LLVM  7.0.0svn
Instructions.h
Go to the documentation of this file.
1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file exposes the class definitions of all of the subclasses of the
11 // Instruction class. This is meant to be an easy way to get access to all
12 // instruction subclasses.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_IR_INSTRUCTIONS_H
17 #define LLVM_IR_INSTRUCTIONS_H
18 
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/OperandTraits.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
43 #include <cassert>
44 #include <cstddef>
45 #include <cstdint>
46 #include <iterator>
47 
48 namespace llvm {
49 
50 class APInt;
51 class ConstantInt;
52 class DataLayout;
53 class LLVMContext;
54 
55 //===----------------------------------------------------------------------===//
56 // AllocaInst Class
57 //===----------------------------------------------------------------------===//
58 
59 /// an instruction to allocate memory on the stack
60 class AllocaInst : public UnaryInstruction {
61  Type *AllocatedType;
62 
63 protected:
64  // Note: Instruction needs to be a friend here to call cloneImpl.
65  friend class Instruction;
66 
67  AllocaInst *cloneImpl() const;
68 
69 public:
70  explicit AllocaInst(Type *Ty, unsigned AddrSpace,
71  Value *ArraySize = nullptr,
72  const Twine &Name = "",
73  Instruction *InsertBefore = nullptr);
74  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
75  const Twine &Name, BasicBlock *InsertAtEnd);
76 
77  AllocaInst(Type *Ty, unsigned AddrSpace,
78  const Twine &Name, Instruction *InsertBefore = nullptr);
79  AllocaInst(Type *Ty, unsigned AddrSpace,
80  const Twine &Name, BasicBlock *InsertAtEnd);
81 
82  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
83  const Twine &Name = "", Instruction *InsertBefore = nullptr);
84  AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
85  const Twine &Name, BasicBlock *InsertAtEnd);
86 
87  /// Return true if there is an allocation size parameter to the allocation
88  /// instruction that is not 1.
89  bool isArrayAllocation() const;
90 
91  /// Get the number of elements allocated. For a simple allocation of a single
92  /// element, this will return a constant 1 value.
93  const Value *getArraySize() const { return getOperand(0); }
94  Value *getArraySize() { return getOperand(0); }
95 
96  /// Overload to return most specific pointer type.
97  PointerType *getType() const {
98  return cast<PointerType>(Instruction::getType());
99  }
100 
101  /// Get allocation size in bits. Returns None if size can't be determined,
102  /// e.g. in case of a VLA.
104 
105  /// Return the type that is being allocated by the instruction.
106  Type *getAllocatedType() const { return AllocatedType; }
107  /// for use only in special circumstances that need to generically
108  /// transform a whole instruction (eg: IR linking and vectorization).
109  void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
110 
111  /// Return the alignment of the memory that is being allocated by the
112  /// instruction.
113  unsigned getAlignment() const {
114  return (1u << (getSubclassDataFromInstruction() & 31)) >> 1;
115  }
116  void setAlignment(unsigned Align);
117 
118  /// Return true if this alloca is in the entry block of the function and is a
119  /// constant size. If so, the code generator will fold it into the
120  /// prolog/epilog code, so it is basically free.
121  bool isStaticAlloca() const;
122 
123  /// Return true if this alloca is used as an inalloca argument to a call. Such
124  /// allocas are never considered static even if they are in the entry block.
125  bool isUsedWithInAlloca() const {
126  return getSubclassDataFromInstruction() & 32;
127  }
128 
129  /// Specify whether this alloca is used to represent the arguments to a call.
130  void setUsedWithInAlloca(bool V) {
131  setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
132  (V ? 32 : 0));
133  }
134 
135  /// Return true if this alloca is used as a swifterror argument to a call.
136  bool isSwiftError() const {
137  return getSubclassDataFromInstruction() & 64;
138  }
139 
140  /// Specify whether this alloca is used to represent a swifterror.
141  void setSwiftError(bool V) {
142  setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
143  (V ? 64 : 0));
144  }
145 
146  // Methods for support type inquiry through isa, cast, and dyn_cast:
147  static bool classof(const Instruction *I) {
148  return (I->getOpcode() == Instruction::Alloca);
149  }
150  static bool classof(const Value *V) {
151  return isa<Instruction>(V) && classof(cast<Instruction>(V));
152  }
153 
154 private:
155  // Shadow Instruction::setInstructionSubclassData with a private forwarding
156  // method so that subclasses cannot accidentally use it.
157  void setInstructionSubclassData(unsigned short D) {
159  }
160 };
161 
162 //===----------------------------------------------------------------------===//
163 // LoadInst Class
164 //===----------------------------------------------------------------------===//
165 
166 /// An instruction for reading from memory. This uses the SubclassData field in
167 /// Value to store whether or not the load is volatile.
168 class LoadInst : public UnaryInstruction {
169  void AssertOK();
170 
171 protected:
172  // Note: Instruction needs to be a friend here to call cloneImpl.
173  friend class Instruction;
174 
175  LoadInst *cloneImpl() const;
176 
177 public:
178  LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore);
179  LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
180  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile = false,
181  Instruction *InsertBefore = nullptr);
182  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false,
183  Instruction *InsertBefore = nullptr)
184  : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr,
185  NameStr, isVolatile, InsertBefore) {}
186  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
187  BasicBlock *InsertAtEnd);
188  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
189  Instruction *InsertBefore = nullptr)
190  : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr,
191  NameStr, isVolatile, Align, InsertBefore) {}
192  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
193  unsigned Align, Instruction *InsertBefore = nullptr);
194  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
195  unsigned Align, BasicBlock *InsertAtEnd);
196  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
198  Instruction *InsertBefore = nullptr)
199  : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr,
200  NameStr, isVolatile, Align, Order, SSID, InsertBefore) {}
201  LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202  unsigned Align, AtomicOrdering Order,
204  Instruction *InsertBefore = nullptr);
205  LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
206  unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
207  BasicBlock *InsertAtEnd);
208  LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore);
209  LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd);
210  LoadInst(Type *Ty, Value *Ptr, const char *NameStr = nullptr,
211  bool isVolatile = false, Instruction *InsertBefore = nullptr);
212  explicit LoadInst(Value *Ptr, const char *NameStr = nullptr,
213  bool isVolatile = false,
214  Instruction *InsertBefore = nullptr)
215  : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr,
216  NameStr, isVolatile, InsertBefore) {}
217  LoadInst(Value *Ptr, const char *NameStr, bool isVolatile,
218  BasicBlock *InsertAtEnd);
219 
220  /// Return true if this is a load from a volatile memory location.
221  bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
222 
223  /// Specify whether this is a volatile load or not.
224  void setVolatile(bool V) {
225  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
226  (V ? 1 : 0));
227  }
228 
229  /// Return the alignment of the access that is being performed.
230  unsigned getAlignment() const {
231  return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
232  }
233 
234  void setAlignment(unsigned Align);
235 
236  /// Returns the ordering constraint of this load instruction.
238  return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
239  }
240 
241  /// Sets the ordering constraint of this load instruction. May not be Release
242  /// or AcquireRelease.
243  void setOrdering(AtomicOrdering Ordering) {
244  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
245  ((unsigned)Ordering << 7));
246  }
247 
248  /// Returns the synchronization scope ID of this load instruction.
250  return SSID;
251  }
252 
253  /// Sets the synchronization scope ID of this load instruction.
255  this->SSID = SSID;
256  }
257 
258  /// Sets the ordering constraint and the synchronization scope ID of this load
259  /// instruction.
260  void setAtomic(AtomicOrdering Ordering,
262  setOrdering(Ordering);
263  setSyncScopeID(SSID);
264  }
265 
266  bool isSimple() const { return !isAtomic() && !isVolatile(); }
267 
268  bool isUnordered() const {
269  return (getOrdering() == AtomicOrdering::NotAtomic ||
270  getOrdering() == AtomicOrdering::Unordered) &&
271  !isVolatile();
272  }
273 
275  const Value *getPointerOperand() const { return getOperand(0); }
276  static unsigned getPointerOperandIndex() { return 0U; }
278 
279  /// Returns the address space of the pointer operand.
280  unsigned getPointerAddressSpace() const {
281  return getPointerOperandType()->getPointerAddressSpace();
282  }
283 
284  // Methods for support type inquiry through isa, cast, and dyn_cast:
285  static bool classof(const Instruction *I) {
286  return I->getOpcode() == Instruction::Load;
287  }
288  static bool classof(const Value *V) {
289  return isa<Instruction>(V) && classof(cast<Instruction>(V));
290  }
291 
292 private:
293  // Shadow Instruction::setInstructionSubclassData with a private forwarding
294  // method so that subclasses cannot accidentally use it.
295  void setInstructionSubclassData(unsigned short D) {
297  }
298 
299  /// The synchronization scope ID of this load instruction. Not quite enough
300  /// room in SubClassData for everything, so synchronization scope ID gets its
301  /// own field.
302  SyncScope::ID SSID;
303 };
304 
305 //===----------------------------------------------------------------------===//
306 // StoreInst Class
307 //===----------------------------------------------------------------------===//
308 
309 /// An instruction for storing to memory.
310 class StoreInst : public Instruction {
311  void AssertOK();
312 
313 protected:
314  // Note: Instruction needs to be a friend here to call cloneImpl.
315  friend class Instruction;
316 
317  StoreInst *cloneImpl() const;
318 
319 public:
320  StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
321  StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
322  StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
323  Instruction *InsertBefore = nullptr);
324  StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
325  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
326  unsigned Align, Instruction *InsertBefore = nullptr);
327  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
328  unsigned Align, BasicBlock *InsertAtEnd);
329  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
330  unsigned Align, AtomicOrdering Order,
332  Instruction *InsertBefore = nullptr);
333  StoreInst(Value *Val, Value *Ptr, bool isVolatile,
334  unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
335  BasicBlock *InsertAtEnd);
336 
337  // allocate space for exactly two operands
338  void *operator new(size_t s) {
339  return User::operator new(s, 2);
340  }
341 
342  /// Return true if this is a store to a volatile memory location.
343  bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
344 
345  /// Specify whether this is a volatile store or not.
346  void setVolatile(bool V) {
347  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
348  (V ? 1 : 0));
349  }
350 
351  /// Transparently provide more efficient getOperand methods.
353 
354  /// Return the alignment of the access that is being performed
355  unsigned getAlignment() const {
356  return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
357  }
358 
359  void setAlignment(unsigned Align);
360 
361  /// Returns the ordering constraint of this store instruction.
363  return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
364  }
365 
366  /// Sets the ordering constraint of this store instruction. May not be
367  /// Acquire or AcquireRelease.
368  void setOrdering(AtomicOrdering Ordering) {
369  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
370  ((unsigned)Ordering << 7));
371  }
372 
373  /// Returns the synchronization scope ID of this store instruction.
375  return SSID;
376  }
377 
378  /// Sets the synchronization scope ID of this store instruction.
380  this->SSID = SSID;
381  }
382 
383  /// Sets the ordering constraint and the synchronization scope ID of this
384  /// store instruction.
385  void setAtomic(AtomicOrdering Ordering,
387  setOrdering(Ordering);
388  setSyncScopeID(SSID);
389  }
390 
391  bool isSimple() const { return !isAtomic() && !isVolatile(); }
392 
393  bool isUnordered() const {
394  return (getOrdering() == AtomicOrdering::NotAtomic ||
395  getOrdering() == AtomicOrdering::Unordered) &&
396  !isVolatile();
397  }
398 
399  Value *getValueOperand() { return getOperand(0); }
400  const Value *getValueOperand() const { return getOperand(0); }
401 
403  const Value *getPointerOperand() const { return getOperand(1); }
404  static unsigned getPointerOperandIndex() { return 1U; }
406 
407  /// Returns the address space of the pointer operand.
408  unsigned getPointerAddressSpace() const {
409  return getPointerOperandType()->getPointerAddressSpace();
410  }
411 
412  // Methods for support type inquiry through isa, cast, and dyn_cast:
413  static bool classof(const Instruction *I) {
414  return I->getOpcode() == Instruction::Store;
415  }
416  static bool classof(const Value *V) {
417  return isa<Instruction>(V) && classof(cast<Instruction>(V));
418  }
419 
420 private:
421  // Shadow Instruction::setInstructionSubclassData with a private forwarding
422  // method so that subclasses cannot accidentally use it.
423  void setInstructionSubclassData(unsigned short D) {
425  }
426 
427  /// The synchronization scope ID of this store instruction. Not quite enough
428  /// room in SubClassData for everything, so synchronization scope ID gets its
429  /// own field.
430  SyncScope::ID SSID;
431 };
432 
433 template <>
434 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435 };
436 
438 
439 //===----------------------------------------------------------------------===//
440 // FenceInst Class
441 //===----------------------------------------------------------------------===//
442 
443 /// An instruction for ordering other memory operations.
444 class FenceInst : public Instruction {
445  void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
446 
447 protected:
448  // Note: Instruction needs to be a friend here to call cloneImpl.
449  friend class Instruction;
450 
451  FenceInst *cloneImpl() const;
452 
453 public:
454  // Ordering may only be Acquire, Release, AcquireRelease, or
455  // SequentiallyConsistent.
458  Instruction *InsertBefore = nullptr);
460  BasicBlock *InsertAtEnd);
461 
462  // allocate space for exactly zero operands
463  void *operator new(size_t s) {
464  return User::operator new(s, 0);
465  }
466 
467  /// Returns the ordering constraint of this fence instruction.
470  }
471 
472  /// Sets the ordering constraint of this fence instruction. May only be
473  /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
474  void setOrdering(AtomicOrdering Ordering) {
475  setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
476  ((unsigned)Ordering << 1));
477  }
478 
479  /// Returns the synchronization scope ID of this fence instruction.
481  return SSID;
482  }
483 
484  /// Sets the synchronization scope ID of this fence instruction.
486  this->SSID = SSID;
487  }
488 
489  // Methods for support type inquiry through isa, cast, and dyn_cast:
490  static bool classof(const Instruction *I) {
491  return I->getOpcode() == Instruction::Fence;
492  }
493  static bool classof(const Value *V) {
494  return isa<Instruction>(V) && classof(cast<Instruction>(V));
495  }
496 
497 private:
498  // Shadow Instruction::setInstructionSubclassData with a private forwarding
499  // method so that subclasses cannot accidentally use it.
500  void setInstructionSubclassData(unsigned short D) {
502  }
503 
504  /// The synchronization scope ID of this fence instruction. Not quite enough
505  /// room in SubClassData for everything, so synchronization scope ID gets its
506  /// own field.
507  SyncScope::ID SSID;
508 };
509 
510 //===----------------------------------------------------------------------===//
511 // AtomicCmpXchgInst Class
512 //===----------------------------------------------------------------------===//
513 
514 /// an instruction that atomically checks whether a
515 /// specified value is in a memory location, and, if it is, stores a new value
516 /// there. Returns the value that was loaded.
517 ///
519  void Init(Value *Ptr, Value *Cmp, Value *NewVal,
520  AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
521  SyncScope::ID SSID);
522 
523 protected:
524  // Note: Instruction needs to be a friend here to call cloneImpl.
525  friend class Instruction;
526 
527  AtomicCmpXchgInst *cloneImpl() const;
528 
529 public:
530  AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
531  AtomicOrdering SuccessOrdering,
532  AtomicOrdering FailureOrdering,
533  SyncScope::ID SSID, Instruction *InsertBefore = nullptr);
534  AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
535  AtomicOrdering SuccessOrdering,
536  AtomicOrdering FailureOrdering,
537  SyncScope::ID SSID, BasicBlock *InsertAtEnd);
538 
539  // allocate space for exactly three operands
540  void *operator new(size_t s) {
541  return User::operator new(s, 3);
542  }
543 
544  /// Return true if this is a cmpxchg from a volatile memory
545  /// location.
546  ///
547  bool isVolatile() const {
548  return getSubclassDataFromInstruction() & 1;
549  }
550 
551  /// Specify whether this is a volatile cmpxchg.
552  ///
553  void setVolatile(bool V) {
554  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
555  (unsigned)V);
556  }
557 
558  /// Return true if this cmpxchg may spuriously fail.
559  bool isWeak() const {
560  return getSubclassDataFromInstruction() & 0x100;
561  }
562 
563  void setWeak(bool IsWeak) {
564  setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
565  (IsWeak << 8));
566  }
567 
568  /// Transparently provide more efficient getOperand methods.
570 
571  /// Returns the success ordering constraint of this cmpxchg instruction.
573  return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
574  }
575 
576  /// Sets the success ordering constraint of this cmpxchg instruction.
578  assert(Ordering != AtomicOrdering::NotAtomic &&
579  "CmpXchg instructions can only be atomic.");
580  setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
581  ((unsigned)Ordering << 2));
582  }
583 
584  /// Returns the failure ordering constraint of this cmpxchg instruction.
586  return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
587  }
588 
589  /// Sets the failure ordering constraint of this cmpxchg instruction.
591  assert(Ordering != AtomicOrdering::NotAtomic &&
592  "CmpXchg instructions can only be atomic.");
593  setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
594  ((unsigned)Ordering << 5));
595  }
596 
597  /// Returns the synchronization scope ID of this cmpxchg instruction.
599  return SSID;
600  }
601 
602  /// Sets the synchronization scope ID of this cmpxchg instruction.
604  this->SSID = SSID;
605  }
606 
608  const Value *getPointerOperand() const { return getOperand(0); }
609  static unsigned getPointerOperandIndex() { return 0U; }
610 
612  const Value *getCompareOperand() const { return getOperand(1); }
613 
615  const Value *getNewValOperand() const { return getOperand(2); }
616 
617  /// Returns the address space of the pointer operand.
618  unsigned getPointerAddressSpace() const {
620  }
621 
622  /// Returns the strongest permitted ordering on failure, given the
623  /// desired ordering on success.
624  ///
625  /// If the comparison in a cmpxchg operation fails, there is no atomic store
626  /// so release semantics cannot be provided. So this function drops explicit
627  /// Release requests from the AtomicOrdering. A SequentiallyConsistent
628  /// operation would remain SequentiallyConsistent.
629  static AtomicOrdering
631  switch (SuccessOrdering) {
632  default:
633  llvm_unreachable("invalid cmpxchg success ordering");
642  }
643  }
644 
645  // Methods for support type inquiry through isa, cast, and dyn_cast:
646  static bool classof(const Instruction *I) {
647  return I->getOpcode() == Instruction::AtomicCmpXchg;
648  }
649  static bool classof(const Value *V) {
650  return isa<Instruction>(V) && classof(cast<Instruction>(V));
651  }
652 
653 private:
654  // Shadow Instruction::setInstructionSubclassData with a private forwarding
655  // method so that subclasses cannot accidentally use it.
656  void setInstructionSubclassData(unsigned short D) {
658  }
659 
660  /// The synchronization scope ID of this cmpxchg instruction. Not quite
661  /// enough room in SubClassData for everything, so synchronization scope ID
662  /// gets its own field.
663  SyncScope::ID SSID;
664 };
665 
666 template <>
668  public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
669 };
670 
672 
673 //===----------------------------------------------------------------------===//
674 // AtomicRMWInst Class
675 //===----------------------------------------------------------------------===//
676 
677 /// an instruction that atomically reads a memory location,
678 /// combines it with another value, and then stores the result back. Returns
679 /// the old value.
680 ///
681 class AtomicRMWInst : public Instruction {
682 protected:
683  // Note: Instruction needs to be a friend here to call cloneImpl.
