraint of this fence instruction. May only be
469  /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
470  void setOrdering(AtomicOrdering Ordering) {
471  setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
472  ((unsigned)Ordering << 1));
473  }
474 
475  /// Returns the synchronization scope ID of this fence instruction.
477  return SSID;
478  }
479 
480  /// Sets the synchronization scope ID of this fence instruction.
482  this->SSID = SSID;
483  }
484 
485  // Methods for support type inquiry through isa, cast, and dyn_cast:
486  static bool classof(const Instruction *I) {
487  return I->getOpcode() == Instruction::Fence;
488  }
489  static bool classof(const Value *V) {
490  return isa<Instruction>(V) && classof(cast<Instruction>(V));
491  }
492 
493 private:
494  // Shadow Instruction::setInstructionSubclassData with a private forwarding
495  // method so that subclasses cannot accidentally use it.
496  void setInstructionSubclassData(unsigned short D) {
498  }
499 
500  /// The synchronization scope ID of this fence instruction. Not quite enough
501  /// room in SubClassData for everything, so synchronization scope ID gets its
502  /// own field.
503  SyncScope::ID SSID;
504 };
505 
506 //===----------------------------------------------------------------------===//
507 // AtomicCmpXchgInst Class
508 //===----------------------------------------------------------------------===//
509 
510 /// an instruction that atomically checks whether a
511 /// specified value is in a memory location, and, if it is, stores a new value
512 /// there. Returns the value that was loaded.
513 ///
515  void Init(Value *Ptr, Value *Cmp, Value *NewVal,
516  AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
517  SyncScope::ID SSID);
518 
519 protected:
520  // Note: Instruction needs to be a friend here to call cloneImpl.
521  friend class Instruction;
522 
523  AtomicCmpXchgInst *cloneImpl() const;
524 
525 public:
526  AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
527  AtomicOrdering SuccessOrdering,
528  AtomicOrdering FailureOrdering,
529  SyncScope::ID SSID, Instruction *InsertBefore = nullptr);
530  AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
531  AtomicOrdering SuccessOrdering,
532  AtomicOrdering FailureOrdering,
533  SyncScope::ID SSID, BasicBlock *InsertAtEnd);
534 
535  // allocate space for exactly three operands
536  void *operator new(size_t s) {
537  return User::operator new(s, 3);
538  }
539 
540  /// Return true if this is a cmpxchg from a volatile memory
541  /// location.
542  ///
543  bool isVolatile() const {
544  return getSubclassDataFromInstruction() & 1;
545  }
546 
547  /// Specify whether this is a volatile cmpxchg.
548  ///
549  void setVolatile(bool V) {
550  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
551  (unsigned)V);
552  }
553 
554  /// Return true if this cmpxchg may spuriously fail.
555  bool isWeak() const {
556  return getSubclassDataFromInstruction() & 0x100;
557  }
558 
559  void setWeak(bool IsWeak) {
560  setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
561  (IsWeak << 8));
562  }
563 
564  /// Transparently provide more efficient getOperand methods.
566 
567  /// Returns the success ordering constraint of this cmpxchg instruction.
569  return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
570  }
571 
572  /// Sets the success ordering constraint of this cmpxchg instruction.
574  assert(Ordering != AtomicOrdering::NotAtomic &&
575  "CmpXchg instructions can only be atomic.");
576  setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
577  ((unsigned)Ordering << 2));
578  }
579 
580  /// Returns the failure ordering constraint of this cmpxchg instruction.
582  return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
583  }
584 
585  /// Sets the failure ordering constraint of this cmpxchg instruction.
587  assert(Ordering != AtomicOrdering::NotAtomic &&
588  "CmpXchg instructions can only be atomic.");
589  setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
590  ((unsigned)Ordering << 5));
591  }
592 
593  /// Returns the synchronization scope ID of this cmpxchg instruction.
595  return SSID;
596  }
597 
598  /// Sets the synchronization scope ID of this cmpxchg instruction.
600  this->SSID = SSID;
601  }
602 
604  const Value *getPointerOperand() const { return getOperand(0); }
605  static unsigned getPointerOperandIndex() { return 0U; }
606 
608  const Value *getCompareOperand() const { return getOperand(1); }
609 
611  const Value *getNewValOperand() const { return getOperand(2); }
612 
613  /// Returns the address space of the pointer operand.
614  unsigned getPointerAddressSpace() const {
615  return getPointerOperand()->getType()->getPointerAddressSpace();
616  }
617 
618  /// Returns the strongest permitted ordering on failure, given the
619  /// desired ordering on success.
620  ///
621  /// If the comparison in a cmpxchg operation fails, there is no atomic store
622  /// so release semantics cannot be provided. So this function drops explicit
623  /// Release requests from the AtomicOrdering. A SequentiallyConsistent
624  /// operation would remain SequentiallyConsistent.
625  static AtomicOrdering
627  switch (SuccessOrdering) {
628  default:
629  llvm_unreachable("invalid cmpxchg success ordering");
638  }
639  }
640 
641  // Methods for support type inquiry through isa, cast, and dyn_cast:
642  static bool classof(const Instruction *I) {
643  return I->getOpcode() == Instruction::AtomicCmpXchg;
644  }
645  static bool classof(const Value *V) {
646  return isa<Instruction>(V) && classof(cast<Instruction>(V));
647  }
648 
649 private:
650  // Shadow Instruction::setInstructionSubclassData with a private forwarding
651  // method so that subclasses cannot accidentally use it.
652  void setInstructionSubclassData(unsigned short D) {
654  }
655 
656  /// The synchronization scope ID of this cmpxchg instruction. Not quite
657  /// enough room in SubClassData for everything, so synchronization scope ID
658  /// gets its own field.
659  SyncScope::ID SSID;
660 };
661 
662 template <>
664  public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
665 };
666 
668 
669 //===----------------------------------------------------------------------===//
670 // AtomicRMWInst Class
671 //===----------------------------------------------------------------------===//
672 
673 /// an instruction that atomically reads a memory location,
674 /// combines it with another value, and then stores the result back. Returns
675 /// the old value.
676 ///
677 class AtomicRMWInst : public Instruction {
678 protected:
679  // Note: Instruction needs to be a friend here to call cloneImpl.
680  friend class Instruction;
681 
682  AtomicRMWInst *cloneImpl() const;
683 
684 public:
685  /// This enumeration lists the possible modifications atomicrmw can make. In
686  /// the descriptions, 'p' is the pointer to the instruction's memory location,
687  /// 'old' is the initial value of *p, and 'v' is the other value passed to the
688  /// instruction. These instructions always return 'old'.
689  enum BinOp {
690  /// *p = v
692  /// *p = old + v
694  /// *p = old - v
696  /// *p = old & v
698  /// *p = ~(old & v)
700  /// *p = old | v
701  Or,
702  /// *p = old ^ v
704  /// *p = old >signed v ? old : v
706  /// *p = old <signed v ? old : v
708  /// *p = old >unsigned v ? old : v
710  /// *p = old <unsigned v ? old : v
712 
713  FIRST_BINOP = Xchg,
714  LAST_BINOP = UMin,
715  BAD_BINOP
716  };
717 
718  AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
719  AtomicOrdering Ordering, SyncScope::ID SSID,
720  Instruction *InsertBefore = nullptr);
721  AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
722  AtomicOrdering Ordering, SyncScope::ID SSID,
723  BasicBlock *InsertAtEnd);
724 
725  // allocate space for exactly two operands
726  void *operator new(size_t s) {
727  return User::operator new(s, 2);
728  }
729 
730  BinOp getOperation() const {
731  return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
732  }
733 
734  void setOperation(BinOp Operation) {
735  unsigned short SubclassData = getSubclassDataFromInstruction();
736  setInstructionSubclassData((SubclassData & 31) |
737  (Operation << 5));
738  }
739 
740  /// Return true if this is a RMW on a volatile memory location.
741  ///
742  bool isVolatile() const {
743  return getSubclassDataFromInstruction() & 1;
744  }
745 
746  /// Specify whether this is a volatile RMW or not.
747  ///
748  void setVolatile(bool V) {
749  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
750  (unsigned)V);
751  }
752 
753  /// Transparently provide more efficient getOperand methods.
755 
756  /// Returns the ordering constraint of this rmw instruction.
758  return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
759  }
760 
761  /// Sets the ordering constraint of this rmw instruction.
762  void setOrdering(AtomicOrdering Ordering) {
763  assert(Ordering != AtomicOrdering::NotAtomic &&
764  "atomicrmw instructions can only be atomic.");
765  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
766  ((unsigned)Ordering << 2));
767  }
768 
769  /// Returns the synchronization scope ID of this rmw instruction.
771  return SSID;
772  }
773 
774  /// Sets the synchronization scope ID of this rmw instruction.
776  this->SSID = SSID;
777  }
778 
780  const Value *getPointerOperand() const { return getOperand(0); }
781  static unsigned getPointerOperandIndex() { return 0U; }
782 
783  Value *getValOperand() { return getOperand(1); }
784  const Value *getValOperand() const { return getOperand(1); }
785 
786  /// Returns the address space of the pointer operand.
787  unsigned getPointerAddressSpace() const {
788  return getPointerOperand()->getType()->getPointerAddressSpace();
789  }
790 
791  // Methods for support type inquiry through isa, cast, and dyn_cast:
792  static bool classof(const Instruction *I) {
793  return I->getOpcode() == Instruction::AtomicRMW;
794  }
795  static bool classof(const Value *V) {
796  return isa<Instruction>(V) && classof(cast<Instruction>(V));
797  }
798 
799 private:
800  void Init(BinOp Operation, Value *Ptr, Value *Val,
801  AtomicOrdering Ordering, SyncScope::ID SSID);
802 
803  // Shadow Instruction::setInstructionSubclassData with a private forwarding
804  // method so that subclasses cannot accidentally use it.
805  void setInstructionSubclassData(unsigned short D) {
807  }
808 
809  /// The synchronization scope ID of this rmw instruction. Not quite enough
810  /// room in SubClassData for everything, so synchronization scope ID gets its
811  /// own field.
812  SyncScope::ID SSID;
813 };
814 
815 template <>
817  : public FixedNumOperandTraits<AtomicRMWInst,2> {
818 };
819 
821 
822 //===----------------------------------------------------------------------===//
823 // GetElementPtrInst Class
824 //===----------------------------------------------------------------------===//
825 
826 // checkGEPType - Simple wrapper function to give a better assertion failure
827 // message on bad indexes for a gep instruction.
828 //
830  assert(Ty && "Invalid GetElementPtrInst indices for type!");
831  return Ty;
832 }
833 
834 /// an instruction for type-safe pointer arithmetic to
835 /// access elements of arrays and structs
836 ///
838  Type *SourceElementType;
839  Type *ResultElementType;
840 
842 
843  /// Constructors - Create a getelementptr instruction with a base pointer an
844  /// list of indices. The first ctor can optionally insert before an existing
845  /// instruction, the second appends the new instruction to the specified
846  /// BasicBlock.
847  inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
848  ArrayRef<Value *> IdxList, unsigned Values,
849  const Twine &NameStr, Instruction *InsertBefore);
850  inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
851  ArrayRef<Value *> IdxList, unsigned Values,
852  const Twine &NameStr, BasicBlock *InsertAtEnd);
853 
854  void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
855 
856 protected:
857  // Note: Instruction needs to be a friend here to call cloneImpl.
858  friend class Instruction;
859 
860  GetElementPtrInst *cloneImpl() const;
861 
862 public:
863  static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
864  ArrayRef<Value *> IdxList,
865  const Twine &NameStr = "",
866  Instruction *InsertBefore = nullptr) {
867  unsigned Values = 1 + unsigned(IdxList.size());
868  if (!PointeeType)
869  PointeeType =
870  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
871  else
872  assert(
873  PointeeType ==
874  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
875  return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
876  NameStr, InsertBefore);
877  }
878 
879  static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
880  ArrayRef<Value *> IdxList,
881  const Twine &NameStr,
882  BasicBlock *InsertAtEnd) {
883  unsigned Values = 1 + unsigned(IdxList.size());
884  if (!PointeeType)
885  PointeeType =
886  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
887  else
888  assert(
889  PointeeType ==
890  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
891  return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
892  NameStr, InsertAtEnd);
893  }
894 
895  /// Create an "inbounds" getelementptr. See the documentation for the
896  /// "inbounds" flag in LangRef.html for details.
898  ArrayRef<Value *> IdxList,
899  const Twine &NameStr = "",
900  Instruction *InsertBefore = nullptr){
901  return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
902  }
903 
904  static GetElementPtrInst *
905  CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
906  const Twine &NameStr = "",
907  Instruction *InsertBefore = nullptr) {
909  Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
910  GEP->setIsInBounds(true);
911  return GEP;
912  }
913 
915  ArrayRef<Value *> IdxList,
916  const Twine &NameStr,
917  BasicBlock *InsertAtEnd) {
918  return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
919  }
920 
921  static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
922  ArrayRef<Value *> IdxList,
923  const Twine &NameStr,
924  BasicBlock *InsertAtEnd) {
926  Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
927  GEP->setIsInBounds(true);
928  return GEP;
929  }
930 
931  /// Transparently provide more efficient getOperand methods.
933 
934  Type *getSourceElementType() const { return SourceElementType; }
935 
936  void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
937  void setResultElementType(Type *Ty) { ResultElementType = Ty; }
938 
940  assert(ResultElementType ==
941  cast<PointerType>(getType()->getScalarType())->getElementType());
942  return ResultElementType;
943  }
944 
945  /// Returns the address space of this instruction's pointer type.
946  unsigned getAddressSpace() const {
947  // Note that this is always the same as the pointer operand's address space
948  // and that is cheaper to compute, so cheat here.
949  return getPointerAddressSpace();
950  }
951 
952  /// Returns the type of the element that would be loaded with
953  /// a load instruction with the specified parameters.
954  ///
955  /// Null is returned if the indices are invalid for the specified
956  /// pointer type.
957  ///
958  static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
959  static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
960  static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
961 
962  inline op_iterator idx_begin() { return op_begin()+1; }
963  inline const_op_iterator idx_begin() const { return op_begin()+1; }
964  inline op_iterator idx_end() { return op_end(); }
965  inline const_op_iterator idx_end() const { return op_end(); }
966 
968  return make_range(idx_begin(), idx_end());
969  }
970 
972  return make_range(idx_begin(), idx_end());
973  }
974 
976  return getOperand(0);
977  }
978  const Value *getPointerOperand() const {
979  return getOperand(0);
980  }
981  static unsigned getPointerOperandIndex() {
982  return 0U; // get index for modifying correct operand.
983  }
984 
985  /// Method to return the pointer operand as a
986  /// PointerType.
988  return getPointerOperand()->getType();
989  }
990 
991  /// Returns the address space of the pointer operand.
992  unsigned getPointerAddressSpace() const {
993  return getPointerOperandType()->getPointerAddressSpace();
994  }
995 
996  /// Returns the pointer type returned by the GEP
997  /// instruction, which may be a vector of pointers.
998  static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) {
999  return getGEPReturnType(
1000  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(),
1001  Ptr, IdxList);
1002  }
1003  static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1004  ArrayRef<Value *> IdxList) {
1005  Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1006  Ptr->getType()->getPointerAddressSpace());
1007  // Vector GEP
1008  if (Ptr->getType()->isVectorTy()) {
1009  unsigned NumElem = Ptr->getType()->getVectorNumElements();
1010  return VectorType::get(PtrTy, NumElem);
1011  }
1012  for (Value *Index : IdxList)
1013  if (Index->getType()->isVectorTy()) {
1014  unsigned NumElem = Index->getType()->getVectorNumElements();
1015  return VectorType::get(PtrTy, NumElem);
1016  }
1017  // Scalar GEP
1018  return PtrTy;
1019  }
1020 
1021  unsigned getNumIndices() const { // Note: always non-negative
1022  return getNumOperands() - 1;
1023  }
1024 
1025  bool hasIndices() const {
1026  return getNumOperands() > 1;
1027  }
1028 
1029  /// Return true if all of the indices of this GEP are
1030  /// zeros. If so, the result pointer and the first operand have the same
1031  /// value, just potentially different types.
1032  bool hasAllZeroIndices() const;
1033 
1034  /// Return true if all of the indices of this GEP are
1035  /// constant integers. If so, the result pointer and the first operand have
1036  /// a constant offset between them.
1037  bool hasAllConstantIndices() const;
1038 
1039  /// Set or clear the inbounds flag on this GEP instruction.
1040  /// See LangRef.html for the meaning of inbounds on a getelementptr.
1041  void setIsInBounds(bool b = true);
1042 
1043  /// Determine whether the GEP has the inbounds flag.
1044  bool isInBounds() const;
1045 
1046  /// Accumulate the constant address offset of this GEP if possible.
1047  ///
1048  /// This routine accepts an APInt into which it will accumulate the constant
1049  /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1050  /// all-constant, it returns false and the value of the offset APInt is
1051  /// undefined (it is *not* preserved!). The APInt passed into this routine
1052  /// must be at least as wide as the IntPtr type for the address space of
1053  /// the base GEP pointer.
