LLVM 20.0.0git
DeltaTree.cpp
Go to the documentation of this file.
1//===- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the DeltaTree and related classes.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/DeltaTree.h"
15#include <cassert>
16#include <cstring>
17
18using namespace llvm;
19
20/// The DeltaTree class is a multiway search tree (BTree) structure with some
21/// fancy features. B-Trees are generally more memory and cache efficient
22/// than binary trees, because they store multiple keys/values in each node.
23///
24/// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
25/// fast lookup by FileIndex. However, an added (important) bonus is that it
26/// can also efficiently tell us the full accumulated delta for a specific
27/// file offset as well, without traversing the whole tree.
28///
29/// The nodes of the tree are made up of instances of two classes:
30/// DeltaTreeNode and DeltaTreeInteriorNode. The later subclasses the
31/// former and adds children pointers. Each node knows the full delta of all
32/// entries (recursively) contained inside of it, which allows us to get the
33/// full delta implied by a whole subtree in constant time.
34
35namespace {
36
37/// SourceDelta - As code in the original input buffer is added and deleted,
38/// SourceDelta records are used to keep track of how the input SourceLocation
39/// object is mapped into the output buffer.
40struct SourceDelta {
41 unsigned FileLoc;
42 int Delta;
43
44 static SourceDelta get(unsigned Loc, int D) {
45 SourceDelta Delta;
46 Delta.FileLoc = Loc;
47 Delta.Delta = D;
48 return Delta;
49 }
50};
51
52/// DeltaTreeNode - The common part of all nodes.
53///
54class DeltaTreeNode {
55public:
56 struct InsertResult {
57 DeltaTreeNode *LHS, *RHS;
58 SourceDelta Split;
59 };
60
61private:
62 friend class DeltaTreeInteriorNode;
63
64 /// WidthFactor - This controls the number of K/V slots held in the BTree:
65 /// how wide it is. Each level of the BTree is guaranteed to have at least
66 /// WidthFactor-1 K/V pairs (except the root) and may have at most
67 /// 2*WidthFactor-1 K/V pairs.
68 enum { WidthFactor = 8 };
69
70 /// Values - This tracks the SourceDelta's currently in this node.
71 SourceDelta Values[2 * WidthFactor - 1];
72
73 /// NumValuesUsed - This tracks the number of values this node currently
74 /// holds.
75 unsigned char NumValuesUsed = 0;
76
77 /// IsLeaf - This is true if this is a leaf of the btree. If false, this is
78 /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
79 bool IsLeaf;
80
81 /// FullDelta - This is the full delta of all the values in this node and
82 /// all children nodes.
83 int FullDelta = 0;
84
85public:
86 DeltaTreeNode(bool isLeaf = true) : IsLeaf(isLeaf) {}
87
88 bool isLeaf() const { return IsLeaf; }
89 int getFullDelta() const { return FullDelta; }
90 bool isFull() const { return NumValuesUsed == 2 * WidthFactor - 1; }
91
92 unsigned getNumValuesUsed() const { return NumValuesUsed; }
93
94 const SourceDelta &getValue(unsigned i) const {
95 assert(i < NumValuesUsed && "Invalid value #");
96 return Values[i];
97 }
98
99 SourceDelta &getValue(unsigned i) {
100 assert(i < NumValuesUsed && "Invalid value #");
101 return Values[i];
102 }
103
104 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
105 /// this node. If insertion is easy, do it and return false. Otherwise,
106 /// split the node, populate InsertRes with info about the split, and return
107 /// true.
108 bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
109
110 void DoSplit(InsertResult &InsertRes);
111
112 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
113 /// local walk over our contained deltas.
114 void RecomputeFullDeltaLocally();
115
116 void Destroy();
117};
118
119/// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
120/// This class tracks them.
