LLVM API Documentation

IRBuilder.h
Go to the documentation of this file.
00001 //===---- llvm/IRBuilder.h - Builder for LLVM Instructions ------*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines the IRBuilder class, which is used as a convenient way
00011 // to create LLVM instructions with a consistent and simplified interface.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #ifndef LLVM_IR_IRBUILDER_H
00016 #define LLVM_IR_IRBUILDER_H
00017 
00018 #include "llvm/ADT/ArrayRef.h"
00019 #include "llvm/ADT/StringRef.h"
00020 #include "llvm/ADT/Twine.h"
00021 #include "llvm/IR/BasicBlock.h"
00022 #include "llvm/IR/ConstantFolder.h"
00023 #include "llvm/IR/DataLayout.h"
00024 #include "llvm/IR/Instructions.h"
00025 #include "llvm/IR/LLVMContext.h"
00026 #include "llvm/IR/Metadata.h"
00027 #include "llvm/IR/Operator.h"
00028 #include "llvm/IR/ValueHandle.h"
00029 #include "llvm/Support/CBindingWrapping.h"
00030 
00031 namespace llvm {
00032 
00033 /// \brief This provides the default implementation of the IRBuilder
00034 /// 'InsertHelper' method that is called whenever an instruction is created by
00035 /// IRBuilder and needs to be inserted.
00036 ///
00037 /// By default, this inserts the instruction at the insertion point.
00038 template <bool preserveNames = true>
00039 class IRBuilderDefaultInserter {
00040 protected:
00041   void InsertHelper(Instruction *I, const Twine &Name,
00042                     BasicBlock *BB, BasicBlock::iterator InsertPt) const {
00043     if (BB) BB->getInstList().insert(InsertPt, I);
00044     if (preserveNames)
00045       I->setName(Name);
00046   }
00047 };
00048 
00049 /// \brief Common base class shared among various IRBuilders.
00050 class IRBuilderBase {
00051   DebugLoc CurDbgLocation;
00052 protected:
00053   BasicBlock *BB;
00054   BasicBlock::iterator InsertPt;
00055   LLVMContext &Context;
00056 
00057   MDNode *DefaultFPMathTag;
00058   FastMathFlags FMF;
00059 public:
00060 
00061   IRBuilderBase(LLVMContext &context, MDNode *FPMathTag = nullptr)
00062     : Context(context), DefaultFPMathTag(FPMathTag), FMF() {
00063     ClearInsertionPoint();
00064   }
00065 
00066   //===--------------------------------------------------------------------===//
00067   // Builder configuration methods
00068   //===--------------------------------------------------------------------===//
00069 
00070   /// \brief Clear the insertion point: created instructions will not be
00071   /// inserted into a block.
00072   void ClearInsertionPoint() {
00073     BB = nullptr;
00074     InsertPt = nullptr;
00075   }
00076 
00077   BasicBlock *GetInsertBlock() const { return BB; }
00078   BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
00079   LLVMContext &getContext() const { return Context; }
00080 
00081   /// \brief This specifies that created instructions should be appended to the
00082   /// end of the specified block.
00083   void SetInsertPoint(BasicBlock *TheBB) {
00084     BB = TheBB;
00085     InsertPt = BB->end();
00086   }
00087 
00088   /// \brief This specifies that created instructions should be inserted before
00089   /// the specified instruction.
00090   void SetInsertPoint(Instruction *I) {
00091     BB = I->getParent();
00092     InsertPt = I;
00093     assert(I != BB->end() && "Can't read debug loc from end()");
00094     SetCurrentDebugLocation(I->getDebugLoc());
00095   }
00096 
00097   /// \brief This specifies that created instructions should be inserted at the
00098   /// specified point.
00099   void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
00100     BB = TheBB;
00101     InsertPt = IP;
00102   }
00103 
00104   /// \brief Find the nearest point that dominates this use, and specify that
00105   /// created instructions should be inserted at this point.
00106   void SetInsertPoint(Use &U) {
00107     Instruction *UseInst = cast<Instruction>(U.getUser());
00108     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
00109       BasicBlock *PredBB = Phi->getIncomingBlock(U);
00110       assert(U != PredBB->getTerminator() && "critical edge not split");
00111       SetInsertPoint(PredBB, PredBB->getTerminator());
00112       return;
00113     }
00114     SetInsertPoint(UseInst);
00115   }
00116 
00117   /// \brief Set location information used by debugging information.
00118   void SetCurrentDebugLocation(const DebugLoc &L) {
00119     CurDbgLocation = L;
00120   }
00121 
00122   /// \brief Get location information used by debugging information.
00123   DebugLoc getCurrentDebugLocation() const { return CurDbgLocation; }
00124 
00125   /// \brief If this builder has a current debug location, set it on the
00126   /// specified instruction.
00127   void SetInstDebugLocation(Instruction *I) const {
00128     if (!CurDbgLocation.isUnknown())
00129       I->setDebugLoc(CurDbgLocation);
00130   }
00131 
00132   /// \brief Get the return type of the current function that we're emitting
00133   /// into.
00134   Type *getCurrentFunctionReturnType() const;
00135 
00136   /// InsertPoint - A saved insertion point.
00137   class InsertPoint {
00138     BasicBlock *Block;
00139     BasicBlock::iterator Point;
00140 
00141   public:
00142     /// \brief Creates a new insertion point which doesn't point to anything.
00143     InsertPoint() : Block(nullptr) {}
00144 
00145     /// \brief Creates a new insertion point at the given location.
00146     InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
00147       : Block(InsertBlock), Point(InsertPoint) {}
00148 
00149     /// \brief Returns true if this insert point is set.
00150     bool isSet() const { return (Block != nullptr); }
00151 
00152     llvm::BasicBlock *getBlock() const { return Block; }
00153     llvm::BasicBlock::iterator getPoint() const { return Point; }
00154   };
00155 
00156   /// \brief Returns the current insert point.
00157   InsertPoint saveIP() const {
00158     return InsertPoint(GetInsertBlock(), GetInsertPoint());
00159   }
00160 
00161   /// \brief Returns the current insert point, clearing it in the process.
00162   InsertPoint saveAndClearIP() {
00163     InsertPoint IP(GetInsertBlock(), GetInsertPoint());
00164     ClearInsertionPoint();
00165     return IP;
00166   }
00167 
00168   /// \brief Sets the current insert point to a previously-saved location.
00169   void restoreIP(InsertPoint IP) {
00170     if (IP.isSet())
00171       SetInsertPoint(IP.getBlock(), IP.getPoint());
00172     else
00173       ClearInsertionPoint();
00174   }
00175 
00176   /// \brief Get the floating point math metadata being used.
00177   MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
00178 
00179   /// \brief Get the flags to be applied to created floating point ops
00180   FastMathFlags getFastMathFlags() const { return FMF; }
00181 
00182   /// \brief Clear the fast-math flags.
00183   void clearFastMathFlags() { FMF.clear(); }
00184 
00185   /// \brief Set the floating point math metadata to be used.
00186   void SetDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
00187 
00188   /// \brief Set the fast-math flags to be used with generated fp-math operators
00189   void SetFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
00190 
00191   //===--------------------------------------------------------------------===//
00192   // RAII helpers.
00193   //===--------------------------------------------------------------------===//
00194 
00195   // \brief RAII object that stores the current insertion point and restores it
00196   // when the object is destroyed. This includes the debug location.
