LLVM  6.0.0svn
Type.cpp
Go to the documentation of this file.
1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Type.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/Casting.h"
30 #include <cassert>
31 #include <utility>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 // Type Class Implementation
37 //===----------------------------------------------------------------------===//
38 
40  switch (IDNumber) {
41  case VoidTyID : return getVoidTy(C);
42  case HalfTyID : return getHalfTy(C);
43  case FloatTyID : return getFloatTy(C);
44  case DoubleTyID : return getDoubleTy(C);
45  case X86_FP80TyID : return getX86_FP80Ty(C);
46  case FP128TyID : return getFP128Ty(C);
47  case PPC_FP128TyID : return getPPC_FP128Ty(C);
48  case LabelTyID : return getLabelTy(C);
49  case MetadataTyID : return getMetadataTy(C);
50  case X86_MMXTyID : return getX86_MMXTy(C);
51  case TokenTyID : return getTokenTy(C);
52  default:
53  return nullptr;
54  }
55 }
56 
57 bool Type::isIntegerTy(unsigned Bitwidth) const {
58  return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
59 }
60 
62  // Identity cast means no change so return true
63  if (this == Ty)
64  return true;
65 
66  // They are not convertible unless they are at least first class types
67  if (!this->isFirstClassType() || !Ty->isFirstClassType())
68  return false;
69 
70  // Vector -> Vector conversions are always lossless if the two vector types
71  // have the same size, otherwise not. Also, 64-bit vector types can be
72  // converted to x86mmx.
73  if (auto *thisPTy = dyn_cast<VectorType>(this)) {
74  if (auto *thatPTy = dyn_cast<VectorType>(Ty))
75  return thisPTy->getBitWidth() == thatPTy->getBitWidth();
76  if (Ty->getTypeID() == Type::X86_MMXTyID &&
77  thisPTy->getBitWidth() == 64)
78  return true;
79  }
80 
81  if (this->getTypeID() == Type::X86_MMXTyID)
82  if (auto *thatPTy = dyn_cast<VectorType>(Ty))
83  if (thatPTy->getBitWidth() == 64)
84  return true;
85 
86  // At this point we have only various mismatches of the first class types
87  // remaining and ptr->ptr. Just select the lossless conversions. Everything
88  // else is not lossless. Conservatively assume we can't losslessly convert
89  // between pointers with different address spaces.
90  if (auto *PTy = dyn_cast<PointerType>(this)) {
91  if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
92  return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
93  return false;
94  }
95  return false; // Other types have no identity values
96 }
97 
98 bool Type::isEmptyTy() const {
99  if (auto *ATy = dyn_cast<ArrayType>(this)) {
100  unsigned NumElements = ATy->getNumElements();
101  return NumElements == 0 || ATy->getElementType()->isEmptyTy();
102  }
103 
104  if (auto *STy = dyn_cast<StructType>(this)) {
105  unsigned NumElements = STy->getNumElements();
106  for (unsigned i = 0; i < NumElements; ++i)
107  if (!STy->getElementType(i)->isEmptyTy())
108  return false;
109  return true;
110  }
111 
112  return false;
113 }
114 
116  switch (getTypeID()) {
117  case Type::HalfTyID: return 16;
118  case Type::FloatTyID: return 32;
119  case Type::DoubleTyID: return 64;
120  case Type::X86_FP80TyID: return 80;
121  case Type::FP128TyID: return 128;
122  case Type::PPC_FP128TyID: return 128;
123  case Type::X86_MMXTyID: return 64;
124  case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
125  case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
126  default: return 0;
127  }
128 }
129 
130 unsigned Type::getScalarSizeInBits() const {
132 }
133 
135  if (auto *VTy = dyn_cast<VectorType>(this))
136  return VTy->getElementType()->getFPMantissaWidth();
137  assert(isFloatingPointTy() && "Not a floating point type!");
