LLVM 20.0.0git
WasmObjectFile.cpp
Go to the documentation of this file.
1//===- WasmObjectFile.cpp - Wasm object file implementation ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/ADT/ArrayRef.h"
10#include "llvm/ADT/DenseSet.h"
11#include "llvm/ADT/SmallSet.h"
12#include "llvm/ADT/StringRef.h"
13#include "llvm/ADT/StringSet.h"
16#include "llvm/Object/Binary.h"
17#include "llvm/Object/Error.h"
20#include "llvm/Object/Wasm.h"
21#include "llvm/Support/Endian.h"
22#include "llvm/Support/Error.h"
24#include "llvm/Support/Format.h"
25#include "llvm/Support/LEB128.h"
29#include <algorithm>
30#include <cassert>
31#include <cstdint>
32#include <cstring>
33#include <limits>
34
35#define DEBUG_TYPE "wasm-object"
36
37using namespace llvm;
38using namespace object;
39
41 Out << "Name=" << Info.Name
42 << ", Kind=" << toString(wasm::WasmSymbolType(Info.Kind)) << ", Flags=0x"
43 << Twine::utohexstr(Info.Flags) << " [";
44 switch (getBinding()) {
45 case wasm::WASM_SYMBOL_BINDING_GLOBAL: Out << "global"; break;
46 case wasm::WASM_SYMBOL_BINDING_LOCAL: Out << "local"; break;
47 case wasm::WASM_SYMBOL_BINDING_WEAK: Out << "weak"; break;
48 }
49 if (isHidden()) {
50 Out << ", hidden";
51 } else {
52 Out << ", default";
53 }
54 Out << "]";
55 if (!isTypeData()) {
56 Out << ", ElemIndex=" << Info.ElementIndex;
57 } else if (isDefined()) {
58 Out << ", Segment=" << Info.DataRef.Segment;
59 Out << ", Offset=" << Info.DataRef.Offset;
60 Out << ", Size=" << Info.DataRef.Size;
61 }
62}
63
64#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
66#endif
67
70 Error Err = Error::success();
71 auto ObjectFile = std::make_unique<WasmObjectFile>(Buffer, Err);
72 if (Err)
73 return std::move(Err);
74
75 return std::move(ObjectFile);
76}
77
78#define VARINT7_MAX ((1 << 7) - 1)
79#define VARINT7_MIN (-(1 << 7))
80#define VARUINT7_MAX (1 << 7)
81#define VARUINT1_MAX (1)
82
84 if (Ctx.Ptr == Ctx.End)
85 report_fatal_error("EOF while reading uint8");
86 return *Ctx.Ptr++;
87}
88
90 if (Ctx.Ptr + 4 > Ctx.End)
91 report_fatal_error("EOF while reading uint32");
93 Ctx.Ptr += 4;
94 return Result;
95}
96
98 if (Ctx.Ptr + 4 > Ctx.End)
99 report_fatal_error("EOF while reading float64");
100 int32_t Result = 0;
101 memcpy(&Result, Ctx.Ptr, sizeof(Result));
102 Ctx.Ptr += sizeof(Result);
103 return Result;
104}
105
107 if (Ctx.Ptr + 8 > Ctx.End)
108 report_fatal_error("EOF while reading float64");
109 int64_t Result = 0;
110 memcpy(&Result, Ctx.Ptr, sizeof(Result));
111 Ctx.Ptr += sizeof(Result);
112 return Result;
113}
114
116 unsigned Count;
117 const char *Error = nullptr;
118 uint64_t Result = decodeULEB128(Ctx.Ptr, &Count, Ctx.End, &Error);
119 if (Error)
121 Ctx.Ptr += Count;
122 return Result;
123}
124
126 uint32_t StringLen = readULEB128(Ctx);
127 if (Ctx.Ptr + StringLen > Ctx.End)
128 report_fatal_error("EOF while reading string");
129 StringRef Return =
130 StringRef(reinterpret_cast<const char *>(Ctx.Ptr), StringLen);
131 Ctx.Ptr += StringLen;
132 return Return;
133}
134
136 unsigned Count;
137 const char *Error = nullptr;
138 uint64_t Result = decodeSLEB128(Ctx.Ptr, &Count, Ctx.End, &Error);
139 if (Error)
141 Ctx.Ptr += Count;
142 return Result;
143}
144
146 int64_t Result = readLEB128(Ctx);
147 if (Result > VARUINT1_MAX || Result < 0)
148 report_fatal_error("LEB is outside Varuint1 range");
149 return Result;
150}
151
153 int64_t Result = readLEB128(Ctx);
154 if (Result > INT32_MAX || Result < INT32_MIN)
155 report_fatal_error("LEB is outside Varint32 range");
156 return Result;
157}
158
160 uint64_t Result = readULEB128(Ctx);
161 if (Result > UINT32_MAX)
162 report_fatal_error("LEB is outside Varuint32 range");
163 return Result;
164}
165
167 return readLEB128(Ctx);
168}
169
171 return readULEB128(Ctx);
172}
173
175 return readUint8(Ctx);
176}
177
179 uint32_t Code) {
180 // only directly encoded FUNCREF/EXTERNREF/EXNREF are supported
181 // (not ref null func, ref null extern, or ref null exn)
182 switch (Code) {
191 return wasm::ValType(Code);
192 }
194 /* Discard HeapType */ readVarint64(Ctx);
195 }
197}
198
201 auto Start = Ctx.Ptr;
202
203 Expr.Extended = false;
204 Expr.Inst.Opcode = readOpcode(Ctx);
205 switch (Expr.Inst.Opcode) {
207 Expr.Inst.Value.Int32 = readVarint32(Ctx);
208 break;
210 Expr.Inst.Value.Int64 = readVarint64(Ctx);
211 break;
213 Expr.Inst.Value.Float32 = readFloat32(Ctx);
214 break;
216 Expr.Inst.Value.Float64 = readFloat64(Ctx);
217 break;
219 Expr.Inst.Value.Global = readULEB128(Ctx);
220 break;
222 /* Discard type */ parseValType(Ctx, readVaruint32(Ctx));
223 break;
224 }
225 default:
226 Expr.Extended = true;
227 }
228
229 if (!Expr.Extended) {
230 uint8_t EndOpcode = readOpcode(Ctx);
231 if (EndOpcode != wasm::WASM_OPCODE_END)
232 Expr.Extended = true;
233 }
234
235 if (Expr.Extended) {
236 Ctx.Ptr = Start;
237 while (true) {
238 uint8_t Opcode = readOpcode(Ctx);
239 switch (Opcode) {
245 readULEB128(Ctx);
246 break;
248 readFloat32(Ctx);
249 break;
251 readFloat64(Ctx);
252 break;
259 break;
261 break;
262 // The GC opcodes are in a separate (prefixed space). This flat switch
263 // structure works as long as there is no overlap between the GC and
264 // general opcodes used in init exprs.
269 readULEB128(Ctx); // heap type index
270 break;
272 readULEB128(Ctx); // heap type index
273 readULEB128(Ctx); // array size
274 break;
276 break;
278 Expr.Body = ArrayRef<uint8_t>(Start, Ctx.Ptr - Start);
279 return Error::success();
280 default:
281 return make_error<GenericBinaryError>(
282 Twine("invalid opcode in init_expr: ") + Twine(unsigned(Opcode)),
284 }
285 }
286 }
287
288 return Error::success();
289}
290
292 wasm::WasmLimits Result;
293 Result.Flags = readVaruint32(Ctx);
294 Result.Minimum = readVaruint64(Ctx);
295 if (Result.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX)
296 Result.Maximum = readVaruint64(Ctx);
297 return Result;
298}
299
301 wasm::WasmTableType TableType;
302 auto ElemType = parseValType(Ctx, readVaruint32(Ctx));
303 TableType.ElemType = ElemType;
304 TableType.Limits = readLimits(Ctx);
305 return TableType;
306}
307
309 WasmSectionOrderChecker &Checker) {
310 Section.Type = readUint8(Ctx);
311 LLVM_DEBUG(dbgs() << "readSection type=" << Section.Type << "\n");
312 // When reading the section's size, store the size of the LEB used to encode
313 // it. This allows objcopy/strip to reproduce the binary identically.
314 const uint8_t *PreSizePtr = Ctx.Ptr;
316 Section.HeaderSecSizeEncodingLen = Ctx.Ptr - PreSizePtr;
317 Section.Offset = Ctx.Ptr - Ctx.Start;
318 if (Size == 0)
319 return make_error<StringError>("zero length section",
321 if (Ctx.Ptr + Size > Ctx.End)
322 return make_error<StringError>("section too large",
324 if (Section.Type == wasm::WASM_SEC_CUSTOM) {
326 SectionCtx.Start = Ctx.Ptr;
327 SectionCtx.Ptr = Ctx.Ptr;
328 SectionCtx.End = Ctx.Ptr + Size;
329
330 Section.Name = readString(SectionCtx);
331
332 uint32_t SectionNameSize = SectionCtx.Ptr - SectionCtx.Start;
333 Ctx.Ptr += SectionNameSize;
334 Size -= SectionNameSize;
335 }
336
337 if (!Checker.isValidSectionOrder(Section.Type, Section.Name)) {
338 return make_error<StringError>("out of order section type: " +
339 llvm::to_string(Section.Type),
341 }
342
343 Section.Content = ArrayRef<uint8_t>(Ctx.Ptr, Size);
344 Ctx.Ptr += Size;
345 return Error::success();
346}
347
349 : ObjectFile(Binary::ID_Wasm, Buffer) {
350 ErrorAsOutParameter ErrAsOutParam(&Err);
351 Header.Magic = getData().substr(0, 4);
352 if (Header.Magic != StringRef("\0asm", 4)) {
353 Err = make_error<StringError>("invalid magic number",
355 return;
356 }
357
358 ReadContext Ctx;
359 Ctx.Start = getData().bytes_begin();
360 Ctx.Ptr = Ctx.Start + 4;
361 Ctx.End = Ctx.Start + getData().size();
362
363 if (Ctx.Ptr + 4 > Ctx.End) {
364 Err = make_error<StringError>("missing version number",
366 return;
367 }
368
369 Header.Version = readUint32(Ctx);
370 if (Header.Version != wasm::WasmVersion) {
371 Err = make_error<StringError>("invalid version number: " +
372 Twine(Header.Version),
374 return;
375 }
376
378 while (Ctx.Ptr < Ctx.End) {
379 WasmSection Sec;
380 if ((Err = readSection(Sec, Ctx, Checker)))
381 return;
382 if ((Err = parseSection(Sec)))
383 return;
384
385 Sections.push_back(Sec);
386 }
387}
388
389Error WasmObjectFile::parseSection(WasmSection &Sec) {
390 ReadContext Ctx;
391 Ctx.Start = Sec.Content.data();
392 Ctx.End = Ctx.Start + Sec.Content.size();
393 Ctx.Ptr = Ctx.Start;
394 switch (Sec.Type) {
396 return parseCustomSection(Sec, Ctx);
398 return parseTypeSection(Ctx);
400 return parseImportSection(Ctx);
402 return parseFunctionSection(Ctx);
404 return parseTableSection(Ctx);
406 return parseMemorySection(Ctx);
408 return parseTagSection(Ctx);
410 return parseGlobalSection(Ctx);
412 return parseExportSection(Ctx);
414 return parseStartSection(Ctx);
416 return parseElemSection(Ctx);
418 return parseCodeSection(Ctx);
420 return parseDataSection(Ctx);
422 return parseDataCountSection(Ctx);
423 default:
424 return make_error<GenericBinaryError>(
425 "invalid section type: " + Twine(Sec.Type), object_error::parse_failed);
426 }
427}
428
429Error WasmObjectFile::parseDylinkSection(ReadContext &Ctx) {
430 // Legacy "dylink" section support.
431 // See parseDylink0Section for the current "dylink.0" section parsing.