00197   class InsertPointGuard {
00198     IRBuilderBase &Builder;
00199     AssertingVH<BasicBlock> Block;
00200     BasicBlock::iterator Point;
00201     DebugLoc DbgLoc;
00202 
00203     InsertPointGuard(const InsertPointGuard &) LLVM_DELETED_FUNCTION;
00204     InsertPointGuard &operator=(const InsertPointGuard &) LLVM_DELETED_FUNCTION;
00205 
00206   public:
00207     InsertPointGuard(IRBuilderBase &B)
00208         : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
00209           DbgLoc(B.getCurrentDebugLocation()) {}
00210 
00211     ~InsertPointGuard() {
00212       Builder.restoreIP(InsertPoint(Block, Point));
00213       Builder.SetCurrentDebugLocation(DbgLoc);
00214     }
00215   };
00216 
00217   // \brief RAII object that stores the current fast math settings and restores
00218   // them when the object is destroyed.
00219   class FastMathFlagGuard {
00220     IRBuilderBase &Builder;
00221     FastMathFlags FMF;
00222     MDNode *FPMathTag;
00223 
00224     FastMathFlagGuard(const FastMathFlagGuard &) LLVM_DELETED_FUNCTION;
00225     FastMathFlagGuard &operator=(
00226         const FastMathFlagGuard &) LLVM_DELETED_FUNCTION;
00227 
00228   public:
00229     FastMathFlagGuard(IRBuilderBase &B)
00230         : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag) {}
00231 
00232     ~FastMathFlagGuard() {
00233       Builder.FMF = FMF;
00234       Builder.DefaultFPMathTag = FPMathTag;
00235     }
00236   };
00237 
00238   //===--------------------------------------------------------------------===//
00239   // Miscellaneous creation methods.
00240   //===--------------------------------------------------------------------===//
00241 
00242   /// \brief Make a new global variable with initializer type i8*
00243   ///
00244   /// Make a new global variable with an initializer that has array of i8 type
00245   /// filled in with the null terminated string value specified.  The new global
00246   /// variable will be marked mergable with any others of the same contents.  If
00247   /// Name is specified, it is the name of the global variable created.
00248   Value *CreateGlobalString(StringRef Str, const Twine &Name = "");
00249 
00250   /// \brief Get a constant value representing either true or false.
00251   ConstantInt *getInt1(bool V) {
00252     return ConstantInt::get(getInt1Ty(), V);
00253   }
00254 
00255   /// \brief Get the constant value for i1 true.
00256   ConstantInt *getTrue() {
00257     return ConstantInt::getTrue(Context);
00258   }
00259 
00260   /// \brief Get the constant value for i1 false.
00261   ConstantInt *getFalse() {
00262     return ConstantInt::getFalse(Context);
00263   }
00264 
00265   /// \brief Get a constant 8-bit value.
00266   ConstantInt *getInt8(uint8_t C) {
00267     return ConstantInt::get(getInt8Ty(), C);
00268   }
00269 
00270   /// \brief Get a constant 16-bit value.
00271   ConstantInt *getInt16(uint16_t C) {
00272     return ConstantInt::get(getInt16Ty(), C);
00273   }
00274 
00275   /// \brief Get a constant 32-bit value.
00276   ConstantInt *getInt32(uint32_t C) {
00277     return ConstantInt::get(getInt32Ty(), C);
00278   }
00279 
00280   /// \brief Get a constant 64-bit value.
00281   ConstantInt *getInt64(uint64_t C) {
00282     return ConstantInt::get(getInt64Ty(), C);
00283   }
00284 
00285   /// \brief Get a constant N-bit value, zero extended or truncated from
00286   /// a 64-bit value.
00287   ConstantInt *getIntN(unsigned N, uint64_t C) {
00288     return ConstantInt::get(getIntNTy(N), C);
00289   }
00290 
00291   /// \brief Get a constant integer value.
00292   ConstantInt *getInt(const APInt &AI) {
00293     return ConstantInt::get(Context, AI);
00294   }
00295 
00296   //===--------------------------------------------------------------------===//
00297   // Type creation methods
00298   //===--------------------------------------------------------------------===//
00299 
00300   /// \brief Fetch the type representing a single bit
00301   IntegerType *getInt1Ty() {
00302     return Type::getInt1Ty(Context);
00303   }
00304 
00305   /// \brief Fetch the type representing an 8-bit integer.
00306   IntegerType *getInt8Ty() {
00307     return Type::getInt8Ty(Context);
00308   }
00309 
00310   /// \brief Fetch the type representing a 16-bit integer.
00311   IntegerType *getInt16Ty() {
00312     return Type::getInt16Ty(Context);
00313   }
00314 
00315   /// \brief Fetch the type representing a 32-bit integer.
00316   IntegerType *getInt32Ty() {
00317     return Type::getInt32Ty(Context);
00318   }
00319 
00320   /// \brief Fetch the type representing a 64-bit integer.
00321   IntegerType *getInt64Ty() {
00322     return Type::getInt64Ty(Context);
00323   }
00324 
00325   /// \brief Fetch the type representing an N-bit integer.
00326   IntegerType *getIntNTy(unsigned N) {
00327     return Type::getIntNTy(Context, N);
00328   }
00329 
00330   /// \brief Fetch the type representing a 16-bit floating point value.
00331   Type *getHalfTy() {
00332     return Type::getHalfTy(Context);
00333   }
00334 
00335   /// \brief Fetch the type representing a 32-bit floating point value.
00336   Type *getFloatTy() {
00337     return Type::getFloatTy(Context);
00338   }
00339 
00340   /// \brief Fetch the type representing a 64-bit floating point value.
00341   Type *getDoubleTy() {
00342     return Type::getDoubleTy(Context);
00343   }
00344 
00345   /// \brief Fetch the type representing void.
00346   Type *getVoidTy() {
00347     return Type::getVoidTy(Context);
00348   }
00349 
00350   /// \brief Fetch the type representing a pointer to an 8-bit integer value.
00351   PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
00352     return Type::getInt8PtrTy(Context, AddrSpace);
00353   }
00354 
00355   /// \brief Fetch the type representing a pointer to an integer value.
00356   IntegerType* getIntPtrTy(const DataLayout *DL, unsigned AddrSpace = 0) {
00357     return DL->getIntPtrType(Context, AddrSpace);
00358   }
00359 
00360   //===--------------------------------------------------------------------===//
00361   // Intrinsic creation methods
00362   //===--------------------------------------------------------------------===//
00363 
00364   /// \brief Create and insert a memset to the specified pointer and the
00365   /// specified value.
00366   ///
00367   /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
00368   /// specified, it will be added to the instruction. Likewise with alias.scope
00369   /// and noalias tags.
00370   CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align,
00371                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00372                          MDNode *ScopeTag = nullptr,
00373                          MDNode *NoAliasTag = nullptr) {
00374     return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
00375                         TBAATag, ScopeTag, NoAliasTag);
00376   }
00377 
00378   CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align,
00379                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00380                          MDNode *ScopeTag = nullptr,
00381                          MDNode *NoAliasTag = nullptr);
00382 
00383   /// \brief Create and insert a memcpy between the specified pointers.
00384   ///
00385   /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
00386   /// specified, it will be added to the instruction. Likewise with alias.scope
00387   /// and noalias tags.
00388   CallInst *CreateMemCpy(Value *Dst, Value *Src, uint64_t Size, unsigned Align,
00389                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00390                          MDNode *TBAAStructTag = nullptr,
00391                          MDNode *ScopeTag = nullptr,
00392                          MDNode *NoAliasTag = nullptr) {
00393     return CreateMemCpy(Dst, Src, getInt64(Size), Align, isVolatile, TBAATag,
00394                         TBAAStructTag, ScopeTag, NoAliasTag);
00395   }
00396 
00397   CallInst *CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned Align,
00398                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00399                          MDNode *TBAAStructTag = nullptr,
00400                          MDNode *ScopeTag = nullptr,
00401                          MDNode *NoAliasTag = nullptr);
00402 
00403   /// \brief Create and insert a memmove between the specified
00404   /// pointers.
