LLVM 20.0.0git
MachineFunction.cpp
Go to the documentation of this file.
1//===- MachineFunction.cpp ------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Collect native machine code information for a function. This allows
10// target-specific information about the generated code to be stored with each
11// function.
12//
13//===----------------------------------------------------------------------===//
14
16#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
43#include "llvm/Config/llvm-config.h"
44#include "llvm/IR/Attributes.h"
45#include "llvm/IR/BasicBlock.h"
46#include "llvm/IR/Constant.h"
47#include "llvm/IR/DataLayout.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/GlobalValue.h"
52#include "llvm/IR/Instruction.h"
54#include "llvm/IR/Metadata.h"
55#include "llvm/IR/Module.h"
57#include "llvm/IR/Value.h"
58#include "llvm/MC/MCContext.h"
59#include "llvm/MC/MCSymbol.h"
60#include "llvm/MC/SectionKind.h"
69#include <algorithm>
70#include <cassert>
71#include <cstddef>
72#include <cstdint>
73#include <iterator>
74#include <string>
75#include <utility>
76#include <vector>
77
79
80using namespace llvm;
81
82#define DEBUG_TYPE "codegen"
83
85 "align-all-functions",
86 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
87 "means align on 16B boundaries)."),
89
92
93 // clang-format off
94 switch(Prop) {
95 case P::FailedISel: return "FailedISel";
96 case P::IsSSA: return "IsSSA";
97 case P::Legalized: return "Legalized";
98 case P::NoPHIs: return "NoPHIs";
99 case P::NoVRegs: return "NoVRegs";
100 case P::RegBankSelected: return "RegBankSelected";
101 case P::Selected: return "Selected";
102 case P::TracksLiveness: return "TracksLiveness";
103 case P::TiedOpsRewritten: return "TiedOpsRewritten";
104 case P::FailsVerification: return "FailsVerification";
105 case P::FailedRegAlloc: return "FailedRegAlloc";
106 case P::TracksDebugUserValues: return "TracksDebugUserValues";
107 }
108 // clang-format on
109 llvm_unreachable("Invalid machine function property");
110}
111
113 if (!F.hasFnAttribute(Attribute::SafeStack))
114 return;
115
116 auto *Existing =
117 dyn_cast_or_null<MDTuple>(F.getMetadata(LLVMContext::MD_annotation));
118
119 if (!Existing || Existing->getNumOperands() != 2)
120 return;
121
122 auto *MetadataName = "unsafe-stack-size";
123 if (auto &N = Existing->getOperand(0)) {
124 if (N.equalsStr(MetadataName)) {
125 if (auto &Op = Existing->getOperand(1)) {
126 auto Val = mdconst::extract<ConstantInt>(Op)->getZExtValue();
127 FrameInfo.setUnsafeStackSize(Val);
128 }
129 }
130 }
131}
132
133// Pin the vtable to this file.
134void MachineFunction::Delegate::anchor() {}
135
137 const char *Separator = "";
138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
139 if (!Properties[I])
140 continue;
141 OS << Separator << getPropertyName(static_cast<Property>(I));
142 Separator = ", ";
143 }
144}
145
146//===----------------------------------------------------------------------===//
147// MachineFunction implementation
148//===----------------------------------------------------------------------===//
149
150// Out-of-line virtual method.
152
155}
156
158 const Function &F) {
159 if (auto MA = F.getFnStackAlign())
160 return *MA;
161 return STI->getFrameLowering()->getStackAlign();
162}
163
165 const TargetSubtargetInfo &STI, MCContext &Ctx,
166 unsigned FunctionNum)
167 : F(F), Target(Target), STI(&STI), Ctx(Ctx) {
168 FunctionNumber = FunctionNum;
169 init();
170}
171
172void MachineFunction::handleInsertion(MachineInstr &MI) {
173 if (TheDelegate)
174 TheDelegate->MF_HandleInsertion(MI);
175}
176
177void MachineFunction::handleRemoval(MachineInstr &MI) {
178 if (TheDelegate)
179 TheDelegate->MF_HandleRemoval(MI);
180}
181
183 const MCInstrDesc &TID) {
184 if (TheDelegate)
185 TheDelegate->MF_HandleChangeDesc(MI, TID);
186}
187
188void MachineFunction::init() {
189 // Assume the function starts in SSA form with correct liveness.
192 if (STI->getRegisterInfo())
193 RegInfo = new (Allocator) MachineRegisterInfo(this);
194 else
195 RegInfo = nullptr;
196
197 MFInfo = nullptr;
198
199 // We can realign the stack if the target supports it and the user hasn't
200 // explicitly asked us not to.
201 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
202 !F.hasFnAttribute("no-realign-stack");
203 bool ForceRealignSP = F.hasFnAttribute(Attribute::StackAlignment) ||
204 F.hasFnAttribute("stackrealign");
205 FrameInfo = new (Allocator) MachineFrameInfo(
206 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
207 /*ForcedRealign=*/ForceRealignSP && CanRealignSP);
208
209 setUnsafeStackSize(F, *FrameInfo);
210
211 if (F.hasFnAttribute(Attribute::StackAlignment))
212 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
213
215 Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
216
217 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
218 // FIXME: Use Function::hasOptSize().
219 if (!F.hasFnAttribute(Attribute::OptimizeForSize))
220 Alignment = std::max(Alignment,
222
223 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
224 // to load a type hash before the function label. Ensure functions are aligned
225 // by a least 4 to avoid unaligned access, which is especially important for
226 // -mno-unaligned-access.
227 if (F.hasMetadata(LLVMContext::MD_func_sanitize) ||
228 F.getMetadata(LLVMContext::MD_kcfi_type))
229 Alignment = std::max(Alignment, Align(4));
230
232 Alignment = Align(1ULL << AlignAllFunctions);
233
234 JumpTableInfo = nullptr;
235
237 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
238 WinEHInfo = new (Allocator) WinEHFuncInfo();
239 }
240
242 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
243 WasmEHInfo = new (Allocator) WasmEHFuncInfo();
244 }
245
246 assert(Target.isCompatibleDataLayout(getDataLayout()) &&
247 "Can't create a MachineFunction using a Module with a "
248 "Target-incompatible DataLayout attached\n");
249
250 PSVManager = std::make_unique<PseudoSourceValueManager>(getTarget());
251}
252
254 const TargetSubtargetInfo &STI) {
255 assert(!MFInfo && "MachineFunctionInfo already set");
256 MFInfo = Target.createMachineFunctionInfo(Allocator, F, &STI);
257}
258
260 clear();
261}
262
263void MachineFunction::clear() {
264 Properties.reset();
265 // Don't call destructors on MachineInstr and MachineOperand. All of their
266 // memory comes from the BumpPtrAllocator which is about to be purged.
267 //
268 // Do call MachineBasicBlock destructors, it contains std::vectors.
269 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
270 I->Insts.clearAndLeakNodesUnsafely();
271 MBBNumbering.clear();
272
273 InstructionRecycler.clear(Allocator);
274 OperandRecycler.clear(Allocator);
275 BasicBlockRecycler.clear(Allocator);
276 CodeViewAnnotations.clear();
278 if (RegInfo) {
279 RegInfo->~MachineRegisterInfo();
280 Allocator.Deallocate(RegInfo);
281 }
282 if (MFInfo) {
283 MFInfo->~MachineFunctionInfo();
284 Allocator.Deallocate(MFInfo);
285 }
286
287 FrameInfo->~MachineFrameInfo();
288 Allocator.Deallocate(FrameInfo);
289
290 ConstantPool->~MachineConstantPool();
291 Allocator.Deallocate(ConstantPool);
292
293 if (JumpTableInfo) {
294 JumpTableInfo->~MachineJumpTableInfo();
295 Allocator.Deallocate(JumpTableInfo);
296 }
297
298 if (WinEHInfo) {
299 WinEHInfo->~WinEHFuncInfo();
300 Allocator.Deallocate(WinEHInfo);
301 }
302
303 if (WasmEHInfo) {
304 WasmEHInfo->~WasmEHFuncInfo();
305 Allocator.Deallocate(WasmEHInfo);
306 }
307}
308
310 return F.getDataLayout();
311}
312
313/// Get the JumpTableInfo for this function.
