LLVM  6.0.0svn
Execution.cpp
Go to the documentation of this file.
1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the actual instruction interpreter.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "Interpreter.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/Statistic.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instructions.h"
23 #include "llvm/Support/Debug.h"
27 #include <algorithm>
28 #include <cmath>
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "interpreter"
32 
33 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
34 
35 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
36  cl::desc("make the interpreter print every volatile load and store"));
37 
38 //===----------------------------------------------------------------------===//
39 // Various Helper Functions
40 //===----------------------------------------------------------------------===//
41 
42 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
43  SF.Values[V] = Val;
44 }
45 
46 //===----------------------------------------------------------------------===//
47 // Binary Instruction Implementations
48 //===----------------------------------------------------------------------===//
49 
50 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
51  case Type::TY##TyID: \
52  Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
53  break
54 
55 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
56  GenericValue Src2, Type *Ty) {
57  switch (Ty->getTypeID()) {
58  IMPLEMENT_BINARY_OPERATOR(+, Float);
59  IMPLEMENT_BINARY_OPERATOR(+, Double);
60  default:
61  dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
62  llvm_unreachable(nullptr);
63  }
64 }
65 
66 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
67  GenericValue Src2, Type *Ty) {
68  switch (Ty->getTypeID()) {
69  IMPLEMENT_BINARY_OPERATOR(-, Float);
70  IMPLEMENT_BINARY_OPERATOR(-, Double);
71  default:
72  dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
73  llvm_unreachable(nullptr);
74  }
75 }
76 
77 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
78  GenericValue Src2, Type *Ty) {
79  switch (Ty->getTypeID()) {
80  IMPLEMENT_BINARY_OPERATOR(*, Float);
81  IMPLEMENT_BINARY_OPERATOR(*, Double);
82  default:
83  dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
84  llvm_unreachable(nullptr);
85  }
86 }
87 
88 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
89  GenericValue Src2, Type *Ty) {
90  switch (Ty->getTypeID()) {
91  IMPLEMENT_BINARY_OPERATOR(/, Float);
92  IMPLEMENT_BINARY_OPERATOR(/, Double);
93  default:
94  dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
95  llvm_unreachable(nullptr);
96  }
97 }
98 
99 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
100  GenericValue Src2, Type *Ty) {
101  switch (Ty->getTypeID()) {
102  case Type::FloatTyID:
103  Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
104  break;
105  case Type::DoubleTyID:
106  Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
107  break;
108  default:
109  dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
110  llvm_unreachable(nullptr);
111  }
112 }
113 
114 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
115  case Type::IntegerTyID: \
116  Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
117  break;
118 
119 #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
120  case Type::VectorTyID: { \
121  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
122  Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
123  for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
124  Dest.AggregateVal[_i].IntVal = APInt(1, \
125  Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
126  } break;
127 
128 // Handle pointers specially because they must be compared with only as much
129 // width as the host has. We _do not_ want to be comparing 64 bit values when
130 // running on a 32-bit target, otherwise the upper 32 bits might mess up
131 // comparisons if they contain garbage.
132 #define IMPLEMENT_POINTER_ICMP(OP) \
133  case Type::PointerTyID: \
134  Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
135  (void*)(intptr_t)Src2.PointerVal); \
136  break;
137 
139  Type *Ty) {
140  GenericValue Dest;
141  switch (Ty->getTypeID()) {
142  IMPLEMENT_INTEGER_ICMP(eq,Ty);
145  default:
146  dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
147  llvm_unreachable(nullptr);
148  }
149  return Dest;
150 }
151 
153  Type *Ty) {
154  GenericValue Dest;
155  switch (Ty->getTypeID()) {
156  IMPLEMENT_INTEGER_ICMP(ne,Ty);
159  default:
160  dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
161  llvm_unreachable(nullptr);
162  }
163  return Dest;
164 }
165 
167  Type *Ty) {
168  GenericValue Dest;
169  switch (Ty->getTypeID()) {
170  IMPLEMENT_INTEGER_ICMP(ult,Ty);
173  default:
174  dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
175  llvm_unreachable(nullptr);
176  }
177  return Dest;
178 }
179 
181  Type *Ty) {
182  GenericValue Dest;
183  switch (Ty->getTypeID()) {
184  IMPLEMENT_INTEGER_ICMP(slt,Ty);
187  default:
188  dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
189  llvm_unreachable(nullptr);
190  }
191  return Dest;
192 }
193 
195  Type *Ty) {
196  GenericValue Dest;
197  switch (Ty->getTypeID()) {
198  IMPLEMENT_INTEGER_ICMP(ugt,Ty);
201  default:
202  dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
203  llvm_unreachable(nullptr);
204  }
205  return Dest;
206 }
207 
209  Type *Ty) {
210  GenericValue Dest;
211  switch (Ty->getTypeID()) {
212  IMPLEMENT_INTEGER_ICMP(sgt,Ty);
215  default:
216  dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
217  llvm_unreachable(nullptr);
218  }
219  return Dest;
220 }
221 
223  Type *Ty) {
224  GenericValue Dest;
225  switch (Ty->getTypeID()) {
226  IMPLEMENT_INTEGER_ICMP(ule,Ty);
229  default:
230  dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
231  llvm_unreachable(nullptr);
232  }
233  return Dest;
234 }
235 
237  Type *Ty) {
238  GenericValue Dest;
239  switch (Ty->getTypeID()) {
240  IMPLEMENT_INTEGER_ICMP(sle,Ty);
243  default:
244  dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
245  llvm_unreachable(nullptr);
246  }
247  return Dest;
248 }
249 
251  Type *Ty) {
252  GenericValue Dest;
253  switch (Ty->getTypeID()) {
254  IMPLEMENT_INTEGER_ICMP(uge,Ty);
257  default:
258  dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
259  llvm_unreachable(nullptr);
260  }
261  return Dest;
262 }
263 
265  Type *Ty) {
266  GenericValue Dest;
267  switch (Ty->getTypeID()) {
268  IMPLEMENT_INTEGER_ICMP(sge,Ty);
271  default:
272  dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
273  llvm_unreachable(nullptr);
274  }
275  return Dest;
276 }
277 
279  ExecutionContext &SF = ECStack.back();
280  Type *Ty = I.getOperand(0)->getType();
281  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
282  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
283  GenericValue R; // Result
284 
285  switch (I.getPredicate()) {
286  case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
287  case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
288  case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
289  case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
290  case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
291  case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
292  case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
293  case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
294  case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
295  case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
296  default:
297  dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
298  llvm_unreachable(nullptr);
299  }
300 
301  SetValue(&I, R, SF);
302 }
303 
304 #define IMPLEMENT_FCMP(OP, TY) \
305  case Type::TY##TyID: \
306  Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
307  break
308 
309 #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
310  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
311  Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
312  for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
313  Dest.AggregateVal[_i].IntVal = APInt(1, \
314  Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
315  break;
316 
317 #define IMPLEMENT_VECTOR_FCMP(OP) \
318  case Type::VectorTyID: \
319  if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
320  IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
321  } else { \
322  IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
323  }
324 
326  Type *Ty) {
327  GenericValue Dest;
328  switch (Ty->getTypeID()) {
329  IMPLEMENT_FCMP(==, Float);
330  IMPLEMENT_FCMP(==, Double);
332  default:
333  dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
334  llvm_unreachable(nullptr);
335  }
336  return Dest;
337 }
338 
339 #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
340  if (TY->isFloatTy()) { \
341  if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
342  Dest.IntVal = APInt(1,false); \
343  return Dest; \
344  } \
345  } else { \
346  if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
347  Dest.IntVal = APInt(1,false); \
348  return Dest; \
349  } \
350  }
351 
352 #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
353  assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
354  Dest.AggregateVal.resize( X.AggregateVal.size() ); \
355  for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
356  if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
357  Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
358  Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
359  else { \
360  Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
361  } \
362  }
363 
364 #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
365  if (TY->isVectorTy()) { \
366  if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
367  MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
368  } else { \
369  MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
370  } \
371  } \
372 
373 
374 
376  Type *Ty)
377 {
378  GenericValue Dest;
379  // if input is scalar value and Src1 or Src2 is NaN return false
380  IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
381  // if vector input detect NaNs and fill mask
382  MASK_VECTOR_NANS(Ty, Src1, Src2, false)
383  GenericValue DestMask = Dest;
384  switch (Ty->getTypeID()) {
385  IMPLEMENT_FCMP(!=, Float);
386  IMPLEMENT_FCMP(!=, Double);
388  default:
389  dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
390  llvm_unreachable(nullptr);
391  }
392  // in vector case mask out NaN elements
393  if (Ty->isVectorTy())
394  for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
395  if (DestMask.AggregateVal[_i].IntVal == false)
396  Dest.AggregateVal[_i].IntVal = APInt(1,false);
397 
398  return Dest;
399 }
400 
402  Type *Ty) {
403  GenericValue Dest;
404  switch (Ty->getTypeID()) {
405  IMPLEMENT_FCMP(<=, Float);
406  IMPLEMENT_FCMP(<=, Double);
408  default:
409  dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
410  llvm_unreachable(nullptr);
411  }
412  return Dest;
413 }
414 
416  Type *Ty) {
417  GenericValue Dest;
418  switch (Ty->getTypeID()) {
419  IMPLEMENT_FCMP(>=, Float);
420  IMPLEMENT_FCMP(>=, Double);
422  default:
423  dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
424  llvm_unreachable(nullptr);
425  }
426  return Dest;
427 }
428 
430  Type *Ty) {
431  GenericValue Dest;
432  switch (Ty->getTypeID()) {
433  IMPLEMENT_FCMP(<, Float);
434  IMPLEMENT_FCMP(<, Double);
436  default:
437  dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
438  llvm_unreachable(nullptr);
439  }
440  return Dest;
441 }
442 
444  Type *Ty) {
445  GenericValue Dest;
446  switch (Ty->getTypeID()) {
447  IMPLEMENT_FCMP(>, Float);
448  IMPLEMENT_FCMP(>, Double);
450  default:
451  dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
452  llvm_unreachable(nullptr);
453  }
454  return Dest;
455 }
456 
457 #define IMPLEMENT_UNORDERED(TY, X,Y) \
458  if (TY->isFloatTy()) { \
459  if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
460  Dest.IntVal = APInt(1,true); \
461  return Dest; \
462  } \
463  } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
464  Dest.IntVal = APInt(1,true); \
465  return Dest; \
466  }
467 
468 #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
469  if (TY->isVectorTy()) { \
470  GenericValue DestMask = Dest; \
471  Dest = FUNC(Src1, Src2, Ty); \
472  for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
473  if (DestMask.AggregateVal[_i].IntVal == true) \
474  Dest.AggregateVal[_i].IntVal = APInt(1, true); \
475  return Dest; \
476  }
477 
479  Type *Ty) {
480  GenericValue Dest;
481  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
482  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
484  return executeFCMP_OEQ(Src1, Src2, Ty);
485 
486 }
487 
489  Type *Ty) {
490  GenericValue Dest;
