LLVM 20.0.0git
X86SpeculativeExecutionSideEffectSuppression.cpp
Go to the documentation of this file.
1//===-- X86SpeculativeExecutionSideEffectSuppression.cpp ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file contains the X86 implementation of the speculative execution side
11/// effect suppression mitigation.
12///
13/// This must be used with the -mlvi-cfi flag in order to mitigate indirect
14/// branches and returns.
15//===----------------------------------------------------------------------===//
16
17#include "X86.h"
18#include "X86InstrInfo.h"
19#include "X86Subtarget.h"
20#include "llvm/ADT/Statistic.h"
24#include "llvm/Pass.h"
26using namespace llvm;
27
28#define DEBUG_TYPE "x86-seses"
29
30STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
31
33 "x86-seses-enable-without-lvi-cfi",
34 cl::desc("Force enable speculative execution side effect suppression. "
35 "(Note: User must pass -mlvi-cfi in order to mitigate indirect "
36 "branches and returns.)"),
37 cl::init(false), cl::Hidden);
38
40 "x86-seses-one-lfence-per-bb",
42 "Omit all lfences other than the first to be placed in a basic block."),
43 cl::init(false), cl::Hidden);
44
46 "x86-seses-only-lfence-non-const",
47 cl::desc("Only lfence before groups of terminators where at least one "
48 "branch instruction has an input to the addressing mode that is a "
49 "register other than %rip."),
50 cl::init(false), cl::Hidden);
51
52static cl::opt<bool>
53 OmitBranchLFENCEs("x86-seses-omit-branch-lfences",
54 cl::desc("Omit all lfences before branch instructions."),
55 cl::init(false), cl::Hidden);
56
57namespace {
58
59class X86SpeculativeExecutionSideEffectSuppression
60 : public MachineFunctionPass {
61public:
62 X86SpeculativeExecutionSideEffectSuppression() : MachineFunctionPass(ID) {}
63
64 static char ID;
65 StringRef getPassName() const override {
66 return "X86 Speculative Execution Side Effect Suppression";
67 }
68
69 bool runOnMachineFunction(MachineFunction &MF) override;
70};
71} // namespace
72
73char X86SpeculativeExecutionSideEffectSuppression::ID = 0;
74
75// This function returns whether the passed instruction uses a memory addressing
76// mode that is constant. We treat all memory addressing modes that read
77// from a register that is not %rip as non-constant. Note that the use
78// of the EFLAGS register results in an addressing mode being considered
79// non-constant, therefore all JCC instructions will return false from this
80// function since one of their operands will always be the EFLAGS register.
82 for (const MachineOperand &MO : MI.uses())
83 if (MO.isReg() && X86::RIP != MO.getReg())
84 return false;
85 return true;
86}
87
88bool X86SpeculativeExecutionSideEffectSuppression::runOnMachineFunction(
89 MachineFunction &MF) {
90
91 const auto &OptLevel = MF.getTarget().getOptLevel();
92 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
93
94 // Check whether SESES needs to run as the fallback for LVI at O0, whether the
95 // user explicitly passed an SESES flag, or whether the SESES target feature
96 // was set.
98 !(Subtarget.useLVILoadHardening() && OptLevel == CodeGenOptLevel::None) &&
99 !Subtarget.useSpeculativeExecutionSideEffectSuppression())
100 return false;
101
102 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
103 << " **********\n");
104 bool Modified = false;
105 const X86InstrInfo *TII = Subtarget.getInstrInfo();
106 for (MachineBasicBlock &MBB : MF) {
107 MachineInstr *FirstTerminator = nullptr;
108 // Keep track of whether the previous instruction was an LFENCE to avoid
109 // adding redundant LFENCEs.
