LLVM 20.0.0git
DataLayout.cpp
Go to the documentation of this file.
1//===- DataLayout.cpp - Data size & alignment routines ---------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines layout properties related to datatype size/offset/alignment
10// information.
11//
12// This structure should be created once, filled in if the defaults are not
13// correct and then passed around by const&. None of the members functions
14// require modification to the object.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/IR/DataLayout.h"
19#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/IR/Constants.h"
26#include "llvm/IR/Type.h"
27#include "llvm/IR/Value.h"
29#include "llvm/Support/Error.h"
35#include <algorithm>
36#include <cassert>
37#include <cstdint>
38#include <cstdlib>
39#include <new>
40#include <utility>
41
42using namespace llvm;
43
44//===----------------------------------------------------------------------===//
45// Support for StructLayout
46//===----------------------------------------------------------------------===//
47
48StructLayout::StructLayout(StructType *ST, const DataLayout &DL)
49 : StructSize(TypeSize::getFixed(0)) {
50 assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
51 IsPadded = false;
52 NumElements = ST->getNumElements();
53
54 // Loop over each of the elements, placing them in memory.
55 for (unsigned i = 0, e = NumElements; i != e; ++i) {
56 Type *Ty = ST->getElementType(i);
57 if (i == 0 && Ty->isScalableTy())
58 StructSize = TypeSize::getScalable(0);
59
60 const Align TyAlign = ST->isPacked() ? Align(1) : DL.getABITypeAlign(Ty);
61
62 // Add padding if necessary to align the data element properly.
63 // Currently the only structure with scalable size will be the homogeneous
64 // scalable vector types. Homogeneous scalable vector types have members of
65 // the same data type so no alignment issue will happen. The condition here
66 // assumes so and needs to be adjusted if this assumption changes (e.g. we
67 // support structures with arbitrary scalable data type, or structure that
68 // contains both fixed size and scalable size data type members).
69 if (!StructSize.isScalable() && !isAligned(TyAlign, StructSize)) {
70 IsPadded = true;
71 StructSize = TypeSize::getFixed(alignTo(StructSize, TyAlign));
72 }
73
74 // Keep track of maximum alignment constraint.
75 StructAlignment = std::max(TyAlign, StructAlignment);
76
77 getMemberOffsets()[i] = StructSize;
78 // Consume space for this data item
79 StructSize += DL.getTypeAllocSize(Ty);
80 }
81
82 // Add padding to the end of the struct so that it could be put in an array
83 // and all array elements would be aligned correctly.
84 if (!StructSize.isScalable() && !isAligned(StructAlignment, StructSize)) {
85 IsPadded = true;
86 StructSize = TypeSize::getFixed(alignTo(StructSize, StructAlignment));
87 }
88}
89
90/// getElementContainingOffset - Given a valid offset into the structure,
91/// return the structure index that contains it.
93 assert(!StructSize.isScalable() &&
94 "Cannot get element at offset for structure containing scalable "
95 "vector types");
96 TypeSize Offset = TypeSize::getFixed(FixedOffset);
97 ArrayRef<TypeSize> MemberOffsets = getMemberOffsets();
98
99 const auto *SI =
100 std::upper_bound(MemberOffsets.begin(), MemberOffsets.end(), Offset,
101 [](TypeSize LHS, TypeSize RHS) -> bool {
102 return TypeSize::isKnownLT(LHS, RHS);
103 });
104 assert(SI != MemberOffsets.begin() && "Offset not in structure type!");
105 --SI;
106 assert(TypeSize::isKnownLE(*SI, Offset) && "upper_bound didn't work");
107 assert(
108 (SI == MemberOffsets.begin() || TypeSize::isKnownLE(*(SI - 1), Offset)) &&
109 (SI + 1 == MemberOffsets.end() ||
110 TypeSize::isKnownGT(*(SI + 1), Offset)) &&
111 "Upper bound didn't work!");
112
113 // Multiple fields can have the same offset if any of them are zero sized.
114 // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
115 // at the i32 element, because it is the last element at that offset. This is
116 // the right one to return, because anything after it will have a higher
117 // offset, implying that this element is non-empty.
118 return SI - MemberOffsets.begin();
119}
120
121namespace {
122
123class StructLayoutMap {
124 using LayoutInfoTy = DenseMap<StructType *, StructLayout *>;
125 LayoutInfoTy LayoutInfo;
126
127public:
128 ~StructLayoutMap() {
129 // Remove any layouts.
