LLVM API Documentation

IRBuilder.h
Go to the documentation of this file.
00001 //===---- llvm/IRBuilder.h - Builder for LLVM Instructions ------*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines the IRBuilder class, which is used as a convenient way
00011 // to create LLVM instructions with a consistent and simplified interface.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #ifndef LLVM_IR_IRBUILDER_H
00016 #define LLVM_IR_IRBUILDER_H
00017 
00018 #include "llvm/ADT/ArrayRef.h"
00019 #include "llvm/ADT/StringRef.h"
00020 #include "llvm/ADT/Twine.h"
00021 #include "llvm/IR/BasicBlock.h"
00022 #include "llvm/IR/ConstantFolder.h"
00023 #include "llvm/IR/DataLayout.h"
00024 #include "llvm/IR/Instructions.h"
00025 #include "llvm/IR/LLVMContext.h"
00026 #include "llvm/IR/Operator.h"
00027 #include "llvm/IR/ValueHandle.h"
00028 #include "llvm/Support/CBindingWrapping.h"
00029 
00030 namespace llvm {
00031 class MDNode;
00032 
00033 /// \brief This provides the default implementation of the IRBuilder
00034 /// 'InsertHelper' method that is called whenever an instruction is created by
00035 /// IRBuilder and needs to be inserted.
00036 ///
00037 /// By default, this inserts the instruction at the insertion point.
00038 template <bool preserveNames = true>
00039 class IRBuilderDefaultInserter {
00040 protected:
00041   void InsertHelper(Instruction *I, const Twine &Name,
00042                     BasicBlock *BB, BasicBlock::iterator InsertPt) const {
00043     if (BB) BB->getInstList().insert(InsertPt, I);
00044     if (preserveNames)
00045       I->setName(Name);
00046   }
00047 };
00048 
00049 /// \brief Common base class shared among various IRBuilders.
00050 class IRBuilderBase {
00051   DebugLoc CurDbgLocation;
00052 protected:
00053   BasicBlock *BB;
00054   BasicBlock::iterator InsertPt;
00055   LLVMContext &Context;
00056 
00057   MDNode *DefaultFPMathTag;
00058   FastMathFlags FMF;
00059 public:
00060 
00061   IRBuilderBase(LLVMContext &context, MDNode *FPMathTag = nullptr)
00062     : Context(context), DefaultFPMathTag(FPMathTag), FMF() {
00063     ClearInsertionPoint();
00064   }
00065 
00066   //===--------------------------------------------------------------------===//
00067   // Builder configuration methods
00068   //===--------------------------------------------------------------------===//
00069 
00070   /// \brief Clear the insertion point: created instructions will not be
00071   /// inserted into a block.
00072   void ClearInsertionPoint() {
00073     BB = nullptr;
00074     InsertPt = nullptr;
00075   }
00076 
00077   BasicBlock *GetInsertBlock() const { return BB; }
00078   BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
00079   LLVMContext &getContext() const { return Context; }
00080 
00081   /// \brief This specifies that created instructions should be appended to the
00082   /// end of the specified block.
00083   void SetInsertPoint(BasicBlock *TheBB) {
00084     BB = TheBB;
00085     InsertPt = BB->end();
00086   }
00087 
00088   /// \brief This specifies that created instructions should be inserted before
00089   /// the specified instruction.
00090   void SetInsertPoint(Instruction *I) {
00091     BB = I->getParent();
00092     InsertPt = I;
00093     assert(I != BB->end() && "Can't read debug loc from end()");
00094     SetCurrentDebugLocation(I->getDebugLoc());
00095   }
00096 
00097   /// \brief This specifies that created instructions should be inserted at the
00098   /// specified point.
00099   void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
00100     BB = TheBB;
00101     InsertPt = IP;
00102   }
00103 
00104   /// \brief Find the nearest point that dominates this use, and specify that
00105   /// created instructions should be inserted at this point.
00106   void SetInsertPoint(Use &U) {
00107     Instruction *UseInst = cast<Instruction>(U.getUser());
00108     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
00109       BasicBlock *PredBB = Phi->getIncomingBlock(U);
00110       assert(U != PredBB->getTerminator() && "critical edge not split");
00111       SetInsertPoint(PredBB, PredBB->getTerminator());
00112       return;
00113     }
00114     SetInsertPoint(UseInst);
00115   }
00116 
00117   /// \brief Set location information used by debugging information.
00118   void SetCurrentDebugLocation(const DebugLoc &L) {
00119     CurDbgLocation = L;
00120   }
00121 
00122   /// \brief Get location information used by debugging information.
00123   DebugLoc getCurrentDebugLocation() const { return CurDbgLocation; }
00124 
00125   /// \brief If this builder has a current debug location, set it on the
00126   /// specified instruction.
00127   void SetInstDebugLocation(Instruction *I) const {
00128     if (!CurDbgLocation.isUnknown())
00129       I->setDebugLoc(CurDbgLocation);
00130   }
00131 
00132   /// \brief Get the return type of the current function that we're emitting
00133   /// into.
00134   Type *getCurrentFunctionReturnType() const;
00135 
00136   /// InsertPoint - A saved insertion point.
00137   class InsertPoint {
00138     BasicBlock *Block;
00139     BasicBlock::iterator Point;
00140 
00141   public:
00142     /// \brief Creates a new insertion point which doesn't point to anything.
00143     InsertPoint() : Block(nullptr) {}
00144 
00145     /// \brief Creates a new insertion point at the given location.
00146     InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
00147       : Block(InsertBlock), Point(InsertPoint) {}
00148 
00149     /// \brief Returns true if this insert point is set.
00150     bool isSet() const { return (Block != nullptr); }
00151 
00152     llvm::BasicBlock *getBlock() const { return Block; }
00153     llvm::BasicBlock::iterator getPoint() const { return Point; }
00154   };
00155 
00156   /// \brief Returns the current insert point.
00157   InsertPoint saveIP() const {
00158     return InsertPoint(GetInsertBlock(), GetInsertPoint());
00159   }
00160 
00161   /// \brief Returns the current insert point, clearing it in the process.
00162   InsertPoint saveAndClearIP() {
00163     InsertPoint IP(GetInsertBlock(), GetInsertPoint());
00164     ClearInsertionPoint();
00165     return IP;
00166   }
00167 
00168   /// \brief Sets the current insert point to a previously-saved location.
00169   void restoreIP(InsertPoint IP) {
00170     if (IP.isSet())
00171       SetInsertPoint(IP.getBlock(), IP.getPoint());
00172     else
00173       ClearInsertionPoint();
00174   }
00175 
00176   /// \brief Get the floating point math metadata being used.
00177   MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
00178 
00179   /// \brief Get the flags to be applied to created floating point ops
00180   FastMathFlags getFastMathFlags() const { return FMF; }
00181 
00182   /// \brief Clear the fast-math flags.
00183   void clearFastMathFlags() { FMF.clear(); }
00184 
00185   /// \brief Set the floating point math metadata to be used.
00186   void SetDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
00187 
00188   /// \brief Set the fast-math flags to be used with generated fp-math operators
00189   void SetFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
00190 
00191   //===--------------------------------------------------------------------===//
00192   // RAII helpers.
00193   //===--------------------------------------------------------------------===//
00194 
00195   // \brief RAII object that stores the current insertion point and restores it
00196   // when the object is destroyed. This includes the debug location.