110 bool PrevInstIsLFENCE = false;
111 for (auto &MI : MBB) {
112
113 if (MI.getOpcode() == X86::LFENCE) {
114 PrevInstIsLFENCE = true;
115 continue;
116 }
117 // We want to put an LFENCE before any instruction that
118 // may load or store. This LFENCE is intended to avoid leaking any secret
119 // data due to a given load or store. This results in closing the cache
120 // and memory timing side channels. We will treat terminators that load
121 // or store separately.
122 if (MI.mayLoadOrStore() && !MI.isTerminator()) {
123 if (!PrevInstIsLFENCE) {
124 BuildMI(MBB, MI, DebugLoc(), TII->get(X86::LFENCE));
125 NumLFENCEsInserted++;
126 Modified = true;
127 }
129 break;
130 }
131 // The following section will be LFENCEing before groups of terminators
132 // that include branches. This will close the branch prediction side
133 // channels since we will prevent code executing after misspeculation as
134 // a result of the LFENCEs placed with this logic.
135
136 // Keep track of the first terminator in a basic block since if we need
137 // to LFENCE the terminators in this basic block we must add the
138 // instruction before the first terminator in the basic block (as
139 // opposed to before the terminator that indicates an LFENCE is
140 // required). An example of why this is necessary is that the
141 // X86InstrInfo::analyzeBranch method assumes all terminators are grouped
142 // together and terminates it's analysis once the first non-termintor
143 // instruction is found.
144 if (MI.isTerminator() && FirstTerminator == nullptr)
145 FirstTerminator = &MI;
146
147 // Look for branch instructions that will require an LFENCE to be put
148 // before this basic block's terminators.
149 if (!MI.isBranch() || OmitBranchLFENCEs) {
150 // This isn't a branch or we're not putting LFENCEs before branches.
151 PrevInstIsLFENCE = false;
152 continue;
153 }
154
156 // This is a branch, but it only has constant addressing mode and we're
157 // not adding LFENCEs before such branches.
158 PrevInstIsLFENCE = false;
159 continue;
160 }
161
162 // This branch requires adding an LFENCE.
163 if (!PrevInstIsLFENCE) {
164 assert(FirstTerminator && "Unknown terminator instruction");
165 BuildMI(MBB, FirstTerminator, DebugLoc(), TII->get(X86::LFENCE));
166 NumLFENCEsInserted++;
167 Modified = true;
168 }
169 break;
170 }
171 }
172
173 return Modified;
174}
175
177 return new X86SpeculativeExecutionSideEffectSuppression();
178}
179
180INITIALIZE_PASS(X86SpeculativeExecutionSideEffectSuppression, "x86-seses",
181 "X86 Speculative Execution Side Effect Suppression", false,
182 false)
MachineBasicBlock & MBB
#define LLVM_DEBUG(...)
Definition: Debug.h:106
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:38
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
static cl::opt< bool > OmitBranchLFENCEs("x86-seses-omit-branch-lfences", cl::desc("Omit all lfences before branch instructions."), cl::init(false), cl::Hidden)
static cl::opt< bool > OnlyLFENCENonConst("x86-seses-only-lfence-non-const", cl::desc("Only lfence before groups of terminators where at least one " "branch instruction has an input to the addressing mode that is a " "register other than %rip."), cl::init(false), cl::Hidden)
static cl::opt< bool > OneLFENCEPerBasicBlock("x86-seses-one-lfence-per-bb", cl::desc("Omit all lfences other than the first to be placed in a basic block."), cl::init(false), cl::Hidden)
static cl::opt< bool > EnableSpeculativeExecutionSideEffectSuppression("x86-seses-enable-without-lvi-cfi", cl::desc("Force enable speculative execution side effect suppression. " "(Note: User must pass -mlvi-cfi in order to mitigate indirect " "branches and returns.)"), cl::init(false), cl::Hidden)
static bool hasConstantAddressingMode(const MachineInstr &MI)
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
const X86InstrInfo * getInstrInfo() const override
Definition: X86Subtarget.h:122
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
FunctionPass * createX86SpeculativeExecutionSideEffectSuppression()
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163