130 for (const auto &I : LayoutInfo) {
131 StructLayout *Value = I.second;
132 Value->~StructLayout();
133 free(Value);
134 }
135 }
136
137 StructLayout *&operator[](StructType *STy) { return LayoutInfo[STy]; }
138};
139
140} // end anonymous namespace
141
142//===----------------------------------------------------------------------===//
143// DataLayout Class Implementation
144//===----------------------------------------------------------------------===//
145
147 return BitWidth == Other.BitWidth && ABIAlign == Other.ABIAlign &&
148 PrefAlign == Other.PrefAlign;
149}
150
152 return AddrSpace == Other.AddrSpace && BitWidth == Other.BitWidth &&
153 ABIAlign == Other.ABIAlign && PrefAlign == Other.PrefAlign &&
154 IndexBitWidth == Other.IndexBitWidth &&
155 IsNonIntegral == Other.IsNonIntegral;
156}
157
158namespace {
159/// Predicate to sort primitive specs by bit width.
160struct LessPrimitiveBitWidth {
161 bool operator()(const DataLayout::PrimitiveSpec &LHS,
162 unsigned RHSBitWidth) const {
163 return LHS.BitWidth < RHSBitWidth;
164 }
165};
166
167/// Predicate to sort pointer specs by address space number.
168struct LessPointerAddrSpace {
169 bool operator()(const DataLayout::PointerSpec &LHS,
170 unsigned RHSAddrSpace) const {
171 return LHS.AddrSpace < RHSAddrSpace;
172 }
173};
174} // namespace
175
177 if (T.isOSBinFormatGOFF())
178 return "-m:l";
179 if (T.isOSBinFormatMachO())
180 return "-m:o";
181 if ((T.isOSWindows() || T.isUEFI()) && T.isOSBinFormatCOFF())
182 return T.getArch() == Triple::x86 ? "-m:x" : "-m:w";
183 if (T.isOSBinFormatXCOFF())
184 return "-m:a";
185 return "-m:e";
186}
187
188// Default primitive type specifications.
189// NOTE: These arrays must be sorted by type bit width.
191 {1, Align::Constant<1>(), Align::Constant<1>()}, // i1:8:8
192 {8, Align::Constant<1>(), Align::Constant<1>()}, // i8:8:8
193 {16, Align::Constant<2>(), Align::Constant<2>()}, // i16:16:16
194 {32, Align::Constant<4>(), Align::Constant<4>()}, // i32:32:32
195 {64, Align::Constant<4>(), Align::Constant<8>()}, // i64:32:64
196};
198 {16, Align::Constant<2>(), Align::Constant<2>()}, // f16:16:16
199 {32, Align::Constant<4>(), Align::Constant<4>()}, // f32:32:32
200 {64, Align::Constant<8>(), Align::Constant<8>()}, // f64:64:64
201 {128, Align::Constant<16>(), Align::Constant<16>()}, // f128:128:128
202};
204 {64, Align::Constant<8>(), Align::Constant<8>()}, // v64:64:64
205 {128, Align::Constant<16>(), Align::Constant<16>()}, // v128:128:128
206};
207
208// Default pointer type specifications.
210 // p0:64:64:64:64
211 {0, 64, Align::Constant<8>(), Align::Constant<8>(), 64, false},
212};
213
215 : IntSpecs(ArrayRef(DefaultIntSpecs)),
216 FloatSpecs(ArrayRef(DefaultFloatSpecs)),
217 VectorSpecs(ArrayRef(DefaultVectorSpecs)),
218 PointerSpecs(ArrayRef(DefaultPointerSpecs)) {}
219
221 if (Error Err = parseLayoutString(LayoutString))
222 report_fatal_error(std::move(Err));
223}
224
226 delete static_cast<StructLayoutMap *>(LayoutMap);
227 LayoutMap = nullptr;
228 StringRepresentation = Other.StringRepresentation;
229 BigEndian = Other.BigEndian;
230 AllocaAddrSpace = Other.AllocaAddrSpace;
231 ProgramAddrSpace = Other.ProgramAddrSpace;
232 DefaultGlobalsAddrSpace = Other.DefaultGlobalsAddrSpace;
233 StackNaturalAlign = Other.StackNaturalAlign;
234 FunctionPtrAlign = Other.FunctionPtrAlign;
235 TheFunctionPtrAlignType = Other.TheFunctionPtrAlignType;
236 ManglingMode = Other.ManglingMode;
237 LegalIntWidths = Other.LegalIntWidths;
238 IntSpecs = Other.IntSpecs;
239 FloatSpecs = Other.FloatSpecs;
240 VectorSpecs = Other.VectorSpecs;
241 PointerSpecs = Other.PointerSpecs;
242 StructABIAlignment = Other.StructABIAlignment;
243 StructPrefAlignment = Other.StructPrefAlignment;
244 return *this;
245}
246
248 // NOTE: StringRepresentation might differ, it is not canonicalized.