432 HasDylinkSection = true;
433 DylinkInfo.MemorySize = readVaruint32(Ctx);
434 DylinkInfo.MemoryAlignment = readVaruint32(Ctx);
435 DylinkInfo.TableSize = readVaruint32(Ctx);
436 DylinkInfo.TableAlignment = readVaruint32(Ctx);
437 uint32_t Count = readVaruint32(Ctx);
438 while (Count--) {
439 DylinkInfo.Needed.push_back(readString(Ctx));
440 }
441
442 if (Ctx.Ptr != Ctx.End)
443 return make_error<GenericBinaryError>("dylink section ended prematurely",
445 return Error::success();
446}
447
448Error WasmObjectFile::parseDylink0Section(ReadContext &Ctx) {
449 // See
450 // https://github.com/WebAssembly/tool-conventions/blob/main/DynamicLinking.md
451 HasDylinkSection = true;
452
453 const uint8_t *OrigEnd = Ctx.End;
454 while (Ctx.Ptr < OrigEnd) {
455 Ctx.End = OrigEnd;
456 uint8_t Type = readUint8(Ctx);
458 LLVM_DEBUG(dbgs() << "readSubsection type=" << int(Type) << " size=" << Size
459 << "\n");
460 Ctx.End = Ctx.Ptr + Size;
461 uint32_t Count;
462 switch (Type) {
464 DylinkInfo.MemorySize = readVaruint32(Ctx);
465 DylinkInfo.MemoryAlignment = readVaruint32(Ctx);
466 DylinkInfo.TableSize = readVaruint32(Ctx);
467 DylinkInfo.TableAlignment = readVaruint32(Ctx);
468 break;
470 Count = readVaruint32(Ctx);
471 while (Count--) {
472 DylinkInfo.Needed.push_back(readString(Ctx));
473 }
474 break;
476 uint32_t Count = readVaruint32(Ctx);
477 while (Count--) {
478 DylinkInfo.ExportInfo.push_back({readString(Ctx), readVaruint32(Ctx)});
479 }
480 break;
481 }
483 uint32_t Count = readVaruint32(Ctx);
484 while (Count--) {
485 DylinkInfo.ImportInfo.push_back(
486 {readString(Ctx), readString(Ctx), readVaruint32(Ctx)});
487 }
488 break;
489 }
490 default:
491 LLVM_DEBUG(dbgs() << "unknown dylink.0 sub-section: " << Type << "\n");
492 Ctx.Ptr += Size;
493 break;
494 }
495 if (Ctx.Ptr != Ctx.End) {
496 return make_error<GenericBinaryError>(
497 "dylink.0 sub-section ended prematurely", object_error::parse_failed);
498 }
499 }
500
501 if (Ctx.Ptr != Ctx.End)
502 return make_error<GenericBinaryError>("dylink.0 section ended prematurely",
504 return Error::success();
505}
506
507Error WasmObjectFile::parseNameSection(ReadContext &Ctx) {
508 llvm::DenseSet<uint64_t> SeenFunctions;
509 llvm::DenseSet<uint64_t> SeenGlobals;
510 llvm::DenseSet<uint64_t> SeenSegments;
511
512 // If we have linking section (symbol table) or if we are parsing a DSO
513 // then we don't use the name section for symbol information.
514 bool PopulateSymbolTable = !HasLinkingSection && !HasDylinkSection;
515
516 // If we are using the name section for symbol information then it will
517 // supersede any symbols created by the export section.
518 if (PopulateSymbolTable)
519 Symbols.clear();
520
521 while (Ctx.Ptr < Ctx.End) {
522 uint8_t Type = readUint8(Ctx);
524 const uint8_t *SubSectionEnd = Ctx.Ptr + Size;
525
526 switch (Type) {
530 uint32_t Count = readVaruint32(Ctx);
531 while (Count--) {
537 /* Flags */ 0,
538 /* ImportModule */ std::nullopt,
539 /* ImportName */ std::nullopt,
540 /* ExportName */ std::nullopt,
541 {/* ElementIndex */ Index}};
542 const wasm::WasmSignature *Signature = nullptr;
543 const wasm::WasmGlobalType *GlobalType = nullptr;
544 const wasm::WasmTableType *TableType = nullptr;
546 if (!SeenFunctions.insert(Index).second)
547 return make_error<GenericBinaryError>(
548 "function named more than once", object_error::parse_failed);
549 if (!isValidFunctionIndex(Index) || Name.empty())
550 return make_error<GenericBinaryError>("invalid function name entry",
552
553 if (isDefinedFunctionIndex(Index)) {
554 wasm::WasmFunction &F = getDefinedFunction(Index);
555 F.DebugName = Name;
556 Signature = &Signatures[F.SigIndex];
557 if (F.ExportName) {
558 Info.ExportName = F.ExportName;
560 } else {
562 }
563 } else {
565 }
566 } else if (Type == wasm::WASM_NAMES_GLOBAL) {
567 if (!SeenGlobals.insert(Index).second)
568 return make_error<GenericBinaryError>("global named more than once",
570 if (!isValidGlobalIndex(Index) || Name.empty())
571 return make_error<GenericBinaryError>("invalid global name entry",
573 nameType = wasm::NameType::GLOBAL;
575 if (isDefinedGlobalIndex(Index)) {
576 GlobalType = &getDefinedGlobal(Index).Type;
577 } else {
579 }
580 } else {
581 if (!SeenSegments.insert(Index).second)
582 return make_error<GenericBinaryError>(
583 "segment named more than once", object_error::parse_failed);
584 if (Index > DataSegments.size())
585 return make_error<GenericBinaryError>("invalid data segment name entry",
590 assert(Index < DataSegments.size());
592 Index, 0, DataSegments[Index].Data.Content.size()};
593 }
594 DebugNames.push_back(wasm::WasmDebugName{nameType, Index, Name});
595 if (PopulateSymbolTable)
596 Symbols.emplace_back(Info, GlobalType, TableType, Signature);
597 }
598 break;
599 }
600 // Ignore local names for now
602 default:
603 Ctx.Ptr += Size;
604 break;
605 }
606 if (Ctx.Ptr != SubSectionEnd)
607 return make_error<GenericBinaryError>(
608 "name sub-section ended prematurely", object_error::parse_failed);
609 }
610
611 if (Ctx.Ptr != Ctx.End)
612 return make_error<GenericBinaryError>("name section ended prematurely",
614 return Error::success();
615}
616
617Error WasmObjectFile::parseLinkingSection(ReadContext &Ctx) {
618 HasLinkingSection = true;
619
620 LinkingData.Version = readVaruint32(Ctx);
621 if (LinkingData.Version != wasm::WasmMetadataVersion) {
622 return make_error<GenericBinaryError>(
623 "unexpected metadata version: " + Twine(LinkingData.Version) +
624 " (Expected: " + Twine(wasm::WasmMetadataVersion) + ")",
626 }
627
628 const uint8_t *OrigEnd = Ctx.End;
629 while (Ctx.Ptr < OrigEnd) {
630 Ctx.End = OrigEnd;
631 uint8_t Type = readUint8(Ctx);
633 LLVM_DEBUG(dbgs() << "readSubsection type=" << int(Type) << " size=" << Size
634 << "\n");
635 Ctx.End = Ctx.Ptr + Size;
636 switch (Type) {
638 if (Error Err = parseLinkingSectionSymtab(Ctx))
639 return Err;
640 break;
642 uint32_t Count = readVaruint32(Ctx);
643 if (Count > DataSegments.size())
644 return make_error<GenericBinaryError>("too many segment names",
646 for (uint32_t I = 0; I < Count; I++) {
647 DataSegments[I].Data.Name = readString(Ctx);
648 DataSegments[I].Data.Alignment = readVaruint32(Ctx);
649 DataSegments[I].Data.LinkingFlags = readVaruint32(Ctx);
650 }
651 break;
652 }
654 uint32_t Count = readVaruint32(Ctx);
655 LinkingData.InitFunctions.reserve(Count);
656 for (uint32_t I = 0; I < Count; I++) {
658 Init.Priority = readVaruint32(Ctx);
659 Init.Symbol = readVaruint32(Ctx);
660 if (!isValidFunctionSymbol(Init.Symbol))
661 return make_error<GenericBinaryError>("invalid function symbol: " +
662 Twine(Init.Symbol),
664 LinkingData.InitFunctions.emplace_back(Init);
665 }
666 break;
667 }
669 if (Error Err = parseLinkingSectionComdat(Ctx))
670 return Err;
671 break;
672 default:
673 Ctx.Ptr += Size;
674 break;
675 }
676 if (Ctx.Ptr != Ctx.End)
677 return make_error<GenericBinaryError>(
678 "linking sub-section ended prematurely", object_error::parse_failed);
679 }
680 if (Ctx.Ptr != OrigEnd)
681 return make_error<GenericBinaryError>("linking section ended prematurely",
683 return Error::success();
684}
685
686Error WasmObjectFile::parseLinkingSectionSymtab(ReadContext &Ctx) {
687 uint32_t Count = readVaruint32(Ctx);
688 // Clear out any symbol information that was derived from the exports
689 // section.
690 Symbols.clear();
691 Symbols.reserve(Count);
692 StringSet<> SymbolNames;
693
694 std::vector<wasm::WasmImport *> ImportedGlobals;
695 std::vector<wasm::WasmImport *> ImportedFunctions;
696 std::vector<wasm::WasmImport *> ImportedTags;
697 std::vector<wasm::WasmImport *> ImportedTables;
698 ImportedGlobals.reserve(Imports.size());
699 ImportedFunctions.reserve(Imports.size());
700 ImportedTags.reserve(Imports.size());
701 ImportedTables.reserve(Imports.size());
702 for (auto &I : Imports) {
704 ImportedFunctions.emplace_back(&I);
705 else if (I.Kind == wasm::WASM_EXTERNAL_GLOBAL)
706 ImportedGlobals.emplace_back(&I);
707 else if (I.Kind == wasm::WASM_EXTERNAL_TAG)
708 ImportedTags.emplace_back(&I);
709 else if (I.Kind == wasm::WASM_EXTERNAL_TABLE)
710 ImportedTables.emplace_back(&I);
711 }
712
713 while (Count--) {
715 const wasm::WasmSignature *Signature = nullptr;
716 const wasm::WasmGlobalType *GlobalType = nullptr;
717 const wasm::WasmTableType *TableType = nullptr;
718
719 Info.Kind = readUint8(Ctx);
720 Info.Flags = readVaruint32(Ctx);
721 bool IsDefined = (Info.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0;
722
723 switch (Info.Kind) {
725 Info.ElementIndex = readVaruint32(Ctx);
726 if (!isValidFunctionIndex(Info.ElementIndex) ||
727 IsDefined != isDefinedFunctionIndex(Info.ElementIndex))
728 return make_error<GenericBinaryError>("invalid function symbol index",
730 if (IsDefined) {
731 Info.Name = readString(Ctx);
732 unsigned FuncIndex = Info.ElementIndex - NumImportedFunctions;
733 wasm::WasmFunction &Function = Functions[FuncIndex];
734 Signature = &Signatures[Function.SigIndex];
735 if (Function.SymbolName.empty())
736 Function.SymbolName = Info.Name;
737 } else {
738 wasm::WasmImport &Import = *ImportedFunctions[Info.ElementIndex];
739 if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) {
740 Info.Name = readString(Ctx);
741 Info.ImportName = Import.Field;
742 } else {
743 Info.Name = Import.Field;
744 }
745 Signature = &Signatures[Import.SigIndex];
746 Info.ImportModule = Import.Module;
747 }
748 break;
749
751 Info.ElementIndex = readVaruint32(Ctx);
752 if (!isValidGlobalIndex(Info.ElementIndex) ||
753 IsDefined != isDefinedGlobalIndex(Info.ElementIndex))
754 return make_error<GenericBinaryError>("invalid global symbol index",
756 if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) ==
758 return make_error<GenericBinaryError>("undefined weak global symbol",
760 if (IsDefined) {
761 Info.Name = readString(Ctx);
762 unsigned GlobalIndex = Info.ElementIndex - NumImportedGlobals;
763 wasm::WasmGlobal &Global = Globals[GlobalIndex];
764 GlobalType = &Global.Type;
765 if (Global.SymbolName.empty())
766 Global.SymbolName = Info.Name;
767 } else {
768 wasm::WasmImport &Import = *ImportedGlobals[Info.ElementIndex];
769 if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) {
770 Info.Name = readString(Ctx);
771 Info.ImportName = Import.Field;
772 } else {
773 Info.Name = Import.Field;
774 }
775 GlobalType = &Import.Global;
776 Info.ImportModule = Import.Module;
777 }
778 break;
779
781 Info.ElementIndex = readVaruint32(Ctx);
782 if (!isValidTableNumber(Info.ElementIndex) ||
783 IsDefined != isDefinedTableNumber(Info.ElementIndex))
784 return make_error<GenericBinaryError>("invalid table symbol index",
786 if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) ==
788 return make_error<GenericBinaryError>("undefined weak table symbol",
790 if (IsDefined) {
791 Info.Name = readString(Ctx);
792 unsigned TableNumber = Info.ElementIndex - NumImportedTables;
793 wasm::WasmTable &Table = Tables[TableNumber];
794 TableType = &Table.Type;
795 if (Table.SymbolName.empty())
796 Table.SymbolName = Info.Name;
797 } else {
798 wasm::WasmImport &Import = *ImportedTables[Info.ElementIndex];
799 if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) {
800 Info.Name = readString(Ctx);
801 Info.ImportName = Import.Field;
802 } else {
803 Info.Name = Import.Field;
804 }
805 TableType = &Import.Table;
806 Info.ImportModule = Import.Module;
807 }
808 break;
809
811 Info.Name = readString(Ctx);
812 if (IsDefined) {
813 auto Index = readVaruint32(Ctx);
814 auto Offset = readVaruint64(Ctx);
815 auto Size = readVaruint64(Ctx);
816 if (!(Info.Flags & wasm::WASM_SYMBOL_ABSOLUTE)) {
817 if (static_cast<size_t>(Index) >= DataSegments.size())
818 return make_error<GenericBinaryError>(
819 "invalid data segment index: " + Twine(Index),
821 size_t SegmentSize = DataSegments[Index].Data.Content.size();
822 if (Offset > SegmentSize)
823 return make_error<GenericBinaryError>(
824 "invalid data symbol offset: `" + Info.Name +
825 "` (offset: " + Twine(Offset) +
826 " segment size: " + Twine(SegmentSize) + ")",
828 }
830 }
831 break;
832
834 if ((Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) !=
836 return make_error<GenericBinaryError>(
837 "section symbols must have local binding",
839 Info.ElementIndex = readVaruint32(Ctx);
840 // Use somewhat unique section name as symbol name.
