LLVM 19.0.0git
RuntimeDyldELF.cpp
Go to the documentation of this file.
1//===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of ELF support for the MC-JIT runtime dynamic linker.
10//
11//===----------------------------------------------------------------------===//
12
13#include "RuntimeDyldELF.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringRef.h"
21#include "llvm/Support/Endian.h"
24
25using namespace llvm;
26using namespace llvm::object;
27using namespace llvm::support::endian;
28
29#define DEBUG_TYPE "dyld"
30
31static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
32
33static void or32AArch64Imm(void *L, uint64_t Imm) {
34 or32le(L, (Imm & 0xFFF) << 10);
35}
36
37template <class T> static void write(bool isBE, void *P, T V) {
38 isBE ? write<T, llvm::endianness::big>(P, V)
39 : write<T, llvm::endianness::little>(P, V);
40}
41
42static void write32AArch64Addr(void *L, uint64_t Imm) {
43 uint32_t ImmLo = (Imm & 0x3) << 29;
44 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
45 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
46 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
47}
48
49// Return the bits [Start, End] from Val shifted Start bits.
50// For instance, getBits(0xF0, 4, 8) returns 0xF.
51static uint64_t getBits(uint64_t Val, int Start, int End) {
52 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
53 return (Val >> Start) & Mask;
54}
55
56namespace {
57
58template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
60
61 typedef typename ELFT::uint addr_type;
62
63 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
64
65public:
68
69 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
70
71 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
72
73 // Methods for type inquiry through isa, cast and dyn_cast
74 static bool classof(const Binary *v) {
75 return (isa<ELFObjectFile<ELFT>>(v) &&
77 }
78 static bool classof(const ELFObjectFile<ELFT> *v) {
79 return v->isDyldType();
80 }
81};
82
83
84
85// The MemoryBuffer passed into this constructor is just a wrapper around the
86// actual memory. Ultimately, the Binary parent class will take ownership of
87// this MemoryBuffer object but not the underlying memory.
88template <class ELFT>
89DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
90 : ELFObjectFile<ELFT>(std::move(Obj)) {
91 this->isDyldELFObject = true;
92}
93
94template <class ELFT>
96DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
98 if (auto E = Obj.takeError())
99 return std::move(E);
100 std::unique_ptr<DyldELFObject<ELFT>> Ret(
101 new DyldELFObject<ELFT>(std::move(*Obj)));
102 return std::move(Ret);
103}
104
105template <class ELFT>
106void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
107 uint64_t Addr) {
108 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
109 Elf_Shdr *shdr =
110 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
111
112 // This assumes the address passed in matches the target address bitness
113 // The template-based type cast handles everything else.
114 shdr->sh_addr = static_cast<addr_type>(Addr);
115}
116
117template <class ELFT>
118void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
119 uint64_t Addr) {
120
121 Elf_Sym *sym = const_cast<Elf_Sym *>(
123
124 // This assumes the address passed in matches the target address bitness
125 // The template-based type cast handles everything else.
126 sym->st_value = static_cast<addr_type>(Addr);
127}
128
129class LoadedELFObjectInfo final
130 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
131 RuntimeDyld::LoadedObjectInfo> {
132public:
133 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
134 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
135
137 getObjectForDebug(const ObjectFile &Obj) const override;
138};
139
140template <typename ELFT>
142createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
143 const LoadedELFObjectInfo &L) {
144 typedef typename ELFT::Shdr Elf_Shdr;
145 typedef typename ELFT::uint addr_type;
146
148 DyldELFObject<ELFT>::create(Buffer);
149 if (Error E = ObjOrErr.takeError())
150 return std::move(E);
151
152 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
153
154 // Iterate over all sections in the object.
155 auto SI = SourceObject.section_begin();
156 for (const auto &Sec : Obj->sections()) {
157 Expected<StringRef> NameOrErr = Sec.getName();
158 if (!NameOrErr) {
159 consumeError(NameOrErr.takeError());
160 continue;
161 }
162
163 if (*NameOrErr != "") {
164 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
165 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
166 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
167
168 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
169 // This assumes that the address passed in matches the target address
170 // bitness. The template-based type cast handles everything else.
171 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
172 }
173 }
174 ++SI;
175 }
176
177 return std::move(Obj);
178}
179
181createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
182 assert(Obj.isELF() && "Not an ELF object file.");
183
184 std::unique_ptr<MemoryBuffer> Buffer =
186
187 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
188 handleAllErrors(DebugObj.takeError());
189 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
190 DebugObj =
191 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
192 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
193 DebugObj =
194 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
195 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
196 DebugObj =
197 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
198 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
199 DebugObj =
200 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
201 else
202 llvm_unreachable("Unexpected ELF format");
203
204 handleAllErrors(DebugObj.takeError());
205 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
206}
207
209LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
210 return createELFDebugObject(Obj, *this);
211}
212
213} // anonymous namespace
214
215namespace llvm {
216
219 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
221
223 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
224 SID EHFrameSID = UnregisteredEHFrameSections[i];
225 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
226 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
227 size_t EHFrameSize = Sections[EHFrameSID].getSize();
228 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
229 }
230 UnregisteredEHFrameSections.clear();
231}
232
233std::unique_ptr<RuntimeDyldELF>
237 switch (Arch) {
238 default:
239 return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
240 case Triple::mips:
241 case Triple::mipsel:
242 case Triple::mips64:
243 case Triple::mips64el:
244 return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
245 }
246}
247
248std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
250 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
251 return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
252 else {
253 HasError = true;
254 raw_string_ostream ErrStream(ErrorStr);
255 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
256 return nullptr;
257 }
258}
259
260void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
262 uint32_t Type, int64_t Addend,
263 uint64_t SymOffset) {
264 switch (Type) {
265 default:
266 report_fatal_error("Relocation type not implemented yet!");
267 break;
268 case ELF::R_X86_64_NONE:
269 break;
270 case ELF::R_X86_64_8: {
271 Value += Addend;
272 assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
273 uint8_t TruncatedAddr = (Value & 0xFF);
274 *Section.getAddressWithOffset(Offset) = TruncatedAddr;
275 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
276 << format("%p\n", Section.getAddressWithOffset(Offset)));
277 break;
278 }
279 case ELF::R_X86_64_16: {
280 Value += Addend;
281 assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
282 uint16_t TruncatedAddr = (Value & 0xFFFF);
283 support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
284 TruncatedAddr;
285 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
286 << format("%p\n", Section.getAddressWithOffset(Offset)));
287 break;
288 }
289 case ELF::R_X86_64_64: {
290 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
291 Value + Addend;
292 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
293 << format("%p\n", Section.getAddressWithOffset(Offset)));
294 break;
295 }
296 case ELF::R_X86_64_32:
297 case ELF::R_X86_64_32S: {
298 Value += Addend;
299 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
300 (Type == ELF::R_X86_64_32S &&
301 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
302 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
303 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
304 TruncatedAddr;
305 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
306 << format("%p\n", Section.getAddressWithOffset(Offset)));
307 break;
308 }
309 case ELF::R_X86_64_PC8: {
310 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
311 int64_t RealOffset = Value + Addend - FinalAddress;
312 assert(isInt<8>(RealOffset));
313 int8_t TruncOffset = (RealOffset & 0xFF);
314 Section.getAddress()[Offset] = TruncOffset;
315 break;
316 }
317 case ELF::R_X86_64_PC32: {
318 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
319 int64_t RealOffset = Value + Addend - FinalAddress;
320 assert(isInt<32>(RealOffset));
321 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
322 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
323 TruncOffset;
324 break;
325 }
326 case ELF::R_X86_64_PC64: {
327 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
328 int64_t RealOffset = Value + Addend - FinalAddress;
329 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
330 RealOffset;
331 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
332 << format("%p\n", FinalAddress));
333 break;
334 }
335 case ELF::R_X86_64_GOTOFF64: {
336 // Compute Value - GOTBase.
337 uint64_t GOTBase = 0;
338 for (const auto &Section : Sections) {
339 if (Section.getName() == ".got") {
340 GOTBase = Section.getLoadAddressWithOffset(0);
341 break;
342 }
343 }
344 assert(GOTBase != 0 && "missing GOT");
345 int64_t GOTOffset = Value - GOTBase + Addend;
346 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
347 break;
348 }
349 case ELF::R_X86_64_DTPMOD64: {
350 // We only have one DSO, so the module id is always 1.
351 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
352 break;
353 }
354 case ELF::R_X86_64_DTPOFF64:
355 case ELF::R_X86_64_TPOFF64: {
356 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
357 // offset in the *initial* TLS block. Since we are statically linking, all
358 // TLS blocks already exist in the initial block, so resolve both
359 // relocations equally.
360 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
361 Value + Addend;
362 break;
363 }
364 case ELF::R_X86_64_DTPOFF32:
365 case ELF::R_X86_64_TPOFF32: {
366 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
367 // be resolved equally.
368 int64_t RealValue = Value + Addend;
369 assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
370 int32_t TruncValue = RealValue;
371 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
372 TruncValue;
373 break;
374 }
375 }
376}
377
378void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
380 uint32_t Type, int32_t Addend) {
381 switch (Type) {
382 case ELF::R_386_32: {
383 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
384 Value + Addend;
385 break;
386 }
387 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
388 // reach any 32 bit address.
389 case ELF::R_386_PLT32:
390 case ELF::R_386_PC32: {
391 uint32_t FinalAddress =
392 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
393 uint32_t RealOffset = Value + Addend - FinalAddress;
394 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
395 RealOffset;
396 break;
397 }
398 default:
399 // There are other relocation types, but it appears these are the
400 // only ones currently used by the LLVM ELF object writer
401 report_fatal_error("Relocation type not implemented yet!");
402 break;
403 }
404}
405
406void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
408 uint32_t Type, int64_t Addend) {
409 uint32_t *TargetPtr =
410 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
411 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
412 // Data should use target endian. Code should always use little endian.
413 bool isBE = Arch == Triple::aarch64_be;
414
415 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
416 << format("%llx", Section.getAddressWithOffset(Offset))
417 << " FinalAddress: 0x" << format("%llx", FinalAddress)
418 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
419 << format("%x", Type) << " Addend: 0x"
420 << format("%llx", Addend) << "\n");
421
422 switch (Type) {
423 default:
424 report_fatal_error("Relocation type not implemented yet!");
425 break;
426 case ELF::R_AARCH64_NONE:
427 break;
428 case ELF::R_AARCH64_ABS16: {
429 uint64_t Result = Value + Addend;
430 assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 16)) ||
431 (Result >> 16) == 0);
432 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
433 break;
434 }
435 case ELF::R_AARCH64_ABS32: {
436 uint64_t Result = Value + Addend;
437 assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 32)) ||
438 (Result >> 32) == 0);
439 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
440 break;
441 }
442 case ELF::R_AARCH64_ABS64:
443 write(isBE, TargetPtr, Value + Addend);
444 break;
445 case ELF::R_AARCH64_PLT32: {
446 uint64_t Result = Value + Addend - FinalAddress;
447 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
448 static_cast<int64_t>(Result) <= INT32_MAX);
449 write(isBE, TargetPtr, static_cast<uint32_t>(Result));
450 break;
451 }
452 case ELF::R_AARCH64_PREL16: {
453 uint64_t Result = Value + Addend - FinalAddress;
454 assert(static_cast<int64_t>(Result) >= INT16_MIN &&
455 static_cast<int64_t>(Result) <= UINT16_MAX);
456 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
457 break;
458 }
459 case ELF::R_AARCH64_PREL32: {
460 uint64_t Result = Value + Addend - FinalAddress;
461 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
462 static_cast<int64_t>(Result) <= UINT32_MAX);
463 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
464 break;
465 }
466 case ELF::R_AARCH64_PREL64:
467 write(isBE, TargetPtr, Value + Addend - FinalAddress);
468 break;
469 case ELF::R_AARCH64_CONDBR19: {
470 uint64_t BranchImm = Value + Addend - FinalAddress;
471
472 assert(isInt<21>(BranchImm));
473 *TargetPtr &= 0xff00001fU;
474 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
475 or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
476 break;
477 }
478 case ELF::R_AARCH64_TSTBR14: {
479 uint64_t BranchImm = Value + Addend - FinalAddress;
480
481 assert(isInt<16>(BranchImm));
482
483 uint32_t RawInstr = *(support::little32_t *)TargetPtr;
484 *(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU;
485
486 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
487 or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
488 break;
489 }
490 case ELF::R_AARCH64_CALL26: // fallthrough
491 case ELF::R_AARCH64_JUMP26: {
492 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
493 // calculation.
