test-suite Guide¶
Quickstart¶
The lit test runner is required to run the tests. You can either use one from an LLVM build:
% <path to llvm build>/bin/llvm-lit --version lit 20.0.0dev
An alternative is installing it as a Python package in a Python virtual environment:
% python3 -m venv .venv % . .venv/bin/activate % pip install git+https://github.com/llvm/llvm-project.git#subdirectory=llvm/utils/lit % lit --version lit 20.0.0dev
Installing the official Python release of lit in a Python virtual environment could also work. This will install the most recent release of lit:
% python3 -m venv .venv % . .venv/bin/activate % pip install lit % lit --version lit 18.1.8
Please note that recent tests may rely on features not in the latest released lit. If in doubt, try one of the previous methods.
Check out the
test-suite
module with:% git clone https://github.com/llvm/llvm-test-suite.git test-suite
Create a build directory and use CMake to configure the suite. Use the
CMAKE_C_COMPILER
option to specify the compiler to test. Use a cache file to choose a typical build configuration:% mkdir test-suite-build % cd test-suite-build % cmake -DCMAKE_C_COMPILER=<path to llvm build>/bin/clang \ -C../test-suite/cmake/caches/O3.cmake \ ../test-suite
NOTE! if you are using your built clang, and you want to build and run the
MicroBenchmarks/XRay microbenchmarks, you need to add compiler-rt
to your
LLVM_ENABLE_RUNTIMES
cmake flag.
Build the benchmarks:
% make Scanning dependencies of target timeit-target [ 0%] Building C object tools/CMakeFiles/timeit-target.dir/timeit.c.o [ 0%] Linking C executable timeit-target ...
Run the tests with lit:
% llvm-lit -v -j 1 -o results.json . -- Testing: 474 tests, 1 threads -- PASS: test-suite :: MultiSource/Applications/ALAC/decode/alacconvert-decode.test (1 of 474) ********** TEST 'test-suite :: MultiSource/Applications/ALAC/decode/alacconvert-decode.test' RESULTS ********** compile_time: 0.2192 exec_time: 0.0462 hash: "59620e187c6ac38b36382685ccd2b63b" size: 83348 ********** PASS: test-suite :: MultiSource/Applications/ALAC/encode/alacconvert-encode.test (2 of 474) ...
NOTE! even in the case you only want to get the compile-time results(code size, llvm stats etc),
you need to run the test with the above llvm-lit
command. In that case, the results.json file will
contain compile-time metrics.
Show and compare result files (optional):
# Make sure pandas and scipy are installed. Prepend `sudo` if necessary. % pip install pandas scipy # Show a single result file: % test-suite/utils/compare.py results.json # Compare two result files: % test-suite/utils/compare.py results_a.json results_b.json
Structure¶
The test-suite contains benchmark and test programs. The programs come with reference outputs so that their correctness can be checked. The suite comes with tools to collect metrics such as benchmark runtime, compilation time and code size.
The test-suite is divided into several directories:
SingleSource/
Contains test programs that are only a single source file in size. A subdirectory may contain several programs.
MultiSource/
Contains subdirectories which entire programs with multiple source files. Large benchmarks and whole applications go here.
MicroBenchmarks/
Programs using the google-benchmark library. The programs define functions that are run multiple times until the measurement results are statistically significant.
External/
Contains descriptions and test data for code that cannot be directly distributed with the test-suite. The most prominent members of this directory are the SPEC CPU benchmark suites. See External Suites.
Bitcode/
These tests are mostly written in LLVM bitcode.
CTMark/
Contains symbolic links to other benchmarks forming a representative sample for compilation performance measurements.
Benchmarks¶
Every program can work as a correctness test. Some programs are unsuitable for
performance measurements. Setting the TEST_SUITE_BENCHMARKING_ONLY
CMake
option to ON
will disable them.