841 StringRef SectionName = Sections[Info.ElementIndex].Name;
842 Info.Name = SectionName;
843 break;
844 }
845
847 Info.ElementIndex = readVaruint32(Ctx);
848 if (!isValidTagIndex(Info.ElementIndex) ||
849 IsDefined != isDefinedTagIndex(Info.ElementIndex))
850 return make_error<GenericBinaryError>("invalid tag symbol index",
852 if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) ==
854 return make_error<GenericBinaryError>("undefined weak global symbol",
856 if (IsDefined) {
857 Info.Name = readString(Ctx);
858 unsigned TagIndex = Info.ElementIndex - NumImportedTags;
859 wasm::WasmTag &Tag = Tags[TagIndex];
860 Signature = &Signatures[Tag.SigIndex];
861 if (Tag.SymbolName.empty())
862 Tag.SymbolName = Info.Name;
863
864 } else {
865 wasm::WasmImport &Import = *ImportedTags[Info.ElementIndex];
866 if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) {
867 Info.Name = readString(Ctx);
868 Info.ImportName = Import.Field;
869 } else {
870 Info.Name = Import.Field;
871 }
872 Signature = &Signatures[Import.SigIndex];
873 Info.ImportModule = Import.Module;
874 }
875 break;
876 }
877
878 default:
879 return make_error<GenericBinaryError>("invalid symbol type: " +
880 Twine(unsigned(Info.Kind)),
882 }
883
884 if ((Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) !=
886 !SymbolNames.insert(Info.Name).second)
887 return make_error<GenericBinaryError>("duplicate symbol name " +
888 Twine(Info.Name),
890 Symbols.emplace_back(Info, GlobalType, TableType, Signature);
891 LLVM_DEBUG(dbgs() << "Adding symbol: " << Symbols.back() << "\n");
892 }
893
894 return Error::success();
895}
896
897Error WasmObjectFile::parseLinkingSectionComdat(ReadContext &Ctx) {
898 uint32_t ComdatCount = readVaruint32(Ctx);
899 StringSet<> ComdatSet;
900 for (unsigned ComdatIndex = 0; ComdatIndex < ComdatCount; ++ComdatIndex) {
902 if (Name.empty() || !ComdatSet.insert(Name).second)
903 return make_error<GenericBinaryError>("bad/duplicate COMDAT name " +
904 Twine(Name),
906 LinkingData.Comdats.emplace_back(Name);
908 if (Flags != 0)
909 return make_error<GenericBinaryError>("unsupported COMDAT flags",
911
912 uint32_t EntryCount = readVaruint32(Ctx);
913 while (EntryCount--) {
914 unsigned Kind = readVaruint32(Ctx);
915 unsigned Index = readVaruint32(Ctx);
916 switch (Kind) {
917 default:
918 return make_error<GenericBinaryError>("invalid COMDAT entry type",
921 if (Index >= DataSegments.size())
922 return make_error<GenericBinaryError>(
923 "COMDAT data index out of range", object_error::parse_failed);
924 if (DataSegments[Index].Data.Comdat != UINT32_MAX)
925 return make_error<GenericBinaryError>("data segment in two COMDATs",
927 DataSegments[Index].Data.Comdat = ComdatIndex;
928 break;
930 if (!isDefinedFunctionIndex(Index))
931 return make_error<GenericBinaryError>(
932 "COMDAT function index out of range", object_error::parse_failed);
933 if (getDefinedFunction(Index).Comdat != UINT32_MAX)
934 return make_error<GenericBinaryError>("function in two COMDATs",
936 getDefinedFunction(Index).Comdat = ComdatIndex;
937 break;
939 if (Index >= Sections.size())
940 return make_error<GenericBinaryError>(
941 "COMDAT section index out of range", object_error::parse_failed);
942 if (Sections[Index].Type != wasm::WASM_SEC_CUSTOM)
943 return make_error<GenericBinaryError>(
944 "non-custom section in a COMDAT", object_error::parse_failed);
945 Sections[Index].Comdat = ComdatIndex;
946 break;
947 }
948 }
949 }
950 return Error::success();
951}
952
953Error WasmObjectFile::parseProducersSection(ReadContext &Ctx) {
955 uint32_t Fields = readVaruint32(Ctx);
956 for (size_t I = 0; I < Fields; ++I) {
957 StringRef FieldName = readString(Ctx);
958 if (!FieldsSeen.insert(FieldName).second)
959 return make_error<GenericBinaryError>(
960 "producers section does not have unique fields",
962 std::vector<std::pair<std::string, std::string>> *ProducerVec = nullptr;
963 if (FieldName == "language") {
964 ProducerVec = &ProducerInfo.Languages;
965 } else if (FieldName == "processed-by") {
966 ProducerVec = &ProducerInfo.Tools;
967 } else if (FieldName == "sdk") {
968 ProducerVec = &ProducerInfo.SDKs;
969 } else {
970 return make_error<GenericBinaryError>(
971 "producers section field is not named one of language, processed-by, "
972 "or sdk",
974 }
975 uint32_t ValueCount = readVaruint32(Ctx);
976 llvm::SmallSet<StringRef, 8> ProducersSeen;
977 for (size_t J = 0; J < ValueCount; ++J) {
980 if (!ProducersSeen.insert(Name).second) {
981 return make_error<GenericBinaryError>(
982 "producers section contains repeated producer",
984 }
985 ProducerVec->emplace_back(std::string(Name), std::string(Version));
986 }
987 }
988 if (Ctx.Ptr != Ctx.End)
989 return make_error<GenericBinaryError>("producers section ended prematurely",
991 return Error::success();
992}
993
994Error WasmObjectFile::parseTargetFeaturesSection(ReadContext &Ctx) {
997 for (size_t I = 0; I < FeatureCount; ++I) {
999 Feature.Prefix = readUint8(Ctx);
1000 switch (Feature.Prefix) {
1004 break;
1005 default:
1006 return make_error<GenericBinaryError>("unknown feature policy prefix",
1008 }
1009 Feature.Name = std::string(readString(Ctx));
1010 if (!FeaturesSeen.insert(Feature.Name).second)
1011 return make_error<GenericBinaryError>(
1012 "target features section contains repeated feature \"" +
1013 Feature.Name + "\"",
1015 TargetFeatures.push_back(Feature);
1016 }
1017 if (Ctx.Ptr != Ctx.End)
1018 return make_error<GenericBinaryError>(
1019 "target features section ended prematurely",
1021 return Error::success();
1022}
1023
1024Error WasmObjectFile::parseRelocSection(StringRef Name, ReadContext &Ctx) {
1025 uint32_t SectionIndex = readVaruint32(Ctx);
1026 if (SectionIndex >= Sections.size())
1027 return make_error<GenericBinaryError>("invalid section index",
1029 WasmSection &Section = Sections[SectionIndex];
1030 uint32_t RelocCount = readVaruint32(Ctx);
1031 uint32_t EndOffset = Section.Content.size();
1032 uint32_t PreviousOffset = 0;
1033 while (RelocCount--) {
1034 wasm::WasmRelocation Reloc = {};
1035 uint32_t type = readVaruint32(Ctx);
1036 Reloc.Type = type;
1037 Reloc.Offset = readVaruint32(Ctx);
1038 if (Reloc.Offset < PreviousOffset)
1039 return make_error<GenericBinaryError>("relocations not in offset order",
1041
1042 auto badReloc = [&](StringRef msg) {
1043 return make_error<GenericBinaryError>(
1044 msg + ": " + Twine(Symbols[Reloc.Index].Info.Name),
1046 };
1047
1048 PreviousOffset = Reloc.Offset;
1049 Reloc.Index = readVaruint32(Ctx);
1050 switch (type) {
1051 case wasm::R_WASM_FUNCTION_INDEX_LEB:
1052 case wasm::R_WASM_FUNCTION_INDEX_I32:
1053 case wasm::R_WASM_TABLE_INDEX_SLEB:
1054 case wasm::R_WASM_TABLE_INDEX_SLEB64:
1055 case wasm::R_WASM_TABLE_INDEX_I32:
1056 case wasm::R_WASM_TABLE_INDEX_I64:
1057 case wasm::R_WASM_TABLE_INDEX_REL_SLEB:
1058 case wasm::R_WASM_TABLE_INDEX_REL_SLEB64:
1059 if (!isValidFunctionSymbol(Reloc.Index))
1060 return badReloc("invalid function relocation");
1061 break;
1062 case wasm::R_WASM_TABLE_NUMBER_LEB:
1063 if (!isValidTableSymbol(Reloc.Index))
1064 return badReloc("invalid table relocation");
1065 break;
1066 case wasm::R_WASM_TYPE_INDEX_LEB:
1067 if (Reloc.Index >= Signatures.size())
1068 return badReloc("invalid relocation type index");
1069 break;
1070 case wasm::R_WASM_GLOBAL_INDEX_LEB:
1071 // R_WASM_GLOBAL_INDEX_LEB are can be used against function and data
1072 // symbols to refer to their GOT entries.
1073 if (!isValidGlobalSymbol(Reloc.Index) &&
1074 !isValidDataSymbol(Reloc.Index) &&
1075 !isValidFunctionSymbol(Reloc.Index))
1076 return badReloc("invalid global relocation");
1077 break;
1078 case wasm::R_WASM_GLOBAL_INDEX_I32:
1079 if (!isValidGlobalSymbol(Reloc.Index))
1080 return badReloc("invalid global relocation");
1081 break;
1082 case wasm::R_WASM_TAG_INDEX_LEB:
1083 if (!isValidTagSymbol(Reloc.Index))
1084 return badReloc("invalid tag relocation");
1085 break;
1086 case wasm::R_WASM_MEMORY_ADDR_LEB:
1087 case wasm::R_WASM_MEMORY_ADDR_SLEB:
1088 case wasm::R_WASM_MEMORY_ADDR_I32:
1089 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB:
1090 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB:
1091 case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32:
1092 if (!isValidDataSymbol(Reloc.Index))
1093 return badReloc("invalid data relocation");
1094 Reloc.Addend = readVarint32(Ctx);
1095 break;
1096 case wasm::R_WASM_MEMORY_ADDR_LEB64:
1097 case wasm::R_WASM_MEMORY_ADDR_SLEB64:
1098 case wasm::R_WASM_MEMORY_ADDR_I64:
1099 case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64:
1100 case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64:
1101 if (!isValidDataSymbol(Reloc.Index))
1102 return badReloc("invalid data relocation");
1103 Reloc.Addend = readVarint64(Ctx);
1104 break;
1105 case wasm::R_WASM_FUNCTION_OFFSET_I32:
1106 if (!isValidFunctionSymbol(Reloc.Index))
1107 return badReloc("invalid function relocation");
1108 Reloc.Addend = readVarint32(Ctx);
1109 break;
1110 case wasm::R_WASM_FUNCTION_OFFSET_I64:
1111 if (!isValidFunctionSymbol(Reloc.Index))
1112 return badReloc("invalid function relocation");
1113 Reloc.Addend = readVarint64(Ctx);
1114 break;
1115 case wasm::R_WASM_SECTION_OFFSET_I32:
1116 if (!isValidSectionSymbol(Reloc.Index))
1117 return badReloc("invalid section relocation");
1118 Reloc.Addend = readVarint32(Ctx);
1119 break;
1120 default:
1121 return make_error<GenericBinaryError>("invalid relocation type: " +
1122 Twine(type),
1124 }
1125
1126 // Relocations must fit inside the section, and must appear in order. They
1127 // also shouldn't overlap a function/element boundary, but we don't bother
1128 // to check that.