249 return BigEndian == Other.BigEndian &&
250 AllocaAddrSpace == Other.AllocaAddrSpace &&
251 ProgramAddrSpace == Other.ProgramAddrSpace &&
252 DefaultGlobalsAddrSpace == Other.DefaultGlobalsAddrSpace &&
253 StackNaturalAlign == Other.StackNaturalAlign &&
254 FunctionPtrAlign == Other.FunctionPtrAlign &&
255 TheFunctionPtrAlignType == Other.TheFunctionPtrAlignType &&
256 ManglingMode == Other.ManglingMode &&
257 LegalIntWidths == Other.LegalIntWidths && IntSpecs == Other.IntSpecs &&
258 FloatSpecs == Other.FloatSpecs && VectorSpecs == Other.VectorSpecs &&
259 PointerSpecs == Other.PointerSpecs &&
260 StructABIAlignment == Other.StructABIAlignment &&
261 StructPrefAlignment == Other.StructPrefAlignment;
262}
263
265 DataLayout Layout;
266 if (Error Err = Layout.parseLayoutString(LayoutString))
267 return std::move(Err);
268 return Layout;
269}
270
272 return createStringError("malformed specification, must be of the form \"" +
273 Format + "\"");
274}
275
276/// Attempts to parse an address space component of a specification.
277static Error parseAddrSpace(StringRef Str, unsigned &AddrSpace) {
278 if (Str.empty())
279 return createStringError("address space component cannot be empty");
280
281 if (!to_integer(Str, AddrSpace, 10) || !isUInt<24>(AddrSpace))
282 return createStringError("address space must be a 24-bit integer");
283
284 return Error::success();
285}
286
287/// Attempts to parse a size component of a specification.
288static Error parseSize(StringRef Str, unsigned &BitWidth,
289 StringRef Name = "size") {
290 if (Str.empty())
291 return createStringError(Name + " component cannot be empty");
292
293 if (!to_integer(Str, BitWidth, 10) || BitWidth == 0 || !isUInt<24>(BitWidth))
294 return createStringError(Name + " must be a non-zero 24-bit integer");
295
296 return Error::success();
297}
298
299/// Attempts to parse an alignment component of a specification.
300///
301/// On success, returns the value converted to byte amount in \p Alignment.
302/// If the value is zero and \p AllowZero is true, \p Alignment is set to one.
303///
304/// Return an error in a number of cases:
305/// - \p Str is empty or contains characters other than decimal digits;
306/// - the value is zero and \p AllowZero is false;
307/// - the value is too large;
308/// - the value is not a multiple of the byte width;
309/// - the value converted to byte amount is not not a power of two.
311 bool AllowZero = false) {
312 if (Str.empty())
313 return createStringError(Name + " alignment component cannot be empty");
314
315 unsigned Value;
316 if (!to_integer(Str, Value, 10) || !isUInt<16>(Value))
317 return createStringError(Name + " alignment must be a 16-bit integer");
318
319 if (Value == 0) {
320 if (!AllowZero)
321 return createStringError(Name + " alignment must be non-zero");
322 Alignment = Align(1);
323 return Error::success();
324 }
325
326 constexpr unsigned ByteWidth = 8;
327 if (Value % ByteWidth || !isPowerOf2_32(Value / ByteWidth))
328 return createStringError(
329 Name + " alignment must be a power of two times the byte width");
330
331 Alignment = Align(Value / ByteWidth);
332 return Error::success();
333}
334
335Error DataLayout::parsePrimitiveSpec(StringRef Spec) {
336 // [ifv]<size>:<abi>[:<pref>]
337 SmallVector<StringRef, 3> Components;
338 char Specifier = Spec.front();
339 assert(Specifier == 'i' || Specifier == 'f' || Specifier == 'v');
340 Spec.drop_front().split(Components, ':');
341
342 if (Components.size() < 2 || Components.size() > 3)
343 return createSpecFormatError(Twine(Specifier) + "<size>:<abi>[:<pref>]");
344
345 // Size. Required, cannot be zero.
