19using namespace PatternMatch;
21#define DEBUG_TYPE "instcombine"
39 unsigned MaximalPossibleTotalShiftAmount =
42 APInt MaximalRepresentableShiftAmount =
44 return MaximalRepresentableShiftAmount.
uge(MaximalPossibleTotalShiftAmount);
60 bool AnalyzeForSignBitExtraction) {
72 Value *Trunc =
nullptr;
91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
104 if (Trunc && !AnalyzeForSignBitExtraction &&
109 auto *NewShAmt = dyn_cast_or_null<Constant>(
114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115 unsigned XBitWidth =
X->getType()->getScalarSizeInBits();
118 APInt(NewShAmtBitWidth, XBitWidth))))
126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
130 APInt(NewShAmtBitWidth, XBitWidth - 1))))
133 if (AnalyzeForSignBitExtraction)
137 assert(IdenticalShOpcodes &&
"Should not get here with different shifts.");
139 if (NewShAmt->getType() !=
X->getType()) {
141 X->getType(),
SQ.
DL);
153 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
193 "The input must be 'shl'!");
208 bool HadTrunc = WidestTy != NarrowestTy;
240 MaskShAmt, ShiftShAmt,
false,
false, Q));
251 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
254 Instruction::ZExt, SumOfShAmts, ExtendedTy, Q.
DL);
255 if (!ExtendedSumOfShAmts)
261 Instruction::Shl, ExtendedAllOnes, ExtendedSumOfShAmts, Q.
DL);
262 if (!ExtendedInvertedMask)
279 ShiftShAmt, MaskShAmt,
false,
false, Q));
291 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
300 if (!ExtendedNumHighBitsToClear)
306 ExtendedNumHighBitsToClear, Q.
DL);
350 assert(
I.isShift() &&
"Expected a shift as input");
351 auto *BinInst = dyn_cast<BinaryOperator>(
I.getOperand(0));
353 (!BinInst->isBitwiseLogicOp() &&
354 BinInst->getOpcode() != Instruction::Add &&
355 BinInst->getOpcode() != Instruction::Sub) ||
356 !BinInst->hasOneUse())
365 if ((BinInst->getOpcode() == Instruction::Add ||
366 BinInst->getOpcode() == Instruction::Sub) &&
367 ShiftOpcode != Instruction::Shl)
370 Type *Ty =
I.getType();
375 auto matchFirstShift = [&](
Value *V,
Value *W) {
387 bool FirstShiftIsOp1 =
false;
388 if (matchFirstShift(BinInst->getOperand(0), BinInst->getOperand(1)))
389 Y = BinInst->getOperand(1);
390 else if (matchFirstShift(BinInst->getOperand(1), BinInst->getOperand(0))) {
391 Y = BinInst->getOperand(0);
392 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub;
400 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1;
401 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2;
409 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
411 Type *Ty =
I.getType();
425 if (isa<Constant>(Op0))
426 if (
SelectInst *SI = dyn_cast<SelectInst>(Op1))
435 if (
auto *NewShift = cast_or_null<Instruction>(
447 if (
I.getOpcode() == Instruction::Shl) {
466 assert(!
AC->isZero() &&
"Expected simplify of shifted zero");
467 unsigned PosOffset = (-*AddC).getZExtValue();
469 auto isSuitableForPreShift = [PosOffset, &
I,
AC]() {
470 switch (
I.getOpcode()) {
473 case Instruction::Shl:
474 return (
I.hasNoSignedWrap() ||
I.hasNoUnsignedWrap()) &&
475 AC->eq(
AC->lshr(PosOffset).shl(PosOffset));
476 case Instruction::LShr:
477 return I.isExact() &&
AC->eq(
AC->shl(PosOffset).lshr(PosOffset));
478 case Instruction::AShr:
479 return I.isExact() &&
AC->eq(
AC->shl(PosOffset).ashr(PosOffset));
482 if (isSuitableForPreShift()) {
483 Constant *NewC = ConstantInt::get(Ty,
I.getOpcode() == Instruction::Shl
484 ?