314/// If it does not already exist, allocate one.
316getOrCreateJumpTableInfo(unsigned EntryKind) {
317 if (JumpTableInfo) return JumpTableInfo;
318
319 JumpTableInfo = new (Allocator)
321 return JumpTableInfo;
322}
323
325 return F.getDenormalMode(FPType);
326}
327
328/// Should we be emitting segmented stack stuff for the function
330 return getFunction().hasFnAttribute("split-stack");
331}
332
333[[nodiscard]] unsigned
335 FrameInstructions.push_back(Inst);
336 return FrameInstructions.size() - 1;
337}
338
339/// This discards all of the MachineBasicBlock numbers and recomputes them.
340/// This guarantees that the MBB numbers are sequential, dense, and match the
341/// ordering of the blocks within the function. If a specific MachineBasicBlock
342/// is specified, only that block and those after it are renumbered.
344 if (empty()) { MBBNumbering.clear(); return; }
346 if (MBB == nullptr)
347 MBBI = begin();
348 else
349 MBBI = MBB->getIterator();
350
351 // Figure out the block number this should have.
352 unsigned BlockNo = 0;
353 if (MBBI != begin())
354 BlockNo = std::prev(MBBI)->getNumber() + 1;
355
356 for (; MBBI != E; ++MBBI, ++BlockNo) {
357 if (MBBI->getNumber() != (int)BlockNo) {
358 // Remove use of the old number.
359 if (MBBI->getNumber() != -1) {
360 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
361 "MBB number mismatch!");
362 MBBNumbering[MBBI->getNumber()] = nullptr;
363 }
364
365 // If BlockNo is already taken, set that block's number to -1.
366 if (MBBNumbering[BlockNo])
367 MBBNumbering[BlockNo]->setNumber(-1);
368
369 MBBNumbering[BlockNo] = &*MBBI;
370 MBBI->setNumber(BlockNo);
371 }
372 }
373
374 // Okay, all the blocks are renumbered. If we have compactified the block
375 // numbering, shrink MBBNumbering now.
376 assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
377 MBBNumbering.resize(BlockNo);
378 MBBNumberingEpoch++;
379}
380
383 const Align FunctionAlignment = getAlignment();
385 /// Offset - Distance from the beginning of the function to the end
386 /// of the basic block.
387 int64_t Offset = 0;
388
389 for (; MBBI != E; ++MBBI) {
390 const Align Alignment = MBBI->getAlignment();
391 int64_t BlockSize = 0;
392
393 for (auto &MI : *MBBI) {
394 BlockSize += TII.getInstSizeInBytes(MI);
395 }
396
397 int64_t OffsetBB;
398 if (Alignment <= FunctionAlignment) {
399 OffsetBB = alignTo(Offset, Alignment);
400 } else {
401 // The alignment of this MBB is larger than the function's alignment, so
402 // we can't tell whether or not it will insert nops. Assume that it will.
403 OffsetBB = alignTo(Offset, Alignment) + Alignment.value() -
404 FunctionAlignment.value();
405 }
406 Offset = OffsetBB + BlockSize;
407 }
408
409 return Offset;
410}
411
412/// This method iterates over the basic blocks and assigns their IsBeginSection
413/// and IsEndSection fields. This must be called after MBB layout is finalized
414/// and the SectionID's are assigned to MBBs.
417 auto CurrentSectionID = front().getSectionID();
418 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
419 if (MBBI->getSectionID() == CurrentSectionID)
420 continue;
422 std::prev(MBBI)->setIsEndSection();
423 CurrentSectionID = MBBI->getSectionID();
424 }
426}
427
428/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
430 DebugLoc DL,
431 bool NoImplicit) {
432 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
433 MachineInstr(*this, MCID, std::move(DL), NoImplicit);
434}
435
436/// Create a new MachineInstr which is a copy of the 'Orig' instruction,
437/// identical in all ways except the instruction has no parent, prev, or next.
440 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
441 MachineInstr(*this, *Orig);
442}
443
446 const MachineInstr &Orig) {
447 MachineInstr *FirstClone = nullptr;
449 while (true) {
450 MachineInstr *Cloned = CloneMachineInstr(&*I);
451 MBB.insert(InsertBefore, Cloned);
452 if (FirstClone == nullptr) {
453 FirstClone = Cloned;
454 } else {
455 Cloned->bundleWithPred();
456 }
457
458 if (!I->isBundledWithSucc())
459 break;
460 ++I;
461 }
462 // Copy over call info to the cloned instruction if needed. If Orig is in
463 // a bundle, copyAdditionalCallInfo takes care of finding the call instruction
464 // in the bundle.
466 copyAdditionalCallInfo(&Orig, FirstClone);
467 return *FirstClone;
468}
469
470/// Delete the given MachineInstr.
471///
472/// This function also serves as the MachineInstr destructor - the real
473/// ~MachineInstr() destructor must be empty.
475 // Verify that a call site info is at valid state. This assertion should
476 // be triggered during the implementation of support for the
477 // call site info of a new architecture. If the assertion is triggered,
478 // back trace will tell where to insert a call to updateCallSiteInfo().
479 assert((!MI->isCandidateForAdditionalCallInfo() ||
480 !CallSitesInfo.contains(MI)) &&
481 "Call site info was not updated!");
482 // Verify that the "called globals" info is in a valid state.
483 assert((!MI->isCandidateForAdditionalCallInfo() ||
484 !CalledGlobalsInfo.contains(MI)) &&
485 "Called globals info was not updated!");
486 // Strip it for parts. The operand array and the MI object itself are
487 // independently recyclable.
488 if (MI->Operands)
489 deallocateOperandArray(MI->CapOperands, MI->Operands);
490 // Don't call ~MachineInstr() which must be trivial anyway because
491 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
492 // destructors.
493 InstructionRecycler.Deallocate(Allocator, MI);
494}
495
496/// Allocate a new MachineBasicBlock. Use this instead of
497/// `new MachineBasicBlock'.
500 std::optional<UniqueBBID> BBID) {
502 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
503 MachineBasicBlock(*this, BB);
504 // Set BBID for `-basic-block-sections=list` and `-basic-block-address-map` to
505 // allow robust mapping of profiles to basic blocks.
506 if (Target.Options.BBAddrMap ||
507 Target.getBBSectionsType() == BasicBlockSection::List)
508 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{NextBBID++, 0});
509 return MBB;
510}
511
512/// Delete the given MachineBasicBlock.
514 assert(MBB->getParent() == this && "MBB parent mismatch!");
515 // Clean up any references to MBB in jump tables before deleting it.
516 if (JumpTableInfo)
517 JumpTableInfo->RemoveMBBFromJumpTables(MBB);
518 MBB->~MachineBasicBlock();
519 BasicBlockRecycler.Deallocate(Allocator, MBB);
520}
521
524 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
525 SyncScope::ID SSID, AtomicOrdering Ordering,
526 AtomicOrdering FailureOrdering) {
527 assert((!Size.hasValue() ||
528 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
529 "Unexpected an unknown size to be represented using "
530 "LocationSize::beforeOrAfter()");
531 return new (Allocator)
532 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID,
533 Ordering, FailureOrdering);
534}
535
538 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
539 SyncScope::ID SSID, AtomicOrdering Ordering,
540 AtomicOrdering FailureOrdering) {
541 return new (Allocator)
542 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
543 Ordering, FailureOrdering);
544}
545
548 const MachinePointerInfo &PtrInfo,
550 assert((!Size.hasValue() ||
551 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
552 "Unexpected an unknown size to be represented using "
553 "LocationSize::beforeOrAfter()");
554 return new (Allocator)
555 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
556 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
558}
559
561 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
562 return new (Allocator)
563 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
564 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
566}
567
570 int64_t Offset, LLT Ty) {
571 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
572
573 // If there is no pointer value, the offset isn't tracked so we need to adjust
574 // the base alignment.
575 Align Alignment = PtrInfo.V.isNull()
577 : MMO->getBaseAlign();
578
579 // Do not preserve ranges, since we don't necessarily know what the high bits
580 // are anymore.