00197   class InsertPointGuard {
00198     IRBuilderBase &Builder;
00199     AssertingVH<BasicBlock> Block;
00200     BasicBlock::iterator Point;
00201     DebugLoc DbgLoc;
00202 
00203     InsertPointGuard(const InsertPointGuard &) LLVM_DELETED_FUNCTION;
00204     InsertPointGuard &operator=(const InsertPointGuard &) LLVM_DELETED_FUNCTION;
00205 
00206   public:
00207     InsertPointGuard(IRBuilderBase &B)
00208         : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
00209           DbgLoc(B.getCurrentDebugLocation()) {}
00210 
00211     ~InsertPointGuard() {
00212       Builder.restoreIP(InsertPoint(Block, Point));
00213       Builder.SetCurrentDebugLocation(DbgLoc);
00214     }
00215   };
00216 
00217   // \brief RAII object that stores the current fast math settings and restores
00218   // them when the object is destroyed.
00219   class FastMathFlagGuard {
00220     IRBuilderBase &Builder;
00221     FastMathFlags FMF;
00222     MDNode *FPMathTag;
00223 
00224     FastMathFlagGuard(const FastMathFlagGuard &) LLVM_DELETED_FUNCTION;
00225     FastMathFlagGuard &operator=(
00226         const FastMathFlagGuard &) LLVM_DELETED_FUNCTION;
00227 
00228   public:
00229     FastMathFlagGuard(IRBuilderBase &B)
00230         : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag) {}
00231 
00232     ~FastMathFlagGuard() {
00233       Builder.FMF = FMF;
00234       Builder.DefaultFPMathTag = FPMathTag;
00235     }
00236   };
00237 
00238   //===--------------------------------------------------------------------===//
00239   // Miscellaneous creation methods.
00240   //===--------------------------------------------------------------------===//
00241 
00242   /// \brief Make a new global variable with initializer type i8*
00243   ///
00244   /// Make a new global variable with an initializer that has array of i8 type
00245   /// filled in with the null terminated string value specified.  The new global
00246   /// variable will be marked mergable with any others of the same contents.  If
00247   /// Name is specified, it is the name of the global variable created.
00248   Value *CreateGlobalString(StringRef Str, const Twine &Name = "");
00249 
00250   /// \brief Get a constant value representing either true or false.
00251   ConstantInt *getInt1(bool V) {
00252     return ConstantInt::get(getInt1Ty(), V);
00253   }
00254 
00255   /// \brief Get the constant value for i1 true.
00256   ConstantInt *getTrue() {
00257     return ConstantInt::getTrue(Context);
00258   }
00259 
00260   /// \brief Get the constant value for i1 false.
00261   ConstantInt *getFalse() {
00262     return ConstantInt::getFalse(Context);
00263   }
00264 
00265   /// \brief Get a constant 8-bit value.
00266   ConstantInt *getInt8(uint8_t C) {
00267     return ConstantInt::get(getInt8Ty(), C);
00268   }
00269 
00270   /// \brief Get a constant 16-bit value.
00271   ConstantInt *getInt16(uint16_t C) {
00272     return ConstantInt::get(getInt16Ty(), C);
00273   }
00274 
00275   /// \brief Get a constant 32-bit value.
00276   ConstantInt *getInt32(uint32_t C) {
00277     return ConstantInt::get(getInt32Ty(), C);
00278   }
00279 
00280   /// \brief Get a constant 64-bit value.
00281   ConstantInt *getInt64(uint64_t C) {
00282     return ConstantInt::get(getInt64Ty(), C);
00283   }
00284 
00285   /// \brief Get a constant N-bit value, zero extended or truncated from
00286   /// a 64-bit value.
00287   ConstantInt *getIntN(unsigned N, uint64_t C) {
00288     return ConstantInt::get(getIntNTy(N), C);
00289   }
00290 
00291   /// \brief Get a constant integer value.
00292   ConstantInt *getInt(const APInt &AI) {
00293     return ConstantInt::get(Context, AI);
00294   }
00295 
00296   //===--------------------------------------------------------------------===//
00297   // Type creation methods
00298   //===--------------------------------------------------------------------===//
00299 
00300   /// \brief Fetch the type representing a single bit
00301   IntegerType *getInt1Ty() {
00302     return Type::getInt1Ty(Context);
00303   }
00304 
00305   /// \brief Fetch the type representing an 8-bit integer.
00306   IntegerType *getInt8Ty() {
00307     return Type::getInt8Ty(Context);
00308   }
00309 
00310   /// \brief Fetch the type representing a 16-bit integer.
00311   IntegerType *getInt16Ty() {
00312     return Type::getInt16Ty(Context);
00313   }
00314 
00315   /// \brief Fetch the type representing a 32-bit integer.
00316   IntegerType *getInt32Ty() {
00317     return Type::getInt32Ty(Context);
00318   }
00319 
00320   /// \brief Fetch the type representing a 64-bit integer.
00321   IntegerType *getInt64Ty() {
00322     return Type::getInt64Ty(Context);
00323   }
00324 
00325   /// \brief Fetch the type representing an N-bit integer.
00326   IntegerType *getIntNTy(unsigned N) {
00327     return Type::getIntNTy(Context, N);
00328   }
00329 
00330   /// \brief Fetch the type representing a 16-bit floating point value.
00331   Type *getHalfTy() {
00332     return Type::getHalfTy(Context);
00333   }
00334 
00335   /// \brief Fetch the type representing a 32-bit floating point value.
00336   Type *getFloatTy() {
00337     return Type::getFloatTy(Context);
00338   }
00339 
00340   /// \brief Fetch the type representing a 64-bit floating point value.
00341   Type *getDoubleTy() {
00342     return Type::getDoubleTy(Context);
00343   }
00344 
00345   /// \brief Fetch the type representing void.
00346   Type *getVoidTy() {
00347     return Type::getVoidTy(Context);
00348   }
00349 
00350   /// \brief Fetch the type representing a pointer to an 8-bit integer value.
00351   PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
00352     return Type::getInt8PtrTy(Context, AddrSpace);
00353   }
00354 
00355   /// \brief Fetch the type representing a pointer to an integer value.
00356   IntegerType* getIntPtrTy(const DataLayout *DL, unsigned AddrSpace = 0) {
00357     return DL->getIntPtrType(Context, AddrSpace);
00358   }
00359 
00360   //===--------------------------------------------------------------------===//
00361   // Intrinsic creation methods
00362   //===--------------------------------------------------------------------===//
00363 
00364   /// \brief Create and insert a memset to the specified pointer and the
00365   /// specified value.
00366   ///
00367   /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
00368   /// specified, it will be added to the instruction. Likewise with alias.scope
00369   /// and noalias tags.
00370   CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align,
00371                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00372                          MDNode *ScopeTag = nullptr,
00373                          MDNode *NoAliasTag = nullptr) {
00374     return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
00375                         TBAATag, ScopeTag, NoAliasTag);
00376   }
00377 
00378   CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align,
00379                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00380                          MDNode *ScopeTag = nullptr,
00381                          MDNode *NoAliasTag = nullptr);
00382 
00383   /// \brief Create and insert a memcpy between the specified pointers.
00384   ///
00385   /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
00386   /// specified, it will be added to the instruction. Likewise with alias.scope
00387   /// and noalias tags.
00388   CallInst *CreateMemCpy(Value *Dst, Value *Src, uint64_t Size, unsigned Align,
00389                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00390                          MDNode *TBAAStructTag = nullptr,
00391                          MDNode *ScopeTag = nullptr,
00392                          MDNode *NoAliasTag = nullptr) {
00393     return CreateMemCpy(Dst, Src, getInt64(Size), Align, isVolatile, TBAATag,
00394                         TBAAStructTag, ScopeTag, NoAliasTag);
00395   }
00396 
00397   CallInst *CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned Align,
00398                          bool isVolatile = false, MDNode *TBAATag = nullptr,
00399                          MDNode *TBAAStructTag = nullptr,
00400                          MDNode *ScopeTag = nullptr,
00401                          MDNode *NoAliasTag = nullptr);
00402 
00403   /// \brief Create and insert a memmove between the specified
00404   /// pointers.
00405   ///
00406   /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
00407   /// specified, it will be added to the instruction. Likewise with alias.scope
00408   /// and noalias tags.
