LLVM 19.0.0git
TargetTransformInfo.h
Go to the documentation of this file.
1//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This pass exposes codegen information to IR-level passes. Every
10/// transformation that uses codegen information is broken into three parts:
11/// 1. The IR-level analysis pass.
12/// 2. The IR-level transformation interface which provides the needed
13/// information.
14/// 3. Codegen-level implementation which uses target-specific hooks.
15///
16/// This file defines #2, which is the interface that IR-level transformations
17/// use for querying the codegen.
18///
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23
25#include "llvm/IR/FMF.h"
26#include "llvm/IR/InstrTypes.h"
27#include "llvm/IR/PassManager.h"
28#include "llvm/Pass.h"
32#include <functional>
33#include <optional>
34#include <utility>
35
36namespace llvm {
37
38namespace Intrinsic {
39typedef unsigned ID;
40}
41
42class AllocaInst;
43class AssumptionCache;
44class BlockFrequencyInfo;
45class DominatorTree;
46class BranchInst;
47class CallBase;
48class Function;
49class GlobalValue;
50class InstCombiner;
51class OptimizationRemarkEmitter;
52class InterleavedAccessInfo;
53class IntrinsicInst;
54class LoadInst;
55class Loop;
56class LoopInfo;
57class LoopVectorizationLegality;
58class ProfileSummaryInfo;
59class RecurrenceDescriptor;
60class SCEV;
61class ScalarEvolution;
62class StoreInst;
63class SwitchInst;
64class TargetLibraryInfo;
65class Type;
66class User;
67class Value;
68class VPIntrinsic;
69struct KnownBits;
70
71/// Information about a load/store intrinsic defined by the target.
73 /// This is the pointer that the intrinsic is loading from or storing to.
74 /// If this is non-null, then analysis/optimization passes can assume that
75 /// this intrinsic is functionally equivalent to a load/store from this
76 /// pointer.
77 Value *PtrVal = nullptr;
78
79 // Ordering for atomic operations.
81
82 // Same Id is set by the target for corresponding load/store intrinsics.
83 unsigned short MatchingId = 0;
84
85 bool ReadMem = false;
86 bool WriteMem = false;
87 bool IsVolatile = false;
88
89 bool isUnordered() const {
93 }
94};
95
96/// Attributes of a target dependent hardware loop.
98 HardwareLoopInfo() = delete;
100 Loop *L = nullptr;
103 const SCEV *ExitCount = nullptr;
105 Value *LoopDecrement = nullptr; // Decrement the loop counter by this
106 // value in every iteration.
107 bool IsNestingLegal = false; // Can a hardware loop be a parent to
108 // another hardware loop?
109 bool CounterInReg = false; // Should loop counter be updated in
110 // the loop via a phi?
111 bool PerformEntryTest = false; // Generate the intrinsic which also performs
112 // icmp ne zero on the loop counter value and
113 // produces an i1 to guard the loop entry.
115 DominatorTree &DT, bool ForceNestedLoop = false,
116 bool ForceHardwareLoopPHI = false);
117 bool canAnalyze(LoopInfo &LI);
118};
119
121 const IntrinsicInst *II = nullptr;
122 Type *RetTy = nullptr;
123 Intrinsic::ID IID;
124 SmallVector<Type *, 4> ParamTys;
126 FastMathFlags FMF;
127 // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
128 // arguments and the return value will be computed based on types.
129 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
130
131public:
133 Intrinsic::ID Id, const CallBase &CI,
135 bool TypeBasedOnly = false);
136
138 Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
139 FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
141
144
148 const IntrinsicInst *I = nullptr,
150
151 Intrinsic::ID getID() const { return IID; }
152 const IntrinsicInst *getInst() const { return II; }
153 Type *getReturnType() const { return RetTy; }
154 FastMathFlags getFlags() const { return FMF; }
155 InstructionCost getScalarizationCost() const { return ScalarizationCost; }
157 const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
158
159 bool isTypeBasedOnly() const {
160 return Arguments.empty();
161 }
162
163 bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
164};
165
167 /// Don't use tail folding
168 None,
169 /// Use predicate only to mask operations on data in the loop.
170 /// When the VL is not known to be a power-of-2, this method requires a
171 /// runtime overflow check for the i + VL in the loop because it compares the
172 /// scalar induction variable against the tripcount rounded up by VL which may
173 /// overflow. When the VL is a power-of-2, both the increment and uprounded
174 /// tripcount will overflow to 0, which does not require a runtime check
175 /// since the loop is exited when the loop induction variable equals the
176 /// uprounded trip-count, which are both 0.
177 Data,
178 /// Same as Data, but avoids using the get.active.lane.mask intrinsic to
179 /// calculate the mask and instead implements this with a
180 /// splat/stepvector/cmp.
181 /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the
182 /// active.lane.mask intrinsic when it is not natively supported?
184 /// Use predicate to control both data and control flow.
185 /// This method always requires a runtime overflow check for the i + VL
186 /// increment inside the loop, because it uses the result direclty in the
187 /// active.lane.mask to calculate the mask for the next iteration. If the
188 /// increment overflows, the mask is no longer correct.
190 /// Use predicate to control both data and control flow, but modify
191 /// the trip count so that a runtime overflow check can be avoided
192 /// and such that the scalar epilogue loop can always be removed.
194 /// Use predicated EVL instructions for tail-folding.
195 /// Indicates that VP intrinsics should be used.
197};
198
205 : TLI(TLI), LVL(LVL), IAI(IAI) {}
206};
207
208class TargetTransformInfo;
210
211/// This pass provides access to the codegen interfaces that are needed
212/// for IR-level transformations.
214public:
215 /// Construct a TTI object using a type implementing the \c Concept
216 /// API below.
217 ///
218 /// This is used by targets to construct a TTI wrapping their target-specific
219 /// implementation that encodes appropriate costs for their target.
220 template <typename T> TargetTransformInfo(T Impl);
221
222 /// Construct a baseline TTI object using a minimal implementation of
223 /// the \c Concept API below.
224 ///
225 /// The TTI implementation will reflect the information in the DataLayout
226 /// provided if non-null.
227 explicit TargetTransformInfo(const DataLayout &DL);
228
229 // Provide move semantics.
232
233 // We need to define the destructor out-of-line to define our sub-classes
234 // out-of-line.
236
237 /// Handle the invalidation of this information.
238 ///
239 /// When used as a result of \c TargetIRAnalysis this method will be called
240 /// when the function this was computed for changes. When it returns false,
241 /// the information is preserved across those changes.
244 // FIXME: We should probably in some way ensure that the subtarget
245 // information for a function hasn't changed.
246 return false;
247 }
248
249 /// \name Generic Target Information
250 /// @{
251
252 /// The kind of cost model.
253 ///
254 /// There are several different cost models that can be customized by the
255 /// target. The normalization of each cost model may be target specific.
256 /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
257 /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
259 TCK_RecipThroughput, ///< Reciprocal throughput.
260 TCK_Latency, ///< The latency of instruction.
261 TCK_CodeSize, ///< Instruction code size.
262 TCK_SizeAndLatency ///< The weighted sum of size and latency.
263 };
264
265 /// Underlying constants for 'cost' values in this interface.
266 ///
267 /// Many APIs in this interface return a cost. This enum defines the
268 /// fundamental values that should be used to interpret (and produce) those
269 /// costs. The costs are returned as an int rather than a member of this
270 /// enumeration because it is expected that the cost of one IR instruction
271 /// may have a multiplicative factor to it or otherwise won't fit directly
272 /// into the enum. Moreover, it is common to sum or average costs which works
273 /// better as simple integral values. Thus this enum only provides constants.
274 /// Also note that the returned costs are signed integers to make it natural
275 /// to add, subtract, and test with zero (a common boundary condition). It is
276 /// not expected that 2^32 is a realistic cost to be modeling at any point.
277 ///
278 /// Note that these costs should usually reflect the intersection of code-size
279 /// cost and execution cost. A free instruction is typically one that folds
280 /// into another instruction. For example, reg-to-reg moves can often be
281 /// skipped by renaming the registers in the CPU, but they still are encoded
282 /// and thus wouldn't be considered 'free' here.
284 TCC_Free = 0, ///< Expected to fold away in lowering.
285 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
286 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
287 };
288
289 /// Estimate the cost of a GEP operation when lowered.
290 ///
291 /// \p PointeeType is the source element type of the GEP.
292 /// \p Ptr is the base pointer operand.
293 /// \p Operands is the list of indices following the base pointer.
294 ///
295 /// \p AccessType is a hint as to what type of memory might be accessed by
296 /// users of the GEP. getGEPCost will use it to determine if the GEP can be
297 /// folded into the addressing mode of a load/store. If AccessType is null,
298 /// then the resulting target type based off of PointeeType will be used as an
299 /// approximation.
301 getGEPCost(Type *PointeeType, const Value *Ptr,
302 ArrayRef<const Value *> Operands, Type *AccessType = nullptr,
304
305 /// Describe known properties for a set of pointers.
307 /// All the GEPs in a set have same base address.
308 unsigned IsSameBaseAddress : 1;
309 /// These properties only valid if SameBaseAddress is set.
310 /// True if all pointers are separated by a unit stride.
311 unsigned IsUnitStride : 1;
312 /// True if distance between any two neigbouring pointers is a known value.
313 unsigned IsKnownStride : 1;
314 unsigned Reserved : 29;
315
316 bool isSameBase() const { return IsSameBaseAddress; }
317 bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; }
319
321 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1,
322 /*IsKnownStride=*/1, 0};
323 }
325 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
326 /*IsKnownStride=*/1, 0};
327 }
329 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
330 /*IsKnownStride=*/0, 0};
331 }
332 };
333 static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?");
334
335 /// Estimate the cost of a chain of pointers (typically pointer operands of a
336 /// chain of loads or stores within same block) operations set when lowered.
337 /// \p AccessTy is the type of the loads/stores that will ultimately use the
338 /// \p Ptrs.
341 const PointersChainInfo &Info, Type *AccessTy,
343
344 ) const;
345
346 /// \returns A value by which our inlining threshold should be multiplied.
347 /// This is primarily used to bump up the inlining threshold wholesale on
348 /// targets where calls are unusually expensive.
349 ///
350 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
351 /// individual classes of instructions would be better.
352 unsigned getInliningThresholdMultiplier() const;
353
356
357 /// \returns A value to be added to the inlining threshold.
358 unsigned adjustInliningThreshold(const CallBase *CB) const;
359
360 /// \returns The cost of having an Alloca in the caller if not inlined, to be
361 /// added to the threshold
362 unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const;
363
364 /// \returns Vector bonus in percent.
365 ///
366 /// Vector bonuses: We want to more aggressively inline vector-dense kernels
367 /// and apply this bonus based on the percentage of vector instructions. A
368 /// bonus is applied if the vector instructions exceed 50% and half that
369 /// amount is applied if it exceeds 10%. Note that these bonuses are some what
370 /// arbitrary and evolved over time by accident as much as because they are
371 /// principled bonuses.
372 /// FIXME: It would be nice to base the bonus values on something more
373 /// scientific. A target may has no bonus on vector instructions.
375
376 /// \return the expected cost of a memcpy, which could e.g. depend on the
377 /// source/destination type and alignment and the number of bytes copied.
379
380 /// Returns the maximum memset / memcpy size in bytes that still makes it
381 /// profitable to inline the call.
383
384 /// \return The estimated number of case clusters when lowering \p 'SI'.
385 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
386 /// table.
388 unsigned &JTSize,
390 BlockFrequencyInfo *BFI) const;
391
392 /// Estimate the cost of a given IR user when lowered.
393 ///
394 /// This can estimate the cost of either a ConstantExpr or Instruction when
395 /// lowered.
396 ///
397 /// \p Operands is a list of operands which can be a result of transformations
398 /// of the current operands. The number of the operands on the list must equal
399 /// to the number of the current operands the IR user has. Their order on the
400 /// list must be the same as the order of the current operands the IR user
401 /// has.
402 ///
403 /// The returned cost is defined in terms of \c TargetCostConstants, see its
404 /// comments for a detailed explanation of the cost values.
408
409 /// This is a helper function which calls the three-argument
410 /// getInstructionCost with \p Operands which are the current operands U has.
412 TargetCostKind CostKind) const {
413 SmallVector<const Value *, 4> Operands(U->operand_values());
415 }
416
417 /// If a branch or a select condition is skewed in one direction by more than
418 /// this factor, it is very likely to be predicted correctly.
420
421 /// Return true if branch divergence exists.
422 ///
423 /// Branch divergence has a significantly negative impact on GPU performance
424 /// when threads in the same wavefront take different paths due to conditional
425 /// branches.
426 ///
427 /// If \p F is passed, provides a context function. If \p F is known to only
428 /// execute in a single threaded environment, the target may choose to skip
429 /// uniformity analysis and assume all values are uniform.
430 bool hasBranchDivergence(const Function *F = nullptr) const;
431
432 /// Returns whether V is a source of divergence.
433 ///
434 /// This function provides the target-dependent information for
435 /// the target-independent UniformityAnalysis.
436 bool isSourceOfDivergence(const Value *V) const;
437
438 // Returns true for the target specific
439 // set of operations which produce uniform result
440 // even taking non-uniform arguments
441 bool isAlwaysUniform(const Value *V) const;
442
443 /// Query the target whether the specified address space cast from FromAS to
444 /// ToAS is valid.
445 bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
446
447 /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address.
448 bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const;
449
450 /// Returns the address space ID for a target's 'flat' address space. Note
451 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
452 /// refers to as the generic address space. The flat address space is a
453 /// generic address space that can be used access multiple segments of memory
454 /// with different address spaces. Access of a memory location through a
455 /// pointer with this address space is expected to be legal but slower
456 /// compared to the same memory location accessed through a pointer with a
457 /// different address space.
458 //
459 /// This is for targets with different pointer representations which can
460 /// be converted with the addrspacecast instruction. If a pointer is converted
461 /// to this address space, optimizations should attempt to replace the access
462 /// with the source address space.
463 ///
464 /// \returns ~0u if the target does not have such a flat address space to
465 /// optimize away.
466 unsigned getFlatAddressSpace() const;
467
468 /// Return any intrinsic address operand indexes which may be rewritten if
469 /// they use a flat address space pointer.
470 ///
471 /// \returns true if the intrinsic was handled.
473 Intrinsic::ID IID) const;
474
475 bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
476
477 /// Return true if globals in this address space can have initializers other
478 /// than `undef`.
480
481 unsigned getAssumedAddrSpace(const Value *V) const;
482
483 bool isSingleThreaded() const;
484
485 std::pair<const Value *, unsigned>
486 getPredicatedAddrSpace(const Value *V) const;
487
488 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
489 /// NewV, which has a different address space. This should happen for every
490 /// operand index that collectFlatAddressOperands returned for the intrinsic.
491 /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
492 /// new value (which may be the original \p II with modified operands).
494 Value *NewV) const;
495
496 /// Test whether calls to a function lower to actual program function
497 /// calls.
498 ///
499 /// The idea is to test whether the program is likely to require a 'call'
500 /// instruction or equivalent in order to call the given function.
501 ///
502 /// FIXME: It's not clear that this is a good or useful query API. Client's
503 /// should probably move to simpler cost metrics using the above.
504 /// Alternatively, we could split the cost interface into distinct code-size
505 /// and execution-speed costs. This would allow modelling the core of this
506 /// query more accurately as a call is a single small instruction, but
507 /// incurs significant execution cost.
508 bool isLoweredToCall(const Function *F) const;
509
510 struct LSRCost {
511 /// TODO: Some of these could be merged. Also, a lexical ordering
512 /// isn't always optimal.
513 unsigned Insns;
514 unsigned NumRegs;
515 unsigned AddRecCost;
516 unsigned NumIVMuls;
517 unsigned NumBaseAdds;
518 unsigned ImmCost;
519 unsigned SetupCost;
520 unsigned ScaleCost;
521 };
522
523 /// Parameters that control the generic loop unrolling transformation.