494 uint64_t BranchImm = Value + Addend - FinalAddress;
495
496 // "Check that -2^27 <= result < 2^27".
497 assert(isInt<28>(BranchImm));
498 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
499 break;
500 }
501 case ELF::R_AARCH64_MOVW_UABS_G3:
502 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
503 break;
504 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
505 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
506 break;
507 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
508 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
509 break;
510 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
511 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
512 break;
513 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
514 // Operation: Page(S+A) - Page(P)
516 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
517
518 // Check that -2^32 <= X < 2^32
519 assert(isInt<33>(Result) && "overflow check failed for relocation");
520
521 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
522 // from bits 32:12 of X.
523 write32AArch64Addr(TargetPtr, Result >> 12);
524 break;
525 }
526 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
527 // Operation: S + A
528 // Immediate goes in bits 21:10 of LD/ST instruction, taken
529 // from bits 11:0 of X
530 or32AArch64Imm(TargetPtr, Value + Addend);
531 break;
532 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
533 // Operation: S + A
534 // Immediate goes in bits 21:10 of LD/ST instruction, taken
535 // from bits 11:0 of X
536 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
537 break;
538 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
539 // Operation: S + A
540 // Immediate goes in bits 21:10 of LD/ST instruction, taken
541 // from bits 11:1 of X
542 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
543 break;
544 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
545 // Operation: S + A
546 // Immediate goes in bits 21:10 of LD/ST instruction, taken
547 // from bits 11:2 of X
548 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
549 break;
550 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
551 // Operation: S + A
552 // Immediate goes in bits 21:10 of LD/ST instruction, taken
553 // from bits 11:3 of X
554 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
555 break;
556 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
557 // Operation: S + A
558 // Immediate goes in bits 21:10 of LD/ST instruction, taken
559 // from bits 11:4 of X
560 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
561 break;
562 case ELF::R_AARCH64_LD_PREL_LO19: {
563 // Operation: S + A - P
564 uint64_t Result = Value + Addend - FinalAddress;
565
566 // "Check that -2^20 <= result < 2^20".
567 assert(isInt<21>(Result));
568
569 *TargetPtr &= 0xff00001fU;
570 // Immediate goes in bits 23:5 of LD imm instruction, taken
571 // from bits 20:2 of X
572 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
573 break;
574 }
575 case ELF::R_AARCH64_ADR_PREL_LO21: {
576 // Operation: S + A - P
577 uint64_t Result = Value + Addend - FinalAddress;
578
579 // "Check that -2^20 <= result < 2^20".
580 assert(isInt<21>(Result));
581
582 *TargetPtr &= 0x9f00001fU;
583 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
584 // from bits 20:0 of X
585 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
586 *TargetPtr |= (Result & 0x3) << 29;
587 break;
588 }
589 }
590}
591
592void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
594 uint32_t Type, int32_t Addend) {
595 // TODO: Add Thumb relocations.
596 uint32_t *TargetPtr =
597 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
598 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
599 Value += Addend;
600
601 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
602 << Section.getAddressWithOffset(Offset)
603 << " FinalAddress: " << format("%p", FinalAddress)
604 << " Value: " << format("%x", Value)
605 << " Type: " << format("%x", Type)
606 << " Addend: " << format("%x", Addend) << "\n");
607
608 switch (Type) {
609 default:
610 llvm_unreachable("Not implemented relocation type!");
611
612 case ELF::R_ARM_NONE:
613 break;
614 // Write a 31bit signed offset
615 case ELF::R_ARM_PREL31:
616 support::ulittle32_t::ref{TargetPtr} =
617 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
618 ((Value - FinalAddress) & ~0x80000000);
619 break;
620 case ELF::R_ARM_TARGET1:
621 case ELF::R_ARM_ABS32:
622 support::ulittle32_t::ref{TargetPtr} = Value;
623 break;
624 // Write first 16 bit of 32 bit value to the mov instruction.
625 // Last 4 bit should be shifted.
626 case ELF::R_ARM_MOVW_ABS_NC:
627 case ELF::R_ARM_MOVT_ABS:
628 if (Type == ELF::R_ARM_MOVW_ABS_NC)
629 Value = Value & 0xFFFF;
630 else if (Type == ELF::R_ARM_MOVT_ABS)
631 Value = (Value >> 16) & 0xFFFF;
632 support::ulittle32_t::ref{TargetPtr} =
633 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
634 (((Value >> 12) & 0xF) << 16);
635 break;
636 // Write 24 bit relative value to the branch instruction.
637 case ELF::R_ARM_PC24: // Fall through.
638 case ELF::R_ARM_CALL: // Fall through.
639 case ELF::R_ARM_JUMP24:
640 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
641 RelValue = (RelValue & 0x03FFFFFC) >> 2;
642 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
643 support::ulittle32_t::ref{TargetPtr} =
644 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
645 break;
646 }
647}
648
649void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
650 if (Arch == Triple::UnknownArch ||
651 Triple::getArchTypePrefix(Arch) != "mips") {
652 IsMipsO32ABI = false;
653 IsMipsN32ABI = false;
654 IsMipsN64ABI = false;
655 return;
656 }
657 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
658 unsigned AbiVariant = E->getPlatformFlags();
659 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
660 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
661 }
662 IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
663}
664
665// Return the .TOC. section and offset.
666Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
667 ObjSectionToIDMap &LocalSections,
668 RelocationValueRef &Rel) {
669 // Set a default SectionID in case we do not find a TOC section below.
670 // This may happen for references to TOC base base (sym@toc, .odp
671 // relocation) without a .toc directive. In this case just use the
672 // first section (which is usually the .odp) since the code won't
673 // reference the .toc base directly.
674 Rel.SymbolName = nullptr;
675 Rel.SectionID = 0;
676
677 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
678 // order. The TOC starts where the first of these sections starts.
679 for (auto &Section : Obj.sections()) {
680 Expected<StringRef> NameOrErr = Section.getName();
681 if (!NameOrErr)
682 return NameOrErr.takeError();
683 StringRef SectionName = *NameOrErr;
684
685 if (SectionName == ".got"
686 || SectionName == ".toc"
687 || SectionName == ".tocbss"
688 || SectionName == ".plt") {
689 if (auto SectionIDOrErr =
690 findOrEmitSection(Obj, Section, false, LocalSections))
691 Rel.SectionID = *SectionIDOrErr;
692 else
693 return SectionIDOrErr.takeError();
694 break;
695 }
696 }
697
698 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
699 // thus permitting a full 64 Kbytes segment.
700 Rel.Addend = 0x8000;
701
702 return Error::success();
703}
704
705// Returns the sections and offset associated with the ODP entry referenced
706// by Symbol.
707Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
708 ObjSectionToIDMap &LocalSections,
709 RelocationValueRef &Rel) {
710 // Get the ELF symbol value (st_value) to compare with Relocation offset in
711 // .opd entries
712 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
713 si != se; ++si) {
714
715 Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
716 if (!RelSecOrErr)
718
719 section_iterator RelSecI = *RelSecOrErr;
720 if (RelSecI == Obj.section_end())
721 continue;
722
723 Expected<StringRef> NameOrErr = RelSecI->getName();
724 if (!NameOrErr)
725 return NameOrErr.takeError();
726 StringRef RelSectionName = *NameOrErr;
727
728 if (RelSectionName != ".opd")
729 continue;
730
731 for (elf_relocation_iterator i = si->relocation_begin(),
732 e = si->relocation_end();
733 i != e;) {
734 // The R_PPC64_ADDR64 relocation indicates the first field
735 // of a .opd entry
736 uint64_t TypeFunc = i->getType();
737 if (TypeFunc != ELF::R_PPC64_ADDR64) {
738 ++i;
739 continue;
740 }
741
742 uint64_t TargetSymbolOffset = i->getOffset();
743 symbol_iterator TargetSymbol = i->getSymbol();
744 int64_t Addend;
745 if (auto AddendOrErr = i->getAddend())
746 Addend = *AddendOrErr;
747 else
748 return AddendOrErr.takeError();
749
750 ++i;
751 if (i == e)
752 break;
753
754 // Just check if following relocation is a R_PPC64_TOC
755 uint64_t TypeTOC = i->getType();
756 if (TypeTOC != ELF::R_PPC64_TOC)
757 continue;
758
759 // Finally compares the Symbol value and the target symbol offset
760 // to check if this .opd entry refers to the symbol the relocation
761 // points to.
762 if (Rel.Addend != (int64_t)TargetSymbolOffset)
763 continue;
764
765 section_iterator TSI = Obj.section_end();
766 if (auto TSIOrErr = TargetSymbol->getSection())
767 TSI = *TSIOrErr;
768 else
769 return TSIOrErr.takeError();
770 assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
771
772 bool IsCode = TSI->isText();
773 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
774 LocalSections))
775 Rel.SectionID = *SectionIDOrErr;
776 else
777 return SectionIDOrErr.takeError();
778 Rel.Addend = (intptr_t)Addend;
779 return Error::success();
780 }
781 }
782 llvm_unreachable("Attempting to get address of ODP entry!");
783}
784
785// Relocation masks following the #lo(value), #hi(value), #ha(value),
786// #higher(value), #highera(value), #highest(value), and #highesta(value)
787// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
788// document.