684  friend class Instruction;
685 
686  AtomicRMWInst *cloneImpl() const;
687 
688 public:
689  /// This enumeration lists the possible modifications atomicrmw can make. In
690  /// the descriptions, 'p' is the pointer to the instruction's memory location,
691  /// 'old' is the initial value of *p, and 'v' is the other value passed to the
692  /// instruction. These instructions always return 'old'.
693  enum BinOp {
694  /// *p = v
696  /// *p = old + v
698  /// *p = old - v
700  /// *p = old & v
702  /// *p = ~(old & v)
704  /// *p = old | v
705  Or,
706  /// *p = old ^ v
708  /// *p = old >signed v ? old : v
710  /// *p = old <signed v ? old : v
712  /// *p = old >unsigned v ? old : v
714  /// *p = old <unsigned v ? old : v
716 
717  FIRST_BINOP = Xchg,
718  LAST_BINOP = UMin,
719  BAD_BINOP
720  };
721 
723  AtomicOrdering Ordering, SyncScope::ID SSID,
724  Instruction *InsertBefore = nullptr);
726  AtomicOrdering Ordering, SyncScope::ID SSID,
727  BasicBlock *InsertAtEnd);
728 
729  // allocate space for exactly two operands
730  void *operator new(size_t s) {
731  return User::operator new(s, 2);
732  }
733 
734  BinOp getOperation() const {
735  return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
736  }
737 
739  unsigned short SubclassData = getSubclassDataFromInstruction();
740  setInstructionSubclassData((SubclassData & 31) |
741  (Operation << 5));
742  }
743 
744  /// Return true if this is a RMW on a volatile memory location.
745  ///
746  bool isVolatile() const {
747  return getSubclassDataFromInstruction() & 1;
748  }
749 
750  /// Specify whether this is a volatile RMW or not.
751  ///
752  void setVolatile(bool V) {
753  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
754  (unsigned)V);
755  }
756 
757  /// Transparently provide more efficient getOperand methods.
759 
760  /// Returns the ordering constraint of this rmw instruction.
762  return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
763  }
764 
765  /// Sets the ordering constraint of this rmw instruction.
766  void setOrdering(AtomicOrdering Ordering) {
767  assert(Ordering != AtomicOrdering::NotAtomic &&
768  "atomicrmw instructions can only be atomic.");
769  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
770  ((unsigned)Ordering << 2));
771  }
772 
773  /// Returns the synchronization scope ID of this rmw instruction.
775  return SSID;
776  }
777 
778  /// Sets the synchronization scope ID of this rmw instruction.
780  this->SSID = SSID;
781  }
782 
784  const Value *getPointerOperand() const { return getOperand(0); }
785  static unsigned getPointerOperandIndex() { return 0U; }
786 
787  Value *getValOperand() { return getOperand(1); }
788  const Value *getValOperand() const { return getOperand(1); }
789 
790  /// Returns the address space of the pointer operand.
791  unsigned getPointerAddressSpace() const {
793  }
794 
795  // Methods for support type inquiry through isa, cast, and dyn_cast:
796  static bool classof(const Instruction *I) {
797  return I->getOpcode() == Instruction::AtomicRMW;
798  }
799  static bool classof(const Value *V) {
800  return isa<Instruction>(V) && classof(cast<Instruction>(V));
801  }
802 
803 private:
804  void Init(BinOp Operation, Value *Ptr, Value *Val,
805  AtomicOrdering Ordering, SyncScope::ID SSID);
806 
807  // Shadow Instruction::setInstructionSubclassData with a private forwarding
808  // method so that subclasses cannot accidentally use it.
809  void setInstructionSubclassData(unsigned short D) {
811  }
812 
813  /// The synchronization scope ID of this rmw instruction. Not quite enough
814  /// room in SubClassData for everything, so synchronization scope ID gets its
815  /// own field.
816  SyncScope::ID SSID;
817 };
818 
819 template <>
821  : public FixedNumOperandTraits<AtomicRMWInst,2> {
822 };
823 
825 
826 //===----------------------------------------------------------------------===//
827 // GetElementPtrInst Class
828 //===----------------------------------------------------------------------===//
829 
830 // checkGEPType - Simple wrapper function to give a better assertion failure
831 // message on bad indexes for a gep instruction.
832 //
834  assert(Ty && "Invalid GetElementPtrInst indices for type!");
835  return Ty;
836 }
837 
838 /// an instruction for type-safe pointer arithmetic to
839 /// access elements of arrays and structs
840 ///
842  Type *SourceElementType;
843  Type *ResultElementType;
844 
846 
847  /// Constructors - Create a getelementptr instruction with a base pointer an
848  /// list of indices. The first ctor can optionally insert before an existing
849  /// instruction, the second appends the new instruction to the specified
850  /// BasicBlock.
851  inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
852  ArrayRef<Value *> IdxList, unsigned Values,
853  const Twine &NameStr, Instruction *InsertBefore);
854  inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
855  ArrayRef<Value *> IdxList, unsigned Values,
856  const Twine &NameStr, BasicBlock *InsertAtEnd);
857 
858  void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
859 
860 protected:
861  // Note: Instruction needs to be a friend here to call cloneImpl.
862  friend class Instruction;
863 
864  GetElementPtrInst *cloneImpl() const;
865 
866 public:
867  static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
868  ArrayRef<Value *> IdxList,
869  const Twine &NameStr = "",
870  Instruction *InsertBefore = nullptr) {
871  unsigned Values = 1 + unsigned(IdxList.size());
872  if (!PointeeType)
873  PointeeType =
874  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
875  else
876  assert(
877  PointeeType ==
878  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
879  return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
880  NameStr, InsertBefore);
881  }
882 
883  static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
884  ArrayRef<Value *> IdxList,
885  const Twine &NameStr,
886  BasicBlock *InsertAtEnd) {
887  unsigned Values = 1 + unsigned(IdxList.size());
888  if (!PointeeType)
889  PointeeType =
890  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
891  else
892  assert(
893  PointeeType ==
894  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
895  return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
896  NameStr, InsertAtEnd);
897  }
898 
899  /// Create an "inbounds" getelementptr. See the documentation for the
900  /// "inbounds" flag in LangRef.html for details.
902  ArrayRef<Value *> IdxList,
903  const Twine &NameStr = "",
904  Instruction *InsertBefore = nullptr){
905  return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
906  }
907 
908  static GetElementPtrInst *
909  CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
910  const Twine &NameStr = "",
911  Instruction *InsertBefore = nullptr) {
913  Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
914  GEP->setIsInBounds(true);
915  return GEP;
916  }
917 
919  ArrayRef<Value *> IdxList,
920  const Twine &NameStr,
921  BasicBlock *InsertAtEnd) {
922  return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
923  }
924 
925  static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
926  ArrayRef<Value *> IdxList,
927  const Twine &NameStr,
928  BasicBlock *InsertAtEnd) {
930  Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
931  GEP->setIsInBounds(true);
932  return GEP;
933  }
934 
935  /// Transparently provide more efficient getOperand methods.
937 
938  Type *getSourceElementType() const { return SourceElementType; }
939 
940  void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
941  void setResultElementType(Type *Ty) { ResultElementType = Ty; }
942 
944  assert(ResultElementType ==
945  cast<PointerType>(getType()->getScalarType())->getElementType());
946  return ResultElementType;
947  }
948 
949  /// Returns the address space of this instruction's pointer type.
950  unsigned getAddressSpace() const {
951  // Note that this is always the same as the pointer operand's address space
952  // and that is cheaper to compute, so cheat here.
953  return getPointerAddressSpace();
954  }
955 
956  /// Returns the type of the element that would be loaded with
957  /// a load instruction with the specified parameters.
958  ///
959  /// Null is returned if the indices are invalid for the specified
960  /// pointer type.
961  ///
962  static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
963  static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
964  static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
965 
966  inline op_iterator idx_begin() { return op_begin()+1; }
967  inline const_op_iterator idx_begin() const { return op_begin()+1; }
968  inline op_iterator idx_end() { return op_end(); }
969  inline const_op_iterator idx_end() const { return op_end(); }
970 
972  return make_range(idx_begin(), idx_end());
973  }
974 
976  return make_range(idx_begin(), idx_end());
977  }
978 
980  return getOperand(0);
981  }
982  const Value *getPointerOperand() const {
983  return getOperand(0);
984  }
985  static unsigned getPointerOperandIndex() {
986  return 0U; // get index for modifying correct operand.
987  }
988 
989  /// Method to return the pointer operand as a
990  /// PointerType.
992  return getPointerOperand()->getType();
993  }
994 
995  /// Returns the address space of the pointer operand.
996  unsigned getPointerAddressSpace() const {
997  return getPointerOperandType()->getPointerAddressSpace();
998  }
999 
1000  /// Returns the pointer type returned by the GEP
1001  /// instruction, which may be a vector of pointers.
1003  return getGEPReturnType(
1004  cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(),
1005  Ptr, IdxList);
1006  }
1007  static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1008  ArrayRef<Value *> IdxList) {
1009  Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1010  Ptr->getType()->getPointerAddressSpace());
1011  // Vector GEP
1012  if (Ptr->getType()->isVectorTy()) {
1013  unsigned NumElem = Ptr->getType()->getVectorNumElements();
1014  return VectorType::get(PtrTy, NumElem);
1015  }
1016  for (Value *Index : IdxList)
1017  if (Index->getType()->isVectorTy()) {
1018  unsigned NumElem = Index->getType()->getVectorNumElements();
1019  return VectorType::get(PtrTy, NumElem);
1020  }
1021  // Scalar GEP
1022  return PtrTy;
1023  }
1024 
1025  unsigned getNumIndices() const { // Note: always non-negative
1026  return getNumOperands() - 1;
1027  }
1028 
1029  bool hasIndices() const {
1030  return getNumOperands() > 1;
1031  }
1032 
1033  /// Return true if all of the indices of this GEP are
1034  /// zeros. If so, the result pointer and the first operand have the same
1035  /// value, just potentially different types.
1036  bool hasAllZeroIndices() const;
1037 
1038  /// Return true if all of the indices of this GEP are
1039  /// constant integers. If so, the result pointer and the first operand have
1040  /// a constant offset between them.
1041  bool hasAllConstantIndices() const;
1042 
1043  /// Set or clear the inbounds flag on this GEP instruction.
1044  /// See LangRef.html for the meaning of inbounds on a getelementptr.
1045  void setIsInBounds(bool b = true);
1046 
1047  /// Determine whether the GEP has the inbounds flag.
1048  bool isInBounds() const;
1049 
1050  /// Accumulate the constant address offset of this GEP if possible.
1051  ///
1052  /// This routine accepts an APInt into which it will accumulate the constant
1053  /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1054  /// all-constant, it returns false and the value of the offset APInt is
1055  /// undefined (it is *not* preserved!). The APInt passed into this routine
1056  /// must be at least as wide as the IntPtr type for the address space of
1057  /// the base GEP pointer.
1058  bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1059 
1060  // Methods for support type inquiry through isa, cast, and dyn_cast:
1061  static bool classof(const Instruction *I) {
1062  return (I->getOpcode() == Instruction::GetElementPtr);
1063  }
1064  static bool classof(const Value *V) {
1065  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1066  }
1067 };
1068 
1069 template <>
1071  public VariadicOperandTraits<GetElementPtrInst, 1> {
1072 };
1073 
1074 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1075  ArrayRef<Value *> IdxList, unsigned Values,
1076  const Twine &NameStr,
1077  Instruction *InsertBefore)
1078  : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1080  Values, InsertBefore),
1081  SourceElementType(PointeeType),
1082  ResultElementType(getIndexedType(PointeeType, IdxList)) {
1083  assert(ResultElementType ==
1084  cast<PointerType>(getType()->getScalarType())->getElementType());
1085  init(Ptr, IdxList, NameStr);
1086 }
1087 
1088 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1089  ArrayRef<Value *> IdxList, unsigned Values,
1090  const Twine &NameStr,
1091  BasicBlock *InsertAtEnd)
1092  : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1094  Values, InsertAtEnd),
1095  SourceElementType(PointeeType),
1096  ResultElementType(getIndexedType(PointeeType, IdxList)) {
1097  assert(ResultElementType ==
1098  cast<PointerType>(getType()->getScalarType())->getElementType());
1099  init(Ptr, IdxList, NameStr);
1100 }
1101 
1102 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1103 
1104 //===----------------------------------------------------------------------===//
1105 // ICmpInst Class
1106 //===----------------------------------------------------------------------===//
1107 
1108 /// This instruction compares its operands according to the predicate given
1109 /// to the constructor. It only operates on integers or pointers. The operands
1110 /// must be identical types.
1111 /// Represent an integer comparison operator.
1112 class ICmpInst: public CmpInst {
1113  void AssertOK() {
1114  assert(isIntPredicate() &&
1115  "Invalid ICmp predicate value");
1116  assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1117  "Both operands to ICmp instruction are not of the same type!");
1118  // Check that the operands are the right type
1119  assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1120  getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1121  "Invalid operand types for ICmp instruction");
1122  }
1123 
1124 protected:
1125  // Note: Instruction needs to be a friend here to call cloneImpl.
1126  friend class Instruction;
1127 
1128  /// Clone an identical ICmpInst
1129  ICmpInst *cloneImpl() const;
1130 
1131 public:
1132  /// Constructor with insert-before-instruction semantics.
1134  Instruction *InsertBefore, ///< Where to insert
1135  Predicate pred, ///< The predicate to use for the comparison
1136  Value *LHS, ///< The left-hand-side of the expression
1137  Value *RHS, ///< The right-hand-side of the expression
1138  const Twine &NameStr = "" ///< Name of the instruction
1139  ) : CmpInst(makeCmpResultType(LHS->getType()),
1140  Instruction::ICmp, pred, LHS, RHS, NameStr,
1141  InsertBefore) {
1142 #ifndef NDEBUG
1143  AssertOK();
1144 #endif
1145  }
1146 
1147  /// Constructor with insert-at-end semantics.
1149  BasicBlock &InsertAtEnd, ///< Block to insert into.
1150  Predicate pred, ///< The predicate to use for the comparison
1151  Value *LHS, ///< The left-hand-side of the expression
1152  Value *RHS, ///< The right-hand-side of the expression
1153  const Twine &NameStr = "" ///< Name of the instruction
1154  ) : CmpInst(makeCmpResultType(LHS->getType()),
1155  Instruction::ICmp, pred, LHS, RHS, NameStr,
1156  &InsertAtEnd) {
1157 #ifndef NDEBUG
1158  AssertOK();
1159 #endif
1160  }
1161 
1162  /// Constructor with no-insertion semantics
1164  Predicate pred, ///< The predicate to use for the comparison
1165  Value *LHS, ///< The left-hand-side of the expression
1166  Value *RHS, ///< The right-hand-side of the expression
1167  const Twine &NameStr = "" ///< Name of the instruction
1168  ) : CmpInst(makeCmpResultType(LHS->getType()),
1169  Instruction::ICmp, pred, LHS, RHS, NameStr) {
1170 #ifndef NDEBUG
1171  AssertOK();
1172 #endif
1173  }
1174 
1175  /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1176  /// @returns the predicate that would be the result if the operand were
1177  /// regarded as signed.
1178  /// Return the signed version of the predicate
1180  return getSignedPredicate(getPredicate());
1181  }
1182 
1183  /// This is a static version that you can use without an instruction.
1184  /// Return the signed version of the predicate.
1185  static Predicate getSignedPredicate(Predicate pred);
1186 
1187  /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1188  /// @returns the predicate that would be the result if the operand were
1189  /// regarded as unsigned.
1190  /// Return the unsigned version of the predicate
1192  return getUnsignedPredicate(getPredicate());
1193  }
1194 
1195  /// This is a static version that you can use without an instruction.
1196  /// Return the unsigned version of the predicate.
1197  static Predicate getUnsignedPredicate(Predicate pred);
1198 
1199  /// Return true if this predicate is either EQ or NE. This also
1200  /// tests for commutativity.
1201  static bool isEquality(Predicate P) {
1202  return P == ICMP_EQ || P == ICMP_NE;
1203  }
1204 
1205  /// Return true if this predicate is either EQ or NE. This also
1206  /// tests for commutativity.
1207  bool isEquality() const {
1208  return isEquality(getPredicate());
1209  }
1210 
1211  /// @returns true if the predicate of this ICmpInst is commutative
1212  /// Determine if this relation is commutative.
1213  bool isCommutative() const { return isEquality(); }
1214 
1215  /// Return true if the predicate is relational (not EQ or NE).
1216  ///
1217  bool isRelational() const {
1218  return !isEquality();
1219  }
1220 
1221  /// Return true if the predicate is relational (not EQ or NE).
1222  ///
1223  static bool isRelational(Predicate P) {
1224  return !isEquality(P);
1225  }
1226 
1227  /// Exchange the two operands to this instruction in such a way that it does
1228  /// not modify the semantics of the instruction. The predicate value may be
1229  /// changed to retain the same result if the predicate is order dependent
1230  /// (e.g. ult).
1231  /// Swap operands and adjust predicate.
1232  void swapOperands() {
1233  setPredicate(getSwappedPredicate());
1234  Op<0>().swap(Op<1>());
1235  }
1236 
1237  // Methods for support type inquiry through isa, cast, and dyn_cast:
1238  static bool classof(const Instruction *I) {
1239  return I->getOpcode() == Instruction::ICmp;
1240  }
1241  static bool classof(const Value *V) {
1242  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1243  }
1244 };
1245 
1246 //===----------------------------------------------------------------------===//
1247 // FCmpInst Class
1248 //===----------------------------------------------------------------------===//
1249 
1250 /// This instruction compares its operands according to the predicate given
1251 /// to the constructor. It only operates on floating point values or packed
1252 /// vectors of floating point values. The operands must be identical types.
1253 /// Represents a floating point comparison operator.
1254 class FCmpInst: public CmpInst {
1255  void AssertOK() {
1256  assert(isFPPredicate() && "Invalid FCmp predicate value");
1257  assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1258  "Both operands to FCmp instruction are not of the same type!");
1259  // Check that the operands are the right type
1260  assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1261  "Invalid operand types for FCmp instruction");
1262  }
1263 
1264 protected:
1265  // Note: Instruction needs to be a friend here to call cloneImpl.
1266  friend class Instruction;
1267 
1268  /// Clone an identical FCmpInst
1269  FCmpInst *cloneImpl() const;
1270 
1271 public:
1272  /// Constructor with insert-before-instruction semantics.
1274  Instruction *InsertBefore, ///< Where to insert
1275  Predicate pred, ///< The predicate to use for the comparison
1276  Value *LHS, ///< The left-hand-side of the expression
1277  Value *RHS, ///< The right-hand-side of the expression
1278  const Twine &NameStr = "" ///< Name of the instruction
1279  ) : CmpInst(makeCmpResultType(LHS->getType()),
1280  Instruction::FCmp, pred, LHS, RHS, NameStr,
1281  InsertBefore) {
1282  AssertOK();
1283  }
1284 
1285  /// Constructor with insert-at-end semantics.