138  if (getTypeID() == HalfTyID) return 11;
139  if (getTypeID() == FloatTyID) return 24;
140  if (getTypeID() == DoubleTyID) return 53;
141  if (getTypeID() == X86_FP80TyID) return 64;
142  if (getTypeID() == FP128TyID) return 113;
143  assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
144  return -1;
145 }
146 
147 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
148  if (auto *ATy = dyn_cast<ArrayType>(this))
149  return ATy->getElementType()->isSized(Visited);
150 
151  if (auto *VTy = dyn_cast<VectorType>(this))
152  return VTy->getElementType()->isSized(Visited);
153 
154  return cast<StructType>(this)->isSized(Visited);
155 }
156 
157 //===----------------------------------------------------------------------===//
158 // Primitive 'Type' data
159 //===----------------------------------------------------------------------===//
160 
172 
179 
181  return IntegerType::get(C, N);
182 }
183 
185  return getHalfTy(C)->getPointerTo(AS);
186 }
187 
189  return getFloatTy(C)->getPointerTo(AS);
190 }
191 
193  return getDoubleTy(C)->getPointerTo(AS);
194 }
195 
197  return getX86_FP80Ty(C)->getPointerTo(AS);
198 }
199 
201  return getFP128Ty(C)->getPointerTo(AS);
202 }
203 
205  return getPPC_FP128Ty(C)->getPointerTo(AS);
206 }
207 
209  return getX86_MMXTy(C)->getPointerTo(AS);
210 }
211 
212 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
213  return getIntNTy(C, N)->getPointerTo(AS);
214 }
215 
217  return getInt1Ty(C)->getPointerTo(AS);
218 }
219 
221  return getInt8Ty(C)->getPointerTo(AS);
222 }
223 
225  return getInt16Ty(C)->getPointerTo(AS);
226 }
227 
229  return getInt32Ty(C)->getPointerTo(AS);
230 }
231 
233  return getInt64Ty(C)->getPointerTo(AS);
234 }
235 
236 //===----------------------------------------------------------------------===//
237 // IntegerType Implementation
238 //===----------------------------------------------------------------------===//
239 
241  assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
242  assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
243 
244  // Check for the built-in integer types
245  switch (NumBits) {
246  case 1: return cast<IntegerType>(Type::getInt1Ty(C));
247  case 8: return cast<IntegerType>(Type::getInt8Ty(C));
248  case 16: return cast<IntegerType>(Type::getInt16Ty(C));
249  case 32: return cast<IntegerType>(Type::getInt32Ty(C));
250  case 64: return cast<IntegerType>(Type::getInt64Ty(C));
251  case 128: return cast<IntegerType>(Type::getInt128Ty(C));
252  default:
253  break;
254  }
255 
256  IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
257 
258  if (!Entry)
259  Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
260 
261  return Entry;
262 }
263 
265  unsigned BitWidth = getBitWidth();
266  return (BitWidth > 7) && isPowerOf2_32(BitWidth);
267 }
268 
271 }
272 
273 //===----------------------------------------------------------------------===//
274 // FunctionType Implementation
275 //===----------------------------------------------------------------------===//
276 
277 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
278  bool IsVarArgs)
279  : Type(Result->getContext(), FunctionTyID) {
280  Type **SubTys = reinterpret_cast<Type**>(this+1);
281  assert(isValidReturnType(Result) && "invalid return type for function");
282  setSubclassData(IsVarArgs);
283 
284  SubTys[0] = Result;
285 
286  for (unsigned i = 0, e = Params.size(); i != e; ++i) {
287  assert(isValidArgumentType(Params[i]) &&
288  "Not a valid type for function argument!");
289  SubTys[i+1] = Params[i];
290  }
291 
292  ContainedTys = SubTys;
293  NumContainedTys = Params.size() + 1; // + 1 for result type
294 }
295 
296 // This is the factory function for the FunctionType class.