121class DeltaTreeInteriorNode : public DeltaTreeNode {
122 friend class DeltaTreeNode;
123
124 DeltaTreeNode *Children[2 * WidthFactor];
125
126 ~DeltaTreeInteriorNode() {
127 for (unsigned i = 0, e = NumValuesUsed + 1; i != e; ++i)
128 Children[i]->Destroy();
129 }
130
131public:
132 DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
133
134 DeltaTreeInteriorNode(const InsertResult &IR)
135 : DeltaTreeNode(false /*nonleaf*/) {
136 Children[0] = IR.LHS;
137 Children[1] = IR.RHS;
138 Values[0] = IR.Split;
139 FullDelta =
140 IR.LHS->getFullDelta() + IR.RHS->getFullDelta() + IR.Split.Delta;
141 NumValuesUsed = 1;
142 }
143
144 const DeltaTreeNode *getChild(unsigned i) const {
145 assert(i < getNumValuesUsed() + 1 && "Invalid child");
146 return Children[i];
147 }
148
149 DeltaTreeNode *getChild(unsigned i) {
150 assert(i < getNumValuesUsed() + 1 && "Invalid child");
151 return Children[i];
152 }
153
154 static bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
155};
156
157} // namespace
158
159/// Destroy - A 'virtual' destructor.
160void DeltaTreeNode::Destroy() {
161 if (isLeaf())
162 delete this;
163 else
164 delete cast<DeltaTreeInteriorNode>(this);
165}
166
167/// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
168/// local walk over our contained deltas.
169void DeltaTreeNode::RecomputeFullDeltaLocally() {
170 int NewFullDelta = 0;
171 for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
172 NewFullDelta += Values[i].Delta;
173 if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this))
174 for (unsigned i = 0, e = getNumValuesUsed() + 1; i != e; ++i)
175 NewFullDelta += IN->getChild(i)->getFullDelta();
176 FullDelta = NewFullDelta;
177}
178
179/// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
180/// this node. If insertion is easy, do it and return false. Otherwise,
181/// split the node, populate InsertRes with info about the split, and return
182/// true.
183bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
184 InsertResult *InsertRes) {
185 // Maintain full delta for this node.
186 FullDelta += Delta;
187
188 // Find the insertion point, the first delta whose index is >= FileIndex.
189 unsigned i = 0, e = getNumValuesUsed();
190 while (i != e && FileIndex > getValue(i).FileLoc)
191 ++i;
192
193 // If we found an a record for exactly this file index, just merge this
194 // value into the pre-existing record and finish early.
195 if (i != e && getValue(i).FileLoc == FileIndex) {
196 // NOTE: Delta could drop to zero here. This means that the delta entry is
197 // useless and could be removed. Supporting erases is more complex than
198 // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
199 // the tree.
200 Values[i].Delta += Delta;
201 return false;
202 }
203
204 // Otherwise, we found an insertion point, and we know that the value at the
205 // specified index is > FileIndex. Handle the leaf case first.
206 if (isLeaf()) {
207 if (!isFull()) {
208 // For an insertion into a non-full leaf node, just insert the value in
209 // its sorted position. This requires moving later values over.
210 if (i != e)
211 memmove(&Values[i + 1], &Values[i], sizeof(Values[0]) * (e - i));
212 Values[i] = SourceDelta::get(FileIndex, Delta);
213 ++NumValuesUsed;
214 return false;
215 }
216
217 // Otherwise, if this is leaf is full, split the node at its median, insert
218 // the value into one of the children, and return the result.
219 assert(InsertRes && "No result location specified");
220 DoSplit(*InsertRes);
221
222 if (InsertRes->Split.FileLoc > FileIndex)
223 InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
224 else
225 InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
226 return true;
227 }
228
229 // Otherwise, this is an interior node. Send the request down the tree.
230 auto *IN = cast<DeltaTreeInteriorNode>(this);
231 if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
232 return false; // If there was space in the child, just return.
233
234 // Okay, this split the subtree, producing a new value and two children to
235 // insert here. If this node is non-full, we can just insert it directly.
236 if (!isFull()) {
237 // Now that we have two nodes and a new element, insert the perclated value
238 // into ourself by moving all the later values/children down, then inserting
239 // the new one.
240 if (i != e)
241 memmove(&IN->Children[i + 2], &IN->Children[i + 1],
242 (e - i) * sizeof(IN->Children[0]));
243 IN->Children[i] = InsertRes->LHS;
244 IN->Children[i + 1] = InsertRes->RHS;
245
246 if (e != i)
247 memmove(&Values[i + 1], &Values[i], (e - i) * sizeof(Values[0]));
248 Values[i] = InsertRes->Split;
249 ++NumValuesUsed;
250 return false;
251 }
252
253 // Finally, if this interior node was full and a node is percolated up, split
254 // ourself and return that up the chain. Start by saving all our info to
255 // avoid having the split clobber it.