1129 uint64_t Size = 5;
1130 if (Reloc.Type == wasm::R_WASM_MEMORY_ADDR_LEB64 ||
1131 Reloc.Type == wasm::R_WASM_MEMORY_ADDR_SLEB64 ||
1132 Reloc.Type == wasm::R_WASM_MEMORY_ADDR_REL_SLEB64)
1133 Size = 10;
1134 if (Reloc.Type == wasm::R_WASM_TABLE_INDEX_I32 ||
1135 Reloc.Type == wasm::R_WASM_MEMORY_ADDR_I32 ||
1136 Reloc.Type == wasm::R_WASM_MEMORY_ADDR_LOCREL_I32 ||
1137 Reloc.Type == wasm::R_WASM_SECTION_OFFSET_I32 ||
1138 Reloc.Type == wasm::R_WASM_FUNCTION_OFFSET_I32 ||
1139 Reloc.Type == wasm::R_WASM_FUNCTION_INDEX_I32 ||
1140 Reloc.Type == wasm::R_WASM_GLOBAL_INDEX_I32)
1141 Size = 4;
1142 if (Reloc.Type == wasm::R_WASM_TABLE_INDEX_I64 ||
1143 Reloc.Type == wasm::R_WASM_MEMORY_ADDR_I64 ||
1144 Reloc.Type == wasm::R_WASM_FUNCTION_OFFSET_I64)
1145 Size = 8;
1146 if (Reloc.Offset + Size > EndOffset)
1147 return make_error<GenericBinaryError>("invalid relocation offset",
1149
1150 Section.Relocations.push_back(Reloc);
1151 }
1152 if (Ctx.Ptr != Ctx.End)
1153 return make_error<GenericBinaryError>("reloc section ended prematurely",
1155 return Error::success();
1156}
1157
1158Error WasmObjectFile::parseCustomSection(WasmSection &Sec, ReadContext &Ctx) {
1159 if (Sec.Name == "dylink") {
1160 if (Error Err = parseDylinkSection(Ctx))
1161 return Err;
1162 } else if (Sec.Name == "dylink.0") {
1163 if (Error Err = parseDylink0Section(Ctx))
1164 return Err;
1165 } else if (Sec.Name == "name") {
1166 if (Error Err = parseNameSection(Ctx))
1167 return Err;
1168 } else if (Sec.Name == "linking") {
1169 if (Error Err = parseLinkingSection(Ctx))
1170 return Err;
1171 } else if (Sec.Name == "producers") {
1172 if (Error Err = parseProducersSection(Ctx))
1173 return Err;
1174 } else if (Sec.Name == "target_features") {
1175 if (Error Err = parseTargetFeaturesSection(Ctx))
1176 return Err;
1177 } else if (Sec.Name.starts_with("reloc.")) {
1178 if (Error Err = parseRelocSection(Sec.Name, Ctx))
1179 return Err;
1180 }
1181 return Error::success();
1182}
1183
1184Error WasmObjectFile::parseTypeSection(ReadContext &Ctx) {
1185 auto parseFieldDef = [&]() {
1186 uint32_t TypeCode = readVaruint32((Ctx));
1187 /* Discard StorageType */ parseValType(Ctx, TypeCode);
1188 /* Discard Mutability */ readVaruint32(Ctx);
1189 };
1190
1191 uint32_t Count = readVaruint32(Ctx);
1192 Signatures.reserve(Count);
1193 while (Count--) {
1195 uint8_t Form = readUint8(Ctx);
1196 if (Form == wasm::WASM_TYPE_REC) {
1197 // Rec groups expand the type index space (beyond what was declared at
1198 // the top of the section, and also consume one element in that space.
1199 uint32_t RecSize = readVaruint32(Ctx);
1200 if (RecSize == 0)
1201 return make_error<GenericBinaryError>("Rec group size cannot be 0",
1203 Signatures.reserve(Signatures.size() + RecSize);
1204 Count += RecSize;
1206 Signatures.push_back(std::move(Sig));
1207 HasUnmodeledTypes = true;
1208 continue;
1209 }
1210 if (Form != wasm::WASM_TYPE_FUNC) {
1211 // Currently LLVM only models function types, and not other composite
1212 // types. Here we parse the type declarations just enough to skip past
1213 // them in the binary.
1215 uint32_t Supers = readVaruint32(Ctx);
1216 if (Supers > 0) {
1217 if (Supers != 1)
1218 return make_error<GenericBinaryError>(
1219 "Invalid number of supertypes", object_error::parse_failed);
1220 /* Discard SuperIndex */ readVaruint32(Ctx);
1221 }
1222 Form = readVaruint32(Ctx);
1223 }
1225 uint32_t FieldCount = readVaruint32(Ctx);
1226 while (FieldCount--) {
1227 parseFieldDef();
1228 }
1229 } else if (Form == wasm::WASM_TYPE_ARRAY) {
1230 parseFieldDef();
1231 } else {
1232 return make_error<GenericBinaryError>("bad form",
1234 }
1236 Signatures.push_back(std::move(Sig));
1237 HasUnmodeledTypes = true;
1238 continue;
1239 }
1240
1241 uint32_t ParamCount = readVaruint32(Ctx);
1242 Sig.Params.reserve(ParamCount);
1243 while (ParamCount--) {
1244 uint32_t ParamType = readUint8(Ctx);
1245 Sig.Params.push_back(parseValType(Ctx, ParamType));
1246 continue;
1247 }
1248 uint32_t ReturnCount = readVaruint32(Ctx);
1249 while (ReturnCount--) {
1251 Sig.Returns.push_back(parseValType(Ctx, ReturnType));
1252 }
1253
1254 Signatures.push_back(std::move(Sig));
1255 }
1256 if (Ctx.Ptr != Ctx.End)
1257 return make_error<GenericBinaryError>("type section ended prematurely",
1259 return Error::success();
1260}
1261
1262Error WasmObjectFile::parseImportSection(ReadContext &Ctx) {
1263 uint32_t Count = readVaruint32(Ctx);
1264 uint32_t NumTypes = Signatures.size();
1265 Imports.reserve(Count);
1266 for (uint32_t I = 0; I < Count; I++) {
1268 Im.Module = readString(Ctx);
1269 Im.Field = readString(Ctx);
1270 Im.Kind = readUint8(Ctx);
1271 switch (Im.Kind) {
1273 NumImportedFunctions++;
1274 Im.SigIndex = readVaruint32(Ctx);
1275 if (Im.SigIndex >= NumTypes)
1276 return make_error<GenericBinaryError>("invalid function type",
1278 break;
1280 NumImportedGlobals++;
1281 Im.Global.Type = readUint8(Ctx);
1282 Im.Global.Mutable = readVaruint1(Ctx);
1283 break;
1285 Im.Memory = readLimits(Ctx);
1287 HasMemory64 = true;
1288 break;
1290 Im.Table = readTableType(Ctx);
1291 NumImportedTables++;
1292 auto ElemType = Im.Table.ElemType;
1293 if (ElemType != wasm::ValType::FUNCREF &&
1294 ElemType != wasm::ValType::EXTERNREF &&
1295 ElemType != wasm::ValType::EXNREF &&
1296 ElemType != wasm::ValType::OTHERREF)
1297 return make_error<GenericBinaryError>("invalid table element type",
1299 break;
1300 }
1302 NumImportedTags++;
1303 if (readUint8(Ctx) != 0) // Reserved 'attribute' field
1304 return make_error<GenericBinaryError>("invalid attribute",
1306 Im.SigIndex = readVaruint32(Ctx);
1307 if (Im.SigIndex >= NumTypes)
1308 return make_error<GenericBinaryError>("invalid tag type",
1310 break;
1311 default:
1312 return make_error<GenericBinaryError>("unexpected import kind",
1314 }
1315 Imports.push_back(Im);
1316 }
1317 if (Ctx.Ptr != Ctx.End)
1318 return make_error<GenericBinaryError>("import section ended prematurely",
1320 return Error::success();
1321}
1322
1323Error WasmObjectFile::parseFunctionSection(ReadContext &Ctx) {
1324 uint32_t Count = readVaruint32(Ctx);
1325 Functions.reserve(Count);
1326 uint32_t NumTypes = Signatures.size();
1327 while (Count--) {
1329 if (Type >= NumTypes)
1330 return make_error<GenericBinaryError>("invalid function type",
1333 F.SigIndex = Type;
1334 Functions.push_back(F);
1335 }
1336 if (Ctx.Ptr != Ctx.End)
1337 return make_error<GenericBinaryError>("function section ended prematurely",
1339 return Error::success();
1340}
1341
1342Error WasmObjectFile::parseTableSection(ReadContext &Ctx) {
1343 TableSection = Sections.size();
1344 uint32_t Count = readVaruint32(Ctx);
1345 Tables.reserve(Count);
1346 while (Count--) {
1348 T.Type = readTableType(Ctx);
1349 T.Index = NumImportedTables + Tables.size();
1350 Tables.push_back(T);
1351 auto ElemType = Tables.back().Type.ElemType;
1352 if (ElemType != wasm::ValType::FUNCREF &&
1353 ElemType != wasm::ValType::EXTERNREF &&
1354 ElemType != wasm::ValType::EXNREF &&
1355 ElemType != wasm::ValType::OTHERREF) {
1356 return make_error<GenericBinaryError>("invalid table element type",
1358 }
1359 }
1360 if (Ctx.Ptr != Ctx.End)
1361 return make_error<GenericBinaryError>("table section ended prematurely",
1363 return Error::success();
1364}
1365
1366Error WasmObjectFile::parseMemorySection(ReadContext &Ctx) {
1367 uint32_t Count = readVaruint32(Ctx);
1368 Memories.reserve(Count);
1369 while (Count--) {
1370 auto Limits = readLimits(Ctx);
1371 if (Limits.Flags & wasm::WASM_LIMITS_FLAG_IS_64)
1372 HasMemory64 = true;
1373 Memories.push_back(Limits);
1374 }
1375 if (Ctx.Ptr != Ctx.End)
1376 return make_error<GenericBinaryError>("memory section ended prematurely",
1378 return Error::success();
1379}
1380
1381Error WasmObjectFile::parseTagSection(ReadContext &Ctx) {
1382 TagSection = Sections.size();
1383 uint32_t Count = readVaruint32(Ctx);
1384 Tags.reserve(Count);
1385 uint32_t NumTypes = Signatures.size();
1386 while (Count--) {
1387 if (readUint8(Ctx) != 0) // Reserved 'attribute' field
1388 return make_error<GenericBinaryError>("invalid attribute",
1391 if (Type >= NumTypes)
1392 return make_error<GenericBinaryError>("invalid tag type",
1395 Tag.Index = NumImportedTags + Tags.size();
1396 Tag.SigIndex = Type;
1397 Signatures[Type].Kind = wasm::WasmSignature::Tag;
1398 Tags.push_back(Tag);
1399 }
1400
1401 if (Ctx.Ptr != Ctx.End)
1402 return make_error<GenericBinaryError>("tag section ended prematurely",
1404 return Error::success();
1405}
1406
1407Error WasmObjectFile::parseGlobalSection(ReadContext &Ctx) {
1408 GlobalSection = Sections.size();
1409 const uint8_t *SectionStart = Ctx.Ptr;
1410 uint32_t Count = readVaruint32(Ctx);
1411 Globals.reserve(Count);
1412 while (Count--) {
1414 Global.Index = NumImportedGlobals + Globals.size();
1415 const uint8_t *GlobalStart = Ctx.Ptr;
1416 Global.Offset = static_cast<uint32_t>(GlobalStart - SectionStart);
1417 auto GlobalOpcode = readVaruint32(Ctx);
1418 Global.Type.Type = (uint8_t)parseValType(Ctx, GlobalOpcode);
1419 Global.Type.Mutable = readVaruint1(Ctx);
1420 if (Error Err = readInitExpr(Global.InitExpr, Ctx))
1421 return Err;
1422 Global.Size = static_cast<uint32_t>(Ctx.Ptr - GlobalStart);
1423 Globals.push_back(Global);
1424 }
1425 if (Ctx.Ptr != Ctx.End)
1426 return make_error<GenericBinaryError>("global section ended prematurely",
1428 return Error::success();
1429}
1430
1431Error WasmObjectFile::parseExportSection(ReadContext &Ctx) {
1432 uint32_t Count = readVaruint32(Ctx);
1433 Exports.reserve(Count);
1434 Symbols.reserve(Count);
1435 for (uint32_t I = 0; I < Count; I++) {
1437 Ex.Name = readString(Ctx);
1438 Ex.Kind = readUint8(Ctx);
1439 Ex.Index = readVaruint32(Ctx);
1440 const wasm::WasmSignature *Signature = nullptr;