346 unsigned BitWidth;
347 if (Error Err = parseSize(Components[0], BitWidth))
348 return Err;
349
350 // ABI alignment.
351 Align ABIAlign;
352 if (Error Err = parseAlignment(Components[1], ABIAlign, "ABI"))
353 return Err;
354
355 if (Specifier == 'i' && BitWidth == 8 && ABIAlign != 1)
356 return createStringError("i8 must be 8-bit aligned");
357
358 // Preferred alignment. Optional, defaults to the ABI alignment.
359 Align PrefAlign = ABIAlign;
360 if (Components.size() > 2)
361 if (Error Err = parseAlignment(Components[2], PrefAlign, "preferred"))
362 return Err;
363
364 if (PrefAlign < ABIAlign)
365 return createStringError(
366 "preferred alignment cannot be less than the ABI alignment");
367
368 setPrimitiveSpec(Specifier, BitWidth, ABIAlign, PrefAlign);
369 return Error::success();
370}
371
372Error DataLayout::parseAggregateSpec(StringRef Spec) {
373 // a<size>:<abi>[:<pref>]
374 SmallVector<StringRef, 3> Components;
375 assert(Spec.front() == 'a');
376 Spec.drop_front().split(Components, ':');
377
378 if (Components.size() < 2 || Components.size() > 3)
379 return createSpecFormatError("a:<abi>[:<pref>]");
380
381 // According to LangRef, <size> component must be absent altogether.
382 // For backward compatibility, allow it to be specified, but require
383 // it to be zero.
384 if (!Components[0].empty()) {
385 unsigned BitWidth;
386 if (!to_integer(Components[0], BitWidth, 10) || BitWidth != 0)
387 return createStringError("size must be zero");
388 }
389
390 // ABI alignment. Required. Can be zero, meaning use one byte alignment.
391 Align ABIAlign;
392 if (Error Err =
393 parseAlignment(Components[1], ABIAlign, "ABI", /*AllowZero=*/true))
394 return Err;
395
396 // Preferred alignment. Optional, defaults to the ABI alignment.
397 Align PrefAlign = ABIAlign;
398 if (Components.size() > 2)
399 if (Error Err = parseAlignment(Components[2], PrefAlign, "preferred"))
400 return Err;
401
402 if (PrefAlign < ABIAlign)
403 return createStringError(
404 "preferred alignment cannot be less than the ABI alignment");
405
406 StructABIAlignment = ABIAlign;
407 StructPrefAlignment = PrefAlign;
408 return Error::success();
409}
410
411Error DataLayout::parsePointerSpec(StringRef Spec) {
412 // p[<n>]:<size>:<abi>[:<pref>[:<idx>]]
413 SmallVector<StringRef, 5> Components;
414 assert(Spec.front() == 'p');
415 Spec.drop_front().split(Components, ':');
416
417 if (Components.size() < 3 || Components.size() > 5)
418 return createSpecFormatError("p[<n>]:<size>:<abi>[:<pref>[:<idx>]]");
419
420 // Address space. Optional, defaults to 0.
421 unsigned AddrSpace = 0;
422 if (!Components[0].empty())
423 if (Error Err = parseAddrSpace(Components[0], AddrSpace))
424 return Err;
425
426 // Size. Required, cannot be zero.
427 unsigned BitWidth;
428 if (Error Err = parseSize(Components[1], BitWidth, "pointer size"))
429 return Err;
430
431 // ABI alignment. Required, cannot be zero.
432 Align ABIAlign;
433 if (Error Err = parseAlignment(Components[2], ABIAlign, "ABI"))
434 return Err;
435
436 // Preferred alignment. Optional, defaults to the ABI alignment.
437 // Cannot be zero.