581 return new (Allocator) MachineMemOperand(
582 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
583 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
585}
586
589 const AAMDNodes &AAInfo) {
590 MachinePointerInfo MPI = MMO->getValue() ?
591 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
593
594 return new (Allocator) MachineMemOperand(
595 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
596 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
597 MMO->getFailureOrdering());
598}
599
603 return new (Allocator) MachineMemOperand(
604 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
605 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
607}
608
609MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
610 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
611 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
612 uint32_t CFIType, MDNode *MMRAs) {
613 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
614 PostInstrSymbol, HeapAllocMarker,
615 PCSections, CFIType, MMRAs);
616}
617
619 char *Dest = Allocator.Allocate<char>(Name.size() + 1);
620 llvm::copy(Name, Dest);
621 Dest[Name.size()] = 0;
622 return Dest;
623}
624
626 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
627 unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
628 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
629 memset(Mask, 0, Size * sizeof(Mask[0]));
630 return Mask;
631}
632
634 int* AllocMask = Allocator.Allocate<int>(Mask.size());
635 copy(Mask, AllocMask);
636 return {AllocMask, Mask.size()};
637}
638
639#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
641 print(dbgs());
642}
643#endif
644
646 return getFunction().getName();
647}
648
649void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
650 OS << "# Machine code for function " << getName() << ": ";
652 OS << '\n';
653
654 // Print Frame Information
655 FrameInfo->print(*this, OS);
656
657 // Print JumpTable Information
658 if (JumpTableInfo)
659 JumpTableInfo->print(OS);
660
661 // Print Constant Pool
662 ConstantPool->print(OS);
663
665
666 if (RegInfo && !RegInfo->livein_empty()) {
667 OS << "Function Live Ins: ";
669 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
670 OS << printReg(I->first, TRI);
671 if (I->second)
672 OS << " in " << printReg(I->second, TRI);
673 if (std::next(I) != E)
674 OS << ", ";
675 }
676 OS << '\n';
677 }
678
681 for (const auto &BB : *this) {
682 OS << '\n';
683 // If we print the whole function, print it at its most verbose level.
684 BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
685 }
686
687 OS << "\n# End machine code for function " << getName() << ".\n\n";
688}
689
690/// True if this function needs frame moves for debug or exceptions.
692 // TODO: Ideally, what we'd like is to have a switch that allows emitting
693 // synchronous (precise at call-sites only) CFA into .eh_frame. However, even
694 // under this switch, we'd like .debug_frame to be precise when using -g. At
695 // this moment, there's no way to specify that some CFI directives go into
696 // .eh_frame only, while others go into .debug_frame only.
699 !F.getParent()->debug_compile_units().empty();
700}
701
702namespace llvm {
703
704 template<>
707
708 static std::string getGraphName(const MachineFunction *F) {
709 return ("CFG for '" + F->getName() + "' function").str();
710 }
711
712 std::string getNodeLabel(const MachineBasicBlock *Node,
713 const MachineFunction *Graph) {
714 std::string OutStr;
715 {
716 raw_string_ostream OSS(OutStr);
717
718 if (isSimple()) {
719 OSS << printMBBReference(*Node);
720 if (const BasicBlock *BB = Node->getBasicBlock())
721 OSS << ": " << BB->getName();
722 } else
723 Node->print(OSS);
724 }
725
726 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
727
728 // Process string output to make it nicer...
729 for (unsigned i = 0; i != OutStr.length(); ++i)
730 if (OutStr[i] == '\n') { // Left justify
731 OutStr[i] = '\\';
732 OutStr.insert(OutStr.begin()+i+1, 'l');
733 }
734 return OutStr;
735 }
736 };
737
738} // end namespace llvm
739
741{
742#ifndef NDEBUG
743 ViewGraph(this, "mf" + getName());
744#else
745 errs() << "MachineFunction::viewCFG is only available in debug builds on "
746 << "systems with Graphviz or gv!\n";
747#endif // NDEBUG
748}
749
751{
752#ifndef NDEBUG
753 ViewGraph(this, "mf" + getName(), true);
754#else
755 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
756 << "systems with Graphviz or gv!\n";
757#endif // NDEBUG
758}
759
760/// Add the specified physical register as a live-in value and
761/// create a corresponding virtual register for it.
763 const TargetRegisterClass *RC) {
765 Register VReg = MRI.getLiveInVirtReg(PReg);
766 if (VReg) {
767 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
768 (void)VRegRC;
769 // A physical register can be added several times.
770 // Between two calls, the register class of the related virtual register
771 // may have been constrained to match some operation constraints.
772 // In that case, check that the current register class includes the
773 // physical register and is a sub class of the specified RC.
774 assert((VRegRC == RC || (VRegRC->contains(PReg) &&
775 RC->hasSubClassEq(VRegRC))) &&
776 "Register class mismatch!");
777 return VReg;
778 }
779 VReg = MRI.createVirtualRegister(RC);
780 MRI.addLiveIn(PReg, VReg);
781 return VReg;
782}
783
784/// Return the MCSymbol for the specified non-empty jump table.
785/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
786/// normal 'L' label is returned.
788 bool isLinkerPrivate) const {
789 const DataLayout &DL = getDataLayout();
790 assert(JumpTableInfo && "No jump tables");
791 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
792
793 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
794 : DL.getPrivateGlobalPrefix();
797 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
798 return Ctx.getOrCreateSymbol(Name);
799}
800
801/// Return a function-local symbol to represent the PIC base.
803 const DataLayout &DL = getDataLayout();
804 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
805 Twine(getFunctionNumber()) + "$pb");
806}
807
808/// \name Exception Handling
809/// \{
810
813 unsigned N = LandingPads.size();
814 for (unsigned i = 0; i < N; ++i) {
815 LandingPadInfo &LP = LandingPads[i];
816 if (LP.LandingPadBlock == LandingPad)
817 return LP;
818 }
819
820 LandingPads.push_back(LandingPadInfo(LandingPad));
821 return LandingPads[N];
822}
823
825 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
827 LP.BeginLabels.push_back(BeginLabel);
828 LP.EndLabels.push_back(EndLabel);
829}
830
832 MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
834 LP.LandingPadLabel = LandingPadLabel;
835
836 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
837 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
838 // If there's no typeid list specified, then "cleanup" is implicit.
839 // Otherwise, id 0 is reserved for the cleanup action.
840 if (LPI->isCleanup() && LPI->getNumClauses() != 0)
841 LP.TypeIds.push_back(0);
842
843 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
844 // correct, but we need to do it this way because of how the DWARF EH
845 // emitter processes the clauses.
846 for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
847 Value *Val = LPI->getClause(I - 1);
848 if (LPI->isCatch(I - 1)) {
849 LP.TypeIds.push_back(
850 getTypeIDFor(dyn_cast<GlobalValue>(Val->stripPointerCasts())));
851 } else {
852 // Add filters in a list.
853 auto *CVal = cast<Constant>(Val);
854 SmallVector<unsigned, 4> FilterList;
855 for (const Use &U : CVal->operands())
856 FilterList.push_back(
857 getTypeIDFor(cast<GlobalValue>(U->stripPointerCasts())));
858
859 LP.TypeIds.push_back(getFilterIDFor(FilterList));
860 }
861 }
862
863 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
864 for (unsigned I = CPI->arg_size(); I != 0; --I) {
865 auto *TypeInfo =
866 dyn_cast<GlobalValue>(CPI->getArgOperand(I - 1)->stripPointerCasts());
867 LP.TypeIds.push_back(getTypeIDFor(TypeInfo));
868 }
869
870 } else {
871 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
872 }
873
874 return LandingPadLabel;
875}
876
878 ArrayRef<unsigned> Sites) {
879 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
880}
881
883 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
884 if (TypeInfos[i] == TI) return i + 1;
885
886 TypeInfos.push_back(TI);
887 return TypeInfos.size();
888}
889
891 // If the new filter coincides with the tail of an existing filter, then
892 // re-use the existing filter. Folding filters more than this requires
893 // re-ordering filters and/or their elements - probably not worth it.
894 for (unsigned i : FilterEnds) {
895 unsigned j = TyIds.size();
896
897 while (i && j)
898 if (FilterIds[--i] != TyIds[--j])
899 goto try_next;
900
901 if (!j)
902 // The new filter coincides with range [i, end) of the existing filter.
