LLVM API Documentation

IRBuilder.h
Go to the documentation of this file.
00001 //===---- llvm/IRBuilder.h - Builder for LLVM Instructions ------*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines the IRBuilder class, which is used as a convenient way
00011 // to create LLVM instructions with a consistent and simplified interface.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #ifndef LLVM_IR_IRBUILDER_H
00016 #define LLVM_IR_IRBUILDER_H
00017 
00018 #include "llvm/ADT/ArrayRef.h"
00019 #include "llvm/ADT/StringRef.h"
00020 #include "llvm/ADT/Twine.h"
00021 #include "llvm/IR/BasicBlock.h"
00022 #include "llvm/IR/ConstantFolder.h"
00023 #include "llvm/IR/DataLayout.h"
00024 #include "llvm/IR/Instructions.h"
00025 #include "llvm/IR/LLVMContext.h"
00026 #include "llvm/IR/Operator.h"
00027 #include "llvm/IR/ValueHandle.h"
00028 #include "llvm/Support/CBindingWrapping.h"
00029 
00030 namespace llvm {
00031   class MDNode;
00032 
00033 /// \brief This provides the default implementation of the IRBuilder
00034 /// 'InsertHelper' method that is called whenever an instruction is created by
00035 /// IRBuilder and needs to be inserted.
00036 ///
00037 /// By default, this inserts the instruction at the insertion point.
00038 template <bool preserveNames = true>
00039 class IRBuilderDefaultInserter {
00040 protected:
00041   void InsertHelper(Instruction *I, const Twine &Name,
00042                     BasicBlock *BB, BasicBlock::iterator InsertPt) const {
00043     if (BB) BB->getInstList().insert(InsertPt, I);
00044     if (preserveNames)
00045       I->setName(Name);
00046   }
00047 };
00048 
00049 /// \brief Common base class shared among various IRBuilders.
00050 class IRBuilderBase {
00051   DebugLoc CurDbgLocation;
00052 protected:
00053   BasicBlock *BB;
00054   BasicBlock::iterator InsertPt;
00055   LLVMContext &Context;
00056 
00057   MDNode *DefaultFPMathTag;
00058   FastMathFlags FMF;
00059 public:
00060 
00061   IRBuilderBase(LLVMContext &context, MDNode *FPMathTag = nullptr)
00062     : Context(context), DefaultFPMathTag(FPMathTag), FMF() {
00063     ClearInsertionPoint();
00064   }
00065 
00066   //===--------------------------------------------------------------------===//
00067   // Builder configuration methods
00068   //===--------------------------------------------------------------------===//
00069 
00070   /// \brief Clear the insertion point: created instructions will not be
00071   /// inserted into a block.
00072   void ClearInsertionPoint() {
00073     BB = nullptr;
00074     InsertPt = nullptr;
00075   }
00076 
00077   BasicBlock *GetInsertBlock() const { return BB; }
00078   BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
00079   LLVMContext &getContext() const { return Context; }
00080 
00081   /// \brief This specifies that created instructions should be appended to the
00082   /// end of the specified block.
00083   void SetInsertPoint(BasicBlock *TheBB) {
00084     BB = TheBB;
00085     InsertPt = BB->end();
00086   }
00087 
00088   /// \brief This specifies that created instructions should be inserted before
00089   /// the specified instruction.
00090   void SetInsertPoint(Instruction *I) {
00091     BB = I->getParent();
00092     InsertPt = I;
00093     assert(I != BB->end() && "Can't read debug loc from end()");
00094     SetCurrentDebugLocation(I->getDebugLoc());
00095   }
00096 
00097   /// \brief This specifies that created instructions should be inserted at the
00098   /// specified point.
00099   void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
00100     BB = TheBB;
00101     InsertPt = IP;
00102   }
00103 
00104   /// \brief Find the nearest point that dominates this use, and specify that
00105   /// created instructions should be inserted at this point.
00106   void SetInsertPoint(Use &U) {
00107     Instruction *UseInst = cast<Instruction>(U.getUser());
00108     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
00109       BasicBlock *PredBB = Phi->getIncomingBlock(U);
00110       assert(U != PredBB->getTerminator() && "critical edge not split");
00111       SetInsertPoint(PredBB, PredBB->getTerminator());
00112       return;
00113     }
00114     SetInsertPoint(UseInst);
00115   }
00116 
00117   /// \brief Set location information used by debugging information.
00118   void SetCurrentDebugLocation(const DebugLoc &L) {
00119     CurDbgLocation = L;
00120   }
00121 
00122   /// \brief Get location information used by debugging information.
00123   DebugLoc getCurrentDebugLocation() const { return CurDbgLocation; }
00124 
00125   /// \brief If this builder has a current debug location, set it on the
00126   /// specified instruction.
00127   void SetInstDebugLocation(Instruction *I) const {
00128     if (!CurDbgLocation.isUnknown())
00129       I->setDebugLoc(CurDbgLocation);
00130   }
00131 
00132   /// \brief Get the return type of the current function that we're emitting
00133   /// into.
00134   Type *getCurrentFunctionReturnType() const;
00135 
00136   /// InsertPoint - A saved insertion point.
00137   class InsertPoint {
00138     BasicBlock *Block;
00139     BasicBlock::iterator Point;
00140 
00141   public:
00142     /// \brief Creates a new insertion point which doesn't point to anything.
00143     InsertPoint() : Block(nullptr) {}
00144 
00145     /// \brief Creates a new insertion point at the given location.
00146     InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
00147       : Block(InsertBlock), Point(InsertPoint) {}
00148 
00149     /// \brief Returns true if this insert point is set.
00150     bool isSet() const { return (Block != nullptr); }
00151 
00152     llvm::BasicBlock *getBlock() const { return Block; }
00153     llvm::BasicBlock::iterator getPoint() const { return Point; }
00154   };
00155 
00156   /// \brief Returns the current insert point.
00157   InsertPoint saveIP() const {
00158     return InsertPoint(GetInsertBlock(), GetInsertPoint());
00159   }
00160 
00161   /// \brief Returns the current insert point, clearing it in the process.
00162   InsertPoint saveAndClearIP() {
00163     InsertPoint IP(GetInsertBlock(), GetInsertPoint());
00164     ClearInsertionPoint();
00165     return IP;
00166   }
00167 
00168   /// \brief Sets the current insert point to a previously-saved location.
00169   void restoreIP(InsertPoint IP) {
00170     if (IP.isSet())
00171       SetInsertPoint(IP.getBlock(), IP.getPoint());
00172     else
00173       ClearInsertionPoint();
00174   }
00175 
00176   /// \brief Get the floating point math metadata being used.
00177   MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
00178 
00179   /// \brief Get the flags to be applied to created floating point ops
00180   FastMathFlags getFastMathFlags() const { return FMF; }
00181 
00182   /// \brief Clear the fast-math flags.
00183   void clearFastMathFlags() { FMF.clear(); }
00184 
00185   /// \brief Set the floating point math metadata to be used.
00186   void SetDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
00187 
00188   /// \brief Set the fast-math flags to be used with generated fp-math operators
00189   void SetFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
00190 
00191   //===--------------------------------------------------------------------===//
00192   // RAII helpers.
00193   //===--------------------------------------------------------------------===//
00194 
00195   // \brief RAII object that stores the current insertion point and restores it
00196   // when the object is destroyed. This includes the debug location.