256 IN->Children[i] = InsertRes->LHS;
257 DeltaTreeNode *SubRHS = InsertRes->RHS;
258 SourceDelta SubSplit = InsertRes->Split;
259
260 // Do the split.
261 DoSplit(*InsertRes);
262
263 // Figure out where to insert SubRHS/NewSplit.
264 DeltaTreeInteriorNode *InsertSide;
265 if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
266 InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
267 else
268 InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
269
270 // We now have a non-empty interior node 'InsertSide' to insert
271 // SubRHS/SubSplit into. Find out where to insert SubSplit.
272
273 // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
274 i = 0;
275 e = InsertSide->getNumValuesUsed();
276 while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
277 ++i;
278
279 // Now we know that i is the place to insert the split value into. Insert it
280 // and the child right after it.
281 if (i != e)
282 memmove(&InsertSide->Children[i + 2], &InsertSide->Children[i + 1],
283 (e - i) * sizeof(IN->Children[0]));
284 InsertSide->Children[i + 1] = SubRHS;
285
286 if (e != i)
287 memmove(&InsertSide->Values[i + 1], &InsertSide->Values[i],
288 (e - i) * sizeof(Values[0]));
289 InsertSide->Values[i] = SubSplit;
290 ++InsertSide->NumValuesUsed;
291 InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
292 return true;
293}
294
295/// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
296/// into two subtrees each with "WidthFactor-1" values and a pivot value.
297/// Return the pieces in InsertRes.
298void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
299 assert(isFull() && "Why split a non-full node?");
300
301 // Since this node is full, it contains 2*WidthFactor-1 values. We move
302 // the first 'WidthFactor-1' values to the LHS child (which we leave in this
303 // node), propagate one value up, and move the last 'WidthFactor-1' values
304 // into the RHS child.
305
306 // Create the new child node.
307 DeltaTreeNode *NewNode;
308 if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
309 // If this is an interior node, also move over 'WidthFactor' children
310 // into the new node.
311 DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
312 memcpy(&New->Children[0], &IN->Children[WidthFactor],
313 WidthFactor * sizeof(IN->Children[0]));
314 NewNode = New;
315 } else {
316 // Just create the new leaf node.
317 NewNode = new DeltaTreeNode();
318 }
319
320 // Move over the last 'WidthFactor-1' values from here to NewNode.
321 memcpy(&NewNode->Values[0], &Values[WidthFactor],
322 (WidthFactor - 1) * sizeof(Values[0]));
323
324 // Decrease the number of values in the two nodes.
325 NewNode->NumValuesUsed = NumValuesUsed = WidthFactor - 1;
326
327 // Recompute the two nodes' full delta.
328 NewNode->RecomputeFullDeltaLocally();
329 RecomputeFullDeltaLocally();
330
331 InsertRes.LHS = this;
332 InsertRes.RHS = NewNode;
333 InsertRes.Split = Values[WidthFactor - 1];
334}
335
336//===----------------------------------------------------------------------===//
337// DeltaTree Implementation
338//===----------------------------------------------------------------------===//
339
340// #define VERIFY_TREE
341
342#ifdef VERIFY_TREE
343/// VerifyTree - Walk the btree performing assertions on various properties to
344/// verify consistency. This is useful for debugging new changes to the tree.
345static void VerifyTree(const DeltaTreeNode *N) {
346 const auto *IN = dyn_cast<DeltaTreeInteriorNode>(N);
347 if (IN == 0) {
348 // Verify leaves, just ensure that FullDelta matches up and the elements
349 // are in proper order.
350 int FullDelta = 0;
351 for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
352 if (i)
353 assert(N->getValue(i - 1).FileLoc < N->getValue(i).FileLoc);
354 FullDelta += N->getValue(i).Delta;
355 }
356 assert(FullDelta == N->getFullDelta());
357 return;
358 }
359
360 // Verify interior nodes: Ensure that FullDelta matches up and the
361 // elements are in proper order and the children are in proper order.
