LLVM  6.0.0svn
Instructions.cpp
Go to the documentation of this file.
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/Attributes.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstdint>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 //===----------------------------------------------------------------------===//
48 // CallSite Class
49 //===----------------------------------------------------------------------===//
50 
51 User::op_iterator CallSite::getCallee() const {
53  return isCall()
54  ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
55  : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
56 }
57 
58 //===----------------------------------------------------------------------===//
59 // TerminatorInst Class
60 //===----------------------------------------------------------------------===//
61 
63  switch (getOpcode()) {
64 #define HANDLE_TERM_INST(N, OPC, CLASS) \
65  case Instruction::OPC: \
66  return static_cast<const CLASS *>(this)->getNumSuccessors();
67 #include "llvm/IR/Instruction.def"
68  default:
69  break;
70  }
71  llvm_unreachable("not a terminator");
72 }
73 
75  switch (getOpcode()) {
76 #define HANDLE_TERM_INST(N, OPC, CLASS) \
77  case Instruction::OPC: \
78  return static_cast<const CLASS *>(this)->getSuccessor(idx);
79 #include "llvm/IR/Instruction.def"
80  default:
81  break;
82  }
83  llvm_unreachable("not a terminator");
84 }
85 
87  switch (getOpcode()) {
88 #define HANDLE_TERM_INST(N, OPC, CLASS) \
89  case Instruction::OPC: \
90  return static_cast<CLASS *>(this)->setSuccessor(idx, B);
91 #include "llvm/IR/Instruction.def"
92  default:
93  break;
94  }
95  llvm_unreachable("not a terminator");
96 }
97 
98 //===----------------------------------------------------------------------===//
99 // SelectInst Class
100 //===----------------------------------------------------------------------===//
101 
102 /// areInvalidOperands - Return a string if the specified operands are invalid
103 /// for a select operation, otherwise return null.
104 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
105  if (Op1->getType() != Op2->getType())
106  return "both values to select must have same type";
107 
108  if (Op1->getType()->isTokenTy())
109  return "select values cannot have token type";
110 
111  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
112  // Vector select.
113  if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
114  return "vector select condition element type must be i1";
115  VectorType *ET = dyn_cast<VectorType>(Op1->getType());
116  if (!ET)
117  return "selected values for vector select must be vectors";
118  if (ET->getNumElements() != VT->getNumElements())
119  return "vector select requires selected vectors to have "
120  "the same vector length as select condition";
121  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
122  return "select condition must be i1 or <n x i1>";
123  }
124  return nullptr;
125 }
126 
127 //===----------------------------------------------------------------------===//
128 // PHINode Class
129 //===----------------------------------------------------------------------===//
130 
131 PHINode::PHINode(const PHINode &PN)
132  : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
133  ReservedSpace(PN.getNumOperands()) {
134  allocHungoffUses(PN.getNumOperands());
135  std::copy(PN.op_begin(), PN.op_end(), op_begin());
136  std::copy(PN.block_begin(), PN.block_end(), block_begin());
137  SubclassOptionalData = PN.SubclassOptionalData;
138 }
139 
140 // removeIncomingValue - Remove an incoming value. This is useful if a
141 // predecessor basic block is deleted.
142 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
143  Value *Removed = getIncomingValue(Idx);
144 
145  // Move everything after this operand down.
146  //
147  // FIXME: we could just swap with the end of the list, then erase. However,
148  // clients might not expect this to happen. The code as it is thrashes the
149  // use/def lists, which is kinda lame.
150  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
151  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
152 
153  // Nuke the last value.
154  Op<-1>().set(nullptr);
155  setNumHungOffUseOperands(getNumOperands() - 1);
156 
157  // If the PHI node is dead, because it has zero entries, nuke it now.
158  if (getNumOperands() == 0 && DeletePHIIfEmpty) {
159  // If anyone is using this PHI, make them use a dummy value instead...
160  replaceAllUsesWith(UndefValue::get(getType()));
161  eraseFromParent();
162  }
163  return Removed;
164 }
165 
166 /// growOperands - grow operands - This grows the operand list in response
167 /// to a push_back style of operation. This grows the number of ops by 1.5
168 /// times.
169 ///
170 void PHINode::growOperands() {
171  unsigned e = getNumOperands();
172  unsigned NumOps = e + e / 2;
173  if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
174 
175  ReservedSpace = NumOps;
176  growHungoffUses(ReservedSpace, /* IsPhi */ true);
177 }
178 
179 /// hasConstantValue - If the specified PHI node always merges together the same
180 /// value, return the value, otherwise return null.
182  // Exploit the fact that phi nodes always have at least one entry.
183  Value *ConstantValue = getIncomingValue(0);
184  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
185  if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
186  if (ConstantValue != this)
187  return nullptr; // Incoming values not all the same.
188  // The case where the first value is this PHI.
189  ConstantValue = getIncomingValue(i);
190  }
191  if (ConstantValue == this)
192  return UndefValue::get(getType());
193  return ConstantValue;
194 }
195 
196 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
197 /// together the same value, assuming that undefs result in the same value as
198 /// non-undefs.
199 /// Unlike \ref hasConstantValue, this does not return a value because the
200 /// unique non-undef incoming value need not dominate the PHI node.
202  Value *ConstantValue = nullptr;
203  for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
204  Value *Incoming = getIncomingValue(i);
205  if (Incoming != this && !isa<UndefValue>(Incoming)) {
206  if (ConstantValue && ConstantValue != Incoming)
207  return false;
208  ConstantValue = Incoming;
209  }
210  }
211  return true;
212 }
213 
214 //===----------------------------------------------------------------------===//
215 // LandingPadInst Implementation
216 //===----------------------------------------------------------------------===//
217 
218 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
219  const Twine &NameStr, Instruction *InsertBefore)
220  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
221  init(NumReservedValues, NameStr);
222 }
223 
224 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
225  const Twine &NameStr, BasicBlock *InsertAtEnd)
226  : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
227  init(NumReservedValues, NameStr);
228 }
229 
230 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
231  : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
232  LP.getNumOperands()),
233  ReservedSpace(LP.getNumOperands()) {
234  allocHungoffUses(LP.getNumOperands());
235  Use *OL = getOperandList();
236  const Use *InOL = LP.getOperandList();
237  for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
238  OL[I] = InOL[I];
239 
240  setCleanup(LP.isCleanup());
241 }
242 
243 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
244  const Twine &NameStr,
245  Instruction *InsertBefore) {
246  return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
247 }
248 
249 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
250  const Twine &NameStr,
251  BasicBlock *InsertAtEnd) {
252  return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
253 }
254 
255 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
256  ReservedSpace = NumReservedValues;
257  setNumHungOffUseOperands(0);
258  allocHungoffUses(ReservedSpace);
259  setName(NameStr);
260  setCleanup(false);
261 }
262 
263 /// growOperands - grow operands - This grows the operand list in response to a
264 /// push_back style of operation. This grows the number of ops by 2 times.
265 void LandingPadInst::growOperands(unsigned Size) {
266  unsigned e = getNumOperands();
267  if (ReservedSpace >= e + Size) return;
268  ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
269  growHungoffUses(ReservedSpace);
270 }
271 
273  unsigned OpNo = getNumOperands();
274  growOperands(1);
275  assert(OpNo < ReservedSpace && "Growing didn't work!");
276  setNumHungOffUseOperands(getNumOperands() + 1);
277  getOperandList()[OpNo] = Val;
278 }
279 
280 //===----------------------------------------------------------------------===//
281 // CallInst Implementation
282 //===----------------------------------------------------------------------===//
283 
284 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
285  ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
286  this->FTy = FTy;
287  assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
288  "NumOperands not set up?");
289  Op<-1>() = Func;
290 
291 #ifndef NDEBUG
292  assert((Args.size() == FTy->getNumParams() ||
293  (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
294  "Calling a function with bad signature!");
295 
296  for (unsigned i = 0; i != Args.size(); ++i)
297  assert((i >= FTy->getNumParams() ||
298  FTy->getParamType(i) == Args[i]->getType()) &&
299  "Calling a function with a bad signature!");
300 #endif
301 
302  std::copy(Args.begin(), Args.end(), op_begin());
303 
304  auto It = populateBundleOperandInfos(Bundles, Args.size());
305  (void)It;
306  assert(It + 1 == op_end() && "Should add up!");
307 
308  setName(NameStr);
309 }
310 
311 void CallInst::init(Value *Func, const Twine &NameStr) {
312  FTy =
313  cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
314  assert(getNumOperands() == 1 && "NumOperands not set up?");
315  Op<-1>() = Func;
316 
317  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
318 
319  setName(NameStr);
320 }
321 
322 CallInst::CallInst(Value *Func, const Twine &Name,
323  Instruction *InsertBefore)
324  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
325  ->getElementType())->getReturnType(),
328  1, InsertBefore) {
329  init(Func, Name);
330 }
331 
332 CallInst::CallInst(Value *Func, const Twine &Name,
333  BasicBlock *InsertAtEnd)
334  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
335  ->getElementType())->getReturnType(),
338  1, InsertAtEnd) {
339  init(Func, Name);
340 }
341 
342 CallInst::CallInst(const CallInst &CI)
345  CI.getNumOperands()),
346  Attrs(CI.Attrs), FTy(CI.FTy) {
347  setTailCallKind(CI.getTailCallKind());
349 
350  std::copy(CI.op_begin(), CI.op_end(), op_begin());
351  std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
352  bundle_op_info_begin());
353  SubclassOptionalData = CI.SubclassOptionalData;
354 }
355 
357  Instruction *InsertPt) {
358  std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
359 
360  auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(),
361  InsertPt);
362  NewCI->setTailCallKind(CI->getTailCallKind());
363  NewCI->setCallingConv(CI->getCallingConv());
364  NewCI->SubclassOptionalData = CI->SubclassOptionalData;
365  NewCI->setAttributes(CI->getAttributes());
366  NewCI->setDebugLoc(CI->getDebugLoc());
367  return NewCI;
368 }
369 
371  unsigned Index;
372 
373  if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
375  if (const Function *F = getCalledFunction())
376  if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
377  Index)
379 
380  return nullptr;
381 }
382 
385  PAL = PAL.addAttribute(getContext(), i, Kind);
386  setAttributes(PAL);
387 }
388 
389 void CallInst::addAttribute(unsigned i, Attribute Attr) {
391  PAL = PAL.addAttribute(getContext(), i, Attr);
392  setAttributes(PAL);
393 }
394 
396  assert(ArgNo < getNumArgOperands() && "Out of bounds");
398  PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
399  setAttributes(PAL);
400 }
401 
402 void CallInst::addParamAttr(unsigned ArgNo, Attribute Attr) {
403  assert(ArgNo < getNumArgOperands() && "Out of bounds");
405  PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
406  setAttributes(PAL);
407 }
408 
411  PAL = PAL.removeAttribute(getContext(), i, Kind);
412  setAttributes(PAL);
413 }
414 
417  PAL = PAL.removeAttribute(getContext(), i, Kind);
418  setAttributes(PAL);
419 }
420 
422  assert(ArgNo < getNumArgOperands() && "Out of bounds");
424  PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
425  setAttributes(PAL);
426 }
427 
428 void CallInst::removeParamAttr(unsigned ArgNo, StringRef Kind) {
429  assert(ArgNo < getNumArgOperands() && "Out of bounds");
431  PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
432  setAttributes(PAL);
433 }
434 
435 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
437  PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
438  setAttributes(PAL);
439 }
440 
441 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
443  PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
444  setAttributes(PAL);
445 }
446 
448  if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
449  return true;
450 
451  // Look at the callee, if available.
452  if (const Function *F = getCalledFunction())
453  return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
454  return false;
455 }
456 
458  assert(i < getNumArgOperands() && "Param index out of bounds!");
459 
460  if (Attrs.hasParamAttribute(i, Kind))
461  return true;
462  if (const Function *F = getCalledFunction())
463  return F->getAttributes().hasParamAttribute(i, Kind);
464  return false;
465 }
466 
468  Attribute::AttrKind Kind) const {
469  // There are getNumOperands() - 1 data operands. The last operand is the
470  // callee.
471  assert(i < getNumOperands() && "Data operand index out of bounds!");
472 
473  // The attribute A can either be directly specified, if the operand in
474  // question is a call argument; or be indirectly implied by the kind of its
475  // containing operand bundle, if the operand is a bundle operand.
476 
478  return hasRetAttr(Kind);
479 
480  // FIXME: Avoid these i - 1 calculations and update the API to use zero-based
481  // indices.
482  if (i < (getNumArgOperands() + 1))
483  return paramHasAttr(i - 1, Kind);
484 
486  "Must be either a call argument or an operand bundle!");
487  return bundleOperandHasAttr(i - 1, Kind);
488 }
489 
490 /// IsConstantOne - Return true only if val is constant int 1
491 static bool IsConstantOne(Value *val) {
492  assert(val && "IsConstantOne does not work with nullptr val");
493  const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
494  return CVal && CVal->isOne();
495 }
496 
497 static Instruction *createMalloc(Instruction *InsertBefore,
498  BasicBlock *InsertAtEnd, Type *IntPtrTy,
499  Type *AllocTy, Value *AllocSize,
500  Value *ArraySize,
502  Function *MallocF, const Twine &Name) {
503  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
504  "createMalloc needs either InsertBefore or InsertAtEnd");
505 
506  // malloc(type) becomes:
507  // bitcast (i8* malloc(typeSize)) to type*
508  // malloc(type, arraySize) becomes:
509  // bitcast (i8* malloc(typeSize*arraySize)) to type*
510  if (!ArraySize)
511  ArraySize = ConstantInt::get(IntPtrTy, 1);
512  else if (ArraySize->getType() != IntPtrTy) {
513  if (InsertBefore)
514  ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
515  "", InsertBefore);
516  else
517  ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
518  "", InsertAtEnd);
519  }
520 
521  if (!IsConstantOne(ArraySize)) {
522  if (IsConstantOne(AllocSize)) {
523  AllocSize = ArraySize; // Operand * 1 = Operand
524  } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
525  Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
526  false /*ZExt*/);
527  // Malloc arg is constant product of type size and array size
528  AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
529  } else {
530  // Multiply type size by the array size...
531  if (InsertBefore)
532  AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
533  "mallocsize", InsertBefore);
534  else
535  AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
536  "mallocsize", InsertAtEnd);
537  }
538  }
539 
540  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
541  // Create the call to Malloc.
542  BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
543  Module *M = BB->getParent()->getParent();
544  Type *BPTy = Type::getInt8PtrTy(BB->getContext());
545  Value *MallocFunc = MallocF;
546  if (!MallocFunc)
547  // prototype malloc as "void *malloc(size_t)"
548  MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
549  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
550  CallInst *MCall = nullptr;
551  Instruction *Result = nullptr;
552  if (InsertBefore) {
553  MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
554  InsertBefore);
555  Result = MCall;
556  if (Result->getType() != AllocPtrType)
557  // Create a cast instruction to convert to the right type...
558  Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
559  } else {
560  MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
561  Result = MCall;
562  if (Result->getType() != AllocPtrType) {
563  InsertAtEnd->getInstList().push_back(MCall);
564  // Create a cast instruction to convert to the right type...
565  Result = new BitCastInst(MCall, AllocPtrType, Name);
566  }
567  }
568  MCall->setTailCall();
569  if (Function *F = dyn_cast<Function>(MallocFunc)) {
570  MCall->setCallingConv(F->getCallingConv());
571  if (!F->returnDoesNotAlias())
572  F->setReturnDoesNotAlias();
573  }
574  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
575 
576  return Result;
577 }
578 
579 /// CreateMalloc - Generate the IR for a call to malloc:
580 /// 1. Compute the malloc call's argument as the specified type's size,
581 /// possibly multiplied by the array size if the array size is not
582 /// constant 1.
583 /// 2. Call malloc with that argument.
584 /// 3. Bitcast the result of the malloc call to the specified type.
586  Type *IntPtrTy, Type *AllocTy,
587  Value *AllocSize, Value *ArraySize,
588  Function *MallocF,
589  const Twine &Name) {
590  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
591  ArraySize, None, MallocF, Name);
592 }
594  Type *IntPtrTy, Type *AllocTy,
595  Value *AllocSize, Value *ArraySize,
597  Function *MallocF,
598  const Twine &Name) {
599  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
600  ArraySize, OpB, MallocF, Name);
601 }
602 
603 /// CreateMalloc - Generate the IR for a call to malloc:
604 /// 1. Compute the malloc call's argument as the specified type's size,
605 /// possibly multiplied by the array size if the array size is not
606 /// constant 1.