438 Align PrefAlign = ABIAlign;
439 if (Components.size() > 3)
440 if (Error Err = parseAlignment(Components[3], PrefAlign, "preferred"))
441 return Err;
442
443 if (PrefAlign < ABIAlign)
444 return createStringError(
445 "preferred alignment cannot be less than the ABI alignment");
446
447 // Index size. Optional, defaults to pointer size. Cannot be zero.
448 unsigned IndexBitWidth = BitWidth;
449 if (Components.size() > 4)
450 if (Error Err = parseSize(Components[4], IndexBitWidth, "index size"))
451 return Err;
452
453 if (IndexBitWidth > BitWidth)
454 return createStringError(
455 "index size cannot be larger than the pointer size");
456
457 setPointerSpec(AddrSpace, BitWidth, ABIAlign, PrefAlign, IndexBitWidth,
458 false);
459 return Error::success();
460}
461
462Error DataLayout::parseSpecification(
463 StringRef Spec, SmallVectorImpl<unsigned> &NonIntegralAddressSpaces) {
464 // The "ni" specifier is the only two-character specifier. Handle it first.
465 if (Spec.starts_with("ni")) {
466 // ni:<address space>[:<address space>]...
467 StringRef Rest = Spec.drop_front(2);
468
469 // Drop the first ':', then split the rest of the string the usual way.
470 if (!Rest.consume_front(":"))
471 return createSpecFormatError("ni:<address space>[:<address space>]...");
472
473 for (StringRef Str : split(Rest, ':')) {
474 unsigned AddrSpace;
475 if (Error Err = parseAddrSpace(Str, AddrSpace))
476 return Err;
477 if (AddrSpace == 0)
478 return createStringError("address space 0 cannot be non-integral");
479 NonIntegralAddressSpaces.push_back(AddrSpace);
480 }
481 return Error::success();
482 }
483
484 // The rest of the specifiers are single-character.
485 assert(!Spec.empty() && "Empty specification is handled by the caller");
486 char Specifier = Spec.front();
487
488 if (Specifier == 'i' || Specifier == 'f' || Specifier == 'v')
489 return parsePrimitiveSpec(Spec);
490
491 if (Specifier == 'a')
492 return parseAggregateSpec(Spec);
493
494 if (Specifier == 'p')
495 return parsePointerSpec(Spec);
496
497 StringRef Rest = Spec.drop_front();
498 switch (Specifier) {
499 case 's':
500 // Deprecated, but ignoring here to preserve loading older textual llvm
501 // ASM file
502 break;
503 case 'e':
504 case 'E':
505 if (!Rest.empty())
506 return createStringError(
507 "malformed specification, must be just 'e' or 'E'");
508 BigEndian = Specifier == 'E';
509 break;
510 case 'n': // Native integer types.
511 // n<size>[:<size>]...
512 for (StringRef Str : split(Rest, ':')) {
513 unsigned BitWidth;
514 if (Error Err = parseSize(Str, BitWidth))
515 return Err;
516 LegalIntWidths.push_back(BitWidth);
517 }
518 break;
519 case 'S': { // Stack natural alignment.
520 // S<size>
521 if (Rest.empty())
522 return createSpecFormatError("S<size>");
523 Align Alignment;
524 if (Error Err = parseAlignment(Rest, Alignment, "stack natural"))
525 return Err;
526 StackNaturalAlign = Alignment;
527 break;
528 }
529 case 'F': {
530 // F<type><abi>
531 if (Rest.empty())
532 return createSpecFormatError("F<type><abi>");
533 char Type = Rest.front();
534 Rest = Rest.drop_front();
535 switch (Type) {
536 case 'i':
537 TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
538 break;
539 case 'n':
540 TheFunctionPtrAlignType = FunctionPtrAlignType::MultipleOfFunctionAlign;
541 break;
542 default:
543 return createStringError("unknown function pointer alignment type '" +
544 Twine(Type) + "'");
545 }
546 Align Alignment;
547 if (Error Err = parseAlignment(Rest, Alignment, "ABI"))
548 return Err;
549 FunctionPtrAlign = Alignment;
550 break;
551 }
552 case 'P': { // Function address space.
553 if (Rest.empty())
554 return createSpecFormatError("P<address space>");
555 if (Error Err = parseAddrSpace(Rest, ProgramAddrSpace))
556 return Err;
557 break;
558 }
559 case 'A': { // Default stack/alloca address space.