491  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
492  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
494  return executeFCMP_ONE(Src1, Src2, Ty);
495 }
496 
498  Type *Ty) {
499  GenericValue Dest;
500  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
501  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
503  return executeFCMP_OLE(Src1, Src2, Ty);
504 }
505 
507  Type *Ty) {
508  GenericValue Dest;
509  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
510  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
512  return executeFCMP_OGE(Src1, Src2, Ty);
513 }
514 
516  Type *Ty) {
517  GenericValue Dest;
518  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
519  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
521  return executeFCMP_OLT(Src1, Src2, Ty);
522 }
523 
525  Type *Ty) {
526  GenericValue Dest;
527  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
528  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
530  return executeFCMP_OGT(Src1, Src2, Ty);
531 }
532 
534  Type *Ty) {
535  GenericValue Dest;
536  if(Ty->isVectorTy()) {
537  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
538  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
539  if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
540  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
541  Dest.AggregateVal[_i].IntVal = APInt(1,
542  ( (Src1.AggregateVal[_i].FloatVal ==
543  Src1.AggregateVal[_i].FloatVal) &&
544  (Src2.AggregateVal[_i].FloatVal ==
545  Src2.AggregateVal[_i].FloatVal)));
546  } else {
547  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
548  Dest.AggregateVal[_i].IntVal = APInt(1,
549  ( (Src1.AggregateVal[_i].DoubleVal ==
550  Src1.AggregateVal[_i].DoubleVal) &&
551  (Src2.AggregateVal[_i].DoubleVal ==
552  Src2.AggregateVal[_i].DoubleVal)));
553  }
554  } else if (Ty->isFloatTy())
555  Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
556  Src2.FloatVal == Src2.FloatVal));
557  else {
558  Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
559  Src2.DoubleVal == Src2.DoubleVal));
560  }
561  return Dest;
562 }
563 
565  Type *Ty) {
566  GenericValue Dest;
567  if(Ty->isVectorTy()) {
568  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
569  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
570  if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
571  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
572  Dest.AggregateVal[_i].IntVal = APInt(1,
573  ( (Src1.AggregateVal[_i].FloatVal !=
574  Src1.AggregateVal[_i].FloatVal) ||
575  (Src2.AggregateVal[_i].FloatVal !=
576  Src2.AggregateVal[_i].FloatVal)));
577  } else {
578  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
579  Dest.AggregateVal[_i].IntVal = APInt(1,
580  ( (Src1.AggregateVal[_i].DoubleVal !=
581  Src1.AggregateVal[_i].DoubleVal) ||
582  (Src2.AggregateVal[_i].DoubleVal !=
583  Src2.AggregateVal[_i].DoubleVal)));
584  }
585  } else if (Ty->isFloatTy())
586  Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
587  Src2.FloatVal != Src2.FloatVal));
588  else {
589  Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
590  Src2.DoubleVal != Src2.DoubleVal));
591  }
592  return Dest;
593 }
594 
596  Type *Ty, const bool val) {
597  GenericValue Dest;
598  if(Ty->isVectorTy()) {
599  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
600  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
601  for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
602  Dest.AggregateVal[_i].IntVal = APInt(1,val);
603  } else {
604  Dest.IntVal = APInt(1, val);
605  }
606 
607  return Dest;
608 }
609 
611  ExecutionContext &SF = ECStack.back();
612  Type *Ty = I.getOperand(0)->getType();
613  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
614  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
615  GenericValue R; // Result
616 
617  switch (I.getPredicate()) {
618  default:
619  dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
620  llvm_unreachable(nullptr);
621  break;
622  case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
623  break;
624  case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
625  break;
626  case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
627  case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
628  case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
629  case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
630  case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
631  case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
632  case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
633  case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
634  case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
635  case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
636  case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
637  case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
638  case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
639  case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
640  }
641 
642  SetValue(&I, R, SF);
643 }
644 
645 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
646  GenericValue Src2, Type *Ty) {
647  GenericValue Result;
648  switch (predicate) {
649  case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
650  case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
651  case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
652  case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
653  case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
654  case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
655  case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
656  case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
657  case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
658  case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
659  case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
660  case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
661  case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
662  case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
663  case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
664  case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
665  case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
666  case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
667  case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
668  case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
669  case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
670  case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
671  case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
672  case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
673  case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
674  case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
675  default:
676  dbgs() << "Unhandled Cmp predicate\n";
677  llvm_unreachable(nullptr);
678  }
679 }
680 
682  ExecutionContext &SF = ECStack.back();
683  Type *Ty = I.getOperand(0)->getType();
684  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
685  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
686  GenericValue R; // Result
687 
688  // First process vector operation
689  if (Ty->isVectorTy()) {
690  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
691  R.AggregateVal.resize(Src1.AggregateVal.size());
692 
693  // Macros to execute binary operation 'OP' over integer vectors
694 #define INTEGER_VECTOR_OPERATION(OP) \
695  for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
696  R.AggregateVal[i].IntVal = \
697  Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
698 
699  // Additional macros to execute binary operations udiv/sdiv/urem/srem since
700  // they have different notation.
701 #define INTEGER_VECTOR_FUNCTION(OP) \
702  for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
703  R.AggregateVal[i].IntVal = \
704  Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
705 
706  // Macros to execute binary operation 'OP' over floating point type TY
707  // (float or double) vectors
708 #define FLOAT_VECTOR_FUNCTION(OP, TY) \
709  for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
710  R.AggregateVal[i].TY = \
711  Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
712 
713  // Macros to choose appropriate TY: float or double and run operation
714  // execution
715 #define FLOAT_VECTOR_OP(OP) { \
716  if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
717  FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
718  else { \
719  if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
720  FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
721  else { \
722  dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
723  llvm_unreachable(0); \
724  } \
725  } \
726 }
727 
728  switch(I.getOpcode()){
729  default:
730  dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
731  llvm_unreachable(nullptr);
732  break;
734  case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
735  case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
736  case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
737  case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
738  case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
739  case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
740  case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
741  case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
742  case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
743  case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
744  case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
745  case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
746  case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
747  case Instruction::FRem:
748  if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
749  for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
750  R.AggregateVal[i].FloatVal =
751  fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
752  else {
753  if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
754  for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
755  R.AggregateVal[i].DoubleVal =
756  fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
757  else {
758  dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
759  llvm_unreachable(nullptr);
760  }
761  }
762  break;
763  }
764  } else {
765  switch (I.getOpcode()) {
766  default:
767  dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
768  llvm_unreachable(nullptr);
769  break;
770  case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
771  case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
772  case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
773  case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
774  case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
775  case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
776  case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
777  case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
778  case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
779  case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
780  case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
781  case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
782  case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
783  case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
784  case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
785  }
786  }
787  SetValue(&I, R, SF);
788 }
789 
791  GenericValue Src3, Type *Ty) {
792  GenericValue Dest;
793  if(Ty->isVectorTy()) {
794  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
795  assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
796  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
797  for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
798  Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
799  Src3.AggregateVal[i] : Src2.AggregateVal[i];
800  } else {
801  Dest = (Src1.IntVal == 0) ? Src3 : Src2;
802  }
803  return Dest;
804 }
805 
807  ExecutionContext &SF = ECStack.back();
808  Type * Ty = I.getOperand(0)->getType();
809  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
810  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
811  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
812  GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
813  SetValue(&I, R, SF);
814 }
815 
816 //===----------------------------------------------------------------------===//
817 // Terminator Instruction Implementations
818 //===----------------------------------------------------------------------===//
819 
821  // runAtExitHandlers() assumes there are no stack frames, but
822  // if exit() was called, then it had a stack frame. Blow away
823  // the stack before interpreting atexit handlers.