00409   CallInst *CreateMemMove(Value *Dst, Value *Src, uint64_t Size, unsigned Align,
00410                           bool isVolatile = false, MDNode *TBAATag = nullptr,
00411                           MDNode *ScopeTag = nullptr,
00412                           MDNode *NoAliasTag = nullptr) {
00413     return CreateMemMove(Dst, Src, getInt64(Size), Align, isVolatile,
00414                          TBAATag, ScopeTag, NoAliasTag);
00415   }
00416 
00417   CallInst *CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned Align,
00418                           bool isVolatile = false, MDNode *TBAATag = nullptr,
00419                           MDNode *ScopeTag = nullptr,
00420                           MDNode *NoAliasTag = nullptr);
00421 
00422   /// \brief Create a lifetime.start intrinsic.
00423   ///
00424   /// If the pointer isn't i8* it will be converted.
00425   CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
00426 
00427   /// \brief Create a lifetime.end intrinsic.
00428   ///
00429   /// If the pointer isn't i8* it will be converted.
00430   CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
00431 
00432   /// \brief Create a call to Masked Load intrinsic
00433   CallInst *CreateMaskedLoad(ArrayRef<Value *> Ops);
00434 
00435   /// \brief Create a call to Masked Store intrinsic
00436   CallInst *CreateMaskedStore(ArrayRef<Value *> Ops);
00437 
00438   /// \brief Create an assume intrinsic call that allows the optimizer to
00439   /// assume that the provided condition will be true.
00440   CallInst *CreateAssumption(Value *Cond);
00441 
00442 private:
00443   /// \brief Create a call to a masked intrinsic with given Id.
00444   /// Masked intrinsic has only one overloaded type - data type.
00445   CallInst *CreateMaskedIntrinsic(unsigned Id, ArrayRef<Value *> Ops,
00446                                   Type *DataTy);
00447 
00448   Value *getCastedInt8PtrValue(Value *Ptr);
00449 };
00450 
00451 /// \brief This provides a uniform API for creating instructions and inserting
00452 /// them into a basic block: either at the end of a BasicBlock, or at a specific
00453 /// iterator location in a block.
00454 ///
00455 /// Note that the builder does not expose the full generality of LLVM
00456 /// instructions.  For access to extra instruction properties, use the mutators
00457 /// (e.g. setVolatile) on the instructions after they have been
00458 /// created. Convenience state exists to specify fast-math flags and fp-math
00459 /// tags.
00460 ///
00461 /// The first template argument handles whether or not to preserve names in the
00462 /// final instruction output. This defaults to on.  The second template argument
00463 /// specifies a class to use for creating constants.  This defaults to creating
00464 /// minimally folded constants.  The third template argument allows clients to
00465 /// specify custom insertion hooks that are called on every newly created
00466 /// insertion.
00467 template<bool preserveNames = true, typename T = ConstantFolder,
00468          typename Inserter = IRBuilderDefaultInserter<preserveNames> >
00469 class IRBuilder : public IRBuilderBase, public Inserter {
00470   T Folder;
00471 public:
00472   IRBuilder(LLVMContext &C, const T &F, const Inserter &I = Inserter(),
00473             MDNode *FPMathTag = nullptr)
00474     : IRBuilderBase(C, FPMathTag), Inserter(I), Folder(F) {
00475   }
00476 
00477   explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr)
00478     : IRBuilderBase(C, FPMathTag), Folder() {
00479   }
00480 
00481   explicit IRBuilder(BasicBlock *TheBB, const T &F, MDNode *FPMathTag = nullptr)
00482     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder(F) {
00483     SetInsertPoint(TheBB);
00484   }
00485 
00486   explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr)
00487     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder() {
00488     SetInsertPoint(TheBB);
00489   }
00490 
00491   explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr)
00492     : IRBuilderBase(IP->getContext(), FPMathTag), Folder() {
00493     SetInsertPoint(IP);
00494     SetCurrentDebugLocation(IP->getDebugLoc());
00495   }
00496 
00497   explicit IRBuilder(Use &U, MDNode *FPMathTag = nullptr)
00498     : IRBuilderBase(U->getContext(), FPMathTag), Folder() {
00499     SetInsertPoint(U);
00500     SetCurrentDebugLocation(cast<Instruction>(U.getUser())->getDebugLoc());
00501   }
00502 
00503   IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, const T& F,
00504             MDNode *FPMathTag = nullptr)
00505     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder(F) {
00506     SetInsertPoint(TheBB, IP);
00507   }
00508 
00509   IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
00510             MDNode *FPMathTag = nullptr)
00511     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder() {
00512     SetInsertPoint(TheBB, IP);
00513   }
00514 
00515   /// \brief Get the constant folder being used.
00516   const T &getFolder() { return Folder; }
00517 
00518   /// \brief Return true if this builder is configured to actually add the
00519   /// requested names to IR created through it.
00520   bool isNamePreserving() const { return preserveNames; }
00521 
00522   /// \brief Insert and return the specified instruction.
00523   template<typename InstTy>
00524   InstTy *Insert(InstTy *I, const Twine &Name = "") const {
00525     this->InsertHelper(I, Name, BB, InsertPt);
00526     this->SetInstDebugLocation(I);
00527     return I;
00528   }
00529 
00530   /// \brief No-op overload to handle constants.
00531   Constant *Insert(Constant *C, const Twine& = "") const {
00532     return C;
00533   }
00534 
00535   //===--------------------------------------------------------------------===//
00536   // Instruction creation methods: Terminators
00537   //===--------------------------------------------------------------------===//
00538 
00539 private:
00540   /// \brief Helper to add branch weight metadata onto an instruction.
00541   /// \returns The annotated instruction.
00542   template <typename InstTy>
00543   InstTy *addBranchWeights(InstTy *I, MDNode *Weights) {
00544     if (Weights)
00545       I->setMetadata(LLVMContext::MD_prof, Weights);
00546     return I;
00547   }
00548 
00549 public:
00550   /// \brief Create a 'ret void' instruction.
00551   ReturnInst *CreateRetVoid() {
00552     return Insert(ReturnInst::Create(Context));
00553   }
00554 
00555   /// \brief Create a 'ret <val>' instruction.
00556   ReturnInst *CreateRet(Value *V) {
00557     return Insert(ReturnInst::Create(Context, V));
00558   }
00559 
00560   /// \brief Create a sequence of N insertvalue instructions,
00561   /// with one Value from the retVals array each, that build a aggregate
00562   /// return value one value at a time, and a ret instruction to return
00563   /// the resulting aggregate value.
00564   ///
00565   /// This is a convenience function for code that uses aggregate return values
00566   /// as a vehicle for having multiple return values.
00567   ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
00568     Value *V = UndefValue::get(getCurrentFunctionReturnType());
00569     for (unsigned i = 0; i != N; ++i)
00570       V = CreateInsertValue(V, retVals[i], i, "mrv");
00571     return Insert(ReturnInst::Create(Context, V));
00572   }
00573 
00574   /// \brief Create an unconditional 'br label X' instruction.
00575   BranchInst *CreateBr(BasicBlock *Dest) {
00576     return Insert(BranchInst::Create(Dest));
00577   }
00578 
00579   /// \brief Create a conditional 'br Cond, TrueDest, FalseDest'
00580   /// instruction.
00581   BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
00582                            MDNode *BranchWeights = nullptr) {
00583     return Insert(addBranchWeights(BranchInst::Create(True, False, Cond),
00584                                    BranchWeights));
00585   }
00586 
00587   /// \brief Create a switch instruction with the specified value, default dest,
00588   /// and with a hint for the number of cases that will be added (for efficient
00589   /// allocation).