560 if (Rest.empty())
561 return createSpecFormatError("A<address space>");
562 if (Error Err = parseAddrSpace(Rest, AllocaAddrSpace))
563 return Err;
564 break;
565 }
566 case 'G': { // Default address space for global variables.
567 if (Rest.empty())
568 return createSpecFormatError("G<address space>");
569 if (Error Err = parseAddrSpace(Rest, DefaultGlobalsAddrSpace))
570 return Err;
571 break;
572 }
573 case 'm':
574 if (!Rest.consume_front(":") || Rest.empty())
575 return createSpecFormatError("m:<mangling>");
576 if (Rest.size() > 1)
577 return createStringError("unknown mangling mode");
578 switch (Rest[0]) {
579 default:
580 return createStringError("unknown mangling mode");
581 case 'e':
582 ManglingMode = MM_ELF;
583 break;
584 case 'l':
585 ManglingMode = MM_GOFF;
586 break;
587 case 'o':
588 ManglingMode = MM_MachO;
589 break;
590 case 'm':
591 ManglingMode = MM_Mips;
592 break;
593 case 'w':
594 ManglingMode = MM_WinCOFF;
595 break;
596 case 'x':
597 ManglingMode = MM_WinCOFFX86;
598 break;
599 case 'a':
600 ManglingMode = MM_XCOFF;
601 break;
602 }
603 break;
604 default:
605 return createStringError("unknown specifier '" + Twine(Specifier) + "'");
606 }
607
608 return Error::success();
609}
610
611Error DataLayout::parseLayoutString(StringRef LayoutString) {
612 StringRepresentation = std::string(LayoutString);
613
614 if (LayoutString.empty())
615 return Error::success();
616
617 // Split the data layout string into specifications separated by '-' and
618 // parse each specification individually, updating internal data structures.
619 SmallVector<unsigned, 8> NonIntegralAddressSpaces;
620 for (StringRef Spec : split(LayoutString, '-')) {
621 if (Spec.empty())
622 return createStringError("empty specification is not allowed");
623 if (Error Err = parseSpecification(Spec, NonIntegralAddressSpaces))
624 return Err;
625 }
626 // Mark all address spaces that were qualified as non-integral now. This has
627 // to be done later since the non-integral property is not part of the data
628 // layout pointer specification.
629 for (unsigned AS : NonIntegralAddressSpaces) {
630 // If there is no special spec for a given AS, getPointerSpec(AS) returns
631 // the spec for AS0, and we then update that to mark it non-integral.
632 const PointerSpec &PS = getPointerSpec(AS);
633 setPointerSpec(AS, PS.BitWidth, PS.ABIAlign, PS.PrefAlign, PS.IndexBitWidth,
634 true);
635 }
636
637 return Error::success();
638}
639
640void DataLayout::setPrimitiveSpec(char Specifier, uint32_t BitWidth,
641 Align ABIAlign, Align PrefAlign) {
643 switch (Specifier) {
644 default:
645 llvm_unreachable("Unexpected specifier");
646 case 'i':
647 Specs = &IntSpecs;
648 break;
649 case 'f':
650 Specs = &FloatSpecs;
651 break;
652 case 'v':
653 Specs = &VectorSpecs;
654 break;
655 }
656
657 auto I = lower_bound(*Specs, BitWidth, LessPrimitiveBitWidth());
658 if (I != Specs->end() && I->BitWidth == BitWidth) {
659 // Update the abi, preferred alignments.
660 I->ABIAlign = ABIAlign;
661 I->PrefAlign = PrefAlign;
662 } else {
663 // Insert before I to keep the vector sorted.