824  ECStack.clear();
826  exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
827 }
828 
829 /// Pop the last stack frame off of ECStack and then copy the result
830 /// back into the result variable if we are not returning void. The
831 /// result variable may be the ExitValue, or the Value of the calling
832 /// CallInst if there was a previous stack frame. This method may
833 /// invalidate any ECStack iterators you have. This method also takes
834 /// care of switching to the normal destination BB, if we are returning
835 /// from an invoke.
836 ///
837 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
838  GenericValue Result) {
839  // Pop the current stack frame.
840  ECStack.pop_back();
841 
842  if (ECStack.empty()) { // Finished main. Put result into exit code...
843  if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
844  ExitValue = Result; // Capture the exit value of the program
845  } else {
846  memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
847  }
848  } else {
849  // If we have a previous stack frame, and we have a previous call,
850  // fill in the return value...
851  ExecutionContext &CallingSF = ECStack.back();
852  if (Instruction *I = CallingSF.Caller.getInstruction()) {
853  // Save result...
854  if (!CallingSF.Caller.getType()->isVoidTy())
855  SetValue(I, Result, CallingSF);
856  if (InvokeInst *II = dyn_cast<InvokeInst> (I))
857  SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
858  CallingSF.Caller = CallSite(); // We returned from the call...
859  }
860  }
861 }
862 
864  ExecutionContext &SF = ECStack.back();
865  Type *RetTy = Type::getVoidTy(I.getContext());
866  GenericValue Result;
867 
868  // Save away the return value... (if we are not 'ret void')
869  if (I.getNumOperands()) {
870  RetTy = I.getReturnValue()->getType();
871  Result = getOperandValue(I.getReturnValue(), SF);
872  }
873 
874  popStackAndReturnValueToCaller(RetTy, Result);
875 }
876 
878  report_fatal_error("Program executed an 'unreachable' instruction!");
879 }
880 
882  ExecutionContext &SF = ECStack.back();
883  BasicBlock *Dest;
884 
885  Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
886  if (!I.isUnconditional()) {
887  Value *Cond = I.getCondition();
888  if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
889  Dest = I.getSuccessor(1);
890  }
891  SwitchToNewBasicBlock(Dest, SF);
892 }
893 
895  ExecutionContext &SF = ECStack.back();
896  Value* Cond = I.getCondition();
897  Type *ElTy = Cond->getType();
898  GenericValue CondVal = getOperandValue(Cond, SF);
899 
900  // Check to see if any of the cases match...
901  BasicBlock *Dest = nullptr;
902  for (auto Case : I.cases()) {
903  GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
904  if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
905  Dest = cast<BasicBlock>(Case.getCaseSuccessor());
906  break;
907  }
908  }
909  if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
910  SwitchToNewBasicBlock(Dest, SF);
911 }
912 
914  ExecutionContext &SF = ECStack.back();
915  void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
916  SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
917 }
918 
919 
920 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
921 // This function handles the actual updating of block and instruction iterators
922 // as well as execution of all of the PHI nodes in the destination block.
923 //
924 // This method does this because all of the PHI nodes must be executed
925 // atomically, reading their inputs before any of the results are updated. Not
926 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
927 // their inputs. If the input PHI node is updated before it is read, incorrect
928 // results can happen. Thus we use a two phase approach.
929 //
930 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
931  BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
932  SF.CurBB = Dest; // Update CurBB to branch destination
933  SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
934 
935  if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
936 
937  // Loop over all of the PHI nodes in the current block, reading their inputs.
938  std::vector<GenericValue> ResultValues;
939 
940  for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
941  // Search for the value corresponding to this previous bb...
942  int i = PN->getBasicBlockIndex(PrevBB);
943  assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
944  Value *IncomingValue = PN->getIncomingValue(i);
945 
946  // Save the incoming value for this PHI node...
947  ResultValues.push_back(getOperandValue(IncomingValue, SF));
948  }
949 
950  // Now loop over all of the PHI nodes setting their values...
951  SF.CurInst = SF.CurBB->begin();
952  for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
953  PHINode *PN = cast<PHINode>(SF.CurInst);
954  SetValue(PN, ResultValues[i], SF);
955  }
956 }
957 
958 //===----------------------------------------------------------------------===//
959 // Memory Instruction Implementations
960 //===----------------------------------------------------------------------===//
961 
963  ExecutionContext &SF = ECStack.back();
964 
965  Type *Ty = I.getType()->getElementType(); // Type to be allocated
966 
967  // Get the number of elements being allocated by the array...
968  unsigned NumElements =
969  getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
970 
971  unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
972 
973  // Avoid malloc-ing zero bytes, use max()...
974  unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
975 
976  // Allocate enough memory to hold the type...
977  void *Memory = malloc(MemToAlloc);
978 
979  DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
980  << NumElements << " (Total: " << MemToAlloc << ") at "
981  << uintptr_t(Memory) << '\n');
982 
983  GenericValue Result = PTOGV(Memory);
984  assert(Result.PointerVal && "Null pointer returned by malloc!");
985  SetValue(&I, Result, SF);
986 
987  if (I.getOpcode() == Instruction::Alloca)
988  ECStack.back().Allocas.add(Memory);
989 }
990 
991 // getElementOffset - The workhorse for getelementptr.
992 //
993 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
995  ExecutionContext &SF) {
996  assert(Ptr->getType()->isPointerTy() &&
997  "Cannot getElementOffset of a nonpointer type!");
998 
999  uint64_t Total = 0;
1000 
1001  for (; I != E; ++I) {
1002  if (StructType *STy = I.getStructTypeOrNull()) {
1003  const StructLayout *SLO = getDataLayout().getStructLayout(STy);
1004 
1005  const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1006  unsigned Index = unsigned(CPU->getZExtValue());
1007 
1008  Total += SLO->getElementOffset(Index);
1009  } else {
1010  // Get the index number for the array... which must be long type...
1011  GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1012 
1013  int64_t Idx;
1014  unsigned BitWidth =
1015  cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1016  if (BitWidth == 32)
1017  Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1018  else {
1019  assert(BitWidth == 64 && "Invalid index type for getelementptr");
1020  Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1021  }
1022  Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx;
1023  }
1024  }
1025 
1026  GenericValue Result;
1027  Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1028  DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1029  return Result;
1030 }
1031 
1033  ExecutionContext &SF = ECStack.back();
1034  SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1035  gep_type_begin(I), gep_type_end(I), SF), SF);
1036 }
1037 
1039  ExecutionContext &SF = ECStack.back();
1040  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1041  GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1042  GenericValue Result;
1043  LoadValueFromMemory(Result, Ptr, I.getType());
1044  SetValue(&I, Result, SF);
1045  if (I.isVolatile() && PrintVolatile)
1046  dbgs() << "Volatile load " << I;
1047 }
1048 
1050  ExecutionContext &SF = ECStack.back();
1051  GenericValue Val = getOperandValue(I.getOperand(0), SF);
1052  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1053  StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1054  I.getOperand(0)->getType());
1055  if (I.isVolatile() && PrintVolatile)
1056  dbgs() << "Volatile store: " << I;
1057 }
1058 
1059 //===----------------------------------------------------------------------===//
1060 // Miscellaneous Instruction Implementations
1061 //===----------------------------------------------------------------------===//
1062 
1064  ExecutionContext &SF = ECStack.back();
1065 
1066  // Check to see if this is an intrinsic function call...
1067  Function *F = CS.getCalledFunction();
1068  if (F && F->isDeclaration())
1069  switch (F->getIntrinsicID()) {
1071  break;
1072  case Intrinsic::vastart: { // va_start
1073  GenericValue ArgIndex;
1074  ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1075  ArgIndex.UIntPairVal.second = 0;
1076  SetValue(CS.getInstruction(), ArgIndex, SF);
1077  return;
1078  }
1079  case Intrinsic::vaend: // va_end is a noop for the interpreter
1080  return;
1081  case Intrinsic::vacopy: // va_copy: dest = src
1082  SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
1083  return;
1084  default:
1085  // If it is an unknown intrinsic function, use the intrinsic lowering
1086  // class to transform it into hopefully tasty LLVM code.
1087  //
1089  BasicBlock *Parent = CS.getInstruction()->getParent();
1090  bool atBegin(Parent->begin() == me);
1091  if (!atBegin)
1092  --me;
1093  IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
1094 
1095  // Restore the CurInst pointer to the first instruction newly inserted, if
1096  // any.
1097  if (atBegin) {
1098  SF.CurInst = Parent->begin();
1099  } else {
1100  SF.CurInst = me;
1101  ++SF.CurInst;
1102  }
1103  return;
1104  }
1105 
1106 
1107  SF.Caller = CS;
1108  std::vector<GenericValue> ArgVals;
1109  const unsigned NumArgs = SF.Caller.arg_size();
1110  ArgVals.reserve(NumArgs);
1111  uint16_t pNum = 1;
1112  for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
1113  e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
1114  Value *V = *i;
1115  ArgVals.push_back(getOperandValue(V, SF));
1116  }
1117 
1118  // To handle indirect calls, we must get the pointer value from the argument
1119  // and treat it as a function pointer.