1441 const wasm::WasmGlobalType *GlobalType = nullptr;
1442 const wasm::WasmTableType *TableType = nullptr;
1444 Info.Name = Ex.Name;
1445 Info.Flags = 0;
1446 switch (Ex.Kind) {
1448 if (!isDefinedFunctionIndex(Ex.Index))
1449 return make_error<GenericBinaryError>("invalid function export",
1451 getDefinedFunction(Ex.Index).ExportName = Ex.Name;
1453 Info.ElementIndex = Ex.Index;
1454 unsigned FuncIndex = Info.ElementIndex - NumImportedFunctions;
1455 wasm::WasmFunction &Function = Functions[FuncIndex];
1456 Signature = &Signatures[Function.SigIndex];
1457 break;
1458 }
1460 if (!isValidGlobalIndex(Ex.Index))
1461 return make_error<GenericBinaryError>("invalid global export",
1464 uint64_t Offset = 0;
1465 if (isDefinedGlobalIndex(Ex.Index)) {
1466 auto Global = getDefinedGlobal(Ex.Index);
1467 if (!Global.InitExpr.Extended) {
1468 auto Inst = Global.InitExpr.Inst;
1469 if (Inst.Opcode == wasm::WASM_OPCODE_I32_CONST) {
1470 Offset = Inst.Value.Int32;
1471 } else if (Inst.Opcode == wasm::WASM_OPCODE_I64_CONST) {
1472 Offset = Inst.Value.Int64;
1473 }
1474 }
1475 }
1476 Info.DataRef = wasm::WasmDataReference{0, Offset, 0};
1477 break;
1478 }
1480 if (!isValidTagIndex(Ex.Index))
1481 return make_error<GenericBinaryError>("invalid tag export",
1484 Info.ElementIndex = Ex.Index;
1485 break;
1487 break;
1490 Info.ElementIndex = Ex.Index;
1491 break;
1492 default:
1493 return make_error<GenericBinaryError>("unexpected export kind",
1495 }
1496 Exports.push_back(Ex);
1497 if (Ex.Kind != wasm::WASM_EXTERNAL_MEMORY) {
1498 Symbols.emplace_back(Info, GlobalType, TableType, Signature);
1499 LLVM_DEBUG(dbgs() << "Adding symbol: " << Symbols.back() << "\n");
1500 }
1501 }
1502 if (Ctx.Ptr != Ctx.End)
1503 return make_error<GenericBinaryError>("export section ended prematurely",
1505 return Error::success();
1506}
1507
1508bool WasmObjectFile::isValidFunctionIndex(uint32_t Index) const {
1509 return Index < NumImportedFunctions + Functions.size();
1510}
1511
1512bool WasmObjectFile::isDefinedFunctionIndex(uint32_t Index) const {
1513 return Index >= NumImportedFunctions && isValidFunctionIndex(Index);
1514}
1515
1516bool WasmObjectFile::isValidGlobalIndex(uint32_t Index) const {
1517 return Index < NumImportedGlobals + Globals.size();
1518}
1519
1520bool WasmObjectFile::isValidTableNumber(uint32_t Index) const {
1521 return Index < NumImportedTables + Tables.size();
1522}
1523
1524bool WasmObjectFile::isDefinedGlobalIndex(uint32_t Index) const {
1525 return Index >= NumImportedGlobals && isValidGlobalIndex(Index);
1526}
1527
1528bool WasmObjectFile::isDefinedTableNumber(uint32_t Index) const {
1529 return Index >= NumImportedTables && isValidTableNumber(Index);
1530}
1531
1532bool WasmObjectFile::isValidTagIndex(uint32_t Index) const {
1533 return Index < NumImportedTags + Tags.size();
1534}
1535
1536bool WasmObjectFile::isDefinedTagIndex(uint32_t Index) const {
1537 return Index >= NumImportedTags && isValidTagIndex(Index);
1538}
1539
1540bool WasmObjectFile::isValidFunctionSymbol(uint32_t Index) const {
1541 return Index < Symbols.size() && Symbols[Index].isTypeFunction();
1542}
1543
1544bool WasmObjectFile::isValidTableSymbol(uint32_t Index) const {
1545 return Index < Symbols.size() && Symbols[Index].isTypeTable();
1546}
1547
1548bool WasmObjectFile::isValidGlobalSymbol(uint32_t Index) const {
1549 return Index < Symbols.size() && Symbols[Index].isTypeGlobal();
1550}
1551
1552bool WasmObjectFile::isValidTagSymbol(uint32_t Index) const {
1553 return Index < Symbols.size() && Symbols[Index].isTypeTag();
1554}
1555
1556bool WasmObjectFile::isValidDataSymbol(uint32_t Index) const {
1557 return Index < Symbols.size() && Symbols[Index].isTypeData();
1558}
1559
1560bool WasmObjectFile::isValidSectionSymbol(uint32_t Index) const {
1561 return Index < Symbols.size() && Symbols[Index].isTypeSection();
1562}
1563
1564wasm::WasmFunction &WasmObjectFile::getDefinedFunction(uint32_t Index) {
1565 assert(isDefinedFunctionIndex(Index));
1566 return Functions[Index - NumImportedFunctions];
1567}
1568
1569const wasm::WasmFunction &
1570WasmObjectFile::getDefinedFunction(uint32_t Index) const {
1571 assert(isDefinedFunctionIndex(Index));
1572 return Functions[Index - NumImportedFunctions];
1573}
1574
1575const wasm::WasmGlobal &WasmObjectFile::getDefinedGlobal(uint32_t Index) const {
1576 assert(isDefinedGlobalIndex(Index));
1577 return Globals[Index - NumImportedGlobals];
1578}
1579
1580wasm::WasmTag &WasmObjectFile::getDefinedTag(uint32_t Index) {
1581 assert(isDefinedTagIndex(Index));
1582 return Tags[Index - NumImportedTags];
1583}
1584
1585Error WasmObjectFile::parseStartSection(ReadContext &Ctx) {
1586 StartFunction = readVaruint32(Ctx);
1587 if (!isValidFunctionIndex(StartFunction))
1588 return make_error<GenericBinaryError>("invalid start function",
1590 return Error::success();
1591}
1592
1593Error WasmObjectFile::parseCodeSection(ReadContext &Ctx) {
1594 CodeSection = Sections.size();
1595 uint32_t FunctionCount = readVaruint32(Ctx);
1596 if (FunctionCount != Functions.size()) {
1597 return make_error<GenericBinaryError>("invalid function count",
1599 }
1600
1601 for (uint32_t i = 0; i < FunctionCount; i++) {
1602 wasm::WasmFunction& Function = Functions[i];
1603 const uint8_t *FunctionStart = Ctx.Ptr;
1605 const uint8_t *FunctionEnd = Ctx.Ptr + Size;
1606
1607 Function.CodeOffset = Ctx.Ptr - FunctionStart;
1608 Function.Index = NumImportedFunctions + i;
1609 Function.CodeSectionOffset = FunctionStart - Ctx.Start;
1610 Function.Size = FunctionEnd - FunctionStart;
1611
1612 uint32_t NumLocalDecls = readVaruint32(Ctx);
1613 Function.Locals.reserve(NumLocalDecls);
1614 while (NumLocalDecls--) {
1616 Decl.Count = readVaruint32(Ctx);
1617 Decl.Type = readUint8(Ctx);
1618 Function.Locals.push_back(Decl);
1619 }
1620
1621 uint32_t BodySize = FunctionEnd - Ctx.Ptr;
1622 // Ensure that Function is within Ctx's buffer.
1623 if (Ctx.Ptr + BodySize > Ctx.End) {
1624 return make_error<GenericBinaryError>("Function extends beyond buffer",
1626 }
1627 Function.Body = ArrayRef<uint8_t>(Ctx.Ptr, BodySize);
1628 // This will be set later when reading in the linking metadata section.
1629 Function.Comdat = UINT32_MAX;
1630 Ctx.Ptr += BodySize;
1631 assert(Ctx.Ptr == FunctionEnd);
1632 }
1633 if (Ctx.Ptr != Ctx.End)
1634 return make_error<GenericBinaryError>("code section ended prematurely",
1636 return Error::success();
1637}
1638
1639Error WasmObjectFile::parseElemSection(ReadContext &Ctx) {
1640 uint32_t Count = readVaruint32(Ctx);
1641 ElemSegments.reserve(Count);
1642 while (Count--) {
1643 wasm::WasmElemSegment Segment;
1644 Segment.Flags = readVaruint32(Ctx);
1645
1649 if (Segment.Flags & ~SupportedFlags)
1650 return make_error<GenericBinaryError>(
1651 "Unsupported flags for element segment", object_error::parse_failed);
1652
1653 bool IsPassive = (Segment.Flags & wasm::WASM_ELEM_SEGMENT_IS_PASSIVE) != 0;
1654 bool IsDeclarative =
1655 IsPassive && (Segment.Flags & wasm::WASM_ELEM_SEGMENT_IS_DECLARATIVE);
1656 bool HasTableNumber =
1657 !IsPassive &&
1659 bool HasInitExprs =
1661 bool HasElemKind =
1663 !HasInitExprs;
1664
1665 if (HasTableNumber)
1666 Segment.TableNumber = readVaruint32(Ctx);
1667 else
1668 Segment.TableNumber = 0;
1669
1670 if (!isValidTableNumber(Segment.TableNumber))
1671 return make_error<GenericBinaryError>("invalid TableNumber",
1673
1674 if (IsPassive || IsDeclarative) {
1675 Segment.Offset.Extended = false;
1677 Segment.Offset.Inst.Value.Int32 = 0;
1678 } else {
1679 if (Error Err = readInitExpr(Segment.Offset, Ctx))
1680 return Err;
1681 }
1682
1683 if (HasElemKind) {
1684 auto ElemKind = readVaruint32(Ctx);
1686 Segment.ElemKind = parseValType(Ctx, ElemKind);
1687 if (Segment.ElemKind != wasm::ValType::FUNCREF &&
1689 Segment.ElemKind != wasm::ValType::EXNREF &&
1690 Segment.ElemKind != wasm::ValType::OTHERREF) {
1691 return make_error<GenericBinaryError>("invalid elem type",
1693 }
1694 } else {
1695 if (ElemKind != 0)
1696 return make_error<GenericBinaryError>("invalid elem type",
1699 }
1700 } else if (HasInitExprs) {
1701 auto ElemType = parseValType(Ctx, readVaruint32(Ctx));
1702 Segment.ElemKind = ElemType;
1703 } else {
1705 }
1706
1707 uint32_t NumElems = readVaruint32(Ctx);
1708
1709 if (HasInitExprs) {
1710 while (NumElems--) {
1711 wasm::WasmInitExpr Expr;
1712 if (Error Err = readInitExpr(Expr, Ctx))
1713 return Err;
1714 }
1715 } else {
1716 while (NumElems--) {
1717 Segment.Functions.push_back(readVaruint32(Ctx));
1718 }
1719 }
1720 ElemSegments.push_back(Segment);
1721 }
1722 if (Ctx.Ptr != Ctx.End)
1723 return make_error<GenericBinaryError>("elem section ended prematurely",
1725 return Error::success();
1726}
1727
1728Error WasmObjectFile::parseDataSection(ReadContext &Ctx) {
1729 DataSection = Sections.size();
1730 uint32_t Count = readVaruint32(Ctx);
1731 if (DataCount && Count != *DataCount)
1732 return make_error<GenericBinaryError>(
1733 "number of data segments does not match DataCount section");
1734 DataSegments.reserve(Count);
1735 while (Count--) {
1736 WasmSegment Segment;
1737 Segment.Data.InitFlags = readVaruint32(Ctx);
1738 Segment.Data.MemoryIndex =
1740 ? readVaruint32(Ctx)
1741 : 0;
1742 if ((Segment.Data.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) {
1743 if (Error Err = readInitExpr(Segment.Data.Offset, Ctx))
1744 return Err;
1745 } else {
1746 Segment.Data.Offset.Extended = false;
1748 Segment.Data.Offset.Inst.Value.Int32 = 0;
1749 }
1751 if (Size > (size_t)(Ctx.End - Ctx.Ptr))
1752 return make_error<GenericBinaryError>("invalid segment size",
1754 Segment.Data.Content = ArrayRef<uint8_t>(Ctx.Ptr, Size);
1755 // The rest of these Data fields are set later, when reading in the linking
1756 // metadata section.