1287  BasicBlock &InsertAtEnd, ///< Block to insert into.
1288  Predicate pred, ///< The predicate to use for the comparison
1289  Value *LHS, ///< The left-hand-side of the expression
1290  Value *RHS, ///< The right-hand-side of the expression
1291  const Twine &NameStr = "" ///< Name of the instruction
1292  ) : CmpInst(makeCmpResultType(LHS->getType()),
1293  Instruction::FCmp, pred, LHS, RHS, NameStr,
1294  &InsertAtEnd) {
1295  AssertOK();
1296  }
1297 
1298  /// Constructor with no-insertion semantics
1300  Predicate pred, ///< The predicate to use for the comparison
1301  Value *LHS, ///< The left-hand-side of the expression
1302  Value *RHS, ///< The right-hand-side of the expression
1303  const Twine &NameStr = "" ///< Name of the instruction
1304  ) : CmpInst(makeCmpResultType(LHS->getType()),
1305  Instruction::FCmp, pred, LHS, RHS, NameStr) {
1306  AssertOK();
1307  }
1308 
1309  /// @returns true if the predicate of this instruction is EQ or NE.
1310  /// Determine if this is an equality predicate.
1311  static bool isEquality(Predicate Pred) {
1312  return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1313  Pred == FCMP_UNE;
1314  }
1315 
1316  /// @returns true if the predicate of this instruction is EQ or NE.
1317  /// Determine if this is an equality predicate.
1318  bool isEquality() const { return isEquality(getPredicate()); }
1319 
1320  /// @returns true if the predicate of this instruction is commutative.
1321  /// Determine if this is a commutative predicate.
1322  bool isCommutative() const {
1323  return isEquality() ||
1324  getPredicate() == FCMP_FALSE ||
1325  getPredicate() == FCMP_TRUE ||
1326  getPredicate() == FCMP_ORD ||
1327  getPredicate() == FCMP_UNO;
1328  }
1329 
1330  /// @returns true if the predicate is relational (not EQ or NE).
1331  /// Determine if this a relational predicate.
1332  bool isRelational() const { return !isEquality(); }
1333 
1334  /// Exchange the two operands to this instruction in such a way that it does
1335  /// not modify the semantics of the instruction. The predicate value may be
1336  /// changed to retain the same result if the predicate is order dependent
1337  /// (e.g. ult).
1338  /// Swap operands and adjust predicate.
1339  void swapOperands() {
1340  setPredicate(getSwappedPredicate());
1341  Op<0>().swap(Op<1>());
1342  }
1343 
1344  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1345  static bool classof(const Instruction *I) {
1346  return I->getOpcode() == Instruction::FCmp;
1347  }
1348  static bool classof(const Value *V) {
1349  return isa<Instruction>(V) && classof(cast<Instruction>(V));
1350  }
1351 };
1352 
1353 class CallInst;
1354 class InvokeInst;
1355 
1356 template <class T> struct CallBaseParent { using type = Instruction; };
1357 
1358 template <> struct CallBaseParent<InvokeInst> { using type = TerminatorInst; };
1359 
1360 //===----------------------------------------------------------------------===//
1361 /// Base class for all callable instructions (InvokeInst and CallInst)
1362 /// Holds everything related to calling a function, abstracting from the base
1363 /// type @p BaseInstTy and the concrete instruction @p InstTy
1364 ///
1365 template <class InstTy>
1366 class CallBase : public CallBaseParent<InstTy>::type,
1367  public OperandBundleUser<InstTy, User::op_iterator> {
1368 protected:
1369  AttributeList Attrs; ///< parameter attributes for callable
1372 
1373  template <class... ArgsTy>
1374  CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
1375  : BaseInstTy(std::forward<ArgsTy>(Args)...), Attrs(A), FTy(FT) {}
1376  bool hasDescriptor() const { return Value::HasDescriptor; }
1377 
1378  using BaseInstTy::BaseInstTy;
1379 
1380  using OperandBundleUser<InstTy,
1381  User::op_iterator>::isFnAttrDisallowedByOpBundle;
1386 
1387 public:
1390  using OperandBundleUser<InstTy,
1391  User::op_iterator>::getBundleOperandsStartIndex;
1392 
1393  static bool classof(const Instruction *I) {
1395  "CallBase is not meant to be used as part of the classof hierarchy");
1396  }
1397 
1398 public:
1399  /// Return the parameter attributes for this call.
1400  ///
1401  AttributeList getAttributes() const { return Attrs; }
1402 
1403  /// Set the parameter attributes for this call.
1404  ///
1405  void setAttributes(AttributeList A) { Attrs = A; }
1406 
1407  FunctionType *getFunctionType() const { return FTy; }
1408 
1411  this->FTy = FTy;
1412  }
1413 
1414  /// Return the number of call arguments.
1415  ///
1416  unsigned getNumArgOperands() const {
1417  return getNumOperands() - getNumTotalBundleOperands() - InstTy::ArgOffset;
1418  }
1419 
1420  /// getArgOperand/setArgOperand - Return/set the i-th call argument.
1421  ///
1422  Value *getArgOperand(unsigned i) const {
1423  assert(i < getNumArgOperands() && "Out of bounds!");
1424  return getOperand(i);
1425  }
1426  void setArgOperand(unsigned i, Value *v) {
1427  assert(i < getNumArgOperands() && "Out of bounds!");
1428  setOperand(i, v);
1429  }
1430 
1431  /// Return the iterator pointing to the beginning of the argument list.
1433 
1434  /// Return the iterator pointing to the end of the argument list.
1436  // [ call args ], [ operand bundles ], callee
1437  return op_end() - getNumTotalBundleOperands() - InstTy::ArgOffset;
1438  }
1439 
1440  /// Iteration adapter for range-for loops.
1442  return make_range(arg_begin(), arg_end());
1443  }
1444 
1445  /// Return the iterator pointing to the beginning of the argument list.
1447 
1448  /// Return the iterator pointing to the end of the argument list.
1450  // [ call args ], [ operand bundles ], callee
1451  return op_end() - getNumTotalBundleOperands() - InstTy::ArgOffset;
1452  }
1453 
1454  /// Iteration adapter for range-for loops.
1456  return make_range(arg_begin(), arg_end());
1457  }
1458 
1459  /// Wrappers for getting the \c Use of a call argument.
1460  const Use &getArgOperandUse(unsigned i) const {
1461  assert(i < getNumArgOperands() && "Out of bounds!");
1462  return User::getOperandUse(i);
1463  }
1464  Use &getArgOperandUse(unsigned i) {
1465  assert(i < getNumArgOperands() && "Out of bounds!");
1466  return User::getOperandUse(i);
1467  }
1468 
1469  /// If one of the arguments has the 'returned' attribute, return its
1470  /// operand value. Otherwise, return nullptr.
1472  unsigned Index;
1473 
1474  if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
1475  return getArgOperand(Index - AttributeList::FirstArgIndex);
1476  if (const Function *F = getCalledFunction())
1477  if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
1478  Index)
1479  return getArgOperand(Index - AttributeList::FirstArgIndex);
1480 
1481  return nullptr;
1482  }
1483 
1485  return OperandTraits<CallBase>::op_begin(this);
1486  }
1487 
1489  return OperandTraits<CallBase>::op_begin(const_cast<CallBase *>(this));
1490  }
1491 
1493 
1495  return OperandTraits<CallBase>::op_end(const_cast<CallBase *>(this));
1496  }
1497 
1498  Value *getOperand(unsigned i_nocapture) const {
1499  assert(i_nocapture < OperandTraits<CallBase>::operands(this) &&
1500  "getOperand() out of range!");
1501  return cast_or_null<Value>(OperandTraits<CallBase>::op_begin(
1502  const_cast<CallBase *>(this))[i_nocapture]
1503  .get());
1504  }
1505 
1506  void setOperand(unsigned i_nocapture, Value *Val_nocapture) {
1507  assert(i_nocapture < OperandTraits<CallBase>::operands(this) &&
1508  "setOperand() out of range!");
1509  OperandTraits<CallBase>::op_begin(this)[i_nocapture] = Val_nocapture;
1510  }
1511 
1512  unsigned getNumOperands() const {
1513  return OperandTraits<CallBase>::operands(this);
1514  }
1515  template <int Idx_nocapture> Use &Op() {
1516  return User::OpFrom<Idx_nocapture>(this);
1517  }
1518  template <int Idx_nocapture> const Use &Op() const {
1519  return User::OpFrom<Idx_nocapture>(this);
1520  }
1521 
1522  /// Return the function called, or null if this is an
1523  /// indirect function invocation.
1524  ///
1526  return dyn_cast<Function>(Op<-InstTy::ArgOffset>());
1527  }
1528 
1529  /// Determine whether this call has the given attribute.
1531  assert(Kind != Attribute::NoBuiltin &&
1532  "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin");
1533  return hasFnAttrImpl(Kind);
1534  }
1535 
1536  /// Determine whether this call has the given attribute.
1537  bool hasFnAttr(StringRef Kind) const { return hasFnAttrImpl(Kind); }
1538 
1539  /// getCallingConv/setCallingConv - Get or set the calling convention of this
1540  /// function call.
1542  return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 2);
1543  }
1545  auto ID = static_cast<unsigned>(CC);
1546  assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention");
1547  setInstructionSubclassData((getSubclassDataFromInstruction() & 3) |
1548  (ID << 2));
1549  }
1550 
1551 
1552  /// adds the attribute to the list of attributes.
1554  AttributeList PAL = getAttributes();
1555  PAL = PAL.addAttribute(getContext(), i, Kind);
1556  setAttributes(PAL);
1557  }
1558 
1559  /// adds the attribute to the list of attributes.
1560  void addAttribute(unsigned i, Attribute Attr) {
1561  AttributeList PAL = getAttributes();
1562  PAL = PAL.addAttribute(getContext(), i, Attr);
1563  setAttributes(PAL);
1564  }
1565 
1566  /// Adds the attribute to the indicated argument
1567  void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
1568  assert(ArgNo < getNumArgOperands() && "Out of bounds");
1569  AttributeList PAL = getAttributes();
1570  PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
1571  setAttributes(PAL);
1572  }
1573 
1574  /// Adds the attribute to the indicated argument
1575  void addParamAttr(unsigned ArgNo, Attribute Attr) {
1576  assert(ArgNo < getNumArgOperands() && "Out of bounds");
1577  AttributeList PAL = getAttributes();
1578  PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
1579  setAttributes(PAL);
1580  }
1581 
1582  /// removes the attribute from the list of attributes.
1584  AttributeList PAL = getAttributes();
1585  PAL = PAL.removeAttribute(getContext(), i, Kind);
1586  setAttributes(PAL);
1587  }
1588 
1589  /// removes the attribute from the list of attributes.
1590  void removeAttribute(unsigned i, StringRef Kind) {
1591  AttributeList PAL = getAttributes();
1592  PAL = PAL.removeAttribute(getContext(), i, Kind);
1593  setAttributes(PAL);
1594  }
1595 
1596  /// Removes the attribute from the given argument
1597  void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
1598  assert(ArgNo < getNumArgOperands() && "Out of bounds");
1599  AttributeList PAL = getAttributes();
1600  PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
1601  setAttributes(PAL);
1602  }
1603 
1604  /// Removes the attribute from the given argument
1605  void removeParamAttr(unsigned ArgNo, StringRef Kind) {
1606  assert(ArgNo < getNumArgOperands() && "Out of bounds");
1607  AttributeList PAL = getAttributes();
1608  PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
1609  setAttributes(PAL);
1610  }
1611 
1612  /// adds the dereferenceable attribute to the list of attributes.
1613  void addDereferenceableAttr(unsigned i, uint64_t Bytes) {
1614  AttributeList PAL = getAttributes();
1615  PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
1616  setAttributes(PAL);
1617  }
1618 
1619  /// adds the dereferenceable_or_null attribute to the list of
1620  /// attributes.
1621  void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
1622  AttributeList PAL = getAttributes();
1623  PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
1624  setAttributes(PAL);
1625  }
1626 
1627  /// Determine whether the return value has the given attribute.
1629  if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
1630  return true;
1631 
1632  // Look at the callee, if available.
1633  if (const Function *F = getCalledFunction())
1634  return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
1635  return false;
1636  }
1637 
1638  /// Determine whether the argument or parameter has the given attribute.
1639  bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
1640  assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
1641 
1642  if (Attrs.hasParamAttribute(ArgNo, Kind))
1643  return true;
1644  if (const Function *F = getCalledFunction())
1645  return F->getAttributes().hasParamAttribute(ArgNo, Kind);
1646  return false;
1647  }
1648 
1649  /// Get the attribute of a given kind at a position.
1651  return getAttributes().getAttribute(i, Kind);
1652  }
1653 
1654  /// Get the attribute of a given kind at a position.
1655  Attribute getAttribute(unsigned i, StringRef Kind) const {
1656  return getAttributes().getAttribute(i, Kind);
1657  }
1658 
1659  /// Get the attribute of a given kind from a given arg
1661  assert(ArgNo < getNumArgOperands() && "Out of bounds");
1662  return getAttributes().getParamAttr(ArgNo, Kind);
1663  }
1664 
1665  /// Get the attribute of a given kind from a given arg
1666  Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const {
1667  assert(ArgNo < getNumArgOperands() && "Out of bounds");
1668  return getAttributes().getParamAttr(ArgNo, Kind);
1669  }
1670  /// Return true if the data operand at index \p i has the attribute \p
1671  /// A.
1672  ///
1673  /// Data operands include call arguments and values used in operand bundles,
1674  /// but does not include the callee operand. This routine dispatches to the
1675  /// underlying AttributeList or the OperandBundleUser as appropriate.
1676  ///
1677  /// The index \p i is interpreted as
1678  ///
1679  /// \p i == Attribute::ReturnIndex -> the return value
1680  /// \p i in [1, arg_size + 1) -> argument number (\p i - 1)
1681  /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index
1682  /// (\p i - 1) in the operand list.
1684  // There are getNumOperands() - (InstTy::ArgOffset - 1) data operands.
1685  // The last operand is the callee.
1686  assert(i < (getNumOperands() - InstTy::ArgOffset + 1) &&
1687  "Data operand index out of bounds!");
1688 
1689  // The attribute A can either be directly specified, if the operand in
1690  // question is a call argument; or be indirectly implied by the kind of its
1691  // containing operand bundle, if the operand is a bundle operand.
1692 
1693  if (i == AttributeList::ReturnIndex)
1694  return hasRetAttr(Kind);
1695 
1696  // FIXME: Avoid these i - 1 calculations and update the API to use
1697  // zero-based indices.
1698  if (i < (getNumArgOperands() + 1))
1699  return paramHasAttr(i - 1, Kind);
1700 
1701  assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
1702  "Must be either a call argument or an operand bundle!");
1703  return bundleOperandHasAttr(i - 1, Kind);
1704  }
1705 
1706  /// Extract the alignment of the return value.
1707  unsigned getRetAlignment() const { return Attrs.getRetAlignment(); }
1708 
1709  /// Extract the alignment for a call or parameter (0=unknown).
1710  unsigned getParamAlignment(unsigned ArgNo) const {
1711  return Attrs.getParamAlignment(ArgNo);
1712  }
1713 
1714  /// Extract the number of dereferenceable bytes for a call or
1715  /// parameter (0=unknown).
1716  uint64_t getDereferenceableBytes(unsigned i) const {
1717  return Attrs.getDereferenceableBytes(i);
1718  }
1719 
1720  /// Extract the number of dereferenceable_or_null bytes for a call or
1721  /// parameter (0=unknown).
1722  uint64_t getDereferenceableOrNullBytes(unsigned i) const {
1723  return Attrs.getDereferenceableOrNullBytes(i);
1724  }
1725 
1726  /// Determine if the return value is marked with NoAlias attribute.
1727  bool returnDoesNotAlias() const {
1729  }
1730 
1731  /// Return true if the call should not be treated as a call to a
1732  /// builtin.
1733  bool isNoBuiltin() const {
1734  return hasFnAttrImpl(Attribute::NoBuiltin) &&
1735  !hasFnAttrImpl(Attribute::Builtin);
1736  }
1737 
1738  /// Determine if the call requires strict floating point semantics.
1739  bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); }
1740 
1741  /// Return true if the call should not be inlined.
1742  bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
1743  void setIsNoInline() {
1744  addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1745  }
1746  /// Determine if the call does not access memory.
1747  bool doesNotAccessMemory() const {
1748  return hasFnAttr(Attribute::ReadNone);
1749  }
1751  addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
1752  }
1753 
1754  /// Determine if the call does not access or only reads memory.
1755  bool onlyReadsMemory() const {
1756  return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
1757  }
1759  addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
1760  }
1761 
1762  /// Determine if the call does not access or only writes memory.
1763  bool doesNotReadMemory() const {
1764  return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly);
1765  }
1767  addAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly);
1768  }
1769 
1770  /// Determine if the call can access memmory only using pointers based
1771  /// on its arguments.
1772  bool onlyAccessesArgMemory() const {
1773  return hasFnAttr(Attribute::ArgMemOnly);
1774  }
1776  addAttribute(AttributeList::FunctionIndex, Attribute::ArgMemOnly);
1777  }
1778 
1779  /// Determine if the function may only access memory that is
1780  /// inaccessible from the IR.
1782  return hasFnAttr(Attribute::InaccessibleMemOnly);
1783  }
1785  addAttribute(AttributeList::FunctionIndex, Attribute::InaccessibleMemOnly);
1786  }
1787 
1788  /// Determine if the function may only access memory that is
1789  /// either inaccessible from the IR or pointed to by its arguments.
1791  return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
1792  }
1794  addAttribute(AttributeList::FunctionIndex, Attribute::InaccessibleMemOrArgMemOnly);
1795  }
1796  /// Determine if the call cannot return.
1797  bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
1799  addAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
1800  }
1801 
1802  /// Determine if the call should not perform indirect branch tracking.
1803  bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
1804 
1805  /// Determine if the call cannot unwind.
1806  bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
1808  addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
1809  }
1810 
1811  /// Determine if the invoke cannot be duplicated.
1812  bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); }
1814  addAttribute(AttributeList::FunctionIndex, Attribute::NoDuplicate);
1815  }
1816 
1817  /// Determine if the invoke is convergent
1818  bool isConvergent() const { return hasFnAttr(Attribute::Convergent); }
1819  void setConvergent() {
1821  }
1824  }
1825 
1826  /// Determine if the call returns a structure through first
1827  /// pointer argument.
1828  bool hasStructRetAttr() const {
1829  if (getNumArgOperands() == 0)
1830  return false;
1831 
1832  // Be friendly and also check the callee.
1833  return paramHasAttr(0, Attribute::StructRet);
1834  }
1835 
1836  /// Determine if any call argument is an aggregate passed by value.
1837  bool hasByValArgument() const {
1838  return Attrs.hasAttrSomewhere(Attribute::ByVal);
1839  }
1840  /// Get a pointer to the function that is invoked by this
1841  /// instruction.
1842  const Value *getCalledValue() const { return Op<-InstTy::ArgOffset>(); }
1843  Value *getCalledValue() { return Op<-InstTy::ArgOffset>(); }
1844 
1845  /// Set the function called.
1847  setCalledFunction(
1848  cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()),
1849  Fn);
1850  }
1852  this->FTy = FTy;
1853  assert(FTy == cast<FunctionType>(
1854  cast<PointerType>(Fn->getType())->getElementType()));
1855  Op<-InstTy::ArgOffset>() = Fn;
1856  }
1857 
1858 protected:
1859  template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const {
1860  if (Attrs.hasAttribute(AttributeList::FunctionIndex, Kind))
1861  return true;
1862 
1863  // Operand bundles override attributes on the called function, but don't
1864  // override attributes directly present on the call instruction.