525 /// The cost threshold for the unrolled loop. Should be relative to the
526 /// getInstructionCost values returned by this API, and the expectation is
527 /// that the unrolled loop's instructions when run through that interface
528 /// should not exceed this cost. However, this is only an estimate. Also,
529 /// specific loops may be unrolled even with a cost above this threshold if
530 /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
531 /// restriction.
532 unsigned Threshold;
533 /// If complete unrolling will reduce the cost of the loop, we will boost
534 /// the Threshold by a certain percent to allow more aggressive complete
535 /// unrolling. This value provides the maximum boost percentage that we
536 /// can apply to Threshold (The value should be no less than 100).
537 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
538 /// MaxPercentThresholdBoost / 100)
539 /// E.g. if complete unrolling reduces the loop execution time by 50%
540 /// then we boost the threshold by the factor of 2x. If unrolling is not
541 /// expected to reduce the running time, then we do not increase the
542 /// threshold.
544 /// The cost threshold for the unrolled loop when optimizing for size (set
545 /// to UINT_MAX to disable).
547 /// The cost threshold for the unrolled loop, like Threshold, but used
548 /// for partial/runtime unrolling (set to UINT_MAX to disable).
550 /// The cost threshold for the unrolled loop when optimizing for size, like
551 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
552 /// UINT_MAX to disable).
554 /// A forced unrolling factor (the number of concatenated bodies of the
555 /// original loop in the unrolled loop body). When set to 0, the unrolling
556 /// transformation will select an unrolling factor based on the current cost
557 /// threshold and other factors.
558 unsigned Count;
559 /// Default unroll count for loops with run-time trip count.
561 // Set the maximum unrolling factor. The unrolling factor may be selected
562 // using the appropriate cost threshold, but may not exceed this number
563 // (set to UINT_MAX to disable). This does not apply in cases where the
564 // loop is being fully unrolled.
565 unsigned MaxCount;
566 /// Set the maximum upper bound of trip count. Allowing the MaxUpperBound
567 /// to be overrided by a target gives more flexiblity on certain cases.
568 /// By default, MaxUpperBound uses UnrollMaxUpperBound which value is 8.
570 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
571 /// applies even if full unrolling is selected. This allows a target to fall
572 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
574 // Represents number of instructions optimized when "back edge"
575 // becomes "fall through" in unrolled loop.
576 // For now we count a conditional branch on a backedge and a comparison
577 // feeding it.
578 unsigned BEInsns;
579 /// Allow partial unrolling (unrolling of loops to expand the size of the
580 /// loop body, not only to eliminate small constant-trip-count loops).
582 /// Allow runtime unrolling (unrolling of loops to expand the size of the
583 /// loop body even when the number of loop iterations is not known at
584 /// compile time).
586 /// Allow generation of a loop remainder (extra iterations after unroll).
588 /// Allow emitting expensive instructions (such as divisions) when computing
589 /// the trip count of a loop for runtime unrolling.
591 /// Apply loop unroll on any kind of loop
592 /// (mainly to loops that fail runtime unrolling).
593 bool Force;
594 /// Allow using trip count upper bound to unroll loops.
596 /// Allow unrolling of all the iterations of the runtime loop remainder.
598 /// Allow unroll and jam. Used to enable unroll and jam for the target.
600 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
601 /// value above is used during unroll and jam for the outer loop size.
602 /// This value is used in the same manner to limit the size of the inner
603 /// loop.
605 /// Don't allow loop unrolling to simulate more than this number of
606 /// iterations when checking full unroll profitability
608 /// Don't disable runtime unroll for the loops which were vectorized.
610 };
611
612 /// Get target-customized preferences for the generic loop unrolling
613 /// transformation. The caller will initialize UP with the current
614 /// target-independent defaults.
617 OptimizationRemarkEmitter *ORE) const;
618
619 /// Query the target whether it would be profitable to convert the given loop
620 /// into a hardware loop.
623 HardwareLoopInfo &HWLoopInfo) const;
624
625 /// Query the target whether it would be prefered to create a predicated
626 /// vector loop, which can avoid the need to emit a scalar epilogue loop.
628
629 /// Query the target what the preferred style of tail folding is.
630 /// \param IVUpdateMayOverflow Tells whether it is known if the IV update
631 /// may (or will never) overflow for the suggested VF/UF in the given loop.
632 /// Targets can use this information to select a more optimal tail folding
633 /// style. The value conservatively defaults to true, such that no assumptions
634 /// are made on overflow.
636 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const;
637
638 // Parameters that control the loop peeling transformation
640 /// A forced peeling factor (the number of bodied of the original loop
641 /// that should be peeled off before the loop body). When set to 0, the
642 /// a peeling factor based on profile information and other factors.
643 unsigned PeelCount;
644 /// Allow peeling off loop iterations.
646 /// Allow peeling off loop iterations for loop nests.
648 /// Allow peeling basing on profile. Uses to enable peeling off all
649 /// iterations basing on provided profile.
650 /// If the value is true the peeling cost model can decide to peel only
651 /// some iterations and in this case it will set this to false.
653 };
654
655 /// Get target-customized preferences for the generic loop peeling
656 /// transformation. The caller will initialize \p PP with the current
657 /// target-independent defaults with information from \p L and \p SE.
659 PeelingPreferences &PP) const;
660
661 /// Targets can implement their own combinations for target-specific
662 /// intrinsics. This function will be called from the InstCombine pass every
663 /// time a target-specific intrinsic is encountered.
664 ///
665 /// \returns std::nullopt to not do anything target specific or a value that
666 /// will be returned from the InstCombiner. It is possible to return null and
667 /// stop further processing of the intrinsic by returning nullptr.
668 std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC,
669 IntrinsicInst & II) const;
670 /// Can be used to implement target-specific instruction combining.
671 /// \see instCombineIntrinsic
672 std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
673 InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask,
674 KnownBits & Known, bool &KnownBitsComputed) const;
675 /// Can be used to implement target-specific instruction combining.
676 /// \see instCombineIntrinsic
677 std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
678 InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts,
679 APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3,
680 std::function<void(Instruction *, unsigned, APInt, APInt &)>
681 SimplifyAndSetOp) const;
682 /// @}
683
684 /// \name Scalar Target Information
685 /// @{
686
687 /// Flags indicating the kind of support for population count.
688 ///
689 /// Compared to the SW implementation, HW support is supposed to
690 /// significantly boost the performance when the population is dense, and it
691 /// may or may not degrade performance if the population is sparse. A HW
692 /// support is considered as "Fast" if it can outperform, or is on a par
693 /// with, SW implementation when the population is sparse; otherwise, it is
694 /// considered as "Slow".
696
697 /// Return true if the specified immediate is legal add immediate, that
698 /// is the target has add instructions which can add a register with the
699 /// immediate without having to materialize the immediate into a register.
700 bool isLegalAddImmediate(int64_t Imm) const;
701
702 /// Return true if adding the specified scalable immediate is legal, that is
703 /// the target has add instructions which can add a register with the
704 /// immediate (multiplied by vscale) without having to materialize the
705 /// immediate into a register.
706 bool isLegalAddScalableImmediate(int64_t Imm) const;
707
708 /// Return true if the specified immediate is legal icmp immediate,
709 /// that is the target has icmp instructions which can compare a register
710 /// against the immediate without having to materialize the immediate into a
711 /// register.
712 bool isLegalICmpImmediate(int64_t Imm) const;
713
714 /// Return true if the addressing mode represented by AM is legal for
715 /// this target, for a load/store of the specified type.
716 /// The type may be VoidTy, in which case only return true if the addressing
717 /// mode is legal for a load/store of any legal type.
718 /// If target returns true in LSRWithInstrQueries(), I may be valid.
719 /// \param ScalableOffset represents a quantity of bytes multiplied by vscale,
720 /// an invariant value known only at runtime. Most targets should not accept
721 /// a scalable offset.
722 ///
723 /// TODO: Handle pre/postinc as well.
724 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
725 bool HasBaseReg, int64_t Scale,
726 unsigned AddrSpace = 0, Instruction *I = nullptr,
727 int64_t ScalableOffset = 0) const;
728
729 /// Return true if LSR cost of C1 is lower than C2.
731 const TargetTransformInfo::LSRCost &C2) const;
732
733 /// Return true if LSR major cost is number of registers. Targets which
734 /// implement their own isLSRCostLess and unset number of registers as major
735 /// cost should return false, otherwise return true.
736 bool isNumRegsMajorCostOfLSR() const;
737
738 /// Return true if LSR should attempts to replace a use of an otherwise dead
739 /// primary IV in the latch condition with another IV available in the loop.
740 /// When successful, makes the primary IV dead.
742
743 /// \returns true if LSR should not optimize a chain that includes \p I.
745
746 /// Return true if the target can fuse a compare and branch.
747 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
748 /// calculation for the instructions in a loop.
749 bool canMacroFuseCmp() const;
750
751 /// Return true if the target can save a compare for loop count, for example
752 /// hardware loop saves a compare.
753 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
755 TargetLibraryInfo *LibInfo) const;
756
761 };
762
763 /// Return the preferred addressing mode LSR should make efforts to generate.
765 ScalarEvolution *SE) const;
766
767 /// Return true if the target supports masked store.
768 bool isLegalMaskedStore(Type *DataType, Align Alignment) const;
769 /// Return true if the target supports masked load.
770 bool isLegalMaskedLoad(Type *DataType, Align Alignment) const;
771
772 /// Return true if the target supports nontemporal store.
773 bool isLegalNTStore(Type *DataType, Align Alignment) const;
774 /// Return true if the target supports nontemporal load.
775 bool isLegalNTLoad(Type *DataType, Align Alignment) const;
776
777 /// \Returns true if the target supports broadcasting a load to a vector of
778 /// type <NumElements x ElementTy>.
779 bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const;
780
781 /// Return true if the target supports masked scatter.
782 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
783 /// Return true if the target supports masked gather.
784 bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
785 /// Return true if the target forces scalarizing of llvm.masked.gather
786 /// intrinsics.
787 bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const;
788 /// Return true if the target forces scalarizing of llvm.masked.scatter
789 /// intrinsics.
790 bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const;
791
792 /// Return true if the target supports masked compress store.
793 bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const;
794 /// Return true if the target supports masked expand load.
795 bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const;
796
797 /// Return true if the target supports strided load.
798 bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const;
799
800 /// Return true if this is an alternating opcode pattern that can be lowered
801 /// to a single instruction on the target. In X86 this is for the addsub
802 /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
803 /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
804 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
805 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
806 /// \p VecTy is the vector type of the instruction to be generated.
807 bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
808 const SmallBitVector &OpcodeMask) const;
809
810 /// Return true if we should be enabling ordered reductions for the target.
811 bool enableOrderedReductions() const;
812
813 /// Return true if the target has a unified operation to calculate division
814 /// and remainder. If so, the additional implicit multiplication and
815 /// subtraction required to calculate a remainder from division are free. This
816 /// can enable more aggressive transformations for division and remainder than
817 /// would typically be allowed using throughput or size cost models.
818 bool hasDivRemOp(Type *DataType, bool IsSigned) const;
819
820 /// Return true if the given instruction (assumed to be a memory access
821 /// instruction) has a volatile variant. If that's the case then we can avoid
822 /// addrspacecast to generic AS for volatile loads/stores. Default
823 /// implementation returns false, which prevents address space inference for
824 /// volatile loads/stores.
825 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
826
827 /// Return true if target doesn't mind addresses in vectors.
828 bool prefersVectorizedAddressing() const;
829
830 /// Return the cost of the scaling factor used in the addressing
831 /// mode represented by AM for this target, for a load/store
832 /// of the specified type.
833 /// If the AM is supported, the return value must be >= 0.
834 /// If the AM is not supported, it returns a negative value.
835 /// TODO: Handle pre/postinc as well.
837 int64_t BaseOffset, bool HasBaseReg,
838 int64_t Scale,
839 unsigned AddrSpace = 0) const;
840
841 /// Return true if the loop strength reduce pass should make
842 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
843 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
844 /// immediate offset and no index register.
845 bool LSRWithInstrQueries() const;
846
847 /// Return true if it's free to truncate a value of type Ty1 to type
848 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
849 /// by referencing its sub-register AX.
850 bool isTruncateFree(Type *Ty1, Type *Ty2) const;
851
852 /// Return true if it is profitable to hoist instruction in the
853 /// then/else to before if.
854 bool isProfitableToHoist(Instruction *I) const;
855
856 bool useAA() const;
857
858 /// Return true if this type is legal.
859 bool isTypeLegal(Type *Ty) const;
860
861 /// Returns the estimated number of registers required to represent \p Ty.
862 unsigned getRegUsageForType(Type *Ty) const;
863
864 /// Return true if switches should be turned into lookup tables for the
865 /// target.
866 bool shouldBuildLookupTables() const;
867
868 /// Return true if switches should be turned into lookup tables
869 /// containing this constant value for the target.
871
872 /// Return true if lookup tables should be turned into relative lookup tables.
873 bool shouldBuildRelLookupTables() const;
874
875 /// Return true if the input function which is cold at all call sites,
876 /// should use coldcc calling convention.
877 bool useColdCCForColdCall(Function &F) const;
878
879 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
880 /// are set if the demanded result elements need to be inserted and/or
881 /// extracted from vectors.
883 const APInt &DemandedElts,
884 bool Insert, bool Extract,
886
887 /// Estimate the overhead of scalarizing an instructions unique
888 /// non-constant operands. The (potentially vector) types to use for each of
889 /// argument are passes via Tys.
894
895 /// If target has efficient vector element load/store instructions, it can
896 /// return true here so that insertion/extraction costs are not added to
897 /// the scalarization cost of a load/store.
899
900 /// If the target supports tail calls.
901 bool supportsTailCalls() const;
902
903 /// If target supports tail call on \p CB
904 bool supportsTailCallFor(const CallBase *CB) const;
905
906 /// Don't restrict interleaved unrolling to small loops.
907 bool enableAggressiveInterleaving(bool LoopHasReductions) const;
908
909 /// Returns options for expansion of memcmp. IsZeroCmp is
910 // true if this is the expansion of memcmp(p1, p2, s) == 0.
912 // Return true if memcmp expansion is enabled.
913 operator bool() const { return MaxNumLoads > 0; }
914
915 // Maximum number of load operations.
916 unsigned MaxNumLoads = 0;
917
918 // The list of available load sizes (in bytes), sorted in decreasing order.
920
921 // For memcmp expansion when the memcmp result is only compared equal or
922 // not-equal to 0, allow up to this number of load pairs per block. As an
923 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
924 // a0 = load2bytes &a[0]
925 // b0 = load2bytes &b[0]
926 // a2 = load1byte &a[2]
927 // b2 = load1byte &b[2]
928 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
929 unsigned NumLoadsPerBlock = 1;
930
931 // Set to true to allow overlapping loads. For example, 7-byte compares can
932 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
933 // requires all loads in LoadSizes to be doable in an unaligned way.
935
936 // Sometimes, the amount of data that needs to be compared is smaller than
937 // the standard register size, but it cannot be loaded with just one load
938 // instruction. For example, if the size of the memory comparison is 6
939 // bytes, we can handle it more efficiently by loading all 6 bytes in a
940 // single block and generating an 8-byte number, instead of generating two
941 // separate blocks with conditional jumps for 4 and 2 byte loads. This
942 // approach simplifies the process and produces the comparison result as
943 // normal. This array lists the allowed sizes of memcmp tails that can be
944 // merged into one block
946 };
948 bool IsZeroCmp) const;
949
950 /// Should the Select Optimization pass be enabled and ran.
951 bool enableSelectOptimize() const;
952
953 /// Should the Select Optimization pass treat the given instruction like a
954 /// select, potentially converting it to a conditional branch. This can
955 /// include select-like instructions like or(zext(c), x) that can be converted
956 /// to selects.
958
959 /// Enable matching of interleaved access groups.
961
962 /// Enable matching of interleaved access groups that contain predicated
963 /// accesses or gaps and therefore vectorized using masked
964 /// vector loads/stores.