1054  bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1055 
1056  // Methods for support type inquiry through isa, cast, and dyn_cast:
1057  static bool classof(const Instruction *I) {
1058  return (I->getOpcode() == Instruction::GetElementPtr);
1059  }
1060  static bool classof(const Value *V) {
1061  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1062  }
1063 };
1064 
1065 template <>
1067  public VariadicOperandTraits<GetElementPtrInst, 1> {
1068 };
1069 
1070 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1071  ArrayRef<Value *> IdxList, unsigned Values,
1072  const Twine &NameStr,
1073  Instruction *InsertBefore)
1074  : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1076  Values, InsertBefore),
1077  SourceElementType(PointeeType),
1078  ResultElementType(getIndexedType(PointeeType, IdxList)) {
1079  assert(ResultElementType ==
1080  cast<PointerType>(getType()->getScalarType())->getElementType());
1081  init(Ptr, IdxList, NameStr);
1082 }
1083 
1084 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1085  ArrayRef<Value *> IdxList, unsigned Values,
1086  const Twine &NameStr,
1087  BasicBlock *InsertAtEnd)
1088  : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1090  Values, InsertAtEnd),
1091  SourceElementType(PointeeType),
1092  ResultElementType(getIndexedType(PointeeType, IdxList)) {
1093  assert(ResultElementType ==
1094  cast<PointerType>(getType()->getScalarType())->getElementType());
1095  init(Ptr, IdxList, NameStr);
1096 }
1097 
1098 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1099 
1100 //===----------------------------------------------------------------------===//
1101 // ICmpInst Class
1102 //===----------------------------------------------------------------------===//
1103 
1104 /// This instruction compares its operands according to the predicate given
1105 /// to the constructor. It only operates on integers or pointers. The operands
1106 /// must be identical types.
1107 /// Represent an integer comparison operator.
1108 class ICmpInst: public CmpInst {
1109  void AssertOK() {
1110  assert(isIntPredicate() &&
1111  "Invalid ICmp predicate value");
1112  assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1113  "Both operands to ICmp instruction are not of the same type!");
1114  // Check that the operands are the right type
1115  assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1116  getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1117  "Invalid operand types for ICmp instruction");
1118  }
1119 
1120 protected:
1121  // Note: Instruction needs to be a friend here to call cloneImpl.
1122  friend class Instruction;
1123 
1124  /// Clone an identical ICmpInst
1125  ICmpInst *cloneImpl() const;
1126 
1127 public:
1128  /// Constructor with insert-before-instruction semantics.
1130  Instruction *InsertBefore, ///< Where to insert
1131  Predicate pred, ///< The predicate to use for the comparison
1132  Value *LHS, ///< The left-hand-side of the expression
1133  Value *RHS, ///< The right-hand-side of the expression
1134  const Twine &NameStr = "" ///< Name of the instruction
1135  ) : CmpInst(makeCmpResultType(LHS->getType()),
1136  Instruction::ICmp, pred, LHS, RHS, NameStr,
1137  InsertBefore) {
1138 #ifndef NDEBUG
1139  AssertOK();
1140 #endif
1141  }
1142 
1143  /// Constructor with insert-at-end semantics.
1145  BasicBlock &InsertAtEnd, ///< Block to insert into.
1146  Predicate pred, ///< The predicate to use for the comparison
1147  Value *LHS, ///< The left-hand-side of the expression
1148  Value *RHS, ///< The right-hand-side of the expression
1149  const Twine &NameStr = "" ///< Name of the instruction
1150  ) : CmpInst(makeCmpResultType(LHS->getType()),
1151  Instruction::ICmp, pred, LHS, RHS, NameStr,
1152  &InsertAtEnd) {
1153 #ifndef NDEBUG
1154  AssertOK();
1155 #endif
1156  }
1157 
1158  /// Constructor with no-insertion semantics
1160  Predicate pred, ///< The predicate to use for the comparison
1161  Value *LHS, ///< The left-hand-side of the expression
1162  Value *RHS, ///< The right-hand-side of the expression
1163  const Twine &NameStr = "" ///< Name of the instruction
1164  ) : CmpInst(makeCmpResultType(LHS->getType()),
1165  Instruction::ICmp, pred, LHS, RHS, NameStr) {
1166 #ifndef NDEBUG
1167  AssertOK();
1168 #endif
1169  }
1170 
1171  /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1172  /// @returns the predicate that would be the result if the operand were
1173  /// regarded as signed.
1174  /// Return the signed version of the predicate
1176  return getSignedPredicate(getPredicate());
1177  }
1178 
1179  /// This is a static version that you can use without an instruction.
1180  /// Return the signed version of the predicate.
1181  static Predicate getSignedPredicate(Predicate pred);
1182 
1183  /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1184  /// @returns the predicate that would be the result if the operand were
1185  /// regarded as unsigned.
1186  /// Return the unsigned version of the predicate
1188  return getUnsignedPredicate(getPredicate());
1189  }
1190 
1191  /// This is a static version that you can use without an instruction.
1192  /// Return the unsigned version of the predicate.
1193  static Predicate getUnsignedPredicate(Predicate pred);
1194 
1195  /// Return true if this predicate is either EQ or NE. This also
1196  /// tests for commutativity.
1197  static bool isEquality(Predicate P) {
1198  return P == ICMP_EQ || P == ICMP_NE;
1199  }
1200 
1201  /// Return true if this predicate is either EQ or NE. This also
1202  /// tests for commutativity.
1203  bool isEquality() const {
1204  return isEquality(getPredicate());
1205  }
1206 
1207  /// @returns true if the predicate of this ICmpInst is commutative
1208  /// Determine if this relation is commutative.
1209  bool isCommutative() const { return isEquality(); }
1210 
1211  /// Return true if the predicate is relational (not EQ or NE).
1212  ///
1213  bool isRelational() const {
1214  return !isEquality();
1215  }
1216 
1217  /// Return true if the predicate is relational (not EQ or NE).
1218  ///
1219  static bool isRelational(Predicate P) {
1220  return !isEquality(P);
1221  }
1222 
1223  /// Exchange the two operands to this instruction in such a way that it does
1224  /// not modify the semantics of the instruction. The predicate value may be
1225  /// changed to retain the same result if the predicate is order dependent
1226  /// (e.g. ult).
1227  /// Swap operands and adjust predicate.
1228  void swapOperands() {
1229  setPredicate(getSwappedPredicate());
1230  Op<0>().swap(Op<1>());
1231  }
1232 
1233  // Methods for support type inquiry through isa, cast, and dyn_cast:
1234  static bool classof(const Instruction *I) {
1235  return I->getOpcode() == Instruction::ICmp;
1236  }
1237  static bool classof(const Value *V) {
1238  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1239  }
1240 };
1241 
1242 //===----------------------------------------------------------------------===//
1243 // FCmpInst Class
1244 //===----------------------------------------------------------------------===//
1245 
1246 /// This instruction compares its operands according to the predicate given
1247 /// to the constructor. It only operates on floating point values or packed
1248 /// vectors of floating point values. The operands must be identical types.
1249 /// Represents a floating point comparison operator.
1250 class FCmpInst: public CmpInst {
1251  void AssertOK() {
1252  assert(isFPPredicate() && "Invalid FCmp predicate value");
1253  assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1254  "Both operands to FCmp instruction are not of the same type!");
1255  // Check that the operands are the right type
1256  assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1257  "Invalid operand types for FCmp instruction");
1258  }
1259 
1260 protected:
1261  // Note: Instruction needs to be a friend here to call cloneImpl.
1262  friend class Instruction;
1263 
1264  /// Clone an identical FCmpInst
1265  FCmpInst *cloneImpl() const;
1266 
1267 public:
1268  /// Constructor with insert-before-instruction semantics.
1270  Instruction *InsertBefore, ///< Where to insert
1271  Predicate pred, ///< The predicate to use for the comparison
1272  Value *LHS, ///< The left-hand-side of the expression
1273  Value *RHS, ///< The right-hand-side of the expression
1274  const Twine &NameStr = "" ///< Name of the instruction
1275  ) : CmpInst(makeCmpResultType(LHS->getType()),
1276  Instruction::FCmp, pred, LHS, RHS, NameStr,
1277  InsertBefore) {
1278  AssertOK();
1279  }
1280 
1281  /// Constructor with insert-at-end semantics.
1283  BasicBlock &InsertAtEnd, ///< Block to insert into.
1284  Predicate pred, ///< The predicate to use for the comparison
1285  Value *LHS, ///< The left-hand-side of the expression
1286  Value *RHS, ///< The right-hand-side of the expression
1287  const Twine &NameStr = "" ///< Name of the instruction
1288  ) : CmpInst(makeCmpResultType(LHS->getType()),
1289  Instruction::FCmp, pred, LHS, RHS, NameStr,
1290  &InsertAtEnd) {
1291  AssertOK();
1292  }
1293 
1294  /// Constructor with no-insertion semantics
1296  Predicate pred, ///< The predicate to use for the comparison
1297  Value *LHS, ///< The left-hand-side of the expression
1298  Value *RHS, ///< The right-hand-side of the expression
1299  const Twine &NameStr = "" ///< Name of the instruction
1300  ) : CmpInst(makeCmpResultType(LHS->getType()),
1301  Instruction::FCmp, pred, LHS, RHS, NameStr) {
1302  AssertOK();
1303  }
1304 
1305  /// @returns true if the predicate of this instruction is EQ or NE.
1306  /// Determine if this is an equality predicate.
1307  static bool isEquality(Predicate Pred) {
1308  return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1309  Pred == FCMP_UNE;
1310  }
1311 
1312  /// @returns true if the predicate of this instruction is EQ or NE.
1313  /// Determine if this is an equality predicate.
1314  bool isEquality() const { return isEquality(getPredicate()); }
1315 
1316  /// @returns true if the predicate of this instruction is commutative.
1317  /// Determine if this is a commutative predicate.
1318  bool isCommutative() const {
1319  return isEquality() ||
1320  getPredicate() == FCMP_FALSE ||
1321  getPredicate() == FCMP_TRUE ||
1322  getPredicate() == FCMP_ORD ||
1323  getPredicate() == FCMP_UNO;
1324  }
1325 
1326  /// @returns true if the predicate is relational (not EQ or NE).
1327  /// Determine if this a relational predicate.
1328  bool isRelational() const { return !isEquality(); }
1329 
1330  /// Exchange the two operands to this instruction in such a way that it does
1331  /// not modify the semantics of the instruction. The predicate value may be
1332  /// changed to retain the same result if the predicate is order dependent
1333  /// (e.g. ult).
1334  /// Swap operands and adjust predicate.
1335  void swapOperands() {
1336  setPredicate(getSwappedPredicate());
1337  Op<0>().swap(Op<1>());
1338  }
1339 
1340  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1341  static bool classof(const Instruction *I) {
1342  return I->getOpcode() == Instruction::FCmp;
1343  }
1344  static bool classof(const Value *V) {
1345  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1346  }
1347 };
1348 
1349 //===----------------------------------------------------------------------===//
1350 /// This class represents a function call, abstracting a target
1351 /// machine's calling convention. This class uses low bit of the SubClassData
1352 /// field to indicate whether or not this is a tail call. The rest of the bits
1353 /// hold the calling convention of the call.
1354 ///
1355 class CallInst : public Instruction,
1356  public OperandBundleUser<CallInst, User::op_iterator> {
1358 
1359  AttributeList Attrs; ///< parameter attributes for call
1360  FunctionType *FTy;
1361 
1362  CallInst(const CallInst &CI);
1363 
1364  /// Construct a CallInst given a range of arguments.
1365  /// Construct a CallInst from a range of arguments
1366  inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1367  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1368  Instruction *InsertBefore);
1369 
1370  inline CallInst(Value *Func, ArrayRef<Value *> Args,
1371  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1372  Instruction *InsertBefore)
1373  : CallInst(cast<FunctionType>(
1374  cast<PointerType>(Func->getType())->getElementType()),
1375  Func, Args, Bundles, NameStr, InsertBefore) {}
1376 
1377  inline CallInst(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr,
1378  Instruction *InsertBefore)
1379  : CallInst(Func, Args, None, NameStr, InsertBefore) {}
1380 
1381  /// Construct a CallInst given a range of arguments.
1382  /// Construct a CallInst from a range of arguments
1383  inline CallInst(Value *Func, ArrayRef<Value *> Args,
1384  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1385  BasicBlock *InsertAtEnd);
1386 
1387  explicit CallInst(Value *F, const Twine &NameStr,
1388  Instruction *InsertBefore);
1389 
1390  CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd);
1391 
1392  void init(Value *Func, ArrayRef<Value *> Args,
1393  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
1394  init(cast<FunctionType>(
1395  cast<PointerType>(Func->getType())->getElementType()),
1396  Func, Args, Bundles, NameStr);
1397  }
1398  void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1399  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1400  void init(Value *Func, const Twine &NameStr);
1401 
1402  bool hasDescriptor() const { return HasDescriptor; }
1403 
1404 protected:
1405  // Note: Instruction needs to be a friend here to call cloneImpl.
1406  friend class Instruction;
1407 
1408  CallInst *cloneImpl() const;
1409 
1410 public:
1411  static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1412  ArrayRef<OperandBundleDef> Bundles = None,
1413  const Twine &NameStr = "",
1414  Instruction *InsertBefore = nullptr) {
1415  return Create(cast<FunctionType>(
1416  cast<PointerType>(Func->getType())->getElementType()),
1417  Func, Args, Bundles, NameStr, InsertBefore);
1418  }
1419 
1420  static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1421  const Twine &NameStr,
1422  Instruction *InsertBefore = nullptr) {
1423  return Create(cast<FunctionType>(
1424  cast<PointerType>(Func->getType())->getElementType()),
1425  Func, Args, None, NameStr, InsertBefore);
1426  }
1427 
1428  static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1429  const Twine &NameStr,
1430  Instruction *InsertBefore = nullptr) {
1431  return new (unsigned(Args.size() + 1))
1432  CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1433  }
1434 
1435  static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1436  ArrayRef<OperandBundleDef> Bundles = None,
1437  const Twine &NameStr = "",
1438  Instruction *InsertBefore = nullptr) {
1439  const unsigned TotalOps =
1440  unsigned(Args.size()) + CountBundleInputs(Bundles) + 1;
1441  const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1442 
1443  return new (TotalOps, DescriptorBytes)
1444  CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1445  }
1446 
1447  static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1449  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1450  const unsigned TotalOps =
1451  unsigned(Args.size()) + CountBundleInputs(Bundles) + 1;
1452  const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1453 
1454  return new (TotalOps, DescriptorBytes)
1455  CallInst(Func, Args, Bundles, NameStr, InsertAtEnd);
1456  }
1457 
1458  static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1459  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1460  return new (unsigned(Args.size() + 1))
1461  CallInst(Func, Args, None, NameStr, InsertAtEnd);
1462  }
1463 
1464  static CallInst *Create(Value *F, const Twine &NameStr = "",
1465  Instruction *InsertBefore = nullptr) {
1466  return new(1) CallInst(F, NameStr, InsertBefore);
1467  }
1468 
1469  static CallInst *Create(Value *F, const Twine &NameStr,
1470  BasicBlock *InsertAtEnd) {
1471  return new(1) CallInst(F, NameStr, InsertAtEnd);
1472  }
1473 
1474  /// Create a clone of \p CI with a different set of operand bundles and
1475  /// insert it before \p InsertPt.
1476  ///
1477  /// The returned call instruction is identical \p CI in every way except that
1478  /// the operand bundles for the new instruction are set to the operand bundles
1479  /// in \p Bundles.
1480  static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1481  Instruction *InsertPt = nullptr);
1482 
1483  /// Generate the IR for a call to malloc:
1484  /// 1. Compute the malloc call's argument as the specified type's size,
1485  /// possibly multiplied by the array size if the array size is not
1486  /// constant 1.
1487  /// 2. Call malloc with that argument.
1488  /// 3. Bitcast the result of the malloc call to the specified type.
1489  static Instruction *CreateMalloc(Instruction *InsertBefore,
1490  Type *IntPtrTy, Type *AllocTy,
1491  Value *AllocSize, Value *ArraySize = nullptr,
1492  Function* MallocF = nullptr,
1493  const Twine &Name = "");
1494  static Instruction *CreateMalloc(BasicBlock *InsertAtEnd,
1495  Type *IntPtrTy, Type *AllocTy,
1496  Value *AllocSize, Value *ArraySize = nullptr,
1497  Function* MallocF = nullptr,
1498  const Twine &Name = "");
1499  static Instruction *CreateMalloc(Instruction *InsertBefore,
1500  Type *IntPtrTy, Type *AllocTy,
1501  Value *AllocSize, Value *ArraySize = nullptr,
1502  ArrayRef<OperandBundleDef> Bundles = None,
1503  Function* MallocF = nullptr,
1504  const Twine &Name = "");
1505  static Instruction *CreateMalloc(BasicBlock *InsertAtEnd,
1506  Type *IntPtrTy, Type *AllocTy,
1507  Value *AllocSize, Value *ArraySize = nullptr,
1508  ArrayRef<OperandBundleDef> Bundles = None,
1509  Function* MallocF = nullptr,
1510  const Twine &Name = "");
1511  /// Generate the IR for a call to the builtin free function.
1512  static Instruction *CreateFree(Value *Source,
1513  Instruction *InsertBefore);
1514  static Instruction *CreateFree(Value *Source,
1515  BasicBlock *InsertAtEnd);
1516  static Instruction *CreateFree(Value *Source,
1518  Instruction *InsertBefore);
1519  static Instruction *CreateFree(Value *Source,
1521  BasicBlock *InsertAtEnd);
1522 
1523  FunctionType *getFunctionType() const { return FTy; }
1524 
1526  mutateType(FTy->getReturnType());
1527  this->FTy = FTy;
1528  }
1529 
1530  // Note that 'musttail' implies 'tail'.
1531  enum TailCallKind { TCK_None = 0, TCK_Tail = 1, TCK_MustTail = 2,
1532  TCK_NoTail = 3 };
1535  }
1536 
1537  bool isTailCall() const {
1538  unsigned Kind = getSubclassDataFromInstruction() & 3;
1539  return Kind == TCK_Tail || Kind == TCK_MustTail;
1540  }
1541 
1542  bool isMustTailCall() const {
1543  return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
1544  }
1545 
1546  bool isNoTailCall() const {
1547  return (getSubclassDataFromInstruction() & 3) == TCK_NoTail;
1548  }
1549 
1550  void setTailCall(bool isTC = true) {
1551  setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1552  unsigned(isTC ? TCK_Tail : TCK_None));
1553  }
1554 
1556  setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1557  unsigned(TCK));
1558  }
1559 
1560  /// Provide fast operand accessors
1562 
1563  /// Return the number of call arguments.