1865  if (isFnAttrDisallowedByOpBundle(Kind))
1866  return false;
1867 
1868  if (const Function *F = getCalledFunction())
1869  return F->getAttributes().hasAttribute(AttributeList::FunctionIndex,
1870  Kind);
1871  return false;
1872  }
1873 };
1874 
1875 //===----------------------------------------------------------------------===//
1876 /// This class represents a function call, abstracting a target
1877 /// machine's calling convention. This class uses low bit of the SubClassData
1878 /// field to indicate whether or not this is a tail call. The rest of the bits
1879 /// hold the calling convention of the call.
1880 ///
1881 class CallInst : public CallBase<CallInst> {
1883 
1884  CallInst(const CallInst &CI);
1885 
1886  /// Construct a CallInst given a range of arguments.
1887  /// Construct a CallInst from a range of arguments
1888  inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1889  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1890  Instruction *InsertBefore);
1891 
1892  inline CallInst(Value *Func, ArrayRef<Value *> Args,
1893  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1894  Instruction *InsertBefore)
1895  : CallInst(cast<FunctionType>(
1896  cast<PointerType>(Func->getType())->getElementType()),
1897  Func, Args, Bundles, NameStr, InsertBefore) {}
1898 
1899  inline CallInst(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr,
1900  Instruction *InsertBefore)
1901  : CallInst(Func, Args, None, NameStr, InsertBefore) {}
1902 
1903  /// Construct a CallInst given a range of arguments.
1904  /// Construct a CallInst from a range of arguments
1905  inline CallInst(Value *Func, ArrayRef<Value *> Args,
1906  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1907  BasicBlock *InsertAtEnd);
1908 
1909  explicit CallInst(Value *F, const Twine &NameStr, Instruction *InsertBefore);
1910 
1911  CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd);
1912 
1913  void init(Value *Func, ArrayRef<Value *> Args,
1914  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
1915  init(cast<FunctionType>(
1916  cast<PointerType>(Func->getType())->getElementType()),
1917  Func, Args, Bundles, NameStr);
1918  }
1919  void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1920  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1921  void init(Value *Func, const Twine &NameStr);
1922 
1923 protected:
1924  // Note: Instruction needs to be a friend here to call cloneImpl.
1925  friend class Instruction;
1926 
1927  CallInst *cloneImpl() const;
1928 
1929 public:
1930  static constexpr int ArgOffset = 1;
1931 
1932  static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1933  ArrayRef<OperandBundleDef> Bundles = None,
1934  const Twine &NameStr = "",
1935  Instruction *InsertBefore = nullptr) {
1936  return Create(cast<FunctionType>(
1937  cast<PointerType>(Func->getType())->getElementType()),
1938  Func, Args, Bundles, NameStr, InsertBefore);
1939  }
1940 
1941  static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1942  const Twine &NameStr,
1943  Instruction *InsertBefore = nullptr) {
1944  return Create(cast<FunctionType>(
1945  cast<PointerType>(Func->getType())->getElementType()),
1946  Func, Args, None, NameStr, InsertBefore);
1947  }
1948 
1949  static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1950  const Twine &NameStr,
1951  Instruction *InsertBefore = nullptr) {
1952  return new (unsigned(Args.size() + 1))
1953  CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1954  }
1955 
1956  static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1957  ArrayRef<OperandBundleDef> Bundles = None,
1958  const Twine &NameStr = "",
1959  Instruction *InsertBefore = nullptr) {
1960  const unsigned TotalOps =
1961  unsigned(Args.size()) + CountBundleInputs(Bundles) + 1;
1962  const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1963 
1964  return new (TotalOps, DescriptorBytes)
1965  CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1966  }
1967 
1968  static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1970  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1971  const unsigned TotalOps =
1972  unsigned(Args.size()) + CountBundleInputs(Bundles) + 1;
1973  const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1974 
1975  return new (TotalOps, DescriptorBytes)
1976  CallInst(Func, Args, Bundles, NameStr, InsertAtEnd);
1977  }
1978 
1979  static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1980  const Twine &NameStr, BasicBlock *InsertAtEnd) {
1981  return new (unsigned(Args.size() + 1))
1982  CallInst(Func, Args, None, NameStr, InsertAtEnd);
1983  }
1984 
1985  static CallInst *Create(Value *F, const Twine &NameStr = "",
1986  Instruction *InsertBefore = nullptr) {
1987  return new (1) CallInst(F, NameStr, InsertBefore);
1988  }
1989 
1990  static CallInst *Create(Value *F, const Twine &NameStr,
1991  BasicBlock *InsertAtEnd) {
1992  return new (1) CallInst(F, NameStr, InsertAtEnd);
1993  }
1994 
1995  /// Create a clone of \p CI with a different set of operand bundles and
1996  /// insert it before \p InsertPt.
1997  ///
1998  /// The returned call instruction is identical \p CI in every way except that
1999  /// the operand bundles for the new instruction are set to the operand bundles
2000  /// in \p Bundles.
2001  static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
2002  Instruction *InsertPt = nullptr);
2003 
2004  /// Generate the IR for a call to malloc:
2005  /// 1. Compute the malloc call's argument as the specified type's size,
2006  /// possibly multiplied by the array size if the array size is not
2007  /// constant 1.
2008  /// 2. Call malloc with that argument.
2009  /// 3. Bitcast the result of the malloc call to the specified type.
2010  static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
2011  Type *AllocTy, Value *AllocSize,
2012  Value *ArraySize = nullptr,
2013  Function *MallocF = nullptr,
2014  const Twine &Name = "");
2015  static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
2016  Type *AllocTy, Value *AllocSize,
2017  Value *ArraySize = nullptr,
2018  Function *MallocF = nullptr,
2019  const Twine &Name = "");
2020  static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
2021  Type *AllocTy, Value *AllocSize,
2022  Value *ArraySize = nullptr,
2023  ArrayRef<OperandBundleDef> Bundles = None,
2024  Function *MallocF = nullptr,
2025  const Twine &Name = "");
2026  static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
2027  Type *AllocTy, Value *AllocSize,
2028  Value *ArraySize = nullptr,
2029  ArrayRef<OperandBundleDef> Bundles = None,
2030  Function *MallocF = nullptr,
2031  const Twine &Name = "");
2032  /// Generate the IR for a call to the builtin free function.
2033  static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
2034  static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
2035  static Instruction *CreateFree(Value *Source,
2037  Instruction *InsertBefore);
2038  static Instruction *CreateFree(Value *Source,
2040  BasicBlock *InsertAtEnd);
2041 
2042  // Note that 'musttail' implies 'tail'.
2044  TCK_None = 0,
2045  TCK_Tail = 1,
2046  TCK_MustTail = 2,
2047  TCK_NoTail = 3
2048  };
2051  }
2052 
2053  bool isTailCall() const {
2054  unsigned Kind = getSubclassDataFromInstruction() & 3;
2055  return Kind == TCK_Tail || Kind == TCK_MustTail;
2056  }
2057 
2058  bool isMustTailCall() const {
2059  return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
2060  }
2061 
2062  bool isNoTailCall() const {
2063  return (getSubclassDataFromInstruction() & 3) == TCK_NoTail;
2064  }
2065 
2066  void setTailCall(bool isTC = true) {
2067  setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
2068  unsigned(isTC ? TCK_Tail : TCK_None));
2069  }
2070 
2072  setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
2073  unsigned(TCK));
2074  }
2075 
2076  /// Return true if the call can return twice
2077  bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
2079  addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
2080  }
2081 
2082  /// Check if this call is an inline asm statement.
2083  bool isInlineAsm() const { return isa<InlineAsm>(Op<-1>()); }
2084 
2085  // Methods for support type inquiry through isa, cast, and dyn_cast:
2086  static bool classof(const Instruction *I) {
2087  return I->getOpcode() == Instruction::Call;
2088  }
2089  static bool classof(const Value *V) {
2090  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2091  }
2092 
2093 private:
2094  // Shadow Instruction::setInstructionSubclassData with a private forwarding
2095  // method so that subclasses cannot accidentally use it.
2096  void setInstructionSubclassData(unsigned short D) {
2098  }
2099 };
2100 
2101 template <>
2103  : public VariadicOperandTraits<CallBase<CallInst>, 1> {};
2104 
2105 CallInst::CallInst(Value *Func, ArrayRef<Value *> Args,
2106  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
2107  BasicBlock *InsertAtEnd)
2109  cast<FunctionType>(
2110  cast<PointerType>(Func->getType())->getElementType())
2111  ->getReturnType(),
2114  (Args.size() + CountBundleInputs(Bundles) + 1),
2115  unsigned(Args.size() + CountBundleInputs(Bundles) + 1), InsertAtEnd) {
2116  init(Func, Args, Bundles, NameStr);
2117 }
2118 
2119 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
2120  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
2121  Instruction *InsertBefore)
2124  (Args.size() + CountBundleInputs(Bundles) + 1),
2125  unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
2126  InsertBefore) {
2127  init(Ty, Func, Args, Bundles, NameStr);
2128 }
2129 
2130 //===----------------------------------------------------------------------===//
2131 // SelectInst Class
2132 //===----------------------------------------------------------------------===//
2133 
2134 /// This class represents the LLVM 'select' instruction.
2135 ///
2136 class SelectInst : public Instruction {
2137  SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
2138  Instruction *InsertBefore)
2140  &Op<0>(), 3, InsertBefore) {
2141  init(C, S1, S2);
2142  setName(NameStr);
2143  }
2144 
2145  SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
2146  BasicBlock *InsertAtEnd)
2148  &Op<0>(), 3, InsertAtEnd) {
2149  init(C, S1, S2);
2150  setName(NameStr);
2151  }
2152 
2153  void init(Value *C, Value *S1, Value *S2) {
2154  assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
2155  Op<0>() = C;
2156  Op<1>() = S1;
2157  Op<2>() = S2;
2158  }
2159 
2160 protected:
2161  // Note: Instruction needs to be a friend here to call cloneImpl.
2162  friend class Instruction;
2163 
2164  SelectInst *cloneImpl() const;
2165 
2166 public:
2167  static SelectInst *Create(Value *C, Value *S1, Value *S2,
2168  const Twine &NameStr = "",
2169  Instruction *InsertBefore = nullptr,
2170  Instruction *MDFrom = nullptr) {
2171  SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
2172  if (MDFrom)
2173  Sel->copyMetadata(*MDFrom);
2174  return Sel;
2175  }
2176 
2177  static SelectInst *Create(Value *C, Value *S1, Value *S2,
2178  const Twine &NameStr,
2179  BasicBlock *InsertAtEnd) {
2180  return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
2181  }
2182 
2183  const Value *getCondition() const { return Op<0>(); }
2184  const Value *getTrueValue() const { return Op<1>(); }
2185  const Value *getFalseValue() const { return Op<2>(); }
2186  Value *getCondition() { return Op<0>(); }
2187  Value *getTrueValue() { return Op<1>(); }
2188  Value *getFalseValue() { return Op<2>(); }
2189 
2190  void setCondition(Value *V) { Op<0>() = V; }
2191  void setTrueValue(Value *V) { Op<1>() = V; }
2192  void setFalseValue(Value *V) { Op<2>() = V; }
2193 
2194  /// Return a string if the specified operands are invalid
2195  /// for a select operation, otherwise return null.
2196  static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
2197 
2198  /// Transparently provide more efficient getOperand methods.
2200 
2202  return static_cast<OtherOps>(Instruction::getOpcode());
2203  }
2204 
2205  // Methods for support type inquiry through isa, cast, and dyn_cast:
2206  static bool classof(const Instruction *I) {
2207  return I->getOpcode() == Instruction::Select;
2208  }
2209  static bool classof(const Value *V) {
2210  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2211  }
2212 };
2213 
2214 template <>
2215 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
2216 };
2217 
2219 
2220 //===----------------------------------------------------------------------===//
2221 // VAArgInst Class
2222 //===----------------------------------------------------------------------===//
2223 
2224 /// This class represents the va_arg llvm instruction, which returns
2225 /// an argument of the specified type given a va_list and increments that list
2226 ///
2227 class VAArgInst : public UnaryInstruction {
2228 protected:
2229  // Note: Instruction needs to be a friend here to call cloneImpl.
2230  friend class Instruction;
2231 
2232  VAArgInst *cloneImpl() const;
2233 
2234 public:
2235  VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
2236  Instruction *InsertBefore = nullptr)
2237  : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
2238  setName(NameStr);
2239  }
2240 
2241  VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
2242  BasicBlock *InsertAtEnd)
2243  : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
2244  setName(NameStr);
2245  }
2246 
2248  const Value *getPointerOperand() const { return getOperand(0); }
2249  static unsigned getPointerOperandIndex() { return 0U; }
2250 
2251  // Methods for support type inquiry through isa, cast, and dyn_cast:
2252  static bool classof(const Instruction *I) {
2253  return I->getOpcode() == VAArg;
2254  }
2255  static bool classof(const Value *V) {
2256  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2257  }
2258 };
2259 
2260 //===----------------------------------------------------------------------===//
2261 // ExtractElementInst Class
2262 //===----------------------------------------------------------------------===//
2263 
2264 /// This instruction extracts a single (scalar)
2265 /// element from a VectorType value
2266 ///
2268  ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
2269  Instruction *InsertBefore = nullptr);
2270  ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
2271  BasicBlock *InsertAtEnd);
2272 
2273 protected:
2274  // Note: Instruction needs to be a friend here to call cloneImpl.
2275  friend class Instruction;
2276 
2277  ExtractElementInst *cloneImpl() const;
2278 
2279 public:
2280  static ExtractElementInst *Create(Value *Vec, Value *Idx,
2281  const Twine &NameStr = "",
2282  Instruction *InsertBefore = nullptr) {
2283  return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
2284  }
2285 
2286  static ExtractElementInst *Create(Value *Vec, Value *Idx,
2287  const Twine &NameStr,
2288  BasicBlock *InsertAtEnd) {
2289  return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
2290  }
2291 
2292  /// Return true if an extractelement instruction can be
2293  /// formed with the specified operands.
2294  static bool isValidOperands(const Value *Vec, const Value *Idx);
2295 
2296  Value *getVectorOperand() { return Op<0>(); }
2297  Value *getIndexOperand() { return Op<1>(); }
2298  const Value *getVectorOperand() const { return Op<0>(); }
2299  const Value *getIndexOperand() const { return Op<1>(); }
2300 
2302  return cast<VectorType>(getVectorOperand()->getType());
2303  }
2304 
2305  /// Transparently provide more efficient getOperand methods.
2307 
2308  // Methods for support type inquiry through isa, cast, and dyn_cast:
2309  static bool classof(const Instruction *I) {
2310  return I->getOpcode() == Instruction::ExtractElement;
2311  }
2312  static bool classof(const Value *V) {
2313  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2314  }
2315 };
2316 
2317 template <>
2319  public FixedNumOperandTraits<ExtractElementInst, 2> {
2320 };
2321 
2322 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
2323 
2324 //===----------------------------------------------------------------------===//
2325 // InsertElementInst Class
2326 //===----------------------------------------------------------------------===//
2327 
2328 /// This instruction inserts a single (scalar)
2329 /// element into a VectorType value
2330 ///
2332  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
2333  const Twine &NameStr = "",
2334  Instruction *InsertBefore = nullptr);
2335  InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
2336  BasicBlock *InsertAtEnd);
2337 
2338 protected:
2339  // Note: Instruction needs to be a friend here to call cloneImpl.
2340  friend class Instruction;
2341 
2342  InsertElementInst *cloneImpl() const;
2343 
2344 public:
2345  static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
2346  const Twine &NameStr = "",
2347  Instruction *InsertBefore = nullptr) {
2348  return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
2349  }
2350 
2351  static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
2352  const Twine &NameStr,
2353  BasicBlock *InsertAtEnd) {
2354  return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
2355  }
2356 
2357  /// Return true if an insertelement instruction can be
2358  /// formed with the specified operands.
2359  static bool isValidOperands(const Value *Vec, const Value *NewElt,
2360  const Value *Idx);
2361 
2362  /// Overload to return most specific vector type.
2363  ///
2364  VectorType *getType() const {
2365  return cast<VectorType>(Instruction::getType());
2366  }
2367 
2368  /// Transparently provide more efficient getOperand methods.
2370 
2371  // Methods for support type inquiry through isa, cast, and dyn_cast:
2372  static bool classof(const Instruction *I) {
2373  return I->getOpcode() == Instruction::InsertElement;
2374  }
2375  static bool classof(const Value *V) {
2376  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2377  }
2378 };
2379 
2380 template <>
2382  public FixedNumOperandTraits<InsertElementInst, 3> {
2383 };
2384 
2385 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
2386 
2387 //===----------------------------------------------------------------------===//
2388 // ShuffleVectorInst Class
2389 //===----------------------------------------------------------------------===//
2390 
2391 /// This instruction constructs a fixed permutation of two
2392 /// input vectors.
2393 ///
2395 protected:
2396  // Note: Instruction needs to be a friend here to call cloneImpl.
2397  friend class Instruction;
2398 
2399  ShuffleVectorInst *cloneImpl() const;
2400 
2401 public:
2403  const Twine &NameStr = "",
2404  Instruction *InsertBefor = nullptr);
2406  const Twine &NameStr, BasicBlock *InsertAtEnd);
2407 
2408  // allocate space for exactly three operands
2409  void *operator new(size_t s) {
2410  return User::operator new(s, 3);
2411  }
2412 
2413  /// Return true if a shufflevector instruction can be
2414  /// formed with the specified operands.
2415  static bool isValidOperands(const Value *V1, const Value *V2,
2416  const Value *Mask);
2417 
2418  /// Overload to return most specific vector type.
2419  ///
2420  VectorType *getType() const {
2421  return cast<VectorType>(Instruction::getType());
2422  }
2423 
2424  /// Transparently provide more efficient getOperand methods.
2426 
2427  Constant *getMask() const {
2428  return cast<Constant>(getOperand(2));
2429  }
2430 
2431  /// Return the shuffle mask value for the specified element of the mask.
2432  /// Return -1 if the element is undef.
2433  static int getMaskValue(const Constant *Mask, unsigned Elt);
2434 
2435  /// Return the shuffle mask value of this instruction for the given element
2436  /// index. Return -1 if the element is undef.
2437  int getMaskValue(unsigned Elt) const {
2438  return getMaskValue(getMask(), Elt);
2439  }
2440 
2441  /// Convert the input shuffle mask operand to a vector of integers. Undefined
2442  /// elements of the mask are returned as -1.
2443  static void getShuffleMask(const Constant *Mask,
2444  SmallVectorImpl<int> &Result);
2445 
2446  /// Return the mask for this instruction as a vector of integers. Undefined
2447  /// elements of the mask are returned as -1.
2448  void getShuffleMask(SmallVectorImpl<int> &Result) const {
2449  return getShuffleMask(getMask(), Result);
2450  }
2451 
2454  getShuffleMask(Mask);
2455  return Mask;
2456  }
2457 
2458  /// Return true if this shuffle returns a vector with a different number of
2459  /// elements than its source elements.
2460  /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2>
2461  bool changesLength() const {
2462  unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2463  unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2464  return NumSourceElts != NumMaskElts;
2465  }
2466 
2467  /// Return true if this shuffle mask chooses elements from exactly one source
2468  /// vector.
2469  /// Example: <7,5,undef,7>
2470  /// This assumes that vector operands are the same length as the mask.