00590   SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
00591                            MDNode *BranchWeights = nullptr) {
00592     return Insert(addBranchWeights(SwitchInst::Create(V, Dest, NumCases),
00593                                    BranchWeights));
00594   }
00595 
00596   /// \brief Create an indirect branch instruction with the specified address
00597   /// operand, with an optional hint for the number of destinations that will be
00598   /// added (for efficient allocation).
00599   IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
00600     return Insert(IndirectBrInst::Create(Addr, NumDests));
00601   }
00602 
00603   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
00604                            BasicBlock *UnwindDest, const Twine &Name = "") {
00605     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, None),
00606                   Name);
00607   }
00608   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
00609                            BasicBlock *UnwindDest, Value *Arg1,
00610                            const Twine &Name = "") {
00611     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Arg1),
00612                   Name);
00613   }
00614   InvokeInst *CreateInvoke3(Value *Callee, BasicBlock *NormalDest,
00615                             BasicBlock *UnwindDest, Value *Arg1,
00616                             Value *Arg2, Value *Arg3,
00617                             const Twine &Name = "") {
00618     Value *Args[] = { Arg1, Arg2, Arg3 };
00619     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args),
00620                   Name);
00621   }
00622   /// \brief Create an invoke instruction.
00623   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
00624                            BasicBlock *UnwindDest, ArrayRef<Value *> Args,
00625                            const Twine &Name = "") {
00626     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args),
00627                   Name);
00628   }
00629 
00630   ResumeInst *CreateResume(Value *Exn) {
00631     return Insert(ResumeInst::Create(Exn));
00632   }
00633 
00634   UnreachableInst *CreateUnreachable() {
00635     return Insert(new UnreachableInst(Context));
00636   }
00637 
00638   //===--------------------------------------------------------------------===//
00639   // Instruction creation methods: Binary Operators
00640   //===--------------------------------------------------------------------===//
00641 private:
00642   BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
00643                                           Value *LHS, Value *RHS,
00644                                           const Twine &Name,
00645                                           bool HasNUW, bool HasNSW) {
00646     BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
00647     if (HasNUW) BO->setHasNoUnsignedWrap();
00648     if (HasNSW) BO->setHasNoSignedWrap();
00649     return BO;
00650   }
00651 
00652   Instruction *AddFPMathAttributes(Instruction *I,
00653                                    MDNode *FPMathTag,
00654                                    FastMathFlags FMF) const {
00655     if (!FPMathTag)
00656       FPMathTag = DefaultFPMathTag;
00657     if (FPMathTag)
00658       I->setMetadata(LLVMContext::MD_fpmath, FPMathTag);
00659     I->setFastMathFlags(FMF);
00660     return I;
00661   }
00662 public:
00663   Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
00664                    bool HasNUW = false, bool HasNSW = false) {
00665     if (Constant *LC = dyn_cast<Constant>(LHS))
00666       if (Constant *RC = dyn_cast<Constant>(RHS))
00667         return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name);
00668     return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
00669                                    HasNUW, HasNSW);
00670   }
00671   Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
00672     return CreateAdd(LHS, RHS, Name, false, true);
00673   }
00674   Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
00675     return CreateAdd(LHS, RHS, Name, true, false);
00676   }
00677   Value *CreateFAdd(Value *LHS, Value *RHS, const Twine &Name = "",
00678                     MDNode *FPMathTag = nullptr) {
00679     if (Constant *LC = dyn_cast<Constant>(LHS))
00680       if (Constant *RC = dyn_cast<Constant>(RHS))
00681         return Insert(Folder.CreateFAdd(LC, RC), Name);
00682     return Insert(AddFPMathAttributes(BinaryOperator::CreateFAdd(LHS, RHS),
00683                                       FPMathTag, FMF), Name);
00684   }
00685   Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
00686                    bool HasNUW = false, bool HasNSW = false) {
00687     if (Constant *LC = dyn_cast<Constant>(LHS))
00688       if (Constant *RC = dyn_cast<Constant>(RHS))
00689         return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
00690     return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
00691                                    HasNUW, HasNSW);
00692   }
00693   Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
00694     return CreateSub(LHS, RHS, Name, false, true);
00695   }
00696   Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
00697     return CreateSub(LHS, RHS, Name, true, false);
00698   }
00699   Value *CreateFSub(Value *LHS, Value *RHS, const Twine &Name = "",
00700                     MDNode *FPMathTag = nullptr) {
00701     if (Constant *LC = dyn_cast<Constant>(LHS))
00702       if (Constant *RC = dyn_cast<Constant>(RHS))
00703         return Insert(Folder.CreateFSub(LC, RC), Name);
00704     return Insert(AddFPMathAttributes(BinaryOperator::CreateFSub(LHS, RHS),
00705                                       FPMathTag, FMF), Name);
00706   }
00707   Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
00708                    bool HasNUW = false, bool HasNSW = false) {
00709     if (Constant *LC = dyn_cast<Constant>(LHS))
00710       if (Constant *RC = dyn_cast<Constant>(RHS))
00711         return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
00712     return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
00713                                    HasNUW, HasNSW);
00714   }
00715   Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
00716     return CreateMul(LHS, RHS, Name, false, true);
00717   }
00718   Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
00719     return CreateMul(LHS, RHS, Name, true, false);
00720   }
00721   Value *CreateFMul(Value *LHS, Value *RHS, const Twine &Name = "",
00722                     MDNode *FPMathTag = nullptr) {
00723     if (Constant *LC = dyn_cast<Constant>(LHS))
00724       if (Constant *RC = dyn_cast<Constant>(RHS))
00725         return Insert(Folder.CreateFMul(LC, RC), Name);
00726     return Insert(AddFPMathAttributes(BinaryOperator::CreateFMul(LHS, RHS),
00727                                       FPMathTag, FMF), Name);
00728   }
00729   Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
00730                     bool isExact = false) {
00731     if (Constant *LC = dyn_cast<Constant>(LHS))
00732       if (Constant *RC = dyn_cast<Constant>(RHS))
00733         return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
00734     if (!isExact)
00735       return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
00736     return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
00737   }
00738   Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
00739     return CreateUDiv(LHS, RHS, Name, true);
00740   }
00741   Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
00742                     bool isExact = false) {
00743     if (Constant *LC = dyn_cast<Constant>(LHS))
00744       if (Constant *RC = dyn_cast<Constant>(RHS))
00745         return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
00746     if (!isExact)
00747       return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
00748     return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
00749   }
00750   Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
00751     return CreateSDiv(LHS, RHS, Name, true);
00752   }
00753   Value *CreateFDiv(Value *LHS, Value *RHS, const Twine &Name = "",
00754                     MDNode *FPMathTag = nullptr) {
00755     if (Constant *LC = dyn_cast<Constant>(LHS))
00756       if (Constant *RC = dyn_cast<Constant>(RHS))
00757         return Insert(Folder.CreateFDiv(LC, RC), Name);
00758     return Insert(AddFPMathAttributes(BinaryOperator::CreateFDiv(LHS, RHS),
00759                                       FPMathTag, FMF), Name);
00760   }
00761   Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
00762     if (Constant *LC = dyn_cast<Constant>(LHS))
00763       if (Constant *RC = dyn_cast<Constant>(RHS))
00764         return Insert(Folder.CreateURem(LC, RC), Name);
00765     return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
00766   }
00767   Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
00768     if (Constant *LC = dyn_cast<Constant>(LHS))
00769       if (Constant *RC = dyn_cast<Constant>(RHS))
00770         return Insert(Folder.CreateSRem(LC, RC), Name);
00771     return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
00772   }
00773   Value *CreateFRem(Value *LHS, Value *RHS, const Twine &Name = "",
00774                     MDNode *FPMathTag = nullptr) {
00775     if (Constant *LC = dyn_cast<Constant>(LHS))
00776       if (Constant *RC = dyn_cast<Constant>(RHS))
00777         return Insert(Folder.CreateFRem(LC, RC), Name);
00778     return Insert(AddFPMathAttributes(BinaryOperator::CreateFRem(LHS, RHS),
00779                                       FPMathTag, FMF), Name);
00780   }
00781 
00782   Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
00783                    bool HasNUW = false, bool HasNSW = false) {
00784     if (Constant *LC = dyn_cast<Constant>(LHS))
00785       if (Constant *RC = dyn_cast<Constant>(RHS))