1564  ///
1565  unsigned getNumArgOperands() const {
1566  return getNumOperands() - getNumTotalBundleOperands() - 1;
1567  }
1568 
1569  /// getArgOperand/setArgOperand - Return/set the i-th call argument.
1570  ///
1571  Value *getArgOperand(unsigned i) const {
1572  assert(i < getNumArgOperands() && "Out of bounds!");
1573  return getOperand(i);
1574  }
1575  void setArgOperand(unsigned i, Value *v) {
1576  assert(i < getNumArgOperands() && "Out of bounds!");
1577  setOperand(i, v);
1578  }
1579 
1580  /// Return the iterator pointing to the beginning of the argument list.
1582 
1583  /// Return the iterator pointing to the end of the argument list.
1585  // [ call args ], [ operand bundles ], callee
1586  return op_end() - getNumTotalBundleOperands() - 1;
1587  }
1588 
1589  /// Iteration adapter for range-for loops.
1591  return make_range(arg_begin(), arg_end());
1592  }
1593 
1594  /// Return the iterator pointing to the beginning of the argument list.
1595  const_op_iterator arg_begin() const { return op_begin(); }
1596 
1597  /// Return the iterator pointing to the end of the argument list.
1599  // [ call args ], [ operand bundles ], callee
1600  return op_end() - getNumTotalBundleOperands() - 1;
1601  }
1602 
1603  /// Iteration adapter for range-for loops.
1605  return make_range(arg_begin(), arg_end());
1606  }
1607 
1608  /// Wrappers for getting the \c Use of a call argument.
1609  const Use &getArgOperandUse(unsigned i) const {
1610  assert(i < getNumArgOperands() && "Out of bounds!");
1611  return getOperandUse(i);
1612  }
1613  Use &getArgOperandUse(unsigned i) {
1614  assert(i < getNumArgOperands() && "Out of bounds!");
1615  return getOperandUse(i);
1616  }
1617 
1618  /// If one of the arguments has the 'returned' attribute, return its
1619  /// operand value. Otherwise, return nullptr.
1620  Value *getReturnedArgOperand() const;
1621 
1622  /// getCallingConv/setCallingConv - Get or set the calling convention of this
1623  /// function call.
1625  return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 2);
1626  }
1628  auto ID = static_cast<unsigned>(CC);
1629  assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention");
1630  setInstructionSubclassData((getSubclassDataFromInstruction() & 3) |
1631  (ID << 2));
1632  }
1633 
1634  /// Return the parameter attributes for this call.
1635  ///
1636  AttributeList getAttributes() const { return Attrs; }
1637 
1638  /// Set the parameter attributes for this call.
1639  ///
1641 
1642  /// adds the attribute to the list of attributes.
1643  void addAttribute(unsigned i, Attribute::AttrKind Kind);
1644 
1645  /// adds the attribute to the list of attributes.
1646  void addAttribute(unsigned i, Attribute Attr);
1647 
1648  /// Adds the attribute to the indicated argument
1649  void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind);
1650 
1651  /// Adds the attribute to the indicated argument
1652  void addParamAttr(unsigned ArgNo, Attribute Attr);
1653 
1654  /// removes the attribute from the list of attributes.
1655  void removeAttribute(unsigned i, Attribute::AttrKind Kind);
1656 
1657  /// removes the attribute from the list of attributes.
1658  void removeAttribute(unsigned i, StringRef Kind);
1659 
1660  /// Removes the attribute from the given argument
1661  void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind);
1662 
1663  /// Removes the attribute from the given argument
1664  void removeParamAttr(unsigned ArgNo, StringRef Kind);
1665 
1666  /// adds the dereferenceable attribute to the list of attributes.
1667  void addDereferenceableAttr(unsigned i, uint64_t Bytes);
1668 
1669  /// adds the dereferenceable_or_null attribute to the list of
1670  /// attributes.
1671  void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes);
1672 
1673  /// Determine whether this call has the given attribute.
1674  bool hasFnAttr(Attribute::AttrKind Kind) const {
1675  assert(Kind != Attribute::NoBuiltin &&
1676  "Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin");
1677  return hasFnAttrImpl(Kind);
1678  }
1679 
1680  /// Determine whether this call has the given attribute.
1681  bool hasFnAttr(StringRef Kind) const {
1682  return hasFnAttrImpl(Kind);
1683  }
1684 
1685  /// Determine whether the return value has the given attribute.
1686  bool hasRetAttr(Attribute::AttrKind Kind) const;
1687 
1688  /// Determine whether the argument or parameter has the given attribute.
1689  bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const;
1690 
1691  /// Get the attribute of a given kind at a position.
1692  Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
1693  return getAttributes().getAttribute(i, Kind);
1694  }
1695 
1696  /// Get the attribute of a given kind at a position.
1697  Attribute getAttribute(unsigned i, StringRef Kind) const {
1698  return getAttributes().getAttribute(i, Kind);
1699  }
1700 
1701  /// Get the attribute of a given kind from a given arg
1702  Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
1703  assert(ArgNo < getNumArgOperands() && "Out of bounds");
1704  return getAttributes().getParamAttr(ArgNo, Kind);
1705  }
1706 
1707  /// Get the attribute of a given kind from a given arg
1708  Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const {
1709  assert(ArgNo < getNumArgOperands() && "Out of bounds");
1710  return getAttributes().getParamAttr(ArgNo, Kind);
1711  }
1712 
1713  /// Return true if the data operand at index \p i has the attribute \p
1714  /// A.
1715  ///
1716  /// Data operands include call arguments and values used in operand bundles,
1717  /// but does not include the callee operand. This routine dispatches to the
1718  /// underlying AttributeList or the OperandBundleUser as appropriate.
1719  ///
1720  /// The index \p i is interpreted as
1721  ///
1722  /// \p i == Attribute::ReturnIndex -> the return value
1723  /// \p i in [1, arg_size + 1) -> argument number (\p i - 1)
1724  /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index
1725  /// (\p i - 1) in the operand list.
1726  bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const;
1727 
1728  /// Extract the alignment of the return value.
1729  unsigned getRetAlignment() const { return Attrs.getRetAlignment(); }
1730 
1731  /// Extract the alignment for a call or parameter (0=unknown).
1732  unsigned getParamAlignment(unsigned ArgNo) const {
1733  return Attrs.getParamAlignment(ArgNo);
1734  }
1735 
1736  /// Extract the number of dereferenceable bytes for a call or
1737  /// parameter (0=unknown).
1738  uint64_t getDereferenceableBytes(unsigned i) const {
1739  return Attrs.getDereferenceableBytes(i);
1740  }
1741 
1742  /// Extract the number of dereferenceable_or_null bytes for a call or
1743  /// parameter (0=unknown).
1744  uint64_t getDereferenceableOrNullBytes(unsigned i) const {
1745  return Attrs.getDereferenceableOrNullBytes(i);
1746  }
1747 
1748  /// @brief Determine if the return value is marked with NoAlias attribute.
1749  bool returnDoesNotAlias() const {
1750  return Attrs.hasAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
1751  }
1752 
1753  /// Return true if the call should not be treated as a call to a
1754  /// builtin.
1755  bool isNoBuiltin() const {
1756  return hasFnAttrImpl(Attribute::NoBuiltin) &&
1757  !hasFnAttrImpl(Attribute::Builtin);
1758  }
1759 
1760  /// Determine if the call requires strict floating point semantics.
1761  bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); }
1762 
1763  /// Return true if the call should not be inlined.
1764  bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
1765  void setIsNoInline() {
1766  addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1767  }
1768 
1769  /// Return true if the call can return twice
1770  bool canReturnTwice() const {
1771  return hasFnAttr(Attribute::ReturnsTwice);
1772  }
1774  addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1775  }
1776 
1777  /// Determine if the call does not access memory.
1778  bool doesNotAccessMemory() const {
1779  return hasFnAttr(Attribute::ReadNone);
1780  }
1782  addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
1783  }
1784 
1785  /// Determine if the call does not access or only reads memory.
1786  bool onlyReadsMemory() const {
1787  return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
1788  }
1790  addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
1791  }
1792 
1793  /// Determine if the call does not access or only writes memory.
1794  bool doesNotReadMemory() const {
1795  return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly);
1796  }
1798  addAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly);
1799  }
1800 
1801  /// @brief Determine if the call can access memmory only using pointers based
1802  /// on its arguments.
1803  bool onlyAccessesArgMemory() const {
1804  return hasFnAttr(Attribute::ArgMemOnly);
1805  }
1807  addAttribute(AttributeList::FunctionIndex, Attribute::ArgMemOnly);
1808  }
1809 
1810  /// Determine if the call cannot return.
1811  bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
1813  addAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
1814  }
1815 
1816  /// Determine if the call cannot unwind.
1817  bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
1819  addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
1820  }
1821 
1822  /// Determine if the call cannot be duplicated.
1823  bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); }
1825  addAttribute(AttributeList::FunctionIndex, Attribute::NoDuplicate);
1826  }
1827 
1828  /// Determine if the call is convergent
1829  bool isConvergent() const { return hasFnAttr(Attribute::Convergent); }
1830  void setConvergent() {
1832  }
1835  }
1836 
1837  /// Determine if the call returns a structure through first
1838  /// pointer argument.
1839  bool hasStructRetAttr() const {
1840  if (getNumArgOperands() == 0)
1841  return false;
1842 
1843  // Be friendly and also check the callee.
1844  return paramHasAttr(0, Attribute::StructRet);
1845  }
1846 
1847  /// Determine if any call argument is an aggregate passed by value.
1848  bool hasByValArgument() const {
1849  return Attrs.hasAttrSomewhere(Attribute::ByVal);
1850  }
1851 
1852  /// Return the function called, or null if this is an
1853  /// indirect function invocation.
1854  ///
1856  return dyn_cast<Function>(Op<-1>());
1857  }
1858 
1859  /// Get a pointer to the function that is invoked by this
1860  /// instruction.
1861  const Value *getCalledValue() const { return Op<-1>(); }
1862  Value *getCalledValue() { return Op<-1>(); }
1863 
1864  /// Set the function called.
1866  setCalledFunction(
1867  cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()),
1868  Fn);
1869  }
1871  this->FTy = FTy;
1872  assert(FTy == cast<FunctionType>(
1873  cast<PointerType>(Fn->getType())->getElementType()));
1874  Op<-1>() = Fn;
1875  }
1876 
1877  /// Check if this call is an inline asm statement.
1878  bool isInlineAsm() const {
1879  return isa<InlineAsm>(Op<-1>());
1880  }
1881 
1882  // Methods for support type inquiry through isa, cast, and dyn_cast:
1883  static bool classof(const Instruction *I) {
1884  return I->getOpcode() == Instruction::Call;
1885  }
1886  static bool classof(const Value *V) {
1887  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1888  }
1889 
1890 private:
1891  template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const {
1892  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Kind))
1893  return true;
1894 
1895  // Operand bundles override attributes on the called function, but don't
1896  // override attributes directly present on the call instruction.
1897  if (isFnAttrDisallowedByOpBundle(Kind))
1898  return false;
1899 
1900  if (const Function *F = getCalledFunction())
1901  return F->getAttributes().hasAttribute(AttributeList::FunctionIndex,
1902  Kind);
1903  return false;
1904  }
1905 
1906  // Shadow Instruction::setInstructionSubclassData with a private forwarding
1907  // method so that subclasses cannot accidentally use it.
1908  void setInstructionSubclassData(unsigned short D) {
1910  }
1911 };
1912 
1913 template <>
1914 struct OperandTraits<CallInst> : public VariadicOperandTraits<CallInst, 1> {
1915 };
1916 
1917 CallInst::CallInst(Value *Func, ArrayRef<Value *> Args,
1918  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1919  BasicBlock *InsertAtEnd)
1920  : Instruction(
1921  cast<FunctionType>(cast<PointerType>(Func->getType())
1922  ->getElementType())->getReturnType(),
1924  (Args.size() + CountBundleInputs(Bundles) + 1),
1925  unsigned(Args.size() + CountBundleInputs(Bundles) + 1), InsertAtEnd) {
1926  init(Func, Args, Bundles, NameStr);
1927 }
1928 
1929 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1930  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1931  Instruction *InsertBefore)
1934  (Args.size() + CountBundleInputs(Bundles) + 1),
1935  unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1936  InsertBefore) {
1937  init(Ty, Func, Args, Bundles, NameStr);
1938 }
1939 
1940 // Note: if you get compile errors about private methods then
1941 // please update your code to use the high-level operand
1942 // interfaces. See line 943 above.
1944 
1945 //===----------------------------------------------------------------------===//
1946 // SelectInst Class
1947 //===----------------------------------------------------------------------===//
1948 
1949 /// This class represents the LLVM 'select' instruction.
1950 ///
1951 class SelectInst : public Instruction {
1952  SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1953  Instruction *InsertBefore)
1955  &Op<0>(), 3, InsertBefore) {
1956  init(C, S1, S2);
1957  setName(NameStr);
1958  }
1959 
1960  SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1961  BasicBlock *InsertAtEnd)
1963  &Op<0>(), 3, InsertAtEnd) {
1964  init(C, S1, S2);
1965  setName(NameStr);
1966  }
1967 
1968  void init(Value *C, Value *S1, Value *S2) {
1969  assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1970  Op<0>() = C;
1971  Op<1>() = S1;
1972  Op<2>() = S2;
1973  }
1974 
1975 protected:
1976  // Note: Instruction needs to be a friend here to call cloneImpl.
1977  friend class Instruction;
1978 
1979  SelectInst *cloneImpl() const;
1980 
1981 public:
1982  static SelectInst *Create(Value *C, Value *S1, Value *S2,
1983  const Twine &NameStr = "",
1984  Instruction *InsertBefore = nullptr,
1985  Instruction *MDFrom = nullptr) {
1986  SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1987  if (MDFrom)
1988  Sel->copyMetadata(*MDFrom);
1989  return Sel;
1990  }
1991 
1992  static SelectInst *Create(Value *C, Value *S1, Value *S2,
1993  const Twine &NameStr,
1994  BasicBlock *InsertAtEnd) {
1995  return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1996  }
1997 
1998  const Value *getCondition() const { return Op<0>(); }
1999  const Value *getTrueValue() const { return Op<1>(); }
2000  const Value *getFalseValue() const { return Op<2>(); }
2001  Value *getCondition() { return Op<0>(); }
2002  Value *getTrueValue() { return Op<1>(); }
2003  Value *getFalseValue() { return Op<2>(); }
2004 
2005  void setCondition(Value *V) { Op<0>() = V; }
2006  void setTrueValue(Value *V) { Op<1>() = V; }
2007  void setFalseValue(Value *V) { Op<2>() = V; }
2008 
2009  /// Return a string if the specified operands are invalid
2010  /// for a select operation, otherwise return null.
2011  static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
2012 
2013  /// Transparently provide more efficient getOperand methods.
2015 
2017  return static_cast<OtherOps>(Instruction::getOpcode());
2018  }
2019 
2020  // Methods for support type inquiry through isa, cast, and dyn_cast:
2021  static bool classof(const Instruction *I) {
2022  return I->getOpcode() == Instruction::Select;
2023  }
2024  static bool classof(const Value *V) {
2025  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2026  }
2027 };
2028 
2029 template <>
2030 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
2031 };
2032 
2034 
2035 //===----------------------------------------------------------------------===//
2036 // VAArgInst Class
2037 //===----------------------------------------------------------------------===//
2038 
2039 /// This class represents the va_arg llvm instruction, which returns
2040 /// an argument of the specified type given a va_list and increments that list
2041 ///
2042 class VAArgInst : public UnaryInstruction {
2043 protected:
2044  // Note: Instruction needs to be a friend here to call cloneImpl.
2045  friend class Instruction;
2046 
2047  VAArgInst *cloneImpl() const;
2048 
2049 public:
2050  VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
2051  Instruction *InsertBefore = nullptr)
2052  : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
2053  setName(NameStr);
2054  }
2055 
2056  VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
2057  BasicBlock *InsertAtEnd)
2058  : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
2059  setName(NameStr);
2060  }
2061 
2063  const Value *getPointerOperand() const { return getOperand(0); }
2064  static unsigned getPointerOperandIndex() { return 0U; }
2065 
2066  // Methods for support type inquiry through isa, cast, and dyn_cast:
2067  static bool classof(const Instruction *I) {
2068  return I->getOpcode() == VAArg;
2069  }
2070  static bool classof(const Value *V) {
2071  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2072  }
2073 };
2074 
2075 //===----------------------------------------------------------------------===//
2076 // ExtractElementInst Class
2077 //===----------------------------------------------------------------------===//
2078 
2079 /// This instruction extracts a single (scalar)
2080 /// element from a VectorType value
2081 ///
2083  ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
2084  Instruction *InsertBefore = nullptr);
2085  ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
2086  BasicBlock *InsertAtEnd);
2087 
2088 protected:
2089  // Note: Instruction needs to be a friend here to call cloneImpl.
2090  friend class Instruction;
2091 
2092  ExtractElementInst *cloneImpl() const;
2093 
2094 public:
2095  static ExtractElementInst *Create(Value *Vec, Value *Idx,
2096  const Twine &NameStr = "",
2097  Instruction *InsertBefore = nullptr) {
2098  return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
2099  }
2100 
2101  static ExtractElementInst *Create(Value *Vec, Value *Idx,
2102  const Twine &NameStr,
2103  BasicBlock *InsertAtEnd) {
2104  return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
2105  }
2106 
2107  /// Return true if an extractelement instruction can be
2108  /// formed with the specified operands.