2471  static bool isSingleSourceMask(ArrayRef<int> Mask);
2472  static bool isSingleSourceMask(const Constant *Mask) {
2473  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2474  SmallVector<int, 16> MaskAsInts;
2475  getShuffleMask(Mask, MaskAsInts);
2476  return isSingleSourceMask(MaskAsInts);
2477  }
2478 
2479  /// Return true if this shuffle chooses elements from exactly one source
2480  /// vector without changing the length of that vector.
2481  /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2482  /// TODO: Optionally allow length-changing shuffles.
2483  bool isSingleSource() const {
2484  return !changesLength() && isSingleSourceMask(getMask());
2485  }
2486 
2487  /// Return true if this shuffle mask chooses elements from exactly one source
2488  /// vector without lane crossings. A shuffle using this mask is not
2489  /// necessarily a no-op because it may change the number of elements from its
2490  /// input vectors or it may provide demanded bits knowledge via undef lanes.
2491  /// Example: <undef,undef,2,3>
2492  static bool isIdentityMask(ArrayRef<int> Mask);
2493  static bool isIdentityMask(const Constant *Mask) {
2494  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2495  SmallVector<int, 16> MaskAsInts;
2496  getShuffleMask(Mask, MaskAsInts);
2497  return isIdentityMask(MaskAsInts);
2498  }
2499 
2500  /// Return true if this shuffle mask chooses elements from exactly one source
2501  /// vector without lane crossings and does not change the number of elements
2502  /// from its input vectors.
2503  /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2504  /// TODO: Optionally allow length-changing shuffles.
2505  bool isIdentity() const {
2506  return !changesLength() && isIdentityMask(getShuffleMask());
2507  }
2508 
2509  /// Return true if this shuffle mask chooses elements from its source vectors
2510  /// without lane crossings. A shuffle using this mask would be
2511  /// equivalent to a vector select with a constant condition operand.
2512  /// Example: <4,1,6,undef>
2513  /// This returns false if the mask does not choose from both input vectors.
2514  /// In that case, the shuffle is better classified as an identity shuffle.
2515  /// This assumes that vector operands are the same length as the mask
2516  /// (a length-changing shuffle can never be equivalent to a vector select).
2517  static bool isSelectMask(ArrayRef<int> Mask);
2518  static bool isSelectMask(const Constant *Mask) {
2519  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2520  SmallVector<int, 16> MaskAsInts;
2521  getShuffleMask(Mask, MaskAsInts);
2522  return isSelectMask(MaskAsInts);
2523  }
2524 
2525  /// Return true if this shuffle chooses elements from its source vectors
2526  /// without lane crossings and all operands have the same number of elements.
2527  /// In other words, this shuffle is equivalent to a vector select with a
2528  /// constant condition operand.
2529  /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2530  /// This returns false if the mask does not choose from both input vectors.
2531  /// In that case, the shuffle is better classified as an identity shuffle.
2532  /// TODO: Optionally allow length-changing shuffles.
2533  bool isSelect() const {
2534  return !changesLength() && isSelectMask(getMask());
2535  }
2536 
2537  /// Return true if this shuffle mask swaps the order of elements from exactly
2538  /// one source vector.
2539  /// Example: <7,6,undef,4>
2540  /// This assumes that vector operands are the same length as the mask.
2541  static bool isReverseMask(ArrayRef<int> Mask);
2542  static bool isReverseMask(const Constant *Mask) {
2543  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2544  SmallVector<int, 16> MaskAsInts;
2545  getShuffleMask(Mask, MaskAsInts);
2546  return isReverseMask(MaskAsInts);
2547  }
2548 
2549  /// Return true if this shuffle swaps the order of elements from exactly
2550  /// one source vector.
2551  /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2552  /// TODO: Optionally allow length-changing shuffles.
2553  bool isReverse() const {
2554  return !changesLength() && isReverseMask(getMask());
2555  }
2556 
2557  /// Return true if this shuffle mask chooses all elements with the same value
2558  /// as the first element of exactly one source vector.
2559  /// Example: <4,undef,undef,4>
2560  /// This assumes that vector operands are the same length as the mask.
2561  static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2562  static bool isZeroEltSplatMask(const Constant *Mask) {
2563  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2564  SmallVector<int, 16> MaskAsInts;
2565  getShuffleMask(Mask, MaskAsInts);
2566  return isZeroEltSplatMask(MaskAsInts);
2567  }
2568 
2569  /// Return true if all elements of this shuffle are the same value as the
2570  /// first element of exactly one source vector without changing the length
2571  /// of that vector.
2572  /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2573  /// TODO: Optionally allow length-changing shuffles.
2574  /// TODO: Optionally allow splats from other elements.
2575  bool isZeroEltSplat() const {
2576  return !changesLength() && isZeroEltSplatMask(getMask());
2577  }
2578 
2579  /// Return true if this shuffle mask is a transpose mask.
2580  /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2581  /// even- or odd-numbered vector elements from two n-dimensional source
2582  /// vectors and write each result into consecutive elements of an
2583  /// n-dimensional destination vector. Two shuffles are necessary to complete
2584  /// the transpose, one for the even elements and another for the odd elements.
2585  /// This description closely follows how the TRN1 and TRN2 AArch64
2586  /// instructions operate.
2587  ///
2588  /// For example, a simple 2x2 matrix can be transposed with:
2589  ///
2590  /// ; Original matrix
2591  /// m0 = < a, b >
2592  /// m1 = < c, d >
2593  ///
2594  /// ; Transposed matrix
2595  /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2596  /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2597  ///
2598  /// For matrices having greater than n columns, the resulting nx2 transposed
2599  /// matrix is stored in two result vectors such that one vector contains
2600  /// interleaved elements from all the even-numbered rows and the other vector
2601  /// contains interleaved elements from all the odd-numbered rows. For example,
2602  /// a 2x4 matrix can be transposed with:
2603  ///
2604  /// ; Original matrix
2605  /// m0 = < a, b, c, d >
2606  /// m1 = < e, f, g, h >
2607  ///
2608  /// ; Transposed matrix
2609  /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2610  /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2611  static bool isTransposeMask(ArrayRef<int> Mask);
2612  static bool isTransposeMask(const Constant *Mask) {
2613  assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2614  SmallVector<int, 16> MaskAsInts;
2615  getShuffleMask(Mask, MaskAsInts);
2616  return isTransposeMask(MaskAsInts);
2617  }
2618 
2619  /// Return true if this shuffle transposes the elements of its inputs without
2620  /// changing the length of the vectors. This operation may also be known as a
2621  /// merge or interleave. See the description for isTransposeMask() for the
2622  /// exact specification.
2623  /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2624  bool isTranspose() const {
2625  return !changesLength() && isTransposeMask(getMask());
2626  }
2627 
2628  /// Change values in a shuffle permute mask assuming the two vector operands
2629  /// of length InVecNumElts have swapped position.
2631  unsigned InVecNumElts) {
2632  for (int &Idx : Mask) {
2633  if (Idx == -1)
2634  continue;
2635  Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2636  assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2637  "shufflevector mask index out of range");
2638  }
2639  }
2640 
2641  // Methods for support type inquiry through isa, cast, and dyn_cast:
2642  static bool classof(const Instruction *I) {
2643  return I->getOpcode() == Instruction::ShuffleVector;
2644  }
2645  static bool classof(const Value *V) {
2646  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2647  }
2648 };
2649 
2650 template <>
2652  public FixedNumOperandTraits<ShuffleVectorInst, 3> {
2653 };
2654 
2655 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
2656 
2657 //===----------------------------------------------------------------------===//
2658 // ExtractValueInst Class
2659 //===----------------------------------------------------------------------===//
2660 
2661 /// This instruction extracts a struct member or array
2662 /// element value from an aggregate value.
2663 ///
2665  SmallVector<unsigned, 4> Indices;
2666 
2667  ExtractValueInst(const ExtractValueInst &EVI);
2668 
2669  /// Constructors - Create a extractvalue instruction with a base aggregate
2670  /// value and a list of indices. The first ctor can optionally insert before
2671  /// an existing instruction, the second appends the new instruction to the
2672  /// specified BasicBlock.
2673  inline ExtractValueInst(Value *Agg,
2674  ArrayRef<unsigned> Idxs,
2675  const Twine &NameStr,
2676  Instruction *InsertBefore);
2677  inline ExtractValueInst(Value *Agg,
2678  ArrayRef<unsigned> Idxs,
2679  const Twine &NameStr, BasicBlock *InsertAtEnd);
2680 
2681  void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2682 
2683 protected:
2684  // Note: Instruction needs to be a friend here to call cloneImpl.
2685  friend class Instruction;
2686 
2687  ExtractValueInst *cloneImpl() const;
2688 
2689 public:
2691  ArrayRef<unsigned> Idxs,
2692  const Twine &NameStr = "",
2693  Instruction *InsertBefore = nullptr) {
2694  return new
2695  ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2696  }
2697 
2699  ArrayRef<unsigned> Idxs,
2700  const Twine &NameStr,
2701  BasicBlock *InsertAtEnd) {
2702  return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2703  }
2704 
2705  /// Returns the type of the element that would be extracted
2706  /// with an extractvalue instruction with the specified parameters.
2707  ///
2708  /// Null is returned if the indices are invalid for the specified type.
2709  static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2710 
2711  using idx_iterator = const unsigned*;
2712 
2713  inline idx_iterator idx_begin() const { return Indices.begin(); }
2714  inline idx_iterator idx_end() const { return Indices.end(); }
2716  return make_range(idx_begin(), idx_end());
2717  }
2718 
2720  return getOperand(0);
2721  }
2722  const Value *getAggregateOperand() const {
2723  return getOperand(0);
2724  }
2725  static unsigned getAggregateOperandIndex() {
2726  return 0U; // get index for modifying correct operand
2727  }
2728 
2730  return Indices;
2731  }
2732 
2733  unsigned getNumIndices() const {
2734  return (unsigned)Indices.size();
2735  }
2736 
2737  bool hasIndices() const {
2738  return true;
2739  }
2740 
2741  // Methods for support type inquiry through isa, cast, and dyn_cast:
2742  static bool classof(const Instruction *I) {
2743  return I->getOpcode() == Instruction::ExtractValue;
2744  }
2745  static bool classof(const Value *V) {
2746  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2747  }
2748 };
2749 
2750 ExtractValueInst::ExtractValueInst(Value *Agg,
2751  ArrayRef<unsigned> Idxs,
2752  const Twine &NameStr,
2753  Instruction *InsertBefore)
2754  : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2755  ExtractValue, Agg, InsertBefore) {
2756  init(Idxs, NameStr);
2757 }
2758 
2759 ExtractValueInst::ExtractValueInst(Value *Agg,
2760  ArrayRef<unsigned> Idxs,
2761  const Twine &NameStr,
2762  BasicBlock *InsertAtEnd)
2763  : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2764  ExtractValue, Agg, InsertAtEnd) {
2765  init(Idxs, NameStr);
2766 }
2767 
2768 //===----------------------------------------------------------------------===//
2769 // InsertValueInst Class
2770 //===----------------------------------------------------------------------===//
2771 
2772 /// This instruction inserts a struct field of array element
2773 /// value into an aggregate value.
2774 ///
2776  SmallVector<unsigned, 4> Indices;
2777 
2778  InsertValueInst(const InsertValueInst &IVI);
2779 
2780  /// Constructors - Create a insertvalue instruction with a base aggregate
2781  /// value, a value to insert, and a list of indices. The first ctor can
2782  /// optionally insert before an existing instruction, the second appends
2783  /// the new instruction to the specified BasicBlock.
2784  inline InsertValueInst(Value *Agg, Value *Val,
2785  ArrayRef<unsigned> Idxs,
2786  const Twine &NameStr,
2787  Instruction *InsertBefore);
2788  inline InsertValueInst(Value *Agg, Value *Val,
2789  ArrayRef<unsigned> Idxs,
2790  const Twine &NameStr, BasicBlock *InsertAtEnd);
2791 
2792  /// Constructors - These two constructors are convenience methods because one
2793  /// and two index insertvalue instructions are so common.
2794  InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2795  const Twine &NameStr = "",
2796  Instruction *InsertBefore = nullptr);
2797  InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2798  BasicBlock *InsertAtEnd);
2799 
2800  void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2801  const Twine &NameStr);
2802 
2803 protected:
2804  // Note: Instruction needs to be a friend here to call cloneImpl.
2805  friend class Instruction;
2806 
2807  InsertValueInst *cloneImpl() const;
2808 
2809 public:
2810  // allocate space for exactly two operands
2811  void *operator new(size_t s) {
2812  return User::operator new(s, 2);
2813  }
2814 
2815  static InsertValueInst *Create(Value *Agg, Value *Val,
2816  ArrayRef<unsigned> Idxs,
2817  const Twine &NameStr = "",
2818  Instruction *InsertBefore = nullptr) {
2819  return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2820  }
2821 
2822  static InsertValueInst *Create(Value *Agg, Value *Val,
2823  ArrayRef<unsigned> Idxs,
2824  const Twine &NameStr,
2825  BasicBlock *InsertAtEnd) {
2826  return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2827  }
2828 
2829  /// Transparently provide more efficient getOperand methods.
2831 
2832  using idx_iterator = const unsigned*;
2833 
2834  inline idx_iterator idx_begin() const { return Indices.begin(); }
2835  inline idx_iterator idx_end() const { return Indices.end(); }
2837  return make_range(idx_begin(), idx_end());
2838  }
2839 
2841  return getOperand(0);
2842  }
2843  const Value *getAggregateOperand() const {
2844  return getOperand(0);
2845  }
2846  static unsigned getAggregateOperandIndex() {
2847  return 0U; // get index for modifying correct operand
2848  }
2849 
2851  return getOperand(1);
2852  }
2854  return getOperand(1);
2855  }
2856  static unsigned getInsertedValueOperandIndex() {
2857  return 1U; // get index for modifying correct operand
2858  }
2859 
2861  return Indices;
2862  }
2863 
2864  unsigned getNumIndices() const {
2865  return (unsigned)Indices.size();
2866  }
2867 
2868  bool hasIndices() const {
2869  return true;
2870  }
2871 
2872  // Methods for support type inquiry through isa, cast, and dyn_cast:
2873  static bool classof(const Instruction *I) {
2874  return I->getOpcode() == Instruction::InsertValue;
2875  }
2876  static bool classof(const Value *V) {
2877  return isa<Instruction>(V) && classof(cast<Instruction>(V));
2878  }
2879 };
2880 
2881 template <>
2883  public FixedNumOperandTraits<InsertValueInst, 2> {
2884 };
2885 
2886 InsertValueInst::InsertValueInst(Value *Agg,
2887  Value *Val,
2888  ArrayRef<unsigned> Idxs,
2889  const Twine &NameStr,
2890  Instruction *InsertBefore)
2891  : Instruction(Agg->getType(), InsertValue,
2893  2, InsertBefore) {
2894  init(Agg, Val, Idxs, NameStr);
2895 }
2896 
2897 InsertValueInst::InsertValueInst(Value *Agg,
2898  Value *Val,
2899  ArrayRef<unsigned> Idxs,
2900  const Twine &NameStr,
2901  BasicBlock *InsertAtEnd)
2902  : Instruction(Agg->getType(), InsertValue,
2904  2, InsertAtEnd) {
2905  init(Agg, Val, Idxs, NameStr);
2906 }
2907 
2909 
2910 //===----------------------------------------------------------------------===//
2911 // PHINode Class
2912 //===----------------------------------------------------------------------===//
2913 
2914 // PHINode - The PHINode class is used to represent the magical mystical PHI
2915 // node, that can not exist in nature, but can be synthesized in a computer
2916 // scientist's overactive imagination.
2917 //
2918 class PHINode : public Instruction {
2919  /// The number of operands actually allocated. NumOperands is
2920  /// the number actually in use.
2921  unsigned ReservedSpace;
2922 
2923  PHINode(const PHINode &PN);
2924 
2925  explicit PHINode(Type *Ty, unsigned NumReservedValues,
2926  const Twine &NameStr = "",
2927  Instruction *InsertBefore = nullptr)
2928  : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2929  ReservedSpace(NumReservedValues) {
2930  setName(NameStr);
2931  allocHungoffUses(ReservedSpace);
2932  }
2933 
2934  PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2935  BasicBlock *InsertAtEnd)
2936  : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2937  ReservedSpace(NumReservedValues) {
2938  setName(NameStr);
2939  allocHungoffUses(ReservedSpace);
2940  }
2941 
2942 protected:
2943  // Note: Instruction needs to be a friend here to call cloneImpl.
2944  friend class Instruction;
2945 
2946  PHINode *cloneImpl() const;
2947 
2948  // allocHungoffUses - this is more complicated than the generic
2949  // User::allocHungoffUses, because we have to allocate Uses for the incoming
2950  // values and pointers to the incoming blocks, all in one allocation.
2951  void allocHungoffUses(unsigned N) {
2952  User::allocHungoffUses(N, /* IsPhi */ true);
2953  }
2954 
2955 public:
2956  /// Constructors - NumReservedValues is a hint for the number of incoming
2957  /// edges that this phi node will have (use 0 if you really have no idea).
2958  static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2959  const Twine &NameStr = "",
2960  Instruction *InsertBefore = nullptr) {
2961  return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2962  }
2963 
2964  static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2965  const Twine &NameStr, BasicBlock *InsertAtEnd) {
2966  return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2967  }
2968 
2969  /// Provide fast operand accessors
2971 
2972  // Block iterator interface. This provides access to the list of incoming
2973  // basic blocks, which parallels the list of incoming values.
2974 
2977 
2979  Use::UserRef *ref =
2980  reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2981  return reinterpret_cast<block_iterator>(ref + 1);
2982  }
2983 
2985  const Use::UserRef *ref =
2986  reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2987  return reinterpret_cast<const_block_iterator>(ref + 1);
2988  }
2989 
2991  return block_begin() + getNumOperands();
2992  }
2993 
2995  return block_begin() + getNumOperands();
2996  }
2997 
2999  return make_range(block_begin(), block_end());
3000  }
3001 
3003  return make_range(block_begin(), block_end());
3004  }
3005 
3007 
3009 
3010  /// Return the number of incoming edges
3011  ///
3012  unsigned getNumIncomingValues() const { return getNumOperands(); }
3013 
3014  /// Return incoming value number x
3015  ///
3016  Value *getIncomingValue(unsigned i) const {
3017  return getOperand(i);
3018  }
3019  void setIncomingValue(unsigned i, Value *V) {
3020  assert(V && "PHI node got a null value!");
3021  assert(getType() == V->getType() &&
3022  "All operands to PHI node must be the same type as the PHI node!");
3023  setOperand(i, V);
3024  }
3025 
3026  static unsigned getOperandNumForIncomingValue(unsigned i) {
3027  return i;
3028  }
3029 
3030  static unsigned getIncomingValueNumForOperand(unsigned i) {
3031  return i;
3032  }
3033 
3034  /// Return incoming basic block number @p i.
3035  ///
3036  BasicBlock *getIncomingBlock(unsigned i) const {
3037  return block_begin()[i];
3038  }
3039 
3040  /// Return incoming basic block corresponding
3041  /// to an operand of the PHI.
3042  ///
3043  BasicBlock *getIncomingBlock(const Use &U) const {
3044  assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
3045  return getIncomingBlock(unsigned(&U - op_begin()));
3046  }
3047 
3048  /// Return incoming basic block corresponding
3049  /// to value use iterator.