00405   ///
00406   /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
00407   /// specified, it will be added to the instruction. Likewise with alias.scope
00408   /// and noalias tags.
00409   CallInst *CreateMemMove(Value *Dst, Value *Src, uint64_t Size, unsigned Align,
00410                           bool isVolatile = false, MDNode *TBAATag = nullptr,
00411                           MDNode *ScopeTag = nullptr,
00412                           MDNode *NoAliasTag = nullptr) {
00413     return CreateMemMove(Dst, Src, getInt64(Size), Align, isVolatile,
00414                          TBAATag, ScopeTag, NoAliasTag);
00415   }
00416 
00417   CallInst *CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned Align,
00418                           bool isVolatile = false, MDNode *TBAATag = nullptr,
00419                           MDNode *ScopeTag = nullptr,
00420                           MDNode *NoAliasTag = nullptr);
00421 
00422   /// \brief Create a lifetime.start intrinsic.
00423   ///
00424   /// If the pointer isn't i8* it will be converted.
00425   CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
00426 
00427   /// \brief Create a lifetime.end intrinsic.
00428   ///
00429   /// If the pointer isn't i8* it will be converted.
00430   CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
00431 
00432   /// \brief Create an assume intrinsic call that allows the optimizer to
00433   /// assume that the provided condition will be true.
00434   CallInst *CreateAssumption(Value *Cond);
00435 
00436 private:
00437   Value *getCastedInt8PtrValue(Value *Ptr);
00438 };
00439 
00440 /// \brief This provides a uniform API for creating instructions and inserting
00441 /// them into a basic block: either at the end of a BasicBlock, or at a specific
00442 /// iterator location in a block.
00443 ///
00444 /// Note that the builder does not expose the full generality of LLVM
00445 /// instructions.  For access to extra instruction properties, use the mutators
00446 /// (e.g. setVolatile) on the instructions after they have been
00447 /// created. Convenience state exists to specify fast-math flags and fp-math
00448 /// tags.
00449 ///
00450 /// The first template argument handles whether or not to preserve names in the
00451 /// final instruction output. This defaults to on.  The second template argument
00452 /// specifies a class to use for creating constants.  This defaults to creating
00453 /// minimally folded constants.  The third template argument allows clients to
00454 /// specify custom insertion hooks that are called on every newly created
00455 /// insertion.
00456 template<bool preserveNames = true, typename T = ConstantFolder,
00457          typename Inserter = IRBuilderDefaultInserter<preserveNames> >
00458 class IRBuilder : public IRBuilderBase, public Inserter {
00459   T Folder;
00460 public:
00461   IRBuilder(LLVMContext &C, const T &F, const Inserter &I = Inserter(),
00462             MDNode *FPMathTag = nullptr)
00463     : IRBuilderBase(C, FPMathTag), Inserter(I), Folder(F) {
00464   }
00465 
00466   explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr)
00467     : IRBuilderBase(C, FPMathTag), Folder() {
00468   }
00469 
00470   explicit IRBuilder(BasicBlock *TheBB, const T &F, MDNode *FPMathTag = nullptr)
00471     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder(F) {
00472     SetInsertPoint(TheBB);
00473   }
00474 
00475   explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr)
00476     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder() {
00477     SetInsertPoint(TheBB);
00478   }
00479 
00480   explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr)
00481     : IRBuilderBase(IP->getContext(), FPMathTag), Folder() {
00482     SetInsertPoint(IP);
00483     SetCurrentDebugLocation(IP->getDebugLoc());
00484   }
00485 
00486   explicit IRBuilder(Use &U, MDNode *FPMathTag = nullptr)
00487     : IRBuilderBase(U->getContext(), FPMathTag), Folder() {
00488     SetInsertPoint(U);
00489     SetCurrentDebugLocation(cast<Instruction>(U.getUser())->getDebugLoc());
00490   }
00491 
00492   IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, const T& F,
00493             MDNode *FPMathTag = nullptr)
00494     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder(F) {
00495     SetInsertPoint(TheBB, IP);
00496   }
00497 
00498   IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
00499             MDNode *FPMathTag = nullptr)
00500     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder() {
00501     SetInsertPoint(TheBB, IP);
00502   }
00503 
00504   /// \brief Get the constant folder being used.
00505   const T &getFolder() { return Folder; }
00506 
00507   /// \brief Return true if this builder is configured to actually add the
00508   /// requested names to IR created through it.
00509   bool isNamePreserving() const { return preserveNames; }
00510 
00511   /// \brief Insert and return the specified instruction.
00512   template<typename InstTy>
00513   InstTy *Insert(InstTy *I, const Twine &Name = "") const {
00514     this->InsertHelper(I, Name, BB, InsertPt);
00515     this->SetInstDebugLocation(I);
00516     return I;
00517   }
00518 
00519   /// \brief No-op overload to handle constants.
00520   Constant *Insert(Constant *C, const Twine& = "") const {
00521     return C;
00522   }
00523 
00524   //===--------------------------------------------------------------------===//
00525   // Instruction creation methods: Terminators
00526   //===--------------------------------------------------------------------===//
00527 
00528 private:
00529   /// \brief Helper to add branch weight metadata onto an instruction.
00530   /// \returns The annotated instruction.
00531   template <typename InstTy>
00532   InstTy *addBranchWeights(InstTy *I, MDNode *Weights) {
00533     if (Weights)
00534       I->setMetadata(LLVMContext::MD_prof, Weights);
00535     return I;
00536   }
00537 
00538 public:
00539   /// \brief Create a 'ret void' instruction.
00540   ReturnInst *CreateRetVoid() {
00541     return Insert(ReturnInst::Create(Context));
00542   }
00543 
00544   /// \brief Create a 'ret <val>' instruction.
00545   ReturnInst *CreateRet(Value *V) {
00546     return Insert(ReturnInst::Create(Context, V));
00547   }
00548 
00549   /// \brief Create a sequence of N insertvalue instructions,
00550   /// with one Value from the retVals array each, that build a aggregate
00551   /// return value one value at a time, and a ret instruction to return
00552   /// the resulting aggregate value.
00553   ///
00554   /// This is a convenience function for code that uses aggregate return values
00555   /// as a vehicle for having multiple return values.
00556   ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
00557     Value *V = UndefValue::get(getCurrentFunctionReturnType());
00558     for (unsigned i = 0; i != N; ++i)
00559       V = CreateInsertValue(V, retVals[i], i, "mrv");
00560     return Insert(ReturnInst::Create(Context, V));
00561   }
00562 
00563   /// \brief Create an unconditional 'br label X' instruction.
00564   BranchInst *CreateBr(BasicBlock *Dest) {
00565     return Insert(BranchInst::Create(Dest));
00566   }
00567 
00568   /// \brief Create a conditional 'br Cond, TrueDest, FalseDest'
00569   /// instruction.
00570   BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
00571                            MDNode *BranchWeights = nullptr) {
00572     return Insert(addBranchWeights(BranchInst::Create(True, False, Cond),
00573                                    BranchWeights));
00574   }
00575 
00576   /// \brief Create a switch instruction with the specified value, default dest,
00577   /// and with a hint for the number of cases that will be added (for efficient
00578   /// allocation).
00579   SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
00580                            MDNode *BranchWeights = nullptr) {
00581     return Insert(addBranchWeights(SwitchInst::Create(V, Dest, NumCases),
00582                                    BranchWeights));
00583   }
00584 
00585   /// \brief Create an indirect branch instruction with the specified address
00586   /// operand, with an optional hint for the number of destinations that will be
00587   /// added (for efficient allocation).