2109  static bool isValidOperands(const Value *Vec, const Value *Idx);
2110 
2111  Value *getVectorOperand() { return Op<0>(); }
2112  Value *getIndexOperand() { return Op<1>(); }
2113  const Value *getVectorOperand() const { return Op<0>(); }
2114  const Value *getIndexOperand() const { return Op<1>(); }
2115 
2117  return cast<VectorType>(getVectorOperand()->getType());
2118  }
2119 
2120  /// Transparently provide more efficient getOperand methods.
2122 
2123  // Methods for support type inquiry through isa, cast, and dyn_cast:
2124  static bool classof(const Instruction *I) {
2125  return I->getOpcode() == Instruction::ExtractElement;
2126  }
2127  static bool classof(const Value *V) {
2128  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2129  }
2130 };
2131 
2132 template <>
2134  public FixedNumOperandTraits<ExtractElementInst, 2> {
2135 };
2136 
2137 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
2138 
2139 //===----------------------------------------------------------------------===//
2140 // InsertElementInst Class
2141 //===----------------------------------------------------------------------===//
2142 
2143 /// This instruction inserts a single (scalar)
2144 /// element into a VectorType value
2145 ///
2147  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
2148  const Twine &NameStr = "",
2149  Instruction *InsertBefore = nullptr);
2150  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
2151  BasicBlock *InsertAtEnd);
2152 
2153 protected:
2154  // Note: Instruction needs to be a friend here to call cloneImpl.
2155  friend class Instruction;
2156 
2157  InsertElementInst *cloneImpl() const;
2158 
2159 public:
2160  static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
2161  const Twine &NameStr = "",
2162  Instruction *InsertBefore = nullptr) {
2163  return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
2164  }
2165 
2166  static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
2167  const Twine &NameStr,
2168  BasicBlock *InsertAtEnd) {
2169  return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
2170  }
2171 
2172  /// Return true if an insertelement instruction can be
2173  /// formed with the specified operands.
2174  static bool isValidOperands(const Value *Vec, const Value *NewElt,
2175  const Value *Idx);
2176 
2177  /// Overload to return most specific vector type.
2178  ///
2179  VectorType *getType() const {
2180  return cast<VectorType>(Instruction::getType());
2181  }
2182 
2183  /// Transparently provide more efficient getOperand methods.
2185 
2186  // Methods for support type inquiry through isa, cast, and dyn_cast:
2187  static bool classof(const Instruction *I) {
2188  return I->getOpcode() == Instruction::InsertElement;
2189  }
2190  static bool classof(const Value *V) {
2191  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2192  }
2193 };
2194 
2195 template <>
2197  public FixedNumOperandTraits<InsertElementInst, 3> {
2198 };
2199 
2200 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
2201 
2202 //===----------------------------------------------------------------------===//
2203 // ShuffleVectorInst Class
2204 //===----------------------------------------------------------------------===//
2205 
2206 /// This instruction constructs a fixed permutation of two
2207 /// input vectors.
2208 ///
2210 protected:
2211  // Note: Instruction needs to be a friend here to call cloneImpl.
2212  friend class Instruction;
2213 
2214  ShuffleVectorInst *cloneImpl() const;
2215 
2216 public:
2218  const Twine &NameStr = "",
2219  Instruction *InsertBefor = nullptr);
2221  const Twine &NameStr, BasicBlock *InsertAtEnd);
2222 
2223  // allocate space for exactly three operands
2224  void *operator new(size_t s) {
2225  return User::operator new(s, 3);
2226  }
2227 
2228  /// Return true if a shufflevector instruction can be
2229  /// formed with the specified operands.
2230  static bool isValidOperands(const Value *V1, const Value *V2,
2231  const Value *Mask);
2232 
2233  /// Overload to return most specific vector type.
2234  ///
2235  VectorType *getType() const {
2236  return cast<VectorType>(Instruction::getType());
2237  }
2238 
2239  /// Transparently provide more efficient getOperand methods.
2241 
2242  Constant *getMask() const {
2243  return cast<Constant>(getOperand(2));
2244  }
2245 
2246  /// Return the shuffle mask value for the specified element of the mask.
2247  /// Return -1 if the element is undef.
2248  static int getMaskValue(Constant *Mask, unsigned Elt);
2249 
2250  /// Return the shuffle mask value of this instruction for the given element
2251  /// index. Return -1 if the element is undef.
2252  int getMaskValue(unsigned Elt) const {
2253  return getMaskValue(getMask(), Elt);
2254  }
2255 
2256  /// Convert the input shuffle mask operand to a vector of integers. Undefined
2257  /// elements of the mask are returned as -1.
2258  static void getShuffleMask(Constant *Mask, SmallVectorImpl<int> &Result);
2259 
2260  /// Return the mask for this instruction as a vector of integers. Undefined
2261  /// elements of the mask are returned as -1.
2262  void getShuffleMask(SmallVectorImpl<int> &Result) const {
2263  return getShuffleMask(getMask(), Result);
2264  }
2265 
2268  getShuffleMask(Mask);
2269  return Mask;
2270  }
2271 
2272  /// Change values in a shuffle permute mask assuming the two vector operands
2273  /// of length InVecNumElts have swapped position.
2275  unsigned InVecNumElts) {
2276  for (int &Idx : Mask) {
2277  if (Idx == -1)
2278  continue;
2279  Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2280  assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2281  "shufflevector mask index out of range");
2282  }
2283  }
2284 
2285  // Methods for support type inquiry through isa, cast, and dyn_cast:
2286  static bool classof(const Instruction *I) {
2287  return I->getOpcode() == Instruction::ShuffleVector;
2288  }
2289  static bool classof(const Value *V) {
2290  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2291  }
2292 };
2293 
2294 template <>
2296  public FixedNumOperandTraits<ShuffleVectorInst, 3> {
2297 };
2298 
2299 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
2300 
2301 //===----------------------------------------------------------------------===//
2302 // ExtractValueInst Class
2303 //===----------------------------------------------------------------------===//
2304 
2305 /// This instruction extracts a struct member or array
2306 /// element value from an aggregate value.
2307 ///
2309  SmallVector<unsigned, 4> Indices;
2310 
2311  ExtractValueInst(const ExtractValueInst &EVI);
2312 
2313  /// Constructors - Create a extractvalue instruction with a base aggregate
2314  /// value and a list of indices. The first ctor can optionally insert before
2315  /// an existing instruction, the second appends the new instruction to the
2316  /// specified BasicBlock.
2317  inline ExtractValueInst(Value *Agg,
2318  ArrayRef<unsigned> Idxs,
2319  const Twine &NameStr,
2320  Instruction *InsertBefore);
2321  inline ExtractValueInst(Value *Agg,
2322  ArrayRef<unsigned> Idxs,
2323  const Twine &NameStr, BasicBlock *InsertAtEnd);
2324 
2325  void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2326 
2327 protected:
2328  // Note: Instruction needs to be a friend here to call cloneImpl.
2329  friend class Instruction;
2330 
2331  ExtractValueInst *cloneImpl() const;
2332 
2333 public:
2335  ArrayRef<unsigned> Idxs,
2336  const Twine &NameStr = "",
2337  Instruction *InsertBefore = nullptr) {
2338  return new
2339  ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2340  }
2341 
2343  ArrayRef<unsigned> Idxs,
2344  const Twine &NameStr,
2345  BasicBlock *InsertAtEnd) {
2346  return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2347  }
2348 
2349  /// Returns the type of the element that would be extracted
2350  /// with an extractvalue instruction with the specified parameters.
2351  ///
2352  /// Null is returned if the indices are invalid for the specified type.
2353  static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2354 
2355  using idx_iterator = const unsigned*;
2356 
2357  inline idx_iterator idx_begin() const { return Indices.begin(); }
2358  inline idx_iterator idx_end() const { return Indices.end(); }
2360  return make_range(idx_begin(), idx_end());
2361  }
2362 
2364  return getOperand(0);
2365  }
2366  const Value *getAggregateOperand() const {
2367  return getOperand(0);
2368  }
2369  static unsigned getAggregateOperandIndex() {
2370  return 0U; // get index for modifying correct operand
2371  }
2372 
2374  return Indices;
2375  }
2376 
2377  unsigned getNumIndices() const {
2378  return (unsigned)Indices.size();
2379  }
2380 
2381  bool hasIndices() const {
2382  return true;
2383  }
2384 
2385  // Methods for support type inquiry through isa, cast, and dyn_cast:
2386  static bool classof(const Instruction *I) {
2387  return I->getOpcode() == Instruction::ExtractValue;
2388  }
2389  static bool classof(const Value *V) {
2390  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2391  }
2392 };
2393 
2394 ExtractValueInst::ExtractValueInst(Value *Agg,
2395  ArrayRef<unsigned> Idxs,
2396  const Twine &NameStr,
2397  Instruction *InsertBefore)
2398  : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2399  ExtractValue, Agg, InsertBefore) {
2400  init(Idxs, NameStr);
2401 }
2402 
2403 ExtractValueInst::ExtractValueInst(Value *Agg,
2404  ArrayRef<unsigned> Idxs,
2405  const Twine &NameStr,
2406  BasicBlock *InsertAtEnd)
2407  : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2408  ExtractValue, Agg, InsertAtEnd) {
2409  init(Idxs, NameStr);
2410 }
2411 
2412 //===----------------------------------------------------------------------===//
2413 // InsertValueInst Class
2414 //===----------------------------------------------------------------------===//
2415 
2416 /// This instruction inserts a struct field of array element
2417 /// value into an aggregate value.
2418 ///
2420  SmallVector<unsigned, 4> Indices;
2421 
2422  InsertValueInst(const InsertValueInst &IVI);
2423 
2424  /// Constructors - Create a insertvalue instruction with a base aggregate
2425  /// value, a value to insert, and a list of indices. The first ctor can
2426  /// optionally insert before an existing instruction, the second appends
2427  /// the new instruction to the specified BasicBlock.
2428  inline InsertValueInst(Value *Agg, Value *Val,
2429  ArrayRef<unsigned> Idxs,
2430  const Twine &NameStr,
2431  Instruction *InsertBefore);
2432  inline InsertValueInst(Value *Agg, Value *Val,
2433  ArrayRef<unsigned> Idxs,
2434  const Twine &NameStr, BasicBlock *InsertAtEnd);
2435 
2436  /// Constructors - These two constructors are convenience methods because one
2437  /// and two index insertvalue instructions are so common.
2438  InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2439  const Twine &NameStr = "",
2440  Instruction *InsertBefore = nullptr);
2441  InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2442  BasicBlock *InsertAtEnd);
2443 
2444  void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2445  const Twine &NameStr);
2446 
2447 protected:
2448  // Note: Instruction needs to be a friend here to call cloneImpl.
2449  friend class Instruction;
2450 
2451  InsertValueInst *cloneImpl() const;
2452 
2453 public:
2454  // allocate space for exactly two operands
2455  void *operator new(size_t s) {
2456  return User::operator new(s, 2);
2457  }
2458 
2459  static InsertValueInst *Create(Value *Agg, Value *Val,
2460  ArrayRef<unsigned> Idxs,
2461  const Twine &NameStr = "",
2462  Instruction *InsertBefore = nullptr) {
2463  return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2464  }
2465 
2466  static InsertValueInst *Create(Value *Agg, Value *Val,
2467  ArrayRef<unsigned> Idxs,
2468  const Twine &NameStr,
2469  BasicBlock *InsertAtEnd) {
2470  return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2471  }
2472 
2473  /// Transparently provide more efficient getOperand methods.
2475 
2476  using idx_iterator = const unsigned*;
2477 
2478  inline idx_iterator idx_begin() const { return Indices.begin(); }
2479  inline idx_iterator idx_end() const { return Indices.end(); }
2481  return make_range(idx_begin(), idx_end());
2482  }
2483 
2485  return getOperand(0);
2486  }
2487  const Value *getAggregateOperand() const {
2488  return getOperand(0);
2489  }
2490  static unsigned getAggregateOperandIndex() {
2491  return 0U; // get index for modifying correct operand
2492  }
2493 
2495  return getOperand(1);
2496  }
2498  return getOperand(1);
2499  }
2500  static unsigned getInsertedValueOperandIndex() {
2501  return 1U; // get index for modifying correct operand
2502  }
2503 
2505  return Indices;
2506  }
2507 
2508  unsigned getNumIndices() const {
2509  return (unsigned)Indices.size();
2510  }
2511 
2512  bool hasIndices() const {
2513  return true;
2514  }
2515 
2516  // Methods for support type inquiry through isa, cast, and dyn_cast:
2517  static bool classof(const Instruction *I) {
2518  return I->getOpcode() == Instruction::InsertValue;
2519  }
2520  static bool classof(const Value *V) {
2521  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2522  }
2523 };
2524 
2525 template <>
2527  public FixedNumOperandTraits<InsertValueInst, 2> {
2528 };
2529 
2530 InsertValueInst::InsertValueInst(Value *Agg,
2531  Value *Val,
2532  ArrayRef<unsigned> Idxs,
2533  const Twine &NameStr,
2534  Instruction *InsertBefore)
2535  : Instruction(Agg->getType(), InsertValue,
2537  2, InsertBefore) {
2538  init(Agg, Val, Idxs, NameStr);
2539 }
2540 
2541 InsertValueInst::InsertValueInst(Value *Agg,
2542  Value *Val,
2543  ArrayRef<unsigned> Idxs,
2544  const Twine &NameStr,
2545  BasicBlock *InsertAtEnd)
2546  : Instruction(Agg->getType(), InsertValue,
2548  2, InsertAtEnd) {
2549  init(Agg, Val, Idxs, NameStr);
2550 }
2551 
2553 
2554 //===----------------------------------------------------------------------===//
2555 // PHINode Class
2556 //===----------------------------------------------------------------------===//
2557 
2558 // PHINode - The PHINode class is used to represent the magical mystical PHI
2559 // node, that can not exist in nature, but can be synthesized in a computer
2560 // scientist's overactive imagination.
2561 //
2562 class PHINode : public Instruction {
2563  /// The number of operands actually allocated. NumOperands is
2564  /// the number actually in use.
2565  unsigned ReservedSpace;
2566 
2567  PHINode(const PHINode &PN);
2568 
2569  explicit PHINode(Type *Ty, unsigned NumReservedValues,
2570  const Twine &NameStr = "",
2571  Instruction *InsertBefore = nullptr)
2572  : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2573  ReservedSpace(NumReservedValues) {
2574  setName(NameStr);
2575  allocHungoffUses(ReservedSpace);
2576  }
2577 
2578  PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2579  BasicBlock *InsertAtEnd)
2580  : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2581  ReservedSpace(NumReservedValues) {
2582  setName(NameStr);
2583  allocHungoffUses(ReservedSpace);
2584  }
2585 
2586 protected:
2587  // Note: Instruction needs to be a friend here to call cloneImpl.
2588  friend class Instruction;
2589 
2590  PHINode *cloneImpl() const;
2591 
2592  // allocHungoffUses - this is more complicated than the generic
2593  // User::allocHungoffUses, because we have to allocate Uses for the incoming
2594  // values and pointers to the incoming blocks, all in one allocation.
2595  void allocHungoffUses(unsigned N) {
2596  User::allocHungoffUses(N, /* IsPhi */ true);
2597  }
2598 
2599 public:
2600  /// Constructors - NumReservedValues is a hint for the number of incoming
2601  /// edges that this phi node will have (use 0 if you really have no idea).
2602  static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2603  const Twine &NameStr = "",
2604  Instruction *InsertBefore = nullptr) {
2605  return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2606  }
2607 
2608  static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2609  const Twine &NameStr, BasicBlock *InsertAtEnd) {
2610  return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2611  }
2612 
2613  /// Provide fast operand accessors
2615 
2616  // Block iterator interface. This provides access to the list of incoming
2617  // basic blocks, which parallels the list of incoming values.
2618 
2621 
2623  Use::UserRef *ref =
2624  reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2625  return reinterpret_cast<block_iterator>(ref + 1);
2626  }
2627 
2629  const Use::UserRef *ref =
2630  reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2631  return reinterpret_cast<const_block_iterator>(ref + 1);
2632  }
2633 
2635  return block_begin() + getNumOperands();
2636  }
2637 
2639  return block_begin() + getNumOperands();
2640  }
2641 
2643  return make_range(block_begin(), block_end());
2644  }
2645 
2647  return make_range(block_begin(), block_end());
2648  }
2649 
2651 
2653 
2654  /// Return the number of incoming edges
2655  ///
2656  unsigned getNumIncomingValues() const { return getNumOperands(); }
2657 
2658  /// Return incoming value number x
2659  ///
2660  Value *getIncomingValue(unsigned i) const {
2661  return getOperand(i);
2662  }
2663  void setIncomingValue(unsigned i, Value *V) {
2664  assert(V && "PHI node got a null value!");
2665  assert(getType() == V->getType() &&
2666  "All operands to PHI node must be the same type as the PHI node!");
2667  setOperand(i, V);
2668  }
2669 
2670  static unsigned getOperandNumForIncomingValue(unsigned i) {
2671  return i;
2672  }
2673 
2674  static unsigned getIncomingValueNumForOperand(unsigned i) {
2675  return i;
2676  }
2677 
2678  /// Return incoming basic block number @p i.
2679  ///
2680  BasicBlock *getIncomingBlock(unsigned i) const {
2681  return block_begin()[i];
2682  }
2683 
2684  /// Return incoming basic block corresponding
2685  /// to an operand of the PHI.