789
790static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
791
793 return (value >> 16) & 0xffff;
794}
795
797 return ((value + 0x8000) >> 16) & 0xffff;
798}
799
801 return (value >> 32) & 0xffff;
802}
803
805 return ((value + 0x8000) >> 32) & 0xffff;
806}
807
809 return (value >> 48) & 0xffff;
810}
811
813 return ((value + 0x8000) >> 48) & 0xffff;
814}
815
816void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
818 uint32_t Type, int64_t Addend) {
819 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
820 switch (Type) {
821 default:
822 report_fatal_error("Relocation type not implemented yet!");
823 break;
824 case ELF::R_PPC_ADDR16_LO:
825 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
826 break;
827 case ELF::R_PPC_ADDR16_HI:
828 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
829 break;
830 case ELF::R_PPC_ADDR16_HA:
831 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
832 break;
833 }
834}
835
836void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
838 uint32_t Type, int64_t Addend) {
839 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
840 switch (Type) {
841 default:
842 report_fatal_error("Relocation type not implemented yet!");
843 break;
844 case ELF::R_PPC64_ADDR16:
845 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
846 break;
847 case ELF::R_PPC64_ADDR16_DS:
848 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
849 break;
850 case ELF::R_PPC64_ADDR16_LO:
851 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
852 break;
853 case ELF::R_PPC64_ADDR16_LO_DS:
854 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
855 break;
856 case ELF::R_PPC64_ADDR16_HI:
857 case ELF::R_PPC64_ADDR16_HIGH:
858 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
859 break;
860 case ELF::R_PPC64_ADDR16_HA:
861 case ELF::R_PPC64_ADDR16_HIGHA:
862 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
863 break;
864 case ELF::R_PPC64_ADDR16_HIGHER:
865 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
866 break;
867 case ELF::R_PPC64_ADDR16_HIGHERA:
868 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
869 break;
870 case ELF::R_PPC64_ADDR16_HIGHEST:
871 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
872 break;
873 case ELF::R_PPC64_ADDR16_HIGHESTA:
874 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
875 break;
876 case ELF::R_PPC64_ADDR14: {
877 assert(((Value + Addend) & 3) == 0);
878 // Preserve the AA/LK bits in the branch instruction
879 uint8_t aalk = *(LocalAddress + 3);
880 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
881 } break;
882 case ELF::R_PPC64_REL16_LO: {
883 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
884 uint64_t Delta = Value - FinalAddress + Addend;
885 writeInt16BE(LocalAddress, applyPPClo(Delta));
886 } break;
887 case ELF::R_PPC64_REL16_HI: {
888 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
889 uint64_t Delta = Value - FinalAddress + Addend;
890 writeInt16BE(LocalAddress, applyPPChi(Delta));
891 } break;
892 case ELF::R_PPC64_REL16_HA: {
893 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
894 uint64_t Delta = Value - FinalAddress + Addend;
895 writeInt16BE(LocalAddress, applyPPCha(Delta));
896 } break;
897 case ELF::R_PPC64_ADDR32: {
898 int64_t Result = static_cast<int64_t>(Value + Addend);
899 if (SignExtend64<32>(Result) != Result)
900 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
901 writeInt32BE(LocalAddress, Result);
902 } break;
903 case ELF::R_PPC64_REL24: {
904 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
905 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
906 if (SignExtend64<26>(delta) != delta)
907 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
908 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
909 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
910 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
911 } break;
912 case ELF::R_PPC64_REL32: {
913 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
914 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
915 if (SignExtend64<32>(delta) != delta)
916 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
917 writeInt32BE(LocalAddress, delta);
918 } break;
919 case ELF::R_PPC64_REL64: {
920 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
921 uint64_t Delta = Value - FinalAddress + Addend;
922 writeInt64BE(LocalAddress, Delta);
923 } break;
924 case ELF::R_PPC64_ADDR64:
925 writeInt64BE(LocalAddress, Value + Addend);
926 break;
927 }
928}
929
930void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
932 uint32_t Type, int64_t Addend) {
933 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
934 switch (Type) {
935 default:
936 report_fatal_error("Relocation type not implemented yet!");
937 break;
938 case ELF::R_390_PC16DBL:
939 case ELF::R_390_PLT16DBL: {
940 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
941 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
942 writeInt16BE(LocalAddress, Delta / 2);
943 break;
944 }
945 case ELF::R_390_PC32DBL:
946 case ELF::R_390_PLT32DBL: {
947 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
948 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
949 writeInt32BE(LocalAddress, Delta / 2);
950 break;
951 }
952 case ELF::R_390_PC16: {
953 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
954 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
955 writeInt16BE(LocalAddress, Delta);
956 break;
957 }
958 case ELF::R_390_PC32: {
959 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
960 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
961 writeInt32BE(LocalAddress, Delta);
962 break;
963 }
964 case ELF::R_390_PC64: {
965 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
966 writeInt64BE(LocalAddress, Delta);
967 break;
968 }
969 case ELF::R_390_8:
970 *LocalAddress = (uint8_t)(Value + Addend);
971 break;
972 case ELF::R_390_16:
973 writeInt16BE(LocalAddress, Value + Addend);
974 break;
975 case ELF::R_390_32:
976 writeInt32BE(LocalAddress, Value + Addend);
977 break;
978 case ELF::R_390_64:
979 writeInt64BE(LocalAddress, Value + Addend);
980 break;
981 }
982}
983
984void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
986 uint32_t Type, int64_t Addend) {
987 bool isBE = Arch == Triple::bpfeb;
988
989 switch (Type) {
990 default:
991 report_fatal_error("Relocation type not implemented yet!");
992 break;
993 case ELF::R_BPF_NONE:
994 case ELF::R_BPF_64_64:
995 case ELF::R_BPF_64_32:
996 case ELF::R_BPF_64_NODYLD32:
997 break;
998 case ELF::R_BPF_64_ABS64: {
999 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
1000 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
1001 << format("%p\n", Section.getAddressWithOffset(Offset)));
1002 break;
1003 }
1004 case ELF::R_BPF_64_ABS32: {
1005 Value += Addend;
1006 assert(Value <= UINT32_MAX);
1007 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
1008 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
1009 << format("%p\n", Section.getAddressWithOffset(Offset)));
1010 break;
1011 }
1012 }
1013}
1014
1015// The target location for the relocation is described by RE.SectionID and
1016// RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1017// SectionEntry has three members describing its location.
1018// SectionEntry::Address is the address at which the section has been loaded
1019// into memory in the current (host) process. SectionEntry::LoadAddress is the
1020// address that the section will have in the target process.
1021// SectionEntry::ObjAddress is the address of the bits for this section in the
1022// original emitted object image (also in the current address space).
1023//
1024// Relocations will be applied as if the section were loaded at
1025// SectionEntry::LoadAddress, but they will be applied at an address based
1026// on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1027// Target memory contents if they are required for value calculations.
1028//
1029// The Value parameter here is the load address of the symbol for the
1030// relocation to be applied. For relocations which refer to symbols in the
1031// current object Value will be the LoadAddress of the section in which
1032// the symbol resides (RE.Addend provides additional information about the
1033// symbol location). For external symbols, Value will be the address of the
1034// symbol in the target address space.
1035void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1036 uint64_t Value) {
1037 const SectionEntry &Section = Sections[RE.SectionID];
1038 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1039 RE.SymOffset, RE.SectionID);
1040}
1041
1042void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1044 uint32_t Type, int64_t Addend,
1045 uint64_t SymOffset, SID SectionID) {
1046 switch (Arch) {
1047 case Triple::x86_64:
1048 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1049 break;
1050 case Triple::x86:
1051 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1052 (uint32_t)(Addend & 0xffffffffL));
1053 break;
1054 case Triple::aarch64:
1055 case Triple::aarch64_be:
1056 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1057 break;
1058 case Triple::arm: // Fall through.
1059 case Triple::armeb:
1060 case Triple::thumb:
1061 case Triple::thumbeb:
1062 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1063 (uint32_t)(Addend & 0xffffffffL));
1064 break;
1065 case Triple::ppc: // Fall through.
1066 case Triple::ppcle:
1067 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1068 break;
1069 case Triple::ppc64: // Fall through.
1070 case Triple::ppc64le:
1071 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1072 break;
1073 case Triple::systemz:
1074 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1075 break;
1076 case Triple::bpfel:
1077 case Triple::bpfeb:
1078 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1079 break;
1080 default:
1081 llvm_unreachable("Unsupported CPU type!");
1082 }
1083}
1084
1085void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1086 return (void *)(Sections[SectionID].getObjAddress() + Offset);
1087}
1088
1089void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1090 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1091 if (Value.SymbolName)
1092 addRelocationForSymbol(RE, Value.SymbolName);
1093 else
1094 addRelocationForSection(RE, Value.SectionID);
1095}
1096
1097uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1098 bool IsLocal) const {
1099 switch (RelType) {
1100 case ELF::R_MICROMIPS_GOT16:
1101 if (IsLocal)
1102 return ELF::R_MICROMIPS_LO16;
1103 break;
1104 case ELF::R_MICROMIPS_HI16:
1105 return ELF::R_MICROMIPS_LO16;
1106 case ELF::R_MIPS_GOT16:
1107 if (IsLocal)
1108 return ELF::R_MIPS_LO16;
1109 break;
1110 case ELF::R_MIPS_HI16:
1111 return ELF::R_MIPS_LO16;
1112 case ELF::R_MIPS_PCHI16:
1113 return ELF::R_MIPS_PCLO16;
1114 default:
1115 break;
1116 }
1117 return ELF::R_MIPS_NONE;
1118}
1119
1120// Sometimes we don't need to create thunk for a branch.
1121// This typically happens when branch target is located
1122// in the same object file. In such case target is either
1123// a weak symbol or symbol in a different executable section.
1124// This function checks if branch target is located in the
1125// same object file and if distance between source and target
1126// fits R_AARCH64_CALL26 relocation. If both conditions are
1127// met, it emits direct jump to the target and returns true.
1128// Otherwise false is returned and thunk is created.
1129bool RuntimeDyldELF::resolveAArch64ShortBranch(
1130 unsigned SectionID, relocation_iterator RelI,
1131 const RelocationValueRef &Value) {
1133 if (Value.SymbolName) {
1134 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1135
1136 // Don't create direct branch for external symbols.
1137 if (Loc == GlobalSymbolTable.end())
1138 return false;
1139
1140 const auto &SymInfo = Loc->second;
1141 Address =
1142 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1143 SymInfo.getOffset()));
1144 } else {
1145 Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1146 }
1147 uint64_t Offset = RelI->getOffset();
1148 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1149
1150 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1151 // If distance between source and target is out of range then we should
1152 // create thunk.
1153 if (!isInt<28>(Address + Value.Addend - SourceAddress))
1154 return false;
1155
1156 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1157 Value.Addend);
1158
1159 return true;
1160}
1161
1162void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1165 StubMap &Stubs) {
1166
1167 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1168 SectionEntry &Section = Sections[SectionID];
1169
1170 uint64_t Offset = RelI->getOffset();
1171 unsigned RelType = RelI->getType();
1172 // Look for an existing stub.
1173 StubMap::const_iterator i = Stubs.find(Value);
1174 if (i != Stubs.end()) {
1175 resolveRelocation(Section, Offset,
1176 (uint64_t)Section.getAddressWithOffset(i->second),
1177 RelType, 0);
1178 LLVM_DEBUG(dbgs() << " Stub function found\n");
1179 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1180 // Create a new stub function.