00197   class InsertPointGuard {
00198     IRBuilderBase &Builder;
00199     AssertingVH<BasicBlock> Block;
00200     BasicBlock::iterator Point;
00201     DebugLoc DbgLoc;
00202 
00203     InsertPointGuard(const InsertPointGuard &) LLVM_DELETED_FUNCTION;
00204     InsertPointGuard &operator=(const InsertPointGuard &) LLVM_DELETED_FUNCTION;
00205 
00206   public:
00207     InsertPointGuard(IRBuilderBase &B)
00208         : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
00209           DbgLoc(B.getCurrentDebugLocation()) {}
00210 
00211     ~InsertPointGuard() {
00212       Builder.restoreIP(InsertPoint(Block, Point));
00213       Builder.SetCurrentDebugLocation(DbgLoc);
00214     }
00215   };
00216 
00217   // \brief RAII object that stores the current fast math settings and restores
00218   // them when the object is destroyed.
00219   class FastMathFlagGuard {
00220     IRBuilderBase &Builder;
00221     FastMathFlags FMF;
00222     MDNode *FPMathTag;
00223 
00224     FastMathFlagGuard(const FastMathFlagGuard &) LLVM_DELETED_FUNCTION;
00225     FastMathFlagGuard &operator=(
00226         const FastMathFlagGuard &) LLVM_DELETED_FUNCTION;
00227 
00228   public:
00229     FastMathFlagGuard(IRBuilderBase &B)
00230         : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag) {}
00231 
00232     ~FastMathFlagGuard() {
00233       Builder.FMF = FMF;
00234       Builder.DefaultFPMathTag = FPMathTag;
00235     }
00236   };
00237 
00238   //===--------------------------------------------------------------------===//
00239   // Miscellaneous creation methods.
00240   //===--------------------------------------------------------------------===//
00241 
00242   /// \brief Make a new global variable with initializer type i8*
00243   ///
00244   /// Make a new global variable with an initializer that has array of i8 type
00245   /// filled in with the null terminated string value specified.  The new global
00246   /// variable will be marked mergable with any others of the same contents.  If
00247   /// Name is specified, it is the name of the global variable created.
00248   Value *CreateGlobalString(StringRef Str, const Twine &Name = "");
00249 
00250   /// \brief Get a constant value representing either true or false.
00251   ConstantInt *getInt1(bool V) {
00252     return ConstantInt::get(getInt1Ty(), V);
00253   }
00254 
00255   /// \brief Get the constant value for i1 true.
00256   ConstantInt *getTrue() {
00257     return ConstantInt::getTrue(Context);
00258   }
00259 
00260   /// \brief Get the constant value for i1 false.
00261   ConstantInt *getFalse() {
00262     return ConstantInt::getFalse(Context);
00263   }
00264 
00265   /// \brief Get a constant 8-bit value.
00266   ConstantInt *getInt8(uint8_t C) {
00267     return ConstantInt::get(getInt8Ty(), C);
00268   }
00269 
00270   /// \brief Get a constant 16-bit value.
00271   ConstantInt *getInt16(uint16_t C) {
00272     return ConstantInt::get(getInt16Ty(), C);
00273   }
00274 
00275   /// \brief Get a constant 32-bit value.
00276   ConstantInt *getInt32(uint32_t C) {
00277     return ConstantInt::get(getInt32Ty(), C);
00278   }
00279 
00280   /// \brief Get a constant 64-bit value.
00281   ConstantInt *getInt64(uint64_t C) {
00282     return ConstantInt::get(getInt64Ty(), C);
00283   }
00284 
00285   /// \brief Get a constant N-bit value, zero extended or truncated from
00286   /// a 64-bit value.
00287   ConstantInt *getIntN(unsigned N, uint64_t C) {
00288     return ConstantInt::get(getIntNTy(N), C);
00289   }
00290 
00291   /// \brief Get a constant integer value.
00292   ConstantInt *getInt(const APInt &AI) {
00293     return ConstantInt::get(Context, AI);
00294   }
00295 
00296   //===--------------------------------------------------------------------===//
00297   // Type creation methods
00298   //===--------------------------------------------------------------------===//
00299 
00300   /// \brief Fetch the type representing a single bit
00301   IntegerType *getInt1Ty() {
00302     return Type::getInt1Ty(Context);
00303   }
00304 
00305   /// \brief Fetch the type representing an 8-bit integer.
00306   IntegerType *getInt8Ty() {
00307     return Type::getInt8Ty(Context);
00308   }
00309 
00310   /// \brief Fetch the type representing a 16-bit integer.
00311   IntegerType *getInt16Ty() {
00312     return Type::getInt16Ty(Context);
00313   }
00314 
00315   /// \brief Fetch the type representing a 32-bit integer.
00316   IntegerType *getInt32Ty() {
00317     return Type::getInt32Ty(Context);
00318   }
00319 
00320   /// \brief Fetch the type representing a 64-bit integer.
00321   IntegerType *getInt64Ty() {
00322     return Type::getInt64Ty(Context);
00323   }
00324 
00325   /// \brief Fetch the type representing an N-bit integer.
00326   IntegerType *getIntNTy(unsigned N) {
00327     return Type::getIntNTy(Context, N);
00328   }
00329 
00330   /// \brief Fetch the type representing a 16-bit floating point value.
00331   Type *getHalfTy() {
00332     return Type::getHalfTy(Context);
00333   }
00334 
00335   /// \brief Fetch the type representing a 32-bit floating point value.
00336   Type *getFloatTy() {
00337     return Type::getFloatTy(Context);
00338   }
00339 
00340   /// \brief Fetch the type representing a 64-bit floating point value.
00341   Type *getDoubleTy() {
00342     return Type::getDoubleTy(Context);
00343   }
00344 
00345   /// \brief Fetch the type representing void.
00346   Type *getVoidTy() {
00347     return Type::getVoidTy(Context);
00348   }
00349 
00350   /// \brief Fetch the type representing a pointer to an 8-bit integer value.
00351   PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
00352     return Type::getInt8PtrTy(Context, AddrSpace);
00353   }
00354 
00355   /// \brief Fetch the type representing a pointer to an integer value.
00356   IntegerType* getIntPtrTy(const DataLayout *DL, unsigned AddrSpace = 0) {
00357     return DL->getIntPtrType(Context, AddrSpace);
00358   }
00359 
00360   //===--------------------------------------------------------------------===//
00361   // Intrinsic creation methods
00362   //===--------------------------------------------------------------------===//
00363 
00364   /// \brief Create and insert a memset to the specified pointer and the
00365   /// specified value.
00366   ///
00367   /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
00368   /// specified, it will be added to the instruction. Likewise with alias.scope
00369   /// and noalias tags.
00370   CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align,
00371                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00372                          MDNode *ScopeTag = nullptr,
00373                          MDNode *NoAliasTag = nullptr) {
00374     return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
00375                         TBAATag, ScopeTag, NoAliasTag);
00376   }
00377 
00378   CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align,
00379                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00380                          MDNode *ScopeTag = nullptr,
00381                          MDNode *NoAliasTag = nullptr);
00382 
00383   /// \brief Create and insert a memcpy between the specified pointers.
00384   ///
00385   /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
00386   /// specified, it will be added to the instruction. Likewise with alias.scope
00387   /// and noalias tags.