3050  ///
3052  return getIncomingBlock(I.getUse());
3053  }
3054 
3055  void setIncomingBlock(unsigned i, BasicBlock *BB) {
3056  assert(BB && "PHI node got a null basic block!");
3057  block_begin()[i] = BB;
3058  }
3059 
3060  /// Add an incoming value to the end of the PHI list
3061  ///
3062  void addIncoming(Value *V, BasicBlock *BB) {
3063  if (getNumOperands() == ReservedSpace)
3064  growOperands(); // Get more space!
3065  // Initialize some new operands.
3067  setIncomingValue(getNumOperands() - 1, V);
3068  setIncomingBlock(getNumOperands() - 1, BB);
3069  }
3070 
3071  /// Remove an incoming value. This is useful if a
3072  /// predecessor basic block is deleted. The value removed is returned.
3073  ///
3074  /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
3075  /// is true), the PHI node is destroyed and any uses of it are replaced with
3076  /// dummy values. The only time there should be zero incoming values to a PHI
3077  /// node is when the block is dead, so this strategy is sound.
3078  ///
3079  Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
3080 
3081  Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
3082  int Idx = getBasicBlockIndex(BB);
3083  assert(Idx >= 0 && "Invalid basic block argument to remove!");
3084  return removeIncomingValue(Idx, DeletePHIIfEmpty);
3085  }
3086 
3087  /// Return the first index of the specified basic
3088  /// block in the value list for this PHI. Returns -1 if no instance.
3089  ///
3090  int getBasicBlockIndex(const BasicBlock *BB) const {
3091  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3092  if (block_begin()[i] == BB)
3093  return i;
3094  return -1;
3095  }
3096 
3098  int Idx = getBasicBlockIndex(BB);
3099  assert(Idx >= 0 && "Invalid basic block argument!");
3100  return getIncomingValue(Idx);
3101  }
3102 
3103  /// If the specified PHI node always merges together the
3104  /// same value, return the value, otherwise return null.
3105  Value *hasConstantValue() const;
3106 
3107  /// Whether the specified PHI node always merges
3108  /// together the same value, assuming undefs are equal to a unique
3109  /// non-undef value.
3110  bool hasConstantOrUndefValue() const;
3111 
3112  /// Methods for support type inquiry through isa, cast, and dyn_cast:
3113  static bool classof(const Instruction *I) {
3114  return I->getOpcode() == Instruction::PHI;
3115  }
3116  static bool classof(const Value *V) {
3117  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3118  }
3119 
3120 private:
3121  void growOperands();
3122 };
3123 
3124 template <>
3126 };
3127 
3129 
3130 //===----------------------------------------------------------------------===//
3131 // LandingPadInst Class
3132 //===----------------------------------------------------------------------===//
3133 
3134 //===---------------------------------------------------------------------------
3135 /// The landingpad instruction holds all of the information
3136 /// necessary to generate correct exception handling. The landingpad instruction
3137 /// cannot be moved from the top of a landing pad block, which itself is
3138 /// accessible only from the 'unwind' edge of an invoke. This uses the
3139 /// SubclassData field in Value to store whether or not the landingpad is a
3140 /// cleanup.
3141 ///
3142 class LandingPadInst : public Instruction {
3143  /// The number of operands actually allocated. NumOperands is
3144  /// the number actually in use.
3145  unsigned ReservedSpace;
3146 
3147  LandingPadInst(const LandingPadInst &LP);
3148 
3149 public:
3151 
3152 private:
3153  explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
3154  const Twine &NameStr, Instruction *InsertBefore);
3155  explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
3156  const Twine &NameStr, BasicBlock *InsertAtEnd);
3157 
3158  // Allocate space for exactly zero operands.
3159  void *operator new(size_t s) {
3160  return User::operator new(s);
3161  }
3162 
3163  void growOperands(unsigned Size);
3164  void init(unsigned NumReservedValues, const Twine &NameStr);
3165 
3166 protected:
3167  // Note: Instruction needs to be a friend here to call cloneImpl.
3168  friend class Instruction;
3169 
3170  LandingPadInst *cloneImpl() const;
3171 
3172 public:
3173  /// Constructors - NumReservedClauses is a hint for the number of incoming
3174  /// clauses that this landingpad will have (use 0 if you really have no idea).
3175  static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
3176  const Twine &NameStr = "",
3177  Instruction *InsertBefore = nullptr);
3178  static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
3179  const Twine &NameStr, BasicBlock *InsertAtEnd);
3180 
3181  /// Provide fast operand accessors
3183 
3184  /// Return 'true' if this landingpad instruction is a
3185  /// cleanup. I.e., it should be run when unwinding even if its landing pad
3186  /// doesn't catch the exception.
3187  bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
3188 
3189  /// Indicate that this landingpad instruction is a cleanup.
3190  void setCleanup(bool V) {
3191  setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
3192  (V ? 1 : 0));
3193  }
3194 
3195  /// Add a catch or filter clause to the landing pad.
3196  void addClause(Constant *ClauseVal);
3197 
3198  /// Get the value of the clause at index Idx. Use isCatch/isFilter to
3199  /// determine what type of clause this is.
3200  Constant *getClause(unsigned Idx) const {
3201  return cast<Constant>(getOperandList()[Idx]);
3202  }
3203 
3204  /// Return 'true' if the clause and index Idx is a catch clause.
3205  bool isCatch(unsigned Idx) const {
3206  return !isa<ArrayType>(getOperandList()[Idx]->getType());
3207  }
3208 
3209  /// Return 'true' if the clause and index Idx is a filter clause.
3210  bool isFilter(unsigned Idx) const {
3211  return isa<ArrayType>(getOperandList()[Idx]->getType());
3212  }
3213 
3214  /// Get the number of clauses for this landing pad.
3215  unsigned getNumClauses() const { return getNumOperands(); }
3216 
3217  /// Grow the size of the operand list to accommodate the new
3218  /// number of clauses.
3219  void reserveClauses(unsigned Size) { growOperands(Size); }
3220 
3221  // Methods for support type inquiry through isa, cast, and dyn_cast:
3222  static bool classof(const Instruction *I) {
3223  return I->getOpcode() == Instruction::LandingPad;
3224  }
3225  static bool classof(const Value *V) {
3226  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3227  }
3228 };
3229 
3230 template <>
3232 };
3233 
3235 
3236 //===----------------------------------------------------------------------===//
3237 // ReturnInst Class
3238 //===----------------------------------------------------------------------===//
3239 
3240 //===---------------------------------------------------------------------------
3241 /// Return a value (possibly void), from a function. Execution
3242 /// does not continue in this function any longer.
3243 ///
3244 class ReturnInst : public TerminatorInst {
3245  ReturnInst(const ReturnInst &RI);
3246 
3247 private:
3248  // ReturnInst constructors:
3249  // ReturnInst() - 'ret void' instruction
3250  // ReturnInst( null) - 'ret void' instruction
3251  // ReturnInst(Value* X) - 'ret X' instruction
3252  // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
3253  // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
3254  // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
3255  // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
3256  //
3257  // NOTE: If the Value* passed is of type void then the constructor behaves as
3258  // if it was passed NULL.
3259  explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
3260  Instruction *InsertBefore = nullptr);
3261  ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
3262  explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
3263 
3264 protected:
3265  // Note: Instruction needs to be a friend here to call cloneImpl.
3266  friend class Instruction;
3267 
3268  ReturnInst *cloneImpl() const;
3269 
3270 public:
3271  static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
3272  Instruction *InsertBefore = nullptr) {
3273  return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
3274  }
3275 
3276  static ReturnInst* Create(LLVMContext &C, Value *retVal,
3277  BasicBlock *InsertAtEnd) {
3278  return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
3279  }
3280 
3281  static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
3282  return new(0) ReturnInst(C, InsertAtEnd);
3283  }
3284 
3285  /// Provide fast operand accessors
3287 
3288  /// Convenience accessor. Returns null if there is no return value.
3290  return getNumOperands() != 0 ? getOperand(0) : nullptr;
3291  }
3292 
3293  unsigned getNumSuccessors() const { return 0; }
3294 
3295  // Methods for support type inquiry through isa, cast, and dyn_cast:
3296  static bool classof(const Instruction *I) {
3297  return (I->getOpcode() == Instruction::Ret);
3298  }
3299  static bool classof(const Value *V) {
3300  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3301  }
3302 
3303 private:
3304  friend TerminatorInst;
3305 
3306  BasicBlock *getSuccessor(unsigned idx) const {
3307  llvm_unreachable("ReturnInst has no successors!");
3308  }
3309 
3310  void setSuccessor(unsigned idx, BasicBlock *B) {
3311  llvm_unreachable("ReturnInst has no successors!");
3312  }
3313 };
3314 
3315 template <>
3316 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3317 };
3318 
3320 
3321 //===----------------------------------------------------------------------===//
3322 // BranchInst Class
3323 //===----------------------------------------------------------------------===//
3324 
3325 //===---------------------------------------------------------------------------
3326 /// Conditional or Unconditional Branch instruction.
3327 ///
3328 class BranchInst : public TerminatorInst {
3329  /// Ops list - Branches are strange. The operands are ordered:
3330  /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3331  /// they don't have to check for cond/uncond branchness. These are mostly
3332  /// accessed relative from op_end().
3333  BranchInst(const BranchInst &BI);
3334  // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3335  // BranchInst(BB *B) - 'br B'
3336  // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3337  // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3338  // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3339  // BranchInst(BB* B, BB *I) - 'br B' insert at end
3340  // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3341  explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3342  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3343  Instruction *InsertBefore = nullptr);
3344  BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3345  BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3346  BasicBlock *InsertAtEnd);
3347 
3348  void AssertOK();
3349 
3350 protected:
3351  // Note: Instruction needs to be a friend here to call cloneImpl.
3352  friend class Instruction;
3353 
3354  BranchInst *cloneImpl() const;
3355 
3356 public:
3357  static BranchInst *Create(BasicBlock *IfTrue,
3358  Instruction *InsertBefore = nullptr) {
3359  return new(1) BranchInst(IfTrue, InsertBefore);
3360  }
3361 
3362  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3363  Value *Cond, Instruction *InsertBefore = nullptr) {
3364  return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3365  }
3366 
3367  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3368  return new(1) BranchInst(IfTrue, InsertAtEnd);
3369  }
3370 
3371  static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3372  Value *Cond, BasicBlock *InsertAtEnd) {
3373  return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3374  }
3375 
3376  /// Transparently provide more efficient getOperand methods.
3378 
3379  bool isUnconditional() const { return getNumOperands() == 1; }
3380  bool isConditional() const { return getNumOperands() == 3; }
3381 
3382  Value *getCondition() const {
3383  assert(isConditional() && "Cannot get condition of an uncond branch!");
3384  return Op<-3>();
3385  }
3386 
3387  void setCondition(Value *V) {
3388  assert(isConditional() && "Cannot set condition of unconditional branch!");
3389  Op<-3>() = V;
3390  }
3391 
3392  unsigned getNumSuccessors() const { return 1+isConditional(); }
3393 
3394  BasicBlock *getSuccessor(unsigned i) const {
3395  assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3396  return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3397  }
3398 
3399  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3400  assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3401  *(&Op<-1>() - idx) = NewSucc;
3402  }
3403 
3404  /// Swap the successors of this branch instruction.
3405  ///
3406  /// Swaps the successors of the branch instruction. This also swaps any
3407  /// branch weight metadata associated with the instruction so that it
3408  /// continues to map correctly to each operand.
3409  void swapSuccessors();
3410 
3411  // Methods for support type inquiry through isa, cast, and dyn_cast:
3412  static bool classof(const Instruction *I) {
3413  return (I->getOpcode() == Instruction::Br);
3414  }
3415  static bool classof(const Value *V) {
3416  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3417  }
3418 };
3419 
3420 template <>
3421 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3422 };
3423 
3425 
3426 //===----------------------------------------------------------------------===//
3427 // SwitchInst Class
3428 //===----------------------------------------------------------------------===//
3429 
3430 //===---------------------------------------------------------------------------
3431 /// Multiway switch
3432 ///
3433 class SwitchInst : public TerminatorInst {
3434  unsigned ReservedSpace;
3435 
3436  // Operand[0] = Value to switch on
3437  // Operand[1] = Default basic block destination
3438  // Operand[2n ] = Value to match
3439  // Operand[2n+1] = BasicBlock to go to on match
3440  SwitchInst(const SwitchInst &SI);
3441 
3442  /// Create a new switch instruction, specifying a value to switch on and a
3443  /// default destination. The number of additional cases can be specified here
3444  /// to make memory allocation more efficient. This constructor can also
3445  /// auto-insert before another instruction.
3446  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3447  Instruction *InsertBefore);
3448 
3449  /// Create a new switch instruction, specifying a value to switch on and a
3450  /// default destination. The number of additional cases can be specified here
3451  /// to make memory allocation more efficient. This constructor also
3452  /// auto-inserts at the end of the specified BasicBlock.
3453  SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3454  BasicBlock *InsertAtEnd);
3455 
3456  // allocate space for exactly zero operands
3457  void *operator new(size_t s) {
3458  return User::operator new(s);
3459  }
3460 
3461  void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3462  void growOperands();
3463 
3464 protected:
3465  // Note: Instruction needs to be a friend here to call cloneImpl.
3466  friend class Instruction;
3467 
3468  SwitchInst *cloneImpl() const;
3469 
3470 public:
3471  // -2
3472  static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3473 
3474  template <typename CaseHandleT> class CaseIteratorImpl;
3475 
3476  /// A handle to a particular switch case. It exposes a convenient interface
3477  /// to both the case value and the successor block.
3478  ///
3479  /// We define this as a template and instantiate it to form both a const and
3480  /// non-const handle.
3481  template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3483  // Directly befriend both const and non-const iterators.
3484  friend class SwitchInst::CaseIteratorImpl<
3485  CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3486 
3487  protected:
3488  // Expose the switch type we're parameterized with to the iterator.
3489  using SwitchInstType = SwitchInstT;
3490 
3491  SwitchInstT *SI;
3493 
3494  CaseHandleImpl() = default;
3495  CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3496 
3497  public:
3498  /// Resolves case value for current case.
3499  ConstantIntT *getCaseValue() const {
3500  assert((unsigned)Index < SI->getNumCases() &&
3501  "Index out the number of cases.");
3502  return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3503  }
3504 
3505  /// Resolves successor for current case.
3506  BasicBlockT *getCaseSuccessor() const {
3507  assert(((unsigned)Index < SI->getNumCases() ||
3508  (unsigned)Index == DefaultPseudoIndex) &&
3509  "Index out the number of cases.");
3510  return SI->getSuccessor(getSuccessorIndex());
3511  }
3512 
3513  /// Returns number of current case.
3514  unsigned getCaseIndex() const { return Index; }
3515 
3516  /// Returns TerminatorInst's successor index for current case successor.
3517  unsigned getSuccessorIndex() const {
3518  assert(((unsigned)Index == DefaultPseudoIndex ||
3519  (unsigned)Index < SI->getNumCases()) &&
3520  "Index out the number of cases.");
3521  return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3522  }
3523 
3524  bool operator==(const CaseHandleImpl &RHS) const {
3525  assert(SI == RHS.SI && "Incompatible operators.");
3526  return Index == RHS.Index;
3527  }
3528  };
3529 
3530  using ConstCaseHandle =
3532 
3534  : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3536 
3537  public:
3539 
3540  /// Sets the new value for current case.
3542  assert((unsigned)Index < SI->getNumCases() &&
3543  "Index out the number of cases.");
3544  SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3545  }
3546 
3547  /// Sets the new successor for current case.
3549  SI->setSuccessor(getSuccessorIndex(), S);
3550  }
3551  };
3552 
3553  template <typename CaseHandleT>
3554  class CaseIteratorImpl
3555  : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3556  std::random_access_iterator_tag,
3557  CaseHandleT> {
3558  using SwitchInstT = typename CaseHandleT::SwitchInstType;
3559 
3560  CaseHandleT Case;
3561 
3562  public:
3563  /// Default constructed iterator is in an invalid state until assigned to
3564  /// a case for a particular switch.
3565  CaseIteratorImpl() = default;
3566 
3567  /// Initializes case iterator for given SwitchInst and for given
3568  /// case number.
3569  CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3570 
3571  /// Initializes case iterator for given SwitchInst and for given
3572  /// TerminatorInst's successor index.
3573  static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3574  unsigned SuccessorIndex) {
3575  assert(SuccessorIndex < SI->getNumSuccessors() &&
3576  "Successor index # out of range!");
3577  return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3578  : CaseIteratorImpl(SI, DefaultPseudoIndex);
3579  }
3580 
3581  /// Support converting to the const variant. This will be a no-op for const
3582  /// variant.
3584  return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3585  }
3586 
3588  // Check index correctness after addition.
3589  // Note: Index == getNumCases() means end().
3590  assert(Case.Index + N >= 0 &&
3591  (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3592  "Case.Index out the number of cases.");
3593  Case.Index += N;
3594  return *this;
3595  }
3597  // Check index correctness after subtraction.
3598  // Note: Case.Index == getNumCases() means end().
3599  assert(Case.Index - N >= 0 &&
3600  (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3601  "Case.Index out the number of cases.");
3602  Case.Index -= N;
3603  return *this;
3604  }
3606  assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3607  return Case.Index - RHS.Case.Index;
3608  }
3609  bool operator==(const CaseIteratorImpl &RHS) const {
3610  return Case == RHS.Case;
3611  }
3612  bool operator<(const CaseIteratorImpl &RHS) const {
3613  assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3614  return Case.Index < RHS.Case.Index;
3615  }
3616  CaseHandleT &operator*() { return Case; }
3617  const CaseHandleT &operator*() const { return Case; }
3618  };
3619 
3622 
3623  static SwitchInst *Create(Value *Value, BasicBlock *Default,
3624  unsigned NumCases,
3625  Instruction *InsertBefore = nullptr) {
3626  return new SwitchInst(Value, Default, NumCases, InsertBefore);
3627  }
3628 
3629  static SwitchInst *Create(Value *Value, BasicBlock *Default,
3630  unsigned NumCases, BasicBlock *InsertAtEnd) {
3631  return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3632  }
3633 
3634  /// Provide fast operand accessors
3636 
3637  // Accessor Methods for Switch stmt
3638  Value *getCondition() const { return getOperand(0); }
3639  void setCondition(Value *V) { setOperand(0, V); }
3640 
3642  return cast<BasicBlock>(getOperand(1));
3643  }
3644 
3645  void setDefaultDest(BasicBlock *DefaultCase) {
3646  setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3647  }
3648 
3649  /// Return the number of 'cases' in this switch instruction, excluding the
3650  /// default case.
3651  unsigned getNumCases() const {
3652  return getNumOperands()/2 - 1;
3653  }
3654 
3655  /// Returns a read/write iterator that points to the first case in the
3656  /// SwitchInst.
3658  return CaseIt(this, 0);
3659  }
3660 
3661  /// Returns a read-only iterator that points to the first case in the
3662  /// SwitchInst.
3664  return ConstCaseIt(this, 0);
3665  }
3666 
3667  /// Returns a read/write iterator that points one past the last in the
3668  /// SwitchInst.
3670  return CaseIt(this, getNumCases());
3671  }
3672 
3673  /// Returns a read-only iterator that points one past the last in the
3674  /// SwitchInst.
3676  return ConstCaseIt(this, getNumCases());
3677  }
3678 
3679  /// Iteration adapter for range-for loops.