298  ArrayRef<Type*> Params, bool isVarArg) {
299  LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
300  FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
301  auto I = pImpl->FunctionTypes.find_as(Key);
302  FunctionType *FT;
303 
304  if (I == pImpl->FunctionTypes.end()) {
305  FT = (FunctionType *)pImpl->TypeAllocator.Allocate(
306  sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
307  alignof(FunctionType));
308  new (FT) FunctionType(ReturnType, Params, isVarArg);
309  pImpl->FunctionTypes.insert(FT);
310  } else {
311  FT = *I;
312  }
313 
314  return FT;
315 }
316 
317 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
318  return get(Result, None, isVarArg);
319 }
320 
322  return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
323  !RetTy->isMetadataTy();
324 }
325 
327  return ArgTy->isFirstClassType();
328 }
329 
330 //===----------------------------------------------------------------------===//
331 // StructType Implementation
332 //===----------------------------------------------------------------------===//
333 
334 // Primitive Constructors.
335 
337  bool isPacked) {
338  LLVMContextImpl *pImpl = Context.pImpl;
339  AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
340  auto I = pImpl->AnonStructTypes.find_as(Key);
341  StructType *ST;
342 
343  if (I == pImpl->AnonStructTypes.end()) {
344  // Value not found. Create a new type!
345  ST = new (Context.pImpl->TypeAllocator) StructType(Context);
346  ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
347  ST->setBody(ETypes, isPacked);
348  Context.pImpl->AnonStructTypes.insert(ST);
349  } else {
350  ST = *I;
351  }
352 
353  return ST;
354 }
355 
356 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
357  assert(isOpaque() && "Struct body already set!");
358 
359  setSubclassData(getSubclassData() | SCDB_HasBody);
360  if (isPacked)
361  setSubclassData(getSubclassData() | SCDB_Packed);
362 
363  NumContainedTys = Elements.size();
364 
365  if (Elements.empty()) {
366  ContainedTys = nullptr;
367  return;
368  }
369 
370  ContainedTys = Elements.copy(getContext().pImpl->TypeAllocator).data();
371 }
372 
374  if (Name == getName()) return;
375 
377 
378  using EntryTy = StringMap<StructType *>::MapEntryTy;
379 
380  // If this struct already had a name, remove its symbol table entry. Don't
381  // delete the data yet because it may be part of the new name.
382  if (SymbolTableEntry)
383  SymbolTable.remove((EntryTy *)SymbolTableEntry);
384 
385  // If this is just removing the name, we're done.
386  if (Name.empty()) {
387  if (SymbolTableEntry) {
388  // Delete the old string data.
389  ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
390  SymbolTableEntry = nullptr;
391  }
392  return;
393  }
394 
395  // Look up the entry for the name.
396  auto IterBool =
397  getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
398 
399  // While we have a name collision, try a random rename.
400  if (!IterBool.second) {
401  SmallString<64> TempStr(Name);
402  TempStr.push_back('.');
403  raw_svector_ostream TmpStream(TempStr);
404  unsigned NameSize = Name.size();
405 
406  do {
407  TempStr.resize(NameSize + 1);
408  TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
409 
410  IterBool = getContext().pImpl->NamedStructTypes.insert(
411  std::make_pair(TmpStream.str(), this));
412  } while (!IterBool.second);
413  }
414 
415  // Delete the old string data.
416  if (SymbolTableEntry)
417  ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
418  SymbolTableEntry = &*IterBool.first;
419 }
420 
421 //===----------------------------------------------------------------------===//
422 // StructType Helper functions.