607 /// 2. Call malloc with that argument.
608 /// 3. Bitcast the result of the malloc call to the specified type.
609 /// Note: This function does not add the bitcast to the basic block, that is the
610 /// responsibility of the caller.
612  Type *IntPtrTy, Type *AllocTy,
613  Value *AllocSize, Value *ArraySize,
614  Function *MallocF, const Twine &Name) {
615  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
616  ArraySize, None, MallocF, Name);
617 }
619  Type *IntPtrTy, Type *AllocTy,
620  Value *AllocSize, Value *ArraySize,
622  Function *MallocF, const Twine &Name) {
623  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
624  ArraySize, OpB, MallocF, Name);
625 }
626 
629  Instruction *InsertBefore,
630  BasicBlock *InsertAtEnd) {
631  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
632  "createFree needs either InsertBefore or InsertAtEnd");
633  assert(Source->getType()->isPointerTy() &&
634  "Can not free something of nonpointer type!");
635 
636  BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
637  Module *M = BB->getParent()->getParent();
638 
639  Type *VoidTy = Type::getVoidTy(M->getContext());
640  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
641  // prototype free as "void free(void*)"
642  Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
643  CallInst *Result = nullptr;
644  Value *PtrCast = Source;
645  if (InsertBefore) {
646  if (Source->getType() != IntPtrTy)
647  PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
648  Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
649  } else {
650  if (Source->getType() != IntPtrTy)
651  PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
652  Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
653  }
654  Result->setTailCall();
655  if (Function *F = dyn_cast<Function>(FreeFunc))
656  Result->setCallingConv(F->getCallingConv());
657 
658  return Result;
659 }
660 
661 /// CreateFree - Generate the IR for a call to the builtin free function.
663  return createFree(Source, None, InsertBefore, nullptr);
664 }
667  Instruction *InsertBefore) {
668  return createFree(Source, Bundles, InsertBefore, nullptr);
669 }
670 
671 /// CreateFree - Generate the IR for a call to the builtin free function.
672 /// Note: This function does not add the call to the basic block, that is the
673 /// responsibility of the caller.
675  Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
676  assert(FreeCall && "CreateFree did not create a CallInst");
677  return FreeCall;
678 }
681  BasicBlock *InsertAtEnd) {
682  Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
683  assert(FreeCall && "CreateFree did not create a CallInst");
684  return FreeCall;
685 }
686 
687 //===----------------------------------------------------------------------===//
688 // InvokeInst Implementation
689 //===----------------------------------------------------------------------===//
690 
691 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
692  BasicBlock *IfException, ArrayRef<Value *> Args,
694  const Twine &NameStr) {
695  this->FTy = FTy;
696 
697  assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) &&
698  "NumOperands not set up?");
699  Op<-3>() = Fn;
700  Op<-2>() = IfNormal;
701  Op<-1>() = IfException;
702 
703 #ifndef NDEBUG
704  assert(((Args.size() == FTy->getNumParams()) ||
705  (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
706  "Invoking a function with bad signature");
707 
708  for (unsigned i = 0, e = Args.size(); i != e; i++)
709  assert((i >= FTy->getNumParams() ||
710  FTy->getParamType(i) == Args[i]->getType()) &&
711  "Invoking a function with a bad signature!");
712 #endif
713 
714  std::copy(Args.begin(), Args.end(), op_begin());
715 
716  auto It = populateBundleOperandInfos(Bundles, Args.size());
717  (void)It;
718  assert(It + 3 == op_end() && "Should add up!");
719 
720  setName(NameStr);
721 }
722 
723 InvokeInst::InvokeInst(const InvokeInst &II)
724  : TerminatorInst(II.getType(), Instruction::Invoke,
726  II.getNumOperands(),
727  II.getNumOperands()),
728  Attrs(II.Attrs), FTy(II.FTy) {
730  std::copy(II.op_begin(), II.op_end(), op_begin());
731  std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
732  bundle_op_info_begin());
733  SubclassOptionalData = II.SubclassOptionalData;
734 }
735 
737  Instruction *InsertPt) {
738  std::vector<Value *> Args(II->arg_begin(), II->arg_end());
739 
740  auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(),
741  II->getUnwindDest(), Args, OpB,
742  II->getName(), InsertPt);
743  NewII->setCallingConv(II->getCallingConv());
744  NewII->SubclassOptionalData = II->SubclassOptionalData;
745  NewII->setAttributes(II->getAttributes());
746  NewII->setDebugLoc(II->getDebugLoc());
747  return NewII;
748 }
749 
751  unsigned Index;
752 
753  if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
755  if (const Function *F = getCalledFunction())
756  if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
757  Index)
759 
760  return nullptr;
761 }
762 
764  if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
765  return true;
766 
767  // Look at the callee, if available.
768  if (const Function *F = getCalledFunction())
769  return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
770  return false;
771 }
772 
774  assert(i < getNumArgOperands() && "Param index out of bounds!");
775 
776  if (Attrs.hasParamAttribute(i, Kind))
777  return true;
778  if (const Function *F = getCalledFunction())
779  return F->getAttributes().hasParamAttribute(i, Kind);
780  return false;
781 }
782 
784  Attribute::AttrKind Kind) const {
785  // There are getNumOperands() - 3 data operands. The last three operands are
786  // the callee and the two successor basic blocks.
787  assert(i < (getNumOperands() - 2) && "Data operand index out of bounds!");
788 
789  // The attribute A can either be directly specified, if the operand in
790  // question is an invoke argument; or be indirectly implied by the kind of its
791  // containing operand bundle, if the operand is a bundle operand.
792 
794  return hasRetAttr(Kind);
795 
796  // FIXME: Avoid these i - 1 calculations and update the API to use zero-based
797  // indices.
798  if (i < (getNumArgOperands() + 1))
799  return paramHasAttr(i - 1, Kind);
800 
802  "Must be either an invoke argument or an operand bundle!");
803  return bundleOperandHasAttr(i - 1, Kind);
804 }
805 
808  PAL = PAL.addAttribute(getContext(), i, Kind);
809  setAttributes(PAL);
810 }
811 
812 void InvokeInst::addAttribute(unsigned i, Attribute Attr) {
814  PAL = PAL.addAttribute(getContext(), i, Attr);
815  setAttributes(PAL);
816 }
817 
820  PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
821  setAttributes(PAL);
822 }
823 
826  PAL = PAL.removeAttribute(getContext(), i, Kind);
827  setAttributes(PAL);
828 }
829 
832  PAL = PAL.removeAttribute(getContext(), i, Kind);
833  setAttributes(PAL);
834 }
835 
838  PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
839  setAttributes(PAL);
840 }
841 
842 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
844  PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
845  setAttributes(PAL);
846 }
847 
848 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
850  PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
851  setAttributes(PAL);
852 }
853 
855  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
856 }
857 
858 //===----------------------------------------------------------------------===//
859 // ReturnInst Implementation
860 //===----------------------------------------------------------------------===//
861 
862 ReturnInst::ReturnInst(const ReturnInst &RI)
865  RI.getNumOperands(),
866  RI.getNumOperands()) {
867  if (RI.getNumOperands())
868  Op<0>() = RI.Op<0>();
869  SubclassOptionalData = RI.SubclassOptionalData;
870 }
871 
872 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
874  OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
875  InsertBefore) {
876  if (retVal)
877  Op<0>() = retVal;
878 }
879 
880 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
882  OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
883  InsertAtEnd) {
884  if (retVal)
885  Op<0>() = retVal;
886 }
887 
888 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
890  OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
891 }
892 
893 //===----------------------------------------------------------------------===//
894 // ResumeInst Implementation
895 //===----------------------------------------------------------------------===//
896 
897 ResumeInst::ResumeInst(const ResumeInst &RI)
898  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
900  Op<0>() = RI.Op<0>();
901 }
902 
903 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
904  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
905  OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
906  Op<0>() = Exn;
907 }
908 
909 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
910  : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
911  OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
912  Op<0>() = Exn;
913 }
914 
915 //===----------------------------------------------------------------------===//
916 // CleanupReturnInst Implementation
917 //===----------------------------------------------------------------------===//
918 
919 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
920  : TerminatorInst(CRI.getType(), Instruction::CleanupRet,
922  CRI.getNumOperands(),
923  CRI.getNumOperands()) {
924  setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
925  Op<0>() = CRI.Op<0>();
926  if (CRI.hasUnwindDest())
927  Op<1>() = CRI.Op<1>();
928 }
929 
930 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
931  if (UnwindBB)
932  setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
933 
934  Op<0>() = CleanupPad;
935  if (UnwindBB)
936  Op<1>() = UnwindBB;
937 }
938 
939 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
940  unsigned Values, Instruction *InsertBefore)
941  : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
942  Instruction::CleanupRet,
944  Values, InsertBefore) {
945  init(CleanupPad, UnwindBB);
946 }
947 
948 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
949  unsigned Values, BasicBlock *InsertAtEnd)
950  : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
951  Instruction::CleanupRet,
953  Values, InsertAtEnd) {
954  init(CleanupPad, UnwindBB);
955 }
956 
957 //===----------------------------------------------------------------------===//
958 // CatchReturnInst Implementation
959 //===----------------------------------------------------------------------===//
960 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
961  Op<0>() = CatchPad;
962  Op<1>() = BB;
963 }
964 
965 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
966  : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
968  Op<0>() = CRI.Op<0>();
969  Op<1>() = CRI.Op<1>();
970 }
971 
972 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
973  Instruction *InsertBefore)
974  : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
976  InsertBefore) {
977  init(CatchPad, BB);
978 }
979 
980 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
981  BasicBlock *InsertAtEnd)
982  : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
984  InsertAtEnd) {
985  init(CatchPad, BB);
986 }
987 
988 //===----------------------------------------------------------------------===//
989 // CatchSwitchInst Implementation
990 //===----------------------------------------------------------------------===//
991 
992 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
993  unsigned NumReservedValues,
994  const Twine &NameStr,
995  Instruction *InsertBefore)
996  : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
997  InsertBefore) {
998  if (UnwindDest)
999  ++NumReservedValues;
1000  init(ParentPad, UnwindDest, NumReservedValues + 1);
1001  setName(NameStr);
1002 }
1003 
1004 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1005  unsigned NumReservedValues,
1006  const Twine &NameStr, BasicBlock *InsertAtEnd)
1007  : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1008  InsertAtEnd) {
1009  if (UnwindDest)
1010  ++NumReservedValues;
1011  init(ParentPad, UnwindDest, NumReservedValues + 1);
1012  setName(NameStr);
1013 }
1014 
1015 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1016  : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr,
1017  CSI.getNumOperands()) {
1018  init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1019  setNumHungOffUseOperands(ReservedSpace);
1020  Use *OL = getOperandList();
1021  const Use *InOL = CSI.getOperandList();
1022  for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1023  OL[I] = InOL[I];
1024 }
1025 
1026 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1027  unsigned NumReservedValues) {
1028  assert(ParentPad && NumReservedValues);
1029 
1030  ReservedSpace = NumReservedValues;
1031  setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1032  allocHungoffUses(ReservedSpace);
1033 
1034  Op<0>() = ParentPad;
1035  if (UnwindDest) {
1036  setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1037  setUnwindDest(UnwindDest);
1038  }
1039 }
1040 
1041 /// growOperands - grow operands - This grows the operand list in response to a
1042 /// push_back style of operation. This grows the number of ops by 2 times.
1043 void CatchSwitchInst::growOperands(unsigned Size) {
1044  unsigned NumOperands = getNumOperands();
1045  assert(NumOperands >= 1);
1046  if (ReservedSpace >= NumOperands + Size)
1047  return;
1048  ReservedSpace = (NumOperands + Size / 2) * 2;
1049  growHungoffUses(ReservedSpace);
1050 }
1051 
1053  unsigned OpNo = getNumOperands();
1054  growOperands(1);
1055  assert(OpNo < ReservedSpace && "Growing didn't work!");
1056  setNumHungOffUseOperands(getNumOperands() + 1);
1057  getOperandList()[OpNo] = Handler;
1058 }
1059 
1061  // Move all subsequent handlers up one.
1062  Use *EndDst = op_end() - 1;
1063  for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1064  *CurDst = *(CurDst + 1);
1065  // Null out the last handler use.
1066  *EndDst = nullptr;
1067 
1068  setNumHungOffUseOperands(getNumOperands() - 1);
1069 }
1070 
1071 //===----------------------------------------------------------------------===//
1072 // FuncletPadInst Implementation
1073 //===----------------------------------------------------------------------===//
1074 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1075  const Twine &NameStr) {
1076  assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1077  std::copy(Args.begin(), Args.end(), op_begin());
1078  setParentPad(ParentPad);
1079  setName(NameStr);
1080 }
1081 
1082 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1083  : Instruction(FPI.getType(), FPI.getOpcode(),
1085  FPI.getNumOperands(),
1086  FPI.getNumOperands()) {
1087  std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1088  setParentPad(FPI.getParentPad());
1089 }
1090 
1091 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1092  ArrayRef<Value *> Args, unsigned Values,
1093  const Twine &NameStr, Instruction *InsertBefore)
1094  : Instruction(ParentPad->getType(), Op,
1095  OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1096  InsertBefore) {
1097  init(ParentPad, Args, NameStr);
1098 }
1099 
1100 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1101  ArrayRef<Value *> Args, unsigned Values,
1102  const Twine &NameStr, BasicBlock *InsertAtEnd)
1103  : Instruction(ParentPad->getType(), Op,
1104  OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1105  InsertAtEnd) {
1106  init(ParentPad, Args, NameStr);
1107 }
1108 
1109 //===----------------------------------------------------------------------===//
1110 // UnreachableInst Implementation
1111 //===----------------------------------------------------------------------===//
1112 
1114  Instruction *InsertBefore)
1115  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
1116  nullptr, 0, InsertBefore) {
1117 }
1119  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
1120  nullptr, 0, InsertAtEnd) {
1121 }
1122 
1123 //===----------------------------------------------------------------------===//
1124 // BranchInst Implementation
1125 //===----------------------------------------------------------------------===//
1126 
1127 void BranchInst::AssertOK() {
1128  if (isConditional())
1129  assert(getCondition()->getType()->isIntegerTy(1) &&
1130  "May only branch on boolean predicates!");
1131 }
1132 
1133 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1134  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1136  1, InsertBefore) {
1137  assert(IfTrue && "Branch destination may not be null!");
1138  Op<-1>() = IfTrue;
1139 }
1140 
1141 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1142  Instruction *InsertBefore)
1143  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1145  3, InsertBefore) {
1146  Op<-1>() = IfTrue;
1147  Op<-2>() = IfFalse;
1148  Op<-3>() = Cond;
1149 #ifndef NDEBUG
1150  AssertOK();
1151 #endif
1152 }
1153 
1154 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1155  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1157  1, InsertAtEnd) {
1158  assert(IfTrue && "Branch destination may not be null!");
1159  Op<-1>() = IfTrue;
1160 }
1161 
1162 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1163  BasicBlock *InsertAtEnd)
1164  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1166  3, InsertAtEnd) {
1167  Op<-1>() = IfTrue;
1168  Op<-2>() = IfFalse;
1169  Op<-3>() = Cond;
1170 #ifndef NDEBUG
1171  AssertOK();
1172 #endif
1173 }
1174 
1175 BranchInst::BranchInst(const BranchInst &BI) :
1176  TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
1178  BI.getNumOperands()) {
1179  Op<-1>() = BI.Op<-1>();
1180  if (BI.getNumOperands() != 1) {
1181  assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1182  Op<-3>() = BI.Op<-3>();
1183  Op<-2>() = BI.Op<-2>();
1184  }
1186 }
1187 
1189  assert(isConditional() &&
1190  "Cannot swap successors of an unconditional branch");
1191  Op<-1>().swap(Op<-2>());
1192 
1193  // Update profile metadata if present and it matches our structural
1194  // expectations.