966
967 /// Indicate that it is potentially unsafe to automatically vectorize
968 /// floating-point operations because the semantics of vector and scalar
969 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
970 /// does not support IEEE-754 denormal numbers, while depending on the
971 /// platform, scalar floating-point math does.
972 /// This applies to floating-point math operations and calls, not memory
973 /// operations, shuffles, or casts.
975
976 /// Determine if the target supports unaligned memory accesses.
978 unsigned AddressSpace = 0,
979 Align Alignment = Align(1),
980 unsigned *Fast = nullptr) const;
981
982 /// Return hardware support for population count.
983 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
984
985 /// Return true if the hardware has a fast square-root instruction.
986 bool haveFastSqrt(Type *Ty) const;
987
988 /// Return true if the cost of the instruction is too high to speculatively
989 /// execute and should be kept behind a branch.
990 /// This normally just wraps around a getInstructionCost() call, but some
991 /// targets might report a low TCK_SizeAndLatency value that is incompatible
992 /// with the fixed TCC_Expensive value.
993 /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
995
996 /// Return true if it is faster to check if a floating-point value is NaN
997 /// (or not-NaN) versus a comparison against a constant FP zero value.
998 /// Targets should override this if materializing a 0.0 for comparison is
999 /// generally as cheap as checking for ordered/unordered.
1000 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
1001
1002 /// Return the expected cost of supporting the floating point operation
1003 /// of the specified type.
1004 InstructionCost getFPOpCost(Type *Ty) const;
1005
1006 /// Return the expected cost of materializing for the given integer
1007 /// immediate of the specified type.
1008 InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
1009 TargetCostKind CostKind) const;
1010
1011 /// Return the expected cost of materialization for the given integer
1012 /// immediate of the specified type for a given instruction. The cost can be
1013 /// zero if the immediate can be folded into the specified instruction.
1014 InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1015 const APInt &Imm, Type *Ty,
1017 Instruction *Inst = nullptr) const;
1019 const APInt &Imm, Type *Ty,
1020 TargetCostKind CostKind) const;
1021
1022 /// Return the expected cost for the given integer when optimising
1023 /// for size. This is different than the other integer immediate cost
1024 /// functions in that it is subtarget agnostic. This is useful when you e.g.
1025 /// target one ISA such as Aarch32 but smaller encodings could be possible
1026 /// with another such as Thumb. This return value is used as a penalty when
1027 /// the total costs for a constant is calculated (the bigger the cost, the
1028 /// more beneficial constant hoisting is).
1029 InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1030 const APInt &Imm, Type *Ty) const;
1031
1032 /// It can be advantageous to detach complex constants from their uses to make
1033 /// their generation cheaper. This hook allows targets to report when such
1034 /// transformations might negatively effect the code generation of the
1035 /// underlying operation. The motivating example is divides whereby hoisting
1036 /// constants prevents the code generator's ability to transform them into
1037 /// combinations of simpler operations.
1039 const Function &Fn) const;
1040
1041 /// @}
1042
1043 /// \name Vector Target Information
1044 /// @{
1045
1046 /// The various kinds of shuffle patterns for vector queries.
1048 SK_Broadcast, ///< Broadcast element 0 to all other elements.
1049 SK_Reverse, ///< Reverse the order of the vector.
1050 SK_Select, ///< Selects elements from the corresponding lane of
1051 ///< either source operand. This is equivalent to a
1052 ///< vector select with a constant condition operand.
1053 SK_Transpose, ///< Transpose two vectors.
1054 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
1055 SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
1056 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
1057 ///< with any shuffle mask.
1058 SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
1059 ///< shuffle mask.
1060 SK_Splice ///< Concatenates elements from the first input vector
1061 ///< with elements of the second input vector. Returning
1062 ///< a vector of the same type as the input vectors.
1063 ///< Index indicates start offset in first input vector.
1065
1066 /// Additional information about an operand's possible values.
1068 OK_AnyValue, // Operand can have any value.
1069 OK_UniformValue, // Operand is uniform (splat of a value).
1070 OK_UniformConstantValue, // Operand is uniform constant.
1071 OK_NonUniformConstantValue // Operand is a non uniform constant value.
1073
1074 /// Additional properties of an operand's values.
1079 };
1080
1081 // Describe the values an operand can take. We're in the process
1082 // of migrating uses of OperandValueKind and OperandValueProperties
1083 // to use this class, and then will change the internal representation.
1087
1088 bool isConstant() const {
1090 }
1091 bool isUniform() const {
1093 }
1094 bool isPowerOf2() const {
1095 return Properties == OP_PowerOf2;
1096 }
1097 bool isNegatedPowerOf2() const {
1099 }
1100
1102 return {Kind, OP_None};
1103 }
1104 };
1105
1106 /// \return the number of registers in the target-provided register class.
1107 unsigned getNumberOfRegisters(unsigned ClassID) const;
1108
1109 /// \return the target-provided register class ID for the provided type,
1110 /// accounting for type promotion and other type-legalization techniques that
1111 /// the target might apply. However, it specifically does not account for the
1112 /// scalarization or splitting of vector types. Should a vector type require
1113 /// scalarization or splitting into multiple underlying vector registers, that
1114 /// type should be mapped to a register class containing no registers.
1115 /// Specifically, this is designed to provide a simple, high-level view of the
1116 /// register allocation later performed by the backend. These register classes
1117 /// don't necessarily map onto the register classes used by the backend.
1118 /// FIXME: It's not currently possible to determine how many registers
1119 /// are used by the provided type.
1120 unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const;
1121
1122 /// \return the target-provided register class name
1123 const char *getRegisterClassName(unsigned ClassID) const;
1124
1126
1127 /// \return The width of the largest scalar or vector register type.
1129
1130 /// \return The width of the smallest vector register type.
1131 unsigned getMinVectorRegisterBitWidth() const;
1132
1133 /// \return The maximum value of vscale if the target specifies an
1134 /// architectural maximum vector length, and std::nullopt otherwise.
1135 std::optional<unsigned> getMaxVScale() const;
1136
1137 /// \return the value of vscale to tune the cost model for.
1138 std::optional<unsigned> getVScaleForTuning() const;
1139
1140 /// \return true if vscale is known to be a power of 2
1141 bool isVScaleKnownToBeAPowerOfTwo() const;
1142
1143 /// \return True if the vectorization factor should be chosen to
1144 /// make the vector of the smallest element type match the size of a
1145 /// vector register. For wider element types, this could result in
1146 /// creating vectors that span multiple vector registers.
1147 /// If false, the vectorization factor will be chosen based on the
1148 /// size of the widest element type.
1149 /// \p K Register Kind for vectorization.
1151
1152 /// \return The minimum vectorization factor for types of given element
1153 /// bit width, or 0 if there is no minimum VF. The returned value only
1154 /// applies when shouldMaximizeVectorBandwidth returns true.
1155 /// If IsScalable is true, the returned ElementCount must be a scalable VF.
1156 ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
1157
1158 /// \return The maximum vectorization factor for types of given element
1159 /// bit width and opcode, or 0 if there is no maximum VF.
1160 /// Currently only used by the SLP vectorizer.
1161 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
1162
1163 /// \return The minimum vectorization factor for the store instruction. Given
1164 /// the initial estimation of the minimum vector factor and store value type,
1165 /// it tries to find possible lowest VF, which still might be profitable for
1166 /// the vectorization.
1167 /// \param VF Initial estimation of the minimum vector factor.
1168 /// \param ScalarMemTy Scalar memory type of the store operation.
1169 /// \param ScalarValTy Scalar type of the stored value.
1170 /// Currently only used by the SLP vectorizer.
1171 unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1172 Type *ScalarValTy) const;
1173
1174 /// \return True if it should be considered for address type promotion.
1175 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
1176 /// profitable without finding other extensions fed by the same input.
1178 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
1179
1180 /// \return The size of a cache line in bytes.
1181 unsigned getCacheLineSize() const;
1182
1183 /// The possible cache levels
1184 enum class CacheLevel {
1185 L1D, // The L1 data cache
1186 L2D, // The L2 data cache
1187
1188 // We currently do not model L3 caches, as their sizes differ widely between
1189 // microarchitectures. Also, we currently do not have a use for L3 cache
1190 // size modeling yet.
1191 };
1192
1193 /// \return The size of the cache level in bytes, if available.
1194 std::optional<unsigned> getCacheSize(CacheLevel Level) const;
1195
1196 /// \return The associativity of the cache level, if available.
1197 std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
1198
1199 /// \return The minimum architectural page size for the target.
1200 std::optional<unsigned> getMinPageSize() const;
1201
1202 /// \return How much before a load we should place the prefetch
1203 /// instruction. This is currently measured in number of
1204 /// instructions.
1205 unsigned getPrefetchDistance() const;
1206
1207 /// Some HW prefetchers can handle accesses up to a certain constant stride.
1208 /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
1209 /// and the arguments provided are meant to serve as a basis for deciding this
1210 /// for a particular loop.
1211 ///
1212 /// \param NumMemAccesses Number of memory accesses in the loop.
1213 /// \param NumStridedMemAccesses Number of the memory accesses that
1214 /// ScalarEvolution could find a known stride
1215 /// for.
1216 /// \param NumPrefetches Number of software prefetches that will be
1217 /// emitted as determined by the addresses
1218 /// involved and the cache line size.
1219 /// \param HasCall True if the loop contains a call.
1220 ///
1221 /// \return This is the minimum stride in bytes where it makes sense to start
1222 /// adding SW prefetches. The default is 1, i.e. prefetch with any
1223 /// stride.
1224 unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1225 unsigned NumStridedMemAccesses,
1226 unsigned NumPrefetches, bool HasCall) const;
1227
1228 /// \return The maximum number of iterations to prefetch ahead. If
1229 /// the required number of iterations is more than this number, no
1230 /// prefetching is performed.
1231 unsigned getMaxPrefetchIterationsAhead() const;
1232
1233 /// \return True if prefetching should also be done for writes.
1234 bool enableWritePrefetching() const;
1235
1236 /// \return if target want to issue a prefetch in address space \p AS.
1237 bool shouldPrefetchAddressSpace(unsigned AS) const;
1238
1239 /// \return The maximum interleave factor that any transform should try to
1240 /// perform for this target. This number depends on the level of parallelism
1241 /// and the number of execution units in the CPU.
1242 unsigned getMaxInterleaveFactor(ElementCount VF) const;
1243
1244 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1245 static OperandValueInfo getOperandInfo(const Value *V);
1246
1247 /// This is an approximation of reciprocal throughput of a math/logic op.
1248 /// A higher cost indicates less expected throughput.
1249 /// From Agner Fog's guides, reciprocal throughput is "the average number of
1250 /// clock cycles per instruction when the instructions are not part of a
1251 /// limiting dependency chain."
1252 /// Therefore, costs should be scaled to account for multiple execution units
1253 /// on the target that can process this type of instruction. For example, if
1254 /// there are 5 scalar integer units and 2 vector integer units that can
1255 /// calculate an 'add' in a single cycle, this model should indicate that the
1256 /// cost of the vector add instruction is 2.5 times the cost of the scalar
1257 /// add instruction.
1258 /// \p Args is an optional argument which holds the instruction operands
1259 /// values so the TTI can analyze those values searching for special
1260 /// cases or optimizations based on those values.
1261 /// \p CxtI is the optional original context instruction, if one exists, to
1262 /// provide even more information.
1263 /// \p TLibInfo is used to search for platform specific vector library
1264 /// functions for instructions that might be converted to calls (e.g. frem).
1266 unsigned Opcode, Type *Ty,
1269 TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None},
1270 ArrayRef<const Value *> Args = std::nullopt,
1271 const Instruction *CxtI = nullptr,
1272 const TargetLibraryInfo *TLibInfo = nullptr) const;
1273
1274 /// Returns the cost estimation for alternating opcode pattern that can be
1275 /// lowered to a single instruction on the target. In X86 this is for the
1276 /// addsub instruction which corrsponds to a Shuffle + Fadd + FSub pattern in
1277 /// IR. This function expects two opcodes: \p Opcode1 and \p Opcode2 being
1278 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
1279 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
1280 /// \p VecTy is the vector type of the instruction to be generated.
1281 InstructionCost getAltInstrCost(
1282 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
1283 const SmallBitVector &OpcodeMask,
1285
1286 /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
1287 /// The exact mask may be passed as Mask, or else the array will be empty.
1288 /// The index and subtype parameters are used by the subvector insertion and
1289 /// extraction shuffle kinds to show the insert/extract point and the type of
1290 /// the subvector being inserted/extracted. The operands of the shuffle can be
1291 /// passed through \p Args, which helps improve the cost estimation in some
1292 /// cases, like in broadcast loads.
1293 /// NOTE: For subvector extractions Tp represents the source type.
1294 InstructionCost getShuffleCost(
1295 ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask = std::nullopt,
1297 VectorType *SubTp = nullptr, ArrayRef<const Value *> Args = std::nullopt,
1298 const Instruction *CxtI = nullptr) const;
1299
1300 /// Represents a hint about the context in which a cast is used.
1301 ///
1302 /// For zext/sext, the context of the cast is the operand, which must be a
1303 /// load of some kind. For trunc, the context is of the cast is the single
1304 /// user of the instruction, which must be a store of some kind.
1305 ///
1306 /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1307 /// type of cast it's dealing with, as not every cast is equal. For instance,
1308 /// the zext of a load may be free, but the zext of an interleaving load can
1309 //// be (very) expensive!
1310 ///
1311 /// See \c getCastContextHint to compute a CastContextHint from a cast
1312 /// Instruction*. Callers can use it if they don't need to override the
1313 /// context and just want it to be calculated from the instruction.
1314 ///
1315 /// FIXME: This handles the types of load/store that the vectorizer can
1316 /// produce, which are the cases where the context instruction is most
1317 /// likely to be incorrect. There are other situations where that can happen
1318 /// too, which might be handled here but in the long run a more general
1319 /// solution of costing multiple instructions at the same times may be better.
1320 enum class CastContextHint : uint8_t {
1321 None, ///< The cast is not used with a load/store of any kind.
1322 Normal, ///< The cast is used with a normal load/store.
1323 Masked, ///< The cast is used with a masked load/store.
1324 GatherScatter, ///< The cast is used with a gather/scatter.
1325 Interleave, ///< The cast is used with an interleaved load/store.
1326 Reversed, ///< The cast is used with a reversed load/store.
1327 };
1328
1329 /// Calculates a CastContextHint from \p I.
1330 /// This should be used by callers of getCastInstrCost if they wish to
1331 /// determine the context from some instruction.
1332 /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1333 /// or if it's another type of cast.
1335
1336 /// \return The expected cost of cast instructions, such as bitcast, trunc,
1337 /// zext, etc. If there is an existing instruction that holds Opcode, it
1338 /// may be passed in the 'I' parameter.
1340 getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1343 const Instruction *I = nullptr) const;
1344
1345 /// \return The expected cost of a sign- or zero-extended vector extract. Use
1346 /// Index = -1 to indicate that there is no information about the index value.
1347 InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1348 VectorType *VecTy,
1349 unsigned Index) const;
1350
1351 /// \return The expected cost of control-flow related instructions such as
1352 /// Phi, Ret, Br, Switch.
1354 getCFInstrCost(unsigned Opcode,
1356 const Instruction *I = nullptr) const;
1357
1358 /// \returns The expected cost of compare and select instructions. If there
1359 /// is an existing instruction that holds Opcode, it may be passed in the
1360 /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1361 /// is using a compare with the specified predicate as condition. When vector
1362 /// types are passed, \p VecPred must be used for all lanes.
1364 getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1365 CmpInst::Predicate VecPred,
1367 const Instruction *I = nullptr) const;
1368
1369 /// \return The expected cost of vector Insert and Extract.
1370 /// Use -1 to indicate that there is no information on the index value.
1371 /// This is used when the instruction is not available; a typical use
1372 /// case is to provision the cost of vectorization/scalarization in
1373 /// vectorizer passes.