903 return -(1 + i);
904
905try_next:;
906 }
907
908 // Add the new filter.
909 int FilterID = -(1 + FilterIds.size());
910 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
911 llvm::append_range(FilterIds, TyIds);
912 FilterEnds.push_back(FilterIds.size());
913 FilterIds.push_back(0); // terminator
914 return FilterID;
915}
916
918MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
919 assert(MI->isCandidateForAdditionalCallInfo() &&
920 "Call site info refers only to call (MI) candidates");
921
922 if (!Target.Options.EmitCallSiteInfo)
923 return CallSitesInfo.end();
924 return CallSitesInfo.find(MI);
925}
926
927/// Return the call machine instruction or find a call within bundle.
929 if (!MI->isBundle())
930 return MI;
931
932 for (const auto &BMI : make_range(getBundleStart(MI->getIterator()),
933 getBundleEnd(MI->getIterator())))
934 if (BMI.isCandidateForAdditionalCallInfo())
935 return &BMI;
936
937 llvm_unreachable("Unexpected bundle without a call site candidate");
938}
939
941 assert(MI->shouldUpdateAdditionalCallInfo() &&
942 "Call info refers only to call (MI) candidates or "
943 "candidates inside bundles");
944
945 const MachineInstr *CallMI = getCallInstr(MI);
946
947 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
948 if (CSIt != CallSitesInfo.end())
949 CallSitesInfo.erase(CSIt);
950
951 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(CallMI);
952 if (CGIt != CalledGlobalsInfo.end())
953 CalledGlobalsInfo.erase(CGIt);
954}
955
957 const MachineInstr *New) {
959 "Call info refers only to call (MI) candidates or "
960 "candidates inside bundles");
961
962 if (!New->isCandidateForAdditionalCallInfo())
963 return eraseAdditionalCallInfo(Old);
964
965 const MachineInstr *OldCallMI = getCallInstr(Old);
966 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
967 if (CSIt != CallSitesInfo.end()) {
968 CallSiteInfo CSInfo = CSIt->second;
969 CallSitesInfo[New] = CSInfo;
970 }
971
972 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(OldCallMI);
973 if (CGIt != CalledGlobalsInfo.end()) {
974 CalledGlobalInfo CGInfo = CGIt->second;
975 CalledGlobalsInfo[New] = CGInfo;
976 }
977}
978
980 const MachineInstr *New) {
982 "Call info refers only to call (MI) candidates or "
983 "candidates inside bundles");
984
985 if (!New->isCandidateForAdditionalCallInfo())
986 return eraseAdditionalCallInfo(Old);
987
988 const MachineInstr *OldCallMI = getCallInstr(Old);
989 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
990 if (CSIt != CallSitesInfo.end()) {
991 CallSiteInfo CSInfo = std::move(CSIt->second);
992 CallSitesInfo.erase(CSIt);
993 CallSitesInfo[New] = CSInfo;
994 }
995
996 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(OldCallMI);
997 if (CGIt != CalledGlobalsInfo.end()) {
998 CalledGlobalInfo CGInfo = std::move(CGIt->second);
999 CalledGlobalsInfo.erase(CGIt);
1000 CalledGlobalsInfo[New] = CGInfo;
1001 }
1002}
1003
1006}
1007
1010 unsigned Subreg) {
1011 // Catch any accidental self-loops.
1012 assert(A.first != B.first);
1013 // Don't allow any substitutions _from_ the memory operand number.
1014 assert(A.second != DebugOperandMemNumber);
1015
1016 DebugValueSubstitutions.push_back({A, B, Subreg});
1017}
1018
1020 MachineInstr &New,
1021 unsigned MaxOperand) {
1022 // If the Old instruction wasn't tracked at all, there is no work to do.
1023 unsigned OldInstrNum = Old.peekDebugInstrNum();
1024 if (!OldInstrNum)
1025 return;
1026
1027 // Iterate over all operands looking for defs to create substitutions for.
1028 // Avoid creating new instr numbers unless we create a new substitution.
1029 // While this has no functional effect, it risks confusing someone reading
1030 // MIR output.
1031 // Examine all the operands, or the first N specified by the caller.
1032 MaxOperand = std::min(MaxOperand, Old.getNumOperands());
1033 for (unsigned int I = 0; I < MaxOperand; ++I) {
1034 const auto &OldMO = Old.getOperand(I);
1035 auto &NewMO = New.getOperand(I);
1036 (void)NewMO;
1037
1038 if (!OldMO.isReg() || !OldMO.isDef())
1039 continue;
1040 assert(NewMO.isDef());
1041
1042 unsigned NewInstrNum = New.getDebugInstrNum();
1043 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
1044 std::make_pair(NewInstrNum, I));
1045 }
1046}
1047
1051 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1052
1053 // Check whether this copy-like instruction has already been salvaged into
1054 // an operand pair.
1055 Register Dest;
1056 if (auto CopyDstSrc = TII.isCopyInstr(MI)) {
1057 Dest = CopyDstSrc->Destination->getReg();
1058 } else {
1059 assert(MI.isSubregToReg());
1060 Dest = MI.getOperand(0).getReg();
1061 }
1062
1063 auto CacheIt = DbgPHICache.find(Dest);
1064 if (CacheIt != DbgPHICache.end())
1065 return CacheIt->second;
1066
1067 // Calculate the instruction number to use, or install a DBG_PHI.
1068 auto OperandPair = salvageCopySSAImpl(MI);
1069 DbgPHICache.insert({Dest, OperandPair});
1070 return OperandPair;
1071}
1072
1075 MachineRegisterInfo &MRI = getRegInfo();
1076 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1077 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1078
1079 // Chase the value read by a copy-like instruction back to the instruction
1080 // that ultimately _defines_ that value. This may pass:
1081 // * Through multiple intermediate copies, including subregister moves /
1082 // copies,
1083 // * Copies from physical registers that must then be traced back to the
1084 // defining instruction,
1085 // * Or, physical registers may be live-in to (only) the entry block, which
1086 // requires a DBG_PHI to be created.
1087 // We can pursue this problem in that order: trace back through copies,
1088 // optionally through a physical register, to a defining instruction. We
1089 // should never move from physreg to vreg. As we're still in SSA form, no need
1090 // to worry about partial definitions of registers.
1091
1092 // Helper lambda to interpret a copy-like instruction. Takes instruction,
1093 // returns the register read and any subregister identifying which part is
1094 // read.
1095 auto GetRegAndSubreg =
1096 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1097 Register NewReg, OldReg;
1098 unsigned SubReg;
1099 if (Cpy.isCopy()) {
1100 OldReg = Cpy.getOperand(0).getReg();
1101 NewReg = Cpy.getOperand(1).getReg();
1102 SubReg = Cpy.getOperand(1).getSubReg();
1103 } else if (Cpy.isSubregToReg()) {
1104 OldReg = Cpy.getOperand(0).getReg();
1105 NewReg = Cpy.getOperand(2).getReg();
1106 SubReg = Cpy.getOperand(3).getImm();
1107 } else {
1108 auto CopyDetails = *TII.isCopyInstr(Cpy);
1109 const MachineOperand &Src = *CopyDetails.Source;
1110 const MachineOperand &Dest = *CopyDetails.Destination;
1111 OldReg = Dest.getReg();
1112 NewReg = Src.getReg();
1113 SubReg = Src.getSubReg();
1114 }
1115
1116 return {NewReg, SubReg};
1117 };
1118
1119 // First seek either the defining instruction, or a copy from a physreg.
1120 // During search, the current state is the current copy instruction, and which
1121 // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1122 // deal with those later.
1123 auto State = GetRegAndSubreg(MI);
1124 auto CurInst = MI.getIterator();
1125 SmallVector<unsigned, 4> SubregsSeen;
1126 while (true) {
1127 // If we've found a copy from a physreg, first portion of search is over.
1128 if (!State.first.isVirtual())
1129 break;
1130
1131 // Record any subregister qualifier.
