LLVM  6.0.0svn
ExternalFunctions.cpp
Go to the documentation of this file.
1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains both code to deal with invoking "external" functions, but
11 // also contains code that implements "exported" external functions.
12 //
13 // There are currently two mechanisms for handling external functions in the
14 // Interpreter. The first is to implement lle_* wrapper functions that are
15 // specific to well-known library functions which manually translate the
16 // arguments from GenericValues and make the call. If such a wrapper does
17 // not exist, and libffi is available, then the Interpreter will attempt to
18 // invoke the function using libffi, after finding its address.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "Interpreter.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/Config/config.h" // Detect libffi
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Mutex.h"
38 #include <cassert>
39 #include <cmath>
40 #include <csignal>
41 #include <cstdint>
42 #include <cstdio>
43 #include <cstring>
44 #include <map>
45 #include <string>
46 #include <utility>
47 #include <vector>
48 
49 #ifdef HAVE_FFI_CALL
50 #ifdef HAVE_FFI_H
51 #include <ffi.h>
52 #define USE_LIBFFI
53 #elif HAVE_FFI_FFI_H
54 #include <ffi/ffi.h>
55 #define USE_LIBFFI
56 #endif
57 #endif
58 
59 using namespace llvm;
60 
62 
66 
67 #ifdef USE_LIBFFI
68 typedef void (*RawFunc)();
70 #endif
71 
73 
74 static char getTypeID(Type *Ty) {
75  switch (Ty->getTypeID()) {
76  case Type::VoidTyID: return 'V';
77  case Type::IntegerTyID:
78  switch (cast<IntegerType>(Ty)->getBitWidth()) {
79  case 1: return 'o';
80  case 8: return 'B';
81  case 16: return 'S';
82  case 32: return 'I';
83  case 64: return 'L';
84  default: return 'N';
85  }
86  case Type::FloatTyID: return 'F';
87  case Type::DoubleTyID: return 'D';
88  case Type::PointerTyID: return 'P';
89  case Type::FunctionTyID:return 'M';
90  case Type::StructTyID: return 'T';
91  case Type::ArrayTyID: return 'A';
92  default: return 'U';
93  }
94 }
95 
96 // Try to find address of external function given a Function object.
97 // Please note, that interpreter doesn't know how to assemble a
98 // real call in general case (this is JIT job), that's why it assumes,
99 // that all external functions has the same (and pretty "general") signature.
100 // The typical example of such functions are "lle_X_" ones.
101 static ExFunc lookupFunction(const Function *F) {
102  // Function not found, look it up... start by figuring out what the
103  // composite function name should be.
104  std::string ExtName = "lle_";
105  FunctionType *FT = F->getFunctionType();
106  for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
107  ExtName += getTypeID(FT->getContainedType(i));
108  ExtName += ("_" + F->getName()).str();
109 
110  sys::ScopedLock Writer(*FunctionsLock);
111  ExFunc FnPtr = (*FuncNames)[ExtName];
112  if (!FnPtr)
113  FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
114  if (!FnPtr) // Try calling a generic function... if it exists...