The MultiSource benchmarks consist of the following apps and benchmarks:
MultiSource |
Language |
Application Area |
Remark |
---|---|---|---|
7zip |
C/C++ |
Compression/Decompression |
|
ASCI_Purple |
C |
SMG2000 benchmark and solver |
Memory intensive app |
ASC_Sequoia |
C |
Simulation and solver |
|
BitBench |
C |
uudecode/uuencode utility |
Bit Stream benchmark for functional compilers |
Bullet |
C++ |
Bullet 2.75 physics engine |
|
DOE-ProxyApps-C++ |
C++ |
HPC/scientific apps |
Small applications, representative of our larger DOE workloads |
DOE-ProxyApps-C |
C |
HPC/scientific apps |
“ |
Fhourstones |
C |
Game/solver |
Integer benchmark that efficiently solves positions in the game of Connect-4 |
Fhourstones-3.1 |
C |
Game/solver |
“ |
FreeBench |
C |
Benchmark suite |
Raytracer, four in a row, neural network, file compressor, Fast Fourier/Cosine/Sine Transform |
llubenchmark |
C |
Linked-list micro-benchmark |
|
mafft |
C |
Bioinformatics |
A multiple sequence alignment program |
MallocBench |
C |
Benchmark suite |
cfrac, espresso, gawk, gs, make, p2c, perl |
McCat |
C |
Benchmark suite |
Quicksort, bubblesort, eigenvalues |
mediabench |
C |
Benchmark suite |
adpcm, g721, gsm, jpeg, mpeg2 |
MiBench |
C |
Embedded benchmark suite |
Automotive, consumer, office, security, telecom apps |
nbench |
C |
BYTE Magazine’s BYTEmark benchmark program |
|
NPB-serial |
C |
Parallel computing |
Serial version of the NPB IS code |
Olden |
C |
Data Structures |
SGI version of the Olden benchmark |
OptimizerEval |
C |
Solver |
Preston Brigg’s optimizer evaluation framework |
PAQ8p |
C++ |
Data compression |
|
Prolangs-C++ |
C++ |
Benchmark suite |
city, employ, life, NP, ocean, primes, simul, vcirc |
Prolangs-C |
C |
Benchmark suite |
agrep, archie-client, bison, gnugo, unix-smail |
Ptrdist |
C |
Pointer-Intensive Benchmark Suite |
|
Rodinia |
C |
Scientific apps |
backprop, pathfinder, srad |
SciMark2-C |
C |
Scientific apps |
FFT, LU, Montecarlo, sparse matmul |
sim |
C |
Dynamic programming |
A Time-Efficient, Linear-Space Local Similarity Algorithm |
tramp3d-v4 |
C++ |
Numerical analysis |
Template-intensive numerical program based on FreePOOMA |
Trimaran |
C |
Encryption |
3des, md5, crc |
TSVC |
C |
Vectorization benchmark |
Test Suite for Vectorizing Compilers (TSVC) |
VersaBench |
C |
Benchmark suite |
8b10b, beamformer, bmm, dbms, ecbdes |
All MultiSource applications are suitable for performance measurements
and will run when CMake option TEST_SUITE_BENCHMARKING_ONLY
is set.
Configuration¶
The test-suite has configuration options to customize building and running the benchmarks. CMake can print a list of them:
% cd test-suite-build
# Print basic options:
% cmake -LH
# Print all options:
% cmake -LAH
Common Configuration Options¶
CMAKE_C_FLAGS
Specify extra flags to be passed to C compiler invocations. The flags are also passed to the C++ compiler and linker invocations. See https://cmake.org/cmake/help/latest/variable/CMAKE_LANG_FLAGS.html
CMAKE_C_COMPILER
Select the C compiler executable to be used. Note that the C++ compiler is inferred automatically i.e. when specifying
path/to/clang
CMake will automatically usepath/to/clang++
as the C++ compiler. See https://cmake.org/cmake/help/latest/variable/CMAKE_LANG_COMPILER.htmlCMAKE_Fortran_COMPILER
Select the Fortran compiler executable to be used. Not set by default and not required unless running the Fortran Test Suite.