00588   IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
00589     return Insert(IndirectBrInst::Create(Addr, NumDests));
00590   }
00591 
00592   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
00593                            BasicBlock *UnwindDest, const Twine &Name = "") {
00594     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, None),
00595                   Name);
00596   }
00597   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
00598                            BasicBlock *UnwindDest, Value *Arg1,
00599                            const Twine &Name = "") {
00600     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Arg1),
00601                   Name);
00602   }
00603   InvokeInst *CreateInvoke3(Value *Callee, BasicBlock *NormalDest,
00604                             BasicBlock *UnwindDest, Value *Arg1,
00605                             Value *Arg2, Value *Arg3,
00606                             const Twine &Name = "") {
00607     Value *Args[] = { Arg1, Arg2, Arg3 };
00608     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args),
00609                   Name);
00610   }
00611   /// \brief Create an invoke instruction.
00612   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
00613                            BasicBlock *UnwindDest, ArrayRef<Value *> Args,
00614                            const Twine &Name = "") {
00615     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args),
00616                   Name);
00617   }
00618 
00619   ResumeInst *CreateResume(Value *Exn) {
00620     return Insert(ResumeInst::Create(Exn));
00621   }
00622 
00623   UnreachableInst *CreateUnreachable() {
00624     return Insert(new UnreachableInst(Context));
00625   }
00626 
00627   //===--------------------------------------------------------------------===//
00628   // Instruction creation methods: Binary Operators
00629   //===--------------------------------------------------------------------===//
00630 private:
00631   BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
00632                                           Value *LHS, Value *RHS,
00633                                           const Twine &Name,
00634                                           bool HasNUW, bool HasNSW) {
00635     BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
00636     if (HasNUW) BO->setHasNoUnsignedWrap();
00637     if (HasNSW) BO->setHasNoSignedWrap();
00638     return BO;
00639   }
00640 
00641   Instruction *AddFPMathAttributes(Instruction *I,
00642                                    MDNode *FPMathTag,
00643                                    FastMathFlags FMF) const {
00644     if (!FPMathTag)
00645       FPMathTag = DefaultFPMathTag;
00646     if (FPMathTag)
00647       I->setMetadata(LLVMContext::MD_fpmath, FPMathTag);
00648     I->setFastMathFlags(FMF);
00649     return I;
00650   }
00651 public:
00652   Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
00653                    bool HasNUW = false, bool HasNSW = false) {
00654     if (Constant *LC = dyn_cast<Constant>(LHS))
00655       if (Constant *RC = dyn_cast<Constant>(RHS))
00656         return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name);
00657     return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
00658                                    HasNUW, HasNSW);
00659   }
00660   Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
00661     return CreateAdd(LHS, RHS, Name, false, true);
00662   }
00663   Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
00664     return CreateAdd(LHS, RHS, Name, true, false);
00665   }
00666   Value *CreateFAdd(Value *LHS, Value *RHS, const Twine &Name = "",
00667                     MDNode *FPMathTag = nullptr) {
00668     if (Constant *LC = dyn_cast<Constant>(LHS))
00669       if (Constant *RC = dyn_cast<Constant>(RHS))
00670         return Insert(Folder.CreateFAdd(LC, RC), Name);
00671     return Insert(AddFPMathAttributes(BinaryOperator::CreateFAdd(LHS, RHS),
00672                                       FPMathTag, FMF), Name);
00673   }
00674   Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
00675                    bool HasNUW = false, bool HasNSW = false) {
00676     if (Constant *LC = dyn_cast<Constant>(LHS))
00677       if (Constant *RC = dyn_cast<Constant>(RHS))
00678         return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
00679     return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
00680                                    HasNUW, HasNSW);
00681   }
00682   Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
00683     return CreateSub(LHS, RHS, Name, false, true);
00684   }
00685   Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
00686     return CreateSub(LHS, RHS, Name, true, false);
00687   }
00688   Value *CreateFSub(Value *LHS, Value *RHS, const Twine &Name = "",
00689                     MDNode *FPMathTag = nullptr) {
00690     if (Constant *LC = dyn_cast<Constant>(LHS))
00691       if (Constant *RC = dyn_cast<Constant>(RHS))
00692         return Insert(Folder.CreateFSub(LC, RC), Name);
00693     return Insert(AddFPMathAttributes(BinaryOperator::CreateFSub(LHS, RHS),
00694                                       FPMathTag, FMF), Name);
00695   }
00696   Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
00697                    bool HasNUW = false, bool HasNSW = false) {
00698     if (Constant *LC = dyn_cast<Constant>(LHS))
00699       if (Constant *RC = dyn_cast<Constant>(RHS))
00700         return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
00701     return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
00702                                    HasNUW, HasNSW);
00703   }
00704   Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
00705     return CreateMul(LHS, RHS, Name, false, true);
00706   }
00707   Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
00708     return CreateMul(LHS, RHS, Name, true, false);
00709   }
00710   Value *CreateFMul(Value *LHS, Value *RHS, const Twine &Name = "",
00711                     MDNode *FPMathTag = nullptr) {
00712     if (Constant *LC = dyn_cast<Constant>(LHS))
00713       if (Constant *RC = dyn_cast<Constant>(RHS))
00714         return Insert(Folder.CreateFMul(LC, RC), Name);
00715     return Insert(AddFPMathAttributes(BinaryOperator::CreateFMul(LHS, RHS),
00716                                       FPMathTag, FMF), Name);
00717   }
00718   Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
00719                     bool isExact = false) {
00720     if (Constant *LC = dyn_cast<Constant>(LHS))
00721       if (Constant *RC = dyn_cast<Constant>(RHS))
00722         return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
00723     if (!isExact)
00724       return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
00725     return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
00726   }
00727   Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
00728     return CreateUDiv(LHS, RHS, Name, true);
00729   }
00730   Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
00731                     bool isExact = false) {
00732     if (Constant *LC = dyn_cast<Constant>(LHS))
00733       if (Constant *RC = dyn_cast<Constant>(RHS))
00734         return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
00735     if (!isExact)
00736       return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
00737     return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
00738   }
00739   Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
00740     return CreateSDiv(LHS, RHS, Name, true);
00741   }
00742   Value *CreateFDiv(Value *LHS, Value *RHS, const Twine &Name = "",
00743                     MDNode *FPMathTag = nullptr) {
00744     if (Constant *LC = dyn_cast<Constant>(LHS))
00745       if (Constant *RC = dyn_cast<Constant>(RHS))
00746         return Insert(Folder.CreateFDiv(LC, RC), Name);
00747     return Insert(AddFPMathAttributes(BinaryOperator::CreateFDiv(LHS, RHS),
00748                                       FPMathTag, FMF), Name);
00749   }
00750   Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
00751     if (Constant *LC = dyn_cast<Constant>(LHS))
00752       if (Constant *RC = dyn_cast<Constant>(RHS))
00753         return Insert(Folder.CreateURem(LC, RC), Name);
00754     return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
00755   }
00756   Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
00757     if (Constant *LC = dyn_cast<Constant>(LHS))
00758       if (Constant *RC = dyn_cast<Constant>(RHS))
00759         return Insert(Folder.CreateSRem(LC, RC), Name);
00760     return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
00761   }
00762   Value *CreateFRem(Value *LHS, Value *RHS, const Twine &Name = "",
00763                     MDNode *FPMathTag = nullptr) {
00764     if (Constant *LC = dyn_cast<Constant>(LHS))
00765       if (Constant *RC = dyn_cast<Constant>(RHS))
00766         return Insert(Folder.CreateFRem(LC, RC), Name);
00767     return Insert(AddFPMathAttributes(BinaryOperator::CreateFRem(LHS, RHS),
00768                                       FPMathTag, FMF), Name);
00769   }
00770 
00771   Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
00772                    bool HasNUW = false, bool HasNSW = false) {
00773     if (Constant *LC = dyn_cast<Constant>(LHS))
00774       if (Constant *RC = dyn_cast<Constant>(RHS))
00775         return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name);
00776     return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
00777                                    HasNUW, HasNSW);
00778   }
00779   Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