1181 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1182 Stubs[Value] = Section.getStubOffset();
1183 uint8_t *StubTargetAddr = createStubFunction(
1184 Section.getAddressWithOffset(Section.getStubOffset()));
1185
1186 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1187 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1188 RelocationEntry REmovk_g2(SectionID,
1189 StubTargetAddr - Section.getAddress() + 4,
1190 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1191 RelocationEntry REmovk_g1(SectionID,
1192 StubTargetAddr - Section.getAddress() + 8,
1193 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1194 RelocationEntry REmovk_g0(SectionID,
1195 StubTargetAddr - Section.getAddress() + 12,
1196 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1197
1198 if (Value.SymbolName) {
1199 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1200 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1201 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1202 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1203 } else {
1204 addRelocationForSection(REmovz_g3, Value.SectionID);
1205 addRelocationForSection(REmovk_g2, Value.SectionID);
1206 addRelocationForSection(REmovk_g1, Value.SectionID);
1207 addRelocationForSection(REmovk_g0, Value.SectionID);
1208 }
1209 resolveRelocation(Section, Offset,
1210 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1211 Section.getStubOffset())),
1212 RelType, 0);
1213 Section.advanceStubOffset(getMaxStubSize());
1214 }
1215}
1216
1219 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1220 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1221 const auto &Obj = cast<ELFObjectFileBase>(O);
1222 uint64_t RelType = RelI->getType();
1223 int64_t Addend = 0;
1224 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1225 Addend = *AddendOrErr;
1226 else
1227 consumeError(AddendOrErr.takeError());
1228 elf_symbol_iterator Symbol = RelI->getSymbol();
1229
1230 // Obtain the symbol name which is referenced in the relocation
1231 StringRef TargetName;
1232 if (Symbol != Obj.symbol_end()) {
1233 if (auto TargetNameOrErr = Symbol->getName())
1234 TargetName = *TargetNameOrErr;
1235 else
1236 return TargetNameOrErr.takeError();
1237 }
1238 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1239 << " TargetName: " << TargetName << "\n");
1241 // First search for the symbol in the local symbol table
1243
1244 // Search for the symbol in the global symbol table
1246 if (Symbol != Obj.symbol_end()) {
1247 gsi = GlobalSymbolTable.find(TargetName.data());
1248 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1249 if (!SymTypeOrErr) {
1250 std::string Buf;
1252 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1253 report_fatal_error(Twine(OS.str()));
1254 }
1255 SymType = *SymTypeOrErr;
1256 }
1257 if (gsi != GlobalSymbolTable.end()) {
1258 const auto &SymInfo = gsi->second;
1259 Value.SectionID = SymInfo.getSectionID();
1260 Value.Offset = SymInfo.getOffset();
1261 Value.Addend = SymInfo.getOffset() + Addend;
1262 } else {
1263 switch (SymType) {
1264 case SymbolRef::ST_Debug: {
1265 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1266 // and can be changed by another developers. Maybe best way is add
1267 // a new symbol type ST_Section to SymbolRef and use it.
1268 auto SectionOrErr = Symbol->getSection();
1269 if (!SectionOrErr) {
1270 std::string Buf;
1272 logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1273 report_fatal_error(Twine(OS.str()));
1274 }
1275 section_iterator si = *SectionOrErr;
1276 if (si == Obj.section_end())
1277 llvm_unreachable("Symbol section not found, bad object file format!");
1278 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1279 bool isCode = si->isText();
1280 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1281 ObjSectionToID))
1282 Value.SectionID = *SectionIDOrErr;
1283 else
1284 return SectionIDOrErr.takeError();
1285 Value.Addend = Addend;
1286 break;
1287 }
1288 case SymbolRef::ST_Data:
1291 case SymbolRef::ST_Unknown: {
1292 Value.SymbolName = TargetName.data();
1293 Value.Addend = Addend;
1294
1295 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1296 // will manifest here as a NULL symbol name.
1297 // We can set this as a valid (but empty) symbol name, and rely
1298 // on addRelocationForSymbol to handle this.
1299 if (!Value.SymbolName)
1300 Value.SymbolName = "";
1301 break;
1302 }
1303 default:
1304 llvm_unreachable("Unresolved symbol type!");
1305 break;
1306 }
1307 }
1308
1309 uint64_t Offset = RelI->getOffset();
1310
1311 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1312 << "\n");
1314 if ((RelType == ELF::R_AARCH64_CALL26 ||
1315 RelType == ELF::R_AARCH64_JUMP26) &&
1317 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1318 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1319 // Create new GOT entry or find existing one. If GOT entry is
1320 // to be created, then we also emit ABS64 relocation for it.
1321 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1322 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1323 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1324
1325 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1326 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1327 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1328 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1329 } else {
1330 processSimpleRelocation(SectionID, Offset, RelType, Value);
1331 }
1332 } else if (Arch == Triple::arm) {
1333 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1334 RelType == ELF::R_ARM_JUMP24) {
1335 // This is an ARM branch relocation, need to use a stub function.
1336 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1337 SectionEntry &Section = Sections[SectionID];
1338
1339 // Look for an existing stub.
1340 StubMap::const_iterator i = Stubs.find(Value);
1341 if (i != Stubs.end()) {
1342 resolveRelocation(
1343 Section, Offset,
1344 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1345 RelType, 0);
1346 LLVM_DEBUG(dbgs() << " Stub function found\n");
1347 } else {
1348 // Create a new stub function.
1349 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1350 Stubs[Value] = Section.getStubOffset();
1351 uint8_t *StubTargetAddr = createStubFunction(
1352 Section.getAddressWithOffset(Section.getStubOffset()));
1353 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1354 ELF::R_ARM_ABS32, Value.Addend);
1355 if (Value.SymbolName)
1356 addRelocationForSymbol(RE, Value.SymbolName);
1357 else
1358 addRelocationForSection(RE, Value.SectionID);
1359
1360 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1361 Section.getAddressWithOffset(
1362 Section.getStubOffset())),
1363 RelType, 0);
1364 Section.advanceStubOffset(getMaxStubSize());
1365 }
1366 } else {
1367 uint32_t *Placeholder =
1368 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1369 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1370 RelType == ELF::R_ARM_ABS32) {
1371 Value.Addend += *Placeholder;
1372 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1373 // See ELF for ARM documentation
1374 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1375 }
1376 processSimpleRelocation(SectionID, Offset, RelType, Value);
1377 }
1378 } else if (IsMipsO32ABI) {
1379 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1380 computePlaceholderAddress(SectionID, Offset));
1381 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1382 if (RelType == ELF::R_MIPS_26) {
1383 // This is an Mips branch relocation, need to use a stub function.
1384 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1385 SectionEntry &Section = Sections[SectionID];
1386
1387 // Extract the addend from the instruction.
1388 // We shift up by two since the Value will be down shifted again
1389 // when applying the relocation.
1390 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1391
1392 Value.Addend += Addend;
1393
1394 // Look up for existing stub.
1395 StubMap::const_iterator i = Stubs.find(Value);
1396 if (i != Stubs.end()) {
1397 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1398 addRelocationForSection(RE, SectionID);
1399 LLVM_DEBUG(dbgs() << " Stub function found\n");
1400 } else {
1401 // Create a new stub function.
1402 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1403 Stubs[Value] = Section.getStubOffset();
1404
1405 unsigned AbiVariant = Obj.getPlatformFlags();
1406
1407 uint8_t *StubTargetAddr = createStubFunction(
1408 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1409
1410 // Creating Hi and Lo relocations for the filled stub instructions.
1411 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1412 ELF::R_MIPS_HI16, Value.Addend);
1413 RelocationEntry RELo(SectionID,
1414 StubTargetAddr - Section.getAddress() + 4,
1415 ELF::R_MIPS_LO16, Value.Addend);
1416
1417 if (Value.SymbolName) {
1418 addRelocationForSymbol(REHi, Value.SymbolName);
1419 addRelocationForSymbol(RELo, Value.SymbolName);
1420 } else {
1421 addRelocationForSection(REHi, Value.SectionID);
1422 addRelocationForSection(RELo, Value.SectionID);
1423 }
1424
1425 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1426 addRelocationForSection(RE, SectionID);
1427 Section.advanceStubOffset(getMaxStubSize());
1428 }
1429 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1430 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1431 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1432 PendingRelocs.push_back(std::make_pair(Value, RE));
1433 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1434 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1435 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1436 const RelocationValueRef &MatchingValue = I->first;
1437 RelocationEntry &Reloc = I->second;
1438 if (MatchingValue == Value &&
1439 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1440 SectionID == Reloc.SectionID) {
1441 Reloc.Addend += Addend;
1442 if (Value.SymbolName)
1443 addRelocationForSymbol(Reloc, Value.SymbolName);
1444 else
1445 addRelocationForSection(Reloc, Value.SectionID);
1446 I = PendingRelocs.erase(I);
1447 } else
1448 ++I;
1449 }
1450 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1451 if (Value.SymbolName)
1452 addRelocationForSymbol(RE, Value.SymbolName);
1453 else
1454 addRelocationForSection(RE, Value.SectionID);
1455 } else {
1456 if (RelType == ELF::R_MIPS_32)
1457 Value.Addend += Opcode;
1458 else if (RelType == ELF::R_MIPS_PC16)
1459 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1460 else if (RelType == ELF::R_MIPS_PC19_S2)
1461 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1462 else if (RelType == ELF::R_MIPS_PC21_S2)
1463 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1464 else if (RelType == ELF::R_MIPS_PC26_S2)
1465 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1466 processSimpleRelocation(SectionID, Offset, RelType, Value);
1467 }
1468 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1469 uint32_t r_type = RelType & 0xff;
1470 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1471 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1472 || r_type == ELF::R_MIPS_GOT_DISP) {
1473 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1474 if (i != GOTSymbolOffsets.end())
1475 RE.SymOffset = i->second;
1476 else {
1477 RE.SymOffset = allocateGOTEntries(1);
1478 GOTSymbolOffsets[TargetName] = RE.SymOffset;
1479 }
1480 if (Value.SymbolName)
1481 addRelocationForSymbol(RE, Value.SymbolName);
1482 else
1483 addRelocationForSection(RE, Value.SectionID);
1484 } else if (RelType == ELF::R_MIPS_26) {
1485 // This is an Mips branch relocation, need to use a stub function.
1486 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1487 SectionEntry &Section = Sections[SectionID];
1488
1489 // Look up for existing stub.
1490 StubMap::const_iterator i = Stubs.find(Value);
1491 if (i != Stubs.end()) {
1492 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1493 addRelocationForSection(RE, SectionID);
1494 LLVM_DEBUG(dbgs() << " Stub function found\n");
1495 } else {
1496 // Create a new stub function.
1497 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1498 Stubs[Value] = Section.getStubOffset();
1499
1500 unsigned AbiVariant = Obj.getPlatformFlags();
1501
1502 uint8_t *StubTargetAddr = createStubFunction(
1503 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1504
1505 if (IsMipsN32ABI) {
1506 // Creating Hi and Lo relocations for the filled stub instructions.
1507 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1508 ELF::R_MIPS_HI16, Value.Addend);
1509 RelocationEntry RELo(SectionID,
1510 StubTargetAddr - Section.getAddress() + 4,
1511 ELF::R_MIPS_LO16, Value.Addend);
1512 if (Value.SymbolName) {
1513 addRelocationForSymbol(REHi, Value.SymbolName);
1514 addRelocationForSymbol(RELo, Value.SymbolName);
1515 } else {
1516 addRelocationForSection(REHi, Value.SectionID);
1517 addRelocationForSection(RELo, Value.SectionID);
1518 }
1519 } else {
1520 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1521 // instructions.