1757 Segment.Data.Alignment = 0;
1758 Segment.Data.LinkingFlags = 0;
1759 Segment.Data.Comdat = UINT32_MAX;
1760 Segment.SectionOffset = Ctx.Ptr - Ctx.Start;
1761 Ctx.Ptr += Size;
1762 DataSegments.push_back(Segment);
1763 }
1764 if (Ctx.Ptr != Ctx.End)
1765 return make_error<GenericBinaryError>("data section ended prematurely",
1767 return Error::success();
1768}
1769
1770Error WasmObjectFile::parseDataCountSection(ReadContext &Ctx) {
1771 DataCount = readVaruint32(Ctx);
1772 return Error::success();
1773}
1774
1776 return Header;
1777}
1778
1779void WasmObjectFile::moveSymbolNext(DataRefImpl &Symb) const { Symb.d.b++; }
1780
1783 const WasmSymbol &Sym = getWasmSymbol(Symb);
1784
1785 LLVM_DEBUG(dbgs() << "getSymbolFlags: ptr=" << &Sym << " " << Sym << "\n");
1786 if (Sym.isBindingWeak())
1787 Result |= SymbolRef::SF_Weak;
1788 if (!Sym.isBindingLocal())
1789 Result |= SymbolRef::SF_Global;
1790 if (Sym.isHidden())
1791 Result |= SymbolRef::SF_Hidden;
1792 if (!Sym.isDefined())
1793 Result |= SymbolRef::SF_Undefined;
1794 if (Sym.isTypeFunction())
1795 Result |= SymbolRef::SF_Executable;
1796 return Result;
1797}
1798
1801 Ref.d.a = 1; // Arbitrary non-zero value so that Ref.p is non-null
1802 Ref.d.b = 0; // Symbol index
1803 return BasicSymbolRef(Ref, this);
1804}
1805
1808 Ref.d.a = 1; // Arbitrary non-zero value so that Ref.p is non-null
1809 Ref.d.b = Symbols.size(); // Symbol index
1810 return BasicSymbolRef(Ref, this);
1811}
1812
1814 return Symbols[Symb.d.b];
1815}
1816
1818 return getWasmSymbol(Symb.getRawDataRefImpl());
1819}
1820
1822 return getWasmSymbol(Symb).Info.Name;
1823}
1824
1826 auto &Sym = getWasmSymbol(Symb);
1827 if (!Sym.isDefined())
1828 return 0;
1830 if (!Sec)
1831 return Sec.takeError();
1832 uint32_t SectionAddress = getSectionAddress(Sec.get()->getRawDataRefImpl());
1833 if (Sym.Info.Kind == wasm::WASM_SYMBOL_TYPE_FUNCTION &&
1834 isDefinedFunctionIndex(Sym.Info.ElementIndex)) {
1835 return getDefinedFunction(Sym.Info.ElementIndex).CodeSectionOffset +
1836 SectionAddress;
1837 }
1838 if (Sym.Info.Kind == wasm::WASM_SYMBOL_TYPE_GLOBAL &&
1839 isDefinedGlobalIndex(Sym.Info.ElementIndex)) {
1840 return getDefinedGlobal(Sym.Info.ElementIndex).Offset + SectionAddress;
1841 }
1842
1843 return getSymbolValue(Symb);
1844}
1845
1847 switch (Sym.Info.Kind) {
1852 return Sym.Info.ElementIndex;
1854 // The value of a data symbol is the segment offset, plus the symbol
1855 // offset within the segment.
1856 uint32_t SegmentIndex = Sym.Info.DataRef.Segment;
1857 const wasm::WasmDataSegment &Segment = DataSegments[SegmentIndex].Data;
1858 if (Segment.Offset.Extended) {
1859 llvm_unreachable("extended init exprs not supported");
1860 } else if (Segment.Offset.Inst.Opcode == wasm::WASM_OPCODE_I32_CONST) {
1861 return Segment.Offset.Inst.Value.Int32 + Sym.Info.DataRef.Offset;
1862 } else if (Segment.Offset.Inst.Opcode == wasm::WASM_OPCODE_I64_CONST) {
1863 return Segment.Offset.Inst.Value.Int64 + Sym.Info.DataRef.Offset;
1864 } else if (Segment.Offset.Inst.Opcode == wasm::WASM_OPCODE_GLOBAL_GET) {
1865 return Sym.Info.DataRef.Offset;
1866 } else {
1867 llvm_unreachable("unknown init expr opcode");
1868 }
1869 }
1871 return 0;
1872 }
1873 llvm_unreachable("invalid symbol type");
1874}
1875
1877 return getWasmSymbolValue(getWasmSymbol(Symb));
1878}
1879
1881 llvm_unreachable("not yet implemented");
1882 return 0;
1883}
1884
1886 llvm_unreachable("not yet implemented");
1887 return 0;
1888}
1889
1892 const WasmSymbol &Sym = getWasmSymbol(Symb);
1893
1894 switch (Sym.Info.Kind) {
1898 return SymbolRef::ST_Other;
1900 return SymbolRef::ST_Data;
1902 return SymbolRef::ST_Debug;
1904 return SymbolRef::ST_Other;
1906 return SymbolRef::ST_Other;
1907 }
1908
1909 llvm_unreachable("unknown WasmSymbol::SymbolType");
1910 return SymbolRef::ST_Other;
1911}
1912
1915 const WasmSymbol &Sym = getWasmSymbol(Symb);
1916 if (Sym.isUndefined())
1917 return section_end();
1918
1920 Ref.d.a = getSymbolSectionIdImpl(Sym);
1921 return section_iterator(SectionRef(Ref, this));
1922}
1923
1925 const WasmSymbol &Sym = getWasmSymbol(Symb);
1926 return getSymbolSectionIdImpl(Sym);
1927}
1928
1929uint32_t WasmObjectFile::getSymbolSectionIdImpl(const WasmSymbol &Sym) const {
1930 switch (Sym.Info.Kind) {
1932 return CodeSection;
1934 return GlobalSection;
1936 return DataSection;
1938 return Sym.Info.ElementIndex;
1940 return TagSection;
1942 return TableSection;
1943 default:
1944 llvm_unreachable("unknown WasmSymbol::SymbolType");
1945 }
1946}
1947
1949 const WasmSymbol &Sym = getWasmSymbol(Symb);
1950 if (!Sym.isDefined())
1951 return 0;
1952 if (Sym.isTypeGlobal())
1953 return getDefinedGlobal(Sym.Info.ElementIndex).Size;
1954 if (Sym.isTypeData())
1955 return Sym.Info.DataRef.Size;
1956 if (Sym.isTypeFunction())
1957 return functions()[Sym.Info.ElementIndex - getNumImportedFunctions()].Size;
1958 // Currently symbol size is only tracked for data segments and functions. In
1959 // principle we could also track size (e.g. binary size) for tables, globals
1960 // and element segments etc too.
1961 return 0;
1962}
1963
1965
1967 const WasmSection &S = Sections[Sec.d.a];
1968 if (S.Type == wasm::WASM_SEC_CUSTOM)
1969 return S.Name;
1973}
1974
1976 // For object files, use 0 for section addresses, and section offsets for
1977 // symbol addresses. For linked files, use file offsets.
1978 // See also getSymbolAddress.
1979 return isRelocatableObject() || isSharedObject() ? 0
1980 : Sections[Sec.d.a].Offset;
1981}
1982
1984 return Sec.d.a;
1985}
1986
1988 const WasmSection &S = Sections[Sec.d.a];
1989 return S.Content.size();
1990}
1991
1994 const WasmSection &S = Sections[Sec.d.a];
1995 // This will never fail since wasm sections can never be empty (user-sections
1996 // must have a name and non-user sections each have a defined structure).
1997 return S.Content;
1998}
1999
2001 return 1;
2002}
2003
2005 return false;
2006}
2007
2010}
2011
2014}
2015
2016bool WasmObjectFile::isSectionBSS(DataRefImpl Sec) const { return false; }
2017
2018bool WasmObjectFile::isSectionVirtual(DataRefImpl Sec) const { return false; }
2019
2021 DataRefImpl RelocRef;
2022 RelocRef.d.a = Ref.d.a;
2023 RelocRef.d.b = 0;
2024 return relocation_iterator(RelocationRef(RelocRef, this));
2025}
2026
2028 const WasmSection &Sec = getWasmSection(Ref);
2029 DataRefImpl RelocRef;
2030 RelocRef.d.a = Ref.d.a;
2031 RelocRef.d.b = Sec.Relocations.size();
2032 return relocation_iterator(RelocationRef(RelocRef, this));
2033}
2034
2036
2039 return Rel.Offset;
2040}
2041
2044 if (Rel.Type == wasm::R_WASM_TYPE_INDEX_LEB)
2045 return symbol_end();
2047 Sym.d.a = 1;
2048 Sym.d.b = Rel.Index;
2049 return symbol_iterator(SymbolRef(Sym, this));
2050}
2051
2054 return Rel.Type;
2055}
2056
2058 DataRefImpl Ref, SmallVectorImpl<char> &Result) const {
2060 StringRef Res = "Unknown";
2061
2062#define WASM_RELOC(name, value) \
2063 case wasm::name: \
2064 Res = #name; \
2065 break;
2066
2067 switch (Rel.Type) {
2068#include "llvm/BinaryFormat/WasmRelocs.def"
2069 }
2070
2071#undef WASM_RELOC
2072
2073 Result.append(Res.begin(), Res.end());
2074}
2075
2078 Ref.d.a = 0;
2079 return section_iterator(SectionRef(Ref, this));
2080}
2081
2084 Ref.d.a = Sections.size();
2085 return section_iterator(SectionRef(Ref, this));
2086}
2087
2089 return HasMemory64 ? 8 : 4;
2090}
2091
2093
2095 return HasMemory64 ? Triple::wasm64 : Triple::wasm32;
2096}
2097
2099 return SubtargetFeatures();
2100}
2101
2102bool WasmObjectFile::isRelocatableObject() const { return HasLinkingSection; }
2103
2104bool WasmObjectFile::isSharedObject() const { return HasDylinkSection; }
2105
2107 assert(Ref.d.a < Sections.size());
2108 return Sections[Ref.d.a];
2109}
2110
2111const WasmSection &
2113 return getWasmSection(Section.getRawDataRefImpl());
2114}
2115
2118 return getWasmRelocation(Ref.getRawDataRefImpl());
2119}
2120
2123 assert(Ref.d.a < Sections.size());
2124 const WasmSection &Sec = Sections[Ref.d.a];
2125 assert(Ref.d.b < Sec.Relocations.size());
2126 return Sec.Relocations[Ref.d.b];
2127}
2128
2129int WasmSectionOrderChecker::getSectionOrder(unsigned ID,
2130 StringRef CustomSectionName) {
2131 switch (ID) {
2133 return StringSwitch<unsigned>(CustomSectionName)
2134 .Case("dylink", WASM_SEC_ORDER_DYLINK)
2135 .Case("dylink.0", WASM_SEC_ORDER_DYLINK)
2136 .Case("linking", WASM_SEC_ORDER_LINKING)
2138 .Case("name", WASM_SEC_ORDER_NAME)
2139 .Case("producers", WASM_SEC_ORDER_PRODUCERS)
2140 .Case("target_features", WASM_SEC_ORDER_TARGET_FEATURES)
2143 return WASM_SEC_ORDER_TYPE;
2145 return WASM_SEC_ORDER_IMPORT;
2149 return WASM_SEC_ORDER_TABLE;
2151 return WASM_SEC_ORDER_MEMORY;
2153 return WASM_SEC_ORDER_GLOBAL;
2155 return WASM_SEC_ORDER_EXPORT;
2157 return WASM_SEC_ORDER_START;
2159 return WASM_SEC_ORDER_ELEM;
2161 return WASM_SEC_ORDER_CODE;
2163 return WASM_SEC_ORDER_DATA;
2166 case wasm::WASM_SEC_TAG:
2167 return WASM_SEC_ORDER_TAG;
2168 default:
2169 return WASM_SEC_ORDER_NONE;
2170 }
2171}
2172
2173// Represents the edges in a directed graph where any node B reachable from node
2174// A is not allowed to appear before A in the section ordering, but may appear
2175// afterward.