1374 InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1376 unsigned Index = -1, Value *Op0 = nullptr,
1377 Value *Op1 = nullptr) const;
1378
1379 /// \return The expected cost of vector Insert and Extract.
1380 /// This is used when instruction is available, and implementation
1381 /// asserts 'I' is not nullptr.
1382 ///
1383 /// A typical suitable use case is cost estimation when vector instruction
1384 /// exists (e.g., from basic blocks during transformation).
1387 unsigned Index = -1) const;
1388
1389 /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
1390 /// \p ReplicationFactor times.
1391 ///
1392 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
1393 /// <0,0,0,1,1,1,2,2,2,3,3,3>
1394 InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
1395 int VF,
1396 const APInt &DemandedDstElts,
1398
1399 /// \return The cost of Load and Store instructions.
1401 getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1402 unsigned AddressSpace,
1404 OperandValueInfo OpdInfo = {OK_AnyValue, OP_None},
1405 const Instruction *I = nullptr) const;
1406
1407 /// \return The cost of VP Load and Store instructions.
1408 InstructionCost
1409 getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1410 unsigned AddressSpace,
1412 const Instruction *I = nullptr) const;
1413
1414 /// \return The cost of masked Load and Store instructions.
1416 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1418
1419 /// \return The cost of Gather or Scatter operation
1420 /// \p Opcode - is a type of memory access Load or Store
1421 /// \p DataTy - a vector type of the data to be loaded or stored
1422 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1423 /// \p VariableMask - true when the memory access is predicated with a mask
1424 /// that is not a compile-time constant
1425 /// \p Alignment - alignment of single element
1426 /// \p I - the optional original context instruction, if one exists, e.g. the
1427 /// load/store to transform or the call to the gather/scatter intrinsic
1429 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1431 const Instruction *I = nullptr) const;
1432
1433 /// \return The cost of strided memory operations.
1434 /// \p Opcode - is a type of memory access Load or Store
1435 /// \p DataTy - a vector type of the data to be loaded or stored
1436 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1437 /// \p VariableMask - true when the memory access is predicated with a mask
1438 /// that is not a compile-time constant
1439 /// \p Alignment - alignment of single element
1440 /// \p I - the optional original context instruction, if one exists, e.g. the
1441 /// load/store to transform or the call to the gather/scatter intrinsic
1443 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1445 const Instruction *I = nullptr) const;
1446
1447 /// \return The cost of the interleaved memory operation.
1448 /// \p Opcode is the memory operation code
1449 /// \p VecTy is the vector type of the interleaved access.
1450 /// \p Factor is the interleave factor
1451 /// \p Indices is the indices for interleaved load members (as interleaved
1452 /// load allows gaps)
1453 /// \p Alignment is the alignment of the memory operation
1454 /// \p AddressSpace is address space of the pointer.
1455 /// \p UseMaskForCond indicates if the memory access is predicated.
1456 /// \p UseMaskForGaps indicates if gaps should be masked.
1458 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1459 Align Alignment, unsigned AddressSpace,
1461 bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1462
1463 /// A helper function to determine the type of reduction algorithm used
1464 /// for a given \p Opcode and set of FastMathFlags \p FMF.
1465 static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
1466 return FMF && !(*FMF).allowReassoc();
1467 }
1468
1469 /// Calculate the cost of vector reduction intrinsics.
1470 ///
1471 /// This is the cost of reducing the vector value of type \p Ty to a scalar
1472 /// value using the operation denoted by \p Opcode. The FastMathFlags
1473 /// parameter \p FMF indicates what type of reduction we are performing:
1474 /// 1. Tree-wise. This is the typical 'fast' reduction performed that
1475 /// involves successively splitting a vector into half and doing the
1476 /// operation on the pair of halves until you have a scalar value. For
1477 /// example:
1478 /// (v0, v1, v2, v3)
1479 /// ((v0+v2), (v1+v3), undef, undef)
1480 /// ((v0+v2+v1+v3), undef, undef, undef)
1481 /// This is the default behaviour for integer operations, whereas for
1482 /// floating point we only do this if \p FMF indicates that
1483 /// reassociation is allowed.
1484 /// 2. Ordered. For a vector with N elements this involves performing N
1485 /// operations in lane order, starting with an initial scalar value, i.e.
1486 /// result = InitVal + v0
1487 /// result = result + v1
1488 /// result = result + v2
1489 /// result = result + v3
1490 /// This is only the case for FP operations and when reassociation is not
1491 /// allowed.
1492 ///
1494 unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1496
1500
1501 /// Calculate the cost of an extended reduction pattern, similar to
1502 /// getArithmeticReductionCost of an Add reduction with multiply and optional
1503 /// extensions. This is the cost of as:
1504 /// ResTy vecreduce.add(mul (A, B)).
1505 /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)).
1507 bool IsUnsigned, Type *ResTy, VectorType *Ty,
1509
1510 /// Calculate the cost of an extended reduction pattern, similar to
1511 /// getArithmeticReductionCost of a reduction with an extension.
1512 /// This is the cost of as:
1513 /// ResTy vecreduce.opcode(ext(Ty A)).
1515 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1516 FastMathFlags FMF,
1518
1519 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1520 /// Three cases are handled: 1. scalar instruction 2. vector instruction
1521 /// 3. scalar instruction which is to be vectorized.
1524
1525 /// \returns The cost of Call instructions.
1529
1530 /// \returns The number of pieces into which the provided type must be
1531 /// split during legalization. Zero is returned when the answer is unknown.
1532 unsigned getNumberOfParts(Type *Tp) const;
1533
1534 /// \returns The cost of the address computation. For most targets this can be
1535 /// merged into the instruction indexing mode. Some targets might want to
1536 /// distinguish between address computation for memory operations on vector
1537 /// types and scalar types. Such targets should override this function.
1538 /// The 'SE' parameter holds pointer for the scalar evolution object which
1539 /// is used in order to get the Ptr step value in case of constant stride.
1540 /// The 'Ptr' parameter holds SCEV of the access pointer.
1542 ScalarEvolution *SE = nullptr,
1543 const SCEV *Ptr = nullptr) const;
1544
1545 /// \returns The cost, if any, of keeping values of the given types alive
1546 /// over a callsite.
1547 ///
1548 /// Some types may require the use of register classes that do not have
1549 /// any callee-saved registers, so would require a spill and fill.
1551
1552 /// \returns True if the intrinsic is a supported memory intrinsic. Info
1553 /// will contain additional information - whether the intrinsic may write
1554 /// or read to memory, volatility and the pointer. Info is undefined
1555 /// if false is returned.
1557
1558 /// \returns The maximum element size, in bytes, for an element
1559 /// unordered-atomic memory intrinsic.
1560 unsigned getAtomicMemIntrinsicMaxElementSize() const;
1561
1562 /// \returns A value which is the result of the given memory intrinsic. New
1563 /// instructions may be created to extract the result from the given intrinsic
1564 /// memory operation. Returns nullptr if the target cannot create a result
1565 /// from the given intrinsic.
1567 Type *ExpectedType) const;
1568
1569 /// \returns The type to use in a loop expansion of a memcpy call.
1571 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1572 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
1573 std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
1574
1575 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1576 /// \param RemainingBytes The number of bytes to copy.
1577 ///
1578 /// Calculates the operand types to use when copying \p RemainingBytes of
1579 /// memory, where source and destination alignments are \p SrcAlign and
1580 /// \p DestAlign respectively.
1582 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1583 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1584 unsigned SrcAlign, unsigned DestAlign,
1585 std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
1586
1587 /// \returns True if the two functions have compatible attributes for inlining
1588 /// purposes.
1589 bool areInlineCompatible(const Function *Caller,
1590 const Function *Callee) const;
1591
1592 /// Returns a penalty for invoking call \p Call in \p F.
1593 /// For example, if a function F calls a function G, which in turn calls
1594 /// function H, then getInlineCallPenalty(F, H()) would return the
1595 /// penalty of calling H from F, e.g. after inlining G into F.
1596 /// \p DefaultCallPenalty is passed to give a default penalty that
1597 /// the target can amend or override.
1598 unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
1599 unsigned DefaultCallPenalty) const;
1600
1601 /// \returns True if the caller and callee agree on how \p Types will be
1602 /// passed to or returned from the callee.
1603 /// to the callee.
1604 /// \param Types List of types to check.
1605 bool areTypesABICompatible(const Function *Caller, const Function *Callee,
1606 const ArrayRef<Type *> &Types) const;
1607
1608 /// The type of load/store indexing.
1610 MIM_Unindexed, ///< No indexing.
1611 MIM_PreInc, ///< Pre-incrementing.
1612 MIM_PreDec, ///< Pre-decrementing.
1613 MIM_PostInc, ///< Post-incrementing.
1614 MIM_PostDec ///< Post-decrementing.
1616
1617 /// \returns True if the specified indexed load for the given type is legal.
1618 bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1619
1620 /// \returns True if the specified indexed store for the given type is legal.
1621 bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1622
1623 /// \returns The bitwidth of the largest vector type that should be used to
1624 /// load/store in the given address space.
1625 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1626
1627 /// \returns True if the load instruction is legal to vectorize.
1628 bool isLegalToVectorizeLoad(LoadInst *LI) const;
1629
1630 /// \returns True if the store instruction is legal to vectorize.
1631 bool isLegalToVectorizeStore(StoreInst *SI) const;
1632
1633 /// \returns True if it is legal to vectorize the given load chain.
1634 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
1635 unsigned AddrSpace) const;
1636
1637 /// \returns True if it is legal to vectorize the given store chain.
1638 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
1639 unsigned AddrSpace) const;
1640
1641 /// \returns True if it is legal to vectorize the given reduction kind.
1643 ElementCount VF) const;
1644
1645 /// \returns True if the given type is supported for scalable vectors
1647
1648 /// \returns The new vector factor value if the target doesn't support \p
1649 /// SizeInBytes loads or has a better vector factor.
1650 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1651 unsigned ChainSizeInBytes,
1652 VectorType *VecTy) const;
1653
1654 /// \returns The new vector factor value if the target doesn't support \p
1655 /// SizeInBytes stores or has a better vector factor.
1656 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1657 unsigned ChainSizeInBytes,
1658 VectorType *VecTy) const;
1659
1660 /// Flags describing the kind of vector reduction.
1662 ReductionFlags() = default;
1663 bool IsMaxOp =
1664 false; ///< If the op a min/max kind, true if it's a max operation.
1665 bool IsSigned = false; ///< Whether the operation is a signed int reduction.
1666 bool NoNaN =
1667 false; ///< If op is an fp min/max, whether NaNs may be present.
1668 };
1669
1670 /// \returns True if the target prefers reductions in loop.
1671 bool preferInLoopReduction(unsigned Opcode, Type *Ty,
1672 ReductionFlags Flags) const;
1673
1674 /// \returns True if the target prefers reductions select kept in the loop
1675 /// when tail folding. i.e.
1676 /// loop:
1677 /// p = phi (0, s)
1678 /// a = add (p, x)
1679 /// s = select (mask, a, p)
1680 /// vecreduce.add(s)
1681 ///
1682 /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1683 /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1684 /// by the target, this can lead to cleaner code generation.
1685 bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
1686 ReductionFlags Flags) const;
1687
1688 /// Return true if the loop vectorizer should consider vectorizing an
1689 /// otherwise scalar epilogue loop.
1690 bool preferEpilogueVectorization() const;
1691
1692 /// \returns True if the target wants to expand the given reduction intrinsic
1693 /// into a shuffle sequence.
1694 bool shouldExpandReduction(const IntrinsicInst *II) const;
1695
1696 /// \returns the size cost of rematerializing a GlobalValue address relative
1697 /// to a stack reload.
1698 unsigned getGISelRematGlobalCost() const;
1699
1700 /// \returns the lower bound of a trip count to decide on vectorization
1701 /// while tail-folding.
1702 unsigned getMinTripCountTailFoldingThreshold() const;
1703
1704 /// \returns True if the target supports scalable vectors.
1705 bool supportsScalableVectors() const;
1706
1707 /// \return true when scalable vectorization is preferred.
1708 bool enableScalableVectorization() const;
1709
1710 /// \name Vector Predication Information
1711 /// @{
1712 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1713 /// in hardware, for the given opcode and type/alignment. (see LLVM Language
1714 /// Reference - "Vector Predication Intrinsics").
1715 /// Use of %evl is discouraged when that is not the case.
1716 bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
1717 Align Alignment) const;
1718
1721 // keep the predicating parameter
1723 // where legal, discard the predicate parameter
1725 // transform into something else that is also predicating
1726 Convert = 2
1728
1729 // How to transform the EVL parameter.
1730 // Legal: keep the EVL parameter as it is.
1731 // Discard: Ignore the EVL parameter where it is safe to do so.
1732 // Convert: Fold the EVL into the mask parameter.
1734
1735 // How to transform the operator.
1736 // Legal: The target supports this operator.
1737 // Convert: Convert this to a non-VP operation.
1738 // The 'Discard' strategy is invalid.
1740
1741 bool shouldDoNothing() const {
1742 return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
1743 }
1746 };
1747
1748 /// \returns How the target needs this vector-predicated operation to be
1749 /// transformed.
1751 /// @}
1752
1753 /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb
1754 /// state.
1755 ///
1756 /// Used by the LowerTypeTests pass, which constructs an IR inline assembler
1757 /// node containing a jump table in a format suitable for the target, so it
1758 /// needs to know what format of jump table it can legally use.
1759 ///
1760 /// For non-Arm targets, this function isn't used. It defaults to returning
1761 /// false, but it shouldn't matter what it returns anyway.
1762 bool hasArmWideBranch(bool Thumb) const;
1763
1764 /// \return The maximum number of function arguments the target supports.
1765 unsigned getMaxNumArgs() const;
1766
1767 /// @}
1768
1769private:
1770 /// The abstract base class used to type erase specific TTI
1771 /// implementations.
1772 class Concept;
1773
1774 /// The template model for the base class which wraps a concrete
1775 /// implementation in a type erased interface.