1522 RelocationEntry REHighest(SectionID,
1523 StubTargetAddr - Section.getAddress(),
1524 ELF::R_MIPS_HIGHEST, Value.Addend);
1525 RelocationEntry REHigher(SectionID,
1526 StubTargetAddr - Section.getAddress() + 4,
1527 ELF::R_MIPS_HIGHER, Value.Addend);
1528 RelocationEntry REHi(SectionID,
1529 StubTargetAddr - Section.getAddress() + 12,
1530 ELF::R_MIPS_HI16, Value.Addend);
1531 RelocationEntry RELo(SectionID,
1532 StubTargetAddr - Section.getAddress() + 20,
1533 ELF::R_MIPS_LO16, Value.Addend);
1534 if (Value.SymbolName) {
1535 addRelocationForSymbol(REHighest, Value.SymbolName);
1536 addRelocationForSymbol(REHigher, Value.SymbolName);
1537 addRelocationForSymbol(REHi, Value.SymbolName);
1538 addRelocationForSymbol(RELo, Value.SymbolName);
1539 } else {
1540 addRelocationForSection(REHighest, Value.SectionID);
1541 addRelocationForSection(REHigher, Value.SectionID);
1542 addRelocationForSection(REHi, Value.SectionID);
1543 addRelocationForSection(RELo, Value.SectionID);
1544 }
1545 }
1546 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1547 addRelocationForSection(RE, SectionID);
1548 Section.advanceStubOffset(getMaxStubSize());
1549 }
1550 } else {
1551 processSimpleRelocation(SectionID, Offset, RelType, Value);
1552 }
1553
1554 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1555 if (RelType == ELF::R_PPC64_REL24) {
1556 // Determine ABI variant in use for this object.
1557 unsigned AbiVariant = Obj.getPlatformFlags();
1558 AbiVariant &= ELF::EF_PPC64_ABI;
1559 // A PPC branch relocation will need a stub function if the target is
1560 // an external symbol (either Value.SymbolName is set, or SymType is
1561 // Symbol::ST_Unknown) or if the target address is not within the
1562 // signed 24-bits branch address.
1563 SectionEntry &Section = Sections[SectionID];
1564 uint8_t *Target = Section.getAddressWithOffset(Offset);
1565 bool RangeOverflow = false;
1566 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1567 if (!IsExtern) {
1568 if (AbiVariant != 2) {
1569 // In the ELFv1 ABI, a function call may point to the .opd entry,
1570 // so the final symbol value is calculated based on the relocation
1571 // values in the .opd section.
1572 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1573 return std::move(Err);
1574 } else {
1575 // In the ELFv2 ABI, a function symbol may provide a local entry
1576 // point, which must be used for direct calls.
1577 if (Value.SectionID == SectionID){
1578 uint8_t SymOther = Symbol->getOther();
1579 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1580 }
1581 }
1582 uint8_t *RelocTarget =
1583 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1584 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1585 // If it is within 26-bits branch range, just set the branch target
1586 if (SignExtend64<26>(delta) != delta) {
1587 RangeOverflow = true;
1588 } else if ((AbiVariant != 2) ||
1589 (AbiVariant == 2 && Value.SectionID == SectionID)) {
1590 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1591 addRelocationForSection(RE, Value.SectionID);
1592 }
1593 }
1594 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1595 RangeOverflow) {
1596 // It is an external symbol (either Value.SymbolName is set, or
1597 // SymType is SymbolRef::ST_Unknown) or out of range.
1598 StubMap::const_iterator i = Stubs.find(Value);
1599 if (i != Stubs.end()) {
1600 // Symbol function stub already created, just relocate to it
1601 resolveRelocation(Section, Offset,
1602 reinterpret_cast<uint64_t>(
1603 Section.getAddressWithOffset(i->second)),
1604 RelType, 0);
1605 LLVM_DEBUG(dbgs() << " Stub function found\n");
1606 } else {
1607 // Create a new stub function.
1608 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1609 Stubs[Value] = Section.getStubOffset();
1610 uint8_t *StubTargetAddr = createStubFunction(
1611 Section.getAddressWithOffset(Section.getStubOffset()),
1612 AbiVariant);
1613 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1614 ELF::R_PPC64_ADDR64, Value.Addend);
1615
1616 // Generates the 64-bits address loads as exemplified in section
1617 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1618 // apply to the low part of the instructions, so we have to update
1619 // the offset according to the target endianness.
1620 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1622 StubRelocOffset += 2;
1623
1624 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1625 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1626 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1627 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1628 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1629 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1630 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1631 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1632
1633 if (Value.SymbolName) {
1634 addRelocationForSymbol(REhst, Value.SymbolName);
1635 addRelocationForSymbol(REhr, Value.SymbolName);
1636 addRelocationForSymbol(REh, Value.SymbolName);
1637 addRelocationForSymbol(REl, Value.SymbolName);
1638 } else {
1639 addRelocationForSection(REhst, Value.SectionID);
1640 addRelocationForSection(REhr, Value.SectionID);
1641 addRelocationForSection(REh, Value.SectionID);
1642 addRelocationForSection(REl, Value.SectionID);
1643 }
1644
1645 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1646 Section.getAddressWithOffset(
1647 Section.getStubOffset())),
1648 RelType, 0);
1649 Section.advanceStubOffset(getMaxStubSize());
1650 }
1651 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1652 // Restore the TOC for external calls
1653 if (AbiVariant == 2)
1654 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1655 else
1656 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1657 }
1658 }
1659 } else if (RelType == ELF::R_PPC64_TOC16 ||
1660 RelType == ELF::R_PPC64_TOC16_DS ||
1661 RelType == ELF::R_PPC64_TOC16_LO ||
1662 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1663 RelType == ELF::R_PPC64_TOC16_HI ||
1664 RelType == ELF::R_PPC64_TOC16_HA) {
1665 // These relocations are supposed to subtract the TOC address from
1666 // the final value. This does not fit cleanly into the RuntimeDyld
1667 // scheme, since there may be *two* sections involved in determining
1668 // the relocation value (the section of the symbol referred to by the
1669 // relocation, and the TOC section associated with the current module).
1670 //
1671 // Fortunately, these relocations are currently only ever generated
1672 // referring to symbols that themselves reside in the TOC, which means
1673 // that the two sections are actually the same. Thus they cancel out
1674 // and we can immediately resolve the relocation right now.
1675 switch (RelType) {
1676 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1677 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1678 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1679 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1680 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1681 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1682 default: llvm_unreachable("Wrong relocation type.");
1683 }
1684
1685 RelocationValueRef TOCValue;
1686 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1687 return std::move(Err);
1688 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1689 llvm_unreachable("Unsupported TOC relocation.");
1690 Value.Addend -= TOCValue.Addend;
1691 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1692 } else {
1693 // There are two ways to refer to the TOC address directly: either
1694 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1695 // ignored), or via any relocation that refers to the magic ".TOC."
1696 // symbols (in which case the addend is respected).
1697 if (RelType == ELF::R_PPC64_TOC) {
1698 RelType = ELF::R_PPC64_ADDR64;
1699 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1700 return std::move(Err);
1701 } else if (TargetName == ".TOC.") {
1702 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1703 return std::move(Err);
1704 Value.Addend += Addend;
1705 }
1706
1707 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1708
1709 if (Value.SymbolName)
1710 addRelocationForSymbol(RE, Value.SymbolName);
1711 else
1712 addRelocationForSection(RE, Value.SectionID);
1713 }
1714 } else if (Arch == Triple::systemz &&
1715 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1716 // Create function stubs for both PLT and GOT references, regardless of
1717 // whether the GOT reference is to data or code. The stub contains the
1718 // full address of the symbol, as needed by GOT references, and the
1719 // executable part only adds an overhead of 8 bytes.
1720 //
1721 // We could try to conserve space by allocating the code and data
1722 // parts of the stub separately. However, as things stand, we allocate
1723 // a stub for every relocation, so using a GOT in JIT code should be
1724 // no less space efficient than using an explicit constant pool.
1725 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1726 SectionEntry &Section = Sections[SectionID];
1727
1728 // Look for an existing stub.
1729 StubMap::const_iterator i = Stubs.find(Value);
1730 uintptr_t StubAddress;
1731 if (i != Stubs.end()) {
1732 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1733 LLVM_DEBUG(dbgs() << " Stub function found\n");
1734 } else {
1735 // Create a new stub function.
1736 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1737
1738 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1739 StubAddress =
1740 alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
1741 unsigned StubOffset = StubAddress - BaseAddress;
1742
1743 Stubs[Value] = StubOffset;
1744 createStubFunction((uint8_t *)StubAddress);
1745 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1746 Value.Offset);
1747 if (Value.SymbolName)
1748 addRelocationForSymbol(RE, Value.SymbolName);
1749 else
1750 addRelocationForSection(RE, Value.SectionID);
1751 Section.advanceStubOffset(getMaxStubSize());
1752 }
1753
1754 if (RelType == ELF::R_390_GOTENT)
1755 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1756 Addend);
1757 else
1758 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1759 } else if (Arch == Triple::x86_64) {
1760 if (RelType == ELF::R_X86_64_PLT32) {
1761 // The way the PLT relocations normally work is that the linker allocates
1762 // the
1763 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1764 // entry will then jump to an address provided by the GOT. On first call,
1765 // the
1766 // GOT address will point back into PLT code that resolves the symbol. After
1767 // the first call, the GOT entry points to the actual function.
1768 //
1769 // For local functions we're ignoring all of that here and just replacing
1770 // the PLT32 relocation type with PC32, which will translate the relocation
1771 // into a PC-relative call directly to the function. For external symbols we
1772 // can't be sure the function will be within 2^32 bytes of the call site, so
1773 // we need to create a stub, which calls into the GOT. This case is
1774 // equivalent to the usual PLT implementation except that we use the stub
1775 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1776 // rather than allocating a PLT section.
1777 if (Value.SymbolName && MemMgr.allowStubAllocation()) {
1778 // This is a call to an external function.
1779 // Look for an existing stub.
1780 SectionEntry *Section = &Sections[SectionID];
1781 StubMap::const_iterator i = Stubs.find(Value);
1782 uintptr_t StubAddress;
1783 if (i != Stubs.end()) {
1784 StubAddress = uintptr_t(Section->getAddress()) + i->second;
1785 LLVM_DEBUG(dbgs() << " Stub function found\n");
1786 } else {
1787 // Create a new stub function (equivalent to a PLT entry).
1788 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1789
1790 uintptr_t BaseAddress = uintptr_t(Section->getAddress());
1791 StubAddress = alignTo(BaseAddress + Section->getStubOffset(),
1792 getStubAlignment());
1793 unsigned StubOffset = StubAddress - BaseAddress;
1794 Stubs[Value] = StubOffset;
1795 createStubFunction((uint8_t *)StubAddress);
1796
1797 // Bump our stub offset counter
1798 Section->advanceStubOffset(getMaxStubSize());
1799
1800 // Allocate a GOT Entry
1801 uint64_t GOTOffset = allocateGOTEntries(1);
1802 // This potentially creates a new Section which potentially
1803 // invalidates the Section pointer, so reload it.