116  ("lle_X_" + F->getName()).str());
117  if (FnPtr)
118  ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
119  return FnPtr;
120 }
121 
122 #ifdef USE_LIBFFI
123 static ffi_type *ffiTypeFor(Type *Ty) {
124  switch (Ty->getTypeID()) {
125  case Type::VoidTyID: return &ffi_type_void;
126  case Type::IntegerTyID:
127  switch (cast<IntegerType>(Ty)->getBitWidth()) {
128  case 8: return &ffi_type_sint8;
129  case 16: return &ffi_type_sint16;
130  case 32: return &ffi_type_sint32;
131  case 64: return &ffi_type_sint64;
132  }
133  case Type::FloatTyID: return &ffi_type_float;
134  case Type::DoubleTyID: return &ffi_type_double;
135  case Type::PointerTyID: return &ffi_type_pointer;
136  default: break;
137  }
138  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
139  report_fatal_error("Type could not be mapped for use with libffi.");
140  return NULL;
141 }
142 
143 static void *ffiValueFor(Type *Ty, const GenericValue &AV,
144  void *ArgDataPtr) {
145  switch (Ty->getTypeID()) {
146  case Type::IntegerTyID:
147  switch (cast<IntegerType>(Ty)->getBitWidth()) {
148  case 8: {
149  int8_t *I8Ptr = (int8_t *) ArgDataPtr;
150  *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
151  return ArgDataPtr;
152  }
153  case 16: {
154  int16_t *I16Ptr = (int16_t *) ArgDataPtr;
155  *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
156  return ArgDataPtr;
157  }
158  case 32: {
159  int32_t *I32Ptr = (int32_t *) ArgDataPtr;
160  *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
161  return ArgDataPtr;
162  }
163  case 64: {
164  int64_t *I64Ptr = (int64_t *) ArgDataPtr;
165  *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
166  return ArgDataPtr;
167  }
168  }
169  case Type::FloatTyID: {
170  float *FloatPtr = (float *) ArgDataPtr;
171  *FloatPtr = AV.FloatVal;
172  return ArgDataPtr;
173  }
174  case Type::DoubleTyID: {
175  double *DoublePtr = (double *) ArgDataPtr;
176  *DoublePtr = AV.DoubleVal;
177  return ArgDataPtr;
178  }
179  case Type::PointerTyID: {
180  void **PtrPtr = (void **) ArgDataPtr;
181  *PtrPtr = GVTOP(AV);
182  return ArgDataPtr;
183  }
184  default: break;
185  }
186  // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
187  report_fatal_error("Type value could not be mapped for use with libffi.");
188  return NULL;
189 }
190 
191 static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
192  const DataLayout &TD, GenericValue &Result) {
193  ffi_cif cif;
194  FunctionType *FTy = F->getFunctionType();
195  const unsigned NumArgs = F->arg_size();
196 
197  // TODO: We don't have type information about the remaining arguments, because
198  // this information is never passed into ExecutionEngine::runFunction().
199  if (ArgVals.size() > NumArgs && F->isVarArg()) {
200  report_fatal_error("Calling external var arg function '" + F->getName()
201  + "' is not supported by the Interpreter.");
202  }
203 
204  unsigned ArgBytes = 0;
205 
206  std::vector<ffi_type*> args(NumArgs);
207  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
208  A != E; ++A) {
209  const unsigned ArgNo = A->getArgNo();
210  Type *ArgTy = FTy->getParamType(ArgNo);
211  args[ArgNo] = ffiTypeFor(ArgTy);
212  ArgBytes += TD.getTypeStoreSize(ArgTy);
213  }
214 
216  ArgData.resize(ArgBytes);
217  uint8_t *ArgDataPtr = ArgData.data();
219  for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
220  A != E; ++A) {
221  const unsigned ArgNo = A->getArgNo();
222  Type *ArgTy = FTy->getParamType(ArgNo);
223  values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
224  ArgDataPtr += TD.getTypeStoreSize(ArgTy);
225  }
226 
227  Type *RetTy = FTy->getReturnType();
228  ffi_type *rtype = ffiTypeFor(RetTy);
229 
230  if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
232  if (RetTy->getTypeID() != Type::VoidTyID)
233  ret.resize(TD.getTypeStoreSize(RetTy));
234  ffi_call(&cif, Fn, ret.data(), values.data());
235  switch (RetTy->getTypeID()) {
236  case Type::IntegerTyID:
237  switch (cast<IntegerType>(RetTy)->getBitWidth()) {
238  case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
239  case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
240  case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
241  case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
242  }
243  break;
244  case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
245  case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
246  case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
247  default: break;
248  }
249  return true;
250  }
251 
252  return false;
253 }
254 #endif // USE_LIBFFI
255 
257  ArrayRef<GenericValue> ArgVals) {
258  TheInterpreter = this;
259 
260  unique_lock<sys::Mutex> Guard(*FunctionsLock);
261 
262  // Do a lookup to see if the function is in our cache... this should just be a
263  // deferred annotation!