AC->lshr(PosOffset)
485 :
AC->shl(PosOffset));
488 if (
I.getOpcode() == Instruction::Shl) {
516 if ((
I.getOpcode() == Instruction::LShr ||
517 I.getOpcode() == Instruction::AShr) &&
519 isa<CmpIntrinsic>(CmpIntr) &&
541 const APInt *InnerShiftConst;
548 bool IsInnerShl = InnerShift->
getOpcode() == Instruction::Shl;
549 if (IsInnerShl == IsOuterShl)
555 if (*InnerShiftConst == OuterShAmt)
565 if (InnerShiftConst->
ugt(OuterShAmt) && InnerShiftConst->
ult(TypeWidth)) {
568 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
594 if (!
I)
return false;
598 if (!
I->hasOneUse())
return false;
600 switch (
I->getOpcode()) {
601 default:
return false;
602 case Instruction::And:
603 case Instruction::Or:
604 case Instruction::Xor:
609 case Instruction::Shl:
610 case Instruction::LShr:
613 case Instruction::Select: {
615 Value *TrueVal = SI->getTrueValue();
616 Value *FalseVal = SI->getFalseValue();
620 case Instruction::PHI: {
630 case Instruction::Mul: {
631 const APInt *MulConst;
633 return !IsLeftShift &&
match(
I->getOperand(1),
m_APInt(MulConst)) &&
644 bool IsInnerShl = InnerShift->
getOpcode() == Instruction::Shl;
654 auto NewInnerShift = [&](
unsigned ShAmt) {
655 InnerShift->
setOperand(1, ConstantInt::get(ShType, ShAmt));
668 if (IsInnerShl == IsOuterShl) {
670 if (InnerShAmt + OuterShAmt >= TypeWidth)
673 return NewInnerShift(InnerShAmt + OuterShAmt);
679 if (InnerShAmt == OuterShAmt) {
680 APInt Mask = IsInnerShl
684 ConstantInt::get(ShType, Mask));
685 if (
auto *AndI = dyn_cast<Instruction>(
And)) {
686 AndI->moveBefore(InnerShift);
692 assert(InnerShAmt > OuterShAmt &&
693 "Unexpected opposite direction logical shift pair");
699 return NewInnerShift(InnerShAmt - OuterShAmt);
707 if (
Constant *
C = dyn_cast<Constant>(V)) {
717 switch (
I->getOpcode()) {
719 case Instruction::And:
720 case Instruction::Or:
721 case Instruction::Xor:
729 case Instruction::Shl:
730 case Instruction::LShr:
734 case Instruction::Select:
740 case Instruction::PHI: {
747 isLeftShift, IC,
DL));
750 case Instruction::Mul: {
751 assert(!isLeftShift &&
"Unexpected shift direction!");
754 unsigned TypeWidth =
I->getType()->getScalarSizeInBits();
756 auto *
And = BinaryOperator::CreateAnd(Neg,
757 ConstantInt::get(
I->getType(), Mask));
771 case Instruction::Add:
772 return Shift.
getOpcode() == Instruction::Shl;
773 case Instruction::Or:
774 case Instruction::And:
776 case Instruction::Xor:
789 bool IsLeftShift =
I.getOpcode() == Instruction::Shl;
795 R->setHasNoUnsignedWrap(
I.hasNoUnsignedWrap() &&
799 R->setIsExact(
I.isExact() && BO0->
isExact());
803 Type *Ty =
I.getType();
812 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC));
816 auto ExtOpcode = (
I.getOpcode() == Instruction::AShr) ? Instruction::SExt
826 "Shift over the type width should have been removed already");
830 if (
I.getOpcode() != Instruction::AShr &&
833 dbgs() <<
"ICE: GetShiftedValue propagating shift through expression"
834 " to eliminate shift:\n IN: "
835 << *Op0 <<
"\n SH: " <<
I <<
"\n");
847 if (
auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
879 if (!isa<Constant>(FalseVal) && TBO->
getOperand(0) == FalseVal &&
896 if (!isa<Constant>(TrueVal) && FBO->
getOperand(0) == TrueVal &&
923 assert(
I.getOpcode() == Instruction::LShr);
926 Value *ShiftAmt =
I.getOperand(1);
927 Type *Ty =
I.getType();
932 const APInt *ShAmtAPInt =
nullptr;
933 Value *
X =
nullptr, *
Y =
nullptr;
944 if (
X->getType()->getScalarSizeInBits() != ShAmt ||
945 Y->getType()->getScalarSizeInBits() != ShAmt)
949 if (!