1195  swapProfMetadata();
1196 }
1197 
1198 //===----------------------------------------------------------------------===//
1199 // AllocaInst Implementation
1200 //===----------------------------------------------------------------------===//
1201 
1202 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1203  if (!Amt)
1204  Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1205  else {
1206  assert(!isa<BasicBlock>(Amt) &&
1207  "Passed basic block into allocation size parameter! Use other ctor");
1208  assert(Amt->getType()->isIntegerTy() &&
1209  "Allocation array size is not an integer!");
1210  }
1211  return Amt;
1212 }
1213 
1214 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1215  Instruction *InsertBefore)
1216  : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1217 
1218 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1219  BasicBlock *InsertAtEnd)
1220  : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1221 
1222 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1223  const Twine &Name, Instruction *InsertBefore)
1224  : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1225 
1226 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1227  const Twine &Name, BasicBlock *InsertAtEnd)
1228  : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1229 
1230 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1231  unsigned Align, const Twine &Name,
1232  Instruction *InsertBefore)
1233  : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1234  getAISize(Ty->getContext(), ArraySize), InsertBefore),
1235  AllocatedType(Ty) {
1236  setAlignment(Align);
1237  assert(!Ty->isVoidTy() && "Cannot allocate void!");
1238  setName(Name);
1239 }
1240 
1241 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1242  unsigned Align, const Twine &Name,
1243  BasicBlock *InsertAtEnd)
1244  : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1245  getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1246  AllocatedType(Ty) {
1247  setAlignment(Align);
1248  assert(!Ty->isVoidTy() && "Cannot allocate void!");
1249  setName(Name);
1250 }
1251 
1253  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1254  assert(Align <= MaximumAlignment &&
1255  "Alignment is greater than MaximumAlignment!");
1256  setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1257  (Log2_32(Align) + 1));
1258  assert(getAlignment() == Align && "Alignment representation error!");
1259 }
1260 
1262  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1263  return !CI->isOne();
1264  return true;
1265 }
1266 
1267 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1268 /// function and is a constant size. If so, the code generator will fold it
1269 /// into the prolog/epilog code, so it is basically free.
1271  // Must be constant size.
1272  if (!isa<ConstantInt>(getArraySize())) return false;
1273 
1274  // Must be in the entry block.
1275  const BasicBlock *Parent = getParent();
1276  return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1277 }
1278 
1279 //===----------------------------------------------------------------------===//
1280 // LoadInst Implementation
1281 //===----------------------------------------------------------------------===//
1282 
1283 void LoadInst::AssertOK() {
1284  assert(getOperand(0)->getType()->isPointerTy() &&
1285  "Ptr must have pointer type.");
1286  assert(!(isAtomic() && getAlignment() == 0) &&
1287  "Alignment required for atomic load");
1288 }
1289 
1290 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
1291  : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1292 
1293 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
1294  : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1295 
1297  Instruction *InsertBef)
1298  : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1299 
1301  BasicBlock *InsertAE)
1302  : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1303 
1305  unsigned Align, Instruction *InsertBef)
1306  : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1307  SyncScope::System, InsertBef) {}
1308 
1310  unsigned Align, BasicBlock *InsertAE)
1311  : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1312  SyncScope::System, InsertAE) {}
1313 
1315  unsigned Align, AtomicOrdering Order,
1316  SyncScope::ID SSID, Instruction *InsertBef)
1317  : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1318  assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1319  setVolatile(isVolatile);
1320  setAlignment(Align);
1321  setAtomic(Order, SSID);
1322  AssertOK();
1323  setName(Name);
1324 }
1325 
1327  unsigned Align, AtomicOrdering Order,
1328  SyncScope::ID SSID,
1329  BasicBlock *InsertAE)
1330  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1331  Load, Ptr, InsertAE) {
1332  setVolatile(isVolatile);
1333  setAlignment(Align);
1334  setAtomic(Order, SSID);
1335  AssertOK();
1336  setName(Name);
1337 }
1338 
1339 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1340  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1341  Load, Ptr, InsertBef) {
1342  setVolatile(false);
1343  setAlignment(0);
1345  AssertOK();
1346  if (Name && Name[0]) setName(Name);
1347 }
1348 
1349 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1350  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1351  Load, Ptr, InsertAE) {
1352  setVolatile(false);
1353  setAlignment(0);
1355  AssertOK();
1356  if (Name && Name[0]) setName(Name);
1357 }
1358 
1359 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile,
1360  Instruction *InsertBef)
1361  : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1362  assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1363  setVolatile(isVolatile);
1364  setAlignment(0);
1366  AssertOK();
1367  if (Name && Name[0]) setName(Name);
1368 }
1369 
1370 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1371  BasicBlock *InsertAE)
1372  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1373  Load, Ptr, InsertAE) {
1374  setVolatile(isVolatile);
1375  setAlignment(0);
1377  AssertOK();
1378  if (Name && Name[0]) setName(Name);
1379 }
1380 
1382  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1383  assert(Align <= MaximumAlignment &&
1384  "Alignment is greater than MaximumAlignment!");
1385  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1386  ((Log2_32(Align)+1)<<1));
1387  assert(getAlignment() == Align && "Alignment representation error!");
1388 }
1389 
1390 //===----------------------------------------------------------------------===//
1391 // StoreInst Implementation
1392 //===----------------------------------------------------------------------===//
1393 
1394 void StoreInst::AssertOK() {
1395  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1396  assert(getOperand(1)->getType()->isPointerTy() &&
1397  "Ptr must have pointer type!");
1398  assert(getOperand(0)->getType() ==
1399  cast<PointerType>(getOperand(1)->getType())->getElementType()
1400  && "Ptr must be a pointer to Val type!");
1401  assert(!(isAtomic() && getAlignment() == 0) &&
1402  "Alignment required for atomic store");
1403 }
1404 
1405 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1406  : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1407 
1408 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1409  : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1410 
1412  Instruction *InsertBefore)
1413  : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1414 
1416  BasicBlock *InsertAtEnd)
1417  : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1418 
1419 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1420  Instruction *InsertBefore)
1421  : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1422  SyncScope::System, InsertBefore) {}
1423 
1424 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1425  BasicBlock *InsertAtEnd)
1426  : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1427  SyncScope::System, InsertAtEnd) {}
1428 
1430  unsigned Align, AtomicOrdering Order,
1431  SyncScope::ID SSID,
1432  Instruction *InsertBefore)
1433  : Instruction(Type::getVoidTy(val->getContext()), Store,
1436  InsertBefore) {
1437  Op<0>() = val;
1438  Op<1>() = addr;
1439  setVolatile(isVolatile);
1440  setAlignment(Align);
1441  setAtomic(Order, SSID);
1442  AssertOK();
1443 }
1444 
1446  unsigned Align, AtomicOrdering Order,
1447  SyncScope::ID SSID,
1448  BasicBlock *InsertAtEnd)
1449  : Instruction(Type::getVoidTy(val->getContext()), Store,
1452  InsertAtEnd) {
1453  Op<0>() = val;
1454  Op<1>() = addr;
1455  setVolatile(isVolatile);
1456  setAlignment(Align);
1457  setAtomic(Order, SSID);
1458  AssertOK();
1459 }
1460 
1462  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1463  assert(Align <= MaximumAlignment &&
1464  "Alignment is greater than MaximumAlignment!");
1465  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1466  ((Log2_32(Align)+1) << 1));
1467  assert(getAlignment() == Align && "Alignment representation error!");
1468 }
1469 
1470 //===----------------------------------------------------------------------===//
1471 // AtomicCmpXchgInst Implementation
1472 //===----------------------------------------------------------------------===//
1473 
1474 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1475  AtomicOrdering SuccessOrdering,
1476  AtomicOrdering FailureOrdering,
1477  SyncScope::ID SSID) {
1478  Op<0>() = Ptr;
1479  Op<1>() = Cmp;
1480  Op<2>() = NewVal;
1481  setSuccessOrdering(SuccessOrdering);
1482  setFailureOrdering(FailureOrdering);
1483  setSyncScopeID(SSID);
1484 
1485  assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1486  "All operands must be non-null!");
1487  assert(getOperand(0)->getType()->isPointerTy() &&
1488  "Ptr must have pointer type!");
1489  assert(getOperand(1)->getType() ==
1490  cast<PointerType>(getOperand(0)->getType())->getElementType()
1491  && "Ptr must be a pointer to Cmp type!");
1492  assert(getOperand(2)->getType() ==
1493  cast<PointerType>(getOperand(0)->getType())->getElementType()
1494  && "Ptr must be a pointer to NewVal type!");
1495  assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1496  "AtomicCmpXchg instructions must be atomic!");
1497  assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1498  "AtomicCmpXchg instructions must be atomic!");
1499  assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1500  "AtomicCmpXchg failure argument shall be no stronger than the success "
1501  "argument");
1502  assert(FailureOrdering != AtomicOrdering::Release &&
1503  FailureOrdering != AtomicOrdering::AcquireRelease &&
1504  "AtomicCmpXchg failure ordering cannot include release semantics");
1505 }
1506 
1508  AtomicOrdering SuccessOrdering,
1509  AtomicOrdering FailureOrdering,
1510  SyncScope::ID SSID,
1511  Instruction *InsertBefore)
1512  : Instruction(
1513  StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1514  AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1515  OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1516  Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1517 }
1518 
1520  AtomicOrdering SuccessOrdering,
1521  AtomicOrdering FailureOrdering,
1522  SyncScope::ID SSID,
1523  BasicBlock *InsertAtEnd)
1524  : Instruction(
1525  StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1526  AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1527  OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1528  Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1529 }
1530 
1531 //===----------------------------------------------------------------------===//
1532 // AtomicRMWInst Implementation
1533 //===----------------------------------------------------------------------===//
1534 
1535 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1536  AtomicOrdering Ordering,
1537  SyncScope::ID SSID) {
1538  Op<0>() = Ptr;
1539  Op<1>() = Val;
1540  setOperation(Operation);
1541  setOrdering(Ordering);
1542  setSyncScopeID(SSID);
1543 
1544  assert(getOperand(0) && getOperand(1) &&
1545  "All operands must be non-null!");
1546  assert(getOperand(0)->getType()->isPointerTy() &&
1547  "Ptr must have pointer type!");
1548  assert(getOperand(1)->getType() ==
1549  cast<PointerType>(getOperand(0)->getType())->getElementType()
1550  && "Ptr must be a pointer to Val type!");
1551  assert(Ordering != AtomicOrdering::NotAtomic &&
1552  "AtomicRMW instructions must be atomic!");
1553 }
1554 
1556  AtomicOrdering Ordering,
1557  SyncScope::ID SSID,
1558  Instruction *InsertBefore)
1559  : Instruction(Val->getType(), AtomicRMW,
1562  InsertBefore) {
1563  Init(Operation, Ptr, Val, Ordering, SSID);
1564 }
1565 
1567  AtomicOrdering Ordering,
1568  SyncScope::ID SSID,
1569  BasicBlock *InsertAtEnd)
1570  : Instruction(Val->getType(), AtomicRMW,
1573  InsertAtEnd) {
1574  Init(Operation, Ptr, Val, Ordering, SSID);
1575 }
1576 
1577 //===----------------------------------------------------------------------===//
1578 // FenceInst Implementation
1579 //===----------------------------------------------------------------------===//
1580 
1582  SyncScope::ID SSID,
1583  Instruction *InsertBefore)
1584  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1585  setOrdering(Ordering);
1586  setSyncScopeID(SSID);
1587 }
1588 
1590  SyncScope::ID SSID,
1591  BasicBlock *InsertAtEnd)
1592  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1593  setOrdering(Ordering);
1594  setSyncScopeID(SSID);
1595 }
1596 
1597 //===----------------------------------------------------------------------===//
1598 // GetElementPtrInst Implementation
1599 //===----------------------------------------------------------------------===//
1600 
1601 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1602  const Twine &Name) {
1603  assert(getNumOperands() == 1 + IdxList.size() &&
1604  "NumOperands not initialized?");
1605  Op<0>() = Ptr;
1606  std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1607  setName(Name);
1608 }
1609 
1610 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1611  : Instruction(GEPI.getType(), GetElementPtr,
1613  GEPI.getNumOperands(),
1614  GEPI.getNumOperands()),
1615  SourceElementType(GEPI.SourceElementType),
1616  ResultElementType(GEPI.ResultElementType) {
1617  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1619 }
1620 
1621 /// getIndexedType - Returns the type of the element that would be accessed with
1622 /// a gep instruction with the specified parameters.
1623 ///
1624 /// The Idxs pointer should point to a continuous piece of memory containing the
1625 /// indices, either as Value* or uint64_t.
1626 ///
1627 /// A null type is returned if the indices are invalid for the specified
1628 /// pointer type.
1629 ///
1630 template <typename IndexTy>
1632  // Handle the special case of the empty set index set, which is always valid.
1633  if (IdxList.empty())
1634  return Agg;
1635 
1636  // If there is at least one index, the top level type must be sized, otherwise
1637  // it cannot be 'stepped over'.
1638  if (!Agg->isSized())
1639  return nullptr;
1640 
1641  unsigned CurIdx = 1;
1642  for (; CurIdx != IdxList.size(); ++CurIdx) {
1643  CompositeType *CT = dyn_cast<CompositeType>(Agg);
1644  if (!CT || CT->isPointerTy()) return nullptr;
1645  IndexTy Index = IdxList[CurIdx];
1646  if (!CT->indexValid(Index)) return nullptr;
1647  Agg = CT->getTypeAtIndex(Index);
1648  }
1649  return CurIdx == IdxList.size() ? Agg : nullptr;
1650 }
1651 
1653  return getIndexedTypeInternal(Ty, IdxList);
1654 }
1655 
1657  ArrayRef<Constant *> IdxList) {
1658  return getIndexedTypeInternal(Ty, IdxList);
1659 }
1660 
1662  return getIndexedTypeInternal(Ty, IdxList);
1663 }
1664 
1665 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1666 /// zeros. If so, the result pointer and the first operand have the same
1667 /// value, just potentially different types.
1669  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1670  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1671  if (!CI->isZero()) return false;
1672  } else {
1673  return false;
1674  }
1675  }
1676  return true;
1677 }
1678 
1679 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1680 /// constant integers. If so, the result pointer and the first operand have
1681 /// a constant offset between them.
1683  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1684  if (!isa<ConstantInt>(getOperand(i)))
1685  return false;
1686  }
1687  return true;
1688 }
1689 
1691  cast<GEPOperator>(this)->setIsInBounds(B);
1692 }
1693 
1695  return cast<GEPOperator>(this)->isInBounds();
1696 }
1697 
1699  APInt &Offset) const {
1700  // Delegate to the generic GEPOperator implementation.
1701  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1702 }
1703 
1704 //===----------------------------------------------------------------------===//
1705 // ExtractElementInst Implementation
1706 //===----------------------------------------------------------------------===//
1707 
1708 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1709  const Twine &Name,
1710  Instruction *InsertBef)
1711  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1712  ExtractElement,
1714  2, InsertBef) {
1715  assert(isValidOperands(Val, Index) &&
1716  "Invalid extractelement instruction operands!");
1717  Op<0>() = Val;
1718  Op<1>() = Index;
1719  setName(Name);
1720 }
1721 
1722 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1723  const Twine &Name,
1724  BasicBlock *InsertAE)
1725  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1726  ExtractElement,
1728  2, InsertAE) {
1729  assert(isValidOperands(Val, Index) &&
1730  "Invalid extractelement instruction operands!");
1731 
1732  Op<0>() = Val;
1733  Op<1>() = Index;
1734  setName(Name);
1735 }
1736 
1737 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1738  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1739  return false;
1740  return true;
1741 }
1742 
1743 //===----------------------------------------------------------------------===//
1744 // InsertElementInst Implementation
1745 //===----------------------------------------------------------------------===//
1746 
1747 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1748  const Twine &Name,
1749  Instruction *InsertBef)
1750  : Instruction(Vec->getType(), InsertElement,
1752  3, InsertBef) {
1753  assert(isValidOperands(Vec, Elt, Index) &&
1754  "Invalid insertelement instruction operands!");
1755  Op<0>() = Vec;
1756  Op<1>() = Elt;
1757  Op<2>() = Index;
1758  setName(Name);
1759 }
1760 
1761 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1762  const Twine &Name,
1763  BasicBlock *InsertAE)
1764  : Instruction(Vec->getType(), InsertElement,
1766  3, InsertAE) {
1767  assert(isValidOperands(Vec, Elt, Index) &&
1768  "Invalid insertelement instruction operands!");
1769 
1770  Op<0>() = Vec;
1771  Op<1>() = Elt;
1772  Op<2>() = Index;
1773  setName(Name);
1774 }
1775 
1776 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1777  const Value *Index) {
1778  if (!Vec->getType()->isVectorTy())
1779  return false; // First operand of insertelement must be vector type.