2686  ///
2687  BasicBlock *getIncomingBlock(const Use &U) const {
2688  assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2689  return getIncomingBlock(unsigned(&U - op_begin()));
2690  }
2691 
2692  /// Return incoming basic block corresponding
2693  /// to value use iterator.
2694  ///
2696  return getIncomingBlock(I.getUse());
2697  }
2698 
2699  void setIncomingBlock(unsigned i, BasicBlock *BB) {
2700  assert(BB && "PHI node got a null basic block!");
2701  block_begin()[i] = BB;
2702  }
2703 
2704  /// Add an incoming value to the end of the PHI list
2705  ///
2706  void addIncoming(Value *V, BasicBlock *BB) {
2707  if (getNumOperands() == ReservedSpace)
2708  growOperands(); // Get more space!
2709  // Initialize some new operands.
2711  setIncomingValue(getNumOperands() - 1, V);
2712  setIncomingBlock(getNumOperands() - 1, BB);
2713  }
2714 
2715  /// Remove an incoming value. This is useful if a
2716  /// predecessor basic block is deleted. The value removed is returned.
2717  ///
2718  /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2719  /// is true), the PHI node is destroyed and any uses of it are replaced with
2720  /// dummy values. The only time there should be zero incoming values to a PHI
2721  /// node is when the block is dead, so this strategy is sound.
2722  ///
2723  Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2724 
2725  Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2726  int Idx = getBasicBlockIndex(BB);
2727  assert(Idx >= 0 && "Invalid basic block argument to remove!");
2728  return removeIncomingValue(Idx, DeletePHIIfEmpty);
2729  }
2730 
2731  /// Return the first index of the specified basic
2732  /// block in the value list for this PHI. Returns -1 if no instance.
2733  ///
2734  int getBasicBlockIndex(const BasicBlock *BB) const {
2735  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2736  if (block_begin()[i] == BB)
2737  return i;
2738  return -1;
2739  }
2740 
2742  int Idx = getBasicBlockIndex(BB);
2743  assert(Idx >= 0 && "Invalid basic block argument!");
2744  return getIncomingValue(Idx);
2745  }
2746 
2747  /// If the specified PHI node always merges together the
2748  /// same value, return the value, otherwise return null.
2749  Value *hasConstantValue() const;
2750 
2751  /// Whether the specified PHI node always merges
2752  /// together the same value, assuming undefs are equal to a unique
2753  /// non-undef value.
2754  bool hasConstantOrUndefValue() const;
2755 
2756  /// Methods for support type inquiry through isa, cast, and dyn_cast:
2757  static bool classof(const Instruction *I) {
2758  return I->getOpcode() == Instruction::PHI;
2759  }
2760  static bool classof(const Value *V) {
2761  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2762  }
2763 
2764 private:
2765  void growOperands();
2766 };
2767 
2768 template <>
2770 };
2771 
2773 
2774 //===----------------------------------------------------------------------===//
2775 // LandingPadInst Class
2776 //===----------------------------------------------------------------------===//
2777 
2778 //===---------------------------------------------------------------------------
2779 /// The landingpad instruction holds all of the information
2780 /// necessary to generate correct exception handling. The landingpad instruction
2781 /// cannot be moved from the top of a landing pad block, which itself is
2782 /// accessible only from the 'unwind' edge of an invoke. This uses the
2783 /// SubclassData field in Value to store whether or not the landingpad is a
2784 /// cleanup.
2785 ///
2786 class LandingPadInst : public Instruction {
2787  /// The number of operands actually allocated. NumOperands is
2788  /// the number actually in use.
2789  unsigned ReservedSpace;
2790 
2791  LandingPadInst(const LandingPadInst &LP);
2792 
2793 public:
2795 
2796 private:
2797  explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2798  const Twine &NameStr, Instruction *InsertBefore);
2799  explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2800  const Twine &NameStr, BasicBlock *InsertAtEnd);
2801 
2802  // Allocate space for exactly zero operands.
2803  void *operator new(size_t s) {
2804  return User::operator new(s);
2805  }
2806 
2807  void growOperands(unsigned Size);
2808  void init(unsigned NumReservedValues, const Twine &NameStr);
2809 
2810 protected:
2811  // Note: Instruction needs to be a friend here to call cloneImpl.
2812  friend class Instruction;
2813 
2814  LandingPadInst *cloneImpl() const;
2815 
2816 public:
2817  /// Constructors - NumReservedClauses is a hint for the number of incoming
2818  /// clauses that this landingpad will have (use 0 if you really have no idea).
2819  static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2820  const Twine &NameStr = "",
2821  Instruction *InsertBefore = nullptr);
2822  static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2823  const Twine &NameStr, BasicBlock *InsertAtEnd);
2824 
2825  /// Provide fast operand accessors
2827 
2828  /// Return 'true' if this landingpad instruction is a
2829  /// cleanup. I.e., it should be run when unwinding even if its landing pad
2830  /// doesn't catch the exception.
2831  bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2832 
2833  /// Indicate that this landingpad instruction is a cleanup.
2834  void setCleanup(bool V) {
2835  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2836  (V ? 1 : 0));
2837  }
2838 
2839  /// Add a catch or filter clause to the landing pad.
2840  void addClause(Constant *ClauseVal);
2841 
2842  /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2843  /// determine what type of clause this is.
2844  Constant *getClause(unsigned Idx) const {
2845  return cast<Constant>(getOperandList()[Idx]);
2846  }
2847 
2848  /// Return 'true' if the clause and index Idx is a catch clause.
2849  bool isCatch(unsigned Idx) const {
2850  return !isa<ArrayType>(getOperandList()[Idx]->getType());
2851  }
2852 
2853  /// Return 'true' if the clause and index Idx is a filter clause.
2854  bool isFilter(unsigned Idx) const {
2855  return isa<ArrayType>(getOperandList()[Idx]->getType());
2856  }
2857 
2858  /// Get the number of clauses for this landing pad.
2859  unsigned getNumClauses() const { return getNumOperands(); }
2860 
2861  /// Grow the size of the operand list to accommodate the new
2862  /// number of clauses.
2863  void reserveClauses(unsigned Size) { growOperands(Size); }
2864 
2865  // Methods for support type inquiry through isa, cast, and dyn_cast:
2866  static bool classof(const Instruction *I) {
2867  return I->getOpcode() == Instruction::LandingPad;
2868  }
2869  static bool classof(const Value *V) {
2870  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2871  }
2872 };
2873 
2874 template <>
2876 };
2877 
2879 
2880 //===----------------------------------------------------------------------===//
2881 // ReturnInst Class
2882 //===----------------------------------------------------------------------===//
2883 
2884 //===---------------------------------------------------------------------------
2885 /// Return a value (possibly void), from a function. Execution
2886 /// does not continue in this function any longer.
2887 ///
2888 class ReturnInst : public TerminatorInst {
2889  ReturnInst(const ReturnInst &RI);
2890 
2891 private:
2892  // ReturnInst constructors:
2893  // ReturnInst() - 'ret void' instruction
2894  // ReturnInst( null) - 'ret void' instruction
2895  // ReturnInst(Value* X) - 'ret X' instruction
2896  // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2897  // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2898  // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2899  // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2900  //
2901  // NOTE: If the Value* passed is of type void then the constructor behaves as
2902  // if it was passed NULL.
2903  explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2904  Instruction *InsertBefore = nullptr);
2905  ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2906  explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2907 
2908 protected:
2909  // Note: Instruction needs to be a friend here to call cloneImpl.
2910  friend class Instruction;
2911 
2912  ReturnInst *cloneImpl() const;
2913 
2914 public:
2915  static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2916  Instruction *InsertBefore = nullptr) {
2917  return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2918  }
2919 
2920  static ReturnInst* Create(LLVMContext &C, Value *retVal,
2921  BasicBlock *InsertAtEnd) {
2922  return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2923  }
2924 
2925  static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2926  return new(0) ReturnInst(C, InsertAtEnd);
2927  }
2928 
2929  /// Provide fast operand accessors
2931 
2932  /// Convenience accessor. Returns null if there is no return value.
2934  return getNumOperands() != 0 ? getOperand(0) : nullptr;
2935  }
2936 
2937  unsigned getNumSuccessors() const { return 0; }
2938 
2939  // Methods for support type inquiry through isa, cast, and dyn_cast:
2940  static bool classof(const Instruction *I) {
2941  return (I->getOpcode() == Instruction::Ret);
2942  }
2943  static bool classof(const Value *V) {
2944  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2945  }
2946 
2947 private:
2948  friend TerminatorInst;
2949 
2950  BasicBlock *getSuccessor(unsigned idx) const {
2951  llvm_unreachable("ReturnInst has no successors!");
2952  }
2953 
2954  void setSuccessor(unsigned idx, BasicBlock *B) {
2955  llvm_unreachable("ReturnInst has no successors!");
2956  }
2957 };
2958 
2959 template <>
2960 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2961 };
2962 
2964 
2965 //===----------------------------------------------------------------------===//
2966 // BranchInst Class
2967 //===----------------------------------------------------------------------===//
2968 
2969 //===---------------------------------------------------------------------------
2970 /// Conditional or Unconditional Branch instruction.
2971 ///
2972 class BranchInst : public TerminatorInst {
2973  /// Ops list - Branches are strange. The operands are ordered:
2974  /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2975  /// they don't have to check for cond/uncond branchness. These are mostly
2976  /// accessed relative from op_end().
2977  BranchInst(const BranchInst &BI);
2978  // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2979  // BranchInst(BB *B) - 'br B'
2980  // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2981  // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2982  // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2983  // BranchInst(BB* B, BB *I) - 'br B' insert at end
2984  // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2985  explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2986  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2987  Instruction *InsertBefore = nullptr);
2988  BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2989  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2990  BasicBlock *InsertAtEnd);
2991 
2992  void AssertOK();
2993 
2994 protected:
2995  // Note: Instruction needs to be a friend here to call cloneImpl.
2996  friend class Instruction;
2997 
2998  BranchInst *cloneImpl() const;
2999 
3000 public:
3001  static BranchInst *Create(BasicBlock *IfTrue,
3002  Instruction *InsertBefore = nullptr) {
3003  return new(1) BranchInst(IfTrue, InsertBefore);
3004  }
3005 
3006  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3007  Value *Cond, Instruction *InsertBefore = nullptr) {
3008  return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3009  }
3010 
3011  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3012  return new(1) BranchInst(IfTrue, InsertAtEnd);
3013  }
3014 
3015  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3016  Value *Cond, BasicBlock *InsertAtEnd) {
3017  return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3018  }
3019 
3020  /// Transparently provide more efficient getOperand methods.
3022 
3023  bool isUnconditional() const { return getNumOperands() == 1; }
3024  bool isConditional() const { return getNumOperands() == 3; }
3025 
3026  Value *getCondition() const {
3027  assert(isConditional() && "Cannot get condition of an uncond branch!");
3028  return Op<-3>();
3029  }
3030 
3031  void setCondition(Value *V) {
3032  assert(isConditional() && "Cannot set condition of unconditional branch!");
3033  Op<-3>() = V;
3034  }
3035 
3036  unsigned getNumSuccessors() const { return 1+isConditional(); }
3037 
3038  BasicBlock *getSuccessor(unsigned i) const {
3039  assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3040  return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3041  }
3042 
3043  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3044  assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3045  *(&Op<-1>() - idx) = NewSucc;
3046  }
3047 
3048  /// Swap the successors of this branch instruction.
3049  ///
3050  /// Swaps the successors of the branch instruction. This also swaps any
3051  /// branch weight metadata associated with the instruction so that it
3052  /// continues to map correctly to each operand.
3053  void swapSuccessors();
3054 
3055  // Methods for support type inquiry through isa, cast, and dyn_cast:
3056  static bool classof(const Instruction *I) {
3057  return (I->getOpcode() == Instruction::Br);
3058  }
3059  static bool classof(const Value *V) {
3060  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3061  }
3062 };
3063 
3064 template <>
3065 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3066 };
3067 
3069 
3070 //===----------------------------------------------------------------------===//
3071 // SwitchInst Class
3072 //===----------------------------------------------------------------------===//
3073 
3074 //===---------------------------------------------------------------------------
3075 /// Multiway switch
3076 ///
3077 class SwitchInst : public TerminatorInst {
3078  unsigned ReservedSpace;
3079 
3080  // Operand[0] = Value to switch on
3081  // Operand[1] = Default basic block destination
3082  // Operand[2n ] = Value to match
3083  // Operand[2n+1] = BasicBlock to go to on match
3084  SwitchInst(const SwitchInst &SI);
3085 
3086  /// Create a new switch instruction, specifying a value to switch on and a
3087  /// default destination. The number of additional cases can be specified here
3088  /// to make memory allocation more efficient. This constructor can also
3089  /// auto-insert before another instruction.
3090  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3091  Instruction *InsertBefore);
3092 
3093  /// Create a new switch instruction, specifying a value to switch on and a
3094  /// default destination. The number of additional cases can be specified here
3095  /// to make memory allocation more efficient. This constructor also
3096  /// auto-inserts at the end of the specified BasicBlock.
3097  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3098  BasicBlock *InsertAtEnd);
3099 
3100  // allocate space for exactly zero operands
3101  void *operator new(size_t s) {
3102  return User::operator new(s);
3103  }
3104 
3105  void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3106  void growOperands();
3107 
3108 protected:
3109  // Note: Instruction needs to be a friend here to call cloneImpl.
3110  friend class Instruction;
3111 
3112  SwitchInst *cloneImpl() const;
3113 
3114 public:
3115  // -2
3116  static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3117 
3118  template <typename CaseHandleT> class CaseIteratorImpl;
3119 
3120  /// A handle to a particular switch case. It exposes a convenient interface
3121  /// to both the case value and the successor block.
3122  ///
3123  /// We define this as a template and instantiate it to form both a const and
3124  /// non-const handle.
3125  template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3127  // Directly befriend both const and non-const iterators.
3128  friend class SwitchInst::CaseIteratorImpl<
3129  CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3130 
3131  protected:
3132  // Expose the switch type we're parameterized with to the iterator.
3133  using SwitchInstType = SwitchInstT;
3134 
3135  SwitchInstT *SI;
3137 
3138  CaseHandleImpl() = default;
3139  CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3140 
3141  public:
3142  /// Resolves case value for current case.
3143  ConstantIntT *getCaseValue() const {
3144  assert((unsigned)Index < SI->getNumCases() &&
3145  "Index out the number of cases.");
3146  return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3147  }
3148 
3149  /// Resolves successor for current case.
3150  BasicBlockT *getCaseSuccessor() const {
3151  assert(((unsigned)Index < SI->getNumCases() ||
3152  (unsigned)Index == DefaultPseudoIndex) &&
3153  "Index out the number of cases.");
3154  return SI->getSuccessor(getSuccessorIndex());
3155  }
3156 
3157  /// Returns number of current case.
3158  unsigned getCaseIndex() const { return Index; }
3159 
3160  /// Returns TerminatorInst's successor index for current case successor.
3161  unsigned getSuccessorIndex() const {
3162  assert(((unsigned)Index == DefaultPseudoIndex ||
3163  (unsigned)Index < SI->getNumCases()) &&
3164  "Index out the number of cases.");
3165  return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3166  }
3167 
3168  bool operator==(const CaseHandleImpl &RHS) const {
3169  assert(SI == RHS.SI && "Incompatible operators.");
3170  return Index == RHS.Index;
3171  }
3172  };
3173 
3174  using ConstCaseHandle =
3176 
3178  : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3180 
3181  public:
3182  CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3183 
3184  /// Sets the new value for current case.
3186  assert((unsigned)Index < SI->getNumCases() &&
3187  "Index out the number of cases.");
3188  SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3189  }
3190 
3191  /// Sets the new successor for current case.
3193  SI->setSuccessor(getSuccessorIndex(), S);
3194  }
3195  };
3196 
3197  template <typename CaseHandleT>
3198  class CaseIteratorImpl
3199  : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3200  std::random_access_iterator_tag,
3201  CaseHandleT> {
3202  using SwitchInstT = typename CaseHandleT::SwitchInstType;
3203 
3204  CaseHandleT Case;
3205 
3206  public:
3207  /// Default constructed iterator is in an invalid state until assigned to
3208  /// a case for a particular switch.
3209  CaseIteratorImpl() = default;
3210 
3211  /// Initializes case iterator for given SwitchInst and for given
3212  /// case number.
3213  CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3214 
3215  /// Initializes case iterator for given SwitchInst and for given
3216  /// TerminatorInst's successor index.
3217  static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3218  unsigned SuccessorIndex) {
3219  assert(SuccessorIndex < SI->getNumSuccessors() &&
3220  "Successor index # out of range!");
3221  return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3222  : CaseIteratorImpl(SI, DefaultPseudoIndex);
3223  }
3224 
3225  /// Support converting to the const variant. This will be a no-op for const
3226  /// variant.
3228  return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3229  }
3230 
3232  // Check index correctness after addition.
3233  // Note: Index == getNumCases() means end().
3234  assert(Case.Index + N >= 0 &&
3235  (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3236  "Case.Index out the number of cases.");
3237  Case.Index += N;
3238  return *this;
3239  }
3241  // Check index correctness after subtraction.
3242  // Note: Case.Index == getNumCases() means end().