00388   CallInst *CreateMemCpy(Value *Dst, Value *Src, uint64_t Size, unsigned Align,
00389                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00390                          MDNode *TBAAStructTag = nullptr,
00391                          MDNode *ScopeTag = nullptr,
00392                          MDNode *NoAliasTag = nullptr) {
00393     return CreateMemCpy(Dst, Src, getInt64(Size), Align, isVolatile, TBAATag,
00394                         TBAAStructTag, ScopeTag, NoAliasTag);
00395   }
00396 
00397   CallInst *CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned Align,
00398                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00399                          MDNode *TBAAStructTag = nullptr,
00400                          MDNode *ScopeTag = nullptr,
00401                          MDNode *NoAliasTag = nullptr);
00402 
00403   /// \brief Create and insert a memmove between the specified
00404   /// pointers.
00405   ///
00406   /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
00407   /// specified, it will be added to the instruction. Likewise with alias.scope
00408   /// and noalias tags.
00409   CallInst *CreateMemMove(Value *Dst, Value *Src, uint64_t Size, unsigned Align,
00410                           bool isVolatile = false, MDNode *TBAATag = nullptr,
00411                           MDNode *ScopeTag = nullptr,
00412                           MDNode *NoAliasTag = nullptr) {
00413     return CreateMemMove(Dst, Src, getInt64(Size), Align, isVolatile,
00414                          TBAATag, ScopeTag, NoAliasTag);
00415   }
00416 
00417   CallInst *CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned Align,
00418                           bool isVolatile = false, MDNode *TBAATag = nullptr,
00419                           MDNode *ScopeTag = nullptr,
00420                           MDNode *NoAliasTag = nullptr);
00421 
00422   /// \brief Create a lifetime.start intrinsic.
00423   ///
00424   /// If the pointer isn't i8* it will be converted.
00425   CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
00426 
00427   /// \brief Create a lifetime.end intrinsic.
00428   ///
00429   /// If the pointer isn't i8* it will be converted.
00430   CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
00431 
00432 private:
00433   Value *getCastedInt8PtrValue(Value *Ptr);
00434 };
00435 
00436 /// \brief This provides a uniform API for creating instructions and inserting
00437 /// them into a basic block: either at the end of a BasicBlock, or at a specific
00438 /// iterator location in a block.
00439 ///
00440 /// Note that the builder does not expose the full generality of LLVM
00441 /// instructions.  For access to extra instruction properties, use the mutators
00442 /// (e.g. setVolatile) on the instructions after they have been
00443 /// created. Convenience state exists to specify fast-math flags and fp-math
00444 /// tags.
00445 ///
00446 /// The first template argument handles whether or not to preserve names in the
00447 /// final instruction output. This defaults to on.  The second template argument
00448 /// specifies a class to use for creating constants.  This defaults to creating
00449 /// minimally folded constants.  The fourth template argument allows clients to
00450 /// specify custom insertion hooks that are called on every newly created
00451 /// insertion.
00452 template<bool preserveNames = true, typename T = ConstantFolder,
00453          typename Inserter = IRBuilderDefaultInserter<preserveNames> >
00454 class IRBuilder : public IRBuilderBase, public Inserter {
00455   T Folder;
00456 public:
00457   IRBuilder(LLVMContext &C, const T &F, const Inserter &I = Inserter(),
00458             MDNode *FPMathTag = nullptr)
00459     : IRBuilderBase(C, FPMathTag), Inserter(I), Folder(F) {
00460   }
00461 
00462   explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr)
00463     : IRBuilderBase(C, FPMathTag), Folder() {
00464   }
00465 
00466   explicit IRBuilder(BasicBlock *TheBB, const T &F, MDNode *FPMathTag = nullptr)
00467     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder(F) {
00468     SetInsertPoint(TheBB);
00469   }
00470 
00471   explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr)
00472     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder() {
00473     SetInsertPoint(TheBB);
00474   }
00475 
00476   explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr)
00477     : IRBuilderBase(IP->getContext(), FPMathTag), Folder() {
00478     SetInsertPoint(IP);
00479     SetCurrentDebugLocation(IP->getDebugLoc());
00480   }
00481 
00482   explicit IRBuilder(Use &U, MDNode *FPMathTag = nullptr)
00483     : IRBuilderBase(U->getContext(), FPMathTag), Folder() {
00484     SetInsertPoint(U);
00485     SetCurrentDebugLocation(cast<Instruction>(U.getUser())->getDebugLoc());
00486   }
00487 
00488   IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, const T& F,
00489             MDNode *FPMathTag = nullptr)
00490     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder(F) {
00491     SetInsertPoint(TheBB, IP);
00492   }
00493 
00494   IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
00495             MDNode *FPMathTag = nullptr)
00496     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder() {
00497     SetInsertPoint(TheBB, IP);
00498   }
00499 
00500   /// \brief Get the constant folder being used.
00501   const T &getFolder() { return Folder; }
00502 
00503   /// \brief Return true if this builder is configured to actually add the
00504   /// requested names to IR created through it.
00505   bool isNamePreserving() const { return preserveNames; }
00506 
00507   /// \brief Insert and return the specified instruction.
00508   template<typename InstTy>
00509   InstTy *Insert(InstTy *I, const Twine &Name = "") const {
00510     this->InsertHelper(I, Name, BB, InsertPt);
00511     this->SetInstDebugLocation(I);
00512     return I;
00513   }
00514 
00515   /// \brief No-op overload to handle constants.
00516   Constant *Insert(Constant *C, const Twine& = "") const {
00517     return C;
00518   }
00519 
00520   //===--------------------------------------------------------------------===//
00521   // Instruction creation methods: Terminators
00522   //===--------------------------------------------------------------------===//
00523 
00524 private:
00525   /// \brief Helper to add branch weight metadata onto an instruction.
00526   /// \returns The annotated instruction.
00527   template <typename InstTy>
00528   InstTy *addBranchWeights(InstTy *I, MDNode *Weights) {
00529     if (Weights)
00530       I->setMetadata(LLVMContext::MD_prof, Weights);
00531     return I;
00532   }
00533 
00534 public:
00535   /// \brief Create a 'ret void' instruction.
00536   ReturnInst *CreateRetVoid() {
00537     return Insert(ReturnInst::Create(Context));
00538   }
00539 
00540   /// \brief Create a 'ret <val>' instruction.
00541   ReturnInst *CreateRet(Value *V) {
00542     return Insert(ReturnInst::Create(Context, V));
00543   }
00544 
00545   /// \brief Create a sequence of N insertvalue instructions,
00546   /// with one Value from the retVals array each, that build a aggregate
00547   /// return value one value at a time, and a ret instruction to return
00548   /// the resulting aggregate value.
00549   ///
00550   /// This is a convenience function for code that uses aggregate return values
00551   /// as a vehicle for having multiple return values.
00552   ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
00553     Value *V = UndefValue::get(getCurrentFunctionReturnType());
00554     for (unsigned i = 0; i != N; ++i)
00555       V = CreateInsertValue(V, retVals[i], i, "mrv");
00556     return Insert(ReturnInst::Create(Context, V));
00557   }
00558 
00559   /// \brief Create an unconditional 'br label X' instruction.
00560   BranchInst *CreateBr(BasicBlock *Dest) {
00561     return Insert(BranchInst::Create(Dest));
00562   }
00563 
00564   /// \brief Create a conditional 'br Cond, TrueDest, FalseDest'
00565   /// instruction.