423 
425  StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
426  if (!Name.empty())
427  ST->setName(Name);
428  return ST;
429 }
430 
431 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
432  return get(Context, None, isPacked);
433 }
434 
436  StringRef Name, bool isPacked) {
437  StructType *ST = create(Context, Name);
438  ST->setBody(Elements, isPacked);
439  return ST;
440 }
441 
443  return create(Context, Elements, StringRef());
444 }
445 
447  return create(Context, StringRef());
448 }
449 
451  bool isPacked) {
452  assert(!Elements.empty() &&
453  "This method may not be invoked with an empty list");
454  return create(Elements[0]->getContext(), Elements, Name, isPacked);
455 }
456 
458  assert(!Elements.empty() &&
459  "This method may not be invoked with an empty list");
460  return create(Elements[0]->getContext(), Elements, StringRef());
461 }
462 
464  if ((getSubclassData() & SCDB_IsSized) != 0)
465  return true;
466  if (isOpaque())
467  return false;
468 
469  if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
470  return false;
471 
472  // Okay, our struct is sized if all of the elements are, but if one of the
473  // elements is opaque, the struct isn't sized *yet*, but may become sized in
474  // the future, so just bail out without caching.
475  for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
476  if (!(*I)->isSized(Visited))
477  return false;
478 
479  // Here we cheat a bit and cast away const-ness. The goal is to memoize when
480  // we find a sized type, as types can only move from opaque to sized, not the
481  // other way.
482  const_cast<StructType*>(this)->setSubclassData(
483  getSubclassData() | SCDB_IsSized);
484  return true;
485 }
486 
488  assert(!isLiteral() && "Literal structs never have names");
489  if (!SymbolTableEntry) return StringRef();
490 
491  return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
492 }
493 
495  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
496  !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
497  !ElemTy->isTokenTy();
498 }
499 
501  if (this == Other) return true;
502 
503  if (isPacked() != Other->isPacked())
504  return false;
505 
506  return elements() == Other->elements();
507 }
508 
510  return getContext().pImpl->NamedStructTypes.lookup(Name);
511 }
512 
513 //===----------------------------------------------------------------------===//
514 // CompositeType Implementation
515 //===----------------------------------------------------------------------===//
516 
518  if (auto *STy = dyn_cast<StructType>(this)) {
519  unsigned Idx =
520  (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
521  assert(indexValid(Idx) && "Invalid structure index!");
522  return STy->getElementType(Idx);
523  }
524 
525  return cast<SequentialType>(this)->getElementType();
526 }
527 
528 Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
529  if (auto *STy = dyn_cast<StructType>(this)) {
530  assert(indexValid(Idx) && "Invalid structure index!");
531  return STy->getElementType(Idx);
532  }
533 
534  return cast<SequentialType>(this)->getElementType();
535 }
536 
537 bool CompositeType::indexValid(const Value *V) const {
538  if (auto *STy = dyn_cast<StructType>(this)) {
539  // Structure indexes require (vectors of) 32-bit integer constants. In the
540  // vector case all of the indices must be equal.
541  if (!V->getType()->isIntOrIntVectorTy(32))
542  return false;
543  const Constant *C = dyn_cast<Constant>(V);
544  if (C && V->getType()->isVectorTy())
545  C = C->getSplatValue();
546  const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
547  return CU && CU->getZExtValue() < STy->getNumElements();
548  }
549 
550  // Sequential types can be indexed by any integer.
551  return V->getType()->isIntOrIntVectorTy();
552 }
553 
554 bool CompositeType::indexValid(unsigned Idx) const {
555  if (auto *STy = dyn_cast<StructType>(this))
556  return Idx < STy->getNumElements();
557  // Sequential types can be indexed by any integer.