3243  assert(Case.Index - N >= 0 &&
3244  (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3245  "Case.Index out the number of cases.");
3246  Case.Index -= N;
3247  return *this;
3248  }
3250  assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3251  return Case.Index - RHS.Case.Index;
3252  }
3253  bool operator==(const CaseIteratorImpl &RHS) const {
3254  return Case == RHS.Case;
3255  }
3256  bool operator<(const CaseIteratorImpl &RHS) const {
3257  assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3258  return Case.Index < RHS.Case.Index;
3259  }
3260  CaseHandleT &operator*() { return Case; }
3261  const CaseHandleT &operator*() const { return Case; }
3262  };
3263 
3266 
3267  static SwitchInst *Create(Value *Value, BasicBlock *Default,
3268  unsigned NumCases,
3269  Instruction *InsertBefore = nullptr) {
3270  return new SwitchInst(Value, Default, NumCases, InsertBefore);
3271  }
3272 
3273  static SwitchInst *Create(Value *Value, BasicBlock *Default,
3274  unsigned NumCases, BasicBlock *InsertAtEnd) {
3275  return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3276  }
3277 
3278  /// Provide fast operand accessors
3280 
3281  // Accessor Methods for Switch stmt
3282  Value *getCondition() const { return getOperand(0); }
3283  void setCondition(Value *V) { setOperand(0, V); }
3284 
3286  return cast<BasicBlock>(getOperand(1));
3287  }
3288 
3289  void setDefaultDest(BasicBlock *DefaultCase) {
3290  setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3291  }
3292 
3293  /// Return the number of 'cases' in this switch instruction, excluding the
3294  /// default case.
3295  unsigned getNumCases() const {
3296  return getNumOperands()/2 - 1;
3297  }
3298 
3299  /// Returns a read/write iterator that points to the first case in the
3300  /// SwitchInst.
3302  return CaseIt(this, 0);
3303  }
3304 
3305  /// Returns a read-only iterator that points to the first case in the
3306  /// SwitchInst.
3308  return ConstCaseIt(this, 0);
3309  }
3310 
3311  /// Returns a read/write iterator that points one past the last in the
3312  /// SwitchInst.
3314  return CaseIt(this, getNumCases());
3315  }
3316 
3317  /// Returns a read-only iterator that points one past the last in the
3318  /// SwitchInst.
3320  return ConstCaseIt(this, getNumCases());
3321  }
3322 
3323  /// Iteration adapter for range-for loops.
3325  return make_range(case_begin(), case_end());
3326  }
3327 
3328  /// Constant iteration adapter for range-for loops.
3330  return make_range(case_begin(), case_end());
3331  }
3332 
3333  /// Returns an iterator that points to the default case.
3334  /// Note: this iterator allows to resolve successor only. Attempt
3335  /// to resolve case value causes an assertion.
3336  /// Also note, that increment and decrement also causes an assertion and
3337  /// makes iterator invalid.
3339  return CaseIt(this, DefaultPseudoIndex);
3340  }
3342  return ConstCaseIt(this, DefaultPseudoIndex);
3343  }
3344 
3345  /// Search all of the case values for the specified constant. If it is
3346  /// explicitly handled, return the case iterator of it, otherwise return
3347  /// default case iterator to indicate that it is handled by the default
3348  /// handler.
3351  cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3352  if (I != case_end())
3353  return I;
3354 
3355  return case_default();
3356  }
3358  ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3359  return Case.getCaseValue() == C;
3360  });
3361  if (I != case_end())
3362  return I;
3363 
3364  return case_default();
3365  }
3366 
3367  /// Finds the unique case value for a given successor. Returns null if the
3368  /// successor is not found, not unique, or is the default case.
3370  if (BB == getDefaultDest())
3371  return nullptr;
3372 
3373  ConstantInt *CI = nullptr;
3374  for (auto Case : cases()) {
3375  if (Case.getCaseSuccessor() != BB)
3376  continue;
3377 
3378  if (CI)
3379  return nullptr; // Multiple cases lead to BB.
3380 
3381  CI = Case.getCaseValue();
3382  }
3383 
3384  return CI;
3385  }
3386 
3387  /// Add an entry to the switch instruction.
3388  /// Note:
3389  /// This action invalidates case_end(). Old case_end() iterator will
3390  /// point to the added case.
3391  void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3392 
3393  /// This method removes the specified case and its successor from the switch
3394  /// instruction. Note that this operation may reorder the remaining cases at
3395  /// index idx and above.
3396  /// Note:
3397  /// This action invalidates iterators for all cases following the one removed,
3398  /// including the case_end() iterator. It returns an iterator for the next
3399  /// case.
3400  CaseIt removeCase(CaseIt I);
3401 
3402  unsigned getNumSuccessors() const { return getNumOperands()/2; }
3403  BasicBlock *getSuccessor(unsigned idx) const {
3404  assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3405  return cast<BasicBlock>(getOperand(idx*2+1));
3406  }
3407  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3408  assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3409  setOperand(idx * 2 + 1, NewSucc);
3410  }
3411 
3412  // Methods for support type inquiry through isa, cast, and dyn_cast:
3413  static bool classof(const Instruction *I) {
3414  return I->getOpcode() == Instruction::Switch;
3415  }
3416  static bool classof(const Value *V) {
3417  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3418  }
3419 };
3420 
3421 template <>
3423 };
3424 
3425 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
3426 
3427 //===----------------------------------------------------------------------===//
3428 // IndirectBrInst Class
3429 //===----------------------------------------------------------------------===//
3430 
3431 //===---------------------------------------------------------------------------
3432 /// Indirect Branch Instruction.
3433 ///
3435  unsigned ReservedSpace;
3436 
3437  // Operand[0] = Address to jump to
3438  // Operand[n+1] = n-th destination
3439  IndirectBrInst(const IndirectBrInst &IBI);
3440 
3441  /// Create a new indirectbr instruction, specifying an
3442  /// Address to jump to. The number of expected destinations can be specified
3443  /// here to make memory allocation more efficient. This constructor can also
3444  /// autoinsert before another instruction.
3445  IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3446 
3447  /// Create a new indirectbr instruction, specifying an
3448  /// Address to jump to. The number of expected destinations can be specified
3449  /// here to make memory allocation more efficient. This constructor also
3450  /// autoinserts at the end of the specified BasicBlock.
3451  IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3452 
3453  // allocate space for exactly zero operands
3454  void *operator new(size_t s) {
3455  return User::operator new(s);
3456  }
3457 
3458  void init(Value *Address, unsigned NumDests);
3459  void growOperands();
3460 
3461 protected:
3462  // Note: Instruction needs to be a friend here to call cloneImpl.
3463  friend class Instruction;
3464 
3465  IndirectBrInst *cloneImpl() const;
3466 
3467 public:
3468  static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3469  Instruction *InsertBefore = nullptr) {
3470  return new IndirectBrInst(Address, NumDests, InsertBefore);
3471  }
3472 
3473  static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3474  BasicBlock *InsertAtEnd) {
3475  return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3476  }
3477 
3478  /// Provide fast operand accessors.
3480 
3481  // Accessor Methods for IndirectBrInst instruction.
3482  Value *getAddress() { return getOperand(0); }
3483  const Value *getAddress() const { return getOperand(0); }
3484  void setAddress(Value *V) { setOperand(0, V); }
3485 
3486  /// return the number of possible destinations in this
3487  /// indirectbr instruction.
3488  unsigned getNumDestinations() const { return getNumOperands()-1; }
3489 
3490  /// Return the specified destination.
3491  BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3492  const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3493 
3494  /// Add a destination.
3495  ///
3496  void addDestination(BasicBlock *Dest);
3497 
3498  /// This method removes the specified successor from the
3499  /// indirectbr instruction.
3500  void removeDestination(unsigned i);
3501 
3502  unsigned getNumSuccessors() const { return getNumOperands()-1; }
3503  BasicBlock *getSuccessor(unsigned i) const {
3504  return cast<BasicBlock>(getOperand(i+1));
3505  }
3506  void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3507  setOperand(i + 1, NewSucc);
3508  }
3509 
3510  // Methods for support type inquiry through isa, cast, and dyn_cast:
3511  static bool classof(const Instruction *I) {
3512  return I->getOpcode() == Instruction::IndirectBr;
3513  }
3514  static bool classof(const Value *V) {
3515  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3516  }
3517 };
3518 
3519 template <>
3521 };
3522 
3523 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
3524 
3525 //===----------------------------------------------------------------------===//
3526 // InvokeInst Class
3527 //===----------------------------------------------------------------------===//
3528 
3529 /// Invoke instruction. The SubclassData field is used to hold the
3530 /// calling convention of the call.
3531 ///
3535 
3537  FunctionType *FTy;
3538 
3539  InvokeInst(const InvokeInst &BI);
3540 
3541  /// Construct an InvokeInst given a range of arguments.
3542  ///
3543  /// Construct an InvokeInst from a range of arguments
3544  inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
3545  ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles,
3546  unsigned Values, const Twine &NameStr,
3547  Instruction *InsertBefore)
3548  : InvokeInst(cast<FunctionType>(
3549  cast<PointerType>(Func->getType())->getElementType()),
3550  Func, IfNormal, IfException, Args, Bundles, Values, NameStr,
3551  InsertBefore) {}
3552 
3553  inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3554  BasicBlock *IfException, ArrayRef<Value *> Args,
3555  ArrayRef<OperandBundleDef> Bundles, unsigned Values,
3556  const Twine &NameStr, Instruction *InsertBefore);
3557  /// Construct an InvokeInst given a range of arguments.
3558  ///
3559  /// Construct an InvokeInst from a range of arguments
3560  inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
3562  unsigned Values, const Twine &NameStr,
3563  BasicBlock *InsertAtEnd);
3564 
3565  bool hasDescriptor() const { return HasDescriptor; }
3566 
3567  void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
3569  const Twine &NameStr) {
3570  init(cast<FunctionType>(
3571  cast<PointerType>(Func->getType())->getElementType()),
3572  Func, IfNormal, IfException, Args, Bundles, NameStr);
3573  }
3574 
3575  void init(FunctionType *FTy, Value *Func, BasicBlock *IfNormal,
3576  BasicBlock *IfException, ArrayRef<Value *> Args,
3577  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3578 
3579 protected:
3580  // Note: Instruction needs to be a friend here to call cloneImpl.
3581  friend class Instruction;
3582 
3583  InvokeInst *cloneImpl() const;
3584 
3585 public:
3586  static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3587  BasicBlock *IfException, ArrayRef<Value *> Args,
3588  const Twine &NameStr,
3589  Instruction *InsertBefore = nullptr) {
3590  return Create(cast<FunctionType>(
3591  cast<PointerType>(Func->getType())->getElementType()),
3592  Func, IfNormal, IfException, Args, None, NameStr,
3593  InsertBefore);
3594  }
3595 
3596  static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3597  BasicBlock *IfException, ArrayRef<Value *> Args,
3598  ArrayRef<OperandBundleDef> Bundles = None,
3599  const Twine &NameStr = "",
3600  Instruction *InsertBefore = nullptr) {
3601  return Create(cast<FunctionType>(
3602  cast<PointerType>(Func->getType())->getElementType()),
3603  Func, IfNormal, IfException, Args, Bundles, NameStr,
3604  InsertBefore);
3605  }
3606 
3607  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3608  BasicBlock *IfException, ArrayRef<Value *> Args,
3609  const Twine &NameStr,
3610  Instruction *InsertBefore = nullptr) {
3611  unsigned Values = unsigned(Args.size()) + 3;
3612  return new (Values) InvokeInst(Ty, Func, IfNormal, IfException, Args, None,
3613  Values, NameStr, InsertBefore);
3614  }
3615 
3616  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3617  BasicBlock *IfException, ArrayRef<Value *> Args,
3618  ArrayRef<OperandBundleDef> Bundles = None,
3619  const Twine &NameStr = "",
3620  Instruction *InsertBefore = nullptr) {
3621  unsigned Values = unsigned(Args.size()) + CountBundleInputs(Bundles) + 3;
3622  unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3623 
3624  return new (Values, DescriptorBytes)
3625  InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, Values,
3626  NameStr, InsertBefore);
3627  }
3628 
3629  static InvokeInst *Create(Value *Func,
3630  BasicBlock *IfNormal, BasicBlock *IfException,
3631  ArrayRef<Value *> Args, const Twine &NameStr,
3632  BasicBlock *InsertAtEnd) {
3633  unsigned Values = unsigned(Args.size()) + 3;
3634  return new (Values) InvokeInst(Func, IfNormal, IfException, Args, None,
3635  Values, NameStr, InsertAtEnd);
3636  }
3637 
3638  static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3639  BasicBlock *IfException, ArrayRef<Value *> Args,
3641  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3642  unsigned Values = unsigned(Args.size()) + CountBundleInputs(Bundles) + 3;
3643  unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3644 
3645  return new (Values, DescriptorBytes)
3646  InvokeInst(Func, IfNormal, IfException, Args, Bundles, Values, NameStr,
3647  InsertAtEnd);
3648  }
3649 
3650  /// Create a clone of \p II with a different set of operand bundles and
3651  /// insert it before \p InsertPt.
3652  ///
3653  /// The returned invoke instruction is identical to \p II in every way except
3654  /// that the operand bundles for the new instruction are set to the operand
3655  /// bundles in \p Bundles.
3656  static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3657  Instruction *InsertPt = nullptr);
3658 
3659  /// Provide fast operand accessors
3661 
3662  FunctionType *getFunctionType() const { return FTy; }
3663 
3665  mutateType(FTy->getReturnType());
3666  this->FTy = FTy;
3667  }
3668 
3669  /// Return the number of invoke arguments.
3670  ///
3671  unsigned getNumArgOperands() const {
3672  return getNumOperands() - getNumTotalBundleOperands() - 3;
3673  }
3674 
3675  /// getArgOperand/setArgOperand - Return/set the i-th invoke argument.
3676  ///
3677  Value *getArgOperand(unsigned i) const {
3678  assert(i < getNumArgOperands() && "Out of bounds!");
3679  return getOperand(i);
3680  }
3681  void setArgOperand(unsigned i, Value *v) {
3682  assert(i < getNumArgOperands() && "Out of bounds!");
3683  setOperand(i, v);
3684  }
3685 
3686  /// Return the iterator pointing to the beginning of the argument list.
3688 
3689  /// Return the iterator pointing to the end of the argument list.
3691  // [ invoke args ], [ operand bundles ], normal dest, unwind dest, callee
3692  return op_end() - getNumTotalBundleOperands() - 3;
3693  }
3694 
3695  /// Iteration adapter for range-for loops.
3697  return make_range(arg_begin(), arg_end());
3698  }
3699 
3700  /// Return the iterator pointing to the beginning of the argument list.
3701  const_op_iterator arg_begin() const { return op_begin(); }
3702 
3703  /// Return the iterator pointing to the end of the argument list.
3705  // [ invoke args ], [ operand bundles ], normal dest, unwind dest, callee
3706  return op_end() - getNumTotalBundleOperands() - 3;
3707  }
3708 
3709  /// Iteration adapter for range-for loops.
3711  return make_range(arg_begin(), arg_end());
3712  }
3713 
3714  /// Wrappers for getting the \c Use of a invoke argument.
3715  const Use &getArgOperandUse(unsigned i) const {
3716  assert(i < getNumArgOperands() && "Out of bounds!");
3717  return getOperandUse(i);
3718  }
3719  Use &getArgOperandUse(unsigned i) {
3720  assert(i < getNumArgOperands() && "Out of bounds!");
3721  return getOperandUse(i);
3722  }
3723 
3724  /// If one of the arguments has the 'returned' attribute, return its
3725  /// operand value. Otherwise, return nullptr.
3726  Value *getReturnedArgOperand() const;
3727 
3728  /// getCallingConv/setCallingConv - Get or set the calling convention of this
3729  /// function call.
3731  return static_cast<CallingConv::ID>(getSubclassDataFromInstruction());
3732  }
3734  auto ID = static_cast<unsigned>(CC);
3735  assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention");
3736  setInstructionSubclassData(ID);
3737  }
3738 
3739  /// Return the parameter attributes for this invoke.
3740  ///
3741  AttributeList getAttributes() const { return Attrs; }
3742 
3743  /// Set the parameter attributes for this invoke.
3744  ///
3746 
3747  /// adds the attribute to the list of attributes.
3748  void addAttribute(unsigned i, Attribute::AttrKind Kind);
3749 
3750  /// adds the attribute to the list of attributes.
3751  void addAttribute(unsigned i, Attribute Attr);
3752 
3753  /// Adds the attribute to the indicated argument
3754  void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind);
3755 
3756  /// removes the attribute from the list of attributes.
3757  void removeAttribute(unsigned i, Attribute::AttrKind Kind);
3758 
3759  /// removes the attribute from the list of attributes.
3760  void removeAttribute(unsigned i, StringRef Kind);
3761 
3762  /// Removes the attribute from the given argument
3763  void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind);
3764 
3765  /// adds the dereferenceable attribute to the list of attributes.
3766  void addDereferenceableAttr(unsigned i, uint64_t Bytes);
3767 
3768  /// adds the dereferenceable_or_null attribute to the list of
3769  /// attributes.
3770  void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes);
3771 
3772  /// Determine whether this call has the given attribute.
3773  bool hasFnAttr(Attribute::AttrKind Kind) const {
3774  assert(Kind != Attribute::NoBuiltin &&
3775  "Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin");
3776  return hasFnAttrImpl(Kind);
3777  }
3778 
3779  /// Determine whether this call has the given attribute.
3780  bool hasFnAttr(StringRef Kind) const {
3781  return hasFnAttrImpl(Kind);
3782  }
3783 
3784  /// Determine whether the return value has the given attribute.
3785  bool hasRetAttr(Attribute::AttrKind Kind) const;
3786 
3787  /// Determine whether the argument or parameter has the given attribute.
3788  bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const;
3789 
3790  /// Get the attribute of a given kind at a position.
3791  Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
3792  return getAttributes().getAttribute(i, Kind);
3793  }
3794 
3795  /// Get the attribute of a given kind at a position.
3796  Attribute getAttribute(unsigned i, StringRef Kind) const {
3797  return getAttributes().getAttribute(i, Kind);
3798  }
3799 
3800  /// Return true if the data operand at index \p i has the attribute \p
3801  /// A.