00780                    bool HasNUW = false, bool HasNSW = false) {
00781     return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
00782                      HasNUW, HasNSW);
00783   }
00784   Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
00785                    bool HasNUW = false, bool HasNSW = false) {
00786     return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
00787                      HasNUW, HasNSW);
00788   }
00789 
00790   Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
00791                     bool isExact = false) {
00792     if (Constant *LC = dyn_cast<Constant>(LHS))
00793       if (Constant *RC = dyn_cast<Constant>(RHS))
00794         return Insert(Folder.CreateLShr(LC, RC, isExact), Name);
00795     if (!isExact)
00796       return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
00797     return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
00798   }
00799   Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
00800                     bool isExact = false) {
00801     return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00802   }
00803   Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
00804                     bool isExact = false) {
00805     return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00806   }
00807 
00808   Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
00809                     bool isExact = false) {
00810     if (Constant *LC = dyn_cast<Constant>(LHS))
00811       if (Constant *RC = dyn_cast<Constant>(RHS))
00812         return Insert(Folder.CreateAShr(LC, RC, isExact), Name);
00813     if (!isExact)
00814       return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
00815     return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
00816   }
00817   Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
00818                     bool isExact = false) {
00819     return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00820   }
00821   Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
00822                     bool isExact = false) {
00823     return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00824   }
00825 
00826   Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
00827     if (Constant *RC = dyn_cast<Constant>(RHS)) {
00828       if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isAllOnesValue())
00829         return LHS;  // LHS & -1 -> LHS
00830       if (Constant *LC = dyn_cast<Constant>(LHS))
00831         return Insert(Folder.CreateAnd(LC, RC), Name);
00832     }
00833     return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
00834   }
00835   Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
00836     return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00837   }
00838   Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
00839     return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00840   }
00841 
00842   Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
00843     if (Constant *RC = dyn_cast<Constant>(RHS)) {
00844       if (RC->isNullValue())
00845         return LHS;  // LHS | 0 -> LHS
00846       if (Constant *LC = dyn_cast<Constant>(LHS))
00847         return Insert(Folder.CreateOr(LC, RC), Name);
00848     }
00849     return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
00850   }
00851   Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
00852     return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00853   }
00854   Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
00855     return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00856   }
00857 
00858   Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
00859     if (Constant *LC = dyn_cast<Constant>(LHS))
00860       if (Constant *RC = dyn_cast<Constant>(RHS))
00861         return Insert(Folder.CreateXor(LC, RC), Name);
00862     return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
00863   }
00864   Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
00865     return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00866   }
00867   Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
00868     return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00869   }
00870 
00871   Value *CreateBinOp(Instruction::BinaryOps Opc,
00872                      Value *LHS, Value *RHS, const Twine &Name = "",
00873                      MDNode *FPMathTag = nullptr) {
00874     if (Constant *LC = dyn_cast<Constant>(LHS))
00875       if (Constant *RC = dyn_cast<Constant>(RHS))
00876         return Insert(Folder.CreateBinOp(Opc, LC, RC), Name);
00877     llvm::Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
00878     if (isa<FPMathOperator>(BinOp))
00879       BinOp = AddFPMathAttributes(BinOp, FPMathTag, FMF);
00880     return Insert(BinOp, Name);
00881   }
00882 
00883   Value *CreateNeg(Value *V, const Twine &Name = "",
00884                    bool HasNUW = false, bool HasNSW = false) {
00885     if (Constant *VC = dyn_cast<Constant>(V))
00886       return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name);
00887     BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name);
00888     if (HasNUW) BO->setHasNoUnsignedWrap();
00889     if (HasNSW) BO->setHasNoSignedWrap();
00890     return BO;
00891   }
00892   Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
00893     return CreateNeg(V, Name, false, true);
00894   }
00895   Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
00896     return CreateNeg(V, Name, true, false);
00897   }
00898   Value *CreateFNeg(Value *V, const Twine &Name = "",
00899                     MDNode *FPMathTag = nullptr) {
00900     if (Constant *VC = dyn_cast<Constant>(V))
00901       return Insert(Folder.CreateFNeg(VC), Name);
00902     return Insert(AddFPMathAttributes(BinaryOperator::CreateFNeg(V),
00903                                       FPMathTag, FMF), Name);
00904   }
00905   Value *CreateNot(Value *V, const Twine &Name = "") {
00906     if (Constant *VC = dyn_cast<Constant>(V))
00907       return Insert(Folder.CreateNot(VC), Name);
00908     return Insert(BinaryOperator::CreateNot(V), Name);
00909   }
00910 
00911   //===--------------------------------------------------------------------===//
00912   // Instruction creation methods: Memory Instructions
00913   //===--------------------------------------------------------------------===//
00914 
00915   AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
00916                            const Twine &Name = "") {
00917     return Insert(new AllocaInst(Ty, ArraySize), Name);
00918   }
00919   // \brief Provided to resolve 'CreateLoad(Ptr, "...")' correctly, instead of
00920   // converting the string to 'bool' for the isVolatile parameter.
00921   LoadInst *CreateLoad(Value *Ptr, const char *Name) {
00922     return Insert(new LoadInst(Ptr), Name);
00923   }
00924   LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") {
00925     return Insert(new LoadInst(Ptr), Name);
00926   }
00927   LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") {
00928     return Insert(new LoadInst(Ptr, nullptr, isVolatile), Name);
00929   }
00930   StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
00931     return Insert(new StoreInst(Val, Ptr, isVolatile));
00932   }
00933   // \brief Provided to resolve 'CreateAlignedLoad(Ptr, Align, "...")'
00934   // correctly, instead of converting the string to 'bool' for the isVolatile
00935   // parameter.
00936   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const char *Name) {
00937     LoadInst *LI = CreateLoad(Ptr, Name);
00938     LI->setAlignment(Align);
00939     return LI;
00940   }
00941   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align,
00942                               const Twine &Name = "") {
00943     LoadInst *LI = CreateLoad(Ptr, Name);
00944     LI->setAlignment(Align);
00945     return LI;
00946   }
00947   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile,
00948                               const Twine &Name = "") {
00949     LoadInst *LI = CreateLoad(Ptr, isVolatile, Name);
00950     LI->setAlignment(Align);
00951     return LI;
00952   }
00953   StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align,
00954                                 bool isVolatile = false) {
00955     StoreInst *SI = CreateStore(Val, Ptr, isVolatile);
00956     SI->setAlignment(Align);
00957     return SI;
00958   }
00959   FenceInst *CreateFence(AtomicOrdering Ordering,
00960                          SynchronizationScope SynchScope = CrossThread,
00961                          const Twine &Name = "") {
00962     return Insert(new FenceInst(Context, Ordering, SynchScope), Name);
00963   }
00964   AtomicCmpXchgInst *
00965   CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New,
00966                       AtomicOrdering SuccessOrdering,
00967                       AtomicOrdering FailureOrdering,
00968                       SynchronizationScope SynchScope = CrossThread) {
00969     return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering,
00970                                         FailureOrdering, SynchScope));
00971   }
00972   AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val,
00973                                  AtomicOrdering Ordering,
00974                                SynchronizationScope SynchScope = CrossThread) {
00975     return Insert(new AtomicRMWInst(Op, Ptr, Val, Ordering, SynchScope));
00976   }
00977   Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList,
00978                    const Twine &Name = "") {
00979     if (Constant *PC = dyn_cast<Constant>(Ptr)) {
00980       // Every index must be constant.