362 int FullDelta = 0;
363 for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
364 const SourceDelta &IVal = N->getValue(i);
365 const DeltaTreeNode *IChild = IN->getChild(i);
366 if (i)
367 assert(IN->getValue(i - 1).FileLoc < IVal.FileLoc);
368 FullDelta += IVal.Delta;
369 FullDelta += IChild->getFullDelta();
370
371 // The largest value in child #i should be smaller than FileLoc.
372 assert(IChild->getValue(IChild->getNumValuesUsed() - 1).FileLoc <
373 IVal.FileLoc);
374
375 // The smallest value in child #i+1 should be larger than FileLoc.
376 assert(IN->getChild(i + 1)->getValue(0).FileLoc > IVal.FileLoc);
377 VerifyTree(IChild);
378 }
379
380 FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
381
382 assert(FullDelta == N->getFullDelta());
383}
384#endif // VERIFY_TREE
385
386static DeltaTreeNode *getRoot(void *Root) { return (DeltaTreeNode *)Root; }
387
388DeltaTree::DeltaTree() { Root = new DeltaTreeNode(); }
389
391 // Currently we only support copying when the RHS is empty.
392 assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
393 "Can only copy empty tree");
394 Root = new DeltaTreeNode();
395}
396
397DeltaTree::~DeltaTree() { getRoot(Root)->Destroy(); }
398
399/// getDeltaAt - Return the accumulated delta at the specified file offset.
400/// This includes all insertions or delections that occurred *before* the
401/// specified file index.
402int DeltaTree::getDeltaAt(unsigned FileIndex) const {
403 const DeltaTreeNode *Node = getRoot(Root);
404
405 int Result = 0;
406
407 // Walk down the tree.
408 while (true) {
409 // For all nodes, include any local deltas before the specified file
410 // index by summing them up directly. Keep track of how many were
411 // included.
412 unsigned NumValsGreater = 0;
413 for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
414 ++NumValsGreater) {
415 const SourceDelta &Val = Node->getValue(NumValsGreater);
416
417 if (Val.FileLoc >= FileIndex)
418 break;
419 Result += Val.Delta;
420 }
421
422 // If we have an interior node, include information about children and
423 // recurse. Otherwise, if we have a leaf, we're done.
424 const auto *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
425 if (!IN)
426 return Result;
427
428 // Include any children to the left of the values we skipped, all of
429 // their deltas should be included as well.
430 for (unsigned i = 0; i != NumValsGreater; ++i)
431 Result += IN->getChild(i)->getFullDelta();
432
433 // If we found exactly the value we were looking for, break off the
434 // search early. There is no need to search the RHS of the value for
435 // partial results.
436 if (NumValsGreater != Node->getNumValuesUsed() &&
437 Node->getValue(NumValsGreater).FileLoc == FileIndex)
438 return Result + IN->getChild(NumValsGreater)->getFullDelta();
439
440 // Otherwise, traverse down the tree. The selected subtree may be
441 // partially included in the range.
442 Node = IN->getChild(NumValsGreater);
443 }
444 // NOT REACHED.
445}
446
447/// AddDelta - When a change is made that shifts around the text buffer,
448/// this method is used to record that info. It inserts a delta of 'Delta'
449/// into the current DeltaTree at offset FileIndex.
450void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
451 assert(Delta && "Adding a noop?");
452 DeltaTreeNode *MyRoot = getRoot(Root);
453
454 DeltaTreeNode::InsertResult InsertRes;
455 if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
456 Root = new DeltaTreeInteriorNode(InsertRes);
457#ifdef VERIFY_TREE
458 MyRoot = Root;
459#endif
460 }
461
462#ifdef VERIFY_TREE
463 VerifyTree(MyRoot);
464#endif
465}
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static DeltaTreeNode * getRoot(void *Root)
Definition: DeltaTree.cpp:386
Legalize the Machine IR a function s Machine IR
Definition: Legalizer.cpp:81
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
DeltaTree - a multiway search tree (BTree) structure with some fancy features.
Definition: DeltaTree.h:25
void AddDelta(unsigned FileIndex, int Delta)
AddDelta - When a change is made that shifts around the text buffer, this method is used to record th...
Definition: DeltaTree.cpp:450
int getDeltaAt(unsigned FileIndex) const
getDeltaAt - Return the accumulated delta at the specified file offset.
Definition: DeltaTree.cpp:402
constexpr double e
Definition: MathExtras.h:47
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
#define N