264  std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
265  if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
266  : FI->second) {
267  Guard.unlock();
268  return Fn(F->getFunctionType(), ArgVals);
269  }
270 
271 #ifdef USE_LIBFFI
272  std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
273  RawFunc RawFn;
274  if (RF == RawFunctions->end()) {
275  RawFn = (RawFunc)(intptr_t)
277  if (!RawFn)
278  RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
279  if (RawFn != 0)
280  RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
281  } else {
282  RawFn = RF->second;
283  }
284 
285  Guard.unlock();
286 
287  GenericValue Result;
288  if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
289  return Result;
290 #endif // USE_LIBFFI
291 
292  if (F->getName() == "__main")
293  errs() << "Tried to execute an unknown external function: "
294  << *F->getType() << " __main\n";
295  else
296  report_fatal_error("Tried to execute an unknown external function: " +
297  F->getName());
298 #ifndef USE_LIBFFI
299  errs() << "Recompiling LLVM with --enable-libffi might help.\n";
300 #endif
301  return GenericValue();
302 }
303 
304 //===----------------------------------------------------------------------===//
305 // Functions "exported" to the running application...
306 //
307 
308 // void atexit(Function*)
311  assert(Args.size() == 1);
312  TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
313  GenericValue GV;
314  GV.IntVal = 0;
315  return GV;
316 }
317 
318 // void exit(int)
320  TheInterpreter->exitCalled(Args[0]);
321  return GenericValue();
322 }
323 
324 // void abort(void)
326  //FIXME: should we report or raise here?
327  //report_fatal_error("Interpreted program raised SIGABRT");
328  raise (SIGABRT);
329  return GenericValue();
330 }
331 
332 // int sprintf(char *, const char *, ...) - a very rough implementation to make
333 // output useful.
336  char *OutputBuffer = (char *)GVTOP(Args[0]);
337  const char *FmtStr = (const char *)GVTOP(Args[1]);
338  unsigned ArgNo = 2;
339 
340  // printf should return # chars printed. This is completely incorrect, but
341  // close enough for now.
342  GenericValue GV;
343  GV.IntVal = APInt(32, strlen(FmtStr));
344  while (true) {
345  switch (*FmtStr) {
346  case 0: return GV; // Null terminator...
347  default: // Normal nonspecial character
348  sprintf(OutputBuffer++, "%c", *FmtStr++);
349  break;
350  case '\\': { // Handle escape codes
351  sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
352  FmtStr += 2; OutputBuffer += 2;
353  break;
354  }
355  case '%': { // Handle format specifiers
356  char FmtBuf[100] = "", Buffer[1000] = "";
357  char *FB = FmtBuf;
358  *FB++ = *FmtStr++;
359  char Last = *FB++ = *FmtStr++;
360  unsigned HowLong = 0;
361  while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
362  Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
363  Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
364  Last != 'p' && Last != 's' && Last != '%') {
365  if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
366  Last = *FB++ = *FmtStr++;
367  }
368  *FB = 0;
369 
370  switch (Last) {
371  case '%':
372  memcpy(Buffer, "%", 2); break;
373  case 'c':
374  sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
375  break;
376  case 'd': case 'i':
377  case 'u': case 'o':
378  case 'x': case 'X':
379  if (HowLong >= 1) {
380  if (HowLong == 1 &&
381  TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
382  sizeof(long) < sizeof(int64_t)) {
383  // Make sure we use %lld with a 64 bit argument because we might be
384  // compiling LLI on a 32 bit compiler.
385  unsigned Size = strlen(FmtBuf);
386  FmtBuf[Size] = FmtBuf[Size-1];
387  FmtBuf[Size+1] = 0;
388  FmtBuf[Size-1] = 'l';
389  }
390  sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
391  } else
392  sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
393  break;
394  case 'e': case 'E': case 'g': case 'G': case 'f':
395  sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
396  case 'p':
397  sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
398  case 's':
399  sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
400  default:
401  errs() << "<unknown printf code '" << *FmtStr << "'!>";
402  ArgNo++; break;
403  }
404  size_t Len = strlen(Buffer);
405  memcpy(OutputBuffer, Buffer, Len + 1);
406  OutputBuffer += Len;
407  }
408  break;
409  }
410  }
411  return GV;
412 }
413 
414 // int printf(const char *, ...) - a very rough implementation to make output
415 // useful.