1776 template <typename T> class Model;
1777
1778 std::unique_ptr<Concept> TTIImpl;
1779};
1780
1782public:
1783 virtual ~Concept() = 0;
1784 virtual const DataLayout &getDataLayout() const = 0;
1785 virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
1787 Type *AccessType,
1789 virtual InstructionCost
1791 const TTI::PointersChainInfo &Info, Type *AccessTy,
1793 virtual unsigned getInliningThresholdMultiplier() const = 0;
1795 virtual unsigned
1797 virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0;
1798 virtual int getInlinerVectorBonusPercent() const = 0;
1799 virtual unsigned getCallerAllocaCost(const CallBase *CB,
1800 const AllocaInst *AI) const = 0;
1803 virtual unsigned
1805 ProfileSummaryInfo *PSI,
1806 BlockFrequencyInfo *BFI) = 0;
1811 virtual bool hasBranchDivergence(const Function *F = nullptr) = 0;
1812 virtual bool isSourceOfDivergence(const Value *V) = 0;
1813 virtual bool isAlwaysUniform(const Value *V) = 0;
1814 virtual bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1815 virtual bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const = 0;
1816 virtual unsigned getFlatAddressSpace() = 0;
1818 Intrinsic::ID IID) const = 0;
1819 virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0;
1820 virtual bool
1822 virtual unsigned getAssumedAddrSpace(const Value *V) const = 0;
1823 virtual bool isSingleThreaded() const = 0;
1824 virtual std::pair<const Value *, unsigned>
1825 getPredicatedAddrSpace(const Value *V) const = 0;
1827 Value *OldV,
1828 Value *NewV) const = 0;
1829 virtual bool isLoweredToCall(const Function *F) = 0;
1832 OptimizationRemarkEmitter *ORE) = 0;
1834 PeelingPreferences &PP) = 0;
1836 AssumptionCache &AC,
1837 TargetLibraryInfo *LibInfo,
1838 HardwareLoopInfo &HWLoopInfo) = 0;
1840 virtual TailFoldingStyle
1841 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) = 0;
1842 virtual std::optional<Instruction *> instCombineIntrinsic(
1843 InstCombiner &IC, IntrinsicInst &II) = 0;
1844 virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic(
1845 InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask,
1846 KnownBits & Known, bool &KnownBitsComputed) = 0;
1847 virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
1848 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts,
1849 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
1850 std::function<void(Instruction *, unsigned, APInt, APInt &)>
1851 SimplifyAndSetOp) = 0;
1852 virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1853 virtual bool isLegalAddScalableImmediate(int64_t Imm) = 0;
1854 virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1855 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1856 int64_t BaseOffset, bool HasBaseReg,
1857 int64_t Scale, unsigned AddrSpace,
1858 Instruction *I,
1859 int64_t ScalableOffset) = 0;
1861 const TargetTransformInfo::LSRCost &C2) = 0;
1862 virtual bool isNumRegsMajorCostOfLSR() = 0;
1865 virtual bool canMacroFuseCmp() = 0;
1866 virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
1868 TargetLibraryInfo *LibInfo) = 0;
1869 virtual AddressingModeKind
1871 virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0;
1872 virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0;
1873 virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0;
1874 virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0;
1875 virtual bool isLegalBroadcastLoad(Type *ElementTy,
1876 ElementCount NumElements) const = 0;
1877 virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0;
1878 virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0;
1880 Align Alignment) = 0;
1882 Align Alignment) = 0;
1883 virtual bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) = 0;
1884 virtual bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) = 0;
1885 virtual bool isLegalStridedLoadStore(Type *DataType, Align Alignment) = 0;
1886 virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
1887 unsigned Opcode1,
1888 const SmallBitVector &OpcodeMask) const = 0;
1889 virtual bool enableOrderedReductions() = 0;
1890 virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1891 virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1894 int64_t BaseOffset,
1895 bool HasBaseReg, int64_t Scale,
1896 unsigned AddrSpace) = 0;
1897 virtual bool LSRWithInstrQueries() = 0;
1898 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1900 virtual bool useAA() = 0;
1901 virtual bool isTypeLegal(Type *Ty) = 0;
1902 virtual unsigned getRegUsageForType(Type *Ty) = 0;
1903 virtual bool shouldBuildLookupTables() = 0;
1905 virtual bool shouldBuildRelLookupTables() = 0;
1906 virtual bool useColdCCForColdCall(Function &F) = 0;
1908 const APInt &DemandedElts,
1909 bool Insert, bool Extract,
1911 virtual InstructionCost
1913 ArrayRef<Type *> Tys,
1916 virtual bool supportsTailCalls() = 0;
1917 virtual bool supportsTailCallFor(const CallBase *CB) = 0;
1918 virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1920 enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0;
1921 virtual bool enableSelectOptimize() = 0;
1927 unsigned BitWidth,
1928 unsigned AddressSpace,
1929 Align Alignment,
1930 unsigned *Fast) = 0;
1931 virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1932 virtual bool haveFastSqrt(Type *Ty) = 0;
1934 virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1936 virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1937 const APInt &Imm, Type *Ty) = 0;
1938 virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
1940 virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1941 const APInt &Imm, Type *Ty,
1943 Instruction *Inst = nullptr) = 0;
1945 const APInt &Imm, Type *Ty,
1948 const Function &Fn) const = 0;
1949 virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0;
1950 virtual unsigned getRegisterClassForType(bool Vector,
1951 Type *Ty = nullptr) const = 0;
1952 virtual const char *getRegisterClassName(unsigned ClassID) const = 0;
1954 virtual unsigned getMinVectorRegisterBitWidth() const = 0;
1955 virtual std::optional<unsigned> getMaxVScale() const = 0;
1956 virtual std::optional<unsigned> getVScaleForTuning() const = 0;
1957 virtual bool isVScaleKnownToBeAPowerOfTwo() const = 0;
1958 virtual bool
1960 virtual ElementCount getMinimumVF(unsigned ElemWidth,
1961 bool IsScalable) const = 0;
1962 virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0;
1963 virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1964 Type *ScalarValTy) const = 0;
1966 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
1967 virtual unsigned getCacheLineSize() const = 0;
1968 virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0;
1969 virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level)
1970 const = 0;
1971 virtual std::optional<unsigned> getMinPageSize() const = 0;
1972
1973 /// \return How much before a load we should place the prefetch
1974 /// instruction. This is currently measured in number of
1975 /// instructions.
1976 virtual unsigned getPrefetchDistance() const = 0;
1977
1978 /// \return Some HW prefetchers can handle accesses up to a certain
1979 /// constant stride. This is the minimum stride in bytes where it
1980 /// makes sense to start adding SW prefetches. The default is 1,
1981 /// i.e. prefetch with any stride. Sometimes prefetching is beneficial
1982 /// even below the HW prefetcher limit, and the arguments provided are
1983 /// meant to serve as a basis for deciding this for a particular loop.
1984 virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1985 unsigned NumStridedMemAccesses,
1986 unsigned NumPrefetches,
1987 bool HasCall) const = 0;
1988
1989 /// \return The maximum number of iterations to prefetch ahead. If
1990 /// the required number of iterations is more than this number, no
1991 /// prefetching is performed.
1992 virtual unsigned getMaxPrefetchIterationsAhead() const = 0;
1993
1994 /// \return True if prefetching should also be done for writes.
1995 virtual bool enableWritePrefetching() const = 0;
1996
1997 /// \return if target want to issue a prefetch in address space \p AS.
1998 virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0;
1999
2000 virtual unsigned getMaxInterleaveFactor(ElementCount VF) = 0;
2002 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
2003 OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
2004 ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0;
2006 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
2007 const SmallBitVector &OpcodeMask,
2009
2010 virtual InstructionCost
2013 ArrayRef<const Value *> Args, const Instruction *CxtI) = 0;
2014 virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst,
2015 Type *Src, CastContextHint CCH,
2017 const Instruction *I) = 0;
2018 virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
2019 VectorType *VecTy,
2020 unsigned Index) = 0;
2021 virtual InstructionCost getCFInstrCost(unsigned Opcode,
2023 const Instruction *I = nullptr) = 0;
2024 virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
2025 Type *CondTy,
2026 CmpInst::Predicate VecPred,
2028 const Instruction *I) = 0;
2029 virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
2031 unsigned Index, Value *Op0,
2032 Value *Op1) = 0;
2035 unsigned Index) = 0;
2036
2037 virtual InstructionCost
2038 getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
2039 const APInt &DemandedDstElts,
2041
2042 virtual InstructionCost
2043 getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2045 OperandValueInfo OpInfo, const Instruction *I) = 0;
2046 virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src,
2047 Align Alignment,
2048 unsigned AddressSpace,
2050 const Instruction *I) = 0;
2051 virtual InstructionCost
2052 getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2053 unsigned AddressSpace,
2055 virtual InstructionCost
2056 getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2057 bool VariableMask, Align Alignment,
2059 const Instruction *I = nullptr) = 0;
2060 virtual InstructionCost
2061 getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2062 bool VariableMask, Align Alignment,
2064 const Instruction *I = nullptr) = 0;
2065
2067 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2068 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2069 bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0;
2070 virtual InstructionCost
2072 std::optional<FastMathFlags> FMF,
2074 virtual InstructionCost
2078 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
2079 FastMathFlags FMF,
2082 bool IsUnsigned, Type *ResTy, VectorType *Ty,
2084 virtual InstructionCost
2088 ArrayRef<Type *> Tys,
2090 virtual unsigned getNumberOfParts(Type *Tp) = 0;
2091 virtual InstructionCost
2093 virtual InstructionCost
2096 MemIntrinsicInfo &Info) = 0;
2097 virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
2099 Type *ExpectedType) = 0;
2101 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
2102 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
2103 std::optional<uint32_t> AtomicElementSize) const = 0;
2104
2106 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2107 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2108 unsigned SrcAlign, unsigned DestAlign,
2109 std::optional<uint32_t> AtomicCpySize) const = 0;
2110 virtual bool areInlineCompatible(const Function *Caller,
2111 const Function *Callee) const = 0;
2112 virtual unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
2113 unsigned DefaultCallPenalty) const = 0;
2114 virtual bool areTypesABICompatible(const Function *Caller,
2115 const Function *Callee,
2116 const ArrayRef<Type *> &Types) const = 0;
2117 virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
2118 virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0;
2119 virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
2120 virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
2121 virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
2122 virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
2123 Align Alignment,
2124 unsigned AddrSpace) const = 0;
2125 virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
2126 Align Alignment,
2127 unsigned AddrSpace) const = 0;
2129 ElementCount VF) const = 0;
2130 virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0;
2131 virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2132 unsigned ChainSizeInBytes,
2133 VectorType *VecTy) const = 0;
2134 virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2135 unsigned ChainSizeInBytes,
2136 VectorType *VecTy) const = 0;
2137 virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2138 ReductionFlags) const = 0;
2139 virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2140 ReductionFlags) const = 0;
2141 virtual bool preferEpilogueVectorization() const = 0;
2142
2143 virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
2144 virtual unsigned getGISelRematGlobalCost() const = 0;
2145 virtual unsigned getMinTripCountTailFoldingThreshold() const = 0;
2146 virtual bool enableScalableVectorization() const = 0;
2147 virtual bool supportsScalableVectors() const = 0;
2148 virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
2149 Align Alignment) const = 0;
2150 virtual VPLegalization
2152 virtual bool hasArmWideBranch(bool Thumb) const = 0;
2153 virtual unsigned getMaxNumArgs() const = 0;
2154};
2155
2156template <typename T>
2157class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
2158 T Impl;
2159
2160public:
2161 Model(T Impl) : Impl(std::move(Impl)) {}
2162 ~Model() override = default;
2163
2164 const DataLayout &getDataLayout() const override {
2165 return Impl.getDataLayout();
2166 }
2167
2168 InstructionCost
2169 getGEPCost(Type *PointeeType, const Value *Ptr,
2170 ArrayRef<const Value *> Operands, Type *AccessType,
2172 return Impl.getGEPCost(PointeeType, Ptr, Operands, AccessType, CostKind);
2173 }
2174 InstructionCost getPointersChainCost(ArrayRef<const Value *> Ptrs,
2175 const Value *Base,
2176 const PointersChainInfo &Info,
2177 Type *AccessTy,
2178 TargetCostKind CostKind) override {
2179 return Impl.getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind);
2180 }
2181 unsigned getInliningThresholdMultiplier() const override {
2182 return Impl.getInliningThresholdMultiplier();
2183 }
2184 unsigned adjustInliningThreshold(const CallBase *CB) override {
2185 return Impl.adjustInliningThreshold(CB);
2186 }
2187 unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const override {
2188 return Impl.getInliningCostBenefitAnalysisSavingsMultiplier();
2189 }
2190 unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const override {
2191 return Impl.getInliningCostBenefitAnalysisProfitableMultiplier();
2192 }
2193 int getInlinerVectorBonusPercent() const override {
2194 return Impl.getInlinerVectorBonusPercent();
2195 }
2196 unsigned getCallerAllocaCost(const CallBase *CB,
2197 const AllocaInst *AI) const override {
2198 return Impl.getCallerAllocaCost(CB, AI);
2199 }
2200 InstructionCost getMemcpyCost(const Instruction *I) override {
2201 return Impl.getMemcpyCost(I);
2202 }
2203
2204 uint64_t getMaxMemIntrinsicInlineSizeThreshold() const override {
2205 return Impl.getMaxMemIntrinsicInlineSizeThreshold();
2206 }
2207
2208 InstructionCost getInstructionCost(const User *U,
2209 ArrayRef<const Value *> Operands,
2210 TargetCostKind CostKind) override {
2211 return Impl.getInstructionCost(U, Operands, CostKind);
2212 }
2213 BranchProbability getPredictableBranchThreshold() override {
2214 return Impl.getPredictableBranchThreshold();
2215 }
2216 bool hasBranchDivergence(const Function *F = nullptr) override {
2217 return Impl.hasBranchDivergence(F);
2218 }
2219 bool isSourceOfDivergence(const Value *V) override {
2220 return Impl.isSourceOfDivergence(V);
2221 }
2222
2223 bool isAlwaysUniform(const Value *V) override {
2224 return Impl.isAlwaysUniform(V);
2225 }
2226
2227 bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
2228 return Impl.isValidAddrSpaceCast(FromAS, ToAS);
2229 }
2230
2231 bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const override {
2232 return Impl.addrspacesMayAlias(AS0, AS1);
2233 }
2234
2235 unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); }
2236
2237 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
2238 Intrinsic::ID IID) const override {
2239 return Impl.collectFlatAddressOperands(OpIndexes, IID);
2240 }
2241
2242 bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override {
2243 return Impl.isNoopAddrSpaceCast(FromAS, ToAS);
2244 }
2245
2246 bool
2247 canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override {
2248 return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS);
2249 }
2250
2251 unsigned getAssumedAddrSpace(const Value *V) const override {
2252 return Impl.getAssumedAddrSpace(V);
2253 }
2254
2255 bool isSingleThreaded() const override { return Impl.isSingleThreaded(); }
2256
2257 std::pair<const Value *, unsigned>
2258 getPredicatedAddrSpace(const Value *V) const override {
2259 return Impl.getPredicatedAddrSpace(V);
2260 }
2261
2262 Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
2263 Value *NewV) const override {
2264 return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
2265 }
2266
2267 bool isLoweredToCall(const Function *F) override {
2268 return Impl.isLoweredToCall(F);
2269 }
2270 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2271 UnrollingPreferences &UP,
2272 OptimizationRemarkEmitter *ORE) override {
2273 return Impl.getUnrollingPreferences(L, SE, UP, ORE);
2274 }
2275 void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2276 PeelingPreferences &PP) override {
2277 return Impl.getPeelingPreferences(L, SE, PP);
2278 }
2279 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
2280 AssumptionCache &AC, TargetLibraryInfo *LibInfo,
2281 HardwareLoopInfo &HWLoopInfo) override {
2282 return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
2283 }
2284 bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) override {
2285 return Impl.preferPredicateOverEpilogue(TFI);
2286 }
2288 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) override {
2289 return Impl.getPreferredTailFoldingStyle(IVUpdateMayOverflow);
2290 }
2291 std::optional<Instruction *>
2292 instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override {
2293 return Impl.instCombineIntrinsic(IC, II);
2294 }
2295 std::optional<Value *>
2296 simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II,
2297 APInt DemandedMask, KnownBits &Known,
2298 bool &KnownBitsComputed) override {
2299 return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
2300 KnownBitsComputed);
2301 }
2302 std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
2303 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
2304 APInt &UndefElts2, APInt &UndefElts3,
2305 std::function<void(Instruction *, unsigned, APInt, APInt &)>
2306 SimplifyAndSetOp) override {
2307 return Impl.simplifyDemandedVectorEltsIntrinsic(
2308 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
2309 SimplifyAndSetOp);
2310 }
2311 bool isLegalAddImmediate(int64_t Imm) override {
2312 return Impl.isLegalAddImmediate(Imm);
2313 }
2314 bool isLegalAddScalableImmediate(int64_t Imm) override {
2315 return Impl.isLegalAddScalableImmediate(Imm);
2316 }
2317 bool isLegalICmpImmediate(int64_t Imm) override {
2318 return Impl.isLegalICmpImmediate(Imm);
2319 }
2320 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
2321 bool HasBaseReg, int64_t Scale, unsigned AddrSpace,
2322 Instruction *I, int64_t ScalableOffset) override {
2323 return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
2324 AddrSpace, I, ScalableOffset);
2325 }
2326 bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
2327 const TargetTransformInfo::LSRCost &C2) override {
2328 return Impl.isLSRCostLess(C1, C2);
2329 }
2330 bool isNumRegsMajorCostOfLSR() override {
2331 return Impl.isNumRegsMajorCostOfLSR();
2332 }
2333 bool shouldFoldTerminatingConditionAfterLSR() const override {
2334 return Impl.shouldFoldTerminatingConditionAfterLSR();
2335 }