1120  GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
1121  callFunction((Function*)GVTOP(SRC), ArgVals);
1122 }
1123 
1124 // auxiliary function for shift operations
1125 static unsigned getShiftAmount(uint64_t orgShiftAmount,
1126  llvm::APInt valueToShift) {
1127  unsigned valueWidth = valueToShift.getBitWidth();
1128  if (orgShiftAmount < (uint64_t)valueWidth)
1129  return orgShiftAmount;
1130  // according to the llvm documentation, if orgShiftAmount > valueWidth,
1131  // the result is undfeined. but we do shift by this rule:
1132  return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1133 }
1134 
1135 
1137  ExecutionContext &SF = ECStack.back();
1138  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1139  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1140  GenericValue Dest;
1141  Type *Ty = I.getType();
1142 
1143  if (Ty->isVectorTy()) {
1144  uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1145  assert(src1Size == Src2.AggregateVal.size());
1146  for (unsigned i = 0; i < src1Size; i++) {
1147  GenericValue Result;
1148  uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1149  llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1150  Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1151  Dest.AggregateVal.push_back(Result);
1152  }
1153  } else {
1154  // scalar
1155  uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1156  llvm::APInt valueToShift = Src1.IntVal;
1157  Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1158  }
1159 
1160  SetValue(&I, Dest, SF);
1161 }
1162 
1164  ExecutionContext &SF = ECStack.back();
1165  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1166  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1167  GenericValue Dest;
1168  Type *Ty = I.getType();
1169 
1170  if (Ty->isVectorTy()) {
1171  uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1172  assert(src1Size == Src2.AggregateVal.size());
1173  for (unsigned i = 0; i < src1Size; i++) {
1174  GenericValue Result;
1175  uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1176  llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1177  Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1178  Dest.AggregateVal.push_back(Result);
1179  }
1180  } else {
1181  // scalar
1182  uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1183  llvm::APInt valueToShift = Src1.IntVal;
1184  Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1185  }
1186 
1187  SetValue(&I, Dest, SF);
1188 }
1189 
1191  ExecutionContext &SF = ECStack.back();
1192  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1193  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1194  GenericValue Dest;
1195  Type *Ty = I.getType();
1196 
1197  if (Ty->isVectorTy()) {
1198  size_t src1Size = Src1.AggregateVal.size();
1199  assert(src1Size == Src2.AggregateVal.size());
1200  for (unsigned i = 0; i < src1Size; i++) {
1201  GenericValue Result;
1202  uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1203  llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1204  Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1205  Dest.AggregateVal.push_back(Result);
1206  }
1207  } else {
1208  // scalar
1209  uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1210  llvm::APInt valueToShift = Src1.IntVal;
1211  Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1212  }
1213 
1214  SetValue(&I, Dest, SF);
1215 }
1216 
1217 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1218  ExecutionContext &SF) {
1219  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1220  Type *SrcTy = SrcVal->getType();
1221  if (SrcTy->isVectorTy()) {
1222  Type *DstVecTy = DstTy->getScalarType();
1223  unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1224  unsigned NumElts = Src.AggregateVal.size();
1225  // the sizes of src and dst vectors must be equal
1226  Dest.AggregateVal.resize(NumElts);
1227  for (unsigned i = 0; i < NumElts; i++)
1228  Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1229  } else {
1230  IntegerType *DITy = cast<IntegerType>(DstTy);
1231  unsigned DBitWidth = DITy->getBitWidth();
1232  Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1233  }
1234  return Dest;
1235 }
1236 
1237 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1238  ExecutionContext &SF) {
1239  Type *SrcTy = SrcVal->getType();
1240  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1241  if (SrcTy->isVectorTy()) {
1242  Type *DstVecTy = DstTy->getScalarType();
1243  unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1244  unsigned size = Src.AggregateVal.size();
1245  // the sizes of src and dst vectors must be equal.
1246  Dest.AggregateVal.resize(size);
1247  for (unsigned i = 0; i < size; i++)
1248  Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1249  } else {
1250  auto *DITy = cast<IntegerType>(DstTy);
1251  unsigned DBitWidth = DITy->getBitWidth();
1252  Dest.IntVal = Src.IntVal.sext(DBitWidth);
1253  }
1254  return Dest;
1255 }
1256 
1257 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1258  ExecutionContext &SF) {
1259  Type *SrcTy = SrcVal->getType();
1260  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1261  if (SrcTy->isVectorTy()) {
1262  Type *DstVecTy = DstTy->getScalarType();
1263  unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1264 
1265  unsigned size = Src.AggregateVal.size();
1266  // the sizes of src and dst vectors must be equal.
1267  Dest.AggregateVal.resize(size);
1268  for (unsigned i = 0; i < size; i++)
1269  Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1270  } else {
1271  auto *DITy = cast<IntegerType>(DstTy);
1272  unsigned DBitWidth = DITy->getBitWidth();
1273  Dest.IntVal = Src.IntVal.zext(DBitWidth);
1274  }
1275  return Dest;
1276 }
1277 
1278 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1279  ExecutionContext &SF) {
1280  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1281 
1282  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1283  assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1284  DstTy->getScalarType()->isFloatTy() &&
1285  "Invalid FPTrunc instruction");
1286 
1287  unsigned size = Src.AggregateVal.size();
1288  // the sizes of src and dst vectors must be equal.
1289  Dest.AggregateVal.resize(size);
1290  for (unsigned i = 0; i < size; i++)
1291  Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1292  } else {
1293  assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1294  "Invalid FPTrunc instruction");
1295  Dest.FloatVal = (float)Src.DoubleVal;
1296  }
1297 
1298  return Dest;
1299 }
1300 
1301 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1302  ExecutionContext &SF) {
1303  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1304 
1305  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1306  assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1307  DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1308 
1309  unsigned size = Src.AggregateVal.size();
1310  // the sizes of src and dst vectors must be equal.
1311  Dest.AggregateVal.resize(size);
1312  for (unsigned i = 0; i < size; i++)
1313  Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1314  } else {
1315  assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1316  "Invalid FPExt instruction");
1317  Dest.DoubleVal = (double)Src.FloatVal;
1318  }
1319 
1320  return Dest;
1321 }
1322 
1323 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1324  ExecutionContext &SF) {
1325  Type *SrcTy = SrcVal->getType();
1326  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1327 
1328  if (SrcTy->getTypeID() == Type::VectorTyID) {
1329  Type *DstVecTy = DstTy->getScalarType();
1330  Type *SrcVecTy = SrcTy->getScalarType();
1331  uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1332  unsigned size = Src.AggregateVal.size();
1333  // the sizes of src and dst vectors must be equal.
1334  Dest.AggregateVal.resize(size);
1335 
1336  if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1337  assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1338  for (unsigned i = 0; i < size; i++)
1339  Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1340  Src.AggregateVal[i].FloatVal, DBitWidth);
1341  } else {
1342  for (unsigned i = 0; i < size; i++)
1343  Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1344  Src.AggregateVal[i].DoubleVal, DBitWidth);
1345  }
1346  } else {
1347  // scalar
1348  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1349  assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1350 
1351  if (SrcTy->getTypeID() == Type::FloatTyID)
1352  Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1353  else {
1354  Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1355  }
1356  }
1357 
1358  return Dest;
1359 }
1360 
1361 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1362  ExecutionContext &SF) {
1363  Type *SrcTy = SrcVal->getType();
1364  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1365 
1366  if (SrcTy->getTypeID() == Type::VectorTyID) {
1367  Type *DstVecTy = DstTy->getScalarType();
1368  Type *SrcVecTy = SrcTy->getScalarType();
1369  uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1370  unsigned size = Src.AggregateVal.size();
1371  // the sizes of src and dst vectors must be equal
1372  Dest.AggregateVal.resize(size);
1373 
1374  if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1375  assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1376  for (unsigned i = 0; i < size; i++)
1377  Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1378  Src.AggregateVal[i].FloatVal, DBitWidth);
1379  } else {
1380  for (unsigned i = 0; i < size; i++)
1381  Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1382  Src.AggregateVal[i].DoubleVal, DBitWidth);
1383  }
1384  } else {
1385  // scalar
1386  unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1387  assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1388 
1389  if (SrcTy->getTypeID() == Type::FloatTyID)
1390  Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1391  else {
1392  Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1393  }
1394  }
1395  return Dest;
1396 }
1397 
1398 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1399  ExecutionContext &SF) {
1400  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1401 
1402  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1403  Type *DstVecTy = DstTy->getScalarType();
1404  unsigned size = Src.AggregateVal.size();
1405  // the sizes of src and dst vectors must be equal
1406  Dest.AggregateVal.resize(size);
1407 
1408  if (DstVecTy->getTypeID() == Type::FloatTyID) {
1409  assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1410  for (unsigned i = 0; i < size; i++)
1411  Dest.AggregateVal[i].FloatVal =
1413  } else {
1414  for (unsigned i = 0; i < size; i++)
1415  Dest.AggregateVal[i].DoubleVal =
1417  }
1418  } else {
1419  // scalar
1420  assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1421  if (DstTy->getTypeID() == Type::FloatTyID)
1423  else {
1425  }
1426  }
1427  return Dest;
1428 }
1429 
1430 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1431  ExecutionContext &SF) {
1432  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1433 
1434  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1435  Type *DstVecTy = DstTy->getScalarType();
1436  unsigned size = Src.AggregateVal.size();
1437  // the sizes of src and dst vectors must be equal
1438  Dest.AggregateVal.resize(size);
1439 
1440  if (DstVecTy->getTypeID() == Type::FloatTyID) {
1441  assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1442  for (unsigned i = 0; i < size; i++)
1443  Dest.AggregateVal[i].FloatVal =
1445  } else {
1446  for (unsigned i = 0; i < size; i++)
1447  Dest.AggregateVal[i].DoubleVal =
1449  }
1450  } else {
1451  // scalar
1452  assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1453 
1454  if (DstTy->getTypeID() == Type::FloatTyID)
1456  else {
1458  }
1459  }
1460 
1461  return Dest;
1462 }
1463 
1464 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1465  ExecutionContext &SF) {
1466  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1467  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1468  assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1469 
1470  Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1471  return Dest;
1472 }
1473 
1474 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1475  ExecutionContext &SF) {
1476  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1477  assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1478 
1480  if (PtrSize != Src.IntVal.getBitWidth())
1481  Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1482 
1484  return Dest;
1485 }
1486 
1487 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1488  ExecutionContext &SF) {
1489 
1490  // This instruction supports bitwise conversion of vectors to integers and
1491  // to vectors of other types (as long as they have the same size)
1492  Type *SrcTy = SrcVal->getType();
1493  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1494 
1495  if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1496  (DstTy->getTypeID() == Type::VectorTyID)) {
1497  // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1498  // scalar src bitcast to vector dst
1499  bool isLittleEndian = getDataLayout().isLittleEndian();
1500  GenericValue TempDst, TempSrc, SrcVec;
1501  Type *SrcElemTy;
1502  Type *DstElemTy;
1503  unsigned SrcBitSize;
1504  unsigned DstBitSize;
1505  unsigned SrcNum;
1506  unsigned DstNum;
1507 
1508  if (SrcTy->getTypeID() == Type::VectorTyID) {
1509  SrcElemTy = SrcTy->getScalarType();
1510  SrcBitSize = SrcTy->getScalarSizeInBits();
1511  SrcNum = Src.AggregateVal.size();
1512  SrcVec = Src;
1513  } else {
1514  // if src is scalar value, make it vector <1 x type>
1515  SrcElemTy = SrcTy;
1516  SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1517  SrcNum = 1;
1518  SrcVec.AggregateVal.push_back(Src);
1519  }
1520 
1521  if (DstTy->getTypeID() == Type::VectorTyID) {
1522  DstElemTy = DstTy->getScalarType();
1523  DstBitSize = DstTy->getScalarSizeInBits();
1524  DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1525  } else {
1526  DstElemTy = DstTy;
1527  DstBitSize = DstTy->getPrimitiveSizeInBits();
1528  DstNum = 1;
1529  }
1530 
1531  if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1532  llvm_unreachable("Invalid BitCast");
1533 
1534  // If src is floating point, cast to integer first.