558  return true;
559 }
560 
561 //===----------------------------------------------------------------------===//
562 // ArrayType Implementation
563 //===----------------------------------------------------------------------===//
564 
565 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
566  : SequentialType(ArrayTyID, ElType, NumEl) {}
567 
568 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
569  assert(isValidElementType(ElementType) && "Invalid type for array element!");
570 
571  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
572  ArrayType *&Entry =
573  pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
574 
575  if (!Entry)
576  Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
577  return Entry;
578 }
579 
581  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
582  !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
583  !ElemTy->isTokenTy();
584 }
585 
586 //===----------------------------------------------------------------------===//
587 // VectorType Implementation
588 //===----------------------------------------------------------------------===//
589 
590 VectorType::VectorType(Type *ElType, unsigned NumEl)
591  : SequentialType(VectorTyID, ElType, NumEl) {}
592 
593 VectorType *VectorType::get(Type *ElementType, unsigned NumElements) {
594  assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
595  assert(isValidElementType(ElementType) && "Element type of a VectorType must "
596  "be an integer, floating point, or "
597  "pointer type.");
598 
599  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
600  VectorType *&Entry = ElementType->getContext().pImpl
601  ->VectorTypes[std::make_pair(ElementType, NumElements)];
602 
603  if (!Entry)
604  Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
605  return Entry;
606 }
607 
609  return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
610  ElemTy->isPointerTy();
611 }
612 
613 //===----------------------------------------------------------------------===//
614 // PointerType Implementation
615 //===----------------------------------------------------------------------===//
616 
618  assert(EltTy && "Can't get a pointer to <null> type!");
619  assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
620 
621  LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
622 
623  // Since AddressSpace #0 is the common case, we special case it.
624  PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
625  : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
626 
627  if (!Entry)
628  Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
629  return Entry;
630 }
631 
632 PointerType::PointerType(Type *E, unsigned AddrSpace)
633  : Type(E->getContext(), PointerTyID), PointeeTy(E) {
634  ContainedTys = &PointeeTy;
635  NumContainedTys = 1;
636  setSubclassData(AddrSpace);
637 }
638 
639 PointerType *Type::getPointerTo(unsigned addrs) const {
640  return PointerType::get(const_cast<Type*>(this), addrs);
641 }
642 
644  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
645  !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
646 }
647 
649  return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
650 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
uint64_t CallInst * C
DenseMap< unsigned, IntegerType * > IntegerTypes
void push_back(const T &Elt)
Definition: SmallVector.h:212
7: Labels
Definition: Type.h:64
static Type * getDoubleTy(LLVMContext &C)
Definition: Type.cpp:165
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:173
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:555
bool isMetadataTy() const
Return true if this is &#39;metadata&#39;.
Definition: Type.h:191
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
Definition: StringMap.h:126
void remove(MapEntryTy *KeyValue)
remove - Remove the specified key/value pair from the map, but do not erase it.
Definition: StringMap.h:436
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:262
2: 32-bit floating point type
Definition: Type.h:59
ArrayRef< Type * > const elements() const
Definition: DerivedTypes.h:305
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE size_t size() const
size - Get the string size.
Definition: StringRef.h:138
static PointerType * getInt32PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:228
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space...
Definition: Type.cpp:617
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:493
4: 80-bit floating point type (X87)
Definition: Type.h:61
static bool isValidReturnType(Type *RetTy)
Return true if the specified type is valid as a return type.
Definition: Type.cpp:321
static bool isLoadableOrStorableType(Type *ElemTy)
Return true if we can load or store from a pointer to this type.
Definition: Type.cpp:648
1: 16-bit floating point type
Definition: Type.h:58
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:177
DenseMap< std::pair< Type *, unsigned >, PointerType * > ASPointerTypes
static Type * getMetadataTy(LLVMContext &C)
Definition: Type.cpp:166
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:227
15: Pointers
Definition: Type.h:75
static bool isValidArgumentType(Type *ArgTy)
Return true if the specified type is valid as an argument type.
Definition: Type.cpp:326
static IntegerType * getInt16Ty(LLVMContext &C)
Definition: Type.cpp:175
static Type * getX86_MMXTy(LLVMContext &C)
Definition: Type.cpp:171
static PointerType * getX86_MMXPtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:208
12: Functions
Definition: Type.h:72
static PointerType * getInt64PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:232
static Type * getX86_FP80Ty(LLVMContext &C)
Definition: Type.cpp:168
Type *const * ContainedTys
A pointer to the array of Types contained by this Type.