1132 if (State.second)
1133 SubregsSeen.push_back(State.second);
1134
1135 assert(MRI.hasOneDef(State.first));
1136 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1137 CurInst = Inst.getIterator();
1138
1139 // Any non-copy instruction is the defining instruction we're seeking.
1140 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1141 break;
1142 State = GetRegAndSubreg(Inst);
1143 };
1144
1145 // Helper lambda to apply additional subregister substitutions to a known
1146 // instruction/operand pair. Adds new (fake) substitutions so that we can
1147 // record the subregister. FIXME: this isn't very space efficient if multiple
1148 // values are tracked back through the same copies; cache something later.
1149 auto ApplySubregisters =
1151 for (unsigned Subreg : reverse(SubregsSeen)) {
1152 // Fetch a new instruction number, not attached to an actual instruction.
1153 unsigned NewInstrNumber = getNewDebugInstrNum();
1154 // Add a substitution from the "new" number to the known one, with a
1155 // qualifying subreg.
1156 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1157 // Return the new number; to find the underlying value, consumers need to
1158 // deal with the qualifying subreg.
1159 P = {NewInstrNumber, 0};
1160 }
1161 return P;
1162 };
1163
1164 // If we managed to find the defining instruction after COPYs, return an
1165 // instruction / operand pair after adding subregister qualifiers.
1166 if (State.first.isVirtual()) {
1167 // Virtual register def -- we can just look up where this happens.
1168 MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1169 for (auto &MO : Inst->all_defs()) {
1170 if (MO.getReg() != State.first)
1171 continue;
1172 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1173 }
1174
1175 llvm_unreachable("Vreg def with no corresponding operand?");
1176 }
1177
1178 // Our search ended in a copy from a physreg: walk back up the function
1179 // looking for whatever defines the physreg.
1180 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1181 State = GetRegAndSubreg(*CurInst);
1182 Register RegToSeek = State.first;
1183
1184 auto RMII = CurInst->getReverseIterator();
1185 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1186 for (auto &ToExamine : PrevInstrs) {
1187 for (auto &MO : ToExamine.all_defs()) {
1188 // Test for operand that defines something aliasing RegToSeek.
1189 if (!TRI.regsOverlap(RegToSeek, MO.getReg()))
1190 continue;
1191
1192 return ApplySubregisters(
1193 {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1194 }
1195 }
1196
1197 MachineBasicBlock &InsertBB = *CurInst->getParent();
1198
1199 // We reached the start of the block before finding a defining instruction.
1200 // There are numerous scenarios where this can happen:
1201 // * Constant physical registers,
1202 // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1203 // * Arguments in the entry block,
1204 // * Exception handling landing pads.
1205 // Validating all of them is too difficult, so just insert a DBG_PHI reading
1206 // the variable value at this position, rather than checking it makes sense.
1207
1208 // Create DBG_PHI for specified physreg.
1209 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1210 TII.get(TargetOpcode::DBG_PHI));
1211 Builder.addReg(State.first);
1212 unsigned NewNum = getNewDebugInstrNum();
1213 Builder.addImm(NewNum);
1214 return ApplySubregisters({NewNum, 0u});
1215}
1216
1218 auto *TII = getSubtarget().getInstrInfo();
1219
1220 auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1221 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE_LIST);
1222 MI.setDesc(RefII);
1223 MI.setDebugValueUndef();
1224 };
1225
1227 for (auto &MBB : *this) {
1228 for (auto &MI : MBB) {
1229 if (!MI.isDebugRef())
1230 continue;
1231
1232 bool IsValidRef = true;
1233
1234 for (MachineOperand &MO : MI.debug_operands()) {
1235 if (!MO.isReg())
1236 continue;
1237
1238 Register Reg = MO.getReg();
1239
1240 // Some vregs can be deleted as redundant in the meantime. Mark those
1241 // as DBG_VALUE $noreg. Additionally, some normal instructions are
1242 // quickly deleted, leaving dangling references to vregs with no def.
1243 if (Reg == 0 || !RegInfo->hasOneDef(Reg)) {
1244 IsValidRef = false;
1245 break;
1246 }
1247
1248 assert(Reg.isVirtual());
1249 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1250
1251 // If we've found a copy-like instruction, follow it back to the
1252 // instruction that defines the source value, see salvageCopySSA docs
1253 // for why this is important.
1254 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1255 auto Result = salvageCopySSA(DefMI, ArgDbgPHIs);
1256 MO.ChangeToDbgInstrRef(Result.first, Result.second);
1257 } else {
1258 // Otherwise, identify the operand number that the VReg refers to.
1259 unsigned OperandIdx = 0;
1260 for (const auto &DefMO : DefMI.operands()) {
1261 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1262 break;
1263 ++OperandIdx;
1264 }
1265 assert(OperandIdx < DefMI.getNumOperands());
1266
1267 // Morph this instr ref to point at the given instruction and operand.
1268 unsigned ID = DefMI.getDebugInstrNum();
1269 MO.ChangeToDbgInstrRef(ID, OperandIdx);
1270 }
1271 }
1272
1273 if (!IsValidRef)
1274 MakeUndefDbgValue(MI);
1275 }
1276 }
1277}
1278
1280 // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1281 // have optimized code inlined into this unoptimized code, however with
1282 // fewer and less aggressive optimizations happening, coverage and accuracy
1283 // should not suffer.
1284 if (getTarget().getOptLevel() == CodeGenOptLevel::None)
1285 return false;
1286
1287 // Don't use instr-ref if this function is marked optnone.
1288 if (F.hasFnAttribute(Attribute::OptimizeNone))
1289 return false;
1290
1291 if (llvm::debuginfoShouldUseDebugInstrRef(getTarget().getTargetTriple()))
1292 return true;
1293
1294 return false;
1295}
1296
1298 return UseDebugInstrRef;
1299}
1300
1303}
1304
1305// Use one million as a high / reserved number.
1306const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1307
1308/// \}
1309
1310//===----------------------------------------------------------------------===//
1311// MachineJumpTableInfo implementation
1312//===----------------------------------------------------------------------===//
1313
1314/// Return the size of each entry in the jump table.
1316 // The size of a jump table entry is 4 bytes unless the entry is just the
1317 // address of a block, in which case it is the pointer size.
1318 switch (getEntryKind()) {
1320 return TD.getPointerSize();
1323 return 8;
1327 return 4;
1329 return 0;
1330 }
1331 llvm_unreachable("Unknown jump table encoding!");
1332}
1333
1334/// Return the alignment of each entry in the jump table.
1336 // The alignment of a jump table entry is the alignment of int32 unless the
1337 // entry is just the address of a block, in which case it is the pointer
1338 // alignment.
1339 switch (getEntryKind()) {
1341 return TD.getPointerABIAlignment(0).value();
1344 return TD.getABIIntegerTypeAlignment(64).value();
1348 return TD.getABIIntegerTypeAlignment(32).value();
1350 return 1;
1351 }
1352 llvm_unreachable("Unknown jump table encoding!");
1353}
1354
1355/// Create a new jump table entry in the jump table info.
1357 const std::vector<MachineBasicBlock*> &DestBBs) {
1358 assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1359 JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1360 return JumpTables.size()-1;
1361}
1362
1363/// If Old is the target of any jump tables, update the jump tables to branch
1364/// to New instead.
1366 MachineBasicBlock *New) {
1367 assert(Old != New && "Not making a change?");
1368 bool MadeChange = false;
1369 for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1370 ReplaceMBBInJumpTable(i, Old, New);
1371 return MadeChange;
1372}
1373
1374/// If MBB is present in any jump tables, remove it.
1376 bool MadeChange = false;
1377 for (MachineJumpTableEntry &JTE : JumpTables) {
1378 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1379 MadeChange |= (removeBeginItr != JTE.MBBs.end());
1380 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1381 }
1382 return MadeChange;
1383}
1384
1385/// If Old is a target of the jump tables, update the jump table to branch to
1386/// New instead.