1535  TempSrc.AggregateVal.resize(SrcNum);
1536  if (SrcElemTy->isFloatTy()) {
1537  for (unsigned i = 0; i < SrcNum; i++)
1538  TempSrc.AggregateVal[i].IntVal =
1539  APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1540 
1541  } else if (SrcElemTy->isDoubleTy()) {
1542  for (unsigned i = 0; i < SrcNum; i++)
1543  TempSrc.AggregateVal[i].IntVal =
1544  APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1545  } else if (SrcElemTy->isIntegerTy()) {
1546  for (unsigned i = 0; i < SrcNum; i++)
1547  TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1548  } else {
1549  // Pointers are not allowed as the element type of vector.
1550  llvm_unreachable("Invalid Bitcast");
1551  }
1552 
1553  // now TempSrc is integer type vector
1554  if (DstNum < SrcNum) {
1555  // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1556  unsigned Ratio = SrcNum / DstNum;
1557  unsigned SrcElt = 0;
1558  for (unsigned i = 0; i < DstNum; i++) {
1559  GenericValue Elt;
1560  Elt.IntVal = 0;
1561  Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1562  unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1563  for (unsigned j = 0; j < Ratio; j++) {
1564  APInt Tmp;
1565  Tmp = Tmp.zext(SrcBitSize);
1566  Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1567  Tmp = Tmp.zext(DstBitSize);
1568  Tmp <<= ShiftAmt;
1569  ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1570  Elt.IntVal |= Tmp;
1571  }
1572  TempDst.AggregateVal.push_back(Elt);
1573  }
1574  } else {
1575  // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1576  unsigned Ratio = DstNum / SrcNum;
1577  for (unsigned i = 0; i < SrcNum; i++) {
1578  unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1579  for (unsigned j = 0; j < Ratio; j++) {
1580  GenericValue Elt;
1581  Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1582  Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1583  Elt.IntVal.lshrInPlace(ShiftAmt);
1584  // it could be DstBitSize == SrcBitSize, so check it
1585  if (DstBitSize < SrcBitSize)
1586  Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1587  ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1588  TempDst.AggregateVal.push_back(Elt);
1589  }
1590  }
1591  }
1592 
1593  // convert result from integer to specified type
1594  if (DstTy->getTypeID() == Type::VectorTyID) {
1595  if (DstElemTy->isDoubleTy()) {
1596  Dest.AggregateVal.resize(DstNum);
1597  for (unsigned i = 0; i < DstNum; i++)
1598  Dest.AggregateVal[i].DoubleVal =
1599  TempDst.AggregateVal[i].IntVal.bitsToDouble();
1600  } else if (DstElemTy->isFloatTy()) {
1601  Dest.AggregateVal.resize(DstNum);
1602  for (unsigned i = 0; i < DstNum; i++)
1603  Dest.AggregateVal[i].FloatVal =
1604  TempDst.AggregateVal[i].IntVal.bitsToFloat();
1605  } else {
1606  Dest = TempDst;
1607  }
1608  } else {
1609  if (DstElemTy->isDoubleTy())
1610  Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1611  else if (DstElemTy->isFloatTy()) {
1612  Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1613  } else {
1614  Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1615  }
1616  }
1617  } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1618  // (DstTy->getTypeID() == Type::VectorTyID))
1619 
1620  // scalar src bitcast to scalar dst
1621  if (DstTy->isPointerTy()) {
1622  assert(SrcTy->isPointerTy() && "Invalid BitCast");
1623  Dest.PointerVal = Src.PointerVal;
1624  } else if (DstTy->isIntegerTy()) {
1625  if (SrcTy->isFloatTy())
1626  Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1627  else if (SrcTy->isDoubleTy()) {
1628  Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1629  } else if (SrcTy->isIntegerTy()) {
1630  Dest.IntVal = Src.IntVal;
1631  } else {
1632  llvm_unreachable("Invalid BitCast");
1633  }
1634  } else if (DstTy->isFloatTy()) {
1635  if (SrcTy->isIntegerTy())
1636  Dest.FloatVal = Src.IntVal.bitsToFloat();
1637  else {
1638  Dest.FloatVal = Src.FloatVal;
1639  }
1640  } else if (DstTy->isDoubleTy()) {
1641  if (SrcTy->isIntegerTy())
1642  Dest.DoubleVal = Src.IntVal.bitsToDouble();
1643  else {
1644  Dest.DoubleVal = Src.DoubleVal;
1645  }
1646  } else {
1647  llvm_unreachable("Invalid Bitcast");
1648  }
1649  }
1650 
1651  return Dest;
1652 }
1653 
1655  ExecutionContext &SF = ECStack.back();
1656  SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1657 }
1658 
1660  ExecutionContext &SF = ECStack.back();
1661  SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1662 }
1663 
1665  ExecutionContext &SF = ECStack.back();
1666  SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1667 }
1668 
1670  ExecutionContext &SF = ECStack.back();
1671  SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1672 }
1673 
1675  ExecutionContext &SF = ECStack.back();
1676  SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1677 }
1678 
1680  ExecutionContext &SF = ECStack.back();
1681  SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1682 }
1683 
1685  ExecutionContext &SF = ECStack.back();
1686  SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1687 }
1688 
1690  ExecutionContext &SF = ECStack.back();
1691  SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1692 }
1693 
1695  ExecutionContext &SF = ECStack.back();
1696  SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1697 }
1698 
1700  ExecutionContext &SF = ECStack.back();
1701  SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1702 }
1703 
1705  ExecutionContext &SF = ECStack.back();
1706  SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1707 }
1708 
1710  ExecutionContext &SF = ECStack.back();
1711  SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1712 }
1713 
1714 #define IMPLEMENT_VAARG(TY) \
1715  case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1716 
1718  ExecutionContext &SF = ECStack.back();
1719 
1720  // Get the incoming valist parameter. LLI treats the valist as a
1721  // (ec-stack-depth var-arg-index) pair.
1722  GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1723  GenericValue Dest;
1724  GenericValue Src = ECStack[VAList.UIntPairVal.first]
1725  .VarArgs[VAList.UIntPairVal.second];
1726  Type *Ty = I.getType();
1727  switch (Ty->getTypeID()) {
1728  case Type::IntegerTyID:
1729  Dest.IntVal = Src.IntVal;
1730  break;
1731  IMPLEMENT_VAARG(Pointer);
1732  IMPLEMENT_VAARG(Float);
1733  IMPLEMENT_VAARG(Double);
1734  default:
1735  dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1736  llvm_unreachable(nullptr);
1737  }
1738 
1739  // Set the Value of this Instruction.
1740  SetValue(&I, Dest, SF);
1741 
1742  // Move the pointer to the next vararg.