Add->hasOneUse()) {
954 TruncInst *Trunc = dyn_cast<TruncInst>(U);
972 if (!
Add->hasOneUse()) {
983 assert(
I.isShift() &&
"Expected a shift as input");
985 if (
I.getOpcode() == Instruction::Shl) {
986 if (
I.hasNoUnsignedWrap() &&
I.hasNoSignedWrap())
1007 bool Changed =
false;
1009 if (
I.getOpcode() == Instruction::Shl) {
1012 I.setHasNoUnsignedWrap();
1016 if (!
I.hasNoSignedWrap()) {
1020 I.setHasNoSignedWrap();
1030 I.setIsExact(Changed);
1039 I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(), Q))
1051 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1052 Type *Ty =
I.getType();
1057 unsigned ShAmtC =
C->getZExtValue();
1063 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1064 if (ShAmtC < SrcWidth &&
1072 return BinaryOperator::CreateAnd(
X, ConstantInt::get(Ty, Mask));
1079 if (ShrAmt < ShAmtC) {
1081 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1082 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1083 NewShl->setHasNoUnsignedWrap(
1084 I.hasNoUnsignedWrap() ||
1086 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1087 I.hasNoSignedWrap()));
1088 NewShl->setHasNoSignedWrap(
I.hasNoSignedWrap());
1091 if (ShrAmt > ShAmtC) {
1093 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1095 cast<BinaryOperator>(Op0)->
getOpcode(),
X, ShiftDiff);
1096 NewShr->setIsExact(
true);
1104 if (ShrAmt < ShAmtC) {
1106 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1107 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1108 NewShl->setHasNoUnsignedWrap(
1109 I.hasNoUnsignedWrap() ||
1111 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1112 I.hasNoSignedWrap()));
1113 NewShl->setHasNoSignedWrap(
I.hasNoSignedWrap());
1116 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1118 if (ShrAmt > ShAmtC) {
1120 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1121 auto *OldShr = cast<BinaryOperator>(Op0);
1124 NewShr->setIsExact(OldShr->isExact());
1127 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
1137 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
1138 Constant *ShiftDiffC = ConstantInt::get(
X->getType(), ShDiff);
1139 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->
getOpcode() : Instruction::Shl;
1148 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
1154 switch (BinOpcode) {
1157 case Instruction::Add:
1158 case Instruction::And:
1159 case Instruction::Or:
1160 case Instruction::Xor:
1161 case Instruction::Sub:
1169 isSuitableBinOpcode(Op0BO->
getOpcode())) {
1190 unsigned Op1Val =
C->getLimitedValue(
BitWidth);
1192 Constant *Mask = ConstantInt::get(Ty, Bits);
1193 return BinaryOperator::CreateAnd(
B, Mask);
1204 X->getName() +
".mask");
1206 if (
auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0BO);
1207 Disjoint && Disjoint->isDisjoint())
1208 cast<PossiblyDisjointInst>(NewOp)->setIsDisjoint(
true);
1217 return BinaryOperator::CreateSub(NewLHS, NewShift);
1230 return BinaryOperator::CreateAnd(Mask,
X);
1236 return BinaryOperator::CreateShl(
AllOnes, Op1);
1257 return BinaryOperator::CreateLShr(
1265 return BinaryOperator::CreateAnd(NegX,
X);
1283 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1284 Type *Ty =
I.getType();
1300 auto *NewSub = BinaryOperator::CreateNUWSub(
X, NewLshr);
1301 NewSub->setHasNoSignedWrap(
1310 return BinaryOperator::CreateAnd(
X,
Y);
1317 auto *NewSub = BinaryOperator::CreateNUWSub(NewLshr,
Y);
1318 NewSub->setHasNoSignedWrap(
1324 switch (BinOpcode) {
1327 case Instruction::Add:
1328 case Instruction::And:
1329 case Instruction::Or:
1330 case Instruction::Xor:
1341 if (isSuitableBinOpcode(Op0OB->
getOpcode())) {
1342 if (
auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op0);
1343 !OBO || OBO->hasNoUnsignedWrap()) {
1345 Y, Op1,
"",
I.isExact() && Op0OB->
getOpcode() != Instruction::And);
1348 NewBinOp->setHasNoUnsignedWrap(
true);
1349 NewBinOp->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1350 }
else if (
auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0)) {
1351 cast<PossiblyDisjointInst>(NewBinOp)->setIsDisjoint(
1352 Disjoint->isDisjoint());
1360 unsigned ShAmtC =
C->getZExtValue();
1361 auto *
II = dyn_cast<IntrinsicInst>(Op0);
1363 (
II->getIntrinsicID() == Intrinsic::ctlz ||
1364 II->getIntrinsicID() == Intrinsic::cttz ||
1365 II->getIntrinsicID() == Intrinsic::ctpop)) {
1369 bool IsPop =
II->getIntrinsicID() == Intrinsic::ctpop;
1377 if (C1->
ult(ShAmtC)) {
1379 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1382 auto *NewLShr = BinaryOperator::CreateLShr(
X, ShiftDiff);
1383 NewLShr->setIsExact(
I.isExact());
1390 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1392 }
else if (C1->
ugt(ShAmtC)) {
1394 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1397 auto *NewShl = BinaryOperator::CreateShl(
X, ShiftDiff);
1398 NewShl->setHasNoUnsignedWrap(
true);
1399 NewShl->setHasNoSignedWrap(ShAmtC > 0);
1406 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1412 return BinaryOperator::CreateAnd(
X, ConstantInt::get(Ty, Mask));
1424 unsigned Op1Val =
C->getLimitedValue(
BitWidth);
1426 Constant *Mask = ConstantInt::get(Ty, Bits);
1427 return BinaryOperator::CreateAnd(NewAdd, Mask);
1431 (!Ty->
isIntegerTy() || shouldChangeType(Ty,
X->getType()))) {
1433 "Big shift not simplified to zero?");
1440 unsigned SrcTyBitWidth =
X->getType()->getScalarSizeInBits();
1442 if (SrcTyBitWidth == 1) {
1443 auto *NewC = ConstantInt::get(
1448 if ((!Ty->
isIntegerTy() || shouldChangeType(Ty,
X->getType())) &&
1458 if (ShAmtC ==
BitWidth - SrcTyBitWidth) {
1460 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1480 return BinaryOperator::CreateAnd(Signbit,
X);
1492 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1500 if (AmtSum < SrcWidth &&
1508 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1514 if (
BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1524 auto *NewAdd = BinaryOperator::CreateNUWAdd(
1527 NewAdd->setHasNoSignedWrap(
1540 if (MulC->
eq(NewMulC.
shl(ShAmtC))) {
1542 BinaryOperator::CreateNUWMul(
X, ConstantInt::get(Ty, NewMulC));
1544 "lshr X, 0 should be handled by simplifyLShrInst.");
1545 NewMul->setHasNoSignedWrap(
true);
1553 if (
BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1555 return BinaryOperator::CreateNSWAdd(
1566 unsigned SrcWidth =
X->getType()->getScalarSizeInBits();
1567 unsigned WidthDiff =
BitWidth - SrcWidth;
1568 if (SrcWidth % 16 == 0) {
1570 if (ShAmtC >= WidthDiff) {
1577 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
1578 return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
1585 Value *BoolX, *BoolY;
1590 (
X->hasOneUse() ||
Y->hasOneUse() || Op0->
hasOneUse())) {
1604 return BinaryOperator::CreateAnd(Mask,
X);
1610 return BinaryOperator::CreateLShr(
AllOnes, Op1);
1623 "Must be called with arithmetic right-shift instruction only.");
1629 APInt(
C->getType()->getScalarSizeInBits(),
1630 V->getType()->getScalarSizeInBits())));
1638 if (!
match(&OldAShr,
1644 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1650 bool HadTrunc = MaybeTrunc != HighBitExtract;
1653 Value *
X, *NumLowBitsToSkip;
1659 if (!