1388 MachineBasicBlock *Old,
1389 MachineBasicBlock *New) {
1390 assert(Old != New && "Not making a change?");
1391 bool MadeChange = false;
1392 MachineJumpTableEntry &JTE = JumpTables[Idx];
1393 for (MachineBasicBlock *&MBB : JTE.MBBs)
1394 if (MBB == Old) {
1395 MBB = New;
1396 MadeChange = true;
1397 }
1398 return MadeChange;
1399}
1400
1402 if (JumpTables.empty()) return;
1403
1404 OS << "Jump Tables:\n";
1405
1406 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1407 OS << printJumpTableEntryReference(i) << ':';
1408 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1409 OS << ' ' << printMBBReference(*MBB);
1410 if (i != e)
1411 OS << '\n';
1412 }
1413
1414 OS << '\n';
1415}
1416
1417#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1419#endif
1420
1422 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1423}
1424
1425//===----------------------------------------------------------------------===//
1426// MachineConstantPool implementation
1427//===----------------------------------------------------------------------===//
1428
1429void MachineConstantPoolValue::anchor() {}
1430
1432 return DL.getTypeAllocSize(Ty);
1433}
1434
1437 return Val.MachineCPVal->getSizeInBytes(DL);
1438 return DL.getTypeAllocSize(Val.ConstVal->getType());
1439}
1440
1443 return true;
1444 return Val.ConstVal->needsDynamicRelocation();
1445}
1446
1449 if (needsRelocation())
1451 switch (getSizeInBytes(*DL)) {
1452 case 4:
1454 case 8:
1456 case 16:
1458 case 32:
1460 default:
1461 return SectionKind::getReadOnly();
1462 }
1463}
1464
1466 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1467 // so keep track of which we've deleted to avoid double deletions.
1469 for (const MachineConstantPoolEntry &C : Constants)
1470 if (C.isMachineConstantPoolEntry()) {
1471 Deleted.insert(C.Val.MachineCPVal);
1472 delete C.Val.MachineCPVal;
1473 }
1474 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1475 if (Deleted.count(CPV) == 0)
1476 delete CPV;
1477 }
1478}
1479
1480/// Test whether the given two constants can be allocated the same constant pool
1481/// entry referenced by \param A.
1482static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1483 const DataLayout &DL) {
1484 // Handle the trivial case quickly.
1485 if (A == B) return true;
1486
1487 // If they have the same type but weren't the same constant, quickly
1488 // reject them.
1489 if (A->getType() == B->getType()) return false;
1490
1491 // We can't handle structs or arrays.
1492 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1493 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1494 return false;
1495
1496 // For now, only support constants with the same size.
1497 uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1498 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1499 return false;
1500
1501 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1502
1503 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1504
1505 // Try constant folding a bitcast of both instructions to an integer. If we
1506 // get two identical ConstantInt's, then we are good to share them. We use
1507 // the constant folding APIs to do this so that we get the benefit of
1508 // DataLayout.
1509 if (isa<PointerType>(A->getType()))
1510 A = ConstantFoldCastOperand(Instruction::PtrToInt,
1511 const_cast<Constant *>(A), IntTy, DL);
1512 else if (A->getType() != IntTy)
1513 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1514 IntTy, DL);
1515 if (isa<PointerType>(B->getType()))
1516 B = ConstantFoldCastOperand(Instruction::PtrToInt,
1517 const_cast<Constant *>(B), IntTy, DL);
1518 else if (B->getType() != IntTy)
1519 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1520 IntTy, DL);
1521
1522 if (A != B)
1523 return false;
1524
1525 // Constants only safely match if A doesn't contain undef/poison.
1526 // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1527 // TODO: Handle cases where A and B have the same undef/poison elements.
1528 // TODO: Merge A and B with mismatching undef/poison elements.
1529 return !ContainsUndefOrPoisonA;
1530}
1531
1532/// Create a new entry in the constant pool or return an existing one.
1533/// User must specify the log2 of the minimum required alignment for the object.
1535 Align Alignment) {
1536 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1537
1538 // Check to see if we already have this constant.
1539 //
1540 // FIXME, this could be made much more efficient for large constant pools.
1541 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1542 if (!Constants[i].isMachineConstantPoolEntry() &&
1543 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1544 if (Constants[i].getAlign() < Alignment)
1545 Constants[i].Alignment = Alignment;
1546 return i;
1547 }
1548
1549 Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1550 return Constants.size()-1;
1551}
1552
1554 Align Alignment) {
1555 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1556
1557 // Check to see if we already have this constant.
1558 //
1559 // FIXME, this could be made much more efficient for large constant pools.
1560 int Idx = V->getExistingMachineCPValue(this, Alignment);
1561 if (Idx != -1) {
1562 MachineCPVsSharingEntries.insert(V);
1563 return (unsigned)Idx;
1564 }
1565
1566 Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1567 return Constants.size()-1;
1568}
1569
1571 if (Constants.empty()) return;
1572
1573 OS << "Constant Pool:\n";
1574 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1575 OS << " cp#" << i << ": ";
1576 if (Constants[i].isMachineConstantPoolEntry())
1577 Constants[i].Val.MachineCPVal->print(OS);
1578 else
1579 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1580 OS << ", align=" << Constants[i].getAlign().value();
1581 OS << "\n";
1582 }
1583}
1584
1585//===----------------------------------------------------------------------===//
1586// Template specialization for MachineFunction implementation of
1587// ProfileSummaryInfo::getEntryCount().
1588//===----------------------------------------------------------------------===//
1589template <>
1590std::optional<Function::ProfileCount>
1591ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1592 const llvm::MachineFunction *F) const {
1593 return F->getFunction().getEntryCount();
1594}
1595
1596#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1598#endif
unsigned SubReg
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder MachineInstrBuilder & DefMI
aarch64 promote const
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
This file implements the BitVector class.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:622
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
std::string Name
uint64_t Size
Symbol * Sym
Definition: ELF_riscv.cpp:479
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
static Align getFnStackAlignment(const TargetSubtargetInfo *STI, const Function &F)
static cl::opt< unsigned > AlignAllFunctions("align-all-functions", cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " "means align on 16B boundaries)."), cl::init(0), cl::Hidden)
static const MachineInstr * getCallInstr(const MachineInstr *MI)
Return the call machine instruction or find a call within bundle.
static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, const DataLayout &DL)
Test whether the given two constants can be allocated the same constant pool entry referenced by.
void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo)
static const char * getPropertyName(MachineFunctionProperties::Property Prop)
unsigned const TargetRegisterInfo * TRI
unsigned Reg
This file contains the declarations for metadata subclasses.
#define P(N)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isSimple(Instruction *I)
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallString class.
This file defines the SmallVector class.
static const int BlockSize
Definition: TarWriter.cpp:33
This file describes how to lower LLVM code to machine code.
void clear(AllocatorType &Allocator)
Release all the tracked allocations to the allocator.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:157
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
iterator begin() const
Definition: ArrayRef.h:156
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:367
LLVM_ATTRIBUTE_RETURNS_NONNULL void * Allocate(size_t Size, Align Alignment)
Allocate space at the specified alignment.
Definition: Allocator.h:148
void Deallocate(const void *Ptr, size_t Size, size_t)
Definition: Allocator.h:225
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Align getABIIntegerTypeAlignment(unsigned BitWidth) const
Returns the minimum ABI-required alignment for an integer type of the specified bitwidth.
Definition: DataLayout.h:486
unsigned getPointerSize(unsigned AS=0) const
Layout pointer size in bytes, rounded up to a whole number of bytes.
Definition: DataLayout.cpp:739
Align getPointerABIAlignment(unsigned AS) const
Layout pointer alignment.
Definition: DataLayout.cpp:731
A debug info location.
Definition: DebugLoc.h:33
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
bool erase(const KeyT &Val)
Definition: DenseMap.h:321
iterator end()
Definition: DenseMap.h:84
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Definition: Function.cpp:373
MaybeAlign getFnStackAlign() const
Return the stack alignment for the function.
Definition: Function.h:470
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:905
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1048
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
Definition: Function.cpp:807
bool needsUnwindTableEntry() const
True if this function needs an unwind table.
Definition: Function.h:682
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:731
bool hasMetadata() const
Return true if this value has any metadata attached to it.
Definition: Value.h:589
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
Definition: Value.h:565
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:311
Context object for machine code objects.
Definition: MCContext.h:83
MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
Definition: MCContext.cpp:345
MCSymbol * getOrCreateSymbol(const Twine &Name)
Lookup the symbol inside with the specified Name.