2336 bool isProfitableLSRChainElement(Instruction *I) override {
2337 return Impl.isProfitableLSRChainElement(I);
2338 }
2339 bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); }
2340 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI,
2341 DominatorTree *DT, AssumptionCache *AC,
2342 TargetLibraryInfo *LibInfo) override {
2343 return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
2344 }
2346 getPreferredAddressingMode(const Loop *L,
2347 ScalarEvolution *SE) const override {
2348 return Impl.getPreferredAddressingMode(L, SE);
2349 }
2350 bool isLegalMaskedStore(Type *DataType, Align Alignment) override {
2351 return Impl.isLegalMaskedStore(DataType, Alignment);
2352 }
2353 bool isLegalMaskedLoad(Type *DataType, Align Alignment) override {
2354 return Impl.isLegalMaskedLoad(DataType, Alignment);
2355 }
2356 bool isLegalNTStore(Type *DataType, Align Alignment) override {
2357 return Impl.isLegalNTStore(DataType, Alignment);
2358 }
2359 bool isLegalNTLoad(Type *DataType, Align Alignment) override {
2360 return Impl.isLegalNTLoad(DataType, Alignment);
2361 }
2362 bool isLegalBroadcastLoad(Type *ElementTy,
2363 ElementCount NumElements) const override {
2364 return Impl.isLegalBroadcastLoad(ElementTy, NumElements);
2365 }
2366 bool isLegalMaskedScatter(Type *DataType, Align Alignment) override {
2367 return Impl.isLegalMaskedScatter(DataType, Alignment);
2368 }
2369 bool isLegalMaskedGather(Type *DataType, Align Alignment) override {
2370 return Impl.isLegalMaskedGather(DataType, Alignment);
2371 }
2372 bool forceScalarizeMaskedGather(VectorType *DataType,
2373 Align Alignment) override {
2374 return Impl.forceScalarizeMaskedGather(DataType, Alignment);
2375 }
2376 bool forceScalarizeMaskedScatter(VectorType *DataType,
2377 Align Alignment) override {
2378 return Impl.forceScalarizeMaskedScatter(DataType, Alignment);
2379 }
2380 bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) override {
2381 return Impl.isLegalMaskedCompressStore(DataType, Alignment);
2382 }
2383 bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) override {
2384 return Impl.isLegalMaskedExpandLoad(DataType, Alignment);
2385 }
2386 bool isLegalStridedLoadStore(Type *DataType, Align Alignment) override {
2387 return Impl.isLegalStridedLoadStore(DataType, Alignment);
2388 }
2389 bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
2390 const SmallBitVector &OpcodeMask) const override {
2391 return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
2392 }
2393 bool enableOrderedReductions() override {
2394 return Impl.enableOrderedReductions();
2395 }
2396 bool hasDivRemOp(Type *DataType, bool IsSigned) override {
2397 return Impl.hasDivRemOp(DataType, IsSigned);
2398 }
2399 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
2400 return Impl.hasVolatileVariant(I, AddrSpace);
2401 }
2402 bool prefersVectorizedAddressing() override {
2403 return Impl.prefersVectorizedAddressing();
2404 }
2405 InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
2406 int64_t BaseOffset, bool HasBaseReg,
2407 int64_t Scale,
2408 unsigned AddrSpace) override {
2409 return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale,
2410 AddrSpace);
2411 }
2412 bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); }
2413 bool isTruncateFree(Type *Ty1, Type *Ty2) override {
2414 return Impl.isTruncateFree(Ty1, Ty2);
2415 }
2416 bool isProfitableToHoist(Instruction *I) override {
2417 return Impl.isProfitableToHoist(I);
2418 }
2419 bool useAA() override { return Impl.useAA(); }
2420 bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
2421 unsigned getRegUsageForType(Type *Ty) override {
2422 return Impl.getRegUsageForType(Ty);
2423 }
2424 bool shouldBuildLookupTables() override {
2425 return Impl.shouldBuildLookupTables();
2426 }
2427 bool shouldBuildLookupTablesForConstant(Constant *C) override {
2428 return Impl.shouldBuildLookupTablesForConstant(C);
2429 }
2430 bool shouldBuildRelLookupTables() override {
2431 return Impl.shouldBuildRelLookupTables();
2432 }
2433 bool useColdCCForColdCall(Function &F) override {
2434 return Impl.useColdCCForColdCall(F);
2435 }
2436
2437 InstructionCost getScalarizationOverhead(VectorType *Ty,
2438 const APInt &DemandedElts,
2439 bool Insert, bool Extract,
2440 TargetCostKind CostKind) override {
2441 return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract,
2442 CostKind);
2443 }
2444 InstructionCost
2445 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
2446 ArrayRef<Type *> Tys,
2447 TargetCostKind CostKind) override {
2448 return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind);
2449 }
2450
2451 bool supportsEfficientVectorElementLoadStore() override {
2452 return Impl.supportsEfficientVectorElementLoadStore();
2453 }
2454
2455 bool supportsTailCalls() override { return Impl.supportsTailCalls(); }
2456 bool supportsTailCallFor(const CallBase *CB) override {
2457 return Impl.supportsTailCallFor(CB);
2458 }
2459
2460 bool enableAggressiveInterleaving(bool LoopHasReductions) override {
2461 return Impl.enableAggressiveInterleaving(LoopHasReductions);
2462 }
2463 MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
2464 bool IsZeroCmp) const override {
2465 return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp);
2466 }
2467 bool enableSelectOptimize() override {
2468 return Impl.enableSelectOptimize();
2469 }
2470 bool shouldTreatInstructionLikeSelect(const Instruction *I) override {
2471 return Impl.shouldTreatInstructionLikeSelect(I);
2472 }
2473 bool enableInterleavedAccessVectorization() override {
2474 return Impl.enableInterleavedAccessVectorization();
2475 }
2476 bool enableMaskedInterleavedAccessVectorization() override {
2477 return Impl.enableMaskedInterleavedAccessVectorization();
2478 }
2479 bool isFPVectorizationPotentiallyUnsafe() override {
2480 return Impl.isFPVectorizationPotentiallyUnsafe();
2481 }
2482 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
2483 unsigned AddressSpace, Align Alignment,
2484 unsigned *Fast) override {
2485 return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
2486 Alignment, Fast);
2487 }
2488 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
2489 return Impl.getPopcntSupport(IntTyWidthInBit);
2490 }
2491 bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
2492
2493 bool isExpensiveToSpeculativelyExecute(const Instruction* I) override {
2494 return Impl.isExpensiveToSpeculativelyExecute(I);
2495 }
2496
2497 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
2498 return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
2499 }
2500
2501 InstructionCost getFPOpCost(Type *Ty) override {
2502 return Impl.getFPOpCost(Ty);
2503 }
2504
2505 InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
2506 const APInt &Imm, Type *Ty) override {
2507 return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
2508 }
2509 InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
2510 TargetCostKind CostKind) override {
2511 return Impl.getIntImmCost(Imm, Ty, CostKind);
2512 }
2513 InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
2514 const APInt &Imm, Type *Ty,
2516 Instruction *Inst = nullptr) override {
2517 return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst);
2518 }
2519 InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
2520 const APInt &Imm, Type *Ty,
2521 TargetCostKind CostKind) override {
2522 return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
2523 }
2524 bool preferToKeepConstantsAttached(const Instruction &Inst,
2525 const Function &Fn) const override {
2526 return Impl.preferToKeepConstantsAttached(Inst, Fn);
2527 }
2528 unsigned getNumberOfRegisters(unsigned ClassID) const override {
2529 return Impl.getNumberOfRegisters(ClassID);
2530 }
2531 unsigned getRegisterClassForType(bool Vector,
2532 Type *Ty = nullptr) const override {
2533 return Impl.getRegisterClassForType(Vector, Ty);
2534 }
2535 const char *getRegisterClassName(unsigned ClassID) const override {
2536 return Impl.getRegisterClassName(ClassID);
2537 }
2538 TypeSize getRegisterBitWidth(RegisterKind K) const override {
2539 return Impl.getRegisterBitWidth(K);
2540 }
2541 unsigned getMinVectorRegisterBitWidth() const override {
2542 return Impl.getMinVectorRegisterBitWidth();
2543 }
2544 std::optional<unsigned> getMaxVScale() const override {
2545 return Impl.getMaxVScale();
2546 }
2547 std::optional<unsigned> getVScaleForTuning() const override {
2548 return Impl.getVScaleForTuning();
2549 }
2550 bool isVScaleKnownToBeAPowerOfTwo() const override {
2551 return Impl.isVScaleKnownToBeAPowerOfTwo();
2552 }
2553 bool shouldMaximizeVectorBandwidth(
2554 TargetTransformInfo::RegisterKind K) const override {
2555 return Impl.shouldMaximizeVectorBandwidth(K);
2556 }
2557 ElementCount getMinimumVF(unsigned ElemWidth,
2558 bool IsScalable) const override {
2559 return Impl.getMinimumVF(ElemWidth, IsScalable);
2560 }
2561 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override {
2562 return Impl.getMaximumVF(ElemWidth, Opcode);
2563 }
2564 unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
2565 Type *ScalarValTy) const override {
2566 return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
2567 }
2568 bool shouldConsiderAddressTypePromotion(
2569 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
2570 return Impl.shouldConsiderAddressTypePromotion(
2571 I, AllowPromotionWithoutCommonHeader);
2572 }
2573 unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); }
2574 std::optional<unsigned> getCacheSize(CacheLevel Level) const override {
2575 return Impl.getCacheSize(Level);
2576 }
2577 std::optional<unsigned>
2578 getCacheAssociativity(CacheLevel Level) const override {
2579 return Impl.getCacheAssociativity(Level);
2580 }
2581
2582 std::optional<unsigned> getMinPageSize() const override {
2583 return Impl.getMinPageSize();
2584 }
2585
2586 /// Return the preferred prefetch distance in terms of instructions.
2587 ///
2588 unsigned getPrefetchDistance() const override {
2589 return Impl.getPrefetchDistance();
2590 }
2591
2592 /// Return the minimum stride necessary to trigger software
2593 /// prefetching.
2594 ///
2595 unsigned getMinPrefetchStride(unsigned NumMemAccesses,
2596 unsigned NumStridedMemAccesses,
2597 unsigned NumPrefetches,
2598 bool HasCall) const override {
2599 return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
2600 NumPrefetches, HasCall);
2601 }
2602
2603 /// Return the maximum prefetch distance in terms of loop
2604 /// iterations.
2605 ///
2606 unsigned getMaxPrefetchIterationsAhead() const override {
2607 return Impl.getMaxPrefetchIterationsAhead();
2608 }
2609
2610 /// \return True if prefetching should also be done for writes.
2611 bool enableWritePrefetching() const override {
2612 return Impl.enableWritePrefetching();
2613 }
2614
2615 /// \return if target want to issue a prefetch in address space \p AS.
2616 bool shouldPrefetchAddressSpace(unsigned AS) const override {
2617 return Impl.shouldPrefetchAddressSpace(AS);
2618 }
2619
2620 unsigned getMaxInterleaveFactor(ElementCount VF) override {
2621 return Impl.getMaxInterleaveFactor(VF);
2622 }
2623 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
2624 unsigned &JTSize,
2625 ProfileSummaryInfo *PSI,
2626 BlockFrequencyInfo *BFI) override {
2627 return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
2628 }
2629 InstructionCost getArithmeticInstrCost(
2630 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
2631 OperandValueInfo Opd1Info, OperandValueInfo Opd2Info,
2632 ArrayRef<const Value *> Args,
2633 const Instruction *CxtI = nullptr) override {
2634 return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
2635 Args, CxtI);
2636 }
2637 InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0,
2638 unsigned Opcode1,
2639 const SmallBitVector &OpcodeMask,
2640 TTI::TargetCostKind CostKind) const override {
2641 return Impl.getAltInstrCost(VecTy, Opcode0, Opcode1, OpcodeMask, CostKind);
2642 }
2643
2644 InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp,
2645 ArrayRef<int> Mask,
2647 VectorType *SubTp,
2648 ArrayRef<const Value *> Args,
2649 const Instruction *CxtI) override {
2650 return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args,
2651 CxtI);
2652 }
2653 InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
2654 CastContextHint CCH,
2656 const Instruction *I) override {
2657 return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
2658 }
2659 InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
2660 VectorType *VecTy,
2661 unsigned Index) override {
2662 return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
2663 }
2664 InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
2665 const Instruction *I = nullptr) override {
2666 return Impl.getCFInstrCost(Opcode, CostKind, I);
2667 }
2668 InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
2669 CmpInst::Predicate VecPred,
2671 const Instruction *I) override {
2672 return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
2673 }
2674 InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
2676 unsigned Index, Value *Op0,
2677 Value *Op1) override {
2678 return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
2679 }
2680 InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
2682 unsigned Index) override {
2683 return Impl.getVectorInstrCost(I, Val, CostKind, Index);
2684 }
2685 InstructionCost
2686 getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF,
2687 const APInt &DemandedDstElts,
2688 TTI::TargetCostKind CostKind) override {
2689 return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
2690 DemandedDstElts, CostKind);
2691 }
2692 InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2693 unsigned AddressSpace,
2695 OperandValueInfo OpInfo,
2696 const Instruction *I) override {
2697 return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind,
2698 OpInfo, I);
2699 }
2700 InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
2701 unsigned AddressSpace,
2703 const Instruction *I) override {
2704 return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2705 CostKind, I);
2706 }
2707 InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
2708 Align Alignment, unsigned AddressSpace,
2709 TTI::TargetCostKind CostKind) override {
2710 return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
2711 CostKind);
2712 }
2713 InstructionCost
2714 getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2715 bool VariableMask, Align Alignment,
2717 const Instruction *I = nullptr) override {
2718 return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
2719 Alignment, CostKind, I);
2720 }
2721 InstructionCost
2722 getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr,
2723 bool VariableMask, Align Alignment,
2725 const Instruction *I = nullptr) override {
2726 return Impl.getStridedMemoryOpCost(Opcode, DataTy, Ptr, VariableMask,
2727 Alignment, CostKind, I);
2728 }
2729 InstructionCost getInterleavedMemoryOpCost(
2730 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2731 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2732 bool UseMaskForCond, bool UseMaskForGaps) override {
2733 return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2734 Alignment, AddressSpace, CostKind,
2735 UseMaskForCond, UseMaskForGaps);
2736 }
2737 InstructionCost
2738 getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
2739 std::optional<FastMathFlags> FMF,
2740 TTI::TargetCostKind CostKind) override {
2741 return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
2742 }
2743 InstructionCost
2744 getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
2745 TTI::TargetCostKind CostKind) override {
2746 return Impl.getMinMaxReductionCost(IID, Ty, FMF, CostKind);
2747 }
2748 InstructionCost
2749 getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
2750 VectorType *Ty, FastMathFlags FMF,
2751 TTI::TargetCostKind CostKind) override {
2752 return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF,
2753 CostKind);
2754 }
2755 InstructionCost
2756 getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty,
2757 TTI::TargetCostKind CostKind) override {
2758 return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind);
2759 }
2760 InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
2761 TTI::TargetCostKind CostKind) override {
2762 return Impl.getIntrinsicInstrCost(ICA, CostKind);
2763 }
2764 InstructionCost getCallInstrCost(Function *F, Type *RetTy,
2765 ArrayRef<Type *> Tys,
2766 TTI::TargetCostKind CostKind) override {
2767 return Impl.getCallInstrCost(F, RetTy, Tys, CostKind);
2768 }
2769 unsigned getNumberOfParts(Type *Tp) override {
2770 return Impl.getNumberOfParts(Tp);
2771 }
2772 InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
2773 const SCEV *Ptr) override {
2774 return Impl.getAddressComputationCost(Ty, SE, Ptr);
2775 }
2776 InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
2777 return Impl.getCostOfKeepingLiveOverCall(Tys);
2778 }
2779 bool getTgtMemIntrinsic(IntrinsicInst *Inst,
2780 MemIntrinsicInfo &Info) override {
2781 return Impl.getTgtMemIntrinsic(Inst, Info);
2782 }
2783 unsigned getAtomicMemIntrinsicMaxElementSize() const override {
2784 return Impl.getAtomicMemIntrinsicMaxElementSize();
2785 }
2786 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2787 Type *ExpectedType) override {
2788 return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
2789 }
2790 Type *getMemcpyLoopLoweringType(
2791 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
2792 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
2793 std::optional<uint32_t> AtomicElementSize) const override {
2794 return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
2795 DestAddrSpace, SrcAlign, DestAlign,
2796 AtomicElementSize);
2797 }
2798 void getMemcpyLoopResidualLoweringType(
2799 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
2800 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
2801 unsigned SrcAlign, unsigned DestAlign,
2802 std::optional<uint32_t> AtomicCpySize) const override {
2803 Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
2804 SrcAddrSpace, DestAddrSpace,
2805 SrcAlign, DestAlign, AtomicCpySize);
2806 }
2807 bool areInlineCompatible(const Function *Caller,
2808 const Function *Callee) const override {
2809 return Impl.areInlineCompatible(Caller, Callee);
2810 }
2811 unsigned getInlineCallPenalty(const Function *F, const CallBase &Call,
2812 unsigned DefaultCallPenalty) const override {
2813 return Impl.getInlineCallPenalty(F, Call, DefaultCallPenalty);
2814 }
2815 bool areTypesABICompatible(const Function *Caller, const Function *Callee,
2816 const ArrayRef<Type *> &Types) const override {
2817 return Impl.areTypesABICompatible(Caller, Callee, Types);
2818 }
2819 bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
2820 return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
2821 }
2822 bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
2823 return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
2824 }
2825 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
2826 return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
2827 }
2828 bool isLegalToVectorizeLoad(LoadInst *LI) const override {
2829 return Impl.isLegalToVectorizeLoad(LI);
2830 }
2831 bool isLegalToVectorizeStore(StoreInst *SI) const override {
2832 return Impl.isLegalToVectorizeStore(SI);
2833 }
2834 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment,
2835 unsigned AddrSpace) const override {
2836 return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
2837 AddrSpace);
2838 }
2839 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
2840 unsigned AddrSpace) const override {
2841 return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
2842 AddrSpace);
2843 }
2844 bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
2845 ElementCount VF) const override {
2846 return Impl.isLegalToVectorizeReduction(RdxDesc, VF);
2847 }
2848 bool isElementTypeLegalForScalableVector(Type *Ty) const override {