1780 
1781  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1782  return false;// Second operand of insertelement must be vector element type.
1783 
1784  if (!Index->getType()->isIntegerTy())
1785  return false; // Third operand of insertelement must be i32.
1786  return true;
1787 }
1788 
1789 //===----------------------------------------------------------------------===//
1790 // ShuffleVectorInst Implementation
1791 //===----------------------------------------------------------------------===//
1792 
1794  const Twine &Name,
1795  Instruction *InsertBefore)
1796 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1797  cast<VectorType>(Mask->getType())->getNumElements()),
1798  ShuffleVector,
1801  InsertBefore) {
1802  assert(isValidOperands(V1, V2, Mask) &&
1803  "Invalid shuffle vector instruction operands!");
1804  Op<0>() = V1;
1805  Op<1>() = V2;
1806  Op<2>() = Mask;
1807  setName(Name);
1808 }
1809 
1811  const Twine &Name,
1812  BasicBlock *InsertAtEnd)
1813 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1814  cast<VectorType>(Mask->getType())->getNumElements()),
1815  ShuffleVector,
1818  InsertAtEnd) {
1819  assert(isValidOperands(V1, V2, Mask) &&
1820  "Invalid shuffle vector instruction operands!");
1821 
1822  Op<0>() = V1;
1823  Op<1>() = V2;
1824  Op<2>() = Mask;
1825  setName(Name);
1826 }
1827 
1829  const Value *Mask) {
1830  // V1 and V2 must be vectors of the same type.
1831  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1832  return false;
1833 
1834  // Mask must be vector of i32.
1835  auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1836  if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1837  return false;
1838 
1839  // Check to see if Mask is valid.
1840  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1841  return true;
1842 
1843  if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1844  unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1845  for (Value *Op : MV->operands()) {
1846  if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1847  if (CI->uge(V1Size*2))
1848  return false;
1849  } else if (!isa<UndefValue>(Op)) {
1850  return false;
1851  }
1852  }
1853  return true;
1854  }
1855 
1856  if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1857  unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1858  for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1859  if (CDS->getElementAsInteger(i) >= V1Size*2)
1860  return false;
1861  return true;
1862  }
1863 
1864  // The bitcode reader can create a place holder for a forward reference
1865  // used as the shuffle mask. When this occurs, the shuffle mask will
1866  // fall into this case and fail. To avoid this error, do this bit of
1867  // ugliness to allow such a mask pass.
1868  if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1869  if (CE->getOpcode() == Instruction::UserOp1)
1870  return true;
1871 
1872  return false;
1873 }
1874 
1876  assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1877  if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1878  return CDS->getElementAsInteger(i);
1879  Constant *C = Mask->getAggregateElement(i);
1880  if (isa<UndefValue>(C))
1881  return -1;
1882  return cast<ConstantInt>(C)->getZExtValue();
1883 }
1884 
1886  SmallVectorImpl<int> &Result) {
1887  unsigned NumElts = Mask->getType()->getVectorNumElements();
1888 
1889  if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1890  for (unsigned i = 0; i != NumElts; ++i)
1891  Result.push_back(CDS->getElementAsInteger(i));
1892  return;
1893  }
1894  for (unsigned i = 0; i != NumElts; ++i) {
1895  Constant *C = Mask->getAggregateElement(i);
1896  Result.push_back(isa<UndefValue>(C) ? -1 :
1897  cast<ConstantInt>(C)->getZExtValue());
1898  }
1899 }
1900 
1901 //===----------------------------------------------------------------------===//
1902 // InsertValueInst Class
1903 //===----------------------------------------------------------------------===//
1904 
1905 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1906  const Twine &Name) {
1907  assert(getNumOperands() == 2 && "NumOperands not initialized?");
1908 
1909  // There's no fundamental reason why we require at least one index
1910  // (other than weirdness with &*IdxBegin being invalid; see
1911  // getelementptr's init routine for example). But there's no
1912  // present need to support it.
1913  assert(!Idxs.empty() && "InsertValueInst must have at least one index");
1914 
1916  Val->getType() && "Inserted value must match indexed type!");
1917  Op<0>() = Agg;
1918  Op<1>() = Val;
1919 
1920  Indices.append(Idxs.begin(), Idxs.end());
1921  setName(Name);
1922 }
1923 
1924 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1925  : Instruction(IVI.getType(), InsertValue,
1927  Indices(IVI.Indices) {
1928  Op<0>() = IVI.getOperand(0);
1929  Op<1>() = IVI.getOperand(1);
1931 }
1932 
1933 //===----------------------------------------------------------------------===//
1934 // ExtractValueInst Class
1935 //===----------------------------------------------------------------------===//
1936 
1937 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1938  assert(getNumOperands() == 1 && "NumOperands not initialized?");
1939 
1940  // There's no fundamental reason why we require at least one index.
1941  // But there's no present need to support it.
1942  assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
1943 
1944  Indices.append(Idxs.begin(), Idxs.end());
1945  setName(Name);
1946 }
1947 
1948 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1949  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1950  Indices(EVI.Indices) {
1952 }
1953 
1954 // getIndexedType - Returns the type of the element that would be extracted
1955 // with an extractvalue instruction with the specified parameters.
1956 //
1957 // A null type is returned if the indices are invalid for the specified
1958 // pointer type.
1959 //
1961  ArrayRef<unsigned> Idxs) {
1962  for (unsigned Index : Idxs) {
1963  // We can't use CompositeType::indexValid(Index) here.
1964  // indexValid() always returns true for arrays because getelementptr allows
1965  // out-of-bounds indices. Since we don't allow those for extractvalue and
1966  // insertvalue we need to check array indexing manually.
1967  // Since the only other types we can index into are struct types it's just
1968  // as easy to check those manually as well.
1969  if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1970  if (Index >= AT->getNumElements())
1971  return nullptr;
1972  } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1973  if (Index >= ST->getNumElements())
1974  return nullptr;
1975  } else {
1976  // Not a valid type to index into.
1977  return nullptr;
1978  }
1979 
1980  Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1981  }
1982  return const_cast<Type*>(Agg);
1983 }
1984 
1985 //===----------------------------------------------------------------------===//
1986 // BinaryOperator Class
1987 //===----------------------------------------------------------------------===//
1988 
1990  Type *Ty, const Twine &Name,
1991  Instruction *InsertBefore)
1992  : Instruction(Ty, iType,
1995  InsertBefore) {
1996  Op<0>() = S1;
1997  Op<1>() = S2;
1998  setName(Name);
1999  AssertOK();
2000 }
2001 
2003  Type *Ty, const Twine &Name,
2004  BasicBlock *InsertAtEnd)
2005  : Instruction(Ty, iType,
2008  InsertAtEnd) {
2009  Op<0>() = S1;
2010  Op<1>() = S2;
2011  setName(Name);
2012  AssertOK();
2013 }
2014 
2015 void BinaryOperator::AssertOK() {
2016  Value *LHS = getOperand(0), *RHS = getOperand(1);
2017  (void)LHS; (void)RHS; // Silence warnings.
2018  assert(LHS->getType() == RHS->getType() &&
2019  "Binary operator operand types must match!");
2020 #ifndef NDEBUG
2021  switch (getOpcode()) {
2022  case Add: case Sub:
2023  case Mul:
2024  assert(getType() == LHS->getType() &&
2025  "Arithmetic operation should return same type as operands!");
2026  assert(getType()->isIntOrIntVectorTy() &&
2027  "Tried to create an integer operation on a non-integer type!");
2028  break;
2029  case FAdd: case FSub:
2030  case FMul:
2031  assert(getType() == LHS->getType() &&
2032  "Arithmetic operation should return same type as operands!");
2033  assert(getType()->isFPOrFPVectorTy() &&
2034  "Tried to create a floating-point operation on a "
2035  "non-floating-point type!");
2036  break;
2037  case UDiv:
2038  case SDiv:
2039  assert(getType() == LHS->getType() &&
2040  "Arithmetic operation should return same type as operands!");
2041  assert(getType()->isIntOrIntVectorTy() &&
2042  "Incorrect operand type (not integer) for S/UDIV");
2043  break;
2044  case FDiv:
2045  assert(getType() == LHS->getType() &&
2046  "Arithmetic operation should return same type as operands!");
2047  assert(getType()->isFPOrFPVectorTy() &&
2048  "Incorrect operand type (not floating point) for FDIV");
2049  break;
2050  case URem:
2051  case SRem:
2052  assert(getType() == LHS->getType() &&
2053  "Arithmetic operation should return same type as operands!");
2054  assert(getType()->isIntOrIntVectorTy() &&
2055  "Incorrect operand type (not integer) for S/UREM");
2056  break;
2057  case FRem:
2058  assert(getType() == LHS->getType() &&
2059  "Arithmetic operation should return same type as operands!");
2060  assert(getType()->isFPOrFPVectorTy() &&
2061  "Incorrect operand type (not floating point) for FREM");
2062  break;
2063  case Shl:
2064  case LShr:
2065  case AShr:
2066  assert(getType() == LHS->getType() &&
2067  "Shift operation should return same type as operands!");
2068  assert(getType()->isIntOrIntVectorTy() &&
2069  "Tried to create a shift operation on a non-integral type!");
2070  break;
2071  case And: case Or:
2072  case Xor:
2073  assert(getType() == LHS->getType() &&
2074  "Logical operation should return same type as operands!");
2075  assert(getType()->isIntOrIntVectorTy() &&
2076  "Tried to create a logical operation on a non-integral type!");
2077  break;
2078  default: llvm_unreachable("Invalid opcode provided");
2079  }
2080 #endif
2081 }
2082 
2084  const Twine &Name,
2085  Instruction *InsertBefore) {
2086  assert(S1->getType() == S2->getType() &&
2087  "Cannot create binary operator with two operands of differing type!");
2088  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2089 }
2090 
2092  const Twine &Name,
2093  BasicBlock *InsertAtEnd) {
2094  BinaryOperator *Res = Create(Op, S1, S2, Name);
2095  InsertAtEnd->getInstList().push_back(Res);
2096  return Res;
2097 }
2098 
2100  Instruction *InsertBefore) {
2102  return new BinaryOperator(Instruction::Sub,
2103  zero, Op,
2104  Op->getType(), Name, InsertBefore);
2105 }
2106 
2108  BasicBlock *InsertAtEnd) {
2110  return new BinaryOperator(Instruction::Sub,
2111  zero, Op,
2112  Op->getType(), Name, InsertAtEnd);
2113 }
2114 
2116  Instruction *InsertBefore) {
2118  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2119 }
2120 
2122  BasicBlock *InsertAtEnd) {
2124  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2125 }
2126 
2128  Instruction *InsertBefore) {
2130  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2131 }
2132 
2134  BasicBlock *InsertAtEnd) {
2136  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2137 }
2138 
2140  Instruction *InsertBefore) {
2142  return new BinaryOperator(Instruction::FSub, zero, Op,
2143  Op->getType(), Name, InsertBefore);
2144 }
2145 
2147  BasicBlock *InsertAtEnd) {
2149  return new BinaryOperator(Instruction::FSub, zero, Op,
2150  Op->getType(), Name, InsertAtEnd);
2151 }
2152 
2154  Instruction *InsertBefore) {
2156  return new BinaryOperator(Instruction::Xor, Op, C,
2157  Op->getType(), Name, InsertBefore);
2158 }
2159 
2161  BasicBlock *InsertAtEnd) {
2162  Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2163  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2164  Op->getType(), Name, InsertAtEnd);
2165 }
2166 
2167 // isConstantAllOnes - Helper function for several functions below
2168 static inline bool isConstantAllOnes(const Value *V) {
2169  if (const Constant *C = dyn_cast<Constant>(V))
2170  return C->isAllOnesValue();
2171  return false;
2172 }
2173 
2175  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2176  if (Bop->getOpcode() == Instruction::Sub)
2177  if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0)))
2178  return C->isNegativeZeroValue();
2179  return false;
2180 }
2181 
2182 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
2183  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2184  if (Bop->getOpcode() == Instruction::FSub)
2185  if (Constant *C = dyn_cast<Constant>(Bop->getOperand(0))) {
2186  if (!IgnoreZeroSign)
2187  IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
2188  return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
2189  }
2190  return false;
2191 }
2192 
2194  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2195  return (Bop->getOpcode() == Instruction::Xor &&
2196  (isConstantAllOnes(Bop->getOperand(1)) ||
2197  isConstantAllOnes(Bop->getOperand(0))));
2198  return false;
2199 }
2200 
2202  return cast<BinaryOperator>(BinOp)->getOperand(1);
2203 }
2204 
2206  return getNegArgument(const_cast<Value*>(BinOp));
2207 }
2208 
2210  return cast<BinaryOperator>(BinOp)->getOperand(1);
2211 }
2212 
2214  return getFNegArgument(const_cast<Value*>(BinOp));
2215 }
2216 
2218  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
2219  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
2220  Value *Op0 = BO->getOperand(0);
2221  Value *Op1 = BO->getOperand(1);
2222  if (isConstantAllOnes(Op0)) return Op1;
2223 
2224  assert(isConstantAllOnes(Op1));
2225  return Op0;
2226 }
2227 
2229  return getNotArgument(const_cast<Value*>(BinOp));
2230 }
2231 
2232 // Exchange the two operands to this instruction. This instruction is safe to
2233 // use on any binary instruction and does not modify the semantics of the
2234 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2235 // is changed.
2237  if (!isCommutative())
2238  return true; // Can't commute operands
2239  Op<0>().swap(Op<1>());
2240  return false;
2241 }
2242 
2243 //===----------------------------------------------------------------------===//
2244 // FPMathOperator Class
2245 //===----------------------------------------------------------------------===//
2246 
2248  const MDNode *MD =
2249  cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2250  if (!MD)
2251  return 0.0;
2252  ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2253  return Accuracy->getValueAPF().convertToFloat();
2254 }
2255 
2256 //===----------------------------------------------------------------------===//
2257 // CastInst Class
2258 //===----------------------------------------------------------------------===//
2259 
2260 // Just determine if this cast only deals with integral->integral conversion.
2262  switch (getOpcode()) {
2263  default: return false;
2264  case Instruction::ZExt:
2265  case Instruction::SExt:
2266  case Instruction::Trunc:
2267  return true;
2268  case Instruction::BitCast:
2269  return getOperand(0)->getType()->isIntegerTy() &&
2270  getType()->isIntegerTy();
2271  }
2272 }
2273 
2275  // Only BitCast can be lossless, exit fast if we're not BitCast
2276  if (getOpcode() != Instruction::BitCast)
2277  return false;
2278 
2279  // Identity cast is always lossless
2280  Type *SrcTy = getOperand(0)->getType();
2281  Type *DstTy = getType();
2282  if (SrcTy == DstTy)
2283  return true;
2284 
2285  // Pointer to pointer is always lossless.
2286  if (SrcTy->isPointerTy())
2287  return DstTy->isPointerTy();
2288  return false; // Other types have no identity values
2289 }
2290 
2291 /// This function determines if the CastInst does not require any bits to be
2292 /// changed in order to effect the cast. Essentially, it identifies cases where
2293 /// no code gen is necessary for the cast, hence the name no-op cast. For
2294 /// example, the following are all no-op casts:
2295 /// # bitcast i32* %x to i8*
2296 /// # bitcast <2 x i32> %x to <4 x i16>
2297 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2298 /// @brief Determine if the described cast is a no-op.
2300  Type *SrcTy,
2301  Type *DestTy,
2302  Type *IntPtrTy) {
2303  switch (Opcode) {
2304  default: llvm_unreachable("Invalid CastOp");
2305  case Instruction::Trunc:
2306  case Instruction::ZExt:
2307  case Instruction::SExt:
2308  case Instruction::FPTrunc:
2309  case Instruction::FPExt:
2310  case Instruction::UIToFP:
2311  case Instruction::SIToFP:
2312  case Instruction::FPToUI:
2313  case Instruction::FPToSI:
2314  case Instruction::AddrSpaceCast:
2315  // TODO: Target informations may give a more accurate answer here.