Definition: MCContext.cpp:212
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getNumRegs() const
Return the number of registers this target has (useful for sizing arrays holding per register informa...
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
Metadata node.
Definition: Metadata.h:1069
void setBBID(const UniqueBBID &V)
Sets the fixed BBID of this basic block.
void setIsEndSection(bool V=true)
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
MBBSectionID getSectionID() const
Returns the section ID of this basic block.
iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Instructions::const_iterator const_instr_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
Align getAlignment() const
Return alignment of the basic block.
void setIsBeginSection(bool V=true)
This class is a data container for one entry in a MachineConstantPool.
bool needsRelocation() const
This method classifies the entry according to whether or not it may generate a relocation entry.
bool isMachineConstantPoolEntry() const
isMachineConstantPoolEntry - Return true if the MachineConstantPoolEntry is indeed a target specific ...
union llvm::MachineConstantPoolEntry::@204 Val
The constant itself.
unsigned getSizeInBytes(const DataLayout &DL) const
SectionKind getSectionKind(const DataLayout *DL) const
Abstract base class for all machine specific constantpool value subclasses.
virtual unsigned getSizeInBytes(const DataLayout &DL) const
The MachineConstantPool class keeps track of constants referenced by a function which must be spilled...
void dump() const
dump - Call print(cerr) to be called from the debugger.
void print(raw_ostream &OS) const
print - Used by the MachineFunction printer to print information about constant pool objects.
unsigned getConstantPoolIndex(const Constant *C, Align Alignment)
getConstantPoolIndex - Create a new entry in the constant pool or return an existing one.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void ensureMaxAlignment(Align Alignment)
Make sure the function is at least Align bytes aligned.
void print(const MachineFunction &MF, raw_ostream &OS) const
Used by the MachineFunction printer to print information about stack objects.
void setUnsafeStackSize(uint64_t Size)
void print(raw_ostream &OS) const
Print the MachineFunctionProperties in human-readable form.
MachineFunctionProperties & set(Property P)
MachineFunctionProperties & reset(Property P)
virtual void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID)
Callback before changing MCInstrDesc.
virtual void MF_HandleRemoval(MachineInstr &MI)=0
Callback before a removal. This should not modify the MI directly.
virtual void MF_HandleInsertion(MachineInstr &MI)=0
Callback after an insertion. This should not modify the MI directly.
MachineInstr::ExtraInfo * createMIExtraInfo(ArrayRef< MachineMemOperand * > MMOs, MCSymbol *PreInstrSymbol=nullptr, MCSymbol *PostInstrSymbol=nullptr, MDNode *HeapAllocMarker=nullptr, MDNode *PCSections=nullptr, uint32_t CFIType=0, MDNode *MMRAs=nullptr)
Allocate and construct an extra info structure for a MachineInstr.
int getFilterIDFor(ArrayRef< unsigned > TyIds)
Return the id of the filter encoded by TyIds. This is function wide.
bool UseDebugInstrRef
Flag for whether this function contains DBG_VALUEs (false) or DBG_INSTR_REF (true).
void moveAdditionalCallInfo(const MachineInstr *Old, const MachineInstr *New)
Move the call site info from Old to \New call site info.
std::pair< unsigned, unsigned > DebugInstrOperandPair
Pair of instruction number and operand number.
unsigned addFrameInst(const MCCFIInstruction &Inst)
bool useDebugInstrRef() const
Returns true if the function's variable locations are tracked with instruction referencing.
SmallVector< DebugSubstitution, 8 > DebugValueSubstitutions
Debug value substitutions: a collection of DebugSubstitution objects, recording changes in where a va...
unsigned getFunctionNumber() const
getFunctionNumber - Return a unique ID for the current function.
MCSymbol * getPICBaseSymbol() const
getPICBaseSymbol - Return a function-local symbol to represent the PIC base.
void viewCFGOnly() const
viewCFGOnly - This function is meant for use from the debugger.
ArrayRef< int > allocateShuffleMask(ArrayRef< int > Mask)
void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New, unsigned MaxOperand=UINT_MAX)
Create substitutions for any tracked values in Old, to point at New.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineInstr & cloneMachineInstrBundle(MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig)
Clones instruction or the whole instruction bundle Orig and insert into MBB before InsertBefore.
MachineJumpTableInfo * getOrCreateJumpTableInfo(unsigned JTEntryKind)
getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it does already exist,...
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
void dump() const
dump - Print the current MachineFunction to cerr, useful for debugger use.
MachineInstr * CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, bool NoImplicit=false)
CreateMachineInstr - Allocate a new MachineInstr.
void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair, unsigned SubReg=0)
Create a substitution between one <instr,operand> value to a different, new value.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFunction(Function &F, const TargetMachine &Target, const TargetSubtargetInfo &STI, MCContext &Ctx, unsigned FunctionNum)
bool needsFrameMoves() const
True if this function needs frame moves for debug or exceptions.
unsigned getTypeIDFor(const GlobalValue *TI)
Return the type id for the specified typeinfo. This is function wide.
void finalizeDebugInstrRefs()
Finalise any partially emitted debug instructions.
void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array)
Dellocate an array of MachineOperands and recycle the memory.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
void deleteMachineInstr(MachineInstr *MI)
DeleteMachineInstr - Delete the given MachineInstr.
void initTargetMachineFunctionInfo(const TargetSubtargetInfo &STI)
Initialize the target specific MachineFunctionInfo.
const char * createExternalSymbolName(StringRef Name)
Allocate a string and populate it with the given external symbol name.
uint32_t * allocateRegMask()
Allocate and initialize a register mask with NumRegister bits.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef< unsigned > Sites)
Map the landing pad's EH symbol to the call site indexes.
void setUseDebugInstrRef(bool UseInstrRef)
Set whether this function will use instruction referencing or not.
LandingPadInfo & getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad)
Find or create an LandingPadInfo for the specified MachineBasicBlock.
unsigned size() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
MCSymbol * addLandingPad(MachineBasicBlock *LandingPad)
Add a new panding pad, and extract the exception handling information from the landingpad instruction...
unsigned DebugInstrNumberingCount
A count of how many instructions in the function have had numbers assigned to them.
void deleteMachineBasicBlock(MachineBasicBlock *MBB)
DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
Align getAlignment() const
getAlignment - Return the alignment of the function.
void handleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID)
static const unsigned int DebugOperandMemNumber
A reserved operand number representing the instructions memory operand, for instructions that have a ...
Function & getFunction()
Return the LLVM function that this machine code represents.
DebugInstrOperandPair salvageCopySSAImpl(MachineInstr &MI)
const MachineBasicBlock & back() const
BasicBlockListType::iterator iterator
void setDebugInstrNumberingCount(unsigned Num)
Set value of DebugInstrNumberingCount field.
bool shouldSplitStack() const
Should we be emitting segmented stack stuff for the function.
void viewCFG() const
viewCFG - This function is meant for use from the debugger.
bool shouldUseDebugInstrRef() const
Determine whether, in the current machine configuration, we should use instruction referencing or not...
const MachineFunctionProperties & getProperties() const
Get the function properties.
void eraseAdditionalCallInfo(const MachineInstr *MI)
Following functions update call site info.
MachineInstr * CloneMachineInstr(const MachineInstr *Orig)
Create a new MachineInstr which is a copy of Orig, identical in all ways except the instruction has n...
void RenumberBlocks(MachineBasicBlock *MBBFrom=nullptr)
RenumberBlocks - This discards all of the MachineBasicBlock numbers and recomputes them.
const MachineBasicBlock & front() const
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
int64_t estimateFunctionSizeInBytes()
Return an estimate of the function's code size, taking into account block and function alignment.
void print(raw_ostream &OS, const SlotIndexes *=nullptr) const
print - Print out the MachineFunction in a format suitable for debugging to the specified stream.
void addInvoke(MachineBasicBlock *LandingPad, MCSymbol *BeginLabel, MCSymbol *EndLabel)
Provide the begin and end labels of an invoke style call and associate it with a try landing pad bloc...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
void copyAdditionalCallInfo(const MachineInstr *Old, const MachineInstr *New)
Copy the call site info from Old to \ New.