3681  return make_range(case_begin(), case_end());
3682  }
3683 
3684  /// Constant iteration adapter for range-for loops.
3686  return make_range(case_begin(), case_end());
3687  }
3688 
3689  /// Returns an iterator that points to the default case.
3690  /// Note: this iterator allows to resolve successor only. Attempt
3691  /// to resolve case value causes an assertion.
3692  /// Also note, that increment and decrement also causes an assertion and
3693  /// makes iterator invalid.
3695  return CaseIt(this, DefaultPseudoIndex);
3696  }
3698  return ConstCaseIt(this, DefaultPseudoIndex);
3699  }
3700 
3701  /// Search all of the case values for the specified constant. If it is
3702  /// explicitly handled, return the case iterator of it, otherwise return
3703  /// default case iterator to indicate that it is handled by the default
3704  /// handler.
3707  cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3708  if (I != case_end())
3709  return I;
3710 
3711  return case_default();
3712  }
3714  ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3715  return Case.getCaseValue() == C;
3716  });
3717  if (I != case_end())
3718  return I;
3719 
3720  return case_default();
3721  }
3722 
3723  /// Finds the unique case value for a given successor. Returns null if the
3724  /// successor is not found, not unique, or is the default case.
3726  if (BB == getDefaultDest())
3727  return nullptr;
3728 
3729  ConstantInt *CI = nullptr;
3730  for (auto Case : cases()) {
3731  if (Case.getCaseSuccessor() != BB)
3732  continue;
3733 
3734  if (CI)
3735  return nullptr; // Multiple cases lead to BB.
3736 
3737  CI = Case.getCaseValue();
3738  }
3739 
3740  return CI;
3741  }
3742 
3743  /// Add an entry to the switch instruction.
3744  /// Note:
3745  /// This action invalidates case_end(). Old case_end() iterator will
3746  /// point to the added case.
3747  void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3748 
3749  /// This method removes the specified case and its successor from the switch
3750  /// instruction. Note that this operation may reorder the remaining cases at
3751  /// index idx and above.
3752  /// Note:
3753  /// This action invalidates iterators for all cases following the one removed,
3754  /// including the case_end() iterator. It returns an iterator for the next
3755  /// case.
3756  CaseIt removeCase(CaseIt I);
3757 
3758  unsigned getNumSuccessors() const { return getNumOperands()/2; }
3759  BasicBlock *getSuccessor(unsigned idx) const {
3760  assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3761  return cast<BasicBlock>(getOperand(idx*2+1));
3762  }
3763  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3764  assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3765  setOperand(idx * 2 + 1, NewSucc);
3766  }
3767 
3768  // Methods for support type inquiry through isa, cast, and dyn_cast:
3769  static bool classof(const Instruction *I) {
3770  return I->getOpcode() == Instruction::Switch;
3771  }
3772  static bool classof(const Value *V) {
3773  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3774  }
3775 };
3776 
3777 template <>
3779 };
3780 
3781 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
3782 
3783 //===----------------------------------------------------------------------===//
3784 // IndirectBrInst Class
3785 //===----------------------------------------------------------------------===//
3786 
3787 //===---------------------------------------------------------------------------
3788 /// Indirect Branch Instruction.
3789 ///
3791  unsigned ReservedSpace;
3792 
3793  // Operand[0] = Address to jump to
3794  // Operand[n+1] = n-th destination
3795  IndirectBrInst(const IndirectBrInst &IBI);
3796 
3797  /// Create a new indirectbr instruction, specifying an
3798  /// Address to jump to. The number of expected destinations can be specified
3799  /// here to make memory allocation more efficient. This constructor can also
3800  /// autoinsert before another instruction.
3801  IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3802 
3803  /// Create a new indirectbr instruction, specifying an
3804  /// Address to jump to. The number of expected destinations can be specified
3805  /// here to make memory allocation more efficient. This constructor also
3806  /// autoinserts at the end of the specified BasicBlock.
3807  IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3808 
3809  // allocate space for exactly zero operands
3810  void *operator new(size_t s) {
3811  return User::operator new(s);
3812  }
3813 
3814  void init(Value *Address, unsigned NumDests);
3815  void growOperands();
3816 
3817 protected:
3818  // Note: Instruction needs to be a friend here to call cloneImpl.
3819  friend class Instruction;
3820 
3821  IndirectBrInst *cloneImpl() const;
3822 
3823 public:
3824  static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3825  Instruction *InsertBefore = nullptr) {
3826  return new IndirectBrInst(Address, NumDests, InsertBefore);
3827  }
3828 
3829  static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3830  BasicBlock *InsertAtEnd) {
3831  return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3832  }
3833 
3834  /// Provide fast operand accessors.
3836 
3837  // Accessor Methods for IndirectBrInst instruction.
3838  Value *getAddress() { return getOperand(0); }
3839  const Value *getAddress() const { return getOperand(0); }
3840  void setAddress(Value *V) { setOperand(0, V); }
3841 
3842  /// return the number of possible destinations in this
3843  /// indirectbr instruction.
3844  unsigned getNumDestinations() const { return getNumOperands()-1; }
3845 
3846  /// Return the specified destination.
3847  BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3848  const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3849 
3850  /// Add a destination.
3851  ///
3852  void addDestination(BasicBlock *Dest);
3853 
3854  /// This method removes the specified successor from the
3855  /// indirectbr instruction.
3856  void removeDestination(unsigned i);
3857 
3858  unsigned getNumSuccessors() const { return getNumOperands()-1; }
3859  BasicBlock *getSuccessor(unsigned i) const {
3860  return cast<BasicBlock>(getOperand(i+1));
3861  }
3862  void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3863  setOperand(i + 1, NewSucc);
3864  }
3865 
3866  // Methods for support type inquiry through isa, cast, and dyn_cast:
3867  static bool classof(const Instruction *I) {
3868  return I->getOpcode() == Instruction::IndirectBr;
3869  }
3870  static bool classof(const Value *V) {
3871  return isa<Instruction>(V) && classof(cast<Instruction>(V));
3872  }
3873 };
3874 
3875 template <>
3877 };
3878 
3879 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
3880 
3881 //===----------------------------------------------------------------------===//
3882 // InvokeInst Class
3883 //===----------------------------------------------------------------------===//
3884 
3885 /// Invoke instruction. The SubclassData field is used to hold the
3886 /// calling convention of the call.
3887 ///
3888 class InvokeInst : public CallBase<InvokeInst> {
3890 
3891  InvokeInst(const InvokeInst &BI);
3892 
3893  /// Construct an InvokeInst given a range of arguments.
3894  ///
3895  /// Construct an InvokeInst from a range of arguments
3896  inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
3897  ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles,
3898  unsigned Values, const Twine &NameStr,
3899  Instruction *InsertBefore)
3900  : InvokeInst(cast<FunctionType>(
3901  cast<PointerType>(Func->getType())->getElementType()),
3902  Func, IfNormal, IfException, Args, Bundles, Values, NameStr,
3903  InsertBefore) {}
3904 
3905  inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3906  BasicBlock *IfException, ArrayRef<Value *> Args,
3907  ArrayRef<OperandBundleDef> Bundles, unsigned Values,
3908  const Twine &NameStr, Instruction *InsertBefore);
3909  /// Construct an InvokeInst given a range of arguments.
3910  ///
3911  /// Construct an InvokeInst from a range of arguments
3912  inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
3914  unsigned Values, const Twine &NameStr,
3915  BasicBlock *InsertAtEnd);
3916 
3917 
3918  void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
3920  const Twine &NameStr) {
3921  init(cast<FunctionType>(
3922  cast<PointerType>(Func->getType())->getElementType()),
3923  Func, IfNormal, IfException, Args, Bundles, NameStr);
3924  }
3925 
3926  void init(FunctionType *FTy, Value *Func, BasicBlock *IfNormal,
3927  BasicBlock *IfException, ArrayRef<Value *> Args,
3928  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3929 
3930 protected:
3931  // Note: Instruction needs to be a friend here to call cloneImpl.
3932  friend class Instruction;
3933 
3934  InvokeInst *cloneImpl() const;
3935 
3936 public:
3937  static constexpr int ArgOffset = 3;
3938  static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3939  BasicBlock *IfException, ArrayRef<Value *> Args,
3940  const Twine &NameStr,
3941  Instruction *InsertBefore = nullptr) {
3942  return Create(cast<FunctionType>(
3943  cast<PointerType>(Func->getType())->getElementType()),
3944  Func, IfNormal, IfException, Args, None, NameStr,
3945  InsertBefore);
3946  }
3947 
3948  static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3949  BasicBlock *IfException, ArrayRef<Value *> Args,
3950  ArrayRef<OperandBundleDef> Bundles = None,
3951  const Twine &NameStr = "",
3952  Instruction *InsertBefore = nullptr) {
3953  return Create(cast<FunctionType>(
3954  cast<PointerType>(Func->getType())->getElementType()),
3955  Func, IfNormal, IfException, Args, Bundles, NameStr,
3956  InsertBefore);
3957  }
3958 
3959  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3960  BasicBlock *IfException, ArrayRef<Value *> Args,
3961  const Twine &NameStr,
3962  Instruction *InsertBefore = nullptr) {
3963  unsigned Values = unsigned(Args.size()) + 3;
3964  return new (Values) InvokeInst(Ty, Func, IfNormal, IfException, Args, None,
3965  Values, NameStr, InsertBefore);
3966  }
3967 
3968  static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3969  BasicBlock *IfException, ArrayRef<Value *> Args,
3970  ArrayRef<OperandBundleDef> Bundles = None,
3971  const Twine &NameStr = "",
3972  Instruction *InsertBefore = nullptr) {
3973  unsigned Values = unsigned(Args.size()) + CountBundleInputs(Bundles) + 3;
3974  unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3975 
3976  return new (Values, DescriptorBytes)
3977  InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, Values,
3978  NameStr, InsertBefore);
3979  }
3980 
3981  static InvokeInst *Create(Value *Func,
3982  BasicBlock *IfNormal, BasicBlock *IfException,
3983  ArrayRef<Value *> Args, const Twine &NameStr,
3984  BasicBlock *InsertAtEnd) {
3985  unsigned Values = unsigned(Args.size()) + 3;
3986  return new (Values) InvokeInst(Func, IfNormal, IfException, Args, None,
3987  Values, NameStr, InsertAtEnd);
3988  }
3989 
3990  static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3991  BasicBlock *IfException, ArrayRef<Value *> Args,
3993  const Twine &NameStr, BasicBlock *InsertAtEnd) {
3994  unsigned Values = unsigned(Args.size()) + CountBundleInputs(Bundles) + 3;
3995  unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3996 
3997  return new (Values, DescriptorBytes)
3998  InvokeInst(Func, IfNormal, IfException, Args, Bundles, Values, NameStr,
3999  InsertAtEnd);
4000  }
4001 
4002  /// Create a clone of \p II with a different set of operand bundles and
4003  /// insert it before \p InsertPt.
4004  ///
4005  /// The returned invoke instruction is identical to \p II in every way except
4006  /// that the operand bundles for the new instruction are set to the operand
4007  /// bundles in \p Bundles.
4008  static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
4009  Instruction *InsertPt = nullptr);
4010 
4011  /// Determine if the call should not perform indirect branch tracking.
4012  bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
4013 
4014  /// Determine if the call cannot unwind.
4015  bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
4017  addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
4018  }
4019 
4020  /// Return the function called, or null if this is an
4021  /// indirect function invocation.
4022  ///
4024  return dyn_cast<Function>(Op<-3>());
4025  }
4026 
4027  /// Get a pointer to the function that is invoked by this
4028  /// instruction
4029  const Value *getCalledValue() const { return Op<-3>(); }
4030  Value *getCalledValue() { return Op<-3>(); }
4031 
4032  /// Set the function called.
4033  void setCalledFunction(Value* Fn) {
4034  setCalledFunction(
4035  cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()),
4036  Fn);
4037  }
4038  void setCalledFunction(FunctionType *FTy, Value *Fn) {
4039  this->FTy = FTy;
4040  assert(FTy == cast<FunctionType>(
4041  cast<PointerType>(Fn->getType())->getElementType()));
4042  Op<-3>() = Fn;
4043  }
4044 
4045  // get*Dest - Return the destination basic blocks...
4047  return cast<BasicBlock>(Op<-2>());
4048  }
4050  return cast<BasicBlock>(Op<-1>());
4051  }
4053  Op<-2>() = reinterpret_cast<Value*>(B);
4054  }
4056  Op<-1>() = reinterpret_cast<Value*>(B);
4057  }
4058 
4059  /// Get the landingpad instruction from the landing pad
4060  /// block (the unwind destination).
4061  LandingPadInst *getLandingPadInst() const;
4062 
4063  BasicBlock *getSuccessor(unsigned i) const {
4064  assert(i < 2 && "Successor # out of range for invoke!");
4065  return i == 0 ? getNormalDest() : getUnwindDest();
4066  }
4067 
4068  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4069  assert(idx < 2 && "Successor # out of range for invoke!");
4070  *(&Op<-2>() + idx) = reinterpret_cast<Value*>(NewSucc);
4071  }
4072 
4073  unsigned getNumSuccessors() const { return 2; }
4074 
4075  // Methods for support type inquiry through isa, cast, and dyn_cast:
4076  static bool classof(const Instruction *I) {
4077  return (I->getOpcode() == Instruction::Invoke);
4078  }
4079  static bool classof(const Value *V) {
4080  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4081  }
4082 
4083 private:
4084 
4085  // Shadow Instruction::setInstructionSubclassData with a private forwarding
4086  // method so that subclasses cannot accidentally use it.
4087  void setInstructionSubclassData(unsigned short D) {
4089  }
4090 };
4091 
4092 template <>
4094  : public VariadicOperandTraits<CallBase<InvokeInst>, 3> {};
4095 
4096 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
4097  BasicBlock *IfException, ArrayRef<Value *> Args,
4098  ArrayRef<OperandBundleDef> Bundles, unsigned Values,
4099  const Twine &NameStr, Instruction *InsertBefore)
4100  : CallBase<InvokeInst>(Ty->getReturnType(), Instruction::Invoke,
4102  Values,
4103  Values, InsertBefore) {
4104  init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
4105 }
4106 
4107 InvokeInst::InvokeInst(Value *Func, BasicBlock *IfNormal,
4108  BasicBlock *IfException, ArrayRef<Value *> Args,
4109  ArrayRef<OperandBundleDef> Bundles, unsigned Values,
4110  const Twine &NameStr, BasicBlock *InsertAtEnd)
4112  cast<FunctionType>(
4113  cast<PointerType>(Func->getType())->getElementType())
4114  ->getReturnType(),
4115  Instruction::Invoke,
4116  OperandTraits<CallBase<InvokeInst>>::op_end(this) - Values, Values,
4117  InsertAtEnd) {
4118  init(Func, IfNormal, IfException, Args, Bundles, NameStr);
4119 }
4120 
4121 
4122 //===----------------------------------------------------------------------===//
4123 // ResumeInst Class
4124 //===----------------------------------------------------------------------===//
4125 
4126 //===---------------------------------------------------------------------------
4127 /// Resume the propagation of an exception.
4128 ///
4129 class ResumeInst : public TerminatorInst {
4130  ResumeInst(const ResumeInst &RI);
4131 
4132  explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4133  ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4134 
4135 protected:
4136  // Note: Instruction needs to be a friend here to call cloneImpl.
4137  friend class Instruction;
4138 
4139  ResumeInst *cloneImpl() const;
4140 
4141 public:
4142  static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4143  return new(1) ResumeInst(Exn, InsertBefore);
4144  }
4145 
4146  static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4147  return new(1) ResumeInst(Exn, InsertAtEnd);
4148  }
4149 
4150  /// Provide fast operand accessors
4152 
4153  /// Convenience accessor.
4154  Value *getValue() const { return Op<0>(); }
4155 
4156  unsigned getNumSuccessors() const { return 0; }
4157 
4158  // Methods for support type inquiry through isa, cast, and dyn_cast:
4159  static bool classof(const Instruction *I) {
4160  return I->getOpcode() == Instruction::Resume;
4161  }
4162  static bool classof(const Value *V) {
4163  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4164  }
4165 
4166 private:
4167  friend TerminatorInst;
4168 
4169  BasicBlock *getSuccessor(unsigned idx) const {
4170  llvm_unreachable("ResumeInst has no successors!");
4171  }
4172 
4173  void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4174  llvm_unreachable("ResumeInst has no successors!");
4175  }
4176 };
4177 
4178 template <>
4180  public FixedNumOperandTraits<ResumeInst, 1> {
4181 };
4182 
4183 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
4184 
4185 //===----------------------------------------------------------------------===//
4186 // CatchSwitchInst Class
4187 //===----------------------------------------------------------------------===//
4189  /// The number of operands actually allocated. NumOperands is
4190  /// the number actually in use.
4191  unsigned ReservedSpace;
4192 
4193  // Operand[0] = Outer scope
4194  // Operand[1] = Unwind block destination
4195  // Operand[n] = BasicBlock to go to on match
4196  CatchSwitchInst(const CatchSwitchInst &CSI);
4197 
4198  /// Create a new switch instruction, specifying a
4199  /// default destination. The number of additional handlers can be specified
4200  /// here to make memory allocation more efficient.
4201  /// This constructor can also autoinsert before another instruction.
4202  CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4203  unsigned NumHandlers, const Twine &NameStr,
4204  Instruction *InsertBefore);
4205 
4206  /// Create a new switch instruction, specifying a
4207  /// default destination. The number of additional handlers can be specified
4208  /// here to make memory allocation more efficient.
4209  /// This constructor also autoinserts at the end of the specified BasicBlock.
4210  CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4211  unsigned NumHandlers, const Twine &NameStr,
4212  BasicBlock *InsertAtEnd);
4213 
4214  // allocate space for exactly zero operands
4215  void *operator new(size_t s) { return User::operator new(s); }
4216 
4217  void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4218  void growOperands(unsigned Size);
4219 
4220 protected:
4221  // Note: Instruction needs to be a friend here to call cloneImpl.
4222  friend class Instruction;
4223 
4224  CatchSwitchInst *cloneImpl() const;
4225 
4226 public:
4227  static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4228  unsigned NumHandlers,
4229  const Twine &NameStr = "",
4230  Instruction *InsertBefore = nullptr) {
4231  return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4232  InsertBefore);
4233  }
4234 
4235  static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4236  unsigned NumHandlers, const Twine &NameStr,
4237  BasicBlock *InsertAtEnd) {
4238  return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4239  InsertAtEnd);
4240  }
4241 
4242  /// Provide fast operand accessors
4244 
4245  // Accessor Methods for CatchSwitch stmt
4246  Value *getParentPad() const { return getOperand(0); }
4247  void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4248 
4249  // Accessor Methods for CatchSwitch stmt
4250  bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4251  bool unwindsToCaller() const { return !hasUnwindDest(); }
4253  if (hasUnwindDest())
4254  return cast<BasicBlock>(getOperand(1));
4255  return nullptr;
4256  }
4257  void setUnwindDest(BasicBlock *UnwindDest) {
4258  assert(UnwindDest);
4259  assert(hasUnwindDest());
4260  setOperand(1, UnwindDest);
4261  }
4262 
4263  /// return the number of 'handlers' in this catchswitch
4264  /// instruction, except the default handler
4265  unsigned getNumHandlers() const {
4266  if (hasUnwindDest())
4267  return getNumOperands() - 2;
4268  return getNumOperands() - 1;
4269  }
4270 
4271 private:
4272  static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4273  static const BasicBlock *handler_helper(const Value *V) {
4274  return cast<BasicBlock>(V);
4275  }
4276 
4277 public:
4278  using DerefFnTy = BasicBlock *(*)(Value *);
4281  using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4282  using const_handler_iterator =
4285 
4286  /// Returns an iterator that points to the first handler in CatchSwitchInst.