Definition: Type.h:111
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:130
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:336
bool indexValid(const Value *V) const
Definition: Type.cpp:537
APInt getMask() const
For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
Definition: Type.cpp:269
static Type * getTokenTy(LLVMContext &C)
Definition: Type.cpp:167
static Type * getFloatTy(LLVMContext &C)
Definition: Type.cpp:164
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:138
bool isFloatingPointTy() const
Return true if this is one of the six floating-point types.
Definition: Type.h:162
Class to represent struct types.
Definition: DerivedTypes.h:201
PointerType * getPointerTo(unsigned AddrSpace=0) const
Return a pointer to the current type.
Definition: Type.cpp:639
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
DenseMap< std::pair< Type *, uint64_t >, ArrayType * > ArrayTypes
static StringRef getName(Value *V)
TypeID
Definitions of all of the base types for the Type system.
Definition: Type.h:55
static PointerType * getInt16PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:224
ArrayRef< T > copy(Allocator &A)
Definition: ArrayRef.h:164
static Type * getPPC_FP128Ty(LLVMContext &C)
Definition: Type.cpp:170
static StructType * get(LLVMContext &Context, ArrayRef< Type *> Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:336
BumpPtrAllocator TypeAllocator
TypeAllocator - All dynamically allocated types are allocated from this.
This file implements a class to represent arbitrary precision integral constant values and operations...
Class to represent function types.
Definition: DerivedTypes.h:103
static Type * getLabelTy(LLVMContext &C)
Definition: Type.cpp:162
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value. ...
Definition: Type.h:241
Class to represent array types.
Definition: DerivedTypes.h:369
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Definition: Type.cpp:608
static PointerType * getDoublePtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:192
LLVM_NODISCARD LLVM_ATTRIBUTE_ALWAYS_INLINE bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:133
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:203
int getFPMantissaWidth() const
Return the width of the mantissa of this type.
Definition: Type.cpp:134
Type(LLVMContext &C, TypeID tid)
Definition: Type.h:91
void setBody(ArrayRef< Type *> Elements, bool isPacked=false)
Specify a body for an opaque identified type.
Definition: Type.cpp:356
Type::subtype_iterator element_iterator
Definition: DerivedTypes.h:301
DenseMap< std::pair< Type *, unsigned >, VectorType * > VectorTypes
Class to represent pointers.
Definition: DerivedTypes.h:467
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:301
11: Arbitrary bit width integers
Definition: Type.h:71
bool isVoidTy() const
Return true if this is &#39;void&#39;.
Definition: Type.h:141
0: type with no size
Definition: Type.h:57
static IntegerType * getInt128Ty(LLVMContext &C)
Definition: Type.cpp:178
bool isLabelTy() const
Return true if this is &#39;label&#39;.
Definition: Type.h:188
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:421
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:69
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:221
LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void * Allocate(size_t Size, size_t Alignment)
Allocate space at the specified alignment.
Definition: Allocator.h:212
10: Tokens
Definition: Type.h:67
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:187
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:363
iterator find_as(const LookupKeyT &Val)
Alternative version of find() which allows a different, and possibly less expensive, key type.
Definition: DenseSet.h:176
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:161
StringRef getName() const
Return the name for this struct type if it has an identity.
Definition: Type.cpp:487
6: 128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:63
static FunctionType * get(Type *Result, ArrayRef< Type *> Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Definition: Type.cpp:297
Class to represent integer types.
Definition: DerivedTypes.h:40
static PointerType * getPPC_FP128PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:204
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Definition: Type.cpp:494
const AMDGPUAS & AS
static PointerType * getFloatPtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:188
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:220
Constant * getSplatValue() const
If this is a splat vector constant, meaning that all of the elements have the same value...
Definition: Constants.cpp:1273
LLVMContextImpl *const pImpl
Definition: LLVMContext.h:71
bool isSized(SmallPtrSetImpl< Type *> *Visited=nullptr) const
isSized - Return true if this is a sized type.
Definition: Type.cpp:463
static Type * getFP128Ty(LLVMContext &C)
Definition: Type.cpp:169
static PointerType * getX86_FP80PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:196
14: Arrays
Definition: Type.h:74
This is the superclass of the array and vector type classes.