00981       size_t i, e;
00982       for (i = 0, e = IdxList.size(); i != e; ++i)
00983         if (!isa<Constant>(IdxList[i]))
00984           break;
00985       if (i == e)
00986         return Insert(Folder.CreateGetElementPtr(PC, IdxList), Name);
00987     }
00988     return Insert(GetElementPtrInst::Create(Ptr, IdxList), Name);
00989   }
00990   Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
00991                            const Twine &Name = "") {
00992     if (Constant *PC = dyn_cast<Constant>(Ptr)) {
00993       // Every index must be constant.
00994       size_t i, e;
00995       for (i = 0, e = IdxList.size(); i != e; ++i)
00996         if (!isa<Constant>(IdxList[i]))
00997           break;
00998       if (i == e)
00999         return Insert(Folder.CreateInBoundsGetElementPtr(PC, IdxList), Name);
01000     }
01001     return Insert(GetElementPtrInst::CreateInBounds(Ptr, IdxList), Name);
01002   }
01003   Value *CreateGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
01004     if (Constant *PC = dyn_cast<Constant>(Ptr))
01005       if (Constant *IC = dyn_cast<Constant>(Idx))
01006         return Insert(Folder.CreateGetElementPtr(PC, IC), Name);
01007     return Insert(GetElementPtrInst::Create(Ptr, Idx), Name);
01008   }
01009   Value *CreateInBoundsGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
01010     if (Constant *PC = dyn_cast<Constant>(Ptr))
01011       if (Constant *IC = dyn_cast<Constant>(Idx))
01012         return Insert(Folder.CreateInBoundsGetElementPtr(PC, IC), Name);
01013     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name);
01014   }
01015   Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") {
01016     Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
01017 
01018     if (Constant *PC = dyn_cast<Constant>(Ptr))
01019       return Insert(Folder.CreateGetElementPtr(PC, Idx), Name);
01020 
01021     return Insert(GetElementPtrInst::Create(Ptr, Idx), Name);
01022   }
01023   Value *CreateConstInBoundsGEP1_32(Value *Ptr, unsigned Idx0,
01024                                     const Twine &Name = "") {
01025     Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
01026 
01027     if (Constant *PC = dyn_cast<Constant>(Ptr))
01028       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idx), Name);
01029 
01030     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name);
01031   }
01032   Value *CreateConstGEP2_32(Value *Ptr, unsigned Idx0, unsigned Idx1,
01033                     const Twine &Name = "") {
01034     Value *Idxs[] = {
01035       ConstantInt::get(Type::getInt32Ty(Context), Idx0),
01036       ConstantInt::get(Type::getInt32Ty(Context), Idx1)
01037     };
01038 
01039     if (Constant *PC = dyn_cast<Constant>(Ptr))
01040       return Insert(Folder.CreateGetElementPtr(PC, Idxs), Name);
01041 
01042     return Insert(GetElementPtrInst::Create(Ptr, Idxs), Name);
01043   }
01044   Value *CreateConstInBoundsGEP2_32(Value *Ptr, unsigned Idx0, unsigned Idx1,
01045                                     const Twine &Name = "") {
01046     Value *Idxs[] = {
01047       ConstantInt::get(Type::getInt32Ty(Context), Idx0),
01048       ConstantInt::get(Type::getInt32Ty(Context), Idx1)
01049     };
01050 
01051     if (Constant *PC = dyn_cast<Constant>(Ptr))
01052       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idxs), Name);
01053 
01054     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idxs), Name);
01055   }
01056   Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") {
01057     Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
01058 
01059     if (Constant *PC = dyn_cast<Constant>(Ptr))
01060       return Insert(Folder.CreateGetElementPtr(PC, Idx), Name);
01061 
01062     return Insert(GetElementPtrInst::Create(Ptr, Idx), Name);
01063   }
01064   Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0,
01065                                     const Twine &Name = "") {
01066     Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
01067 
01068     if (Constant *PC = dyn_cast<Constant>(Ptr))
01069       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idx), Name);
01070 
01071     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name);
01072   }
01073   Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
01074                     const Twine &Name = "") {
01075     Value *Idxs[] = {
01076       ConstantInt::get(Type::getInt64Ty(Context), Idx0),
01077       ConstantInt::get(Type::getInt64Ty(Context), Idx1)
01078     };
01079 
01080     if (Constant *PC = dyn_cast<Constant>(Ptr))
01081       return Insert(Folder.CreateGetElementPtr(PC, Idxs), Name);
01082 
01083     return Insert(GetElementPtrInst::Create(Ptr, Idxs), Name);
01084   }
01085   Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
01086                                     const Twine &Name = "") {
01087     Value *Idxs[] = {
01088       ConstantInt::get(Type::getInt64Ty(Context), Idx0),
01089       ConstantInt::get(Type::getInt64Ty(Context), Idx1)
01090     };
01091 
01092     if (Constant *PC = dyn_cast<Constant>(Ptr))
01093       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idxs), Name);
01094 
01095     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idxs), Name);
01096   }
01097   Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") {
01098     return CreateConstInBoundsGEP2_32(Ptr, 0, Idx, Name);
01099   }
01100 
01101   /// \brief Same as CreateGlobalString, but return a pointer with "i8*" type
01102   /// instead of a pointer to array of i8.
01103   Value *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "") {
01104     Value *gv = CreateGlobalString(Str, Name);
01105     Value *zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
01106     Value *Args[] = { zero, zero };
01107     return CreateInBoundsGEP(gv, Args, Name);
01108   }
01109 
01110   //===--------------------------------------------------------------------===//
01111   // Instruction creation methods: Cast/Conversion Operators
01112   //===--------------------------------------------------------------------===//
01113 
01114   Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
01115     return CreateCast(Instruction::Trunc, V, DestTy, Name);
01116   }
01117   Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
01118     return CreateCast(Instruction::ZExt, V, DestTy, Name);
01119   }
01120   Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
01121     return CreateCast(Instruction::SExt, V, DestTy, Name);
01122   }
01123   /// \brief Create a ZExt or Trunc from the integer value V to DestTy. Return
01124   /// the value untouched if the type of V is already DestTy.
01125   Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
01126                            const Twine &Name = "") {
01127     assert(V->getType()->isIntOrIntVectorTy() &&
01128            DestTy->isIntOrIntVectorTy() &&
01129            "Can only zero extend/truncate integers!");
01130     Type *VTy = V->getType();
01131     if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
01132       return CreateZExt(V, DestTy, Name);
01133     if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
01134       return CreateTrunc(V, DestTy, Name);
01135     return V;
01136   }
01137   /// \brief Create a SExt or Trunc from the integer value V to DestTy. Return
01138   /// the value untouched if the type of V is already DestTy.