1743  ++VAList.UIntPairVal.second;
1744 }
1745 
1747  ExecutionContext &SF = ECStack.back();
1748  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1749  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1750  GenericValue Dest;
1751 
1752  Type *Ty = I.getType();
1753  const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1754 
1755  if(Src1.AggregateVal.size() > indx) {
1756  switch (Ty->getTypeID()) {
1757  default:
1758  dbgs() << "Unhandled destination type for extractelement instruction: "
1759  << *Ty << "\n";
1760  llvm_unreachable(nullptr);
1761  break;
1762  case Type::IntegerTyID:
1763  Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1764  break;
1765  case Type::FloatTyID:
1766  Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1767  break;
1768  case Type::DoubleTyID:
1769  Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1770  break;
1771  }
1772  } else {
1773  dbgs() << "Invalid index in extractelement instruction\n";
1774  }
1775 
1776  SetValue(&I, Dest, SF);
1777 }
1778 
1780  ExecutionContext &SF = ECStack.back();
1781  Type *Ty = I.getType();
1782 
1783  if(!(Ty->isVectorTy()) )
1784  llvm_unreachable("Unhandled dest type for insertelement instruction");
1785 
1786  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1787  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1788  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1789  GenericValue Dest;
1790 
1791  Type *TyContained = Ty->getContainedType(0);
1792 
1793  const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1794  Dest.AggregateVal = Src1.AggregateVal;
1795 
1796  if(Src1.AggregateVal.size() <= indx)
1797  llvm_unreachable("Invalid index in insertelement instruction");
1798  switch (TyContained->getTypeID()) {
1799  default:
1800  llvm_unreachable("Unhandled dest type for insertelement instruction");
1801  case Type::IntegerTyID:
1802  Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1803  break;
1804  case Type::FloatTyID:
1805  Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1806  break;
1807  case Type::DoubleTyID:
1808  Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1809  break;
1810  }
1811  SetValue(&I, Dest, SF);
1812 }
1813 
1815  ExecutionContext &SF = ECStack.back();
1816 
1817  Type *Ty = I.getType();
1818  if(!(Ty->isVectorTy()))
1819  llvm_unreachable("Unhandled dest type for shufflevector instruction");
1820 
1821  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1822  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1823  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1824  GenericValue Dest;
1825 
1826  // There is no need to check types of src1 and src2, because the compiled
1827  // bytecode can't contain different types for src1 and src2 for a
1828  // shufflevector instruction.
1829 
1830  Type *TyContained = Ty->getContainedType(0);
1831  unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1832  unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1833  unsigned src3Size = (unsigned)Src3.AggregateVal.size();
1834 
1835  Dest.AggregateVal.resize(src3Size);
1836 
1837  switch (TyContained->getTypeID()) {
1838  default:
1839  llvm_unreachable("Unhandled dest type for insertelement instruction");
1840  break;
1841  case Type::IntegerTyID:
1842  for( unsigned i=0; i<src3Size; i++) {
1843  unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1844  if(j < src1Size)
1845  Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1846  else if(j < src1Size + src2Size)
1847  Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1848  else
1849  // The selector may not be greater than sum of lengths of first and
1850  // second operands and llasm should not allow situation like
1851  // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1852  // <2 x i32> < i32 0, i32 5 >,
1853  // where i32 5 is invalid, but let it be additional check here:
1854  llvm_unreachable("Invalid mask in shufflevector instruction");
1855  }
1856  break;
1857  case Type::FloatTyID:
1858  for( unsigned i=0; i<src3Size; i++) {
1859  unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1860  if(j < src1Size)
1861  Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1862  else if(j < src1Size + src2Size)
1863  Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1864  else
1865  llvm_unreachable("Invalid mask in shufflevector instruction");
1866  }
1867  break;
1868  case Type::DoubleTyID:
1869  for( unsigned i=0; i<src3Size; i++) {
1870  unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1871  if(j < src1Size)
1872  Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1873  else if(j < src1Size + src2Size)
1874  Dest.AggregateVal[i].DoubleVal =
1875  Src2.AggregateVal[j-src1Size].DoubleVal;
1876  else
1877  llvm_unreachable("Invalid mask in shufflevector instruction");
1878  }
1879  break;
1880  }
1881  SetValue(&I, Dest, SF);
1882 }
1883 
1885  ExecutionContext &SF = ECStack.back();
1886  Value *Agg = I.getAggregateOperand();
1887  GenericValue Dest;
1888  GenericValue Src = getOperandValue(Agg, SF);
1889 
1891  unsigned Num = I.getNumIndices();
1892  GenericValue *pSrc = &Src;
1893 
1894  for (unsigned i = 0 ; i < Num; ++i) {
1895  pSrc = &pSrc->AggregateVal[*IdxBegin];
1896  ++IdxBegin;
1897  }
1898 
1899  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1900  switch (IndexedType->getTypeID()) {
1901  default:
1902  llvm_unreachable("Unhandled dest type for extractelement instruction");
1903  break;
1904  case Type::IntegerTyID:
1905  Dest.IntVal = pSrc->IntVal;
1906  break;
1907  case Type::FloatTyID:
1908  Dest.FloatVal = pSrc->FloatVal;
1909  break;
1910  case Type::DoubleTyID:
1911  Dest.DoubleVal = pSrc->DoubleVal;
1912  break;
1913  case Type::ArrayTyID:
1914  case Type::StructTyID:
1915  case Type::VectorTyID:
1916  Dest.AggregateVal = pSrc->AggregateVal;
1917  break;
1918  case Type::PointerTyID:
1919  Dest.PointerVal = pSrc->PointerVal;
1920  break;
1921  }
1922 
1923  SetValue(&I, Dest, SF);
1924 }
1925 
1927 
1928  ExecutionContext &SF = ECStack.back();
1929  Value *Agg = I.getAggregateOperand();
1930 
1931  GenericValue Src1 = getOperandValue(Agg, SF);
1932  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1933  GenericValue Dest = Src1; // Dest is a slightly changed Src1
1934 
1936  unsigned Num = I.getNumIndices();
1937 
1938  GenericValue *pDest = &Dest;
1939  for (unsigned i = 0 ; i < Num; ++i) {
1940  pDest = &pDest->AggregateVal[*IdxBegin];
1941  ++IdxBegin;
1942  }
1943  // pDest points to the target value in the Dest now
1944 
1945  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1946 
1947  switch (IndexedType->getTypeID()) {
1948  default:
1949  llvm_unreachable("Unhandled dest type for insertelement instruction");
1950  break;
1951  case Type::IntegerTyID:
1952  pDest->IntVal = Src2.IntVal;
1953  break;
1954  case Type::FloatTyID:
1955  pDest->FloatVal = Src2.FloatVal;
1956  break;
1957  case Type::DoubleTyID:
1958  pDest->DoubleVal = Src2.DoubleVal;
1959  break;
1960  case Type::ArrayTyID:
1961  case Type::StructTyID:
1962  case Type::VectorTyID:
1963  pDest->AggregateVal = Src2.AggregateVal;
1964  break;
1965  case Type::PointerTyID:
1966  pDest->PointerVal = Src2.PointerVal;
1967  break;
1968  }
1969 
1970  SetValue(&I, Dest, SF);
1971 }
1972 
1973 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1974  ExecutionContext &SF) {
1975  switch (CE->getOpcode()) {
1976  case Instruction::Trunc:
1977  return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1978  case Instruction::ZExt:
1979  return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
1980  case Instruction::SExt:
1981  return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
1982  case Instruction::FPTrunc:
1983  return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
1984  case Instruction::FPExt:
1985  return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
1986  case Instruction::UIToFP:
1987  return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
1988  case Instruction::SIToFP:
1989  return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
1990  case Instruction::FPToUI:
1991  return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
1992  case Instruction::FPToSI:
1993  return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
1994  case Instruction::PtrToInt:
1995  return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1996  case Instruction::IntToPtr:
1997  return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1998  case Instruction::BitCast:
1999  return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
2000  case Instruction::GetElementPtr:
2001  return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
2002  gep_type_end(CE), SF);
2003  case Instruction::FCmp:
2004  case Instruction::ICmp:
2005  return executeCmpInst(CE->getPredicate(),
2006  getOperandValue(CE->getOperand(0), SF),
2007  getOperandValue(CE->getOperand(1), SF),
2008  CE->getOperand(0)->getType());
2009  case Instruction::Select:
2010  return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
2011  getOperandValue(CE->getOperand(1), SF),
2012  getOperandValue(CE->getOperand(2), SF),
2013  CE->getOperand(0)->getType());
2014  default :
2015  break;
2016  }
2017 
2018  // The cases below here require a GenericValue parameter for the result
2019  // so we initialize one, compute it and then return it.
2020  GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2021  GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2022  GenericValue Dest;
2023  Type * Ty = CE->getOperand(0)->getType();
2024  switch (CE->getOpcode()) {
2025  case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2026  case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2027  case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2028  case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
2029  case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
2030  case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
2031  case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
2032  case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
2033  case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
2034  case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
2035  case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
2036  case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
2037  case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
2038  case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
2039  case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2040  case Instruction::Shl:
2041  Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2042  break;
2043  case Instruction::LShr:
2044  Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
2045  break;
2046  case Instruction::AShr:
2047  Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
2048  break;
2049  default:
2050  dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2051  llvm_unreachable("Unhandled ConstantExpr");
2052  }
2053  return Dest;
2054 }
2055 
2056 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2057  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2058  return getConstantExprValue(CE, SF);
2059  } else if (Constant *CPV = dyn_cast<Constant>(V)) {
2060  return getConstantValue(CPV);
2061  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2062  return PTOGV(getPointerToGlobal(GV));
2063  } else {
2064  return SF.Values[V];
2065  }
2066 }
2067 
2068 //===----------------------------------------------------------------------===//
2069 // Dispatch and Execution Code
2070 //===----------------------------------------------------------------------===//
2071 
2072 //===----------------------------------------------------------------------===//
2073 // callFunction - Execute the specified function...