1804 Section = &Sections[SectionID];
1805
1806 // The load of the GOT address has an addend of -4
1807 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1808 ELF::R_X86_64_PC32);
1809
1810 // Fill in the value of the symbol we're targeting into the GOT
1812 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1813 Value.SymbolName);
1814 }
1815
1816 // Make the target call a call into the stub table.
1817 resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1818 Addend);
1819 } else {
1821 computePlaceholderAddress(SectionID, Offset));
1822 processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
1823 }
1824 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1825 RelType == ELF::R_X86_64_GOTPCRELX ||
1826 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1827 uint64_t GOTOffset = allocateGOTEntries(1);
1828 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1829 ELF::R_X86_64_PC32);
1830
1831 // Fill in the value of the symbol we're targeting into the GOT
1832 RelocationEntry RE =
1833 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1834 if (Value.SymbolName)
1835 addRelocationForSymbol(RE, Value.SymbolName);
1836 else
1837 addRelocationForSection(RE, Value.SectionID);
1838 } else if (RelType == ELF::R_X86_64_GOT64) {
1839 // Fill in a 64-bit GOT offset.
1840 uint64_t GOTOffset = allocateGOTEntries(1);
1841 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1842 ELF::R_X86_64_64, 0);
1843
1844 // Fill in the value of the symbol we're targeting into the GOT
1845 RelocationEntry RE =
1846 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1847 if (Value.SymbolName)
1848 addRelocationForSymbol(RE, Value.SymbolName);
1849 else
1850 addRelocationForSection(RE, Value.SectionID);
1851 } else if (RelType == ELF::R_X86_64_GOTPC32) {
1852 // Materialize the address of the base of the GOT relative to the PC.
1853 // This doesn't create a GOT entry, but it does mean we need a GOT
1854 // section.
1855 (void)allocateGOTEntries(0);
1856 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
1857 } else if (RelType == ELF::R_X86_64_GOTPC64) {
1858 (void)allocateGOTEntries(0);
1859 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1860 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1861 // GOTOFF relocations ultimately require a section difference relocation.
1862 (void)allocateGOTEntries(0);
1863 processSimpleRelocation(SectionID, Offset, RelType, Value);
1864 } else if (RelType == ELF::R_X86_64_PC32) {
1865 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1866 processSimpleRelocation(SectionID, Offset, RelType, Value);
1867 } else if (RelType == ELF::R_X86_64_PC64) {
1868 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1869 processSimpleRelocation(SectionID, Offset, RelType, Value);
1870 } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
1871 processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
1872 } else if (RelType == ELF::R_X86_64_TLSGD ||
1873 RelType == ELF::R_X86_64_TLSLD) {
1874 // The next relocation must be the relocation for __tls_get_addr.
1875 ++RelI;
1876 auto &GetAddrRelocation = *RelI;
1877 processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
1878 GetAddrRelocation);
1879 } else {
1880 processSimpleRelocation(SectionID, Offset, RelType, Value);
1881 }
1882 } else {
1883 if (Arch == Triple::x86) {
1884 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1885 }
1886 processSimpleRelocation(SectionID, Offset, RelType, Value);
1887 }
1888 return ++RelI;
1889}
1890
1891void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
1894 int64_t Addend) {
1895 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1896 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1897 // only mentions one optimization even though there are two different
1898 // code sequences for the Initial Exec TLS Model. We match the code to
1899 // find out which one was used.
1900
1901 // A possible TLS code sequence and its replacement
1902 struct CodeSequence {
1903 // The expected code sequence
1904 ArrayRef<uint8_t> ExpectedCodeSequence;
1905 // The negative offset of the GOTTPOFF relocation to the beginning of
1906 // the sequence
1907 uint64_t TLSSequenceOffset;
1908 // The new code sequence
1909 ArrayRef<uint8_t> NewCodeSequence;
1910 // The offset of the new TPOFF relocation
1911 uint64_t TpoffRelocationOffset;
1912 };
1913
1914 std::array<CodeSequence, 2> CodeSequences;
1915
1916 // Initial Exec Code Model Sequence
1917 {
1918 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1919 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1920 0x00, // mov %fs:0, %rax
1921 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1922 // %rax
1923 };
1924 CodeSequences[0].ExpectedCodeSequence =
1925 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1926 CodeSequences[0].TLSSequenceOffset = 12;
1927
1928 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1929 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1930 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1931 };
1932 CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1933 CodeSequences[0].TpoffRelocationOffset = 12;
1934 }
1935
1936 // Initial Exec Code Model Sequence, II
1937 {
1938 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1939 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1940 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
1941 };
1942 CodeSequences[1].ExpectedCodeSequence =
1943 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1944 CodeSequences[1].TLSSequenceOffset = 3;
1945
1946 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1947 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
1948 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1949 };
1950 CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1951 CodeSequences[1].TpoffRelocationOffset = 10;
1952 }
1953
1954 bool Resolved = false;
1955 auto &Section = Sections[SectionID];
1956 for (const auto &C : CodeSequences) {
1957 assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
1958 "Old and new code sequences must have the same size");
1959
1960 if (Offset < C.TLSSequenceOffset ||
1961 (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
1962 Section.getSize()) {
1963 // This can't be a matching sequence as it doesn't fit in the current
1964 // section
1965 continue;
1966 }
1967
1968 auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
1969 auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
1970 if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
1971 C.ExpectedCodeSequence) {
1972 continue;
1973 }
1974
1975 memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
1976
1977 // The original GOTTPOFF relocation has an addend as it is PC relative,
1978 // so it needs to be corrected. The TPOFF32 relocation is used as an
1979 // absolute value (which is an offset from %fs:0), so remove the addend
1980 // again.
1981 RelocationEntry RE(SectionID,
1982 TLSSequenceStartOffset + C.TpoffRelocationOffset,
1983 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
1984
1985 if (Value.SymbolName)
1986 addRelocationForSymbol(RE, Value.SymbolName);
1987 else
1988 addRelocationForSection(RE, Value.SectionID);
1989
1990 Resolved = true;
1991 break;
1992 }
1993
1994 if (!Resolved) {
1995 // The GOTTPOFF relocation was not used in one of the sequences
1996 // described in the spec, so we can't optimize it to a TPOFF
1997 // relocation.
1998 uint64_t GOTOffset = allocateGOTEntries(1);
1999 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
2000 ELF::R_X86_64_PC32);
2001 RelocationEntry RE =
2002 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
2003 if (Value.SymbolName)
2004 addRelocationForSymbol(RE, Value.SymbolName);
2005 else
2006 addRelocationForSection(RE, Value.SectionID);
2007 }
2008}
2009
2010void RuntimeDyldELF::processX86_64TLSRelocation(
2011 unsigned SectionID, uint64_t Offset, uint64_t RelType,
2012 RelocationValueRef Value, int64_t Addend,
2013 const RelocationRef &GetAddrRelocation) {
2014 // Since we are statically linking and have no additional DSOs, we can resolve
2015 // the relocation directly without using __tls_get_addr.
2016 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2017 // to replace it with the Local Exec relocation variant.
2018
2019 // Find out whether the code was compiled with the large or small memory
2020 // model. For this we look at the next relocation which is the relocation
2021 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2022 // small code model, with a 64 bit relocation it's the large code model.
2023 bool IsSmallCodeModel;
2024 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2025 bool IsGOTPCRel = false;
2026
2027 switch (GetAddrRelocation.getType()) {
2028 case ELF::R_X86_64_GOTPCREL:
2029 case ELF::R_X86_64_REX_GOTPCRELX:
2030 case ELF::R_X86_64_GOTPCRELX:
2031 IsGOTPCRel = true;
2032 [[fallthrough]];
2033 case ELF::R_X86_64_PLT32:
2034 IsSmallCodeModel = true;
2035 break;
2036 case ELF::R_X86_64_PLTOFF64:
2037 IsSmallCodeModel = false;
2038 break;
2039 default:
2041 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2042 "expected PLT or GOT relocation for __tls_get_addr function");
2043 }
2044
2045 // The negative offset to the start of the TLS code sequence relative to
2046 // the offset of the TLSGD/TLSLD relocation
2047 uint64_t TLSSequenceOffset;
2048 // The expected start of the code sequence
2049 ArrayRef<uint8_t> ExpectedCodeSequence;
2050 // The new TLS code sequence that will replace the existing code
2051 ArrayRef<uint8_t> NewCodeSequence;
2052
2053 if (RelType == ELF::R_X86_64_TLSGD) {
2054 // The offset of the new TPOFF32 relocation (offset starting from the
2055 // beginning of the whole TLS sequence)
2056 uint64_t TpoffRelocOffset;
2057
2058 if (IsSmallCodeModel) {
2059 if (!IsGOTPCRel) {
2060 static const std::initializer_list<uint8_t> CodeSequence = {
2061 0x66, // data16 (no-op prefix)
2062 0x48, 0x8d, 0x3d, 0x00, 0x00,
2063 0x00, 0x00, // lea <disp32>(%rip), %rdi
2064 0x66, 0x66, // two data16 prefixes
2065 0x48, // rex64 (no-op prefix)
2066 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2067 };
2068 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2069 TLSSequenceOffset = 4;
2070 } else {
2071 // This code sequence is not described in the TLS spec but gcc
2072 // generates it sometimes.
2073 static const std::initializer_list<uint8_t> CodeSequence = {
2074 0x66, // data16 (no-op prefix)
2075 0x48, 0x8d, 0x3d, 0x00, 0x00,
2076 0x00, 0x00, // lea <disp32>(%rip), %rdi
2077 0x66, // data16 prefix (no-op prefix)
2078 0x48, // rex64 (no-op prefix)
2079 0xff, 0x15, 0x00, 0x00, 0x00,
2080 0x00 // call *__tls_get_addr@gotpcrel(%rip)
2081 };
2082 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2083 TLSSequenceOffset = 4;
2084 }
2085
2086 // The replacement code for the small code model. It's the same for
2087 // both sequences.
2088 static const std::initializer_list<uint8_t> SmallSequence = {
2089 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2090 0x00, // mov %fs:0, %rax
2091 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2092 // %rax
2093 };
2094 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2095 TpoffRelocOffset = 12;
2096 } else {
2097 static const std::initializer_list<uint8_t> CodeSequence = {
2098 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2099 // %rdi
2100 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2101 0x00, // movabs $__tls_get_addr@pltoff, %rax
2102 0x48, 0x01, 0xd8, // add %rbx, %rax
2103 0xff, 0xd0 // call *%rax
2104 };
2105 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2106 TLSSequenceOffset = 3;
2107
2108 // The replacement code for the large code model
2109 static const std::initializer_list<uint8_t> LargeSequence = {
2110 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2111 0x00, // mov %fs:0, %rax
2112 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2113 // %rax
2114 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2115 };
2116 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2117 TpoffRelocOffset = 12;
2118 }
2119
2120 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2121 // The new TPOFF32 relocations is used as an absolute offset from
2122 // %fs:0, so remove the TLSGD/TLSLD addend again.