3802  ///
3803  /// Data operands include invoke arguments and values used in operand bundles,
3804  /// but does not include the invokee operand, or the two successor blocks.
3805  /// This routine dispatches to the underlying AttributeList or the
3806  /// OperandBundleUser as appropriate.
3807  ///
3808  /// The index \p i is interpreted as
3809  ///
3810  /// \p i == Attribute::ReturnIndex -> the return value
3811  /// \p i in [1, arg_size + 1) -> argument number (\p i - 1)
3812  /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index
3813  /// (\p i - 1) in the operand list.
3814  bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const;
3815 
3816  /// Extract the alignment of the return value.
3817  unsigned getRetAlignment() const { return Attrs.getRetAlignment(); }
3818 
3819  /// Extract the alignment for a call or parameter (0=unknown).
3820  unsigned getParamAlignment(unsigned ArgNo) const {
3821  return Attrs.getParamAlignment(ArgNo);
3822  }
3823 
3824  /// Extract the number of dereferenceable bytes for a call or
3825  /// parameter (0=unknown).
3826  uint64_t getDereferenceableBytes(unsigned i) const {
3827  return Attrs.getDereferenceableBytes(i);
3828  }
3829 
3830  /// Extract the number of dereferenceable_or_null bytes for a call or
3831  /// parameter (0=unknown).
3832  uint64_t getDereferenceableOrNullBytes(unsigned i) const {
3833  return Attrs.getDereferenceableOrNullBytes(i);
3834  }
3835 
3836  /// @brief Determine if the return value is marked with NoAlias attribute.
3837  bool returnDoesNotAlias() const {
3838  return Attrs.hasAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
3839  }
3840 
3841  /// Return true if the call should not be treated as a call to a
3842  /// builtin.
3843  bool isNoBuiltin() const {
3844  // We assert in hasFnAttr if one passes in Attribute::NoBuiltin, so we have
3845  // to check it by hand.
3846  return hasFnAttrImpl(Attribute::NoBuiltin) &&
3847  !hasFnAttrImpl(Attribute::Builtin);
3848  }
3849 
3850  /// Determine if the call requires strict floating point semantics.
3851  bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); }
3852 
3853  /// Return true if the call should not be inlined.
3854  bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
3855  void setIsNoInline() {
3856  addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
3857  }
3858 
3859  /// Determine if the call does not access memory.
3860  bool doesNotAccessMemory() const {
3861  return hasFnAttr(Attribute::ReadNone);
3862  }
3864  addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
3865  }
3866 
3867  /// Determine if the call does not access or only reads memory.
3868  bool onlyReadsMemory() const {
3869  return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
3870  }
3872  addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
3873  }
3874 
3875  /// Determine if the call does not access or only writes memory.
3876  bool doesNotReadMemory() const {
3877  return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly);
3878  }
3880  addAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly);
3881  }
3882 
3883  /// @brief Determine if the call access memmory only using it's pointer
3884  /// arguments.
3885  bool onlyAccessesArgMemory() const {
3886  return hasFnAttr(Attribute::ArgMemOnly);
3887  }
3889  addAttribute(AttributeList::FunctionIndex, Attribute::ArgMemOnly);
3890  }
3891 
3892  /// Determine if the call cannot return.
3893  bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
3895  addAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
3896  }
3897 
3898  /// Determine if the call cannot unwind.
3899  bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
3901  addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
3902  }
3903 
3904  /// Determine if the invoke cannot be duplicated.
3905  bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); }
3907  addAttribute(AttributeList::FunctionIndex, Attribute::NoDuplicate);
3908  }
3909 
3910  /// Determine if the invoke is convergent
3911  bool isConvergent() const { return hasFnAttr(Attribute::Convergent); }
3912  void setConvergent() {
3914  }
3917  }
3918 
3919  /// Determine if the call returns a structure through first
3920  /// pointer argument.
3921  bool hasStructRetAttr() const {
3922  if (getNumArgOperands() == 0)
3923  return false;
3924 
3925  // Be friendly and also check the callee.
3926  return paramHasAttr(0, Attribute::StructRet);
3927  }
3928 
3929  /// Determine if any call argument is an aggregate passed by value.
3930  bool hasByValArgument() const {
3931  return Attrs.hasAttrSomewhere(Attribute::ByVal);
3932  }
3933 
3934  /// Return the function called, or null if this is an
3935  /// indirect function invocation.
3936  ///
3938  return dyn_cast<Function>(Op<-3>());
3939  }
3940 
3941  /// Get a pointer to the function that is invoked by this
3942  /// instruction
3943  const Value *getCalledValue() const { return Op<-3>(); }
3944  Value *getCalledValue() { return Op<-3>(); }
3945 
3946  /// Set the function called.
3947  void setCalledFunction(Value* Fn) {
3948  setCalledFunction(
3949  cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()),
3950  Fn);
3951  }
3952  void setCalledFunction(FunctionType *FTy, Value *Fn) {
3953  this->FTy = FTy;
3954  assert(FTy == cast<FunctionType>(
3955  cast<PointerType>(Fn->getType())->getElementType()));
3956  Op<-3>() = Fn;
3957  }
3958 
3959  // get*Dest - Return the destination basic blocks...
3961  return cast<BasicBlock>(Op<-2>());
3962  }
3964  return cast<BasicBlock>(Op<-1>());
3965  }
3967  Op<-2>() = reinterpret_cast<Value*>(B);
3968  }
3970  Op<-1>() = reinterpret_cast<Value*>(B);
3971  }
3972 
3973  /// Get the landingpad instruction from the landing pad
3974  /// block (the unwind destination).
3975  LandingPadInst *getLandingPadInst() const;
3976 
3977  BasicBlock *getSuccessor(unsigned i) const {
3978  assert(i < 2 && "Successor # out of range for invoke!");
3979  return i == 0 ? getNormalDest() : getUnwindDest();
3980  }
3981 
3982  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3983  assert(idx < 2 && "Successor # out of range for invoke!");
3984  *(&Op<-2>() + idx) = reinterpret_cast<Value*>(NewSucc);
3985  }
3986 
3987  unsigned getNumSuccessors() const { return 2; }
3988 
3989  // Methods for support type inquiry through isa, cast, and dyn_cast:
3990  static bool classof(const Instruction *I) {
3991  return (I->getOpcode() == Instruction::Invoke);
3992  }
3993  static bool classof(const Value *V) {
3994  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3995  }
3996 
3997 private:
3998  template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const {
3999  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Kind))
4000  return true;
4001 
4002  // Operand bundles override attributes on the called function, but don't
4003  // override attributes directly present on the invoke instruction.
4004  if (isFnAttrDisallowedByOpBundle(Kind))
4005  return false;
4006 
4007  if (const Function *F = getCalledFunction())
4008  return F->getAttributes().hasAttribute(AttributeList::FunctionIndex,
4009  Kind);
4010  return false;
4011  }
4012 
4013  // Shadow Instruction::setInstructionSubclassData with a private forwarding
4014  // method so that subclasses cannot accidentally use it.
4015  void setInstructionSubclassData(unsigned short D) {
4017  }
4018 };
4019 
4020 template <>
4021 struct OperandTraits<InvokeInst> : public VariadicOperandTraits<InvokeInst, 3> {
4022 };
4023 
4024 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
4025  BasicBlock *IfException, ArrayRef<Value *> Args,
4026  ArrayRef<OperandBundleDef> Bundles, unsigned Values,
4027  const Twine &NameStr, Instruction *InsertBefore)
4028  : TerminatorInst(Ty->getReturnType(), Instruction::Invoke,
4029  OperandTraits<InvokeInst>::op_end(this) - Values, Values,
4030  InsertBefore) {
4031  init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
4032 }
4033 
4034 InvokeInst::InvokeInst(Value *Func, BasicBlock *IfNormal,
4035  BasicBlock *IfException, ArrayRef<Value *> Args,
4036  ArrayRef<OperandBundleDef> Bundles, unsigned Values,
4037  const Twine &NameStr, BasicBlock *InsertAtEnd)
4038  : TerminatorInst(
4039  cast<FunctionType>(cast<PointerType>(Func->getType())
4040  ->getElementType())->getReturnType(),
4041  Instruction::Invoke, OperandTraits<InvokeInst>::op_end(this) - Values,
4042  Values, InsertAtEnd) {
4043  init(Func, IfNormal, IfException, Args, Bundles, NameStr);
4044 }
4045 
4046 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value)
4047 
4048 //===----------------------------------------------------------------------===//
4049 // ResumeInst Class
4050 //===----------------------------------------------------------------------===//
4051 
4052 //===---------------------------------------------------------------------------
4053 /// Resume the propagation of an exception.
4054 ///
4055 class ResumeInst : public TerminatorInst {
4056  ResumeInst(const ResumeInst &RI);
4057 
4058  explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4059  ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4060 
4061 protected:
4062  // Note: Instruction needs to be a friend here to call cloneImpl.
4063  friend class Instruction;
4064 
4065  ResumeInst *cloneImpl() const;
4066 
4067 public:
4068  static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4069  return new(1) ResumeInst(Exn, InsertBefore);
4070  }
4071 
4072  static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4073  return new(1) ResumeInst(Exn, InsertAtEnd);
4074  }
4075 
4076  /// Provide fast operand accessors
4078 
4079  /// Convenience accessor.
4080  Value *getValue() const { return Op<0>(); }
4081 
4082  unsigned getNumSuccessors() const { return 0; }
4083 
4084  // Methods for support type inquiry through isa, cast, and dyn_cast:
4085  static bool classof(const Instruction *I) {
4086  return I->getOpcode() == Instruction::Resume;
4087  }
4088  static bool classof(const Value *V) {
4089  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4090  }
4091 
4092 private:
4093  friend TerminatorInst;
4094 
4095  BasicBlock *getSuccessor(unsigned idx) const {
4096  llvm_unreachable("ResumeInst has no successors!");
4097  }
4098 
4099  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4100  llvm_unreachable("ResumeInst has no successors!");
4101  }
4102 };
4103 
4104 template <>
4106  public FixedNumOperandTraits<ResumeInst, 1> {
4107 };
4108 
4109 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
4110 
4111 //===----------------------------------------------------------------------===//
4112 // CatchSwitchInst Class
4113 //===----------------------------------------------------------------------===//
4115  /// The number of operands actually allocated. NumOperands is
4116  /// the number actually in use.
4117  unsigned ReservedSpace;
4118 
4119  // Operand[0] = Outer scope
4120  // Operand[1] = Unwind block destination
4121  // Operand[n] = BasicBlock to go to on match
4122  CatchSwitchInst(const CatchSwitchInst &CSI);
4123 
4124  /// Create a new switch instruction, specifying a
4125  /// default destination. The number of additional handlers can be specified
4126  /// here to make memory allocation more efficient.
4127  /// This constructor can also autoinsert before another instruction.
4128  CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4129  unsigned NumHandlers, const Twine &NameStr,
4130  Instruction *InsertBefore);
4131 
4132  /// Create a new switch instruction, specifying a
4133  /// default destination. The number of additional handlers can be specified
4134  /// here to make memory allocation more efficient.
4135  /// This constructor also autoinserts at the end of the specified BasicBlock.
4136  CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4137  unsigned NumHandlers, const Twine &NameStr,
4138  BasicBlock *InsertAtEnd);
4139 
4140  // allocate space for exactly zero operands
4141  void *operator new(size_t s) { return User::operator new(s); }
4142 
4143  void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4144  void growOperands(unsigned Size);
4145 
4146 protected:
4147  // Note: Instruction needs to be a friend here to call cloneImpl.
4148  friend class Instruction;
4149 
4150  CatchSwitchInst *cloneImpl() const;
4151 
4152 public:
4153  static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4154  unsigned NumHandlers,
4155  const Twine &NameStr = "",
4156  Instruction *InsertBefore = nullptr) {
4157  return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4158  InsertBefore);
4159  }
4160 
4161  static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4162  unsigned NumHandlers, const Twine &NameStr,
4163  BasicBlock *InsertAtEnd) {
4164  return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4165  InsertAtEnd);
4166  }
4167 
4168  /// Provide fast operand accessors
4170 
4171  // Accessor Methods for CatchSwitch stmt
4172  Value *getParentPad() const { return getOperand(0); }
4173  void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4174 
4175  // Accessor Methods for CatchSwitch stmt
4176  bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4177  bool unwindsToCaller() const { return !hasUnwindDest(); }
4179  if (hasUnwindDest())
4180  return cast<BasicBlock>(getOperand(1));
4181  return nullptr;
4182  }
4183  void setUnwindDest(BasicBlock *UnwindDest) {
4184  assert(UnwindDest);
4185  assert(hasUnwindDest());
4186  setOperand(1, UnwindDest);
4187  }
4188 
4189  /// return the number of 'handlers' in this catchswitch
4190  /// instruction, except the default handler
4191  unsigned getNumHandlers() const {
4192  if (hasUnwindDest())
4193  return getNumOperands() - 2;
4194  return getNumOperands() - 1;
4195  }
4196 
4197 private:
4198  static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4199  static const BasicBlock *handler_helper(const Value *V) {
4200  return cast<BasicBlock>(V);
4201  }
4202 
4203 public:
4204  using DerefFnTy = BasicBlock *(*)(Value *);
4207  using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4208  using const_handler_iterator =
4211 
4212  /// Returns an iterator that points to the first handler in CatchSwitchInst.
4214  op_iterator It = op_begin() + 1;
4215  if (hasUnwindDest())
4216  ++It;
4217  return handler_iterator(It, DerefFnTy(handler_helper));
4218  }
4219 
4220  /// Returns an iterator that points to the first handler in the
4221  /// CatchSwitchInst.
4222  const_handler_iterator handler_begin() const {
4223  const_op_iterator It = op_begin() + 1;
4224  if (hasUnwindDest())
4225  ++It;
4226  return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4227  }
4228 
4229  /// Returns a read-only iterator that points one past the last
4230  /// handler in the CatchSwitchInst.
4232  return handler_iterator(op_end(), DerefFnTy(handler_helper));
4233  }
4234 
4235  /// Returns an iterator that points one past the last handler in the
4236  /// CatchSwitchInst.
4237  const_handler_iterator handler_end() const {
4238  return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4239  }
4240 
4241  /// iteration adapter for range-for loops.
4243  return make_range(handler_begin(), handler_end());
4244  }
4245 
4246  /// iteration adapter for range-for loops.
4248  return make_range(handler_begin(), handler_end());
4249  }
4250 
4251  /// Add an entry to the switch instruction...
4252  /// Note:
4253  /// This action invalidates handler_end(). Old handler_end() iterator will
4254  /// point to the added handler.
4255  void addHandler(BasicBlock *Dest);
4256 
4257  void removeHandler(handler_iterator HI);
4258 
4259  unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4260  BasicBlock *getSuccessor(unsigned Idx) const {
4261  assert(Idx < getNumSuccessors() &&
4262  "Successor # out of range for catchswitch!");
4263  return cast<BasicBlock>(getOperand(Idx + 1));
4264  }
4265  void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4266  assert(Idx < getNumSuccessors() &&
4267  "Successor # out of range for catchswitch!");
4268  setOperand(Idx + 1, NewSucc);
4269  }
4270 
4271  // Methods for support type inquiry through isa, cast, and dyn_cast:
4272  static bool classof(const Instruction *I) {
4273  return I->getOpcode() == Instruction::CatchSwitch;
4274  }
4275  static bool classof(const Value *V) {
4276  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4277  }
4278 };
4279 
4280 template <>
4282 
4283 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
4284 
4285 //===----------------------------------------------------------------------===//
4286 // CleanupPadInst Class
4287 //===----------------------------------------------------------------------===//
4289 private:
4290  explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4291  unsigned Values, const Twine &NameStr,
4292  Instruction *InsertBefore)
4293  : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4294  NameStr, InsertBefore) {}
4295  explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4296  unsigned Values, const Twine &NameStr,
4297  BasicBlock *InsertAtEnd)
4298  : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4299  NameStr, InsertAtEnd) {}
4300 
4301 public:
4302  static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4303  const Twine &NameStr = "",
4304  Instruction *InsertBefore = nullptr) {
4305  unsigned Values = 1 + Args.size();
4306  return new (Values)
4307  CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4308  }
4309 
4310  static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4311  const Twine &NameStr, BasicBlock *InsertAtEnd) {
4312  unsigned Values = 1 + Args.size();
4313  return new (Values)
4314  CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4315  }
4316 
4317  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4318  static bool classof(const Instruction *I) {
4319  return I->getOpcode() == Instruction::CleanupPad;
4320  }
4321  static bool classof(const Value *V) {
4322  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4323  }
4324 };
4325 
4326 //===----------------------------------------------------------------------===//
4327 // CatchPadInst Class
4328 //===----------------------------------------------------------------------===//
4330 private:
4331  explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4332  unsigned Values, const Twine &NameStr,
4333  Instruction *InsertBefore)
4334  : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4335  NameStr, InsertBefore) {}
4336  explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4337  unsigned Values, const Twine &NameStr,
4338  BasicBlock *InsertAtEnd)
4339  : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4340  NameStr, InsertAtEnd) {}
4341 
4342 public:
4343  static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4344  const Twine &NameStr = "",
4345  Instruction *InsertBefore = nullptr) {
4346  unsigned Values = 1 + Args.size();
4347  return new (Values)
4348  CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4349  }
4350 
4351  static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4352  const Twine &NameStr, BasicBlock *InsertAtEnd) {
4353  unsigned Values = 1 + Args.size();
4354  return new (Values)
4355  CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4356  }
4357 
4358  /// Convenience accessors
4359  CatchSwitchInst *getCatchSwitch() const {
4360  return cast<CatchSwitchInst>(Op<-1>());
4361  }
4362  void setCatchSwitch(Value *CatchSwitch) {
4363  assert(CatchSwitch);
4364  Op<-1>() = CatchSwitch;
4365  }
4366 
4367  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4368  static bool classof(const Instruction *I) {
4369  return I->getOpcode() == Instruction::CatchPad;
4370  }
4371  static bool classof(const Value *V) {
4372  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4373  }
4374 };
4375 
4376 //===----------------------------------------------------------------------===//
4377 // CatchReturnInst Class
4378 //===----------------------------------------------------------------------===//
4379 
4381  CatchReturnInst(const CatchReturnInst &RI);
4382  CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4383  CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4384 
4385  void init(Value *CatchPad, BasicBlock *BB);
4386 
4387 protected:
4388  // Note: Instruction needs to be a friend here to call cloneImpl.