2849 return Impl.isElementTypeLegalForScalableVector(Ty);
2850 }
2851 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
2852 unsigned ChainSizeInBytes,
2853 VectorType *VecTy) const override {
2854 return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
2855 }
2856 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
2857 unsigned ChainSizeInBytes,
2858 VectorType *VecTy) const override {
2859 return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
2860 }
2861 bool preferInLoopReduction(unsigned Opcode, Type *Ty,
2862 ReductionFlags Flags) const override {
2863 return Impl.preferInLoopReduction(Opcode, Ty, Flags);
2864 }
2865 bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty,
2866 ReductionFlags Flags) const override {
2867 return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags);
2868 }
2869 bool preferEpilogueVectorization() const override {
2870 return Impl.preferEpilogueVectorization();
2871 }
2872
2873 bool shouldExpandReduction(const IntrinsicInst *II) const override {
2874 return Impl.shouldExpandReduction(II);
2875 }
2876
2877 unsigned getGISelRematGlobalCost() const override {
2878 return Impl.getGISelRematGlobalCost();
2879 }
2880
2881 unsigned getMinTripCountTailFoldingThreshold() const override {
2882 return Impl.getMinTripCountTailFoldingThreshold();
2883 }
2884
2885 bool supportsScalableVectors() const override {
2886 return Impl.supportsScalableVectors();
2887 }
2888
2889 bool enableScalableVectorization() const override {
2890 return Impl.enableScalableVectorization();
2891 }
2892
2893 bool hasActiveVectorLength(unsigned Opcode, Type *DataType,
2894 Align Alignment) const override {
2895 return Impl.hasActiveVectorLength(Opcode, DataType, Alignment);
2896 }
2897
2899 getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
2900 return Impl.getVPLegalizationStrategy(PI);
2901 }
2902
2903 bool hasArmWideBranch(bool Thumb) const override {
2904 return Impl.hasArmWideBranch(Thumb);
2905 }
2906
2907 unsigned getMaxNumArgs() const override {
2908 return Impl.getMaxNumArgs();
2909 }
2910};
2911
2912template <typename T>
2914 : TTIImpl(new Model<T>(Impl)) {}
2915
2916/// Analysis pass providing the \c TargetTransformInfo.
2917///
2918/// The core idea of the TargetIRAnalysis is to expose an interface through
2919/// which LLVM targets can analyze and provide information about the middle
2920/// end's target-independent IR. This supports use cases such as target-aware
2921/// cost modeling of IR constructs.
2922///
2923/// This is a function analysis because much of the cost modeling for targets
2924/// is done in a subtarget specific way and LLVM supports compiling different
2925/// functions targeting different subtargets in order to support runtime
2926/// dispatch according to the observed subtarget.
2927class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
2928public:
2930
2931 /// Default construct a target IR analysis.
2932 ///
2933 /// This will use the module's datalayout to construct a baseline
2934 /// conservative TTI result.
2936
2937 /// Construct an IR analysis pass around a target-provide callback.
2938 ///
2939 /// The callback will be called with a particular function for which the TTI
2940 /// is needed and must return a TTI object for that function.
2941 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
2942
2943 // Value semantics. We spell out the constructors for MSVC.
2945 : TTICallback(Arg.TTICallback) {}
2947 : TTICallback(std::move(Arg.TTICallback)) {}
2949 TTICallback = RHS.TTICallback;
2950 return *this;
2951 }
2953 TTICallback = std::move(RHS.TTICallback);
2954 return *this;
2955 }
2956
2958
2959private:
2961 static AnalysisKey Key;
2962
2963 /// The callback used to produce a result.
2964 ///
2965 /// We use a completely opaque callback so that targets can provide whatever
2966 /// mechanism they desire for constructing the TTI for a given function.
2967 ///
2968 /// FIXME: Should we really use std::function? It's relatively inefficient.
2969 /// It might be possible to arrange for even stateful callbacks to outlive
2970 /// the analysis and thus use a function_ref which would be lighter weight.
2971 /// This may also be less error prone as the callback is likely to reference
2972 /// the external TargetMachine, and that reference needs to never dangle.
2973 std::function<Result(const Function &)> TTICallback;
2974
2975 /// Helper function used as the callback in the default constructor.
2976 static Result getDefaultTTI(const Function &F);
2977};
2978
2979/// Wrapper pass for TargetTransformInfo.
2980///
2981/// This pass can be constructed from a TTI object which it stores internally
2982/// and is queried by passes.
2984 TargetIRAnalysis TIRA;
2985 std::optional<TargetTransformInfo> TTI;
2986
2987 virtual void anchor();
2988
2989public:
2990 static char ID;
2991
2992 /// We must provide a default constructor for the pass but it should
2993 /// never be used.
2994 ///
2995 /// Use the constructor below or call one of the creation routines.
2997
2999
3001};
3002
3003/// Create an analysis pass wrapper around a TTI object.
3004///
3005/// This analysis pass just holds the TTI instance and makes it available to
3006/// clients.
3008
3009} // namespace llvm
3010
3011#endif
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
AMDGPU Lower Kernel Arguments
Atomic ordering constants.
RelocType Type
Definition: COFFYAML.cpp:391
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static cl::opt< bool > ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops"))
static cl::opt< bool > ForceHardwareLoopPHI("force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi"))
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
std::optional< unsigned > getMaxVScale(const Function &F, const TargetTransformInfo &TTI)
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
Machine InstCombiner
This header defines various interfaces for pass management in LLVM.
static cl::opt< RegAllocEvictionAdvisorAnalysis::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Development, "development", "for training")))
This file implements the SmallBitVector class.
Value * RHS
Class for arbitrary precision integers.
Definition: APInt.h:76
an instruction to allocate memory on the stack
Definition: Instructions.h:59
API to communicate dependencies between analyses during invalidation.
Definition: PassManager.h:360
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:321
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1494
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:993
This is an important base class in LLVM.
Definition: Constant.h:41
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
ImmutablePass class - This class is used to provide information that does not need to be run.
Definition: Pass.h:282
The core instruction combiner logic.
Definition: InstCombiner.h:47
static InstructionCost getInvalid(CostType Val=0)
Class to represent integer types.
Definition: DerivedTypes.h:40
Drive the analysis of interleaved memory accesses in the loop.
Definition: VectorUtils.h:586
const SmallVectorImpl< Type * > & getArgTypes() const
const SmallVectorImpl< const Value * > & getArgs() const
InstructionCost getScalarizationCost() const
const IntrinsicInst * getInst() const
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:184
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
The optimization diagnostic interface.
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:109
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Definition: IVDescriptors.h:71
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:317
Multiway switch.
Analysis pass providing the TargetTransformInfo.
TargetIRAnalysis(const TargetIRAnalysis &Arg)
TargetIRAnalysis & operator=(const TargetIRAnalysis &RHS)
Result run(const Function &F, FunctionAnalysisManager &)
TargetTransformInfo Result
TargetIRAnalysis()
Default construct a target IR analysis.
TargetIRAnalysis & operator=(TargetIRAnalysis &&RHS)
TargetIRAnalysis(TargetIRAnalysis &&Arg)
Provides information about what library functions are available for the current target.
Wrapper pass for TargetTransformInfo.
TargetTransformInfoWrapperPass()
We must provide a default constructor for the pass but it should never be used.
TargetTransformInfo & getTTI(const Function &F)
virtual std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)=0
virtual InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr)=0
virtual TypeSize getRegisterBitWidth(RegisterKind K) const =0
virtual const DataLayout & getDataLayout() const =0
virtual bool isProfitableLSRChainElement(Instruction *I)=0
virtual InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)=0
virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst=nullptr)=0
virtual InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind)=0
virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)=0
virtual bool isLegalNTStore(Type *DataType, Align Alignment)=0
virtual unsigned adjustInliningThreshold(const CallBase *CB)=0
virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I)=0
virtual bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const =0
virtual std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II)=0
virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags) const =0
virtual VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const =0
virtual bool isLegalNTLoad(Type *DataType, Align Alignment)=0
virtual bool enableOrderedReductions()=0
virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit)=0
virtual unsigned getNumberOfRegisters(unsigned ClassID) const =0
virtual std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const =0
virtual bool isLegalMaskedGather(Type *DataType, Align Alignment)=0
virtual bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef< Type * > &Types) const =0
virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind)=0
virtual bool shouldPrefetchAddressSpace(unsigned AS) const =0
virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty)=0
virtual unsigned getMinVectorRegisterBitWidth() const =0
virtual InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const =0
virtual std::optional< unsigned > getVScaleForTuning() const =0
virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind)=0
virtual InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)=0
virtual bool supportsEfficientVectorElementLoadStore()=0
virtual unsigned getRegUsageForType(Type *Ty)=0
virtual bool hasArmWideBranch(bool Thumb) const =0
virtual MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const =0
virtual InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput)=0
virtual InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, OperandValueInfo Opd1Info, OperandValueInfo Opd2Info, ArrayRef< const Value * > Args, const Instruction *CxtI=nullptr)=0
virtual unsigned getAssumedAddrSpace(const Value *V) const =0
virtual bool isTruncateFree(Type *Ty1, Type *Ty2)=0
virtual bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const =0
virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind)=0
virtual InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TargetCostKind CostKind)=0
virtual bool shouldBuildLookupTables()=0
virtual bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const =0
virtual bool isLegalToVectorizeStore(StoreInst *SI) const =0
virtual unsigned getGISelRematGlobalCost() const =0
virtual unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const =0
virtual void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional< uint32_t > AtomicCpySize) const =0
virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace)=0
virtual bool forceScalarizeMaskedScatter(VectorType *DataType, Align Alignment)=0
virtual bool supportsTailCallFor(const CallBase *CB)=0
virtual std::optional< unsigned > getMaxVScale() const =0
virtual InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind)=0
virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const =0
virtual unsigned getMaxNumArgs() const =0
virtual bool shouldExpandReduction(const IntrinsicInst *II) const =0
virtual bool enableWritePrefetching() const =0
virtual bool useColdCCForColdCall(Function &F)=0
virtual unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const =0
virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags) const =0
virtual int getInlinerVectorBonusPercent() const =0
virtual unsigned getMaxPrefetchIterationsAhead() const =0
virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment)=0
virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const =0
virtual unsigned getCacheLineSize() const =0
virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const =0
virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const =0
virtual AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const =0
virtual bool shouldBuildLookupTablesForConstant(Constant *C)=0
virtual bool preferPredicateOverEpilogue(TailFoldingInfo *TFI)=0
virtual bool isProfitableToHoist(Instruction *I)=0
virtual bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment)=0
virtual InstructionCost getFPOpCost(Type *Ty)=0
virtual unsigned getMinTripCountTailFoldingThreshold() const =0
virtual bool enableMaskedInterleavedAccessVectorization()=0
virtual unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const =0
virtual bool isTypeLegal(Type *Ty)=0
virtual BranchProbability getPredictableBranchThreshold()=0
virtual bool enableScalableVectorization() const =0
virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info)=0
virtual bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const =0
virtual const char * getRegisterClassName(unsigned ClassID) const =0
virtual unsigned getMaxInterleaveFactor(ElementCount VF)=0
virtual bool enableAggressiveInterleaving(bool LoopHasReductions)=0
virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const =0
virtual bool haveFastSqrt(Type *Ty)=0
virtual bool isLegalMaskedCompressStore(Type *DataType, Align Alignment)=0
virtual std::optional< unsigned > getCacheSize(CacheLevel Level) const =0
virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind)=0
virtual InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind)=0
virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP)=0
virtual std::optional< unsigned > getCacheAssociativity(CacheLevel Level) const =0
virtual bool supportsScalableVectors() const =0
virtual bool forceScalarizeMaskedGather(VectorType *DataType, Align Alignment)=0
virtual unsigned getNumberOfParts(Type *Tp)=0
virtual bool isLegalICmpImmediate(int64_t Imm)=0
virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)=0
virtual InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)=0
virtual bool isElementTypeLegalForScalableVector(Type *Ty) const =0
virtual TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true)=0
virtual bool hasDivRemOp(Type *DataType, bool IsSigned)=0
virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const =0
virtual bool shouldBuildRelLookupTables()=0
virtual InstructionCost getOperandsScalarizationOverhead(ArrayRef< const Value * > Args, ArrayRef< Type * > Tys, TargetCostKind CostKind)=0
virtual bool isLoweredToCall(const Function *F)=0
virtual bool isSourceOfDivergence(const Value *V)=0
virtual bool isLegalAddScalableImmediate(int64_t Imm)=0
virtual bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const =0
virtual unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const =0
virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment)=0
virtual InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput)=0
virtual bool isFPVectorizationPotentiallyUnsafe()=0
virtual Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType)=0
virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const =0
virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty)=0
virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I)=0
virtual bool hasBranchDivergence(const Function *F=nullptr)=0
virtual InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind)=0
virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, const Instruction *I)=0
virtual unsigned getInliningThresholdMultiplier() const =0
virtual InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind)=0
virtual bool isLegalMaskedStore(Type *DataType, Align Alignment)=0
virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index)=0
virtual bool isLegalToVectorizeLoad(LoadInst *LI) const =0
virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const =0
virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const =0
virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2)=0
virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const =0
virtual InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false)=0
virtual bool prefersVectorizedAddressing()=0
virtual uint64_t getMaxMemIntrinsicInlineSizeThreshold() const =0
virtual InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args, const Instruction *CxtI)=0
virtual InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, OperandValueInfo OpInfo, const Instruction *I)=0
virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo)=0
virtual Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional< uint32_t > AtomicElementSize) const =0
virtual InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind)=0
virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo)=0
virtual bool isAlwaysUniform(const Value *V)=0
virtual std::optional< unsigned > getMinPageSize() const =0
virtual InstructionCost getMemcpyCost(const Instruction *I)=0
virtual ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const =0
virtual bool areInlineCompatible(const Function *Caller, const Function *Callee) const =0
virtual bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const =0
virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index)=0
virtual std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)=0
virtual InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)=0
virtual unsigned getFlatAddressSpace()=0
virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1)=0
virtual unsigned getPrefetchDistance() const =0
virtual bool shouldFoldTerminatingConditionAfterLSR() const =0
virtual bool shouldTreatInstructionLikeSelect(const Instruction *I)=0
virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace)=0
virtual bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const =0
virtual bool isNumRegsMajorCostOfLSR()=0
virtual bool isLegalStridedLoadStore(Type *DataType, Align Alignment)=0
virtual bool isSingleThreaded() const =0
virtual bool isLegalAddImmediate(int64_t Imm)=0
virtual Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const =0
virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I, int64_t ScalableOffset)=0
virtual bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader)=0
virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const =0
virtual bool isVScaleKnownToBeAPowerOfTwo() const =0
virtual InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys)=0
virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType, Align Alignment) const =0
virtual bool enableInterleavedAccessVectorization()=0
virtual unsigned getAtomicMemIntrinsicMaxElementSize() const =0
virtual bool preferEpilogueVectorization() const =0
virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, const Instruction *I)=0
virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const =0
virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const =0
virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, Align Alignment, unsigned *Fast)=0
virtual unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const =0
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
bool isLegalToVectorizeLoad(LoadInst *LI) const
std::optional< unsigned > getVScaleForTuning() const
static CastContextHint getCastContextHint(const Instruction *I)
Calculates a CastContextHint from I.
bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const
Return false if a AS0 address cannot possibly alias a AS1 address.