2177 [WASM_NUM_SEC_ORDERS][WASM_NUM_SEC_ORDERS] = {
2178 // WASM_SEC_ORDER_NONE
2179 {},
2180 // WASM_SEC_ORDER_TYPE
2181 {WASM_SEC_ORDER_TYPE, WASM_SEC_ORDER_IMPORT},
2182 // WASM_SEC_ORDER_IMPORT
2183 {WASM_SEC_ORDER_IMPORT, WASM_SEC_ORDER_FUNCTION},
2184 // WASM_SEC_ORDER_FUNCTION
2185 {WASM_SEC_ORDER_FUNCTION, WASM_SEC_ORDER_TABLE},
2186 // WASM_SEC_ORDER_TABLE
2187 {WASM_SEC_ORDER_TABLE, WASM_SEC_ORDER_MEMORY},
2188 // WASM_SEC_ORDER_MEMORY
2189 {WASM_SEC_ORDER_MEMORY, WASM_SEC_ORDER_TAG},
2190 // WASM_SEC_ORDER_TAG
2191 {WASM_SEC_ORDER_TAG, WASM_SEC_ORDER_GLOBAL},
2192 // WASM_SEC_ORDER_GLOBAL
2193 {WASM_SEC_ORDER_GLOBAL, WASM_SEC_ORDER_EXPORT},
2194 // WASM_SEC_ORDER_EXPORT
2195 {WASM_SEC_ORDER_EXPORT, WASM_SEC_ORDER_START},
2196 // WASM_SEC_ORDER_START
2197 {WASM_SEC_ORDER_START, WASM_SEC_ORDER_ELEM},
2198 // WASM_SEC_ORDER_ELEM
2199 {WASM_SEC_ORDER_ELEM, WASM_SEC_ORDER_DATACOUNT},
2200 // WASM_SEC_ORDER_DATACOUNT
2201 {WASM_SEC_ORDER_DATACOUNT, WASM_SEC_ORDER_CODE},
2202 // WASM_SEC_ORDER_CODE
2203 {WASM_SEC_ORDER_CODE, WASM_SEC_ORDER_DATA},
2204 // WASM_SEC_ORDER_DATA
2205 {WASM_SEC_ORDER_DATA, WASM_SEC_ORDER_LINKING},
2206
2207 // Custom Sections
2208 // WASM_SEC_ORDER_DYLINK
2209 {WASM_SEC_ORDER_DYLINK, WASM_SEC_ORDER_TYPE},
2210 // WASM_SEC_ORDER_LINKING
2211 {WASM_SEC_ORDER_LINKING, WASM_SEC_ORDER_RELOC, WASM_SEC_ORDER_NAME},
2212 // WASM_SEC_ORDER_RELOC (can be repeated)
2213 {},
2214 // WASM_SEC_ORDER_NAME
2215 {WASM_SEC_ORDER_NAME, WASM_SEC_ORDER_PRODUCERS},
2216 // WASM_SEC_ORDER_PRODUCERS
2217 {WASM_SEC_ORDER_PRODUCERS, WASM_SEC_ORDER_TARGET_FEATURES},
2218 // WASM_SEC_ORDER_TARGET_FEATURES
2219 {WASM_SEC_ORDER_TARGET_FEATURES}};
2220
2222 StringRef CustomSectionName) {
2223 int Order = getSectionOrder(ID, CustomSectionName);
2224 if (Order == WASM_SEC_ORDER_NONE)
2225 return true;
2226
2227 // Disallowed predecessors we need to check for
2229
2230 // Keep track of completed checks to avoid repeating work
2231 bool Checked[WASM_NUM_SEC_ORDERS] = {};
2232
2233 int Curr = Order;
2234 while (true) {
2235 // Add new disallowed predecessors to work list
2236 for (size_t I = 0;; ++I) {
2237 int Next = DisallowedPredecessors[Curr][I];
2238 if (Next == WASM_SEC_ORDER_NONE)
2239 break;
2240 if (Checked[Next])
2241 continue;
2242 WorkList.push_back(Next);
2243 Checked[Next] = true;
2244 }
2245
2246 if (WorkList.empty())
2247 break;
2248
2249 // Consider next disallowed predecessor
2250 Curr = WorkList.pop_back_val();
2251 if (Seen[Curr])
2252 return false;
2253 }
2254
2255 // Have not seen any disallowed predecessors
2256 Seen[Order] = true;
2257 return true;
2258}
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:533
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseSet and SmallDenseSet classes.
std::string Name
uint64_t Size
Symbol * Sym
Definition: ELF_riscv.cpp:479
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallSet class.
StringSet - A set-like wrapper for the StringMap.
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
static uint8_t readVaruint1(WasmObjectFile::ReadContext &Ctx)
static Error readInitExpr(wasm::WasmInitExpr &Expr, WasmObjectFile::ReadContext &Ctx)
static int32_t readVarint32(WasmObjectFile::ReadContext &Ctx)
static wasm::WasmTableType readTableType(WasmObjectFile::ReadContext &Ctx)
static wasm::WasmLimits readLimits(WasmObjectFile::ReadContext &Ctx)
static uint64_t readVaruint64(WasmObjectFile::ReadContext &Ctx)
static Error readSection(WasmSection &Section, WasmObjectFile::ReadContext &Ctx, WasmSectionOrderChecker &Checker)
static int64_t readLEB128(WasmObjectFile::ReadContext &Ctx)
static uint32_t readVaruint32(WasmObjectFile::ReadContext &Ctx)
static uint32_t readUint32(WasmObjectFile::ReadContext &Ctx)
static uint8_t readOpcode(WasmObjectFile::ReadContext &Ctx)
static StringRef readString(WasmObjectFile::ReadContext &Ctx)
static uint8_t readUint8(WasmObjectFile::ReadContext &Ctx)
#define VARUINT1_MAX
static int32_t readFloat32(WasmObjectFile::ReadContext &Ctx)
static uint64_t readULEB128(WasmObjectFile::ReadContext &Ctx)
static int64_t readFloat64(WasmObjectFile::ReadContext &Ctx)
static wasm::ValType parseValType(WasmObjectFile::ReadContext &Ctx, uint32_t Code)
static int64_t readVarint64(WasmObjectFile::ReadContext &Ctx)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
const T * data() const
Definition: ArrayRef.h:162
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
Helper for Errors used as out-parameters.
Definition: Error.h:1130
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
static ErrorSuccess success()
Create a success value.
Definition: Error.h:337
Tagged union holding either a T or a Error.
Definition: Error.h:481
Error takeError()
Take ownership of the stored error.
Definition: Error.h:608
reference get()
Returns a reference to the stored T value.
Definition: Error.h:578
bool empty() const
Definition: Function.h:857
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:179
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void reserve(size_type N)
Definition: SmallVector.h:676
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:556
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition: StringRef.h:250
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:134
iterator begin() const
Definition: StringRef.h:111
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:137
iterator end() const
Definition: StringRef.h:113
const unsigned char * bytes_begin() const
Definition: StringRef.h:115
StringSet - A wrapper for StringMap that provides set-like functionality.
Definition: StringSet.h:23
std::pair< typename Base::iterator, bool > insert(StringRef key)
Definition: StringSet.h:38
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:44
StringSwitch & Case(StringLiteral S, T Value)
Definition: StringSwitch.h:69
R Default(T Value)
Definition: StringSwitch.h:182
StringSwitch & StartsWith(StringLiteral S, T Value)
Definition: StringSwitch.h:83
Manages the enabling and disabling of subtarget specific features.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
static Twine utohexstr(const uint64_t &Val)
Definition: Twine.h:416
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
This is a value type class that represents a single symbol in the list of symbols in the object file.
Definition: SymbolicFile.h:103
DataRefImpl getRawDataRefImpl() const
Definition: SymbolicFile.h:210
MemoryBufferRef Data
Definition: Binary.h:37
StringRef getData() const
Definition: Binary.cpp:39
This class is the base class for all object file types.
Definition: ObjectFile.h:229
friend class RelocationRef
Definition: ObjectFile.h:287
friend class SymbolRef
Definition: ObjectFile.h:247
friend class SectionRef
Definition: ObjectFile.h:261
static Expected< std::unique_ptr< WasmObjectFile > > createWasmObjectFile(MemoryBufferRef Object)
Expected< uint64_t > getSymbolValue(DataRefImpl Symb) const
Definition: ObjectFile.cpp:56
This is a value type class that represents a single relocation in the list of relocations in the obje...
Definition: ObjectFile.h:52
This is a value type class that represents a single section in the list of sections in the object fil...
Definition: ObjectFile.h:81
This is a value type class that represents a single symbol in the list of symbols in the object file.
Definition: ObjectFile.h:168
basic_symbol_iterator symbol_begin() const override
relocation_iterator section_rel_end(DataRefImpl Sec) const override
void moveSymbolNext(DataRefImpl &Symb) const override
uint64_t getSectionAlignment(DataRefImpl Sec) const override
uint64_t getRelocationOffset(DataRefImpl Rel) const override
Expected< SymbolRef::Type > getSymbolType(DataRefImpl Symb) const override
uint64_t getWasmSymbolValue(const WasmSymbol &Sym) const
uint64_t getSymbolValueImpl(DataRefImpl Symb) const override
bool isSectionText(DataRefImpl Sec) const override
bool isSectionBSS(DataRefImpl Sec) const override
basic_symbol_iterator symbol_end() const override
Expected< uint32_t > getSymbolFlags(DataRefImpl Symb) const override
section_iterator section_begin() const override
bool isRelocatableObject() const override
True if this is a relocatable object (.o/.obj).
void moveRelocationNext(DataRefImpl &Rel) const override
uint32_t getSymbolSectionId(SymbolRef Sym) const
bool isSectionCompressed(DataRefImpl Sec) const override
bool isSectionVirtual(DataRefImpl Sec) const override
uint64_t getCommonSymbolSizeImpl(DataRefImpl Symb) const override
void getRelocationTypeName(DataRefImpl Rel, SmallVectorImpl< char > &Result) const override
StringRef getFileFormatName() const override
Expected< StringRef > getSymbolName(DataRefImpl Symb) const override
relocation_iterator section_rel_begin(DataRefImpl Sec) const override
uint8_t getBytesInAddress() const override
The number of bytes used to represent an address in this object file format.