01139   Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
01140                            const Twine &Name = "") {
01141     assert(V->getType()->isIntOrIntVectorTy() &&
01142            DestTy->isIntOrIntVectorTy() &&
01143            "Can only sign extend/truncate integers!");
01144     Type *VTy = V->getType();
01145     if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
01146       return CreateSExt(V, DestTy, Name);
01147     if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
01148       return CreateTrunc(V, DestTy, Name);
01149     return V;
01150   }
01151   Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = ""){
01152     return CreateCast(Instruction::FPToUI, V, DestTy, Name);
01153   }
01154   Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = ""){
01155     return CreateCast(Instruction::FPToSI, V, DestTy, Name);
01156   }
01157   Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
01158     return CreateCast(Instruction::UIToFP, V, DestTy, Name);
01159   }
01160   Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
01161     return CreateCast(Instruction::SIToFP, V, DestTy, Name);
01162   }
01163   Value *CreateFPTrunc(Value *V, Type *DestTy,
01164                        const Twine &Name = "") {
01165     return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
01166   }
01167   Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
01168     return CreateCast(Instruction::FPExt, V, DestTy, Name);
01169   }
01170   Value *CreatePtrToInt(Value *V, Type *DestTy,
01171                         const Twine &Name = "") {
01172     return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
01173   }
01174   Value *CreateIntToPtr(Value *V, Type *DestTy,
01175                         const Twine &Name = "") {
01176     return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
01177   }
01178   Value *CreateBitCast(Value *V, Type *DestTy,
01179                        const Twine &Name = "") {
01180     return CreateCast(Instruction::BitCast, V, DestTy, Name);
01181   }
01182   Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
01183                              const Twine &Name = "") {
01184     return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
01185   }
01186   Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
01187                              const Twine &Name = "") {
01188     if (V->getType() == DestTy)
01189       return V;
01190     if (Constant *VC = dyn_cast<Constant>(V))
01191       return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
01192     return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
01193   }
01194   Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
01195                              const Twine &Name = "") {
01196     if (V->getType() == DestTy)
01197       return V;
01198     if (Constant *VC = dyn_cast<Constant>(V))
01199       return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
01200     return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
01201   }
01202   Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
01203                               const Twine &Name = "") {
01204     if (V->getType() == DestTy)
01205       return V;
01206     if (Constant *VC = dyn_cast<Constant>(V))
01207       return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
01208     return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
01209   }
01210   Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
01211                     const Twine &Name = "") {
01212     if (V->getType() == DestTy)
01213       return V;
01214     if (Constant *VC = dyn_cast<Constant>(V))
01215       return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
01216     return Insert(CastInst::Create(Op, V, DestTy), Name);
01217   }
01218   Value *CreatePointerCast(Value *V, Type *DestTy,
01219                            const Twine &Name = "") {
01220     if (V->getType() == DestTy)
01221       return V;
01222     if (Constant *VC = dyn_cast<Constant>(V))
01223       return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
01224     return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
01225   }
01226 
01227   Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
01228                                              const Twine &Name = "") {
01229     if (V->getType() == DestTy)
01230       return V;
01231 
01232     if (Constant *VC = dyn_cast<Constant>(V)) {
01233       return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
01234                     Name);
01235     }
01236 
01237     return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
01238                   Name);
01239   }
01240 
01241   Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
01242                        const Twine &Name = "") {
01243     if (V->getType() == DestTy)
01244       return V;
01245     if (Constant *VC = dyn_cast<Constant>(V))
01246       return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
01247     return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
01248   }
01249 private:
01250   // \brief Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
01251   // compile time error, instead of converting the string to bool for the
01252   // isSigned parameter.
01253   Value *CreateIntCast(Value *, Type *, const char *) LLVM_DELETED_FUNCTION;
01254 public:
01255   Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
01256     if (V->getType() == DestTy)
01257       return V;
01258     if (Constant *VC = dyn_cast<Constant>(V))
01259       return Insert(Folder.CreateFPCast(VC, DestTy), Name);
01260     return Insert(CastInst::CreateFPCast(V, DestTy), Name);
01261   }
01262 
01263   //===--------------------------------------------------------------------===//
01264   // Instruction creation methods: Compare Instructions
01265   //===--------------------------------------------------------------------===//
01266 
01267   Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
01268     return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
01269   }
01270   Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
01271     return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
01272   }
01273   Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01274     return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
01275   }
01276   Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01277     return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
01278   }
01279   Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
01280     return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
01281   }
01282   Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
01283     return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
01284   }
01285   Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01286     return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
01287   }
01288   Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01289     return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
01290   }
01291   Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
01292     return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
01293   }
01294   Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
01295     return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
01296   }
01297 
01298   Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
01299     return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name);
01300   }
01301   Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01302     return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name);
01303   }
01304   Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01305     return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name);
01306   }
01307   Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "") {
01308     return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name);
01309   }
01310   Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "") {
01311     return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name);
01312   }
01313   Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "") {
01314     return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name);
01315   }
01316   Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "") {
01317     return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name);
01318   }
01319   Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "") {
01320     return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name);
01321   }
01322   Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
01323     return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name);
01324   }
01325   Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01326     return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name);
01327   }
01328   Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01329     return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name);
01330   }
01331   Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
01332     return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name);
01333   }
01334   Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
01335     return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name);
01336   }
01337   Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "") {
01338     return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name);
01339   }
01340 
01341   Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
01342                     const Twine &Name = "") {
01343     if (Constant *LC = dyn_cast<Constant>(LHS))
01344       if (Constant *RC = dyn_cast<Constant>(RHS))
01345         return Insert(Folder.CreateICmp(P, LC, RC), Name);
01346     return Insert(new ICmpInst(P, LHS, RHS), Name);
01347   }
01348   Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
01349                     const Twine &Name = "") {
01350     if (Constant *LC = dyn_cast<Constant>(LHS))
01351       if (Constant *RC = dyn_cast<Constant>(RHS))
01352         return Insert(Folder.CreateFCmp(P, LC, RC), Name);
01353     return Insert(new FCmpInst(P, LHS, RHS), Name);
01354   }
01355 
01356   //===--------------------------------------------------------------------===//
01357   // Instruction creation methods: Other Instructions
01358   //===--------------------------------------------------------------------===//
01359 