00566   BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
00567                            MDNode *BranchWeights = nullptr) {
00568     return Insert(addBranchWeights(BranchInst::Create(True, False, Cond),
00569                                    BranchWeights));
00570   }
00571 
00572   /// \brief Create a switch instruction with the specified value, default dest,
00573   /// and with a hint for the number of cases that will be added (for efficient
00574   /// allocation).
00575   SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
00576                            MDNode *BranchWeights = nullptr) {
00577     return Insert(addBranchWeights(SwitchInst::Create(V, Dest, NumCases),
00578                                    BranchWeights));
00579   }
00580 
00581   /// \brief Create an indirect branch instruction with the specified address
00582   /// operand, with an optional hint for the number of destinations that will be
00583   /// added (for efficient allocation).
00584   IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
00585     return Insert(IndirectBrInst::Create(Addr, NumDests));
00586   }
00587 
00588   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
00589                            BasicBlock *UnwindDest, const Twine &Name = "") {
00590     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest,
00591                                      ArrayRef<Value *>()),
00592                   Name);
00593   }
00594   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
00595                            BasicBlock *UnwindDest, Value *Arg1,
00596                            const Twine &Name = "") {
00597     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Arg1),
00598                   Name);
00599   }
00600   InvokeInst *CreateInvoke3(Value *Callee, BasicBlock *NormalDest,
00601                             BasicBlock *UnwindDest, Value *Arg1,
00602                             Value *Arg2, Value *Arg3,
00603                             const Twine &Name = "") {
00604     Value *Args[] = { Arg1, Arg2, Arg3 };
00605     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args),
00606                   Name);
00607   }
00608   /// \brief Create an invoke instruction.
00609   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
00610                            BasicBlock *UnwindDest, ArrayRef<Value *> Args,
00611                            const Twine &Name = "") {
00612     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args),
00613                   Name);
00614   }
00615 
00616   ResumeInst *CreateResume(Value *Exn) {
00617     return Insert(ResumeInst::Create(Exn));
00618   }
00619 
00620   UnreachableInst *CreateUnreachable() {
00621     return Insert(new UnreachableInst(Context));
00622   }
00623 
00624   //===--------------------------------------------------------------------===//
00625   // Instruction creation methods: Binary Operators
00626   //===--------------------------------------------------------------------===//
00627 private:
00628   BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
00629                                           Value *LHS, Value *RHS,
00630                                           const Twine &Name,
00631                                           bool HasNUW, bool HasNSW) {
00632     BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
00633     if (HasNUW) BO->setHasNoUnsignedWrap();
00634     if (HasNSW) BO->setHasNoSignedWrap();
00635     return BO;
00636   }
00637 
00638   Instruction *AddFPMathAttributes(Instruction *I,
00639                                    MDNode *FPMathTag,
00640                                    FastMathFlags FMF) const {
00641     if (!FPMathTag)
00642       FPMathTag = DefaultFPMathTag;
00643     if (FPMathTag)
00644       I->setMetadata(LLVMContext::MD_fpmath, FPMathTag);
00645     I->setFastMathFlags(FMF);
00646     return I;
00647   }
00648 public:
00649   Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
00650                    bool HasNUW = false, bool HasNSW = false) {
00651     if (Constant *LC = dyn_cast<Constant>(LHS))
00652       if (Constant *RC = dyn_cast<Constant>(RHS))
00653         return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name);
00654     return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
00655                                    HasNUW, HasNSW);
00656   }
00657   Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
00658     return CreateAdd(LHS, RHS, Name, false, true);
00659   }
00660   Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
00661     return CreateAdd(LHS, RHS, Name, true, false);
00662   }
00663   Value *CreateFAdd(Value *LHS, Value *RHS, const Twine &Name = "",
00664                     MDNode *FPMathTag = nullptr) {
00665     if (Constant *LC = dyn_cast<Constant>(LHS))
00666       if (Constant *RC = dyn_cast<Constant>(RHS))
00667         return Insert(Folder.CreateFAdd(LC, RC), Name);
00668     return Insert(AddFPMathAttributes(BinaryOperator::CreateFAdd(LHS, RHS),
00669                                       FPMathTag, FMF), Name);
00670   }
00671   Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
00672                    bool HasNUW = false, bool HasNSW = false) {
00673     if (Constant *LC = dyn_cast<Constant>(LHS))
00674       if (Constant *RC = dyn_cast<Constant>(RHS))
00675         return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
00676     return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
00677                                    HasNUW, HasNSW);
00678   }
00679   Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
00680     return CreateSub(LHS, RHS, Name, false, true);
00681   }
00682   Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
00683     return CreateSub(LHS, RHS, Name, true, false);
00684   }
00685   Value *CreateFSub(Value *LHS, Value *RHS, const Twine &Name = "",
00686                     MDNode *FPMathTag = nullptr) {
00687     if (Constant *LC = dyn_cast<Constant>(LHS))
00688       if (Constant *RC = dyn_cast<Constant>(RHS))
00689         return Insert(Folder.CreateFSub(LC, RC), Name);
00690     return Insert(AddFPMathAttributes(BinaryOperator::CreateFSub(LHS, RHS),
00691                                       FPMathTag, FMF), Name);
00692   }
00693   Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
00694                    bool HasNUW = false, bool HasNSW = false) {
00695     if (Constant *LC = dyn_cast<Constant>(LHS))
00696       if (Constant *RC = dyn_cast<Constant>(RHS))
00697         return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
00698     return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
00699                                    HasNUW, HasNSW);
00700   }
00701   Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
00702     return CreateMul(LHS, RHS, Name, false, true);
00703   }
00704   Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
00705     return CreateMul(LHS, RHS, Name, true, false);
00706   }
00707   Value *CreateFMul(Value *LHS, Value *RHS, const Twine &Name = "",
00708                     MDNode *FPMathTag = nullptr) {
00709     if (Constant *LC = dyn_cast<Constant>(LHS))
00710       if (Constant *RC = dyn_cast<Constant>(RHS))
00711         return Insert(Folder.CreateFMul(LC, RC), Name);
00712     return Insert(AddFPMathAttributes(BinaryOperator::CreateFMul(LHS, RHS),
00713                                       FPMathTag, FMF), Name);
00714   }
00715   Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
00716                     bool isExact = false) {
00717     if (Constant *LC = dyn_cast<Constant>(LHS))
00718       if (Constant *RC = dyn_cast<Constant>(RHS))
00719         return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
00720     if (!isExact)
00721       return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
00722     return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
00723   }
00724   Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
00725     return CreateUDiv(LHS, RHS, Name, true);
00726   }
00727   Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
00728                     bool isExact = false) {
00729     if (Constant *LC = dyn_cast<Constant>(LHS))
00730       if (Constant *RC = dyn_cast<Constant>(RHS))
00731         return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
00732     if (!isExact)
00733       return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
00734     return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
00735   }
00736   Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
00737     return CreateSDiv(LHS, RHS, Name, true);
00738   }
00739   Value *CreateFDiv(Value *LHS, Value *RHS, const Twine &Name = "",
00740                     MDNode *FPMathTag = nullptr) {
00741     if (Constant *LC = dyn_cast<Constant>(LHS))
00742       if (Constant *RC = dyn_cast<Constant>(RHS))
00743         return Insert(Folder.CreateFDiv(LC, RC), Name);
00744     return Insert(AddFPMathAttributes(BinaryOperator::CreateFDiv(LHS, RHS),
00745                                       FPMathTag, FMF), Name);