match(NumLowBitsToSkip,
1662 !BitWidthSplat(C0, HighBitExtract))
1699 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1700 Type *Ty =
I.getType();
1702 const APInt *ShAmtAPInt;
1711 ShAmt ==
BitWidth -
X->getType()->getScalarSizeInBits())
1720 if (ShlAmt < ShAmt) {
1722 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1723 auto *NewAShr = BinaryOperator::CreateAShr(
X, ShiftDiff);
1724 NewAShr->setIsExact(
I.isExact());
1727 if (ShlAmt > ShAmt) {
1729 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1731 NewShl->setHasNoSignedWrap(
true);
1740 AmtSum = std::min(AmtSum,
BitWidth - 1);
1742 return BinaryOperator::CreateAShr(
X, ConstantInt::get(Ty, AmtSum));
1746 (Ty->
isVectorTy() || shouldChangeType(Ty,
X->getType()))) {
1748 Type *SrcTy =
X->getType();
1772 (
BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1777 auto *NewAdd = BinaryOperator::CreateNSWAdd(
1780 NewAdd->setHasNoUnsignedWrap(
1797 Constant *Mask = ConstantInt::get(Ty, 1);
1801 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1811 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1);
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file provides internal interfaces used to implement the InstCombine.
static Value * foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt, bool IsOuterShl, InstCombiner::BuilderTy &Builder)
Fold OuterShift (InnerShift X, C1), C2.
static bool setShiftFlags(BinaryOperator &I, const SimplifyQuery &Q)
static Instruction * dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift, const SimplifyQuery &Q, InstCombiner::BuilderTy &Builder)
static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift, InstCombinerImpl &IC, Instruction *CxtI)
See if we can compute the specified value, but shifted logically to the left or right by some number ...
bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1, Value *ShAmt1)
static Instruction * foldShiftOfShiftedBinOp(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/ shl) that itself has a shi...
static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl, Instruction *InnerShift, InstCombinerImpl &IC, Instruction *CxtI)
Return true if we can simplify two logical (either left or right) shifts that have constant shift amo...
static Value * getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, InstCombinerImpl &IC, const DataLayout &DL)
When canEvaluateShifted() returns true for an expression, this function inserts the new computation t...
static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift, BinaryOperator *BO)
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool hasNoUnsignedWrap(BinaryOperator &I)
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static const MCExpr * MaskShift(const MCExpr *Val, uint32_t Mask, uint32_t Shift, MCContext &Ctx)
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool isNegative() const
Determine sign of this APInt.
bool eq(const APInt &RHS) const
Equality comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
APInt shl(unsigned shiftAmt) const
Left-shift function.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLE
signed less or equal
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getNot(Constant *C)
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
This is an important base class in LLVM.
static Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static Constant * mergeUndefsWith(Constant *C, Constant *Other)
Merges undefs of a Constant with another Constant, along with the undefs already present.
static Constant * getAllOnesValue(Type *Ty)
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateIsNotNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg > -1.
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateIsNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg == 0.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * visitLShr(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Value * reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator *Sh0, const SimplifyQuery &SQ, bool AnalyzeForSignBitExtraction=false)
Instruction * visitAShr(BinaryOperator &I)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitShl(BinaryOperator &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldVariableSignZeroExtensionOfVariableHighBitExtract(BinaryOperator &OldAShr)
Instruction * commonShiftTransforms(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Instruction * FoldShiftByConstant(Value *Op0, Constant *Op1, BinaryOperator &I)
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth=0, const Instruction *CxtI=nullptr) const
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
bool isLogicalShift() const
Return true if this is a logical shift left or a logical shift right.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
op_range incoming_values()
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Type * getExtendedType() const
Given scalar/vector integer type, returns a type with elements twice as wide as in the original type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
StringRef getName() const
Return a constant reference to the value's name.
void takeName(Value *V)
Transfer the name from V to this value.
This class represents zero extension of integer types.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
OneUse_match< T > m_OneUse(const T &SubPattern)
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
This is an optimization pass for GlobalISel generic memory operations.
Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
@ And
Bitwise or logical AND of integers.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
constexpr unsigned BitWidth
unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return the number of times the sign bit of the register is replicated into the other bits.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
SimplifyQuery getWithInstruction(const Instruction *I) const