4288  op_iterator It = op_begin() + 1;
4289  if (hasUnwindDest())
4290  ++It;
4291  return handler_iterator(It, DerefFnTy(handler_helper));
4292  }
4293 
4294  /// Returns an iterator that points to the first handler in the
4295  /// CatchSwitchInst.
4296  const_handler_iterator handler_begin() const {
4297  const_op_iterator It = op_begin() + 1;
4298  if (hasUnwindDest())
4299  ++It;
4300  return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4301  }
4302 
4303  /// Returns a read-only iterator that points one past the last
4304  /// handler in the CatchSwitchInst.
4306  return handler_iterator(op_end(), DerefFnTy(handler_helper));
4307  }
4308 
4309  /// Returns an iterator that points one past the last handler in the
4310  /// CatchSwitchInst.
4311  const_handler_iterator handler_end() const {
4312  return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4313  }
4314 
4315  /// iteration adapter for range-for loops.
4317  return make_range(handler_begin(), handler_end());
4318  }
4319 
4320  /// iteration adapter for range-for loops.
4322  return make_range(handler_begin(), handler_end());
4323  }
4324 
4325  /// Add an entry to the switch instruction...
4326  /// Note:
4327  /// This action invalidates handler_end(). Old handler_end() iterator will
4328  /// point to the added handler.
4329  void addHandler(BasicBlock *Dest);
4330 
4331  void removeHandler(handler_iterator HI);
4332 
4333  unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4334  BasicBlock *getSuccessor(unsigned Idx) const {
4335  assert(Idx < getNumSuccessors() &&
4336  "Successor # out of range for catchswitch!");
4337  return cast<BasicBlock>(getOperand(Idx + 1));
4338  }
4339  void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4340  assert(Idx < getNumSuccessors() &&
4341  "Successor # out of range for catchswitch!");
4342  setOperand(Idx + 1, NewSucc);
4343  }
4344 
4345  // Methods for support type inquiry through isa, cast, and dyn_cast:
4346  static bool classof(const Instruction *I) {
4347  return I->getOpcode() == Instruction::CatchSwitch;
4348  }
4349  static bool classof(const Value *V) {
4350  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4351  }
4352 };
4353 
4354 template <>
4356 
4357 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
4358 
4359 //===----------------------------------------------------------------------===//
4360 // CleanupPadInst Class
4361 //===----------------------------------------------------------------------===//
4363 private:
4364  explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4365  unsigned Values, const Twine &NameStr,
4366  Instruction *InsertBefore)
4367  : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4368  NameStr, InsertBefore) {}
4369  explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4370  unsigned Values, const Twine &NameStr,
4371  BasicBlock *InsertAtEnd)
4372  : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4373  NameStr, InsertAtEnd) {}
4374 
4375 public:
4376  static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4377  const Twine &NameStr = "",
4378  Instruction *InsertBefore = nullptr) {
4379  unsigned Values = 1 + Args.size();
4380  return new (Values)
4381  CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4382  }
4383 
4384  static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4385  const Twine &NameStr, BasicBlock *InsertAtEnd) {
4386  unsigned Values = 1 + Args.size();
4387  return new (Values)
4388  CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4389  }
4390 
4391  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4392  static bool classof(const Instruction *I) {
4393  return I->getOpcode() == Instruction::CleanupPad;
4394  }
4395  static bool classof(const Value *V) {
4396  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4397  }
4398 };
4399 
4400 //===----------------------------------------------------------------------===//
4401 // CatchPadInst Class
4402 //===----------------------------------------------------------------------===//
4404 private:
4405  explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4406  unsigned Values, const Twine &NameStr,
4407  Instruction *InsertBefore)
4408  : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4409  NameStr, InsertBefore) {}
4410  explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4411  unsigned Values, const Twine &NameStr,
4412  BasicBlock *InsertAtEnd)
4413  : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4414  NameStr, InsertAtEnd) {}
4415 
4416 public:
4417  static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4418  const Twine &NameStr = "",
4419  Instruction *InsertBefore = nullptr) {
4420  unsigned Values = 1 + Args.size();
4421  return new (Values)
4422  CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4423  }
4424 
4425  static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4426  const Twine &NameStr, BasicBlock *InsertAtEnd) {
4427  unsigned Values = 1 + Args.size();
4428  return new (Values)
4429  CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4430  }
4431 
4432  /// Convenience accessors
4433  CatchSwitchInst *getCatchSwitch() const {
4434  return cast<CatchSwitchInst>(Op<-1>());
4435  }
4436  void setCatchSwitch(Value *CatchSwitch) {
4437  assert(CatchSwitch);
4438  Op<-1>() = CatchSwitch;
4439  }
4440 
4441  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4442  static bool classof(const Instruction *I) {
4443  return I->getOpcode() == Instruction::CatchPad;
4444  }
4445  static bool classof(const Value *V) {
4446  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4447  }
4448 };
4449 
4450 //===----------------------------------------------------------------------===//
4451 // CatchReturnInst Class
4452 //===----------------------------------------------------------------------===//
4453 
4455  CatchReturnInst(const CatchReturnInst &RI);
4456  CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4457  CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4458 
4459  void init(Value *CatchPad, BasicBlock *BB);
4460 
4461 protected:
4462  // Note: Instruction needs to be a friend here to call cloneImpl.
4463  friend class Instruction;
4464 
4465  CatchReturnInst *cloneImpl() const;
4466 
4467 public:
4468  static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4469  Instruction *InsertBefore = nullptr) {
4470  assert(CatchPad);
4471  assert(BB);
4472  return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4473  }
4474 
4475  static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4476  BasicBlock *InsertAtEnd) {
4477  assert(CatchPad);
4478  assert(BB);
4479  return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4480  }
4481 
4482  /// Provide fast operand accessors
4484 
4485  /// Convenience accessors.
4486  CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4487  void setCatchPad(CatchPadInst *CatchPad) {
4488  assert(CatchPad);
4489  Op<0>() = CatchPad;
4490  }
4491 
4492  BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4493  void setSuccessor(BasicBlock *NewSucc) {
4494  assert(NewSucc);
4495  Op<1>() = NewSucc;
4496  }
4497  unsigned getNumSuccessors() const { return 1; }
4498 
4499  /// Get the parentPad of this catchret's catchpad's catchswitch.
4500  /// The successor block is implicitly a member of this funclet.
4501  Value *getCatchSwitchParentPad() const {
4502  return getCatchPad()->getCatchSwitch()->getParentPad();
4503  }
4504 
4505  // Methods for support type inquiry through isa, cast, and dyn_cast:
4506  static bool classof(const Instruction *I) {
4507  return (I->getOpcode() == Instruction::CatchRet);
4508  }
4509  static bool classof(const Value *V) {
4510  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4511  }
4512 
4513 private:
4514  friend TerminatorInst;
4515 
4516  BasicBlock *getSuccessor(unsigned Idx) const {
4517  assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4518  return getSuccessor();
4519  }
4520 
4521  void setSuccessor(unsigned Idx, BasicBlock *B) {
4522  assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4523  setSuccessor(B);
4524  }
4525 };
4526 
4527 template <>
4529  : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4530 
4531 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
4532 
4533 //===----------------------------------------------------------------------===//
4534 // CleanupReturnInst Class
4535 //===----------------------------------------------------------------------===//
4536 
4538 private:
4540  CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4541  Instruction *InsertBefore = nullptr);
4542  CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4543  BasicBlock *InsertAtEnd);
4544 
4545  void init(Value *CleanupPad, BasicBlock *UnwindBB);
4546 
4547 protected:
4548  // Note: Instruction needs to be a friend here to call cloneImpl.
4549  friend class Instruction;
4550 
4551  CleanupReturnInst *cloneImpl() const;
4552 
4553 public:
4554  static CleanupReturnInst *Create(Value *CleanupPad,
4555  BasicBlock *UnwindBB = nullptr,
4556  Instruction *InsertBefore = nullptr) {
4557  assert(CleanupPad);
4558  unsigned Values = 1;
4559  if (UnwindBB)
4560  ++Values;
4561  return new (Values)
4562  CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4563  }
4564 
4565  static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4566  BasicBlock *InsertAtEnd) {
4567  assert(CleanupPad);
4568  unsigned Values = 1;
4569  if (UnwindBB)
4570  ++Values;
4571  return new (Values)
4572  CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4573  }
4574 
4575  /// Provide fast operand accessors
4577 
4578  bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4579  bool unwindsToCaller() const { return !hasUnwindDest(); }
4580 
4581  /// Convenience accessor.
4583  return cast<CleanupPadInst>(Op<0>());
4584  }
4585  void setCleanupPad(CleanupPadInst *CleanupPad) {
4586  assert(CleanupPad);
4587  Op<0>() = CleanupPad;
4588  }
4589 
4590  unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4591 
4593  return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4594  }
4595  void setUnwindDest(BasicBlock *NewDest) {
4596  assert(NewDest);
4597  assert(hasUnwindDest());
4598  Op<1>() = NewDest;
4599  }
4600 
4601  // Methods for support type inquiry through isa, cast, and dyn_cast:
4602  static bool classof(const Instruction *I) {
4603  return (I->getOpcode() == Instruction::CleanupRet);
4604  }
4605  static bool classof(const Value *V) {
4606  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4607  }
4608 
4609 private:
4610  friend TerminatorInst;
4611 
4612  BasicBlock *getSuccessor(unsigned Idx) const {
4613  assert(Idx == 0);
4614  return getUnwindDest();
4615  }
4616 
4617  void setSuccessor(unsigned Idx, BasicBlock *B) {
4618  assert(Idx == 0);
4619  setUnwindDest(B);
4620  }
4621 
4622  // Shadow Instruction::setInstructionSubclassData with a private forwarding
4623  // method so that subclasses cannot accidentally use it.
4624  void setInstructionSubclassData(unsigned short D) {
4626  }
4627 };
4628 
4629 template <>
4631  : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4632 
4633 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
4634 
4635 //===----------------------------------------------------------------------===//
4636 // UnreachableInst Class
4637 //===----------------------------------------------------------------------===//
4638 
4639 //===---------------------------------------------------------------------------
4640 /// This function has undefined behavior. In particular, the
4641 /// presence of this instruction indicates some higher level knowledge that the
4642 /// end of the block cannot be reached.
4643 ///
4645 protected:
4646  // Note: Instruction needs to be a friend here to call cloneImpl.
4647  friend class Instruction;
4648 
4649  UnreachableInst *cloneImpl() const;
4650 
4651 public:
4652  explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4653  explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4654 
4655  // allocate space for exactly zero operands
4656  void *operator new(size_t s) {
4657  return User::operator new(s, 0);
4658  }
4659 
4660  unsigned getNumSuccessors() const { return 0; }
4661 
4662  // Methods for support type inquiry through isa, cast, and dyn_cast:
4663  static bool classof(const Instruction *I) {
4664  return I->getOpcode() == Instruction::Unreachable;
4665  }
4666  static bool classof(const Value *V) {
4667  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4668  }
4669 
4670 private:
4671  friend TerminatorInst;
4672 
4673  BasicBlock *getSuccessor(unsigned idx) const {
4674  llvm_unreachable("UnreachableInst has no successors!");
4675  }
4676 
4677  void setSuccessor(unsigned idx, BasicBlock *B) {
4678  llvm_unreachable("UnreachableInst has no successors!");
4679  }
4680 };
4681 
4682 //===----------------------------------------------------------------------===//
4683 // TruncInst Class
4684 //===----------------------------------------------------------------------===//
4685 
4686 /// This class represents a truncation of integer types.
4687 class TruncInst : public CastInst {
4688 protected:
4689  // Note: Instruction needs to be a friend here to call cloneImpl.
4690  friend class Instruction;
4691 
4692  /// Clone an identical TruncInst
4693  TruncInst *cloneImpl() const;
4694 
4695 public:
4696  /// Constructor with insert-before-instruction semantics
4697  TruncInst(
4698  Value *S, ///< The value to be truncated
4699  Type *Ty, ///< The (smaller) type to truncate to
4700  const Twine &NameStr = "", ///< A name for the new instruction
4701  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4702  );
4703 
4704  /// Constructor with insert-at-end-of-block semantics
4705  TruncInst(
4706  Value *S, ///< The value to be truncated
4707  Type *Ty, ///< The (smaller) type to truncate to
4708  const Twine &NameStr, ///< A name for the new instruction
4709  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4710  );
4711 
4712  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4713  static bool classof(const Instruction *I) {
4714  return I->getOpcode() == Trunc;
4715  }
4716  static bool classof(const Value *V) {
4717  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4718  }
4719 };
4720 
4721 //===----------------------------------------------------------------------===//
4722 // ZExtInst Class
4723 //===----------------------------------------------------------------------===//
4724 
4725 /// This class represents zero extension of integer types.
4726 class ZExtInst : public CastInst {
4727 protected:
4728  // Note: Instruction needs to be a friend here to call cloneImpl.
4729  friend class Instruction;
4730 
4731  /// Clone an identical ZExtInst
4732  ZExtInst *cloneImpl() const;
4733 
4734 public:
4735  /// Constructor with insert-before-instruction semantics
4736  ZExtInst(
4737  Value *S, ///< The value to be zero extended
4738  Type *Ty, ///< The type to zero extend to
4739  const Twine &NameStr = "", ///< A name for the new instruction
4740  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4741  );
4742 
4743  /// Constructor with insert-at-end semantics.
4744  ZExtInst(
4745  Value *S, ///< The value to be zero extended
4746  Type *Ty, ///< The type to zero extend to
4747  const Twine &NameStr, ///< A name for the new instruction
4748  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4749  );
4750 
4751  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4752  static bool classof(const Instruction *I) {
4753  return I->getOpcode() == ZExt;
4754  }
4755  static bool classof(const Value *V) {
4756  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4757  }
4758 };
4759 
4760 //===----------------------------------------------------------------------===//
4761 // SExtInst Class
4762 //===----------------------------------------------------------------------===//
4763 
4764 /// This class represents a sign extension of integer types.
4765 class SExtInst : public CastInst {
4766 protected:
4767  // Note: Instruction needs to be a friend here to call cloneImpl.
4768  friend class Instruction;
4769 
4770  /// Clone an identical SExtInst
4771  SExtInst *cloneImpl() const;
4772 
4773 public:
4774  /// Constructor with insert-before-instruction semantics
4775  SExtInst(
4776  Value *S, ///< The value to be sign extended
4777  Type *Ty, ///< The type to sign extend to
4778  const Twine &NameStr = "", ///< A name for the new instruction
4779  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4780  );
4781 
4782  /// Constructor with insert-at-end-of-block semantics
4783  SExtInst(
4784  Value *S, ///< The value to be sign extended
4785  Type *Ty, ///< The type to sign extend to
4786  const Twine &NameStr, ///< A name for the new instruction
4787  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4788  );
4789 
4790  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4791  static bool classof(const Instruction *I) {
4792  return I->getOpcode() == SExt;
4793  }
4794  static bool classof(const Value *V) {
4795  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4796  }
4797 };
4798 
4799 //===----------------------------------------------------------------------===//
4800 // FPTruncInst Class
4801 //===----------------------------------------------------------------------===//
4802 
4803 /// This class represents a truncation of floating point types.
4804 class FPTruncInst : public CastInst {
4805 protected:
4806  // Note: Instruction needs to be a friend here to call cloneImpl.
4807  friend class Instruction;
4808 
4809  /// Clone an identical FPTruncInst
4810  FPTruncInst *cloneImpl() const;
4811 
4812 public:
4813  /// Constructor with insert-before-instruction semantics
4814  FPTruncInst(
4815  Value *S, ///< The value to be truncated
4816  Type *Ty, ///< The type to truncate to
4817  const Twine &NameStr = "", ///< A name for the new instruction
4818  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4819  );
4820 
4821  /// Constructor with insert-before-instruction semantics
4822  FPTruncInst(
4823  Value *S, ///< The value to be truncated
4824  Type *Ty, ///< The type to truncate to
4825  const Twine &NameStr, ///< A name for the new instruction
4826  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4827  );
4828 
4829  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4830  static bool classof(const Instruction *I) {
4831  return I->getOpcode() == FPTrunc;
4832  }
4833  static bool classof(const Value *V) {
4834  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4835  }
4836 };
4837 
4838 //===----------------------------------------------------------------------===//
4839 // FPExtInst Class
4840 //===----------------------------------------------------------------------===//
4841 
4842 /// This class represents an extension of floating point types.
4843 class FPExtInst : public CastInst {
4844 protected:
4845  // Note: Instruction needs to be a friend here to call cloneImpl.
4846  friend class Instruction;
4847 
4848  /// Clone an identical FPExtInst
4849  FPExtInst *cloneImpl() const;
4850 
4851 public:
4852  /// Constructor with insert-before-instruction semantics
4853  FPExtInst(
4854  Value *S, ///< The value to be extended
4855  Type *Ty, ///< The type to extend to
4856  const Twine &NameStr = "", ///< A name for the new instruction
4857  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4858  );
4859 
4860  /// Constructor with insert-at-end-of-block semantics
4861  FPExtInst(
4862  Value *S, ///< The value to be extended
4863  Type *Ty, ///< The type to extend to
4864  const Twine &NameStr, ///< A name for the new instruction
4865  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4866  );
4867 
4868  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4869  static bool classof(const Instruction *I) {
4870  return I->getOpcode() == FPExt;
4871  }
4872  static bool classof(const Value *V) {
4873  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4874  }
4875 };
4876 
4877 //===----------------------------------------------------------------------===//
4878 // UIToFPInst Class
4879 //===----------------------------------------------------------------------===//
4880 
4881 /// This class represents a cast unsigned integer to floating point.
4882 class UIToFPInst : public CastInst {
4883 protected:
4884  // Note: Instruction needs to be a friend here to call cloneImpl.
4885  friend class Instruction;
4886 
4887  /// Clone an identical UIToFPInst
4888  UIToFPInst *cloneImpl() const;
4889 
4890 public:
4891  /// Constructor with insert-before-instruction semantics
4892  UIToFPInst(
4893  Value *S, ///< The value to be converted
4894  Type *Ty, ///< The type to convert to
4895  const Twine &NameStr = "", ///< A name for the new instruction
4896  Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4897  );
4898 
4899  /// Constructor with insert-at-end-of-block semantics
4900  UIToFPInst(
4901  Value *S, ///< The value to be converted
4902  Type *Ty, ///< The type to convert to
4903  const Twine &NameStr, ///< A name for the new instruction
4904  BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4905  );
4906 
4907  /// Methods for support type inquiry through isa, cast, and dyn_cast:
4908  static bool classof(const Instruction *I) {
4909  return I->getOpcode() == UIToFP;
4910  }
4911  static bool classof(const Value *V) {
4912  return isa<Instruction>(V) && classof(cast<Instruction>(V));
4913  }
4914 };
4915 
4916 //===----------------------------------------------------------------------===//
4917 // SIToFPInst Class
4918 //===----------------------------------------------------------------------===//
4919 
4920 /// This class represents a cast from signed integer to floating point.
4921 class SIToFPInst : public CastInst {
4922