00746   }
00747   Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
00748     if (Constant *LC = dyn_cast<Constant>(LHS))
00749       if (Constant *RC = dyn_cast<Constant>(RHS))
00750         return Insert(Folder.CreateURem(LC, RC), Name);
00751     return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
00752   }
00753   Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
00754     if (Constant *LC = dyn_cast<Constant>(LHS))
00755       if (Constant *RC = dyn_cast<Constant>(RHS))
00756         return Insert(Folder.CreateSRem(LC, RC), Name);
00757     return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
00758   }
00759   Value *CreateFRem(Value *LHS, Value *RHS, const Twine &Name = "",
00760                     MDNode *FPMathTag = nullptr) {
00761     if (Constant *LC = dyn_cast<Constant>(LHS))
00762       if (Constant *RC = dyn_cast<Constant>(RHS))
00763         return Insert(Folder.CreateFRem(LC, RC), Name);
00764     return Insert(AddFPMathAttributes(BinaryOperator::CreateFRem(LHS, RHS),
00765                                       FPMathTag, FMF), Name);
00766   }
00767 
00768   Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
00769                    bool HasNUW = false, bool HasNSW = false) {
00770     if (Constant *LC = dyn_cast<Constant>(LHS))
00771       if (Constant *RC = dyn_cast<Constant>(RHS))
00772         return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name);
00773     return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
00774                                    HasNUW, HasNSW);
00775   }
00776   Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
00777                    bool HasNUW = false, bool HasNSW = false) {
00778     return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
00779                      HasNUW, HasNSW);
00780   }
00781   Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
00782                    bool HasNUW = false, bool HasNSW = false) {
00783     return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
00784                      HasNUW, HasNSW);
00785   }
00786 
00787   Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
00788                     bool isExact = false) {
00789     if (Constant *LC = dyn_cast<Constant>(LHS))
00790       if (Constant *RC = dyn_cast<Constant>(RHS))
00791         return Insert(Folder.CreateLShr(LC, RC, isExact), Name);
00792     if (!isExact)
00793       return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
00794     return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
00795   }
00796   Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
00797                     bool isExact = false) {
00798     return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00799   }
00800   Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
00801                     bool isExact = false) {
00802     return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00803   }
00804 
00805   Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
00806                     bool isExact = false) {
00807     if (Constant *LC = dyn_cast<Constant>(LHS))
00808       if (Constant *RC = dyn_cast<Constant>(RHS))
00809         return Insert(Folder.CreateAShr(LC, RC, isExact), Name);
00810     if (!isExact)
00811       return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
00812     return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
00813   }
00814   Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
00815                     bool isExact = false) {
00816     return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00817   }
00818   Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
00819                     bool isExact = false) {
00820     return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00821   }
00822 
00823   Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
00824     if (Constant *RC = dyn_cast<Constant>(RHS)) {
00825       if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isAllOnesValue())
00826         return LHS;  // LHS & -1 -> LHS
00827       if (Constant *LC = dyn_cast<Constant>(LHS))
00828         return Insert(Folder.CreateAnd(LC, RC), Name);
00829     }
00830     return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
00831   }
00832   Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
00833     return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00834   }
00835   Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
00836     return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00837   }
00838 
00839   Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
00840     if (Constant *RC = dyn_cast<Constant>(RHS)) {
00841       if (RC->isNullValue())
00842         return LHS;  // LHS | 0 -> LHS
00843       if (Constant *LC = dyn_cast<Constant>(LHS))
00844         return Insert(Folder.CreateOr(LC, RC), Name);
00845     }
00846     return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
00847   }
00848   Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
00849     return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00850   }
00851   Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
00852     return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00853   }
00854 
00855   Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
00856     if (Constant *LC = dyn_cast<Constant>(LHS))
00857       if (Constant *RC = dyn_cast<Constant>(RHS))
00858         return Insert(Folder.CreateXor(LC, RC), Name);
00859     return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
00860   }
00861   Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
00862     return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00863   }
00864   Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
00865     return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00866   }
00867 
00868   Value *CreateBinOp(Instruction::BinaryOps Opc,
00869                      Value *LHS, Value *RHS, const Twine &Name = "",
00870                      MDNode *FPMathTag = nullptr) {
00871     if (Constant *LC = dyn_cast<Constant>(LHS))
00872       if (Constant *RC = dyn_cast<Constant>(RHS))
00873         return Insert(Folder.CreateBinOp(Opc, LC, RC), Name);
00874     llvm::Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
00875     if (isa<FPMathOperator>(BinOp))
00876       BinOp = AddFPMathAttributes(BinOp, FPMathTag, FMF);
00877     return Insert(BinOp, Name);
00878   }
00879 
00880   Value *CreateNeg(Value *V, const Twine &Name = "",
00881                    bool HasNUW = false, bool HasNSW = false) {
00882     if (Constant *VC = dyn_cast<Constant>(V))
00883       return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name);
00884     BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name);
00885     if (HasNUW) BO->setHasNoUnsignedWrap();
00886     if (HasNSW) BO->setHasNoSignedWrap();
00887     return BO;
00888   }
00889   Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
00890     return CreateNeg(V, Name, false, true);
00891   }
00892   Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
00893     return CreateNeg(V, Name, true, false);
00894   }
00895   Value *CreateFNeg(Value *V, const Twine &Name = "",
00896                     MDNode *FPMathTag = nullptr) {
00897     if (Constant *VC = dyn_cast<Constant>(V))
00898       return Insert(Folder.CreateFNeg(VC), Name);
00899     return Insert(AddFPMathAttributes(BinaryOperator::CreateFNeg(V),
00900                                       FPMathTag, FMF), Name);
00901   }
00902   Value *CreateNot(Value *V, const Twine &Name = "") {
00903     if (Constant *VC = dyn_cast<Constant>(V))
00904       return Insert(Folder.CreateNot(VC), Name);
00905     return Insert(BinaryOperator::CreateNot(V), Name);
00906   }
00907 
00908   //===--------------------------------------------------------------------===//
00909   // Instruction creation methods: Memory Instructions
00910   //===--------------------------------------------------------------------===//
00911 
00912   AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
00913                            const Twine &Name = "") {
00914     return Insert(new AllocaInst(Ty, ArraySize), Name);
00915   }
00916   // \brief Provided to resolve 'CreateLoad(Ptr, "...")' correctly, instead of
00917   // converting the string to 'bool' for the isVolatile parameter.
00918   LoadInst *CreateLoad(Value *Ptr, const char *Name) {
00919     return Insert(new LoadInst(Ptr), Name);
00920   }
00921   LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") {
00922     return Insert(new LoadInst(Ptr), Name);
00923   }
00924   LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") {
00925     return Insert(new LoadInst(Ptr, nullptr, isVolatile), Name);
00926   }
00927   StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
00928     return Insert(new StoreInst(Val, Ptr, isVolatile));
00929   }
00930   // \brief Provided to resolve 'CreateAlignedLoad(Ptr, Align, "...")'
00931   // correctly, instead of converting the string to 'bool' for the isVolatile
00932   // parameter.