2316  return false;
2317  case Instruction::BitCast:
2318  return true; // BitCast never modifies bits.
2319  case Instruction::PtrToInt:
2320  return IntPtrTy->getScalarSizeInBits() ==
2321  DestTy->getScalarSizeInBits();
2322  case Instruction::IntToPtr:
2323  return IntPtrTy->getScalarSizeInBits() ==
2324  SrcTy->getScalarSizeInBits();
2325  }
2326 }
2327 
2328 /// @brief Determine if a cast is a no-op.
2329 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2330  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2331 }
2332 
2333 bool CastInst::isNoopCast(const DataLayout &DL) const {
2334  Type *PtrOpTy = nullptr;
2335  if (getOpcode() == Instruction::PtrToInt)
2336  PtrOpTy = getOperand(0)->getType();
2337  else if (getOpcode() == Instruction::IntToPtr)
2338  PtrOpTy = getType();
2339 
2340  Type *IntPtrTy =
2341  PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0);
2342 
2343  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2344 }
2345 
2346 /// This function determines if a pair of casts can be eliminated and what
2347 /// opcode should be used in the elimination. This assumes that there are two
2348 /// instructions like this:
2349 /// * %F = firstOpcode SrcTy %x to MidTy
2350 /// * %S = secondOpcode MidTy %F to DstTy
2351 /// The function returns a resultOpcode so these two casts can be replaced with:
2352 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2353 /// If no such cast is permitted, the function returns 0.
2355  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2356  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2357  Type *DstIntPtrTy) {
2358  // Define the 144 possibilities for these two cast instructions. The values
2359  // in this matrix determine what to do in a given situation and select the
2360  // case in the switch below. The rows correspond to firstOp, the columns
2361  // correspond to secondOp. In looking at the table below, keep in mind
2362  // the following cast properties:
2363  //
2364  // Size Compare Source Destination
2365  // Operator Src ? Size Type Sign Type Sign
2366  // -------- ------------ ------------------- ---------------------
2367  // TRUNC > Integer Any Integral Any
2368  // ZEXT < Integral Unsigned Integer Any
2369  // SEXT < Integral Signed Integer Any
2370  // FPTOUI n/a FloatPt n/a Integral Unsigned
2371  // FPTOSI n/a FloatPt n/a Integral Signed
2372  // UITOFP n/a Integral Unsigned FloatPt n/a
2373  // SITOFP n/a Integral Signed FloatPt n/a
2374  // FPTRUNC > FloatPt n/a FloatPt n/a
2375  // FPEXT < FloatPt n/a FloatPt n/a
2376  // PTRTOINT n/a Pointer n/a Integral Unsigned
2377  // INTTOPTR n/a Integral Unsigned Pointer n/a
2378  // BITCAST = FirstClass n/a FirstClass n/a
2379  // ADDRSPCST n/a Pointer n/a Pointer n/a
2380  //
2381  // NOTE: some transforms are safe, but we consider them to be non-profitable.
2382  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2383  // into "fptoui double to i64", but this loses information about the range
2384  // of the produced value (we no longer know the top-part is all zeros).
2385  // Further this conversion is often much more expensive for typical hardware,
2386  // and causes issues when building libgcc. We disallow fptosi+sext for the
2387  // same reason.
2388  const unsigned numCastOps =
2389  Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2390  static const uint8_t CastResults[numCastOps][numCastOps] = {
2391  // T F F U S F F P I B A -+
2392  // R Z S P P I I T P 2 N T S |
2393  // U E E 2 2 2 2 R E I T C C +- secondOp
2394  // N X X U S F F N X N 2 V V |
2395  // C T T I I P P C T T P T T -+
2396  { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2397  { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2398  { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2399  { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2400  { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2401  { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2402  { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2403  { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2404  { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt |
2405  { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2406  { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2407  { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2408  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2409  };
2410 
2411  // TODO: This logic could be encoded into the table above and handled in the
2412  // switch below.
2413  // If either of the casts are a bitcast from scalar to vector, disallow the
2414  // merging. However, any pair of bitcasts are allowed.
2415  bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2416  bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2417  bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2418 
2419  // Check if any of the casts convert scalars <-> vectors.
2420  if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2421  (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2422  if (!AreBothBitcasts)
2423  return 0;
2424 
2425  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2426  [secondOp-Instruction::CastOpsBegin];
2427  switch (ElimCase) {
2428  case 0:
2429  // Categorically disallowed.
2430  return 0;
2431  case 1:
2432  // Allowed, use first cast's opcode.
2433  return firstOp;
2434  case 2:
2435  // Allowed, use second cast's opcode.
2436  return secondOp;
2437  case 3:
2438  // No-op cast in second op implies firstOp as long as the DestTy
2439  // is integer and we are not converting between a vector and a
2440  // non-vector type.
2441  if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2442  return firstOp;
2443  return 0;
2444  case 4:
2445  // No-op cast in second op implies firstOp as long as the DestTy
2446  // is floating point.
2447  if (DstTy->isFloatingPointTy())
2448  return firstOp;
2449  return 0;
2450  case 5:
2451  // No-op cast in first op implies secondOp as long as the SrcTy
2452  // is an integer.
2453  if (SrcTy->isIntegerTy())
2454  return secondOp;
2455  return 0;
2456  case 6:
2457  // No-op cast in first op implies secondOp as long as the SrcTy
2458  // is a floating point.
2459  if (SrcTy->isFloatingPointTy())
2460  return secondOp;
2461  return 0;
2462  case 7: {
2463  // Cannot simplify if address spaces are different!
2464  if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2465  return 0;
2466 
2467  unsigned MidSize = MidTy->getScalarSizeInBits();
2468  // We can still fold this without knowing the actual sizes as long we
2469  // know that the intermediate pointer is the largest possible
2470  // pointer size.
2471  // FIXME: Is this always true?
2472  if (MidSize == 64)
2473  return Instruction::BitCast;
2474 
2475  // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2476  if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2477  return 0;
2478  unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2479  if (MidSize >= PtrSize)
2480  return Instruction::BitCast;
2481  return 0;
2482  }
2483  case 8: {
2484  // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2485  // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2486  // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2487  unsigned SrcSize = SrcTy->getScalarSizeInBits();
2488  unsigned DstSize = DstTy->getScalarSizeInBits();
2489  if (SrcSize == DstSize)
2490  return Instruction::BitCast;
2491  else if (SrcSize < DstSize)
2492  return firstOp;
2493  return secondOp;
2494  }
2495  case 9:
2496  // zext, sext -> zext, because sext can't sign extend after zext
2497  return Instruction::ZExt;
2498  case 10:
2499  // fpext followed by ftrunc is allowed if the bit size returned to is
2500  // the same as the original, in which case its just a bitcast
2501  if (SrcTy == DstTy)
2502  return Instruction::BitCast;
2503  return 0; // If the types are not the same we can't eliminate it.
2504  case 11: {
2505  // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2506  if (!MidIntPtrTy)
2507  return 0;
2508  unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2509  unsigned SrcSize = SrcTy->getScalarSizeInBits();
2510  unsigned DstSize = DstTy->getScalarSizeInBits();
2511  if (SrcSize <= PtrSize && SrcSize == DstSize)
2512  return Instruction::BitCast;
2513  return 0;
2514  }
2515  case 12:
2516  // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2517  // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2518  if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2519  return Instruction::AddrSpaceCast;
2520  return Instruction::BitCast;
2521  case 13:
2522  // FIXME: this state can be merged with (1), but the following assert
2523  // is useful to check the correcteness of the sequence due to semantic
2524  // change of bitcast.
2525  assert(
2526  SrcTy->isPtrOrPtrVectorTy() &&
2527  MidTy->isPtrOrPtrVectorTy() &&
2528  DstTy->isPtrOrPtrVectorTy() &&
2529  SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2530  MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2531  "Illegal addrspacecast, bitcast sequence!");
2532  // Allowed, use first cast's opcode
2533  return firstOp;
2534  case 14:
2535  // bitcast, addrspacecast -> addrspacecast if the element type of
2536  // bitcast's source is the same as that of addrspacecast's destination.
2537  if (SrcTy->getScalarType()->getPointerElementType() ==
2539  return Instruction::AddrSpaceCast;
2540  return 0;
2541  case 15:
2542  // FIXME: this state can be merged with (1), but the following assert
2543  // is useful to check the correcteness of the sequence due to semantic
2544  // change of bitcast.
2545  assert(
2546  SrcTy->isIntOrIntVectorTy() &&
2547  MidTy->isPtrOrPtrVectorTy() &&
2548  DstTy->isPtrOrPtrVectorTy() &&
2549  MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2550  "Illegal inttoptr, bitcast sequence!");
2551  // Allowed, use first cast's opcode
2552  return firstOp;
2553  case 16:
2554  // FIXME: this state can be merged with (2), but the following assert
2555  // is useful to check the correcteness of the sequence due to semantic
2556  // change of bitcast.
2557  assert(
2558  SrcTy->isPtrOrPtrVectorTy() &&
2559  MidTy->isPtrOrPtrVectorTy() &&
2560  DstTy->isIntOrIntVectorTy() &&
2561  SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2562  "Illegal bitcast, ptrtoint sequence!");
2563  // Allowed, use second cast's opcode
2564  return secondOp;
2565  case 17:
2566  // (sitofp (zext x)) -> (uitofp x)
2567  return Instruction::UIToFP;
2568  case 99:
2569  // Cast combination can't happen (error in input). This is for all cases
2570  // where the MidTy is not the same for the two cast instructions.
2571  llvm_unreachable("Invalid Cast Combination");
2572  default:
2573  llvm_unreachable("Error in CastResults table!!!");
2574  }
2575 }
2576 
2578  const Twine &Name, Instruction *InsertBefore) {
2579  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2580  // Construct and return the appropriate CastInst subclass
2581  switch (op) {
2582  case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2583  case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2584  case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2585  case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2586  case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2587  case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2588  case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2589  case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2590  case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2591  case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2592  case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2593  case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2594  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2595  default: llvm_unreachable("Invalid opcode provided");
2596  }
2597 }
2598 
2600  const Twine &Name, BasicBlock *InsertAtEnd) {
2601  assert(castIsValid(op, S, Ty) && "Invalid cast!");
2602  // Construct and return the appropriate CastInst subclass
2603  switch (op) {
2604  case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2605  case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2606  case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2607  case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2608  case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2609  case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2610  case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2611  case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2612  case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2613  case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2614  case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2615  case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2616  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2617  default: llvm_unreachable("Invalid opcode provided");
2618  }
2619 }
2620 
2622  const Twine &Name,
2623  Instruction *InsertBefore) {
2624  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2625  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2626  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2627 }
2628 
2630  const Twine &Name,
2631  BasicBlock *InsertAtEnd) {
2632  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2633  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2634  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2635 }
2636 
2638  const Twine &Name,
2639  Instruction *InsertBefore) {
2640  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2641  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2642  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2643 }
2644 
2646  const Twine &Name,
2647  BasicBlock *InsertAtEnd) {
2648  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2649  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2650  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2651 }
2652 
2654  const Twine &Name,
2655  Instruction *InsertBefore) {
2656  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2657  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2658  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2659 }
2660 
2662  const Twine &Name,
2663  BasicBlock *InsertAtEnd) {
2664  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2665  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2666  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2667 }
2668 
2670  const Twine &Name,
2671  BasicBlock *InsertAtEnd) {
2672  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2673  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2674  "Invalid cast");
2675  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2676  assert((!Ty->isVectorTy() ||
2678  "Invalid cast");
2679 
2680  if (Ty->isIntOrIntVectorTy())
2681  return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2682 
2683  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2684 }
2685 
2686 /// @brief Create a BitCast or a PtrToInt cast instruction
2688  const Twine &Name,
2689  Instruction *InsertBefore) {
2690  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2691  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2692  "Invalid cast");
2693  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2694  assert((!Ty->isVectorTy() ||
2696  "Invalid cast");
2697 
2698  if (Ty->isIntOrIntVectorTy())
2699  return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2700 
2701  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2702 }
2703 
2705  Value *S, Type *Ty,
2706  const Twine &Name,
2707  BasicBlock *InsertAtEnd) {
2708  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2709  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2710 
2712  return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2713 
2714  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2715 }
2716 
2718  Value *S, Type *Ty,
2719  const Twine &Name,
2720  Instruction *InsertBefore) {
2721  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2722  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2723 
2725  return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2726 
2727  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2728 }
2729 
2731  const Twine &Name,
2732  Instruction *InsertBefore) {
2733  if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2734  return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2735  if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2736  return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2737 
2738  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2739 }
2740 
2742  bool isSigned, const Twine &Name,
2743  Instruction *InsertBefore) {
2745  "Invalid integer cast");
2746  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2747  unsigned DstBits = Ty->getScalarSizeInBits();
2748  Instruction::CastOps opcode =
2749  (SrcBits == DstBits ? Instruction::BitCast :
2750  (SrcBits > DstBits ? Instruction::Trunc :
2751  (isSigned ? Instruction::SExt : Instruction::ZExt)));
2752  return Create(opcode, C, Ty, Name, InsertBefore);
2753 }
2754 
2756  bool isSigned, const Twine &Name,
2757  BasicBlock *InsertAtEnd) {
2759  "Invalid cast");
2760  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2761  unsigned DstBits = Ty->getScalarSizeInBits();
2762  Instruction::CastOps opcode =
2763  (SrcBits == DstBits ? Instruction::BitCast :
2764  (SrcBits > DstBits ? Instruction::Trunc :
2765  (isSigned ? Instruction::SExt : Instruction::ZExt)));
2766  return Create(opcode, C, Ty, Name, InsertAtEnd);
2767 }
2768 
2770  const Twine &Name,
2771  Instruction *InsertBefore) {
2772  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2773  "Invalid cast");
2774  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2775  unsigned DstBits = Ty->getScalarSizeInBits();
2776  Instruction::CastOps opcode =
2777  (SrcBits == DstBits ? Instruction::BitCast :
2778  (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2779  return Create(opcode, C, Ty, Name, InsertBefore);
2780 }
2781 
2783  const Twine &Name,
2784  BasicBlock *InsertAtEnd) {
2785  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2786  "Invalid cast");
2787  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2788  unsigned DstBits = Ty->getScalarSizeInBits();
2789  Instruction::CastOps opcode =
2790  (SrcBits == DstBits ? Instruction::BitCast :
2791  (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2792  return Create(opcode, C, Ty, Name, InsertAtEnd);
2793 }
2794 
2795 // Check whether it is valid to call getCastOpcode for these types.
2796 // This routine must be kept in sync with getCastOpcode.
2797 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2798  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2799  return false;
2800 
2801  if (SrcTy == DestTy)
2802  return true;
2803 
2804  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2805  if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2806  if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2807  // An element by element cast. Valid if casting the elements is valid.
2808  SrcTy = SrcVecTy->getElementType();
2809  DestTy = DestVecTy->getElementType();
2810  }
2811 
2812  // Get the bit sizes, we'll need these
2813  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2814  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2815 
2816  // Run through the possibilities ...
2817  if (DestTy->isIntegerTy()) { // Casting to integral
2818  if (SrcTy->isIntegerTy()) // Casting from integral
2819  return true;
2820  if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2821  return true;
2822  if (SrcTy->isVectorTy()) // Casting from vector
2823  return DestBits == SrcBits;
2824  // Casting from something else
2825  return SrcTy->isPointerTy();
2826  }
2827  if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2828  if (SrcTy->isIntegerTy()) // Casting from integral
2829  return true;
2830  if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2831  return true;
2832  if (SrcTy->isVectorTy()) // Casting from vector
2833  return DestBits == SrcBits;
2834  // Casting from something else
2835  return false;
2836  }
2837  if (DestTy->isVectorTy()) // Casting to vector
2838  return DestBits == SrcBits;
2839  if (DestTy->isPointerTy()) { // Casting to pointer
2840  if (SrcTy->isPointerTy()) // Casting from pointer
2841  return true;
2842  return SrcTy->isIntegerTy(); // Casting from integral
2843  }
2844  if (DestTy->isX86_MMXTy()) {
2845  if (SrcTy->isVectorTy())
2846  return DestBits == SrcBits; // 64-bit vector to MMX
2847  return false;
2848  } // Casting to something else
2849  return false;
2850 }
2851 
2852 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2853  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2854  return false;
2855 
2856  if (SrcTy == DestTy)
2857  return true;
2858 
2859  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2860  if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2861  if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2862  // An element by element cast. Valid if casting the elements is valid.