00786         return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name);
00787     return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
00788                                    HasNUW, HasNSW);
00789   }
00790   Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
00791                    bool HasNUW = false, bool HasNSW = false) {
00792     return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
00793                      HasNUW, HasNSW);
00794   }
00795   Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
00796                    bool HasNUW = false, bool HasNSW = false) {
00797     return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
00798                      HasNUW, HasNSW);
00799   }
00800 
00801   Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
00802                     bool isExact = false) {
00803     if (Constant *LC = dyn_cast<Constant>(LHS))
00804       if (Constant *RC = dyn_cast<Constant>(RHS))
00805         return Insert(Folder.CreateLShr(LC, RC, isExact), Name);
00806     if (!isExact)
00807       return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
00808     return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
00809   }
00810   Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
00811                     bool isExact = false) {
00812     return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00813   }
00814   Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
00815                     bool isExact = false) {
00816     return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00817   }
00818 
00819   Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
00820                     bool isExact = false) {
00821     if (Constant *LC = dyn_cast<Constant>(LHS))
00822       if (Constant *RC = dyn_cast<Constant>(RHS))
00823         return Insert(Folder.CreateAShr(LC, RC, isExact), Name);
00824     if (!isExact)
00825       return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
00826     return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
00827   }
00828   Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
00829                     bool isExact = false) {
00830     return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00831   }
00832   Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
00833                     bool isExact = false) {
00834     return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
00835   }
00836 
00837   Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
00838     if (Constant *RC = dyn_cast<Constant>(RHS)) {
00839       if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isAllOnesValue())
00840         return LHS;  // LHS & -1 -> LHS
00841       if (Constant *LC = dyn_cast<Constant>(LHS))
00842         return Insert(Folder.CreateAnd(LC, RC), Name);
00843     }
00844     return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
00845   }
00846   Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
00847     return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00848   }
00849   Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
00850     return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00851   }
00852 
00853   Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
00854     if (Constant *RC = dyn_cast<Constant>(RHS)) {
00855       if (RC->isNullValue())
00856         return LHS;  // LHS | 0 -> LHS
00857       if (Constant *LC = dyn_cast<Constant>(LHS))
00858         return Insert(Folder.CreateOr(LC, RC), Name);
00859     }
00860     return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
00861   }
00862   Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
00863     return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00864   }
00865   Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
00866     return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00867   }
00868 
00869   Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
00870     if (Constant *LC = dyn_cast<Constant>(LHS))
00871       if (Constant *RC = dyn_cast<Constant>(RHS))
00872         return Insert(Folder.CreateXor(LC, RC), Name);
00873     return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
00874   }
00875   Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
00876     return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00877   }
00878   Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
00879     return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
00880   }
00881 
00882   Value *CreateBinOp(Instruction::BinaryOps Opc,
00883                      Value *LHS, Value *RHS, const Twine &Name = "",
00884                      MDNode *FPMathTag = nullptr) {
00885     if (Constant *LC = dyn_cast<Constant>(LHS))
00886       if (Constant *RC = dyn_cast<Constant>(RHS))
00887         return Insert(Folder.CreateBinOp(Opc, LC, RC), Name);
00888     llvm::Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
00889     if (isa<FPMathOperator>(BinOp))
00890       BinOp = AddFPMathAttributes(BinOp, FPMathTag, FMF);
00891     return Insert(BinOp, Name);
00892   }
00893 
00894   Value *CreateNeg(Value *V, const Twine &Name = "",
00895                    bool HasNUW = false, bool HasNSW = false) {
00896     if (Constant *VC = dyn_cast<Constant>(V))
00897       return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name);
00898     BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name);
00899     if (HasNUW) BO->setHasNoUnsignedWrap();
00900     if (HasNSW) BO->setHasNoSignedWrap();
00901     return BO;
00902   }
00903   Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
00904     return CreateNeg(V, Name, false, true);
00905   }
00906   Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
00907     return CreateNeg(V, Name, true, false);
00908   }
00909   Value *CreateFNeg(Value *V, const Twine &Name = "",
00910                     MDNode *FPMathTag = nullptr) {
00911     if (Constant *VC = dyn_cast<Constant>(V))
00912       return Insert(Folder.CreateFNeg(VC), Name);
00913     return Insert(AddFPMathAttributes(BinaryOperator::CreateFNeg(V),
00914                                       FPMathTag, FMF), Name);
00915   }
00916   Value *CreateNot(Value *V, const Twine &Name = "") {
00917     if (Constant *VC = dyn_cast<Constant>(V))
00918       return Insert(Folder.CreateNot(VC), Name);
00919     return Insert(BinaryOperator::CreateNot(V), Name);
00920   }
00921 
00922   //===--------------------------------------------------------------------===//
00923   // Instruction creation methods: Memory Instructions
00924   //===--------------------------------------------------------------------===//
00925 
00926   AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
00927                            const Twine &Name = "") {
00928     return Insert(new AllocaInst(Ty, ArraySize), Name);
00929   }
00930   // \brief Provided to resolve 'CreateLoad(Ptr, "...")' correctly, instead of
00931   // converting the string to 'bool' for the isVolatile parameter.
00932   LoadInst *CreateLoad(Value *Ptr, const char *Name) {
00933     return Insert(new LoadInst(Ptr), Name);
00934   }
00935   LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") {
00936     return Insert(new LoadInst(Ptr), Name);
00937   }
00938   LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") {
00939     return Insert(new LoadInst(Ptr, nullptr, isVolatile), Name);
00940   }
00941   StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
00942     return Insert(new StoreInst(Val, Ptr, isVolatile));
00943   }
00944   // \brief Provided to resolve 'CreateAlignedLoad(Ptr, Align, "...")'
00945   // correctly, instead of converting the string to 'bool' for the isVolatile
00946   // parameter.
00947   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const char *Name) {
00948     LoadInst *LI = CreateLoad(Ptr, Name);
00949     LI->setAlignment(Align);
00950     return LI;
00951   }
00952   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align,
00953                               const Twine &Name = "") {
00954     LoadInst *LI = CreateLoad(Ptr, Name);
00955     LI->setAlignment(Align);
00956     return LI;
00957   }
00958   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile,
00959                               const Twine &Name = "") {
00960     LoadInst *LI = CreateLoad(Ptr, isVolatile, Name);
00961     LI->setAlignment(Align);
00962     return LI;
00963   }
00964   StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align,
00965                                 bool isVolatile = false) {
00966     StoreInst *SI = CreateStore(Val, Ptr, isVolatile);
00967     SI->setAlignment(Align);
00968     return SI;
00969   }
00970   FenceInst *CreateFence(AtomicOrdering Ordering,
00971                          SynchronizationScope SynchScope = CrossThread,
00972                          const Twine &Name = "") {
00973     return Insert(new FenceInst(Context, Ordering, SynchScope), Name);
00974   }
00975   AtomicCmpXchgInst *
00976   CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New,
00977                       AtomicOrdering SuccessOrdering,
00978                       AtomicOrdering FailureOrdering,
00979                       SynchronizationScope SynchScope = CrossThread) {
00980     return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering,
00981                                         FailureOrdering, SynchScope));
00982   }
00983   AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val,
00984                                  AtomicOrdering Ordering,
00985                                SynchronizationScope SynchScope = CrossThread) {
00986     return Insert(new AtomicRMWInst(Op, Ptr, Val, Ordering, SynchScope));
00987   }
00988   Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList,
00989                    const Twine &Name = "") {
00990     if (Constant *PC = dyn_cast<Constant>(Ptr)) {
00991       // Every index must be constant.