664 Specs->insert(I, PrimitiveSpec{BitWidth, ABIAlign, PrefAlign});
665 }
666}
667
669DataLayout::getPointerSpec(uint32_t AddrSpace) const {
670 if (AddrSpace != 0) {
671 auto I = lower_bound(PointerSpecs, AddrSpace, LessPointerAddrSpace());
672 if (I != PointerSpecs.end() && I->AddrSpace == AddrSpace)
673 return *I;
674 }
675
676 assert(PointerSpecs[0].AddrSpace == 0);
677 return PointerSpecs[0];
678}
679
680void DataLayout::setPointerSpec(uint32_t AddrSpace, uint32_t BitWidth,
681 Align ABIAlign, Align PrefAlign,
682 uint32_t IndexBitWidth, bool IsNonIntegral) {
683 auto I = lower_bound(PointerSpecs, AddrSpace, LessPointerAddrSpace());
684 if (I == PointerSpecs.end() || I->AddrSpace != AddrSpace) {
685 PointerSpecs.insert(I, PointerSpec{AddrSpace, BitWidth, ABIAlign, PrefAlign,
686 IndexBitWidth, IsNonIntegral});
687 } else {
688 I->BitWidth = BitWidth;
689 I->ABIAlign = ABIAlign;
690 I->PrefAlign = PrefAlign;
691 I->IndexBitWidth = IndexBitWidth;
692 I->IsNonIntegral = IsNonIntegral;
693 }
694}
695
696Align DataLayout::getIntegerAlignment(uint32_t BitWidth,
697 bool abi_or_pref) const {
698 auto I = lower_bound(IntSpecs, BitWidth, LessPrimitiveBitWidth());
699 // If we don't have an exact match, use alignment of next larger integer
700 // type. If there is none, use alignment of largest integer type by going
701 // back one element.
702 if (I == IntSpecs.end())
703 --I;
704 return abi_or_pref ? I->ABIAlign : I->PrefAlign;
705}
706
707DataLayout::~DataLayout() { delete static_cast<StructLayoutMap *>(LayoutMap); }
708
710 if (!LayoutMap)
711 LayoutMap = new StructLayoutMap();
712
713 StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
714 StructLayout *&SL = (*STM)[Ty];
715 if (SL) return SL;
716
717 // Otherwise, create the struct layout. Because it is variable length, we
718 // malloc it, then use placement new.
720 StructLayout::totalSizeToAlloc<TypeSize>(Ty->getNumElements()));
721
722 // Set SL before calling StructLayout's ctor. The ctor could cause other
723 // entries to be added to TheMap, invalidating our reference.
724 SL = L;
725
726 new (L) StructLayout(Ty, *this);
727
728 return L;
729}
730
732 return getPointerSpec(AS).ABIAlign;
733}
734
736 return getPointerSpec(AS).PrefAlign;
737}
738
739unsigned DataLayout::getPointerSize(unsigned AS) const {
740 return divideCeil(getPointerSpec(AS).BitWidth, 8);
741}
742
745 "This should only be called with a pointer or pointer vector type");
746 Ty = Ty->getScalarType();
747 return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
748}
749
750unsigned DataLayout::getIndexSize(unsigned AS) const {
751 return divideCeil(getPointerSpec(AS).IndexBitWidth, 8);
752}
753
756 "This should only be called with a pointer or pointer vector type");
757 Ty = Ty->getScalarType();
758 return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
759}
760
761/*!
762 \param abi_or_pref Flag that determines which alignment is returned. true
763 returns the ABI alignment, false returns the preferred alignment.
764 \param Ty The underlying type for which alignment is determined.
765
766 Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
767 == false) for the requested type \a Ty.
768 */
769Align DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
770 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
771 switch (Ty->getTypeID()) {
772 // Early escape for the non-numeric types.
773 case Type::LabelTyID:
774 return abi_or_pref ? getPointerABIAlignment(0) : getPointerPrefAlignment(0);
775 case Type::PointerTyID: {
776 unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
777 return abi_or_pref ? getPointerABIAlignment(AS)
779 }
780 case Type::ArrayTyID:
781 return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
782
783 case Type::StructTyID: {
784 // Packed structure types always have an ABI alignment of one.
785 if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
786 return Align(1);
787
788 // Get the layout annotation... which is lazily created on demand.
789 const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
790 const Align Align = abi_or_pref ? StructABIAlignment : StructPrefAlignment;
791 return std::max(Align, Layout->getAlignment());
792 }
794 return getIntegerAlignment(Ty->getIntegerBitWidth(), abi_or_pref);
795 case Type::HalfTyID:
796 case Type::BFloatTyID:
797 case Type::FloatTyID:
798 case Type::DoubleTyID:
799 // PPC_FP128TyID and FP128TyID have different data contents, but the
800 // same size and alignment, so they look the same here.