2863  SrcTy = SrcVecTy->getElementType();
2864  DestTy = DestVecTy->getElementType();
2865  }
2866  }
2867  }
2868 
2869  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2870  if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2871  return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2872  }
2873  }
2874 
2875  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2876  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2877 
2878  // Could still have vectors of pointers if the number of elements doesn't
2879  // match
2880  if (SrcBits == 0 || DestBits == 0)
2881  return false;
2882 
2883  if (SrcBits != DestBits)
2884  return false;
2885 
2886  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2887  return false;
2888 
2889  return true;
2890 }
2891 
2893  const DataLayout &DL) {
2894  if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2895  if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2896  return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2897  if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2898  if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2899  return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2900 
2901  return isBitCastable(SrcTy, DestTy);
2902 }
2903 
2904 // Provide a way to get a "cast" where the cast opcode is inferred from the
2905 // types and size of the operand. This, basically, is a parallel of the
2906 // logic in the castIsValid function below. This axiom should hold:
2907 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2908 // should not assert in castIsValid. In other words, this produces a "correct"
2909 // casting opcode for the arguments passed to it.
2910 // This routine must be kept in sync with isCastable.
2913  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2914  Type *SrcTy = Src->getType();
2915 
2916  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2917  "Only first class types are castable!");
2918 
2919  if (SrcTy == DestTy)
2920  return BitCast;
2921 
2922  // FIXME: Check address space sizes here
2923  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2924  if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2925  if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2926  // An element by element cast. Find the appropriate opcode based on the
2927  // element types.
2928  SrcTy = SrcVecTy->getElementType();
2929  DestTy = DestVecTy->getElementType();
2930  }
2931 
2932  // Get the bit sizes, we'll need these
2933  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2934  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2935 
2936  // Run through the possibilities ...
2937  if (DestTy->isIntegerTy()) { // Casting to integral
2938  if (SrcTy->isIntegerTy()) { // Casting from integral
2939  if (DestBits < SrcBits)
2940  return Trunc; // int -> smaller int
2941  else if (DestBits > SrcBits) { // its an extension
2942  if (SrcIsSigned)
2943  return SExt; // signed -> SEXT
2944  else
2945  return ZExt; // unsigned -> ZEXT
2946  } else {
2947  return BitCast; // Same size, No-op cast
2948  }
2949  } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2950  if (DestIsSigned)
2951  return FPToSI; // FP -> sint
2952  else
2953  return FPToUI; // FP -> uint
2954  } else if (SrcTy->isVectorTy()) {
2955  assert(DestBits == SrcBits &&
2956  "Casting vector to integer of different width");
2957  return BitCast; // Same size, no-op cast
2958  } else {
2959  assert(SrcTy->isPointerTy() &&
2960  "Casting from a value that is not first-class type");
2961  return PtrToInt; // ptr -> int
2962  }
2963  } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2964  if (SrcTy->isIntegerTy()) { // Casting from integral
2965  if (SrcIsSigned)
2966  return SIToFP; // sint -> FP
2967  else
2968  return UIToFP; // uint -> FP
2969  } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2970  if (DestBits < SrcBits) {
2971  return FPTrunc; // FP -> smaller FP
2972  } else if (DestBits > SrcBits) {
2973  return FPExt; // FP -> larger FP
2974  } else {
2975  return BitCast; // same size, no-op cast
2976  }
2977  } else if (SrcTy->isVectorTy()) {
2978  assert(DestBits == SrcBits &&
2979  "Casting vector to floating point of different width");
2980  return BitCast; // same size, no-op cast
2981  }
2982  llvm_unreachable("Casting pointer or non-first class to float");
2983  } else if (DestTy->isVectorTy()) {
2984  assert(DestBits == SrcBits &&
2985  "Illegal cast to vector (wrong type or size)");
2986  return BitCast;
2987  } else if (DestTy->isPointerTy()) {
2988  if (SrcTy->isPointerTy()) {
2989  if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2990  return AddrSpaceCast;
2991  return BitCast; // ptr -> ptr
2992  } else if (SrcTy->isIntegerTy()) {
2993  return IntToPtr; // int -> ptr
2994  }
2995  llvm_unreachable("Casting pointer to other than pointer or int");
2996  } else if (DestTy->isX86_MMXTy()) {
2997  if (SrcTy->isVectorTy()) {
2998  assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2999  return BitCast; // 64-bit vector to MMX
3000  }
3001  llvm_unreachable("Illegal cast to X86_MMX");
3002  }
3003  llvm_unreachable("Casting to type that is not first-class");
3004 }
3005 
3006 //===----------------------------------------------------------------------===//
3007 // CastInst SubClass Constructors
3008 //===----------------------------------------------------------------------===//
3009 
3010 /// Check that the construction parameters for a CastInst are correct. This
3011 /// could be broken out into the separate constructors but it is useful to have
3012 /// it in one place and to eliminate the redundant code for getting the sizes
3013 /// of the types involved.
3014 bool
3016  // Check for type sanity on the arguments
3017  Type *SrcTy = S->getType();
3018 
3019  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3020  SrcTy->isAggregateType() || DstTy->isAggregateType())
3021  return false;
3022 
3023  // Get the size of the types in bits, we'll need this later
3024  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3025  unsigned DstBitSize = DstTy->getScalarSizeInBits();
3026 
3027  // If these are vector types, get the lengths of the vectors (using zero for
3028  // scalar types means that checking that vector lengths match also checks that
3029  // scalars are not being converted to vectors or vectors to scalars).
3030  unsigned SrcLength = SrcTy->isVectorTy() ?
3031  cast<VectorType>(SrcTy)->getNumElements() : 0;
3032  unsigned DstLength = DstTy->isVectorTy() ?
3033  cast<VectorType>(DstTy)->getNumElements() : 0;
3034 
3035  // Switch on the opcode provided
3036  switch (op) {
3037  default: return false; // This is an input error
3038  case Instruction::Trunc:
3039  return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3040  SrcLength == DstLength && SrcBitSize > DstBitSize;
3041  case Instruction::ZExt:
3042  return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3043  SrcLength == DstLength && SrcBitSize < DstBitSize;
3044  case Instruction::SExt:
3045  return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3046  SrcLength == DstLength && SrcBitSize < DstBitSize;
3047  case Instruction::FPTrunc:
3048  return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3049  SrcLength == DstLength && SrcBitSize > DstBitSize;
3050  case Instruction::FPExt:
3051  return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3052  SrcLength == DstLength && SrcBitSize < DstBitSize;
3053  case Instruction::UIToFP:
3054  case Instruction::SIToFP:
3055  return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3056  SrcLength == DstLength;
3057  case Instruction::FPToUI:
3058  case Instruction::FPToSI:
3059  return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3060  SrcLength == DstLength;
3061  case Instruction::PtrToInt:
3062  if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3063  return false;
3064  if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3065  if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3066  return false;
3067  return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3068  case Instruction::IntToPtr:
3069  if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3070  return false;
3071  if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3072  if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3073  return false;
3074  return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3075  case Instruction::BitCast: {
3076  PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3077  PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3078 
3079  // BitCast implies a no-op cast of type only. No bits change.
3080  // However, you can't cast pointers to anything but pointers.
3081  if (!SrcPtrTy != !DstPtrTy)
3082  return false;
3083 
3084  // For non-pointer cases, the cast is okay if the source and destination bit
3085  // widths are identical.
3086  if (!SrcPtrTy)
3087  return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3088 
3089  // If both are pointers then the address spaces must match.
3090  if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3091  return false;
3092 
3093  // A vector of pointers must have the same number of elements.
3094  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3095  if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3096  return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3097 
3098  return false;
3099  }
3100 
3101  return true;
3102  }
3103  case Instruction::AddrSpaceCast: {
3104  PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3105  if (!SrcPtrTy)
3106  return false;
3107 
3108  PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3109  if (!DstPtrTy)
3110  return false;
3111 
3112  if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3113  return false;
3114 
3115  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3116  if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3117  return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3118 
3119  return false;
3120  }
3121 
3122  return true;
3123  }
3124  }
3125 }
3126 
3128  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3129 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3130  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3131 }
3132 
3134  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3135 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3136  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3137 }
3138 
3140  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3141 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3142  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3143 }
3144 
3146  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3147 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3148  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3149 }
3151  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3152 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3153  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3154 }
3155 
3157  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3158 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3159  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3160 }
3161 
3163  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3164 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3165  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3166 }
3167 
3169  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3170 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3171  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3172 }
3173 
3175  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3176 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3177  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3178 }
3179 
3181  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3182 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3183  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3184 }
3185 
3187  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3188 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3189  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3190 }
3191 
3193  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3194 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3195  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3196 }
3197 
3199  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3200 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3201  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3202 }
3203 
3205  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3206 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3207  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3208 }
3209 
3211  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3212 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3213  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3214 }
3215 
3217  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3218 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3219  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3220 }
3221 
3223  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3224 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3225  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3226 }
3227 
3229  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3230 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3231  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3232 }
3233 
3235  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3236 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3237  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3238 }
3239 
3241  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3242 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3243  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3244 }
3245 
3247  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3248 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3249  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3250 }
3251 
3253  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3254 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3255  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3256 }
3257 
3259  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3260 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3261  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3262 }
3263 
3265  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3266 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3267  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3268 }
3269 
3271  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3272 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3273  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3274 }
3275 
3277  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3278 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3279  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3280 }
3281 
3282 //===----------------------------------------------------------------------===//
3283 // CmpInst Classes
3284 //===----------------------------------------------------------------------===//
3285 
3287  Value *RHS, const Twine &Name, Instruction *InsertBefore)
3288  : Instruction(ty, op,
3289  OperandTraits<CmpInst>::op_begin(this),
3290  OperandTraits<CmpInst>::operands(this),
3291  InsertBefore) {
3292  Op<0>() = LHS;
3293  Op<1>() = RHS;
3294  setPredicate((Predicate)predicate);
3295  setName(Name);
3296 }
3297 
3299  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3300  : Instruction(ty, op,
3301  OperandTraits<CmpInst>::op_begin(this),
3302  OperandTraits<CmpInst>::operands(this),
3303  InsertAtEnd) {
3304  Op<0>() = LHS;
3305  Op<1>() = RHS;
3306  setPredicate((Predicate)predicate);
3307  setName(Name);
3308 }
3309 
3310 CmpInst *
3312  const Twine &Name, Instruction *InsertBefore) {
3313  if (Op == Instruction::ICmp) {
3314  if (InsertBefore)
3315  return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3316  S1, S2, Name);
3317  else
3318  return new ICmpInst(CmpInst::Predicate(predicate),
3319  S1, S2, Name);
3320  }
3321 
3322  if (InsertBefore)
3323  return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3324  S1, S2, Name);
3325  else
3326  return new FCmpInst(CmpInst::Predicate(predicate),
3327  S1, S2, Name);
3328 }
3329 
3330 CmpInst *
3332  const Twine &Name, BasicBlock *InsertAtEnd) {
3333  if (Op == Instruction::ICmp) {
3334  return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3335  S1, S2, Name);
3336  }
3337  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3338  S1, S2, Name);
3339 }
3340 
3342  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3343  IC->swapOperands();
3344  else
3345  cast<FCmpInst>(this)->swapOperands();
3346 }
3347 
3349  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3350  return IC->isCommutative();
3351  return cast<FCmpInst>(this)->isCommutative();
3352 }
3353 
3354 bool CmpInst::isEquality() const {
3355  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3356  return IC->isEquality();
3357  return cast<FCmpInst>(this)->isEquality();
3358 }
3359 
3361  switch (pred) {
3362  default: llvm_unreachable("Unknown cmp predicate!");
3363  case ICMP_EQ: return ICMP_NE;
3364  case ICMP_NE: return ICMP_EQ;
3365  case ICMP_UGT: return ICMP_ULE;
3366  case ICMP_ULT: return ICMP_UGE;
3367  case ICMP_UGE: return ICMP_ULT;
3368  case ICMP_ULE: return ICMP_UGT;
3369  case ICMP_SGT: return ICMP_SLE;
3370  case ICMP_SLT: return ICMP_SGE;
3371  case ICMP_SGE: return ICMP_SLT;
3372  case ICMP_SLE: return ICMP_SGT;
3373 
3374  case FCMP_OEQ: return FCMP_UNE;
3375  case FCMP_ONE: return FCMP_UEQ;
3376  case FCMP_OGT: return FCMP_ULE;
3377  case FCMP_OLT: return FCMP_UGE;
3378  case FCMP_OGE: return FCMP_ULT;
3379  case FCMP_OLE: return FCMP_UGT;
3380  case FCMP_UEQ: return FCMP_ONE;
3381  case FCMP_UNE: return FCMP_OEQ;
3382  case FCMP_UGT: return FCMP_OLE;
3383  case FCMP_ULT: return FCMP_OGE;
3384  case FCMP_UGE: return FCMP_OLT;
3385  case FCMP_ULE: return FCMP_OGT;
3386  case FCMP_ORD: return FCMP_UNO;
3387  case FCMP_UNO: return FCMP_ORD;
3388  case FCMP_TRUE: return FCMP_FALSE;
3389  case FCMP_FALSE: return FCMP_TRUE;
3390  }
3391 }
3392 
3394  switch (Pred) {
3395  default: return "unknown";
3396  case FCmpInst::FCMP_FALSE: return "false";
3397  case FCmpInst::FCMP_OEQ: return "oeq";
3398  case FCmpInst::FCMP_OGT: return "ogt";
3399  case FCmpInst::FCMP_OGE: return "oge";
3400  case FCmpInst::FCMP_OLT: return "olt";
3401  case FCmpInst::FCMP_OLE: return "ole";
3402  case FCmpInst::FCMP_ONE: return "one";
3403  case FCmpInst::FCMP_ORD: return "ord";
3404  case FCmpInst::FCMP_UNO: return "uno";
3405  case FCmpInst::FCMP_UEQ: return "ueq";
3406  case FCmpInst::FCMP_UGT: return "ugt";
3407  case FCmpInst::FCMP_UGE: return "uge";
3408  case FCmpInst::FCMP_ULT: return "ult";
3409  case FCmpInst::FCMP_ULE: return "ule";
3410  case FCmpInst::FCMP_UNE: return "une";
3411  case FCmpInst::FCMP_TRUE: return "true";
3412  case ICmpInst::ICMP_EQ: return "eq";
3413  case ICmpInst::ICMP_NE: return "ne";
3414  case ICmpInst::ICMP_SGT: return "sgt";
3415  case ICmpInst::ICMP_SGE: return "sge";
3416  case ICmpInst::ICMP_SLT: return "slt";
3417  case ICmpInst::ICMP_SLE: return "sle";
3418  case ICmpInst::ICMP_UGT: return "ugt";
3419  case ICmpInst::ICMP_UGE: return "uge";
3420  case ICmpInst::ICMP_ULT: return "ult";
3421  case ICmpInst::ICMP_ULE: return "ule";
3422  }
3423 }
3424 
3426  switch (pred) {
3427  default: llvm_unreachable("Unknown icmp predicate!");
3428  case ICMP_EQ: case ICMP_NE:
3429  case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3430  return pred;
3431  case ICMP_UGT: return ICMP_SGT;
3432  case ICMP_ULT: return ICMP_SLT;
3433  case ICMP_UGE: return ICMP_SGE;
3434  case ICMP_ULE: return ICMP_SLE;
3435  }
3436 }
3437 
3439  switch (pred) {
3440  default: llvm_unreachable("Unknown icmp predicate!");
3441  case ICMP_EQ: case ICMP_NE:
3442  case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3443  return pred;
3444  case ICMP_SGT: return ICMP_UGT;
3445  case ICMP_SLT: return ICMP_ULT;
3446  case ICMP_SGE: return ICMP_UGE;
3447  case ICMP_SLE: return ICMP_ULE;
3448  }
3449 }
3450 
3452  switch (pred) {
3453  default: llvm_unreachable("Unknown cmp predicate!");
3454  case ICMP_EQ: case ICMP_NE:
3455  return pred;
3456  case ICMP_SGT: return ICMP_SLT;
3457  case ICMP_SLT: return ICMP_SGT;
3458  case ICMP_SGE: return ICMP_SLE;
3459  case ICMP_SLE: return ICMP_SGE;
3460  case ICMP_UGT: return ICMP_ULT;
3461  case ICMP_ULT: return ICMP_UGT;
3462  case ICMP_UGE: return ICMP_ULE;
3463  case ICMP_ULE: return ICMP_UGE;
3464 
3465  case FCMP_FALSE: case FCMP_TRUE:
3466  case FCMP_OEQ: case FCMP_ONE:
3467  case FCMP_UEQ: case FCMP_UNE:
3468  case FCMP_ORD: case FCMP_UNO:
3469  return pred;
3470  case FCMP_OGT: return FCMP_OLT;
3471  case FCMP_OLT: return FCMP_OGT;
3472  case FCMP_OGE: return FCMP_OLE;
3473  case FCMP_OLE: return FCMP_OGE;
3474  case FCMP_UGT: return FCMP_ULT;
3475  case FCMP_ULT: return FCMP_UGT;
3476  case FCMP_UGE: return FCMP_ULE;
3477  case FCMP_ULE: return FCMP_UGE;
3478  }
3479 }
3480 
3482  assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3483 
3484  switch (pred) {
3485  default:
3486  llvm_unreachable("Unknown predicate!");
3487  case CmpInst::ICMP_ULT:
3488  return CmpInst::ICMP_SLT;
3489  case CmpInst::ICMP_ULE:
3490  return CmpInst::ICMP_SLE;
3491  case CmpInst::ICMP_UGT:
3492  return CmpInst::ICMP_SGT;
3493  case CmpInst::ICMP_UGE:
3494  return CmpInst::ICMP_SGE;
3495  }
3496 }
3497 
3499  switch (predicate) {
3500  default: return false;
3502  case ICmpInst::ICMP_UGE: return true;
3503  }
3504 }
3505 
3506 bool CmpInst::isSigned(Predicate predicate) {
3507  switch (predicate) {
3508  default: return false;
3510  case ICmpInst::ICMP_SGE: return true;
3511  }
3512 }
3513 
3515  switch (predicate) {
3516  default: return false;
3519  case FCmpInst::FCMP_ORD: return true;
3520  }
3521 }
3522 
3524  switch (predicate) {
3525  default: return false;
3528  case FCmpInst::FCMP_UNO: return true;
3529  }
3530 }
3531 
3533  switch(predicate) {
3534  default: return false;
3535  case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3536  case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3537  }
3538 }
3539 
3541  switch(predicate) {
3542  case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3543  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3544  default: return false;
3545  }
3546 }
3547 
3549  // If the predicates match, then we know the first condition implies the
3550  // second is true.