CMAKE_BUILD_TYPE
Select a build type like
OPTIMIZE
orDEBUG
selecting a set of predefined compiler flags. These flags are applied regardless of theCMAKE_C_FLAGS
option and may be changed by modifyingCMAKE_C_FLAGS_OPTIMIZE
etc. See https://cmake.org/cmake/help/latest/variable/CMAKE_BUILD_TYPE.htmlTEST_SUITE_FORTRAN
Activate that Fortran tests. This is a work in progress. More information can be found in the Flang documentation
TEST_SUITE_RUN_UNDER
Prefix test invocations with the given tool. This is typically used to run cross-compiled tests within a simulator tool.
TEST_SUITE_BENCHMARKING_ONLY
Disable tests that are unsuitable for performance measurements. The disabled tests either run for a very short time or are dominated by I/O performance making them unsuitable as compiler performance tests.
TEST_SUITE_SUBDIRS
Semicolon-separated list of directories to include. This can be used to only build parts of the test-suite or to include external suites. This option does not work reliably with deeper subdirectories as it skips intermediate
CMakeLists.txt
files which may be required.TEST_SUITE_COLLECT_STATS
Collect internal LLVM statistics. Appends
-save-stats=obj
when invoking the compiler and makes the lit runner collect and merge the statistic files.TEST_SUITE_RUN_BENCHMARKS
If this is set to
OFF
then lit will not actually run the tests but just collect build statistics like compile time and code size.TEST_SUITE_USE_PERF
Use the
perf
tool for time measurement instead of thetimeit
tool that comes with the test-suite. Theperf
is usually available on linux systems.TEST_SUITE_SPEC2000_ROOT
,TEST_SUITE_SPEC2006_ROOT
,TEST_SUITE_SPEC2017_ROOT
, …Specify installation directories of external benchmark suites. You can find more information about expected versions or usage in the README files in the
External
directory (such asExternal/SPEC/README
)
Common CMake Flags¶
-GNinja
Generate build files for the ninja build tool.
-Ctest-suite/cmake/caches/<cachefile.cmake>
Use a CMake cache. The test-suite comes with several CMake caches which predefine common or tricky build configurations.
Displaying and Analyzing Results¶
The compare.py
script displays and compares result files. A result file is
produced when invoking lit with the -o filename.json
flag.
Example usage:
Basic Usage:
% test-suite/utils/compare.py baseline.json Warning: 'test-suite :: External/SPEC/CINT2006/403.gcc/403.gcc.test' has No metrics! Tests: 508 Metric: exec_time Program baseline INT2006/456.hmmer/456.hmmer 1222.90 INT2006/464.h264ref/464.h264ref 928.70 ... baseline count 506.000000 mean 20.563098 std 111.423325 min 0.003400 25% 0.011200 50% 0.339450 75% 4.067200 max 1222.896800
Show compile_time or text segment size metrics:
% test-suite/utils/compare.py -m compile_time baseline.json % test-suite/utils/compare.py -m size.__text baseline.json
Compare two result files and filter short running tests:
% test-suite/utils/compare.py --filter-short baseline.json experiment.json ... Program baseline experiment diff SingleSour.../Benchmarks/Linpack/linpack-pc 5.16 4.30 -16.5% MultiSourc...erolling-dbl/LoopRerolling-dbl 7.01 7.86 12.2% SingleSour...UnitTests/Vectorizer/gcc-loops 3.89 3.54 -9.0% ...
Merge multiple baseline and experiment result files by taking the minimum runtime each:
% test-suite/utils/compare.py base0.json base1.json base2.json vs exp0.json exp1.json exp2.json
Continuous Tracking with LNT¶
LNT is a set of client and server tools for continuously monitoring performance. You can find more information at https://llvm.org/docs/lnt. The official LNT instance of the LLVM project is hosted at http://lnt.llvm.org.
External Suites¶
External suites such as SPEC can be enabled by either
placing (or linking) them into the
test-suite/test-suite-externals/xxx
directory (example:test-suite/test-suite-externals/speccpu2000
)using a configuration option such as
-D TEST_SUITE_SPEC2000_ROOT=path/to/speccpu2000
You can find further information in the respective README files such as
test-suite/External/SPEC/README
.