4389  friend class Instruction;
4390 
4391  CatchReturnInst *cloneImpl() const;
4392 
4393 public:
4394  static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4395  Instruction *InsertBefore = nullptr) {
4396  assert(CatchPad);
4397  assert(BB);
4398  return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4399  }
4400 
4401  static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4402  BasicBlock *InsertAtEnd) {
4403  assert(CatchPad);
4404  assert(BB);
4405  return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4406  }
4407 
4408  /// Provide fast operand accessors
4410 
4411  /// Convenience accessors.
4412  CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4413  void setCatchPad(CatchPadInst *CatchPad) {
4414  assert(CatchPad);
4415  Op<0>() = CatchPad;
4416  }
4417 
4418  BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4419  void setSuccessor(BasicBlock *NewSucc) {
4420  assert(NewSucc);
4421  Op<1>() = NewSucc;
4422  }
4423  unsigned getNumSuccessors() const { return 1; }
4424 
4425  /// Get the parentPad of this catchret's catchpad's catchswitch.
4426  /// The successor block is implicitly a member of this funclet.
4427  Value *getCatchSwitchParentPad() const {
4428  return getCatchPad()->getCatchSwitch()->getParentPad();
4429  }
4430 
4431  // Methods for support type inquiry through isa, cast, and dyn_cast:
4432  static bool classof(const Instruction *I) {
4433  return (I->getOpcode() == Instruction::CatchRet);
4434  }
4435  static bool classof(const Value *V) {
4436  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4437  }
4438 
4439 private:
4440  friend TerminatorInst;
4441 
4442  BasicBlock *getSuccessor(unsigned Idx) const {
4443  assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4444  return getSuccessor();
4445  }
4446 
4447  void setSuccessor(unsigned Idx, BasicBlock *B) {
4448  assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4449  setSuccessor(B);
4450  }
4451 };
4452 
4453 template <>
4455  : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4456 
4457 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
4458 
4459 //===----------------------------------------------------------------------===//
4460 // CleanupReturnInst Class
4461 //===----------------------------------------------------------------------===//
4462 
4464 private:
4466  CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4467  Instruction *InsertBefore = nullptr);
4468  CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4469  BasicBlock *InsertAtEnd);
4470 
4471  void init(Value *CleanupPad, BasicBlock *UnwindBB);
4472 
4473 protected:
4474  // Note: Instruction needs to be a friend here to call cloneImpl.
4475  friend class Instruction;
4476 
4477  CleanupReturnInst *cloneImpl() const;
4478 
4479 public:
4480  static CleanupReturnInst *Create(Value *CleanupPad,
4481  BasicBlock *UnwindBB = nullptr,
4482  Instruction *InsertBefore = nullptr) {
4483  assert(CleanupPad);
4484  unsigned Values = 1;
4485  if (UnwindBB)
4486  ++Values;
4487  return new (Values)
4488  CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4489  }
4490 
4491  static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4492  BasicBlock *InsertAtEnd) {
4493  assert(CleanupPad);
4494  unsigned Values = 1;
4495  if (UnwindBB)
4496  ++Values;
4497  return new (Values)
4498  CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4499  }
4500 
4501  /// Provide fast operand accessors
4503 
4504  bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4505  bool unwindsToCaller() const { return !hasUnwindDest(); }
4506 
4507  /// Convenience accessor.
4509  return cast<CleanupPadInst>(Op<0>());
4510  }
4511  void setCleanupPad(CleanupPadInst *CleanupPad) {
4512  assert(CleanupPad);
4513  Op<0>() = CleanupPad;
4514  }
4515 
4516  unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4517 
4519  return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4520  }
4521  void setUnwindDest(BasicBlock *NewDest) {
4522  assert(NewDest);
4523  assert(hasUnwindDest());
4524  Op<1>() = NewDest;
4525  }
4526 
4527  // Methods for support type inquiry through isa, cast, and dyn_cast:
4528  static bool classof(const Instruction *I) {
4529  return (I->getOpcode() == Instruction::CleanupRet);
4530  }
4531  static bool classof(const Value *V) {
4532  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4533  }
4534 
4535 private:
4536  friend TerminatorInst;
4537 
4538  BasicBlock *getSuccessor(unsigned Idx) const {
4539  assert(Idx == 0);
4540  return getUnwindDest();
4541  }
4542 
4543  void setSuccessor(unsigned Idx, BasicBlock *B) {
4544  assert(Idx == 0);
4545  setUnwindDest(B);
4546  }
4547 
4548  // Shadow Instruction::setInstructionSubclassData with a private forwarding
4549  // method so that subclasses cannot accidentally use it.
4550  void setInstructionSubclassData(unsigned short D) {
4552  }
4553 };
4554 
4555 template <>
4557  : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4558 
4559 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
4560 
4561 //===----------------------------------------------------------------------===//
4562 // UnreachableInst Class
4563 //===----------------------------------------------------------------------===//
4564 
4565 //===---------------------------------------------------------------------------
4566 /// This function has undefined behavior. In particular, the
4567 /// presence of this instruction indicates some higher level knowledge that the
4568 /// end of the block cannot be reached.
4569 ///
4571 protected:
4572  // Note: Instruction needs to be a friend here to call cloneImpl.
4573  friend class Instruction;
4574 
4575  UnreachableInst *cloneImpl() const;
4576 
4577 public:
4578  explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4579  explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4580 
4581  // allocate space for exactly zero operands
4582  void *operator new(size_t s) {
4583  return User::operator new(s, 0);
4584  }
4585 
4586  unsigned getNumSuccessors() const { return 0; }
4587 
4588  // Methods for support type inquiry through isa, cast, and dyn_cast:
4589  static bool classof(const Instruction *I) {
4590  return I->getOpcode() == Instruction::Unreachable;
4591  }
4592  static bool classof(const Value *V) {
4593  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4594  }
4595 
4596 private:
4597  friend TerminatorInst;
4598 
4599  BasicBlock *getSuccessor(unsigned idx) const {
4600  llvm_unreachable("UnreachableInst has no successors!");
4601  }
4602 
4603  void setSuccessor(unsigned idx, BasicBlock *B) {
4604  llvm_unreachable("UnreachableInst has no successors!");
4605  }
4606 };
4607 
4608 //===----------------------------------------------------------------------===//
4609 // TruncInst Class
4610 //===----------------------------------------------------------------------===//
4611 
4612 /// This class represents a truncation of integer types.
4613 class TruncInst : public CastInst {
4614 protected:
4615  // Note: Instruction needs to be a friend here to call cloneImpl.
4616  friend class Instruction;
4617 
4618  /// Clone an identical TruncInst
4619  TruncInst *cloneImpl() const;
4620 
4621 public:
4622  /// Constructor with insert-before-instruction semantics
4623  TruncInst(
4624  Value *S, ///< The value to be truncated
4625  Type *Ty, ///< The (smaller) type to truncate to
4626  const Twine &NameStr = "", ///< A name for the new instruction
4627  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4628  );
4629 
4630  /// Constructor with insert-at-end-of-block semantics
4631  TruncInst(
4632  Value *S, ///< The value to be truncated
4633  Type *Ty, ///< The (smaller) type to truncate to
4634  const Twine &NameStr, ///< A name for the new instruction
4635  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4636  );
4637 
4638  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4639  static bool classof(const Instruction *I) {
4640  return I->getOpcode() == Trunc;
4641  }
4642  static bool classof(const Value *V) {
4643  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4644  }
4645 };
4646 
4647 //===----------------------------------------------------------------------===//
4648 // ZExtInst Class
4649 //===----------------------------------------------------------------------===//
4650 
4651 /// This class represents zero extension of integer types.
4652 class ZExtInst : public CastInst {
4653 protected:
4654  // Note: Instruction needs to be a friend here to call cloneImpl.
4655  friend class Instruction;
4656 
4657  /// Clone an identical ZExtInst
4658  ZExtInst *cloneImpl() const;
4659 
4660 public:
4661  /// Constructor with insert-before-instruction semantics
4662  ZExtInst(
4663  Value *S, ///< The value to be zero extended
4664  Type *Ty, ///< The type to zero extend to
4665  const Twine &NameStr = "", ///< A name for the new instruction
4666  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4667  );
4668 
4669  /// Constructor with insert-at-end semantics.
4670  ZExtInst(
4671  Value *S, ///< The value to be zero extended
4672  Type *Ty, ///< The type to zero extend to
4673  const Twine &NameStr, ///< A name for the new instruction
4674  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4675  );
4676 
4677  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4678  static bool classof(const Instruction *I) {
4679  return I->getOpcode() == ZExt;
4680  }
4681  static bool classof(const Value *V) {
4682  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4683  }
4684 };
4685 
4686 //===----------------------------------------------------------------------===//
4687 // SExtInst Class
4688 //===----------------------------------------------------------------------===//
4689 
4690 /// This class represents a sign extension of integer types.
4691 class SExtInst : public CastInst {
4692 protected:
4693  // Note: Instruction needs to be a friend here to call cloneImpl.
4694  friend class Instruction;
4695 
4696  /// Clone an identical SExtInst
4697  SExtInst *cloneImpl() const;
4698 
4699 public:
4700  /// Constructor with insert-before-instruction semantics
4701  SExtInst(
4702  Value *S, ///< The value to be sign extended
4703  Type *Ty, ///< The type to sign extend to
4704  const Twine &NameStr = "", ///< A name for the new instruction
4705  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4706  );
4707 
4708  /// Constructor with insert-at-end-of-block semantics
4709  SExtInst(
4710  Value *S, ///< The value to be sign extended
4711  Type *Ty, ///< The type to sign extend to
4712  const Twine &NameStr, ///< A name for the new instruction
4713  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4714  );
4715 
4716  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4717  static bool classof(const Instruction *I) {
4718  return I->getOpcode() == SExt;
4719  }
4720  static bool classof(const Value *V) {
4721  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4722  }
4723 };
4724 
4725 //===----------------------------------------------------------------------===//
4726 // FPTruncInst Class
4727 //===----------------------------------------------------------------------===//
4728 
4729 /// This class represents a truncation of floating point types.
4730 class FPTruncInst : public CastInst {
4731 protected:
4732  // Note: Instruction needs to be a friend here to call cloneImpl.
4733  friend class Instruction;
4734 
4735  /// Clone an identical FPTruncInst
4736  FPTruncInst *cloneImpl() const;
4737 
4738 public:
4739  /// Constructor with insert-before-instruction semantics
4740  FPTruncInst(
4741  Value *S, ///< The value to be truncated
4742  Type *Ty, ///< The type to truncate to
4743  const Twine &NameStr = "", ///< A name for the new instruction
4744  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4745  );
4746 
4747  /// Constructor with insert-before-instruction semantics
4748  FPTruncInst(
4749  Value *S, ///< The value to be truncated
4750  Type *Ty, ///< The type to truncate to
4751  const Twine &NameStr, ///< A name for the new instruction
4752  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4753  );
4754 
4755  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4756  static bool classof(const Instruction *I) {
4757  return I->getOpcode() == FPTrunc;
4758  }
4759  static bool classof(const Value *V) {
4760  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4761  }
4762 };
4763 
4764 //===----------------------------------------------------------------------===//
4765 // FPExtInst Class
4766 //===----------------------------------------------------------------------===//
4767 
4768 /// This class represents an extension of floating point types.
4769 class FPExtInst : public CastInst {
4770 protected:
4771  // Note: Instruction needs to be a friend here to call cloneImpl.
4772  friend class Instruction;
4773 
4774  /// Clone an identical FPExtInst
4775  FPExtInst *cloneImpl() const;
4776 
4777 public:
4778  /// Constructor with insert-before-instruction semantics
4779  FPExtInst(
4780  Value *S, ///< The value to be extended
4781  Type *Ty, ///< The type to extend to
4782  const Twine &NameStr = "", ///< A name for the new instruction
4783  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4784  );
4785 
4786  /// Constructor with insert-at-end-of-block semantics
4787  FPExtInst(
4788  Value *S, ///< The value to be extended
4789  Type *Ty, ///< The type to extend to
4790  const Twine &NameStr, ///< A name for the new instruction
4791  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4792  );
4793 
4794  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4795  static bool classof(const Instruction *I) {
4796  return I->getOpcode() == FPExt;
4797  }
4798  static bool classof(const Value *V) {
4799  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4800  }
4801 };
4802 
4803 //===----------------------------------------------------------------------===//
4804 // UIToFPInst Class
4805 //===----------------------------------------------------------------------===//
4806 
4807 /// This class represents a cast unsigned integer to floating point.
4808 class UIToFPInst : public CastInst {
4809 protected:
4810  // Note: Instruction needs to be a friend here to call cloneImpl.
4811  friend class Instruction;
4812 
4813  /// Clone an identical UIToFPInst
4814  UIToFPInst *cloneImpl() const;
4815 
4816 public:
4817  /// Constructor with insert-before-instruction semantics
4818  UIToFPInst(
4819  Value *S, ///< The value to be converted
4820  Type *Ty, ///< The type to convert to
4821  const Twine &NameStr = "", ///< A name for the new instruction
4822  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4823  );
4824 
4825  /// Constructor with insert-at-end-of-block semantics
4826  UIToFPInst(
4827  Value *S, ///< The value to be converted
4828  Type *Ty, ///< The type to convert to
4829  const Twine &NameStr, ///< A name for the new instruction
4830  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4831  );
4832 
4833  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4834  static bool classof(const Instruction *I) {
4835  return I->getOpcode() == UIToFP;
4836  }
4837  static bool classof(const Value *V) {
4838  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4839  }
4840 };
4841 
4842 //===----------------------------------------------------------------------===//
4843 // SIToFPInst Class
4844 //===----------------------------------------------------------------------===//
4845 
4846 /// This class represents a cast from signed integer to floating point.
4847 class SIToFPInst : public CastInst {
4848 protected:
4849  // Note: Instruction needs to be a friend here to call cloneImpl.
4850  friend class Instruction;
4851 
4852  /// Clone an identical SIToFPInst
4853  SIToFPInst *cloneImpl() const;
4854 
4855 public:
4856  /// Constructor with insert-before-instruction semantics
4857  SIToFPInst(
4858  Value *S, ///< The value to be converted
4859  Type *Ty, ///< The type to convert to
4860  const Twine &NameStr = "", ///< A name for the new instruction
4861  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4862  );
4863 
4864  /// Constructor with insert-at-end-of-block semantics
4865  SIToFPInst(
4866  Value *S, ///< The value to be converted
4867  Type *Ty, ///< The type to convert to
4868  const Twine &NameStr, ///< A name for the new instruction
4869  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4870  );
4871 
4872  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4873  static bool classof(const Instruction *I) {
4874  return I->getOpcode() == SIToFP;
4875  }
4876  static bool classof(const Value *V) {
4877  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4878  }
4879 };
4880 
4881 //===----------------------------------------------------------------------===//
4882 // FPToUIInst Class
4883 //===----------------------------------------------------------------------===//
4884 
4885 /// This class represents a cast from floating point to unsigned integer
4886 class FPToUIInst : public CastInst {
4887 protected:
4888  // Note: Instruction needs to be a friend here to call cloneImpl.
4889  friend class Instruction;
4890 
4891  /// Clone an identical FPToUIInst
4892  FPToUIInst *cloneImpl() const;
4893 
4894 public:
4895  /// Constructor with insert-before-instruction semantics
4896  FPToUIInst(
4897  Value *S, ///< The value to be converted
4898  Type *Ty, ///< The type to convert to
4899  const Twine &NameStr = "", ///< A name for the new instruction
4900  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4901  );
4902 
4903  /// Constructor with insert-at-end-of-block semantics
4904  FPToUIInst(
4905  Value *S, ///< The value to be converted
4906  Type *Ty, ///< The type to convert to
4907  const Twine &NameStr, ///< A name for the new instruction
4908  BasicBlock *InsertAtEnd ///< Where to insert the new instruction
4909  );
4910 
4911  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4912  static bool classof(const Instruction *I) {
4913  return I->getOpcode() == FPToUI;
4914  }
4915  static bool classof(const Value *V) {
4916  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4917  }
4918 };
4919 
4920 //===----------------------------------------------------------------------===//
4921 // FPToSIInst Class
4922 //===----------------------------------------------------------------------===//
4923 
4924 /// This class represents a cast from floating point to signed integer.
4925 class FPToSIInst : public CastInst {
4926 protected:
4927  // Note: Instruction needs to be a friend here to call cloneImpl.
4928  friend class Instruction;
4929 
4930  /// Clone an identical FPToSIInst
4931  FPToSIInst *cloneImpl() const;
4932 
4933 public:
4934  /// Constructor with insert-before-instruction semantics
4935  FPToSIInst(
4936  Value *S, ///< The value to be converted
4937  Type *Ty, ///< The type to convert to
4938  const Twine &NameStr = "", ///< A name for the new instruction
4939  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4940  );
4941 
4942  /// Constructor with insert-at-end-of-block semantics
4943  FPToSIInst(
4944  Value *S, ///< The value to be converted