00992       size_t i, e;
00993       for (i = 0, e = IdxList.size(); i != e; ++i)
00994         if (!isa<Constant>(IdxList[i]))
00995           break;
00996       if (i == e)
00997         return Insert(Folder.CreateGetElementPtr(PC, IdxList), Name);
00998     }
00999     return Insert(GetElementPtrInst::Create(Ptr, IdxList), Name);
01000   }
01001   Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
01002                            const Twine &Name = "") {
01003     if (Constant *PC = dyn_cast<Constant>(Ptr)) {
01004       // Every index must be constant.
01005       size_t i, e;
01006       for (i = 0, e = IdxList.size(); i != e; ++i)
01007         if (!isa<Constant>(IdxList[i]))
01008           break;
01009       if (i == e)
01010         return Insert(Folder.CreateInBoundsGetElementPtr(PC, IdxList), Name);
01011     }
01012     return Insert(GetElementPtrInst::CreateInBounds(Ptr, IdxList), Name);
01013   }
01014   Value *CreateGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
01015     if (Constant *PC = dyn_cast<Constant>(Ptr))
01016       if (Constant *IC = dyn_cast<Constant>(Idx))
01017         return Insert(Folder.CreateGetElementPtr(PC, IC), Name);
01018     return Insert(GetElementPtrInst::Create(Ptr, Idx), Name);
01019   }
01020   Value *CreateInBoundsGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
01021     if (Constant *PC = dyn_cast<Constant>(Ptr))
01022       if (Constant *IC = dyn_cast<Constant>(Idx))
01023         return Insert(Folder.CreateInBoundsGetElementPtr(PC, IC), Name);
01024     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name);
01025   }
01026   Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") {
01027     Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
01028 
01029     if (Constant *PC = dyn_cast<Constant>(Ptr))
01030       return Insert(Folder.CreateGetElementPtr(PC, Idx), Name);
01031 
01032     return Insert(GetElementPtrInst::Create(Ptr, Idx), Name);
01033   }
01034   Value *CreateConstInBoundsGEP1_32(Value *Ptr, unsigned Idx0,
01035                                     const Twine &Name = "") {
01036     Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
01037 
01038     if (Constant *PC = dyn_cast<Constant>(Ptr))
01039       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idx), Name);
01040 
01041     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name);
01042   }
01043   Value *CreateConstGEP2_32(Value *Ptr, unsigned Idx0, unsigned Idx1,
01044                     const Twine &Name = "") {
01045     Value *Idxs[] = {
01046       ConstantInt::get(Type::getInt32Ty(Context), Idx0),
01047       ConstantInt::get(Type::getInt32Ty(Context), Idx1)
01048     };
01049 
01050     if (Constant *PC = dyn_cast<Constant>(Ptr))
01051       return Insert(Folder.CreateGetElementPtr(PC, Idxs), Name);
01052 
01053     return Insert(GetElementPtrInst::Create(Ptr, Idxs), Name);
01054   }
01055   Value *CreateConstInBoundsGEP2_32(Value *Ptr, unsigned Idx0, unsigned Idx1,
01056                                     const Twine &Name = "") {
01057     Value *Idxs[] = {
01058       ConstantInt::get(Type::getInt32Ty(Context), Idx0),
01059       ConstantInt::get(Type::getInt32Ty(Context), Idx1)
01060     };
01061 
01062     if (Constant *PC = dyn_cast<Constant>(Ptr))
01063       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idxs), Name);
01064 
01065     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idxs), Name);
01066   }
01067   Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") {
01068     Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
01069 
01070     if (Constant *PC = dyn_cast<Constant>(Ptr))
01071       return Insert(Folder.CreateGetElementPtr(PC, Idx), Name);
01072 
01073     return Insert(GetElementPtrInst::Create(Ptr, Idx), Name);
01074   }
01075   Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0,
01076                                     const Twine &Name = "") {
01077     Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
01078 
01079     if (Constant *PC = dyn_cast<Constant>(Ptr))
01080       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idx), Name);
01081 
01082     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idx), Name);
01083   }
01084   Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
01085                     const Twine &Name = "") {
01086     Value *Idxs[] = {
01087       ConstantInt::get(Type::getInt64Ty(Context), Idx0),
01088       ConstantInt::get(Type::getInt64Ty(Context), Idx1)
01089     };
01090 
01091     if (Constant *PC = dyn_cast<Constant>(Ptr))
01092       return Insert(Folder.CreateGetElementPtr(PC, Idxs), Name);
01093 
01094     return Insert(GetElementPtrInst::Create(Ptr, Idxs), Name);
01095   }
01096   Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
01097                                     const Twine &Name = "") {
01098     Value *Idxs[] = {
01099       ConstantInt::get(Type::getInt64Ty(Context), Idx0),
01100       ConstantInt::get(Type::getInt64Ty(Context), Idx1)
01101     };
01102 
01103     if (Constant *PC = dyn_cast<Constant>(Ptr))
01104       return Insert(Folder.CreateInBoundsGetElementPtr(PC, Idxs), Name);
01105 
01106     return Insert(GetElementPtrInst::CreateInBounds(Ptr, Idxs), Name);
01107   }
01108   Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") {
01109     return CreateConstInBoundsGEP2_32(Ptr, 0, Idx, Name);
01110   }
01111 
01112   /// \brief Same as CreateGlobalString, but return a pointer with "i8*" type
01113   /// instead of a pointer to array of i8.
01114   Value *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "") {
01115     Value *gv = CreateGlobalString(Str, Name);
01116     Value *zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
01117     Value *Args[] = { zero, zero };
01118     return CreateInBoundsGEP(gv, Args, Name);
01119   }
01120 
01121   //===--------------------------------------------------------------------===//
01122   // Instruction creation methods: Cast/Conversion Operators
01123   //===--------------------------------------------------------------------===//
01124 
01125   Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
01126     return CreateCast(Instruction::Trunc, V, DestTy, Name);
01127   }
01128   Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
01129     return CreateCast(Instruction::ZExt, V, DestTy, Name);
01130   }
01131   Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
01132     return CreateCast(Instruction::SExt, V, DestTy, Name);
01133   }
01134   /// \brief Create a ZExt or Trunc from the integer value V to DestTy. Return
01135   /// the value untouched if the type of V is already DestTy.
01136   Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
01137                            const Twine &Name = "") {
01138     assert(V->getType()->isIntOrIntVectorTy() &&
01139            DestTy->isIntOrIntVectorTy() &&
01140            "Can only zero extend/truncate integers!");
01141     Type *VTy = V->getType();
01142     if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
01143       return CreateZExt(V, DestTy, Name);
01144     if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
01145       return CreateTrunc(V, DestTy, Name);
01146     return V;
01147   }
01148   /// \brief Create a SExt or Trunc from the integer value V to DestTy. Return
01149   /// the value untouched if the type of V is already DestTy.