00933   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const char *Name) {
00934     LoadInst *LI = CreateLoad(Ptr, Name);
00935     LI->setAlignment(Align);
00936     return LI;
00937   }
00938   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align,
00939                               const Twine &Name = "") {
00940     LoadInst *LI = CreateLoad(Ptr, Name);
00941     LI->setAlignment(Align);
00942     return LI;
00943   }
00944   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile,
00945                               const Twine &Name = "") {
00946     LoadInst *LI = CreateLoad(Ptr, isVolatile, Name);
00947     LI->setAlignment(Align);
00948     return LI;
00949   }
00950   StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align,
00951                                 bool isVolatile = false) {
00952     StoreInst *SI = CreateStore(Val, Ptr, isVolatile);
00953     SI->setAlignment(Align);
00954     return SI;
00955   }
00956   FenceInst *CreateFence(AtomicOrdering Ordering,
00957                          SynchronizationScope SynchScope = CrossThread,
00958                          const Twine &Name = "") {
00959     return Insert(new FenceInst(Context, Ordering, SynchScope), Name);
00960   }
00961   AtomicCmpXchgInst *
00962   CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New,
00963                       AtomicOrdering SuccessOrdering,
00964                       AtomicOrdering FailureOrdering,
00965                       SynchronizationScope SynchScope = CrossThread) {
00966     return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering,
00967                                         FailureOrdering, SynchScope));
00968   }
00969   AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val,
00970                                  AtomicOrdering Ordering,
00971                                SynchronizationScope SynchScope = CrossThread) {
00972     return Insert(new AtomicRMWInst(Op, Ptr, Val, Ordering, SynchScope));
00973   }
00974   Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList,
00975                    const Twine &Name = "") {
00976     if (Constant *PC = dyn_cast<Constant>(Ptr)) {
00977       // Every index must be constant.
00978       size_t i, e;
00979       for (i = 0, e = IdxList.size(); i != e; ++i)
00980         if (!isa<Constant>(IdxList[i]))
00981           break;
00982       if (i == e)
00983         return Insert(Folder.CreateGetElementPtr(PC, IdxList), Name);
00984     }
00985     return Insert(GetElementPtrInst::Create(Ptr, IdxList), Name);
00986   }
00987   Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
00988                            const Twine &Name = "") {
00989     if (Constant *PC = dyn_cast<Constant>(Ptr)) {
00990       // Every index must be constant.
00991       size_t i, e;
00992       for (i = 0, e = IdxList.size(); i != e; ++i)
00993         if (!isa<Constant>(IdxList[i]))
00994           break;
00995       if (i == e)
00996         return Insert(Folder.CreateInBoundsGetElementPtr(PC, IdxList), Name);
00997     }
00998     return Insert(GetElementPtrInst::CreateInBounds(Ptr, IdxList), Name);
00999   }
01000   Value *CreateGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
01001     if (Constant *PC = dyn_cast<Constant>(Ptr))
01002       if (Constant *IC = dyn_cast<Constant>(Idx))
01003         return Insert(Folder.CreateGetElementPtr(PC, IC), Name);
01004     return Insert(GetElementPtrInst::Create(Ptr, Idx), Name);
01005   }
01006   Value *CreateInBoundsGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
01007     if (Constant *PC = dyn_cast<Constant>(Ptr))
01008       if (Constant *IC = dyn_cast<Constant>(Idx))
01009         return Insert(Folder.CreateInBoundsGetElementPtr(PC, IC), Name);
01010     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name);
01011   }
01012   Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") {
01013     Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
01014 
01015     if (Constant *PC = dyn_cast<Constant>(Ptr))
01016       return Insert(Folder.CreateGetElementPtr(PC, Idx), Name);
01017 
01018     return Insert(GetElementPtrInst::Create(Ptr, Idx), Name);
01019   }
01020   Value *CreateConstInBoundsGEP1_32(Value *Ptr, unsigned Idx0,
01021                                     const Twine &Name = "") {
01022     Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
01023 
01024     if (Constant *PC = dyn_cast<Constant>(Ptr))
01025       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idx), Name);
01026 
01027     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name);
01028   }
01029   Value *CreateConstGEP2_32(Value *Ptr, unsigned Idx0, unsigned Idx1,
01030                     const Twine &Name = "") {
01031     Value *Idxs[] = {
01032       ConstantInt::get(Type::getInt32Ty(Context), Idx0),
01033       ConstantInt::get(Type::getInt32Ty(Context), Idx1)
01034     };
01035 
01036     if (Constant *PC = dyn_cast<Constant>(Ptr))
01037       return Insert(Folder.CreateGetElementPtr(PC, Idxs), Name);
01038 
01039     return Insert(GetElementPtrInst::Create(Ptr, Idxs), Name);
01040   }
01041   Value *CreateConstInBoundsGEP2_32(Value *Ptr, unsigned Idx0, unsigned Idx1,
01042                                     const Twine &Name = "") {
01043     Value *Idxs[] = {
01044       ConstantInt::get(Type::getInt32Ty(Context), Idx0),
01045       ConstantInt::get(Type::getInt32Ty(Context), Idx1)
01046     };
01047 
01048     if (Constant *PC = dyn_cast<Constant>(Ptr))
01049       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idxs), Name);
01050 
01051     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idxs), Name);
01052   }
01053   Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") {
01054     Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
01055 
01056     if (Constant *PC = dyn_cast<Constant>(Ptr))
01057       return Insert(Folder.CreateGetElementPtr(PC, Idx), Name);
01058 
01059     return Insert(GetElementPtrInst::Create(Ptr, Idx), Name);
01060   }
01061   Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0,
01062                                     const Twine &Name = "") {
01063     Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
01064 
01065     if (Constant *PC = dyn_cast<Constant>(Ptr))
01066       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idx), Name);
01067 
01068     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name);
01069   }
01070   Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
01071                     const Twine &Name = "") {
01072     Value *Idxs[] = {
01073       ConstantInt::get(Type::getInt64Ty(Context), Idx0),
01074       ConstantInt::get(Type::getInt64Ty(Context), Idx1)
01075     };
01076 
01077     if (Constant *PC = dyn_cast<Constant>(Ptr))
01078       return Insert(Folder.CreateGetElementPtr(PC, Idxs), Name);
01079 
01080     return Insert(GetElementPtrInst::Create(Ptr, Idxs), Name);
01081   }
01082   Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
01083                                     const Twine &Name = "") {
01084     Value *Idxs[] = {
01085       ConstantInt::get(Type::getInt64Ty(Context), Idx0),
01086       ConstantInt::get(Type::getInt64Ty(Context), Idx1)
01087     };
01088 
01089     if (Constant *PC = dyn_cast<Constant>(Ptr))
01090       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idxs), Name);
01091 
01092     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idxs), Name);
01093   }
01094   Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") {
01095     return CreateConstInBoundsGEP2_32(Ptr, 0, Idx, Name);
01096   }
01097 
01098   /// \brief Same as CreateGlobalString, but return a pointer with "i8*" type
01099   /// instead of a pointer to array of i8.
01100   Value *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "") {
01101     Value *gv = CreateGlobalString(Str, Name);
01102     Value *zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
01103     Value *Args[] = { zero, zero };
01104     return CreateInBoundsGEP(gv, Args, Name);
01105   }
01106 
01107   //===--------------------------------------------------------------------===//
01108   // Instruction creation methods: Cast/Conversion Operators
01109   //===--------------------------------------------------------------------===//
01110 
01111   Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
01112     return CreateCast(Instruction::Trunc, V, DestTy, Name);
01113   }
01114   Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
01115     return CreateCast(Instruction::ZExt, V, DestTy, Name);
01116   }
01117   Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
01118     return CreateCast(Instruction::SExt, V, DestTy, Name);
01119   }
01120   /// \brief Create a ZExt or Trunc from the integer value V to DestTy. Return
01121   /// the value untouched if the type of V is already DestTy.