2074 //
2076  assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() ||
2077  ECStack.back().Caller.arg_size() == ArgVals.size()) &&
2078  "Incorrect number of arguments passed into function call!");
2079  // Make a new stack frame... and fill it in.
2080  ECStack.emplace_back();
2081  ExecutionContext &StackFrame = ECStack.back();
2082  StackFrame.CurFunction = F;
2083 
2084  // Special handling for external functions.
2085  if (F->isDeclaration()) {
2086  GenericValue Result = callExternalFunction (F, ArgVals);
2087  // Simulate a 'ret' instruction of the appropriate type.
2088  popStackAndReturnValueToCaller (F->getReturnType (), Result);
2089  return;
2090  }
2091 
2092  // Get pointers to first LLVM BB & Instruction in function.
2093  StackFrame.CurBB = &F->front();
2094  StackFrame.CurInst = StackFrame.CurBB->begin();
2095 
2096  // Run through the function arguments and initialize their values...
2097  assert((ArgVals.size() == F->arg_size() ||
2098  (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2099  "Invalid number of values passed to function invocation!");
2100 
2101  // Handle non-varargs arguments...
2102  unsigned i = 0;
2103  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2104  AI != E; ++AI, ++i)
2105  SetValue(&*AI, ArgVals[i], StackFrame);
2106 
2107  // Handle varargs arguments...
2108  StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2109 }
2110 
2111 
2113  while (!ECStack.empty()) {
2114  // Interpret a single instruction & increment the "PC".
2115  ExecutionContext &SF = ECStack.back(); // Current stack frame
2116  Instruction &I = *SF.CurInst++; // Increment before execute
2117 
2118  // Track the number of dynamic instructions executed.
2119  ++NumDynamicInsts;
2120 
2121  DEBUG(dbgs() << "About to interpret: " << I);
2122  visit(I); // Dispatch to one of the visit* methods...
2123  }
2124 }
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
Return a value (possibly void), from a function.
void visitVAArgInst(VAArgInst &I)
Definition: Execution.cpp:1717
PointerTy PointerVal
Definition: GenericValue.h:32
std::vector< GenericValue > AggregateVal
Definition: GenericValue.h:38
static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:236
unsigned getOpcode() const
Return the opcode at the root of this constant expression.
Definition: Constants.h:1171
This instruction extracts a struct member or array element value from an aggregate value...
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1542
APInt sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:841
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
iterator_range< CaseIt > cases()
Iteration adapter for range-for loops.
This class represents an incoming formal argument to a Function.
Definition: Argument.h:30
Value * getAggregateOperand()
unsigned arg_size() const
Definition: CallSite.h:219
double RoundAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:2114
static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:515
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:115
Compute iterated dominance frontiers using a linear time algorithm.
Definition: AllocatorList.h:24
BinaryOps getOpcode() const
Definition: InstrTypes.h:523
void visitAllocaInst(AllocaInst &I)
Definition: Execution.cpp:962
void visitStoreInst(StoreInst &I)
Definition: Execution.cpp:1049
float RoundAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float vlalue.
Definition: APInt.h:2126
unsigned getNumIndices() const
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF)
Definition: Execution.cpp:42
iterator begin() const
Definition: ArrayRef.h:137
2: 32-bit floating point type
Definition: Type.h:59
APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition: APInt.cpp:1590
void visitTruncInst(TruncInst &I)
Definition: Execution.cpp:1654
void visitFPToUIInst(FPToUIInst &I)
Definition: Execution.cpp:1689
unsigned char Untyped[8]
Definition: GenericValue.h:34
static void executeFDivInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:88
This class provides various memory handling functions that manipulate MemoryBlock instances...
Definition: Memory.h:46
This class represents zero extension of integer types.
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:562
void visitGetElementPtrInst(GetElementPtrInst &I)
Definition: Execution.cpp:1032
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:865
APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition: APInt.cpp:1519
BasicBlock::iterator CurInst
Definition: Interpreter.h:64
#define MASK_VECTOR_NANS(TY, X, Y, FLAG)
Definition: Execution.cpp:364
Value * getCondition() const
gep_type_iterator gep_type_end(const User *GEP)
unsigned less or equal
Definition: InstrTypes.h:879
unsigned less than
Definition: InstrTypes.h:878
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:859
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:533
std::map< Value *, GenericValue > Values
Definition: Interpreter.h:67
This instruction constructs a fixed permutation of two input vectors.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:728
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:869
void visitExtractElementInst(ExtractElementInst &I)
Definition: Execution.cpp:1746
BasicBlock * getSuccessor(unsigned i) const
APInt trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:818
void visitShl(BinaryOperator &I)
Definition: Execution.cpp:1136
arg_iterator arg_end()
Definition: Function.h:612
13: Structures
Definition: Type.h:73
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:344
STATISTIC(NumFunctions, "Total number of functions")
F(f)
This class represents a sign extension of integer types.
An instruction for reading from memory.
Definition: Instructions.h:164
const DataLayout & getDataLayout() const
APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:883
Value * getCondition() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:227
#define IMPLEMENT_VECTOR_FCMP(OP)
Definition: Execution.cpp:317
15: Pointers
Definition: Type.h:75
static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:429
unsigned getPredicate() const
Return the ICMP or FCMP predicate value.
Definition: Constants.cpp:1093
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1488
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:252
static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:208
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:478
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:864
void visitFCmpInst(FCmpInst &I)
Definition: Execution.cpp:610
void * PointerTy
Definition: GenericValue.h:22
ArrayRef< unsigned > getIndices() const
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:491
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:863
bool isVolatile() const
Return true if this is a load from a volatile memory location.
Definition: Instructions.h:217
static Type * getIndexedType(Type *Agg, ArrayRef< unsigned > Idxs)
Returns the type of the element that would be extracted with an extractvalue instruction with the spe...
This class represents the LLVM &#39;select&#39; instruction.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
static APInt doubleToBits(double V)
Converts a double to APInt bits.
Definition: APInt.h:1710
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:138
PointerType * getType() const
Overload to return most specific pointer type.
Definition: Instructions.h:97
bool isFloatingPointTy() const
Return true if this is one of the six floating-point types.
Definition: Type.h:162
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:981
void * getPointerToGlobal(const GlobalValue *GV)
getPointerToGlobal - This returns the address of the specified global value.
Class to represent struct types.
Definition: DerivedTypes.h:201
A Use represents the edge between a Value definition and its users.
Definition: Use.h:56
void visitSelectInst(SelectInst &I)
Definition: Execution.cpp:806
#define IMPLEMENT_BINARY_OPERATOR(OP, TY)
Definition: Execution.cpp:50
IterTy arg_end() const
Definition: CallSite.h:575
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:197
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:860
InstrTy * getInstruction() const
Definition: CallSite.h:92
static cl::opt< bool > PrintVolatile("interpreter-print-volatile", cl::Hidden, cl::desc("make the interpreter print every volatile load and store"))
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition: APInt.h:966
static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:138
This file implements a class to represent arbitrary precision integral constant values and operations...
This class represents a cast from a pointer to an integer.
#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)
Definition: Execution.cpp:119
static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:264
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:90
ValTy * getCalledValue() const
Return the pointer to function that is being called.
Definition: CallSite.h:100
void visitInsertElementInst(InsertElementInst &I)
Definition: Execution.cpp:1779
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:862
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:245
void visitFPTruncInst(FPTruncInst &I)
Definition: Execution.cpp:1669
#define IMPLEMENT_SCALAR_NANS(TY, X, Y)
Definition: Execution.cpp:339
static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:166
void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, Type *Ty)
FIXME: document.
This instruction compares its operands according to the predicate given to the constructor.
bool isVarArg() const
Definition: DerivedTypes.h:123
This class represents a no-op cast from one type to another.
void callFunction(Function *F, ArrayRef< GenericValue > ArgVals)
Definition: Execution.cpp:2075
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory)...
Definition: APInt.h:33
void visitInsertValueInst(InsertValueInst &I)
Definition: Execution.cpp:1926
bool isLittleEndian() const
Layout endianness...
Definition: DataLayout.h:216
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:125
GenericValue getConstantValue(const Constant *C)
Converts a Constant* into a GenericValue, including handling of ConstantExpr values.
An instruction for storing to memory.
Definition: Instructions.h:306
This class represents a cast from floating point to signed integer.
float RoundSignedAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition: APInt.h:2133
static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:222
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:66
void visitBitCastInst(BitCastInst &I)
Definition: Execution.cpp:1709
VectorType * getType() const
Overload to return most specific vector type.
void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, Type *Ty)
StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:250
This class represents a truncation of integer types.