01150   Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
01151                            const Twine &Name = "") {
01152     assert(V->getType()->isIntOrIntVectorTy() &&
01153            DestTy->isIntOrIntVectorTy() &&
01154            "Can only sign extend/truncate integers!");
01155     Type *VTy = V->getType();
01156     if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
01157       return CreateSExt(V, DestTy, Name);
01158     if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
01159       return CreateTrunc(V, DestTy, Name);
01160     return V;
01161   }
01162   Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = ""){
01163     return CreateCast(Instruction::FPToUI, V, DestTy, Name);
01164   }
01165   Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = ""){
01166     return CreateCast(Instruction::FPToSI, V, DestTy, Name);
01167   }
01168   Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
01169     return CreateCast(Instruction::UIToFP, V, DestTy, Name);
01170   }
01171   Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
01172     return CreateCast(Instruction::SIToFP, V, DestTy, Name);
01173   }
01174   Value *CreateFPTrunc(Value *V, Type *DestTy,
01175                        const Twine &Name = "") {
01176     return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
01177   }
01178   Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
01179     return CreateCast(Instruction::FPExt, V, DestTy, Name);
01180   }
01181   Value *CreatePtrToInt(Value *V, Type *DestTy,
01182                         const Twine &Name = "") {
01183     return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
01184   }
01185   Value *CreateIntToPtr(Value *V, Type *DestTy,
01186                         const Twine &Name = "") {
01187     return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
01188   }
01189   Value *CreateBitCast(Value *V, Type *DestTy,
01190                        const Twine &Name = "") {
01191     return CreateCast(Instruction::BitCast, V, DestTy, Name);
01192   }
01193   Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
01194                              const Twine &Name = "") {
01195     return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
01196   }
01197   Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
01198                              const Twine &Name = "") {
01199     if (V->getType() == DestTy)
01200       return V;
01201     if (Constant *VC = dyn_cast<Constant>(V))
01202       return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
01203     return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
01204   }
01205   Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
01206                              const Twine &Name = "") {
01207     if (V->getType() == DestTy)
01208       return V;
01209     if (Constant *VC = dyn_cast<Constant>(V))
01210       return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
01211     return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
01212   }
01213   Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
01214                               const Twine &Name = "") {
01215     if (V->getType() == DestTy)
01216       return V;
01217     if (Constant *VC = dyn_cast<Constant>(V))
01218       return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
01219     return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
01220   }
01221   Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
01222                     const Twine &Name = "") {
01223     if (V->getType() == DestTy)
01224       return V;
01225     if (Constant *VC = dyn_cast<Constant>(V))
01226       return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
01227     return Insert(CastInst::Create(Op, V, DestTy), Name);
01228   }
01229   Value *CreatePointerCast(Value *V, Type *DestTy,
01230                            const Twine &Name = "") {
01231     if (V->getType() == DestTy)
01232       return V;
01233     if (Constant *VC = dyn_cast<Constant>(V))
01234       return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
01235     return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
01236   }
01237 
01238   Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
01239                                              const Twine &Name = "") {
01240     if (V->getType() == DestTy)
01241       return V;
01242 
01243     if (Constant *VC = dyn_cast<Constant>(V)) {
01244       return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
01245                     Name);
01246     }
01247 
01248     return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
01249                   Name);
01250   }
01251 
01252   Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
01253                        const Twine &Name = "") {
01254     if (V->getType() == DestTy)
01255       return V;
01256     if (Constant *VC = dyn_cast<Constant>(V))
01257       return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
01258     return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
01259   }
01260 
01261   Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
01262                                 const Twine &Name = "") {
01263     if (V->getType() == DestTy)
01264       return V;
01265     if (V->getType()->isPointerTy() && DestTy->isIntegerTy())
01266       return CreatePtrToInt(V, DestTy, Name);
01267     if (V->getType()->isIntegerTy() && DestTy->isPointerTy())
01268       return CreateIntToPtr(V, DestTy, Name);
01269 
01270     return CreateBitCast(V, DestTy, Name);
01271   }
01272 private:
01273   // \brief Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
01274   // compile time error, instead of converting the string to bool for the
01275   // isSigned parameter.
01276   Value *CreateIntCast(Value *, Type *, const char *) LLVM_DELETED_FUNCTION;
01277 public:
01278   Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
01279     if (V->getType() == DestTy)
01280       return V;
01281     if (Constant *VC = dyn_cast<Constant>(V))
01282       return Insert(Folder.CreateFPCast(VC, DestTy), Name);
01283     return Insert(CastInst::CreateFPCast(V, DestTy), Name);
01284   }
01285 
01286   //===--------------------------------------------------------------------===//
01287   // Instruction creation methods: Compare Instructions
01288   //===--------------------------------------------------------------------===//
01289 
01290   Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
01291     return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
01292   }
01293   Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
01294     return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
01295   }
01296   Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01297     return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
01298   }
01299   Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01300     return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
01301   }
01302   Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
01303     return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
01304   }
01305   Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
01306     return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
01307   }
01308   Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01309     return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
01310   }
01311   Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01312     return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
01313   }
01314   Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
01315     return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
01316   }
01317   Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
01318     return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
01319   }
01320 
01321   Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
01322     return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name);
01323   }
01324   Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01325     return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name);
01326   }
01327   Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01328     return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name);
01329   }
01330   Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "") {
01331     return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name);
01332   }
01333   Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "") {
01334     return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name);
01335   }
01336   Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "") {
01337     return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name);
01338   }
01339   Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "") {
01340     return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name);
01341   }
01342   Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "") {
01343     return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name);
01344   }
01345   Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
01346     return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name);
01347   }
01348   Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
01349     return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name);
01350   }
01351   Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
01352     return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name);
01353   }
01354   Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
01355     return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name);
01356   }
01357   Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
01358     return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name);
01359   }
01360   Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "") {
01361     return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name);
01362   }
01363 
01364   Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
01365                     const Twine &Name = "") {
01366     if (Constant *LC = dyn_cast<Constant>(LHS))
01367       if (Constant *RC = dyn_cast<Constant>(RHS))
01368         return Insert(Folder.CreateICmp(P, LC, RC), Name);
01369     return Insert(new ICmpInst(P, LHS, RHS), Name);
01370   }
01371   Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
01372                     const Twine &Name = "") {
01373     if (Constant *LC = dyn_cast<Constant>(LHS))
01374       if (Constant *RC = dyn_cast<Constant>(RHS))
01375         return Insert(Folder.CreateFCmp(P, LC, RC), Name);
01376     return Insert(new FCmpInst(P, LHS, RHS), Name);
01377   }