3551  if (Pred1 == Pred2)
3552  return true;
3553 
3554  switch (Pred1) {
3555  default:
3556  break;
3557  case ICMP_EQ:
3558  // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3559  return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3560  Pred2 == ICMP_SLE;
3561  case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3562  return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3563  case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3564  return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3565  case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3566  return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3567  case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3568  return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3569  }
3570  return false;
3571 }
3572 
3574  return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3575 }
3576 
3577 //===----------------------------------------------------------------------===//
3578 // SwitchInst Implementation
3579 //===----------------------------------------------------------------------===//
3580 
3581 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3582  assert(Value && Default && NumReserved);
3583  ReservedSpace = NumReserved;
3585  allocHungoffUses(ReservedSpace);
3586 
3587  Op<0>() = Value;
3588  Op<1>() = Default;
3589 }
3590 
3591 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3592 /// switch on and a default destination. The number of additional cases can
3593 /// be specified here to make memory allocation more efficient. This
3594 /// constructor can also autoinsert before another instruction.
3595 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3596  Instruction *InsertBefore)
3598  nullptr, 0, InsertBefore) {
3599  init(Value, Default, 2+NumCases*2);
3600 }
3601 
3602 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3603 /// switch on and a default destination. The number of additional cases can
3604 /// be specified here to make memory allocation more efficient. This
3605 /// constructor also autoinserts at the end of the specified BasicBlock.
3606 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3607  BasicBlock *InsertAtEnd)
3609  nullptr, 0, InsertAtEnd) {
3610  init(Value, Default, 2+NumCases*2);
3611 }
3612 
3613 SwitchInst::SwitchInst(const SwitchInst &SI)
3614  : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3615  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3617  Use *OL = getOperandList();
3618  const Use *InOL = SI.getOperandList();
3619  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3620  OL[i] = InOL[i];
3621  OL[i+1] = InOL[i+1];
3622  }
3624 }
3625 
3626 
3627 /// addCase - Add an entry to the switch instruction...
3628 ///
3630  unsigned NewCaseIdx = getNumCases();
3631  unsigned OpNo = getNumOperands();
3632  if (OpNo+2 > ReservedSpace)
3633  growOperands(); // Get more space!
3634  // Initialize some new operands.
3635  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3636  setNumHungOffUseOperands(OpNo+2);
3637  CaseHandle Case(this, NewCaseIdx);
3638  Case.setValue(OnVal);
3639  Case.setSuccessor(Dest);
3640 }
3641 
3642 /// removeCase - This method removes the specified case and its successor
3643 /// from the switch instruction.
3645  unsigned idx = I->getCaseIndex();
3646 
3647  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3648 
3649  unsigned NumOps = getNumOperands();
3650  Use *OL = getOperandList();
3651 
3652  // Overwrite this case with the end of the list.
3653  if (2 + (idx + 1) * 2 != NumOps) {
3654  OL[2 + idx * 2] = OL[NumOps - 2];
3655  OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3656  }
3657 
3658  // Nuke the last value.
3659  OL[NumOps-2].set(nullptr);
3660  OL[NumOps-2+1].set(nullptr);
3661  setNumHungOffUseOperands(NumOps-2);
3662 
3663  return CaseIt(this, idx);
3664 }
3665 
3666 /// growOperands - grow operands - This grows the operand list in response
3667 /// to a push_back style of operation. This grows the number of ops by 3 times.
3668 ///
3669 void SwitchInst::growOperands() {
3670  unsigned e = getNumOperands();
3671  unsigned NumOps = e*3;
3672 
3673  ReservedSpace = NumOps;
3674  growHungoffUses(ReservedSpace);
3675 }
3676 
3677 //===----------------------------------------------------------------------===//
3678 // IndirectBrInst Implementation
3679 //===----------------------------------------------------------------------===//
3680 
3681 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3682  assert(Address && Address->getType()->isPointerTy() &&
3683  "Address of indirectbr must be a pointer");
3684  ReservedSpace = 1+NumDests;
3686  allocHungoffUses(ReservedSpace);
3687 
3688  Op<0>() = Address;
3689 }
3690 
3691 
3692 /// growOperands - grow operands - This grows the operand list in response
3693 /// to a push_back style of operation. This grows the number of ops by 2 times.
3694 ///
3695 void IndirectBrInst::growOperands() {
3696  unsigned e = getNumOperands();
3697  unsigned NumOps = e*2;
3698 
3699  ReservedSpace = NumOps;
3700  growHungoffUses(ReservedSpace);
3701 }
3702 
3703 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3704  Instruction *InsertBefore)
3705 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3706  nullptr, 0, InsertBefore) {
3707  init(Address, NumCases);
3708 }
3709 
3710 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3711  BasicBlock *InsertAtEnd)
3712 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3713  nullptr, 0, InsertAtEnd) {
3714  init(Address, NumCases);
3715 }
3716 
3717 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3718  : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3719  nullptr, IBI.getNumOperands()) {
3721  Use *OL = getOperandList();
3722  const Use *InOL = IBI.getOperandList();
3723  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3724  OL[i] = InOL[i];
3726 }
3727 
3728 /// addDestination - Add a destination.
3729 ///
3731  unsigned OpNo = getNumOperands();
3732  if (OpNo+1 > ReservedSpace)
3733  growOperands(); // Get more space!
3734  // Initialize some new operands.
3735  assert(OpNo < ReservedSpace && "Growing didn't work!");
3736  setNumHungOffUseOperands(OpNo+1);
3737  getOperandList()[OpNo] = DestBB;
3738 }
3739 
3740 /// removeDestination - This method removes the specified successor from the
3741 /// indirectbr instruction.
3743  assert(idx < getNumOperands()-1 && "Successor index out of range!");
3744 
3745  unsigned NumOps = getNumOperands();
3746  Use *OL = getOperandList();
3747 
3748  // Replace this value with the last one.
3749  OL[idx+1] = OL[NumOps-1];
3750 
3751  // Nuke the last value.
3752  OL[NumOps-1].set(nullptr);
3753  setNumHungOffUseOperands(NumOps-1);
3754 }
3755 
3756 //===----------------------------------------------------------------------===//
3757 // cloneImpl() implementations
3758 //===----------------------------------------------------------------------===//
3759 
3760 // Define these methods here so vtables don't get emitted into every translation
3761 // unit that uses these classes.
3762 
3764  return new (getNumOperands()) GetElementPtrInst(*this);
3765 }
3766 
3768  return Create(getOpcode(), Op<0>(), Op<1>());
3769 }
3770 
3772  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3773 }
3774 
3776  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3777 }
3778 
3780  return new ExtractValueInst(*this);
3781 }
3782 
3784  return new InsertValueInst(*this);
3785 }
3786 
3788  AllocaInst *Result = new AllocaInst(getAllocatedType(),
3789  getType()->getAddressSpace(),
3790  (Value *)getOperand(0), getAlignment());
3791  Result->setUsedWithInAlloca(isUsedWithInAlloca());
3792  Result->setSwiftError(isSwiftError());
3793  return Result;
3794 }
3795 
3797  return new LoadInst(getOperand(0), Twine(), isVolatile(),
3798  getAlignment(), getOrdering(), getSyncScopeID());
3799 }
3800 
3802  return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3803  getAlignment(), getOrdering(), getSyncScopeID());
3804 
3805 }
3806 
3808  AtomicCmpXchgInst *Result =
3810  getSuccessOrdering(), getFailureOrdering(),
3811  getSyncScopeID());
3812  Result->setVolatile(isVolatile());
3813  Result->setWeak(isWeak());
3814  return Result;
3815 }
3816 
3818  AtomicRMWInst *Result =
3819  new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
3820  getOrdering(), getSyncScopeID());
3821  Result->setVolatile(isVolatile());
3822  return Result;
3823 }
3824 
3826  return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
3827 }
3828 
3830  return new TruncInst(getOperand(0), getType());
3831 }
3832 
3834  return new ZExtInst(getOperand(0), getType());
3835 }
3836 
3838  return new SExtInst(getOperand(0), getType());
3839 }
3840 
3842  return new FPTruncInst(getOperand(0), getType());
3843 }
3844 
3846  return new FPExtInst(getOperand(0), getType());
3847 }
3848 
3850  return new UIToFPInst(getOperand(0), getType());
3851 }
3852 
3854  return new SIToFPInst(getOperand(0), getType());
3855 }
3856 
3858  return new FPToUIInst(getOperand(0), getType());
3859 }
3860 
3862  return new FPToSIInst(getOperand(0), getType());
3863 }
3864 
3866  return new PtrToIntInst(getOperand(0), getType());
3867 }
3868 
3870  return new IntToPtrInst(getOperand(0), getType());
3871 }
3872 
3874  return new BitCastInst(getOperand(0), getType());
3875 }
3876 
3878  return new AddrSpaceCastInst(getOperand(0), getType());
3879 }
3880 
3882  if (hasOperandBundles()) {
3883  unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3884  return new(getNumOperands(), DescriptorBytes) CallInst(*this);
3885  }
3886  return new(getNumOperands()) CallInst(*this);
3887 }
3888 
3891 }
3892 
3894  return new VAArgInst(getOperand(0), getType());
3895 }
3896 
3899 }
3900 
3903 }
3904 
3906  return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3907 }
3908 
3909 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
3910 
3912  return new LandingPadInst(*this);
3913 }
3914 
3916  return new(getNumOperands()) ReturnInst(*this);
3917 }
3918 
3920  return new(getNumOperands()) BranchInst(*this);
3921 }
3922 
3923 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
3924 
3926  return new IndirectBrInst(*this);
3927 }
3928 
3930  if (hasOperandBundles()) {
3931  unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3932  return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
3933  }
3934  return new(getNumOperands()) InvokeInst(*this);
3935 }
3936 
3937 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
3938 
3940  return new (getNumOperands()) CleanupReturnInst(*this);
3941 }
3942 
3944  return new (getNumOperands()) CatchReturnInst(*this);
3945 }
3946 
3948  return new CatchSwitchInst(*this);
3949 }
3950 
3952  return new (getNumOperands()) FuncletPadInst(*this);
3953 }
3954 
3956  LLVMContext &Context = getContext();
3957  return new UnreachableInst(Context);
3958 }
uint64_t CallInst * C
Return a value (possibly void), from a function.
void push_back(const T &Elt)
Definition: SmallVector.h:212
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:109
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:850
FuncletPadInst * cloneImpl() const
bool hasNoSignedZeros() const
Determine whether the no-signed-zeros flag is set.
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:173
StoreInst * cloneImpl() const
This instruction extracts a struct member or array element value from an aggregate value...
static bool IsConstantOne(Value *val)
IsConstantOne - Return true only if val is constant int 1.
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
LLVMContext & Context
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
static const Value * getFNegArgument(const Value *BinOp)
Atomic ordering constants.
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:523
unsigned getSubclassDataFromInstruction() const
Definition: Instruction.h:638
void swapSuccessors()
Swap the successors of this branch instruction.
bool isAtomic() const
Return true if this instruction has an AtomicOrdering of unordered or higher.
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
IndirectBrInst * cloneImpl() const
Constant * getOrInsertFunction(StringRef Name, FunctionType *T, AttributeList AttributeList)
Look up the specified function in the module symbol table.
Definition: Module.cpp:142
A Module instance is used to store all the information related to an LLVM module. ...
Definition: Module.h:63
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:262
iterator begin() const
Definition: ArrayRef.h:137
BasicBlock * getSuccessor(unsigned idx) const
Return the specified successor.
void setAlignment(unsigned Align)
An instruction for ordering other memory operations.
Definition: Instructions.h:440
an instruction that atomically checks whether a specified value is in a memory location, and, if it is, stores a new value there.
Definition: Instructions.h:514
bool isIntegerCast() const
There are several places where we need to know if a cast instruction only deals with integer source a...
BitCastInst * cloneImpl() const
Clone an identical BitCastInst.
This class represents zero extension of integer types.
void addCase(ConstantInt *OnVal, BasicBlock *Dest)
Add an entry to the switch instruction.
AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize=nullptr, const Twine &Name="", Instruction *InsertBefore=nullptr)
ShuffleVectorInst * cloneImpl() const
This class represents a function call, abstracting a target machine&#39;s calling convention.
This file contains the declarations for metadata subclasses.
Value * getCondition() const
unsigned less or equal
Definition: InstrTypes.h:886
unsigned less than
Definition: InstrTypes.h:885
float convertToFloat() const
Definition: APFloat.h:1098
void setVolatile(bool V)
Specify whether this is a volatile cmpxchg.
Definition: Instructions.h:549
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:866
FenceInst * cloneImpl() const
void removeHandler(handler_iterator HI)
This instruction constructs a fixed permutation of two input vectors.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=nullptr, Instruction *MDFrom=nullptr)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:697
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:876
static CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
SIToFPInst * cloneImpl() const
Clone an identical SIToFPInst.
Metadata node.
Definition: Metadata.h:862
static CallInst * Create(Value *Func, ArrayRef< Value *> Args, ArrayRef< OperandBundleDef > Bundles=None, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
CatchSwitchInst * cloneImpl() const
const MDOperand & getOperand(unsigned I) const
Definition: Metadata.h:1067
FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, Instruction *InsertBefore=nullptr)
This class represents a sign extension of integer types.
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Definition: DerivedTypes.h:503
An instruction for reading from memory.
Definition: Instructions.h:164
an instruction that atomically reads a memory location, combines it with another value, and then stores the result back.
Definition: Instructions.h:677
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:227
InsertElementInst * cloneImpl() const
static Instruction * CreateFree(Value *Source, Instruction *InsertBefore)
Generate the IR for a call to the builtin free function.
#define op(i)
static bool isStrongerThan(AtomicOrdering ao, AtomicOrdering other)
Returns true if ao is stronger than other as defined by the AtomicOrdering lattice, which is based on C++&#39;s definition.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
Definition: Instructions.h:381
CallingConv::ID getCallingConv() const
getCallingConv/setCallingConv - Get or set the calling convention of this function call...
void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes)
adds the dereferenceable_or_null attribute to the list of attributes.