VariableDbgInfoMapTy VariableDbgInfos
void assignBeginEndSections()
Assign IsBeginSection IsEndSection fields for basic blocks in this function.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
DebugInstrOperandPair salvageCopySSA(MachineInstr &MI, DenseMap< Register, DebugInstrOperandPair > &DbgPHICache)
Find the underlying defining instruction / operand for a COPY instruction while in SSA form.
Representation of each machine instruction.
Definition: MachineInstr.h:69
void bundleWithPred()
Bundle this instruction with its predecessor.
bool isCopyLike() const
Return true if the instruction behaves like a copy.
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:578
unsigned peekDebugInstrNum() const
Examine the instruction number of this MachineInstr.
Definition: MachineInstr.h:546
unsigned getDebugInstrNum()
Fetch the instruction number of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:585
bool shouldUpdateAdditionalCallInfo() const
Return true if copying, moving, or erasing this instruction requires updating additional call info (s...
iterator_range< filtered_mop_iterator > all_defs()
Returns an iterator range over all operands that are (explicit or implicit) register defs.
Definition: MachineInstr.h:762
bool RemoveMBBFromJumpTables(MachineBasicBlock *MBB)
RemoveMBBFromJumpTables - If MBB is present in any jump tables, remove it.
bool ReplaceMBBInJumpTables(MachineBasicBlock *Old, MachineBasicBlock *New)
ReplaceMBBInJumpTables - If Old is the target of any jump tables, update the jump tables to branch to...
void print(raw_ostream &OS) const
print - Used by the MachineFunction printer to print information about jump tables.
unsigned getEntrySize(const DataLayout &TD) const
getEntrySize - Return the size of each entry in the jump table.
unsigned createJumpTableIndex(const std::vector< MachineBasicBlock * > &DestBBs)
createJumpTableIndex - Create a new jump table.
void dump() const
dump - Call to stderr.
bool ReplaceMBBInJumpTable(unsigned Idx, MachineBasicBlock *Old, MachineBasicBlock *New)
ReplaceMBBInJumpTable - If Old is a target of the jump tables, update the jump table to branch to New...
JTEntryKind
JTEntryKind - This enum indicates how each entry of the jump table is represented and emitted.
@ EK_GPRel32BlockAddress
EK_GPRel32BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_Custom32
EK_Custom32 - Each entry is a 32-bit value that is custom lowered by the TargetLowering::LowerCustomJ...
@ EK_LabelDifference64
EK_LabelDifference64 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
@ EK_GPRel64BlockAddress
EK_GPRel64BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
unsigned getEntryAlignment(const DataLayout &TD) const
getEntryAlignment - Return the alignment of each entry in the jump table.
JTEntryKind getEntryKind() const
A description of a memory reference used in the backend.
LocationSize getSize() const
Return the size in bytes of the memory reference.
AtomicOrdering getFailureOrdering() const
For cmpxchg atomic operations, return the atomic ordering requirements when store does not occur.
const PseudoSourceValue * getPseudoValue() const
const MDNode * getRanges() const
Return the range tag for the memory reference.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID for this memory operation.
Flags
Flags values. These may be or'd together.
AtomicOrdering getSuccessOrdering() const
Return the atomic ordering requirements for this memory operation.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
AAMDNodes getAAInfo() const
Return the AA tags for the memory reference.
const Value * getValue() const
Return the base address of the memory access.
Align getBaseAlign() const
Return the minimum known alignment in bytes of the base address, without the offset.
int64_t getOffset() const
For normal values, this is a byte offset added to the base address.
MachineOperand class - Representation of each machine instruction operand.
static unsigned getRegMaskSize(unsigned NumRegs)
Returns number of elements needed for a regmask array.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
def_instr_iterator def_instr_begin(Register RegNo) const
std::vector< std::pair< MCRegister, Register > >::const_iterator livein_iterator
bool hasOneDef(Register RegNo) const
Return true if there is exactly one operand defining the specified register.
livein_iterator livein_end() const
livein_iterator livein_begin() const
Manage lifetime of a slot tracker for printing IR.
void incorporateFunction(const Function &F)
Incorporate the given function.
Definition: AsmWriter.cpp:904
iterator_range< debug_compile_units_iterator > debug_compile_units() const
Return an iterator for all DICompileUnits listed in this Module's llvm.dbg.cu named metadata node and...
Definition: Module.h:870
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Definition: PointerUnion.h:142
Simple wrapper around std::function<void(raw_ostream&)>.
Definition: Printable.h:38
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
SectionKind - This is a simple POD value that classifies the properties of a section.
Definition: SectionKind.h:22
static SectionKind getMergeableConst4()
Definition: SectionKind.h:202
static SectionKind getReadOnlyWithRel()
Definition: SectionKind.h:214
static SectionKind getMergeableConst8()
Definition: SectionKind.h:203
static SectionKind getMergeableConst16()
Definition: SectionKind.h:204
static SectionKind getReadOnly()
Definition: SectionKind.h:192
static SectionKind getMergeableConst32()
Definition: SectionKind.h:205
SlotIndexes pass.
Definition: SlotIndexes.h:297
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
bool isStackRealignable() const
isStackRealignable - This method returns whether the stack can be realigned.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
TargetInstrInfo - Interface to description of machine instruction set.
Align getPrefFunctionAlignment() const
Return the preferred function alignment.
Align getMinFunctionAlignment() const
Return the minimum function alignment.
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
TargetOptions Options
unsigned ForceDwarfFrameSection
Emit DWARF debug frame section.
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
bool hasSubClassEq(const TargetRegisterClass *RC) const
Returns true if RC is a sub-class of or equal to this class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetLowering * getTargetLowering() const
Target - Wrapper for Target specific information.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
LLVM Value Representation.
Definition: Value.h:74
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:694
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
self_iterator getIterator()
Definition: ilist_node.h:132
iterator erase(iterator where)
Definition: ilist.h:204
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:691
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
MachineBasicBlock::instr_iterator getBundleStart(MachineBasicBlock::instr_iterator I)
Returns an iterator to the first instruction in the bundle containing I.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2115
MaybeAlign getAlign(const Function &F, unsigned Index)
Printable printJumpTableEntryReference(unsigned Idx)
Prints a jump table entry reference.
bool isScopedEHPersonality(EHPersonality Pers)
Returns true if this personality uses scope-style EH IR instructions: catchswitch,...
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
MachineBasicBlock::instr_iterator getBundleEnd(MachineBasicBlock::instr_iterator I)
Returns an iterator pointing beyond the bundle containing I.
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
AtomicOrdering
Atomic ordering for LLVM's memory model.
bool isFuncletEHPersonality(EHPersonality Pers)
Returns true if this is a personality function that invokes handler funclets (which must return to it...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
void ViewGraph(const GraphType &G, const Twine &Name, bool ShortNames=false, const Twine &Title="", GraphProgram::Name Program=GraphProgram::DOT)
ViewGraph - Emit a dot graph, run 'dot', run gv on the postscript file, then cleanup.
Definition: GraphWriter.h:427
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1841
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition: Alignment.h:212
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
bool debuginfoShouldUseDebugInstrRef(const Triple &T)
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:760
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
std::string getNodeLabel(const MachineBasicBlock *Node, const MachineFunction *Graph)
static std::string getGraphName(const MachineFunction *F)
DOTGraphTraits - Template class that can be specialized to customize how graphs are converted to 'dot...
DefaultDOTGraphTraits - This class provides the default implementations of all of the DOTGraphTraits ...
Represent subnormal handling kind for floating point instruction inputs and outputs.
This structure is used to retain landing pad info for the current function.
SmallVector< MCSymbol *, 1 > EndLabels
MachineBasicBlock * LandingPadBlock
SmallVector< MCSymbol *, 1 > BeginLabels
std::vector< int > TypeIds
MachineJumpTableEntry - One jump table in the jump table info.
std::vector< MachineBasicBlock * > MBBs
MBBs - The vector of basic blocks from which to create the jump table.
This class contains a discriminated union of information about pointers in memory operands,...
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static void deleteNode(NodeTy *V)
Definition: ilist.h:42