01378 
01379   //===--------------------------------------------------------------------===//
01380   // Instruction creation methods: Other Instructions
01381   //===--------------------------------------------------------------------===//
01382 
01383   PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
01384                      const Twine &Name = "") {
01385     return Insert(PHINode::Create(Ty, NumReservedValues), Name);
01386   }
01387 
01388   CallInst *CreateCall(Value *Callee, const Twine &Name = "") {
01389     return Insert(CallInst::Create(Callee), Name);
01390   }
01391   CallInst *CreateCall(Value *Callee, Value *Arg, const Twine &Name = "") {
01392     return Insert(CallInst::Create(Callee, Arg), Name);
01393   }
01394   CallInst *CreateCall2(Value *Callee, Value *Arg1, Value *Arg2,
01395                         const Twine &Name = "") {
01396     Value *Args[] = { Arg1, Arg2 };
01397     return Insert(CallInst::Create(Callee, Args), Name);
01398   }
01399   CallInst *CreateCall3(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3,
01400                         const Twine &Name = "") {
01401     Value *Args[] = { Arg1, Arg2, Arg3 };
01402     return Insert(CallInst::Create(Callee, Args), Name);
01403   }
01404   CallInst *CreateCall4(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3,
01405                         Value *Arg4, const Twine &Name = "") {
01406     Value *Args[] = { Arg1, Arg2, Arg3, Arg4 };
01407     return Insert(CallInst::Create(Callee, Args), Name);
01408   }
01409   CallInst *CreateCall5(Value *Callee, Value *Arg1, Value *Arg2, Value *Arg3,
01410                         Value *Arg4, Value *Arg5, const Twine &Name = "") {
01411     Value *Args[] = { Arg1, Arg2, Arg3, Arg4, Arg5 };
01412     return Insert(CallInst::Create(Callee, Args), Name);
01413   }
01414 
01415   CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args,
01416                        const Twine &Name = "") {
01417     return Insert(CallInst::Create(Callee, Args), Name);
01418   }
01419 
01420   Value *CreateSelect(Value *C, Value *True, Value *False,
01421                       const Twine &Name = "") {
01422     if (Constant *CC = dyn_cast<Constant>(C))
01423       if (Constant *TC = dyn_cast<Constant>(True))
01424         if (Constant *FC = dyn_cast<Constant>(False))
01425           return Insert(Folder.CreateSelect(CC, TC, FC), Name);
01426     return Insert(SelectInst::Create(C, True, False), Name);
01427   }
01428 
01429   VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
01430     return Insert(new VAArgInst(List, Ty), Name);
01431   }
01432 
01433   Value *CreateExtractElement(Value *Vec, Value *Idx,
01434                               const Twine &Name = "") {
01435     if (Constant *VC = dyn_cast<Constant>(Vec))
01436       if (Constant *IC = dyn_cast<Constant>(Idx))
01437         return Insert(Folder.CreateExtractElement(VC, IC), Name);
01438     return Insert(ExtractElementInst::Create(Vec, Idx), Name);
01439   }
01440 
01441   Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
01442                              const Twine &Name = "") {
01443     if (Constant *VC = dyn_cast<Constant>(Vec))
01444       if (Constant *NC = dyn_cast<Constant>(NewElt))
01445         if (Constant *IC = dyn_cast<Constant>(Idx))
01446           return Insert(Folder.CreateInsertElement(VC, NC, IC), Name);
01447     return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
01448   }
01449 
01450   Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
01451                              const Twine &Name = "") {
01452     if (Constant *V1C = dyn_cast<Constant>(V1))
01453       if (Constant *V2C = dyn_cast<Constant>(V2))
01454         if (Constant *MC = dyn_cast<Constant>(Mask))
01455           return Insert(Folder.CreateShuffleVector(V1C, V2C, MC), Name);
01456     return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
01457   }
01458 
01459   Value *CreateExtractValue(Value *Agg,
01460                             ArrayRef<unsigned> Idxs,
01461                             const Twine &Name = "") {
01462     if (Constant *AggC = dyn_cast<Constant>(Agg))
01463       return Insert(Folder.CreateExtractValue(AggC, Idxs), Name);
01464     return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
01465   }
01466 
01467   Value *CreateInsertValue(Value *Agg, Value *Val,
01468                            ArrayRef<unsigned> Idxs,
01469                            const Twine &Name = "") {
01470     if (Constant *AggC = dyn_cast<Constant>(Agg))
01471       if (Constant *ValC = dyn_cast<Constant>(Val))
01472         return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name);
01473     return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
01474   }
01475 
01476   LandingPadInst *CreateLandingPad(Type *Ty, Value *PersFn, unsigned NumClauses,
01477                                    const Twine &Name = "") {
01478     return Insert(LandingPadInst::Create(Ty, PersFn, NumClauses), Name);
01479   }
01480 
01481   //===--------------------------------------------------------------------===//
01482   // Utility creation methods
01483   //===--------------------------------------------------------------------===//
01484 
01485   /// \brief Return an i1 value testing if \p Arg is null.
01486   Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
01487     return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()),
01488                         Name);
01489   }
01490 
01491   /// \brief Return an i1 value testing if \p Arg is not null.
01492   Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
01493     return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()),
01494                         Name);
01495   }
01496 
01497   /// \brief Return the i64 difference between two pointer values, dividing out
01498   /// the size of the pointed-to objects.
01499   ///
01500   /// This is intended to implement C-style pointer subtraction. As such, the
01501   /// pointers must be appropriately aligned for their element types and
01502   /// pointing into the same object.
01503   Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = "") {
01504     assert(LHS->getType() == RHS->getType() &&
01505            "Pointer subtraction operand types must match!");
01506     PointerType *ArgType = cast<PointerType>(LHS->getType());
01507     Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
01508     Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
01509     Value *Difference = CreateSub(LHS_int, RHS_int);
01510     return CreateExactSDiv(Difference,
01511                            ConstantExpr::getSizeOf(ArgType->getElementType()),
01512                            Name);
01513   }
01514 
01515   /// \brief Return a vector value that contains \arg V broadcasted to \p
01516   /// NumElts elements.
01517   Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "") {
01518     assert(NumElts > 0 && "Cannot splat to an empty vector!");
01519 
01520     // First insert it into an undef vector so we can shuffle it.
01521     Type *I32Ty = getInt32Ty();
01522     Value *Undef = UndefValue::get(VectorType::get(V->getType(), NumElts));
01523     V = CreateInsertElement(Undef, V, ConstantInt::get(I32Ty, 0),
01524                             Name + ".splatinsert");
01525 
01526     // Shuffle the value across the desired number of elements.
01527     Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32Ty, NumElts));
01528     return CreateShuffleVector(V, Undef, Zeros, Name + ".splat");
01529   }
01530 
01531   /// \brief Return a value that has been extracted from a larger integer type.
01532   Value *CreateExtractInteger(const DataLayout &DL, Value *From,
01533                               IntegerType *ExtractedTy, uint64_t Offset,
01534                               const Twine &Name) {
01535     IntegerType *IntTy = cast<IntegerType>(From->getType());
01536     assert(DL.getTypeStoreSize(ExtractedTy) + Offset <=
01537                DL.getTypeStoreSize(IntTy) &&
01538            "Element extends past full value");
01539     uint64_t ShAmt = 8 * Offset;
01540     Value *V = From;
01541     if (DL.isBigEndian())
01542       ShAmt = 8 * (DL.getTypeStoreSize(IntTy) -
01543                    DL.getTypeStoreSize(ExtractedTy) - Offset);
01544     if (ShAmt) {
01545       V = CreateLShr(V, ShAmt, Name + ".shift");
01546     }
01547     assert(ExtractedTy->getBitWidth() <= IntTy->getBitWidth() &&
01548            "Cannot extract to a larger integer!");
01549     if (ExtractedTy != IntTy) {
01550       V = CreateTrunc(V, ExtractedTy, Name + ".trunc");
01551     }
01552     return V;
01553   }
01554 
01555   /// \brief Create an assume intrinsic call that represents an alignment
01556   /// assumption on the provided pointer.
01557   ///
01558   /// An optional offset can be provided, and if it is provided, the offset
01559   /// must be subtracted from the provided pointer to get the pointer with the
01560   /// specified alignment.
01561   CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
01562                                       unsigned Alignment,
01563                                       Value *OffsetValue = nullptr) {
01564     assert(isa<PointerType>(PtrValue->getType()) &&
01565            "trying to create an alignment assumption on a non-pointer?");
01566 
01567     PointerType *PtrTy = cast<PointerType>(PtrValue->getType());
01568     Type *IntPtrTy = getIntPtrTy(&DL, PtrTy->getAddressSpace());
01569     Value *PtrIntValue = CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
01570 
01571     Value *Mask = ConstantInt::get(IntPtrTy,
01572       Alignment > 0 ? Alignment - 1 : 0);
01573     if (OffsetValue) {
01574       bool IsOffsetZero = false;
01575       if (ConstantInt *CI = dyn_cast<ConstantInt>(OffsetValue))
01576         IsOffsetZero = CI->isZero();
01577 
01578       if (!IsOffsetZero) {
01579         if (OffsetValue->getType() != IntPtrTy)
01580           OffsetValue = CreateIntCast(OffsetValue, IntPtrTy, /*isSigned*/ true,
01581                                       "offsetcast");
01582         PtrIntValue = CreateSub(PtrIntValue, OffsetValue, "offsetptr");
01583       }
01584     }
01585 
01586     Value *Zero = ConstantInt::get(IntPtrTy, 0);
01587     Value *MaskedPtr = CreateAnd(PtrIntValue, Mask, "maskedptr");
01588     Value *InvCond = CreateICmpEQ(MaskedPtr, Zero, "maskcond");
01589 
01590     return CreateAssumption(InvCond);
01591   }
01592 };
01593 
01594 // Create wrappers for C Binding types (see CBindingWrapping.h).
01595 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)
01596 
01597 }
01598 
01599 #endif