Definition: DerivedTypes.h:343
static Type * getHalfTy(LLVMContext &C)
Definition: Type.cpp:163
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:240
static PointerType * getInt1PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:216
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Definition: Type.cpp:643
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
16: SIMD &#39;packed&#39; format, or other vector type
Definition: Type.h:76
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
Module.h This file contains the declarations for the Module class.
AllocatorTy & getAllocator()
Definition: StringMap.h:308
AddressSpace
Definition: NVPTXBaseInfo.h:22
FunctionTypeSet FunctionTypes
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
Definition: Type.cpp:180
static PointerType * getHalfPtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:184
StringRef str()
Return a StringRef for the vector contents.
Definition: raw_ostream.h:518
static Type * getPrimitiveType(LLVMContext &C, TypeID IDNumber)
Return a type based on an identifier.
Definition: Type.cpp:39
static PointerType * getFP128PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:200
8: Metadata
Definition: Type.h:65
Symbol info for RuntimeDyld.
StringMap - This is an unconventional map that is specialized for handling keys that are "strings"...
Definition: StringMap.h:224
Class to represent vector types.
Definition: DerivedTypes.h:393
Class for arbitrary precision integers.
Definition: APInt.h:69
StructTypeSet AnonStructTypes
void setName(StringRef Name)
Change the name of this type to the specified name, or to a name with a suffix if there is a collisio...
Definition: Type.cpp:373
bool isLayoutIdentical(StructType *Other) const
Return true if this is layout identical to the specified struct.
Definition: Type.cpp:500
unsigned getSubclassData() const
Definition: Type.h:95
bool isPowerOf2ByteWidth() const
This method determines if the width of this IntegerType is a power-of-2 in terms of 8 bit bytes...
Definition: Type.cpp:264
bool isPacked() const
Definition: DerivedTypes.h:261
bool isFunctionTy() const
True if this is an instance of FunctionType.
Definition: Type.h:212
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:176
StringMap< StructType * > NamedStructTypes
bool isTokenTy() const
Return true if this is &#39;token&#39;.
Definition: Type.h:194
static bool isValidElementType(Type *ElemTy)
Return true if the specified type is valid as a element type.
Definition: Type.cpp:580
bool canLosslesslyBitCastTo(Type *Ty) const
Return true if this type could be converted with a lossless BitCast to type &#39;Ty&#39;. ...
Definition: Type.cpp:61
#define I(x, y, z)
Definition: MD5.cpp:58
#define N
static bool isValidElementType(Type *Ty)
Predicate for the element types that the SLP vectorizer supports.
static ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
Definition: Type.cpp:568
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
StructType * getTypeByName(StringRef Name) const
Return the type with the specified name, or null if there is none by that name.
Definition: Type.cpp:509
static PointerType * getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS=0)
Definition: Type.cpp:212
3: 64-bit floating point type
Definition: Type.h:60
void setSubclassData(unsigned val)
Definition: Type.h:97
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
LLVM Value Representation.
Definition: Value.h:73
static VectorType * get(Type *ElementType, unsigned NumElements)
This static method is the primary way to construct an VectorType.
Definition: Type.cpp:593
static StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition: Type.cpp:424
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:49
DenseMap< Type *, PointerType * > PointerTypes
bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty...
Definition: Type.cpp:98
9: MMX vectors (64 bits, X86 specific)
Definition: Type.h:66
static IntegerType * getInt8Ty(LLVMContext &C)
Definition: Type.cpp:174
unsigned NumContainedTys
Keeps track of how many Type*&#39;s there are in the ContainedTys list.
Definition: Type.h:104
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:144
Type * getTypeAtIndex(const Value *V) const
Given an index value into the type, return the type of the element.
Definition: Type.cpp:517
5: 128-bit floating point type (112-bit mantissa)
Definition: Type.h:62
void resize(size_type N)
Definition: SmallVector.h:355