Value * getOperand(unsigned i) const
Definition: User.h:154
#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC)
Definition: Execution.cpp:468
#define IMPLEMENT_VAARG(TY)
Definition: Execution.cpp:1714
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return &#39;this&#39;.
Definition: Type.h:301
11: Arbitrary bit width integers
Definition: Type.h:71
bool isVoidTy() const
Return true if this is &#39;void&#39;.
Definition: Type.h:141
bool isFloatTy() const
Return true if this is &#39;float&#39;, a 32-bit IEEE fp type.
Definition: Type.h:147
an instruction for type-safe pointer arithmetic to access elements of arrays and structs ...
Definition: Instructions.h:837
void visitLShr(BinaryOperator &I)
Definition: Execution.cpp:1163
static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:180
Type * getReturnType() const
Returns the type of the ret val.
Definition: Function.h:150
void visitICmpInst(ICmpInst &I)
Definition: Execution.cpp:278
This instruction inserts a single (scalar) element into a VectorType value.
static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:524
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:149
APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition: APInt.cpp:1612
static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:194
LLVM Basic Block Representation.
Definition: BasicBlock.h:59
The instances of the Type class are immutable: once they are created, they are never changed...
Definition: Type.h:46
Conditional or Unconditional Branch instruction.
void visitCallSite(CallSite CS)
Definition: Execution.cpp:1063
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:149
This function has undefined behavior.
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This is an important base class in LLVM.
Definition: Constant.h:42
This file contains the declarations for the subclasses of Constant, which represent the different fla...
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:221
Indirect Branch Instruction.
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:488
void visitIndirectBrInst(IndirectBrInst &I)
Definition: Execution.cpp:913
unsigned getNumIndices() const
BasicBlock * getDefaultDest() const
void visitZExtInst(ZExtInst &I)
Definition: Execution.cpp:1664
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:161
static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:152
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:375
void exitCalled(GenericValue GV)
Definition: Execution.cpp:820
static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:401
This instruction compares its operands according to the predicate given to the constructor.
size_t arg_size() const
Definition: Function.h:630
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:862
Value * getPointerOperand()
Definition: Instructions.h:270
static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:506
arg_iterator arg_begin()
Definition: Function.h:603
struct IntPair UIntPairVal
Definition: GenericValue.h:33
Class to represent integer types.
Definition: DerivedTypes.h:40
Function * CurFunction
Definition: Interpreter.h:62
BasicBlock * CurBB
Definition: Interpreter.h:63
void visitExtractValueInst(ExtractValueInst &I)
Definition: Execution.cpp:1884
This class represents a cast from an integer to a pointer.
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:870
void visitFPToSIInst(FPToSIInst &I)
Definition: Execution.cpp:1694
void visitIntToPtrInst(IntToPtrInst &I)
Definition: Execution.cpp:1704
void visitFPExtInst(FPExtInst &I)
Definition: Execution.cpp:1674
uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition: MathExtras.h:632
This class represents the va_arg llvm instruction, which returns an argument of the specified type gi...
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
void visitUnreachableInst(UnreachableInst &I)
Definition: Execution.cpp:877
static void executeFAddInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:55
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:868
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:415
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:959
signed greater than
Definition: InstrTypes.h:880
void * GVTOP(const GenericValue &GV)
Definition: GenericValue.h:51
idx_iterator idx_begin() const
static void executeFRemInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:99
14: Arrays
Definition: Type.h:74
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:857
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:935
Iterator for intrusive lists based on ilist_node.
void visitShuffleVectorInst(ShuffleVectorInst &I)
Definition: Execution.cpp:1814
unsigned getNumOperands() const
Definition: User.h:176
std::vector< GenericValue > VarArgs
Definition: Interpreter.h:68
This is the shared class of boolean and integer constants.
Definition: Constants.h:84
void visitReturnInst(ReturnInst &I)
Definition: Execution.cpp:863
16: SIMD &#39;packed&#39; format, or other vector type
Definition: Type.h:76
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type...
Definition: Type.cpp:130
IterTy arg_begin() const
Definition: CallSite.h:571
void visitSExtInst(SExtInst &I)
Definition: Execution.cpp:1659
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:867
iterator end() const
Definition: ArrayRef.h:138
signed less than
Definition: InstrTypes.h:882
This class represents a cast from floating point to unsigned integer.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY
getIntrinsicID - This method returns the ID number of the specified function, or Intrinsic::not_intri...
Definition: Function.h:175
static void executeFSubInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:66
static void executeFMulInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:77
static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:645
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:132
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition: Function.h:145
signed less or equal
Definition: InstrTypes.h:883
GenericValue PTOGV(void *P)
Definition: GenericValue.h:50
Class for arbitrary precision integers.
Definition: APInt.h:69
void visitPtrToIntInst(PtrToIntInst &I)
Definition: Execution.cpp:1699
void runAtExitHandlers()
runAtExitHandlers - Run any functions registered by the program&#39;s calls to atexit(3), which we intercept and store in AtExitHandlers.
Definition: Interpreter.cpp:71
APInt RoundFloatToAPInt(float Float, unsigned width)
Converts a float value into a APInt.
Definition: APInt.h:2145
void visitBranchInst(BranchInst &I)
Definition: Execution.cpp:881
uint64_t getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:403
#define FLOAT_VECTOR_OP(OP)
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:927
void visitAShr(BinaryOperator &I)
Definition: Execution.cpp:1190
bool isVolatile() const
Return true if this is a store to a volatile memory location.
Definition: Instructions.h:339
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, GenericValue Src3, Type *Ty)
Definition: Execution.cpp:790
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:513
void LowerIntrinsicCall(CallInst *CI)
LowerIntrinsicCall - This method replaces a call with the LLVM function which should be used to imple...
static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:497
unsigned greater or equal
Definition: InstrTypes.h:877
APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition: APInt.cpp:1682
#define I(x, y, z)
Definition: MD5.cpp:58
#define IMPLEMENT_INTEGER_ICMP(OP, TY)
Definition: Execution.cpp:114
void visitSIToFPInst(SIToFPInst &I)
Definition: Execution.cpp:1684
This class represents a cast unsigned integer to floating point.
#define INTEGER_VECTOR_OPERATION(OP)
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:861
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:564
LLVM_NODISCARD std::enable_if<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:323
idx_iterator idx_begin() const
This instruction extracts a single (scalar) element from a VectorType value.
void visitBinaryOperator(BinaryOperator &I)
Definition: Execution.cpp:681
static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, Type *Ty, const bool val)
Definition: Execution.cpp:595
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
bool isUnconditional() const
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:865
void visitLoadInst(LoadInst &I)
Definition: Execution.cpp:1038
Type * getType() const
Return the type of the instruction that generated this call site.
Definition: CallSite.h:264
bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition: Globals.cpp:201
FunTy * getCalledFunction() const
Return the function being called if this is a direct call, otherwise return null (if it&#39;s an indirect...
Definition: CallSite.h:107
float bitsToFloat() const
Converts APInt bits to a double.
Definition: APInt.h:1702
3: 64-bit floating point type
Definition: Type.h:60
Multiway switch.
This class represents a cast from signed integer to floating point.
#define IMPLEMENT_POINTER_ICMP(OP)
Definition: Execution.cpp:132
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
const BasicBlock & front() const
Definition: Function.h:595
This class represents a truncation of floating point types.
unsigned getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition: Type.cpp:115
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:856
#define IMPLEMENT_UNORDERED(TY, X, Y)
Definition: Execution.cpp:457
ArrayRef< unsigned > getIndices() const
LLVM Value Representation.
Definition: Value.h:73
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:866
void visitUIToFPInst(UIToFPInst &I)
Definition: Execution.cpp:1679
#define INTEGER_VECTOR_FUNCTION(OP)
Invoke instruction.
#define DEBUG(X)
Definition: Debug.h:118
GenericValue callExternalFunction(Function *F, ArrayRef< GenericValue > ArgVals)
void visitSwitchInst(SwitchInst &I)
Definition: Execution.cpp:894
unsigned greater than
Definition: InstrTypes.h:876
static unsigned getShiftAmount(uint64_t orgShiftAmount, llvm::APInt valueToShift)
Definition: Execution.cpp:1125
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:325
#define IMPLEMENT_FCMP(OP, TY)
Definition: Execution.cpp:304
APInt RoundDoubleToAPInt(double Double, unsigned width)
Converts the given double value into a APInt.
Definition: APInt.cpp:714
This class represents an extension of floating point types.
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:858
static APInt floatToBits(float V)
Converts a float to APInt bits.
Definition: APInt.h:1718
bool isDoubleTy() const
Return true if this is &#39;double&#39;, a 64-bit IEEE fp type.
Definition: Type.h:150
double bitsToDouble() const
Converts APInt bits to a double.
Definition: APInt.h:1693
VectorType * getType() const
Overload to return most specific vector type.
Value * getPointerOperand()
Definition: Instructions.h:398
double RoundSignedAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:2121
Type * getElementType() const
Definition: DerivedTypes.h:486
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:855
signed greater or equal
Definition: InstrTypes.h:881
static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:443
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition: Type.h:330
const BasicBlock * getParent() const
Definition: Instruction.h:66
an instruction to allocate memory on the stack
Definition: Instructions.h:60
This instruction inserts a struct field of array element value into an aggregate value.
gep_type_iterator gep_type_begin(const User *GEP)