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const
Return true if the target supports masked scatter.
InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind)
bool shouldBuildLookupTables() const
Return true if switches should be turned into lookup tables for the target.
bool isLegalToVectorizeStore(StoreInst *SI) const
bool enableAggressiveInterleaving(bool LoopHasReductions) const
Don't restrict interleaved unrolling to small loops.
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional< uint32_t > AtomicCpySize=std::nullopt) const
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const
Return true if it is faster to check if a floating-point value is NaN (or not-NaN) versus a compariso...
bool preferInLoopReduction(unsigned Opcode, Type *Ty, ReductionFlags Flags) const
bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
bool isAlwaysUniform(const Value *V) const
unsigned getAssumedAddrSpace(const Value *V) const
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const
Return true if LSR cost of C1 is lower than C2.
bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const
Return true if the target supports masked expand load.
bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
bool hasBranchDivergence(const Function *F=nullptr) const
Return true if branch divergence exists.
MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE=nullptr, const SCEV *Ptr=nullptr) const
bool invalidate(Function &, const PreservedAnalyses &, FunctionAnalysisManager::Invalidator &)
Handle the invalidation of this information.
void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const
Get target-customized preferences for the generic loop unrolling transformation.
bool shouldBuildLookupTablesForConstant(Constant *C) const
Return true if switches should be turned into lookup tables containing this constant value for the ta...
bool shouldFoldTerminatingConditionAfterLSR() const
Return true if LSR should attempts to replace a use of an otherwise dead primary IV in the latch cond...
InstructionCost getOperandsScalarizationOverhead(ArrayRef< const Value * > Args, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing an instructions unique non-constant operands.
bool supportsTailCallFor(const CallBase *CB) const
If target supports tail call on CB.
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
Targets can implement their own combinations for target-specific intrinsics.
bool isProfitableLSRChainElement(Instruction *I) const
TypeSize getRegisterBitWidth(RegisterKind K) const
unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const
Returns a penalty for invoking call Call in F.
bool isExpensiveToSpeculativelyExecute(const Instruction *I) const
Return true if the cost of the instruction is too high to speculatively execute and should be kept be...
bool isLegalMaskedGather(Type *DataType, Align Alignment) const
Return true if the target supports masked gather.
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
std::optional< unsigned > getMaxVScale() const
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
Can be used to implement target-specific instruction combining.
bool enableOrderedReductions() const
Return true if we should be enabling ordered reductions for the target.
InstructionCost getInstructionCost(const User *U, TargetCostKind CostKind) const
This is a helper function which calls the three-argument getInstructionCost with Operands which are t...
unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of vector reduction intrinsics.
unsigned getAtomicMemIntrinsicMaxElementSize() const
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
bool LSRWithInstrQueries() const
Return true if the loop strength reduce pass should make Instruction* based TTI queries to isLegalAdd...
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const
bool shouldTreatInstructionLikeSelect(const Instruction *I) const
Should the Select Optimization pass treat the given instruction like a select, potentially converting...
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Query the target what the preferred style of tail folding is.
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType=nullptr, TargetCostKind CostKind=TCK_SizeAndLatency) const
Estimate the cost of a GEP operation when lowered.
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
unsigned getRegUsageForType(Type *Ty) const
Returns the estimated number of registers required to represent Ty.
bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const
\Returns true if the target supports broadcasting a load to a vector of type <NumElements x ElementTy...
bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const
std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of a reduc...
static OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of an Add ...
unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0, Instruction *I=nullptr, int64_t ScalableOffset=0) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const
Return hardware support for population count.
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
bool isElementTypeLegalForScalableVector(Type *Ty) const
bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.gather intrinsics.
unsigned getMaxPrefetchIterationsAhead() const
bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const
Return true if globals in this address space can have initializers other than undef.
ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
bool enableMaskedInterleavedAccessVectorization() const
Enable matching of interleaved access groups that contain predicated accesses or gaps and therefore v...
InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst=nullptr) const
Return the expected cost of materialization for the given integer immediate of the specified type for...
bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const
Return true if the target supports strided load.
TargetTransformInfo & operator=(TargetTransformInfo &&RHS)
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF=FastMathFlags(), TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef< Type * > &Types) const
bool enableSelectOptimize() const
Should the Select Optimization pass be enabled and ran.
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
Return any intrinsic address operand indexes which may be rewritten if they use a flat address space ...
OperandValueProperties
Additional properties of an operand's values.
InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const PointersChainInfo &Info, Type *AccessTy, TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Estimate the cost of a chain of pointers (typically pointer operands of a chain of loads or stores wi...
bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
bool isSourceOfDivergence(const Value *V) const
Returns whether V is a source of divergence.
bool isLegalICmpImmediate(int64_t Imm) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
bool isTypeLegal(Type *Ty) const
Return true if this type is legal.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const
std::optional< unsigned > getCacheAssociativity(CacheLevel Level) const
bool isLegalNTLoad(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal load.
InstructionCost getMemcpyCost(const Instruction *I) const
unsigned adjustInliningThreshold(const CallBase *CB) const
bool isLegalAddImmediate(int64_t Imm) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const
Return true if the target can save a compare for loop count, for example hardware loop saves a compar...
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0) const
Return the cost of the scaling factor used in the addressing mode represented by AM for this target,...
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
Rewrite intrinsic call II such that OldV will be replaced with NewV, which has a different address sp...
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const
unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const
Some HW prefetchers can handle accesses up to a certain constant stride.
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, ReductionFlags Flags) const
bool shouldPrefetchAddressSpace(unsigned AS) const
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
Return the expected cost of materializing for the given integer immediate of the specified type.
unsigned getMinVectorRegisterBitWidth() const
bool isLegalNTStore(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal store.
unsigned getFlatAddressSpace() const
Returns the address space ID for a target's 'flat' address space.
bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const
It can be advantageous to detach complex constants from their uses to make their generation cheaper.
bool hasArmWideBranch(bool Thumb) const
const char * getRegisterClassName(unsigned ClassID) const
bool preferEpilogueVectorization() const
Return true if the loop vectorizer should consider vectorizing an otherwise scalar epilogue loop.
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const
BranchProbability getPredictableBranchThreshold() const
If a branch or a select condition is skewed in one direction by more than this factor,...
unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace=0, Align Alignment=Align(1), unsigned *Fast=nullptr) const
Determine if the target supports unaligned memory accesses.
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
bool hasActiveVectorLength(unsigned Opcode, Type *DataType, Align Alignment) const
PopcntSupportKind
Flags indicating the kind of support for population count.
InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) const
Return the expected cost for the given integer when optimising for size.
AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
Return the preferred addressing mode LSR should make efforts to generate.
bool isLoweredToCall(const Function *F) const
Test whether calls to a function lower to actual program function calls.
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
Query the target whether it would be profitable to convert the given loop into a hardware loop.
unsigned getInliningThresholdMultiplier() const
unsigned getNumberOfRegisters(unsigned ClassID) const
bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const
Return true if this is an alternating opcode pattern that can be lowered to a single instruction on t...
bool isProfitableToHoist(Instruction *I) const
Return true if it is profitable to hoist instruction in the then/else to before if.
bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
Return true if the given instruction (assumed to be a memory access instruction) has a volatile varia...
bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const
Return true if the target supports masked compress store.
std::optional< unsigned > getMinPageSize() const
bool isFPVectorizationPotentiallyUnsafe() const
Indicate that it is potentially unsafe to automatically vectorize floating-point operations because t...
bool isLegalMaskedStore(Type *DataType, Align Alignment) const
Return true if the target supports masked store.
bool shouldBuildRelLookupTables() const
Return true if lookup tables should be turned into relative lookup tables.
unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const
std::optional< unsigned > getCacheSize(CacheLevel Level) const
std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
Can be used to implement target-specific instruction combining.
bool isLegalAddScalableImmediate(int64_t Imm) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
bool hasDivRemOp(Type *DataType, bool IsSigned) const
Return true if the target has a unified operation to calculate division and remainder.
InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Returns the cost estimation for alternating opcode pattern that can be lowered to a single instructio...
TargetCostConstants
Underlying constants for 'cost' values in this interface.
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Free
Expected to fold away in lowering.
@ TCC_Basic
The cost of a typical 'add' instruction.
bool enableInterleavedAccessVectorization() const
Enable matching of interleaved access groups.
unsigned getMinTripCountTailFoldingThreshold() const
InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
unsigned getMaxInterleaveFactor(ElementCount VF) const
bool isNumRegsMajorCostOfLSR() const
Return true if LSR major cost is number of registers.
unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const
unsigned getGISelRematGlobalCost() const
MemIndexedMode
The type of load/store indexing.
@ MIM_PostInc
Post-incrementing.
@ MIM_PostDec
Post-decrementing.
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
bool useColdCCForColdCall(Function &F) const
Return true if the input function which is cold at all call sites, should use coldcc calling conventi...
InstructionCost getFPOpCost(Type *Ty) const
Return the expected cost of supporting the floating point operation of the specified type.
bool supportsTailCalls() const
If the target supports tail calls.
bool canMacroFuseCmp() const
Return true if the target can fuse a compare and branch.
Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) const
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Query the target whether the specified address space cast from FromAS to ToAS is valid.
unsigned getNumberOfParts(Type *Tp) const
Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional< uint32_t > AtomicElementSize=std::nullopt) const
bool isTruncateFree(Type *Ty1, Type *Ty2) const
Return true if it's free to truncate a value of type Ty1 to type Ty2.
InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask=std::nullopt, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr) const
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing an instruction.
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
Query the target whether it would be prefered to create a predicated vector loop, which can avoid the...
bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.scatter intrinsics.
bool haveFastSqrt(Type *Ty) const
Return true if the hardware has a fast square-root instruction.
bool shouldExpandReduction(const IntrinsicInst *II) const
TargetTransformInfo(T Impl)
Construct a TTI object using a type implementing the Concept API below.
uint64_t getMaxMemIntrinsicInlineSizeThreshold() const
Returns the maximum memset / memcpy size in bytes that still makes it profitable to inline the call.
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index=-1, Value *Op0=nullptr, Value *Op1=nullptr) const
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) const
Get target-customized preferences for the generic loop peeling transformation.
InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency) const
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
OperandValueKind
Additional information about an operand's possible values.
CacheLevel
The possible cache levels.
bool isLegalMaskedLoad(Type *DataType, Align Alignment) const
Return true if the target supports masked load.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition: Value.h:74
Base class of all SIMD vector types.
Definition: DerivedTypes.h:403
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
bool areInlineCompatible(const Function &Caller, const Function &Callee)
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Type
MessagePack types as defined in the standard, with the exception of Integer being divided into a sign...
Definition: MsgPackReader.h:53
@ User
could "use" a pointer
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Length
Definition: DWP.cpp:456
AddressSpace
Definition: NVPTXBaseInfo.h:21
AtomicOrdering
Atomic ordering for LLVM's memory model.
TargetTransformInfo TTI
ImmutablePass * createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)
Create an analysis pass wrapper around a TTI object.
@ None
Not a recurrence.
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1849
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition: PassManager.h:97
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:26
Attributes of a target dependent hardware loop.
bool canAnalyze(LoopInfo &LI)
bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
Information about a load/store intrinsic defined by the target.
Value * PtrVal
This is the pointer that the intrinsic is loading from or storing to.
InterleavedAccessInfo * IAI
TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL, InterleavedAccessInfo *IAI)
TargetLibraryInfo * TLI
LoopVectorizationLegality * LVL
unsigned Insns
TODO: Some of these could be merged.
Returns options for expansion of memcmp. IsZeroCmp is.
bool AllowPeeling
Allow peeling off loop iterations.
bool AllowLoopNestsPeeling
Allow peeling off loop iterations for loop nests.
bool PeelProfiledIterations
Allow peeling basing on profile.
unsigned PeelCount
A forced peeling factor (the number of bodied of the original loop that should be peeled off before t...
Describe known properties for a set of pointers.
unsigned IsKnownStride
True if distance between any two neigbouring pointers is a known value.
unsigned IsUnitStride
These properties only valid if SameBaseAddress is set.
unsigned IsSameBaseAddress
All the GEPs in a set have same base address.
Flags describing the kind of vector reduction.
bool IsSigned
Whether the operation is a signed int reduction.
bool IsMaxOp
If the op a min/max kind, true if it's a max operation.
bool NoNaN
If op is an fp min/max, whether NaNs may be present.
Parameters that control the generic loop unrolling transformation.
unsigned Count
A forced unrolling factor (the number of concatenated bodies of the original loop in the unrolled loo...
bool UpperBound
Allow using trip count upper bound to unroll loops.
unsigned Threshold
The cost threshold for the unrolled loop.
bool Force
Apply loop unroll on any kind of loop (mainly to loops that fail runtime unrolling).
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
unsigned DefaultUnrollRuntimeCount
Default unroll count for loops with run-time trip count.
unsigned MaxPercentThresholdBoost
If complete unrolling will reduce the cost of the loop, we will boost the Threshold by a certain perc...
unsigned UnrollAndJamInnerLoopThreshold
Threshold for unroll and jam, for inner loop size.
unsigned MaxIterationsCountToAnalyze
Don't allow loop unrolling to simulate more than this number of iterations when checking full unroll ...
bool AllowRemainder
Allow generation of a loop remainder (extra iterations after unroll).
bool UnrollAndJam
Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollRemainder
Allow unrolling of all the iterations of the runtime loop remainder.
unsigned FullUnrollMaxCount
Set the maximum unrolling factor for full unrolling.
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).
bool AllowExpensiveTripCount
Allow emitting expensive instructions (such as divisions) when computing the trip count of a loop for...
unsigned MaxUpperBound
Set the maximum upper bound of trip count.
VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)