2123 RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2124 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2125 if (Value.SymbolName)
2126 addRelocationForSymbol(RE, Value.SymbolName);
2127 else
2128 addRelocationForSection(RE, Value.SectionID);
2129 } else if (RelType == ELF::R_X86_64_TLSLD) {
2130 if (IsSmallCodeModel) {
2131 if (!IsGOTPCRel) {
2132 static const std::initializer_list<uint8_t> CodeSequence = {
2133 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2134 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2135 };
2136 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2137 TLSSequenceOffset = 3;
2138
2139 // The replacement code for the small code model
2140 static const std::initializer_list<uint8_t> SmallSequence = {
2141 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2142 0x64, 0x48, 0x8b, 0x04, 0x25,
2143 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2144 };
2145 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2146 } else {
2147 // This code sequence is not described in the TLS spec but gcc
2148 // generates it sometimes.
2149 static const std::initializer_list<uint8_t> CodeSequence = {
2150 0x48, 0x8d, 0x3d, 0x00,
2151 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2152 0xff, 0x15, 0x00, 0x00,
2153 0x00, 0x00 // call
2154 // *__tls_get_addr@gotpcrel(%rip)
2155 };
2156 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2157 TLSSequenceOffset = 3;
2158
2159 // The replacement is code is just like above but it needs to be
2160 // one byte longer.
2161 static const std::initializer_list<uint8_t> SmallSequence = {
2162 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2163 0x64, 0x48, 0x8b, 0x04, 0x25,
2164 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2165 };
2166 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2167 }
2168 } else {
2169 // This is the same sequence as for the TLSGD sequence with the large
2170 // memory model above
2171 static const std::initializer_list<uint8_t> CodeSequence = {
2172 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2173 // %rdi
2174 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2175 0x48, // movabs $__tls_get_addr@pltoff, %rax
2176 0x01, 0xd8, // add %rbx, %rax
2177 0xff, 0xd0 // call *%rax
2178 };
2179 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2180 TLSSequenceOffset = 3;
2181
2182 // The replacement code for the large code model
2183 static const std::initializer_list<uint8_t> LargeSequence = {
2184 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2185 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2186 0x00, // 10 byte nop
2187 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2188 };
2189 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2190 }
2191 } else {
2192 llvm_unreachable("both TLS relocations handled above");
2193 }
2194
2195 assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2196 "Old and new code sequences must have the same size");
2197
2198 auto &Section = Sections[SectionID];
2199 if (Offset < TLSSequenceOffset ||
2200 (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2201 Section.getSize()) {
2202 report_fatal_error("unexpected end of section in TLS sequence");
2203 }
2204
2205 auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2206 if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2207 ExpectedCodeSequence) {
2209 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2210 }
2211
2212 memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2213}
2214
2216 // We don't use the GOT in all of these cases, but it's essentially free
2217 // to put them all here.
2218 size_t Result = 0;
2219 switch (Arch) {
2220 case Triple::x86_64:
2221 case Triple::aarch64:
2222 case Triple::aarch64_be:
2223 case Triple::ppc64:
2224 case Triple::ppc64le:
2225 case Triple::systemz:
2226 Result = sizeof(uint64_t);
2227 break;
2228 case Triple::x86:
2229 case Triple::arm:
2230 case Triple::thumb:
2231 Result = sizeof(uint32_t);
2232 break;
2233 case Triple::mips:
2234 case Triple::mipsel:
2235 case Triple::mips64:
2236 case Triple::mips64el:
2238 Result = sizeof(uint32_t);
2239 else if (IsMipsN64ABI)
2240 Result = sizeof(uint64_t);
2241 else
2242 llvm_unreachable("Mips ABI not handled");
2243 break;
2244 default:
2245 llvm_unreachable("Unsupported CPU type!");
2246 }
2247 return Result;
2248}
2249
2250uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2251 if (GOTSectionID == 0) {
2252 GOTSectionID = Sections.size();
2253 // Reserve a section id. We'll allocate the section later
2254 // once we know the total size
2255 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2256 }
2257 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2258 CurrentGOTIndex += no;
2259 return StartOffset;
2260}
2261
2262uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2263 unsigned GOTRelType) {
2264 auto E = GOTOffsetMap.insert({Value, 0});
2265 if (E.second) {
2266 uint64_t GOTOffset = allocateGOTEntries(1);
2267
2268 // Create relocation for newly created GOT entry
2269 RelocationEntry RE =
2270 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2271 if (Value.SymbolName)
2272 addRelocationForSymbol(RE, Value.SymbolName);
2273 else
2274 addRelocationForSection(RE, Value.SectionID);
2275
2276 E.first->second = GOTOffset;
2277 }
2278
2279 return E.first->second;
2280}
2281
2282void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2284 uint64_t GOTOffset,
2285 uint32_t Type) {
2286 // Fill in the relative address of the GOT Entry into the stub
2287 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2288 addRelocationForSection(GOTRE, GOTSectionID);
2289}
2290
2291RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2292 uint64_t SymbolOffset,
2293 uint32_t Type) {
2294 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2295}
2296
2297void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) {
2298 // This should never return an error as `processNewSymbol` wouldn't have been
2299 // called if getFlags() returned an error before.
2300 auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags());
2301
2302 if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
2303 if (IFuncStubSectionID == 0) {
2304 // Create a dummy section for the ifunc stubs. It will be actually
2305 // allocated in finalizeLoad() below.
2306 IFuncStubSectionID = Sections.size();
2307 Sections.push_back(
2308 SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2309 // First 64B are reserverd for the IFunc resolver
2310 IFuncStubOffset = 64;
2311 }
2312
2313 IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol});
2314 // Modify the symbol so that it points to the ifunc stub instead of to the
2315 // resolver function.
2316 Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
2317 Symbol.getFlags());
2318 IFuncStubOffset += getMaxIFuncStubSize();
2319 }
2320}
2321
2323 ObjSectionToIDMap &SectionMap) {
2324 if (IsMipsO32ABI)
2325 if (!PendingRelocs.empty())
2326 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2327
2328 // Create the IFunc stubs if necessary. This must be done before processing
2329 // the GOT entries, as the IFunc stubs may create some.
2330 if (IFuncStubSectionID != 0) {
2331 uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection(
2332 IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs");
2333 if (!IFuncStubsAddr)
2334 return make_error<RuntimeDyldError>(
2335 "Unable to allocate memory for IFunc stubs!");
2336 Sections[IFuncStubSectionID] =
2337 SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
2338 IFuncStubOffset, 0);
2339
2340 createIFuncResolver(IFuncStubsAddr);
2341
2342 LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2343 << IFuncStubSectionID << " Addr: "
2344 << Sections[IFuncStubSectionID].getAddress() << '\n');
2345 for (auto &IFuncStub : IFuncStubs) {
2346 auto &Symbol = IFuncStub.OriginalSymbol;
2347 LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID()
2348 << " Offset: " << format("%p", Symbol.getOffset())
2349 << " IFuncStubOffset: "
2350 << format("%p\n", IFuncStub.StubOffset));
2351 createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
2352 Symbol.getSectionID(), Symbol.getOffset());
2353 }
2354
2355 IFuncStubSectionID = 0;
2356 IFuncStubOffset = 0;
2357 IFuncStubs.clear();
2358 }
2359
2360 // If necessary, allocate the global offset table
2361 if (GOTSectionID != 0) {
2362 // Allocate memory for the section
2363 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2364 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2365 GOTSectionID, ".got", false);
2366 if (!Addr)
2367 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2368
2369 Sections[GOTSectionID] =
2370 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2371
2372 // For now, initialize all GOT entries to zero. We'll fill them in as
2373 // needed when GOT-based relocations are applied.
2374 memset(Addr, 0, TotalSize);
2375 if (IsMipsN32ABI || IsMipsN64ABI) {
2376 // To correctly resolve Mips GOT relocations, we need a mapping from
2377 // object's sections to GOTs.
2378 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2379 SI != SE; ++SI) {
2380 if (SI->relocation_begin() != SI->relocation_end()) {
2381 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2382 if (!RelSecOrErr)
2383 return make_error<RuntimeDyldError>(
2384 toString(RelSecOrErr.takeError()));
2385
2386 section_iterator RelocatedSection = *RelSecOrErr;
2387 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2388 assert(i != SectionMap.end());
2389 SectionToGOTMap[i->second] = GOTSectionID;
2390 }
2391 }
2392 GOTSymbolOffsets.clear();
2393 }
2394 }
2395
2396 // Look for and record the EH frame section.
2397 ObjSectionToIDMap::iterator i, e;
2398 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2399 const SectionRef &Section = i->first;
2400
2402 Expected<StringRef> NameOrErr = Section.getName();
2403 if (NameOrErr)
2404 Name = *NameOrErr;
2405 else
2406 consumeError(NameOrErr.takeError());
2407
2408 if (Name == ".eh_frame") {
2409 UnregisteredEHFrameSections.push_back(i->second);
2410 break;
2411 }
2412 }
2413
2414 GOTOffsetMap.clear();
2415 GOTSectionID = 0;
2416 CurrentGOTIndex = 0;
2417
2418 return Error::success();
2419}
2420
2422 return Obj.isELF();
2423}
2424
2425void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const {
2426 if (Arch == Triple::x86_64) {
2427 // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2428 // (see createIFuncStub() for details)
2429 // The following code first saves all registers that contain the original
2430 // function arguments as those registers are not saved by the resolver
2431 // function. %r11 is saved as well so that the GOT2 entry can be updated
2432 // afterwards. Then it calls the actual IFunc resolver function whose
2433 // address is stored in GOT2. After the resolver function returns, all
2434 // saved registers are restored and the return value is written to GOT1.
2435 // Finally, jump to the now resolved function.
2436 // clang-format off
2437 const uint8_t StubCode[] = {
2438 0x57, // push %rdi
2439 0x56, // push %rsi
2440 0x52, // push %rdx
2441 0x51, // push %rcx
2442 0x41, 0x50, // push %r8
2443 0x41, 0x51, // push %r9
2444 0x41, 0x53, // push %r11
2445 0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2446 0x41, 0x5b, // pop %r11
2447 0x41, 0x59, // pop %r9
2448 0x41, 0x58, // pop %r8
2449 0x59, // pop %rcx
2450 0x5a, // pop %rdx
2451 0x5e, // pop %rsi
2452 0x5f, // pop %rdi
2453 0x49, 0x89, 0x03, // mov %rax,(%r11)
2454 0xff, 0xe0 // jmp *%rax
2455 };
2456 // clang-format on
2457 static_assert(sizeof(StubCode) <= 64,
2458 "maximum size of the IFunc resolver is 64B");
2459 memcpy(Addr, StubCode, sizeof(StubCode));
2460 } else {
2462 "IFunc resolver is not supported for target architecture");
2463 }
2464}
2465
2466void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID,
2467 uint64_t IFuncResolverOffset,
2468 uint64_t IFuncStubOffset,
2469 unsigned IFuncSectionID,
2470 uint64_t IFuncOffset) {
2471 auto &IFuncStubSection = Sections[IFuncStubSectionID];
2472 auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);
2473
2474 if (Arch == Triple::x86_64) {
2475 // The first instruction loads a PC-relative address into %r11 which is a
2476 // GOT entry for this stub. This initially contains the address to the
2477 // IFunc resolver. We can use %r11 here as it's caller saved but not used
2478 // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2479 // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2480 // entry.
2481 //
2482 // The next instruction just jumps to the address contained in the GOT
2483 // entry. As mentioned above, we do this two-step jump by first setting
2484 // %r11 so that the IFunc resolver has access to it.