01360   PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
01361                      const Twine &Name = "") {
01362     return Insert(PHINode::Create(Ty, NumReservedValues), Name);
01363   }
01364 
01365   CallInst *CreateCall(Value *Callee, const Twine &Name = "") {
01366     return Insert(CallInst::Create(Callee), Name);
01367   }
01368   CallInst *CreateCall(Value *Callee, Value *Arg, const Twine &Name = "") {
01369     return Insert(CallInst::Create(Callee, Arg), Name);
01370   }
01371   CallInst *CreateCall2(Value *Callee, Value *Arg1, Value *Arg2,
01372                         const Twine &Name = "") {
01373     Value *Args[] = { Arg1, Arg2 };
01374     return Insert(CallInst::Create(Callee, Args), Name);
01375   }
01376   CallInst *CreateCall3(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3,
01377                         const Twine &Name = "") {
01378     Value *Args[] = { Arg1, Arg2, Arg3 };
01379     return Insert(CallInst::Create(Callee, Args), Name);
01380   }
01381   CallInst *CreateCall4(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3,
01382                         Value *Arg4, const Twine &Name = "") {
01383     Value *Args[] = { Arg1, Arg2, Arg3, Arg4 };
01384     return Insert(CallInst::Create(Callee, Args), Name);
01385   }
01386   CallInst *CreateCall5(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3,
01387                         Value *Arg4, Value *Arg5, const Twine &Name = "") {
01388     Value *Args[] = { Arg1, Arg2, Arg3, Arg4, Arg5 };
01389     return Insert(CallInst::Create(Callee, Args), Name);
01390   }
01391 
01392   CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args,
01393                        const Twine &Name = "") {
01394     return Insert(CallInst::Create(Callee, Args), Name);
01395   }
01396 
01397   Value *CreateSelect(Value *C, Value *True, Value *False,
01398                       const Twine &Name = "") {
01399     if (Constant *CC = dyn_cast<Constant>(C))
01400       if (Constant *TC = dyn_cast<Constant>(True))
01401         if (Constant *FC = dyn_cast<Constant>(False))
01402           return Insert(Folder.CreateSelect(CC, TC, FC), Name);
01403     return Insert(SelectInst::Create(C, True, False), Name);
01404   }
01405 
01406   VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
01407     return Insert(new VAArgInst(List, Ty), Name);
01408   }
01409 
01410   Value *CreateExtractElement(Value *Vec, Value *Idx,
01411                               const Twine &Name = "") {
01412     if (Constant *VC = dyn_cast<Constant>(Vec))
01413       if (Constant *IC = dyn_cast<Constant>(Idx))
01414         return Insert(Folder.CreateExtractElement(VC, IC), Name);
01415     return Insert(ExtractElementInst::Create(Vec, Idx), Name);
01416   }
01417 
01418   Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
01419                              const Twine &Name = "") {
01420     if (Constant *VC = dyn_cast<Constant>(Vec))
01421       if (Constant *NC = dyn_cast<Constant>(NewElt))
01422         if (Constant *IC = dyn_cast<Constant>(Idx))
01423           return Insert(Folder.CreateInsertElement(VC, NC, IC), Name);
01424     return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
01425   }
01426 
01427   Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
01428                              const Twine &Name = "") {
01429     if (Constant *V1C = dyn_cast<Constant>(V1))
01430       if (Constant *V2C = dyn_cast<Constant>(V2))
01431         if (Constant *MC = dyn_cast<Constant>(Mask))
01432           return Insert(Folder.CreateShuffleVector(V1C, V2C, MC), Name);
01433     return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
01434   }
01435 
01436   Value *CreateExtractValue(Value *Agg,
01437                             ArrayRef<unsigned> Idxs,
01438                             const Twine &Name = "") {
01439     if (Constant *AggC = dyn_cast<Constant>(Agg))
01440       return Insert(Folder.CreateExtractValue(AggC, Idxs), Name);
01441     return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
01442   }
01443 
01444   Value *CreateInsertValue(Value *Agg, Value *Val,
01445                            ArrayRef<unsigned> Idxs,
01446                            const Twine &Name = "") {
01447     if (Constant *AggC = dyn_cast<Constant>(Agg))
01448       if (Constant *ValC = dyn_cast<Constant>(Val))
01449         return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name);
01450     return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
01451   }
01452 
01453   LandingPadInst *CreateLandingPad(Type *Ty, Value *PersFn, unsigned NumClauses,
01454                                    const Twine &Name = "") {
01455     return Insert(LandingPadInst::Create(Ty, PersFn, NumClauses), Name);
01456   }
01457 
01458   //===--------------------------------------------------------------------===//
01459   // Utility creation methods
01460   //===--------------------------------------------------------------------===//
01461 
01462   /// \brief Return an i1 value testing if \p Arg is null.
01463   Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
01464     return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()),
01465                         Name);
01466   }
01467 
01468   /// \brief Return an i1 value testing if \p Arg is not null.
01469   Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
01470     return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()),
01471                         Name);
01472   }
01473 
01474   /// \brief Return the i64 difference between two pointer values, dividing out
01475   /// the size of the pointed-to objects.
01476   ///
01477   /// This is intended to implement C-style pointer subtraction. As such, the
01478   /// pointers must be appropriately aligned for their element types and
01479   /// pointing into the same object.
01480   Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = "") {
01481     assert(LHS->getType() == RHS->getType() &&
01482            "Pointer subtraction operand types must match!");
01483     PointerType *ArgType = cast<PointerType>(LHS->getType());
01484     Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
01485     Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
01486     Value *Difference = CreateSub(LHS_int, RHS_int);
01487     return CreateExactSDiv(Difference,
01488                            ConstantExpr::getSizeOf(ArgType->getElementType()),
01489                            Name);
01490   }
01491 
01492   /// \brief Return a vector value that contains \arg V broadcasted to \p
01493   /// NumElts elements.
01494   Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "") {
01495     assert(NumElts > 0 && "Cannot splat to an empty vector!");
01496 
01497     // First insert it into an undef vector so we can shuffle it.
01498     Type *I32Ty = getInt32Ty();
01499     Value *Undef = UndefValue::get(VectorType::get(V->getType(), NumElts));
01500     V = CreateInsertElement(Undef, V, ConstantInt::get(I32Ty, 0),
01501                             Name + ".splatinsert");
01502 
01503     // Shuffle the value across the desired number of elements.
01504     Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32Ty, NumElts));
01505     return CreateShuffleVector(V, Undef, Zeros, Name + ".splat");
01506   }
01507 
01508   /// \brief Return a value that has been extracted from a larger integer type.
01509   Value *CreateExtractInteger(const DataLayout &DL, Value *From,
01510                               IntegerType *ExtractedTy, uint64_t Offset,
01511                               const Twine &Name) {
01512     IntegerType *IntTy = cast<IntegerType>(From->getType());
01513     assert(DL.getTypeStoreSize(ExtractedTy) + Offset <=
01514                DL.getTypeStoreSize(IntTy) &&
01515            "Element extends past full value");
01516     uint64_t ShAmt = 8 * Offset;
01517     Value *V = From;
01518     if (DL.isBigEndian())
01519       ShAmt = 8 * (DL.getTypeStoreSize(IntTy) -
01520                    DL.getTypeStoreSize(ExtractedTy) - Offset);
01521     if (ShAmt) {
01522       V = CreateLShr(V, ShAmt, Name + ".shift");
01523     }
01524     assert(ExtractedTy->getBitWidth() <= IntTy->getBitWidth() &&
01525            "Cannot extract to a larger integer!");
01526     if (ExtractedTy != IntTy) {
01527       V = CreateTrunc(V, ExtractedTy, Name + ".trunc");
01528     }
01529     return V;
01530   }
01531 
01532   /// \brief Create an assume intrinsic call that represents an alignment
01533   /// assumption on the provided pointer.
01534   ///
01535   /// An optional offset can be provided, and if it is provided, the offset
01536   /// must be subtracted from the provided pointer to get the pointer with the
01537   /// specified alignment.
01538   CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
01539                                       unsigned Alignment,
01540                                       Value *OffsetValue = nullptr) {
01541     assert(isa<PointerType>(PtrValue->getType()) &&
01542            "trying to create an alignment assumption on a non-pointer?");
01543 
01544     PointerType *PtrTy = cast<PointerType>(PtrValue->getType());
01545     Type *IntPtrTy = getIntPtrTy(&DL, PtrTy->getAddressSpace());
01546     Value *PtrIntValue = CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
01547 
01548     Value *Mask = ConstantInt::get(IntPtrTy,
01549       Alignment > 0 ? Alignment - 1 : 0);
01550     if (OffsetValue) {
01551       bool IsOffsetZero = false;
01552       if (ConstantInt *CI = dyn_cast<ConstantInt>(OffsetValue))
01553         IsOffsetZero = CI->isZero();
01554 
01555       if (!IsOffsetZero) {
01556         if (OffsetValue->getType() != IntPtrTy)
01557           OffsetValue = CreateIntCast(OffsetValue, IntPtrTy, /*isSigned*/ true,
01558                                       "offsetcast");
01559         PtrIntValue = CreateSub(PtrIntValue, OffsetValue, "offsetptr");
01560       }
01561     }
01562 
01563     Value *Zero = ConstantInt::get(IntPtrTy, 0);
01564     Value *MaskedPtr = CreateAnd(PtrIntValue, Mask, "maskedptr");
01565     Value *InvCond = CreateICmpEQ(MaskedPtr, Zero, "maskcond");
01566 
01567     return CreateAssumption(InvCond);
01568   }
01569 };
01570 
01571 // Create wrappers for C Binding types (see CBindingWrapping.h).
01572 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)
01573 
01574 }
01575 
01576 #endif