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
op_iterator op_begin()
Definition: User.h:214
static LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
ICmpInst * cloneImpl() const
Clone an identical ICmpInst.
void setVolatile(bool V)
Specify whether this is a volatile RMW or not.
Definition: Instructions.h:748
static bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op...
block_iterator block_end()
Predicate getSignedPredicate()
For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert.
Definition: InstrTypes.h:1020
void setCallingConv(CallingConv::ID CC)
bool indexValid(const Value *V) const
Definition: Type.cpp:537
AttributeList getAttributes() const
Return the parameter attributes for this call.
bool swapOperands()
Exchange the two operands to this instruction.
AllocaInst * cloneImpl() const
SwitchInst * cloneImpl() const
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:871
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
Definition: Instructions.h:256
static bool isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2)
Determine if Pred1 implies Pred2 is false when two compares have matching operands.
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:870
static const Value * getNegArgument(const Value *BinOp)
Helper functions to extract the unary argument of a NEG, FNEG or NOT operation implemented via Sub...
static uint32_t getAlignment(const MCSectionCOFF &Sec)
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Definition: Instructions.h:217
This class represents a conversion between pointers from one address space to another.
static Constant * getIntegerCast(Constant *C, Type *Ty, bool isSigned)
Create a ZExt, Bitcast or Trunc for integer -> integer casts.
Definition: Constants.cpp:1518
static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy)
This method can be used to determine if a cast from S to DstTy using Opcode op is valid or not...
bool isSigned() const
Determine if this instruction is using a signed comparison.
Definition: InstrTypes.h:1001
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
static Type * getIndexedType(Type *Agg, ArrayRef< unsigned > Idxs)
Returns the type of the element that would be extracted with an extractvalue instruction with the spe...
This class represents the LLVM &#39;select&#39; instruction.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
Definition: InstrTypes.h:958
Type * getPointerElementType() const
Definition: Type.h:373
IntToPtrInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
CallingConv::ID getCallingConv() const
getCallingConv/setCallingConv - Get or set the calling convention of this function call...
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
unsigned getAlignment() const
Return the alignment of the memory that is being allocated by the instruction.
Definition: Instructions.h:109
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:560
unsigned getPointerTypeSizeInBits(Type *) const
Layout pointer size, in bits, based on the type.
Definition: DataLayout.cpp:614
PointerType * getType() const
Overload to return most specific pointer type.
Definition: Instructions.h:97
CatchReturnInst * cloneImpl() const
bool isFloatingPointTy() const
Return true if this is one of the six floating-point types.
Definition: Type.h:162
AttributeList addParamAttribute(LLVMContext &C, unsigned ArgNo, Attribute::AttrKind Kind) const
Add an argument attribute to the list.
Definition: Attributes.h:398
TailCallKind getTailCallKind() const
PtrToIntInst * cloneImpl() const
Clone an identical PtrToIntInst.
bool isCommutative() const
This is just a convenience that dispatches to the subclasses.
Class to represent struct types.
Definition: DerivedTypes.h:201
LLVMContext & getContext() const
Get the global data context.
Definition: Module.h:237
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
void growHungoffUses(unsigned N, bool IsPhi=false)
Grow the number of hung off uses.
Definition: User.cpp:60
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this fence instruction.
Definition: Instructions.h:470
void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
PtrToIntInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
bool isUnsigned() const
Determine if this instruction is using an unsigned comparison.
Definition: InstrTypes.h:1007
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
static bool isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2)
Determine if Pred1 implies Pred2 is true when two compares have matching operands.
static bool isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DstTy, Type *IntPtrTy)
A no-op cast is one that can be effected without changing any bits.
UIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:867
This file contains the simple types necessary to represent the attributes associated with functions a...
bundle_op_iterator bundle_op_info_begin()
Return the start of the list of BundleOpInfo instances associated with this OperandBundleUser.
Definition: InstrTypes.h:1537
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:284
uint64_t getNumElements() const
Definition: DerivedTypes.h:359
static const unsigned MaximumAlignment
Definition: Value.h:590
block_iterator block_begin()
void addAttribute(unsigned i, Attribute::AttrKind Kind)
adds the attribute to the list of attributes.
This class represents a cast from a pointer to an integer.
AtomicOrdering
Atomic ordering for LLVM&#39;s memory model.
static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
void addHandler(BasicBlock *Dest)
Add an entry to the switch instruction...
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
Definition: Constants.h:201
OtherOps getOpcode() const
Get the opcode casted to the right type.
Definition: InstrTypes.h:929
Class to represent function types.
Definition: DerivedTypes.h:103
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:820
#define F(x, y, z)
Definition: MD5.cpp:55
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value. ...
Definition: Type.h:241
LandingPadInst * getLandingPadInst() const
Get the landingpad instruction from the landing pad block (the unwind destination).
bool isInBounds() const
Determine whether the GEP has the inbounds flag.
op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
Definition: Instructions.h:689
bool isSwiftError() const
Return true if this value is a swifterror value.
Definition: Value.cpp:718
Class to represent array types.
Definition: DerivedTypes.h:369
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
Definition: Instructions.h:121
This instruction compares its operands according to the predicate given to the constructor.
AddrSpaceCastInst * cloneImpl() const
Clone an identical AddrSpaceCastInst.
bool isVarArg() const
Definition: DerivedTypes.h:123
UnreachableInst * cloneImpl() const
LandingPadInst * cloneImpl() const
This class represents a no-op cast from one type to another.
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Return true if the call or the callee has the given attribute.
Definition: CallSite.h:374
static Instruction * createFree(Value *Source, ArrayRef< OperandBundleDef > Bundles, Instruction *InsertBefore, BasicBlock *InsertAtEnd)
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:190
static CmpInst * Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, const Twine &Name="", Instruction *InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
void addDereferenceableAttr(unsigned i, uint64_t Bytes)
adds the dereferenceable attribute to the list of attributes.
Used to keep track of an operand bundle.
Definition: InstrTypes.h:1505
void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes)
adds the dereferenceable_or_null attribute to the list of attributes.
SIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:121
FPToSIInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
An instruction for storing to memory.
Definition: Instructions.h:306
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:203
This class represents a cast from floating point to signed integer.
ExtractElementInst * cloneImpl() const
Value * getParentPad() const
LoadInst * cloneImpl() const
int Switch(int a)
Definition: Switch2Test.cpp:11
This class represents a truncation of integer types.
static const Value * getNotArgument(const Value *BinOp)
const char * Name
std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type cast(const Y &Val)
Definition: Casting.h:240
Value * getOperand(unsigned i) const
Definition: User.h:154
Class to represent pointers.
Definition: DerivedTypes.h:467
TruncInst * cloneImpl() const
Clone an identical TruncInst.
FPTruncInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:277
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:301
bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const
Return true if the data operand at index i has the attribute A.
static Type * getIndexedTypeInternal(Type *Agg, ArrayRef< IndexTy > IdxList)
getIndexedType - Returns the type of the element that would be accessed with a gep instruction with t...
bool isVoidTy() const
Return true if this is &#39;void&#39;.
Definition: Type.h:141
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:837
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space...
Definition: DataLayout.cpp:702
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
ReturnInst * cloneImpl() const
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:404
This instruction inserts a single (scalar) element into a VectorType value.
const Use * getOperandList() const
Definition: User.h:147
static BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
const Value * getCalledValue() const
Get a pointer to the function that is invoked by this instruction.
Subclasses of this class are all able to terminate a basic block.
Definition: InstrTypes.h:54
AttributeList addDereferenceableOrNullAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const
Add the dereferenceable_or_null attribute to the attribute set at the given index.
const RootIt & getCurrent() const
Definition: STLExtras.h:156
void setSuccessor(unsigned idx, BasicBlock *B)
Update the specified successor to point at the provided block.
void set(Value *Val)
Definition: Value.h:671
LLVM Basic Block Representation.
Definition: BasicBlock.h:59
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
UnreachableInst(LLVMContext &C, Instruction *InsertBefore=nullptr)
Conditional or Unconditional Branch instruction.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this store instruction.
Definition: Instructions.h:375
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
This function has undefined behavior.
This is an important base class in LLVM.
Definition: Constant.h:42
Resume the propagation of an exception.
PHINode * cloneImpl() const
static StringRef getPredicateName(Predicate P)
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
void setUsedWithInAlloca(bool V)
Specify whether this alloca is used to represent the arguments to a call.
Definition: Instructions.h:126
SelectInst * cloneImpl() const
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:221
Indirect Branch Instruction.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:139
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:264
BasicBlock * getDefaultDest() const
static bool isBitCastable(Type *SrcTy, Type *DestTy)
Check whether a bitcast between these types is valid.
op_iterator op_end()
Definition: User.h:216
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:161
UIToFPInst * cloneImpl() const
Clone an identical UIToFPInst.
This instruction compares its operands according to the predicate given to the constructor.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:860
void removeAttribute(unsigned i, Attribute::AttrKind Kind)
removes the attribute from the list of attributes.
void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
BinaryOperator * cloneImpl() const
op_range operands()
Definition: User.h:222
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:869
static CastInst * CreatePointerBitCastOrAddrSpaceCast(Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
Create a BitCast or an AddrSpaceCast cast instruction.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:495
bool isX86_MMXTy() const
Return true if this is X86 MMX.
Definition: Type.h:182
static bool isNot(const Value *V)
op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
FPExtInst * cloneImpl() const
Clone an identical FPExtInst.
AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, SyncScope::ID SSID, Instruction *InsertBefore=nullptr)
static CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
void setTailCallKind(TailCallKind TCK)
CaseIt removeCase(CaseIt I)
This method removes the specified case and its successor from the switch instruction.
void setAlignment(unsigned Align)
VAArgInst * cloneImpl() const
bool hasConstantOrUndefValue() const
Whether the specified PHI node always merges together the same value, assuming undefs are equal to a ...
This class represents a cast from an integer to a pointer.
static Constant * getAllOnesValue(Type *Ty)
Get the all ones value.
Definition: Constants.cpp:261
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:877
NUW NUW NUW NUW Exact static Exact BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &NameStr="", Instruction *InsertBefor=nullptr)
void setTailCall(bool isTC=true)
BranchInst * cloneImpl() const
static UndefValue * get(Type *T)
Static factory methods - Return an &#39;undef&#39; object of the specified type.
Definition: Constants.cpp:1320
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
FPToUIInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
const Value * getArraySize() const
Get the number of elements allocated.
Definition: Instructions.h:93
ExtractValueInst * cloneImpl() const
static CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:220
static bool isValidOperands(const Value *Vec, const Value *Idx)
Return true if an extractelement instruction can be formed with the specified operands.
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:875
void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
void swapOperands()
This is just a convenience that dispatches to the subclasses.
static InvokeInst * Create(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value *> Args, const Twine &NameStr, Instruction *InsertBefore=nullptr)
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
Definition: Value.h:91
signed greater than
Definition: InstrTypes.h:887
Value * getParentPad() const
Convenience accessors.
Definition: InstrTypes.h:1135
hexagon gen pred
static BinaryOperator * CreateNUWNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
TruncInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
const APFloat & getValueAPF() const
Definition: Constants.h:294
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
static Instruction * createMalloc(Instruction *InsertBefore, BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize, ArrayRef< OperandBundleDef > OpB, Function *MallocF, const Twine &Name)
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:864
BasicBlock * getNormalDest() const
InsertValueInst * cloneImpl() const
Value * hasConstantValue() const
If the specified PHI node always merges together the same value, return the value, otherwise return null.
static BinaryOperator * CreateFNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=nullptr)
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition: Type.h:224
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:317
static CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
Synchronized with respect to all concurrently executing threads.
Definition: LLVMContext.h:58
unsigned getNumOperands() const
Definition: User.h:176
#define E
Definition: LargeTest.cpp:27
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the generic address space (address sp...
Definition: DerivedTypes.h:482
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
#define B
Definition: LargeTest.cpp:24
bool hasUnwindDest() const
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
AddrSpaceCastInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:874
Module.h This file contains the declarations for the Module class.
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
static bool isCastable(Type *SrcTy, Type *DestTy)
Check whether it is valid to call getCastOpcode for these types.
LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore)
op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
iterator end() const
Definition: ArrayRef.h:138
bool isAggregateType() const
Return true if the type is an aggregate type.
Definition: Type.h:255
signed less than
Definition: InstrTypes.h:889
Value * getReturnedArgOperand() const
If one of the arguments has the &#39;returned&#39; attribute, return its operand value.
BasicBlock * getUnwindDest() const
AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, Instruction *InsertBefore=nullptr)
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a cast from floating point to unsigned integer.
static CastInst * CreateFPCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create an FPExt, BitCast, or FPTrunc for fp -> fp casts.
bundle_op_iterator bundle_op_info_end()
Return the end of the list of BundleOpInfo instances associated with this OperandBundleUser.
Definition: InstrTypes.h:1555
static unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine how a pair of casts can be eliminated, if they can be at all.
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:560
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
SExtInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
IntToPtrInst * cloneImpl() const
Clone an identical IntToPtrInst.
bool isCommutative() const
Return true if the instruction is commutative:
Definition: Instruction.h:416
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:939
CleanupReturnInst * cloneImpl() const
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:531
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:923
unsigned getVectorNumElements() const
Definition: DerivedTypes.h:462
bool isTrueWhenEqual() const
This is just a convenience.
Definition: InstrTypes.h:1026
signed less or equal
Definition: InstrTypes.h:890
Class to represent vector types.
Definition: DerivedTypes.h:393
void setVolatile(bool V)
Specify whether this is a volatile store or not.
Definition: Instructions.h:342
static bool isNeg(const Value *V)
Check if the given Value is a NEG, FNeg, or NOT instruction.
Class for arbitrary precision integers.
Definition: APInt.h:69
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, const Twine &Name, Instruction *InsertBefore)
bool isFalseWhenEqual() const
This is just a convenience.
Definition: InstrTypes.h:1032
void push_back(pointer val)
Definition: ilist.h:326
static bool isWeak(const MCSymbolELF &Sym)
Value * getReturnedArgOperand() const
If one of the arguments has the &#39;returned&#39; attribute, return its operand value.
bool isCleanup() const
Return &#39;true&#39; if this landingpad instruction is a cleanup.
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
void setWeak(bool IsWeak)
Definition: Instructions.h:559
ZExtInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, Value *LHS, Value *RHS, const Twine &Name="", Instruction *InsertBefore=nullptr)
BitCastInst(Value *S, Type *Ty, const Twine &NameStr="", Instruction *InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
AtomicCmpXchgInst * cloneImpl() const
static bool isConstantAllOnes(const Value *V)
Common super class of ArrayType, StructType and VectorType.
Definition: DerivedTypes.h:162
void setSwiftError(bool V)
Specify whether this alloca is used to represent a swifterror.
Definition: Instructions.h:137
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
static Instruction * CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize=nullptr, Function *MallocF=nullptr, const Twine &Name="")
Generate the IR for a call to malloc:
GetElementPtrInst * cloneImpl() const
void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Removes the attribute from the given argument.
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass&#39;s ...
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:934
static int getMaskValue(Constant *Mask, unsigned Elt)
Return the shuffle mask value for the specified element of the mask.
AttributeList addAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const
Add an attribute to the attribute set at the given index.
bool isVolatile() const
Return true if this is a store to a volatile memory location.
Definition: Instructions.h:339
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:280
AttributeList addDereferenceableAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const
Add the dereferenceable attribute to the attribute set at the given index.
unsigned getAlignment() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:226
static Type * getIndexedType(Type *Ty, ArrayRef< Value *> IdxList)
Returns the type of the element that would be loaded with a load instruction with the specified param...
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:176
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
static CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
ZExtInst * cloneImpl() const
Clone an identical ZExtInst.
unsigned greater or equal
Definition: InstrTypes.h:884
static bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
bool isTokenTy() const
Return true if this is &#39;token&#39;.
Definition: Type.h:194
static bool isFNeg(const Value *V, bool IgnoreZeroSign=false)
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this fence instruction.
Definition: Instructions.h:481
float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const
Return true if the data operand at index i has the attribute A.
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:218
AttributeList removeAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const
Remove the specified attribute at the specified index from this attribute list.