WasmObjectFile(MemoryBufferRef Object, Error &Err)
section_iterator section_end() const override
Expected< ArrayRef< uint8_t > > getSectionContents(DataRefImpl Sec) const override
uint64_t getSectionIndex(DataRefImpl Sec) const override
uint32_t getSymbolAlignment(DataRefImpl Symb) const override
uint64_t getSectionSize(DataRefImpl Sec) const override
Triple::ArchType getArch() const override
uint64_t getRelocationType(DataRefImpl Rel) const override
const WasmSection & getWasmSection(const SectionRef &Section) const
Expected< section_iterator > getSymbolSection(DataRefImpl Symb) const override
symbol_iterator getRelocationSymbol(DataRefImpl Rel) const override
Expected< SubtargetFeatures > getFeatures() const override
const wasm::WasmObjectHeader & getHeader() const
void moveSectionNext(DataRefImpl &Sec) const override
uint32_t getNumImportedFunctions() const
Definition: Wasm.h:160
const wasm::WasmRelocation & getWasmRelocation(const RelocationRef &Ref) const
uint32_t getSymbolSize(SymbolRef Sym) const
ArrayRef< wasm::WasmFunction > functions() const
Definition: Wasm.h:155
const WasmSymbol & getWasmSymbol(const DataRefImpl &Symb) const
uint64_t getSectionAddress(DataRefImpl Sec) const override
Expected< uint64_t > getSymbolAddress(DataRefImpl Symb) const override
bool isSectionData(DataRefImpl Sec) const override
Expected< StringRef > getSectionName(DataRefImpl Sec) const override
bool isValidSectionOrder(unsigned ID, StringRef CustomSectionName="")
static int DisallowedPredecessors[WASM_NUM_SEC_ORDERS][WASM_NUM_SEC_ORDERS]
Definition: Wasm.h:356
unsigned getBinding() const
Definition: Wasm.h:89
LLVM_DUMP_METHOD void dump() const
bool isTypeData() const
Definition: Wasm.h:59
bool isHidden() const
Definition: Wasm.h:93
wasm::WasmSymbolInfo Info
Definition: Wasm.h:48
void print(raw_ostream &Out) const
bool isDefined() const
Definition: Wasm.h:71
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
std::optional< const char * > toString(const std::optional< DWARFFormValue > &V)
Take an optional DWARFFormValue and try to extract a string value from it.
content_iterator< SectionRef > section_iterator
Definition: ObjectFile.h:47
content_iterator< RelocationRef > relocation_iterator
Definition: ObjectFile.h:77
uint32_t read32le(const void *P)
Definition: Endian.h:425
@ WASM_EXTERNAL_TABLE
Definition: Wasm.h:85
@ WASM_EXTERNAL_FUNCTION
Definition: Wasm.h:84
@ WASM_EXTERNAL_TAG
Definition: Wasm.h:88
@ WASM_EXTERNAL_MEMORY
Definition: Wasm.h:86
@ WASM_EXTERNAL_GLOBAL
Definition: Wasm.h:87
const unsigned WASM_SYMBOL_UNDEFINED
Definition: Wasm.h:236
@ WASM_SEC_CODE
Definition: Wasm.h:45
@ WASM_SEC_MEMORY
Definition: Wasm.h:40
@ WASM_SEC_IMPORT
Definition: Wasm.h:37
@ WASM_SEC_EXPORT
Definition: Wasm.h:42
@ WASM_SEC_DATACOUNT
Definition: Wasm.h:47
@ WASM_SEC_LAST_KNOWN
Definition: Wasm.h:49
@ WASM_SEC_CUSTOM
Definition: Wasm.h:35
@ WASM_SEC_FUNCTION
Definition: Wasm.h:38
@ WASM_SEC_ELEM
Definition: Wasm.h:44
@ WASM_SEC_START
Definition: Wasm.h:43
@ WASM_SEC_TABLE
Definition: Wasm.h:39
@ WASM_SEC_TYPE
Definition: Wasm.h:36
@ WASM_SEC_TAG
Definition: Wasm.h:48
@ WASM_SEC_GLOBAL
Definition: Wasm.h:41
@ WASM_SEC_DATA
Definition: Wasm.h:46
@ WASM_OPCODE_ARRAY_NEW_FIXED
Definition: Wasm.h:123
@ WASM_OPCODE_REF_I31
Definition: Wasm.h:124
@ WASM_OPCODE_ARRAY_NEW_DEFAULT
Definition: Wasm.h:122
@ WASM_OPCODE_STRUCT_NEW
Definition: Wasm.h:119
@ WASM_OPCODE_STRUCT_NEW_DEFAULT
Definition: Wasm.h:120
@ WASM_OPCODE_ARRAY_NEW
Definition: Wasm.h:121
@ WASM_ELEM_SEGMENT_HAS_INIT_EXPRS
Definition: Wasm.h:163
@ WASM_ELEM_SEGMENT_IS_DECLARATIVE
Definition: Wasm.h:161
@ WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER
Definition: Wasm.h:162
@ WASM_ELEM_SEGMENT_IS_PASSIVE
Definition: Wasm.h:160
@ WASM_TYPE_ARRAY
Definition: Wasm.h:74
@ WASM_TYPE_NULLABLE
Definition: Wasm.h:72
@ WASM_TYPE_I64
Definition: Wasm.h:55
@ WASM_TYPE_F64
Definition: Wasm.h:57
@ WASM_TYPE_FUNCREF
Definition: Wasm.h:63
@ WASM_TYPE_REC
Definition: Wasm.h:78
@ WASM_TYPE_EXTERNREF
Definition: Wasm.h:64
@ WASM_TYPE_SUB
Definition: Wasm.h:76
@ WASM_TYPE_FUNC
Definition: Wasm.h:73
@ WASM_TYPE_STRUCT
Definition: Wasm.h:75
@ WASM_TYPE_NONNULLABLE
Definition: Wasm.h:71
@ WASM_TYPE_I32
Definition: Wasm.h:54
@ WASM_TYPE_F32
Definition: Wasm.h:56
@ WASM_TYPE_V128
Definition: Wasm.h:58
@ WASM_TYPE_SUB_FINAL
Definition: Wasm.h:77
@ WASM_TYPE_EXNREF
Definition: Wasm.h:65
const unsigned WASM_SYMBOL_BINDING_GLOBAL
Definition: Wasm.h:231
const unsigned WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND
Definition: Wasm.h:165
const uint32_t WasmMetadataVersion
Definition: Wasm.h:30
const unsigned WASM_SYMBOL_BINDING_WEAK
Definition: Wasm.h:232
const unsigned WASM_SYMBOL_BINDING_LOCAL
Definition: Wasm.h:233
@ WASM_NAMES_LOCAL
Definition: Wasm.h:178
@ WASM_NAMES_DATA_SEGMENT
Definition: Wasm.h:180
@ WASM_NAMES_GLOBAL
Definition: Wasm.h:179
@ WASM_NAMES_FUNCTION
Definition: Wasm.h:177
WasmSymbolType
Definition: Wasm.h:208
@ WASM_SYMBOL_TYPE_GLOBAL
Definition: Wasm.h:211
@ WASM_SYMBOL_TYPE_DATA
Definition: Wasm.h:210
@ WASM_SYMBOL_TYPE_TAG
Definition: Wasm.h:213
@ WASM_SYMBOL_TYPE_TABLE
Definition: Wasm.h:214
@ WASM_SYMBOL_TYPE_SECTION
Definition: Wasm.h:212
@ WASM_SYMBOL_TYPE_FUNCTION
Definition: Wasm.h:209
const uint32_t WasmVersion
Definition: Wasm.h:28
@ WASM_OPCODE_I64_ADD
Definition: Wasm.h:109
@ WASM_OPCODE_I32_SUB
Definition: Wasm.h:107
@ WASM_OPCODE_F64_CONST
Definition: Wasm.h:105
@ WASM_OPCODE_END
Definition: Wasm.h:93
@ WASM_OPCODE_I64_MUL
Definition: Wasm.h:111
@ WASM_OPCODE_REF_NULL
Definition: Wasm.h:112
@ WASM_OPCODE_GC_PREFIX
Definition: Wasm.h:114
@ WASM_OPCODE_REF_FUNC
Definition: Wasm.h:113
@ WASM_OPCODE_F32_CONST
Definition: Wasm.h:104
@ WASM_OPCODE_GLOBAL_GET
Definition: Wasm.h:98
@ WASM_OPCODE_I64_SUB
Definition: Wasm.h:110
@ WASM_OPCODE_I32_MUL
Definition: Wasm.h:108
@ WASM_OPCODE_I32_ADD
Definition: Wasm.h:106
@ WASM_OPCODE_I64_CONST
Definition: Wasm.h:103
@ WASM_OPCODE_I32_CONST
Definition: Wasm.h:102
const unsigned WASM_SYMBOL_BINDING_MASK
Definition: Wasm.h:228
@ WASM_LIMITS_FLAG_HAS_MAX
Definition: Wasm.h:149
@ WASM_LIMITS_FLAG_IS_64
Definition: Wasm.h:151
NameType
Definition: Wasm.h:464
@ WASM_DATA_SEGMENT_IS_PASSIVE
Definition: Wasm.h:155
@ WASM_DATA_SEGMENT_HAS_MEMINDEX
Definition: Wasm.h:156
llvm::StringRef sectionTypeToString(uint32_t type)
Definition: Wasm.cpp:41
@ WASM_COMDAT_SECTION
Definition: Wasm.h:204
@ WASM_COMDAT_FUNCTION
Definition: Wasm.h:202
@ WASM_COMDAT_DATA
Definition: Wasm.h:201
const unsigned WASM_SYMBOL_EXPLICIT_NAME
Definition: Wasm.h:238
@ WASM_FEATURE_PREFIX_USED
Definition: Wasm.h:169
@ WASM_FEATURE_PREFIX_REQUIRED
Definition: Wasm.h:170
@ WASM_FEATURE_PREFIX_DISALLOWED
Definition: Wasm.h:171
const unsigned WASM_SYMBOL_ABSOLUTE
Definition: Wasm.h:241
@ WASM_DYLINK_NEEDED
Definition: Wasm.h:194
@ WASM_DYLINK_MEM_INFO
Definition: Wasm.h:193
@ WASM_DYLINK_EXPORT_INFO
Definition: Wasm.h:195
@ WASM_DYLINK_IMPORT_INFO
Definition: Wasm.h:196
@ WASM_INIT_FUNCS
Definition: Wasm.h:186
@ WASM_COMDAT_INFO
Definition: Wasm.h:187
@ WASM_SEGMENT_INFO
Definition: Wasm.h:185
@ WASM_SYMBOL_TABLE
Definition: Wasm.h:188
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
std::string to_string(const T &Value)
Definition: ScopedPrinter.h:85
uint64_t decodeULEB128(const uint8_t *p, unsigned *n=nullptr, const uint8_t *end=nullptr, const char **error=nullptr)
Utility function to decode a ULEB128 value.
Definition: LEB128.h:131
@ Import
Import information from summary.
int64_t decodeSLEB128(const uint8_t *p, unsigned *n=nullptr, const uint8_t *end=nullptr, const char **error=nullptr)
Utility function to decode a SLEB128 value.
Definition: LEB128.h:165
Error createStringError(std::error_code EC, char const *Fmt, const Ts &... Vals)
Create formatted StringError object.
Definition: Error.h:1286
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
@ Global
Append to llvm.global_dtors.
@ Ref
The access may reference the value stored in memory.
ArrayRef< uint8_t > Content
Definition: Wasm.h:115
std::vector< wasm::WasmRelocation > Relocations
Definition: Wasm.h:116
wasm::WasmDataSegment Data
Definition: Wasm.h:123
uint32_t SectionOffset
Definition: Wasm.h:122
ArrayRef< uint8_t > Content
Definition: Wasm.h:404
WasmInitExpr Offset
Definition: Wasm.h:402
uint32_t MemoryAlignment
Definition: Wasm.h:284
std::vector< StringRef > Needed
Definition: Wasm.h:287
std::vector< WasmDylinkExportInfo > ExportInfo
Definition: Wasm.h:289
std::vector< WasmDylinkImportInfo > ImportInfo
Definition: Wasm.h:288
uint32_t TableAlignment
Definition: Wasm.h:286
WasmInitExpr Offset
Definition: Wasm.h:421
std::vector< uint32_t > Functions
Definition: Wasm.h:422
StringRef Name
Definition: Wasm.h:304
uint32_t Index
Definition: Wasm.h:306
std::optional< StringRef > ExportName
Definition: Wasm.h:391
uint32_t CodeSectionOffset
Definition: Wasm.h:388
uint32_t Offset
Definition: Wasm.h:356
WasmGlobalType Type
Definition: Wasm.h:353
WasmLimits Memory
Definition: Wasm.h:374
StringRef Field
Definition: Wasm.h:368
WasmGlobalType Global
Definition: Wasm.h:372
StringRef Module
Definition: Wasm.h:367
uint32_t SigIndex
Definition: Wasm.h:371
WasmTableType Table
Definition: Wasm.h:373
union llvm::wasm::WasmInitExprMVP::@187 Value
WasmInitExprMVP Inst
Definition: Wasm.h:342
ArrayRef< uint8_t > Body
Definition: Wasm.h:343
std::vector< WasmInitFunc > InitFunctions
Definition: Wasm.h:479
std::vector< StringRef > Comdats
Definition: Wasm.h:480
std::vector< std::pair< std::string, std::string > > SDKs
Definition: Wasm.h:295
std::vector< std::pair< std::string, std::string > > Languages
Definition: Wasm.h:293
std::vector< std::pair< std::string, std::string > > Tools
Definition: Wasm.h:294
SmallVector< ValType, 1 > Returns
Definition: Wasm.h:488
SmallVector< ValType, 4 > Params
Definition: Wasm.h:489
enum llvm::wasm::WasmSignature::@192 Kind
WasmDataReference DataRef
Definition: Wasm.h:460
WasmLimits Limits
Definition: Wasm.h:317
WasmTableType Type
Definition: Wasm.h:322
StringRef SymbolName
Definition: Wasm.h:323
struct llvm::object::DataRefImpl::@368 d