01122   Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
01123                            const Twine &Name = "") {
01124     assert(V->getType()->isIntOrIntVectorTy() &&
01125            DestTy->isIntOrIntVectorTy() &&
01126            "Can only zero extend/truncate integers!");
01127     Type *VTy = V->getType();
01128     if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
01129       return CreateZExt(V, DestTy, Name);
01130     if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
01131       return CreateTrunc(V, DestTy, Name);
01132     return V;
01133   }
01134   /// \brief Create a SExt or Trunc from the integer value V to DestTy. Return
01135   /// the value untouched if the type of V is already DestTy.
01136   Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
01137                            const Twine &Name = "") {
01138     assert(V->getType()->isIntOrIntVectorTy() &&
01139            DestTy->isIntOrIntVectorTy() &&
01140            "Can only sign extend/truncate integers!");
01141     Type *VTy = V->getType();
01142     if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
01143       return CreateSExt(V, DestTy, Name);
01144     if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
01145       return CreateTrunc(V, DestTy, Name);
01146     return V;
01147   }
01148   Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = ""){
01149     return CreateCast(Instruction::FPToUI, V, DestTy, Name);
01150   }
01151   Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = ""){
01152     return CreateCast(Instruction::FPToSI, V, DestTy, Name);
01153   }
01154   Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
01155     return CreateCast(Instruction::UIToFP, V, DestTy, Name);
01156   }
01157   Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
01158     return CreateCast(Instruction::SIToFP, V, DestTy, Name);
01159   }
01160   Value *CreateFPTrunc(Value *V, Type *DestTy,
01161                        const Twine &Name = "") {
01162     return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
01163   }
01164   Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
01165     return CreateCast(Instruction::FPExt, V, DestTy, Name);
01166   }
01167   Value *CreatePtrToInt(Value *V, Type *DestTy,
01168                         const Twine &Name = "") {
01169     return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
01170   }
01171   Value *CreateIntToPtr(Value *V, Type *DestTy,
01172                         const Twine &Name = "") {
01173     return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
01174   }
01175   Value *CreateBitCast(Value *V, Type *DestTy,
01176                        const Twine &Name = "") {
01177     return CreateCast(Instruction::BitCast, V, DestTy, Name);
01178   }
01179   Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
01180                              const Twine &Name = "") {
01181     return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
01182   }
01183   Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
01184                              const Twine &Name = "") {
01185     if (V->getType() == DestTy)
01186       return V;
01187     if (Constant *VC = dyn_cast<Constant>(V))
01188       return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
01189     return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
01190   }
01191   Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
01192                              const Twine &Name = "") {
01193     if (V->getType() == DestTy)
01194       return V;
01195     if (Constant *VC = dyn_cast<Constant>(V))
01196       return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
01197     return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
01198   }
01199   Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
01200                               const Twine &Name = "") {
01201     if (V->getType() == DestTy)
01202       return V;
01203     if (Constant *VC = dyn_cast<Constant>(V))
01204       return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
01205     return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
01206   }
01207   Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
01208                     const Twine &Name = "") {
01209     if (V->getType() == DestTy)
01210       return V;
01211     if (Constant *VC = dyn_cast<Constant>(V))
01212       return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
01213     return Insert(CastInst::Create(Op, V, DestTy), Name);
01214   }
01215   Value *CreatePointerCast(Value *V, Type *DestTy,
01216                            const Twine &Name = "") {
01217     if (V->getType() == DestTy)
01218       return V;
01219     if (Constant *VC = dyn_cast<Constant>(V))
01220       return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
01221     return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
01222   }
01223 
01224   Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
01225                                              const Twine &Name = "") {
01226     if (V->getType() == DestTy)
01227       return V;
01228 
01229     if (Constant *VC = dyn_cast<Constant>(V)) {
01230       return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
01231                     Name);
01232     }
01233 
01234     return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
01235                   Name);
01236   }
01237 
01238   Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
01239                        const Twine &Name = "") {
01240     if (V->getType() == DestTy)
01241       return V;
01242     if (Constant *VC = dyn_cast<Constant>(V))
01243       return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
01244     return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
01245   }
01246 private:
01247   // \brief Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
01248   // compile time error, instead of converting the string to bool for the
01249   // isSigned parameter.
01250   Value *CreateIntCast(Value *, Type *, const char *) LLVM_DELETED_FUNCTION;
01251 public:
01252   Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
01253     if (V->getType() == DestTy)
01254       return V;
01255     if (Constant *VC = dyn_cast<Constant>(V))
01256       return Insert(Folder.CreateFPCast(VC, DestTy), Name);
01257     return Insert(CastInst::CreateFPCast(V, DestTy), Name);
01258   }
01259 
01260   //===--------------------------------------------------------------------===//
01261   // Instruction creation methods: Compare Instructions
01262   //===--------------------------------------------------------------------===//
01263 
01264   Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
01265     return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
01266   }
01267   Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
01268     return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
01269   }
01270   Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01271     return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
01272   }
01273   Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01274     return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
01275   }
01276   Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
01277     return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
01278   }
01279   Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
01280     return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
01281   }
01282   Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01283     return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
01284   }
01285   Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01286     return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
01287   }
01288   Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
01289     return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
01290   }
01291   Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
01292     return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
01293   }
01294 
01295   Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
01296     return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name);
01297   }
01298   Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01299     return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name);
01300   }
01301   Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01302     return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name);
01303   }
01304   Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "") {
01305     return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name);
01306   }
01307   Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "") {
01308     return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name);
01309   }
01310   Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "") {
01311     return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name);
01312   }
01313   Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "") {
01314     return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name);
01315   }
01316   Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "") {
01317     return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name);
01318   }
01319   Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
01320     return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name);
01321   }
01322   Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01323     return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name);
01324   }
01325   Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01326     return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name);
01327   }
01328   Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
01329     return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name);
01330   }