2485 //
2486 // The IFunc resolver of course also needs to know the actual address of
2487 // the actual IFunc resolver function. This will be stored in a GOT entry
2488 // right next to the first one for this stub. So, the IFunc resolver will
2489 // be able to call it with %r11+8.
2490 //
2491 // In total, two adjacent GOT entries (+relocation) and one additional
2492 // relocation are required:
2493 // GOT1: Address of the IFunc resolver.
2494 // GOT2: Address of the IFunc resolver function.
2495 // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2496 uint64_t GOT1 = allocateGOTEntries(2);
2497 uint64_t GOT2 = GOT1 + getGOTEntrySize();
2498
2499 RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
2500 IFuncResolverOffset, {});
2501 addRelocationForSection(RE1, IFuncStubSectionID);
2502 RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
2503 addRelocationForSection(RE2, IFuncSectionID);
2504
2505 const uint8_t StubCode[] = {
2506 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2507 0x41, 0xff, 0x23 // jmpq *(%r11)
2508 };
2509 assert(sizeof(StubCode) <= getMaxIFuncStubSize() &&
2510 "IFunc stub size must not exceed getMaxIFuncStubSize()");
2511 memcpy(Addr, StubCode, sizeof(StubCode));
2512
2513 // The PC-relative value starts 4 bytes from the end of the leaq
2514 // instruction, so the addend is -4.
2515 resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
2516 GOT1 - 4, ELF::R_X86_64_PC32);
2517 } else {
2518 report_fatal_error("IFunc stub is not supported for target architecture");
2519 }
2520}
2521
2522unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2523 if (Arch == Triple::x86_64) {
2524 return 10;
2525 }
2526 return 0;
2527}
2528
2529bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2530 unsigned RelTy = R.getType();
2532 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2533 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2534
2535 if (Arch == Triple::x86_64)
2536 return RelTy == ELF::R_X86_64_GOTPCREL ||
2537 RelTy == ELF::R_X86_64_GOTPCRELX ||
2538 RelTy == ELF::R_X86_64_GOT64 ||
2539 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2540 return false;
2541}
2542
2543bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2544 if (Arch != Triple::x86_64)
2545 return true; // Conservative answer
2546
2547 switch (R.getType()) {
2548 default:
2549 return true; // Conservative answer
2550
2551
2552 case ELF::R_X86_64_GOTPCREL:
2553 case ELF::R_X86_64_GOTPCRELX:
2554 case ELF::R_X86_64_REX_GOTPCRELX:
2555 case ELF::R_X86_64_GOTPC64:
2556 case ELF::R_X86_64_GOT64:
2557 case ELF::R_X86_64_GOTOFF64:
2558 case ELF::R_X86_64_PC32:
2559 case ELF::R_X86_64_PC64:
2560 case ELF::R_X86_64_64:
2561 // We know that these reloation types won't need a stub function. This list
2562 // can be extended as needed.
2563 return false;
2564 }
2565}
2566
2567} // namespace llvm
amdgpu aa AMDGPU Address space based Alias Analysis Wrapper
Given that RA is a live value
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Addr
std::string Name
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Definition: ELFTypes.h:104
bool End
Definition: ELF_riscv.cpp:480
#define I(x, y, z)
Definition: MD5.cpp:58
#define P(N)
static void or32le(void *P, int32_t V)
static void or32AArch64Imm(void *L, uint64_t Imm)
static void write(bool isBE, void *P, T V)
static uint64_t getBits(uint64_t Val, int Start, int End)
static void write32AArch64Addr(void *L, uint64_t Imm)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
const T * data() const
Definition: ArrayRef.h:162
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
static ErrorSuccess success()
Create a success value.
Definition: Error.h:334
Tagged union holding either a T or a Error.
Definition: Error.h:474
Error takeError()
Take ownership of the stored error.
Definition: Error.h:601
Symbol resolution interface.
Definition: JITSymbol.h:371
static std::unique_ptr< MemoryBuffer > getMemBufferCopy(StringRef InputData, const Twine &BufferName="")
Open the specified memory range as a MemoryBuffer, copying the contents and taking ownership of it.
RelocationEntry - used to represent relocations internally in the dynamic linker.
uint32_t RelType
RelType - relocation type.
uint64_t Offset
Offset - offset into the section.
int64_t Addend
Addend - the relocation addend encoded in the instruction itself.
unsigned SectionID
SectionID - the section this relocation points to.
Interface for looking up the initializer for a variable name, used by Init::resolveReferences.
Definition: Record.h:2213
void registerEHFrames() override
size_t getGOTEntrySize() override
~RuntimeDyldELF() override
static std::unique_ptr< RuntimeDyldELF > create(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver)
Error finalizeLoad(const ObjectFile &Obj, ObjSectionToIDMap &SectionMap) override
DenseMap< SID, SID > SectionToGOTMap
bool isCompatibleFile(const object::ObjectFile &Obj) const override
std::unique_ptr< RuntimeDyld::LoadedObjectInfo > loadObject(const object::ObjectFile &O) override
RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver)
Expected< relocation_iterator > processRelocationRef(unsigned SectionID, relocation_iterator RelI, const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) override
Parses one or more object file relocations (some object files use relocation pairs) and stores it to ...
std::map< SectionRef, unsigned > ObjSectionToIDMap
void writeInt32BE(uint8_t *Addr, uint32_t Value)
void writeInt64BE(uint8_t *Addr, uint64_t Value)
std::map< RelocationValueRef, uintptr_t > StubMap
void writeInt16BE(uint8_t *Addr, uint16_t Value)
void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName)
RuntimeDyld::MemoryManager & MemMgr
void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID)
Expected< unsigned > findOrEmitSection(const ObjectFile &Obj, const SectionRef &Section, bool IsCode, ObjSectionToIDMap &LocalSections)
Find Section in LocalSections.
Triple::ArchType Arch
uint8_t * createStubFunction(uint8_t *Addr, unsigned AbiVariant=0)
Emits long jump instruction to Addr.
uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const
Endian-aware read Read the least significant Size bytes from Src.
RTDyldSymbolTable GlobalSymbolTable
Expected< ObjSectionToIDMap > loadObjectImpl(const object::ObjectFile &Obj)
virtual uint8_t * allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly)=0
Allocate a memory block of (at least) the given size suitable for data.
virtual uint8_t * allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName)=0
Allocate a memory block of (at least) the given size suitable for executable code.
virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size)=0
Register the EH frames with the runtime so that c++ exceptions work.
virtual bool allowStubAllocation() const
Override to return false to tell LLVM no stub space will be needed.
Definition: RuntimeDyld.h:148
SectionEntry - represents a section emitted into memory by the dynamic linker.
size_t size() const
Definition: SmallVector.h:91
void push_back(const T &Elt)
Definition: SmallVector.h:426
iterator end()
Definition: StringMap.h:220
iterator find(StringRef Key)
Definition: StringMap.h:233
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:131
bool equals(StringRef RHS) const
equals - Check for string equality, this is more efficient than compare() when the relative ordering ...
Definition: StringRef.h:164
Symbol info for RuntimeDyld.
Target - Wrapper for Target specific information.
@ UnknownArch
Definition: Triple.h:47
@ aarch64_be
Definition: Triple.h:52
@ mips64el
Definition: Triple.h:67
static StringRef getArchTypePrefix(ArchType Kind)
Get the "prefix" canonical name for the Kind architecture.
Definition: Triple.cpp:124
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
Expected< uint32_t > getFlags() const
Get symbol flags (bitwise OR of SymbolRef::Flags)
Definition: SymbolicFile.h:206
DataRefImpl getRawDataRefImpl() const
Definition: SymbolicFile.h:210
StringRef getData() const
Definition: Binary.cpp:39
bool isLittleEndian() const
Definition: Binary.h:155
StringRef getFileName() const
Definition: Binary.cpp:41
bool isELF() const
Definition: Binary.h:123
virtual unsigned getPlatformFlags() const =0
Returns platform-specific object flags, if any.
static bool classof(const Binary *v)
Expected< const Elf_Sym * > getSymbol(DataRefImpl Sym) const
static Expected< ELFObjectFile< ELFT > > create(MemoryBufferRef Object, bool InitContent=true)
Expected< int64_t > getAddend() const
This class is the base class for all object file types.
Definition: ObjectFile.h:229
virtual section_iterator section_end() const =0
virtual uint8_t getBytesInAddress() const =0
The number of bytes used to represent an address in this object file format.
section_iterator_range sections() const
Definition: ObjectFile.h:328
virtual StringRef getFileFormatName() const =0
virtual section_iterator section_begin() const =0
This is a value type class that represents a single relocation in the list of relocations in the obje...
Definition: ObjectFile.h:52
uint64_t getType() const
Definition: ObjectFile.h:627
This is a value type class that represents a single section in the list of sections in the object fil...
Definition: ObjectFile.h:81
DataRefImpl getRawDataRefImpl() const
Definition: ObjectFile.h:597
bool isText() const
Whether this section contains instructions.
Definition: ObjectFile.h:549
Expected< StringRef > getName() const
Definition: ObjectFile.h:516
This is a value type class that represents a single symbol in the list of symbols in the object file.
Definition: ObjectFile.h:168
Expected< section_iterator > getSection() const
Get section this symbol is defined in reference to.
Definition: ObjectFile.h:479
virtual basic_symbol_iterator symbol_end() const =0
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:660
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
static int64_t decodePPC64LocalEntryOffset(unsigned Other)
Definition: ELF.h:414
@ EF_MIPS_ABI_O32
Definition: ELF.h:522
@ EF_MIPS_ABI2
Definition: ELF.h:514
@ EF_PPC64_ABI
Definition: ELF.h:406
std::optional< const char * > toString(const std::optional< DWARFFormValue > &V)
Take an optional DWARFFormValue and try to extract a string value from it.
@ Resolved
Queried, materialization begun.
void write32le(void *P, uint32_t V)
Definition: Endian.h:467
uint32_t read32le(const void *P)
Definition: Endian.h:424
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:456
void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner={})
Log all errors (if any) in E to OS.
Definition: Error.cpp:65
static uint16_t applyPPChighera(uint64_t value)
static uint16_t applyPPChi(uint64_t value)
void handleAllErrors(Error E, HandlerTs &&... Handlers)
Behaves the same as handleErrors, except that by contract all errors must be handled by the given han...
Definition: Error.h:970
static uint16_t applyPPChighesta(uint64_t value)
static uint16_t applyPPChighest(uint64_t value)
Error write(MCStreamer &Out, ArrayRef< std::string > Inputs, OnCuIndexOverflow OverflowOptValue)
Definition: DWP.cpp:601
static uint16_t applyPPCha(uint64_t value)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:156
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition: Casting.h:548
static uint16_t applyPPClo(uint64_t value)
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:125
void cantFail(Error Err, const char *Msg=nullptr)
Report a fatal error if Err is a failure value.
Definition: Error.h:749
static uint16_t applyPPChigher(uint64_t value)
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
static void or32le(void *P, int32_t V)
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1849
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition: Casting.h:565
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:452
void consumeError(Error Err)
Consume a Error without doing anything.
Definition: Error.h:1041
static void write32AArch64Addr(void *T, uint64_t s, uint64_t p, int shift)
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
SymInfo contains information about symbol: it's address and section index which is -1LL for absolute ...