418  char Buffer[10000];
419  std::vector<GenericValue> NewArgs;
420  NewArgs.push_back(PTOGV((void*)&Buffer[0]));
421  NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
422  GenericValue GV = lle_X_sprintf(FT, NewArgs);
423  outs() << Buffer;
424  return GV;
425 }
426 
427 // int sscanf(const char *format, ...);
429  ArrayRef<GenericValue> args) {
430  assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
431 
432  char *Args[10];
433  for (unsigned i = 0; i < args.size(); ++i)
434  Args[i] = (char*)GVTOP(args[i]);
435 
436  GenericValue GV;
437  GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
438  Args[5], Args[6], Args[7], Args[8], Args[9]));
439  return GV;
440 }
441 
442 // int scanf(const char *format, ...);
444  assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
445 
446  char *Args[10];
447  for (unsigned i = 0; i < args.size(); ++i)
448  Args[i] = (char*)GVTOP(args[i]);
449 
450  GenericValue GV;
451  GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
452  Args[5], Args[6], Args[7], Args[8], Args[9]));
453  return GV;
454 }
455 
456 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
457 // output useful.
460  assert(Args.size() >= 2);
461  char Buffer[10000];
462  std::vector<GenericValue> NewArgs;
463  NewArgs.push_back(PTOGV(Buffer));
464  NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
465  GenericValue GV = lle_X_sprintf(FT, NewArgs);
466 
467  fputs(Buffer, (FILE *) GVTOP(Args[0]));
468  return GV;
469 }
470 
473  int val = (int)Args[1].IntVal.getSExtValue();
474  size_t len = (size_t)Args[2].IntVal.getZExtValue();
475  memset((void *)GVTOP(Args[0]), val, len);
476  // llvm.memset.* returns void, lle_X_* returns GenericValue,
477  // so here we return GenericValue with IntVal set to zero
478  GenericValue GV;
479  GV.IntVal = 0;
480  return GV;
481 }
482 
485  memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
486  (size_t)(Args[2].IntVal.getLimitedValue()));
487 
488  // llvm.memcpy* returns void, lle_X_* returns GenericValue,
489  // so here we return GenericValue with IntVal set to zero
490  GenericValue GV;
491  GV.IntVal = 0;
492  return GV;
493 }
494 
495 void Interpreter::initializeExternalFunctions() {
496  sys::ScopedLock Writer(*FunctionsLock);
497  (*FuncNames)["lle_X_atexit"] = lle_X_atexit;
498  (*FuncNames)["lle_X_exit"] = lle_X_exit;
499  (*FuncNames)["lle_X_abort"] = lle_X_abort;
500 
501  (*FuncNames)["lle_X_printf"] = lle_X_printf;
502  (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf;
503  (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf;
504  (*FuncNames)["lle_X_scanf"] = lle_X_scanf;
505  (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf;
506  (*FuncNames)["lle_X_memset"] = lle_X_memset;
507  (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy;
508 }
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition: Function.h:150
A parsed version of the target data layout string in and methods for querying it. ...
Definition: DataLayout.h:109
PointerTy PointerVal
Definition: GenericValue.h:32
static void * SearchForAddressOfSymbol(const char *symbolName)
This function will search through all previously loaded dynamic libraries for the symbol symbolName...
raw_ostream & errs()
This returns a reference to a raw_ostream for standard error.