01331   Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
01332     return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name);
01333   }
01334   Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "") {
01335     return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name);
01336   }
01337 
01338   Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
01339                     const Twine &Name = "") {
01340     if (Constant *LC = dyn_cast<Constant>(LHS))
01341       if (Constant *RC = dyn_cast<Constant>(RHS))
01342         return Insert(Folder.CreateICmp(P, LC, RC), Name);
01343     return Insert(new ICmpInst(P, LHS, RHS), Name);
01344   }
01345   Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
01346                     const Twine &Name = "") {
01347     if (Constant *LC = dyn_cast<Constant>(LHS))
01348       if (Constant *RC = dyn_cast<Constant>(RHS))
01349         return Insert(Folder.CreateFCmp(P, LC, RC), Name);
01350     return Insert(new FCmpInst(P, LHS, RHS), Name);
01351   }
01352 
01353   //===--------------------------------------------------------------------===//
01354   // Instruction creation methods: Other Instructions
01355   //===--------------------------------------------------------------------===//
01356 
01357   PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
01358                      const Twine &Name = "") {
01359     return Insert(PHINode::Create(Ty, NumReservedValues), Name);
01360   }
01361 
01362   CallInst *CreateCall(Value *Callee, const Twine &Name = "") {
01363     return Insert(CallInst::Create(Callee), Name);
01364   }
01365   CallInst *CreateCall(Value *Callee, Value *Arg, const Twine &Name = "") {
01366     return Insert(CallInst::Create(Callee, Arg), Name);
01367   }
01368   CallInst *CreateCall2(Value *Callee, Value *Arg1, Value *Arg2,
01369                         const Twine &Name = "") {
01370     Value *Args[] = { Arg1, Arg2 };
01371     return Insert(CallInst::Create(Callee, Args), Name);
01372   }
01373   CallInst *CreateCall3(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3,
01374                         const Twine &Name = "") {
01375     Value *Args[] = { Arg1, Arg2, Arg3 };
01376     return Insert(CallInst::Create(Callee, Args), Name);
01377   }
01378   CallInst *CreateCall4(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3,
01379                         Value *Arg4, const Twine &Name = "") {
01380     Value *Args[] = { Arg1, Arg2, Arg3, Arg4 };
01381     return Insert(CallInst::Create(Callee, Args), Name);
01382   }
01383   CallInst *CreateCall5(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3,
01384                         Value *Arg4, Value *Arg5, const Twine &Name = "") {
01385     Value *Args[] = { Arg1, Arg2, Arg3, Arg4, Arg5 };
01386     return Insert(CallInst::Create(Callee, Args), Name);
01387   }
01388 
01389   CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args,
01390                        const Twine &Name = "") {
01391     return Insert(CallInst::Create(Callee, Args), Name);
01392   }
01393 
01394   Value *CreateSelect(Value *C, Value *True, Value *False,
01395                       const Twine &Name = "") {
01396     if (Constant *CC = dyn_cast<Constant>(C))
01397       if (Constant *TC = dyn_cast<Constant>(True))
01398         if (Constant *FC = dyn_cast<Constant>(False))
01399           return Insert(Folder.CreateSelect(CC, TC, FC), Name);
01400     return Insert(SelectInst::Create(C, True, False), Name);
01401   }
01402 
01403   VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
01404     return Insert(new VAArgInst(List, Ty), Name);
01405   }
01406 
01407   Value *CreateExtractElement(Value *Vec, Value *Idx,
01408                               const Twine &Name = "") {
01409     if (Constant *VC = dyn_cast<Constant>(Vec))
01410       if (Constant *IC = dyn_cast<Constant>(Idx))
01411         return Insert(Folder.CreateExtractElement(VC, IC), Name);
01412     return Insert(ExtractElementInst::Create(Vec, Idx), Name);
01413   }
01414 
01415   Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
01416                              const Twine &Name = "") {
01417     if (Constant *VC = dyn_cast<Constant>(Vec))
01418       if (Constant *NC = dyn_cast<Constant>(NewElt))
01419         if (Constant *IC = dyn_cast<Constant>(Idx))
01420           return Insert(Folder.CreateInsertElement(VC, NC, IC), Name);
01421     return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
01422   }
01423 
01424   Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
01425                              const Twine &Name = "") {
01426     if (Constant *V1C = dyn_cast<Constant>(V1))
01427       if (Constant *V2C = dyn_cast<Constant>(V2))
01428         if (Constant *MC = dyn_cast<Constant>(Mask))
01429           return Insert(Folder.CreateShuffleVector(V1C, V2C, MC), Name);
01430     return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
01431   }
01432 
01433   Value *CreateExtractValue(Value *Agg,
01434                             ArrayRef<unsigned> Idxs,
01435                             const Twine &Name = "") {
01436     if (Constant *AggC = dyn_cast<Constant>(Agg))
01437       return Insert(Folder.CreateExtractValue(AggC, Idxs), Name);
01438     return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
01439   }
01440 
01441   Value *CreateInsertValue(Value *Agg, Value *Val,
01442                            ArrayRef<unsigned> Idxs,
01443                            const Twine &Name = "") {
01444     if (Constant *AggC = dyn_cast<Constant>(Agg))
01445       if (Constant *ValC = dyn_cast<Constant>(Val))
01446         return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name);
01447     return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
01448   }
01449 
01450   LandingPadInst *CreateLandingPad(Type *Ty, Value *PersFn, unsigned NumClauses,
01451                                    const Twine &Name = "") {
01452     return Insert(LandingPadInst::Create(Ty, PersFn, NumClauses), Name);
01453   }
01454 
01455   //===--------------------------------------------------------------------===//
01456   // Utility creation methods
01457   //===--------------------------------------------------------------------===//
01458 
01459   /// \brief Return an i1 value testing if \p Arg is null.
01460   Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
01461     return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()),
01462                         Name);
01463   }
01464 
01465   /// \brief Return an i1 value testing if \p Arg is not null.
01466   Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
01467     return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()),
01468                         Name);
01469   }
01470 
01471   /// \brief Return the i64 difference between two pointer values, dividing out
01472   /// the size of the pointed-to objects.
01473   ///
01474   /// This is intended to implement C-style pointer subtraction. As such, the
01475   /// pointers must be appropriately aligned for their element types and
01476   /// pointing into the same object.
01477   Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = "") {
01478     assert(LHS->getType() == RHS->getType() &&
01479            "Pointer subtraction operand types must match!");
01480     PointerType *ArgType = cast<PointerType>(LHS->getType());
01481     Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
01482     Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
01483     Value *Difference = CreateSub(LHS_int, RHS_int);
01484     return CreateExactSDiv(Difference,
01485                            ConstantExpr::getSizeOf(ArgType->getElementType()),
01486                            Name);
01487   }
01488 
01489   /// \brief Return a vector value that contains \arg V broadcasted to \p
01490   /// NumElts elements.
01491   Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "") {
01492     assert(NumElts > 0 && "Cannot splat to an empty vector!");
01493 
01494     // First insert it into an undef vector so we can shuffle it.
01495     Type *I32Ty = getInt32Ty();
01496     Value *Undef = UndefValue::get(VectorType::get(V->getType(), NumElts));
01497     V = CreateInsertElement(Undef, V, ConstantInt::get(I32Ty, 0),
01498                             Name + ".splatinsert");
01499 
01500     // Shuffle the value across the desired number of elements.
01501     Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32Ty, NumElts));
01502     return CreateShuffleVector(V, Undef, Zeros, Name + ".splat");
01503   }
01504 
01505   /// \brief Return a value that has been extracted from a larger integer type.
01506   Value *CreateExtractInteger(const DataLayout &DL, Value *From,
01507                               IntegerType *ExtractedTy, uint64_t Offset,
01508                               const Twine &Name) {
01509     IntegerType *IntTy = cast<IntegerType>(From->getType());
01510     assert(DL.getTypeStoreSize(ExtractedTy) + Offset <=
01511                DL.getTypeStoreSize(IntTy) &&
01512            "Element extends past full value");
01513     uint64_t ShAmt = 8 * Offset;
01514     Value *V = From;
01515     if (DL.isBigEndian())
01516       ShAmt = 8 * (DL.getTypeStoreSize(IntTy) -
01517                    DL.getTypeStoreSize(ExtractedTy) - Offset);
01518     if (ShAmt) {
01519       V = CreateLShr(V, ShAmt, Name + ".shift");
01520     }
01521     assert(ExtractedTy->getBitWidth() <= IntTy->getBitWidth() &&
01522            "Cannot extract to a larger integer!");
01523     if (ExtractedTy != IntTy) {
01524       V = CreateTrunc(V, ExtractedTy, Name + ".trunc");
01525     }
01526     return V;
01527   }
01528 };
01529 
01530 // Create wrappers for C Binding types (see CBindingWrapping.h).
01531 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)
01532 
01533 }
01534 
01535 #endif