For the SPEC benchmarks you can switch between the test
, train
and
ref
input datasets via the TEST_SUITE_RUN_TYPE
configuration option.
The train
dataset is used by default.
In addition to SPEC, the multimedia frameworks ffmpeg and dav1d can also be hooked up as external projects in the same way. By including them in llvm-test-suite, a lot more of potentially vectorizable code gets compiled
which can catch compiler bugs merely by triggering code generation asserts. Including them also adds small code correctness tests, that compare the output of the compiler generated functions against handwritten assembly functions. (On x86, building the assembly requires having the nasm tool available.) The integration into llvm-test-suite doesn’t run the projects’ full testsuites though. The projects also contain microbenchmarks for measuring the performance of some functions. See the
README.md
files in the respectiveffmpeg
anddav1d
directories underllvm-test-suite/External
for further details.
Custom Suites¶
You can build custom suites using the test-suite infrastructure. A custom suite
has a CMakeLists.txt
file at the top directory. The CMakeLists.txt
will be
picked up automatically if placed into a subdirectory of the test-suite or when
setting the TEST_SUITE_SUBDIRS
variable:
% cmake -DTEST_SUITE_SUBDIRS=path/to/my/benchmark-suite ../test-suite
Profile Guided Optimization¶
Profile guided optimization requires to compile and run twice. First the
benchmark should be compiled with profile generation instrumentation enabled
and setup for training data. The lit runner will merge the profile files
using llvm-profdata
so they can be used by the second compilation run.
Example:
# Profile generation run using LLVM IR PGO:
% cmake -DTEST_SUITE_PROFILE_GENERATE=ON \
-DTEST_SUITE_USE_IR_PGO=ON \
-DTEST_SUITE_RUN_TYPE=train \
../test-suite
% make
% llvm-lit .
# Use the profile data for compilation and actual benchmark run:
% cmake -DTEST_SUITE_PROFILE_GENERATE=OFF \
-DTEST_SUITE_PROFILE_USE=ON \
-DTEST_SUITE_RUN_TYPE=ref \
.
% make
% llvm-lit -o result.json .
To use Clang frontend’s PGO instead of LLVM IR PGO, set -DTEST_SUITE_USE_IR_PGO=OFF
.
The TEST_SUITE_RUN_TYPE
setting only affects the SPEC benchmark suites.
Cross Compilation and External Devices¶
Compilation¶
CMake allows to cross compile to a different target via toolchain files. More information can be found here:
Cross compilation from macOS to iOS is possible with the
test-suite/cmake/caches/target-target-*-iphoneos-internal.cmake
CMake cache
files; this requires an internal iOS SDK.
Running¶
There are two ways to run the tests in a cross compilation setting:
Via SSH connection to an external device: The
TEST_SUITE_REMOTE_HOST
option should be set to the SSH hostname. The executables and data files need to be transferred to the device after compilation. This is typically done via thersync
make target. After this, the lit runner can be used on the host machine. It will prefix the benchmark and verification command lines with anssh
command.Example:
% cmake -G Ninja -D CMAKE_C_COMPILER=path/to/clang \ -C ../test-suite/cmake/caches/target-arm64-iphoneos-internal.cmake \ -D CMAKE_BUILD_TYPE=Release \ -D TEST_SUITE_REMOTE_HOST=mydevice \ ../test-suite % ninja % ninja rsync % llvm-lit -j1 -o result.json .
You can specify a simulator for the target machine with the
TEST_SUITE_RUN_UNDER
setting. The lit runner will prefix all benchmark invocations with it.
Running the test-suite via LNT¶
The LNT tool can run the test-suite. Use this when submitting test results to an LNT instance. See https://llvm.org/docs/lnt/tests.html#llvm-cmake-test-suite for details.
Running the test-suite via Makefiles (deprecated)¶
Note: The test-suite comes with a set of Makefiles that are considered
deprecated. They do not support newer testing modes like Bitcode
or
Microbenchmarks
and are harder to use.
Old documentation is available in the test-suite Makefile Guide.