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1542
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
static Interpreter * TheInterpreter
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:103
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:135
static GenericValue lle_X_atexit(FunctionType *FT, ArrayRef< GenericValue > Args)
iterator begin() const
Definition: ArrayRef.h:137
2: 32-bit floating point type
Definition: Type.h:59
void * getPointerToGlobalIfAvailable(StringRef S)
getPointerToGlobalIfAvailable - This returns the address of the specified global value if it is has a...
static GenericValue lle_X_exit(FunctionType *FT, ArrayRef< GenericValue > Args)
arg_iterator arg_end()
Definition: Function.h:604
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:346
13: Structures
Definition: Type.h:73
const DataLayout & getDataLayout() const
static GenericValue lle_X_sprintf(FunctionType *FT, ArrayRef< GenericValue > Args)
15: Pointers
Definition: Type.h:75
12: Functions
Definition: Type.h:72
static ExFunc lookupFunction(const Function *F)
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:138
static GenericValue lle_X_sscanf(FunctionType *FT, ArrayRef< GenericValue > args)
This file implements a class to represent arbitrary precision integral constant values and operations...
Class to represent function types.
Definition: DerivedTypes.h:103
#define F(x, y, z)
Definition: MD5.cpp:55
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
11: Arbitrary bit width integers
Definition: Type.h:71
raw_ostream & outs()
This returns a reference to a raw_ostream for standard output.
0: type with no size
Definition: Type.h:57
static ManagedStatic< sys::Mutex > FunctionsLock
static GenericValue lle_X_memcpy(FunctionType *FT, ArrayRef< GenericValue > Args)
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
static ManagedStatic< std::map< const Function *, ExFunc > > ExportedFunctions
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:624
unsigned getNumContainedTypes() const
Return the number of types in the derived type.
Definition: Type.h:336
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
static ManagedStatic< std::map< std::string, ExFunc > > FuncNames
#define A
Definition: LargeTest.cpp:12
GenericValue(* ExFunc)(FunctionType *, ArrayRef< GenericValue >)
A pared-down imitation of std::unique_lock from C++11.
Definition: UniqueLock.h:29
void exitCalled(GenericValue GV)
Definition: Execution.cpp:820
size_t arg_size() const
Definition: Function.h:622
arg_iterator arg_begin()
Definition: Function.h:595
static GenericValue lle_X_abort(FunctionType *FT, ArrayRef< GenericValue > Args)
void * GVTOP(const GenericValue &GV)
Definition: GenericValue.h:51
14: Arrays
Definition: Type.h:74
#define E
Definition: LargeTest.cpp:27
This is a &#39;vector&#39; (really, a variable-sized array), optimized for the case when the array is small...
Definition: SmallVector.h:864
iterator end() const
Definition: ArrayRef.h:138
Type * getReturnType() const
Definition: DerivedTypes.h:124
static GenericValue lle_X_fprintf(FunctionType *FT, ArrayRef< GenericValue > Args)
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:137
GenericValue PTOGV(void *P)
Definition: GenericValue.h:50
Class for arbitrary precision integers.
Definition: APInt.h:69
static char getTypeID(Type *Ty)
constexpr char Size[]
Key for Kernel::Arg::Metadata::mSize.
pointer data()
Return a pointer to the vector&#39;s buffer, even if empty().
Definition: SmallVector.h:143
StringRef getName() const
Return a constant reference to the value&#39;s name.
Definition: Value.cpp:218
3: 64-bit floating point type
Definition: Type.h:60
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static GenericValue lle_X_memset(FunctionType *FT, ArrayRef< GenericValue > Args)
static GenericValue lle_X_printf(FunctionType *FT, ArrayRef< GenericValue > Args)
uint64_t getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type...
Definition: DataLayout.h:388
void addAtExitHandler(Function *F)
Definition: Interpreter.h:179
GenericValue callExternalFunction(Function *F, ArrayRef< GenericValue > ArgVals)
static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef< GenericValue > args)
ManagedStatic - This transparently changes the behavior of global statics to be lazily constructed on...
Definition: ManagedStatic.h:61
PointerType * getType() const
Global values are always pointers.
Definition: GlobalValue.h:260
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition: Type.h:330
void resize(size_type N)
Definition: SmallVector.h:355