802 case Type::FP128TyID:
803 case Type::X86_FP80TyID: {
805 auto I = lower_bound(FloatSpecs, BitWidth, LessPrimitiveBitWidth());
806 if (I != FloatSpecs.end() && I->BitWidth == BitWidth)
807 return abi_or_pref ? I->ABIAlign : I->PrefAlign;
808
809 // If we still couldn't find a reasonable default alignment, fall back
810 // to a simple heuristic that the alignment is the first power of two
811 // greater-or-equal to the store size of the type. This is a reasonable
812 // approximation of reality, and if the user wanted something less
813 // less conservative, they should have specified it explicitly in the data
814 // layout.
815 return Align(PowerOf2Ceil(BitWidth / 8));
816 }
820 auto I = lower_bound(VectorSpecs, BitWidth, LessPrimitiveBitWidth());
821 if (I != VectorSpecs.end() && I->BitWidth == BitWidth)
822 return abi_or_pref ? I->ABIAlign : I->PrefAlign;
823
824 // By default, use natural alignment for vector types. This is consistent
825 // with what clang and llvm-gcc do.
826 //
827 // We're only calculating a natural alignment, so it doesn't have to be
828 // based on the full size for scalable vectors. Using the minimum element
829 // count should be enough here.
830 return Align(PowerOf2Ceil(getTypeStoreSize(Ty).getKnownMinValue()));
831 }
833 return Align(64);
834 case Type::TargetExtTyID: {
835 Type *LayoutTy = cast<TargetExtType>(Ty)->getLayoutType();
836 return getAlignment(LayoutTy, abi_or_pref);
837 }
838 default:
839 llvm_unreachable("Bad type for getAlignment!!!");
840 }
841}
842
844 return getAlignment(Ty, true);
845}
846
848 return getAlignment(Ty, false);
849}
850
852 unsigned AddressSpace) const {
854}
855
858 "Expected a pointer or pointer vector type.");
859 unsigned NumBits = getPointerTypeSizeInBits(Ty);
860 IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
861 if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
862 return VectorType::get(IntTy, VecTy);
863 return IntTy;
864}
865
867 for (unsigned LegalIntWidth : LegalIntWidths)
868 if (Width <= LegalIntWidth)
869 return Type::getIntNTy(C, LegalIntWidth);
870 return nullptr;
871}
872
874 auto Max = llvm::max_element(LegalIntWidths);
875 return Max != LegalIntWidths.end() ? *Max : 0;
876}
877
879 unsigned AddressSpace) const {
881}
882
885 "Expected a pointer or pointer vector type.");
886 unsigned NumBits = getIndexTypeSizeInBits(Ty);
887 IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
888 if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
889 return VectorType::get(IntTy, VecTy);
890 return IntTy;
891}
892
894 ArrayRef<Value *> Indices) const {
895 int64_t Result = 0;
896
898 GTI = gep_type_begin(ElemTy, Indices),
899 GTE = gep_type_end(ElemTy, Indices);
900 for (; GTI != GTE; ++GTI) {
901 Value *Idx = GTI.getOperand();
902 if (StructType *STy = GTI.getStructTypeOrNull()) {
903 assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx");
904 unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue();
905
906 // Get structure layout information...
907 const StructLayout *Layout = getStructLayout(STy);
908
909 // Add in the offset, as calculated by the structure layout info...
910 Result += Layout->getElementOffset(FieldNo);
911 } else {
912 if (int64_t ArrayIdx = cast<ConstantInt>(Idx)->getSExtValue())
913 Result += ArrayIdx * GTI.getSequentialElementStride(*this);
914 }
915 }
916
917 return Result;
918}
919
921 // Skip over scalable or zero size elements. Also skip element sizes larger
922 // than the positive index space, because the arithmetic below may not be
923 // correct in that case.
924 unsigned BitWidth = Offset.getBitWidth();
925 if (ElemSize.isScalable() || ElemSize == 0 ||
926 !isUIntN(BitWidth - 1, ElemSize)) {
927 return APInt::getZero(BitWidth);
928 }
929
930 APInt Index = Offset.sdiv(ElemSize);
931 Offset -= Index * ElemSize;
932 if (Offset.isNegative()) {
933 // Prefer a positive remaining offset to allow struct indexing.
934 --Index;
935 Offset += ElemSize;
936 assert(Offset.isNonNegative() && "Remaining offset shouldn't be negative");
937 }
938 return Index;
939}
940
941std::optional<APInt> DataLayout::getGEPIndexForOffset(Type *&ElemTy,
942 APInt &Offset) const {
943 if (auto *ArrTy = dyn_cast<ArrayType>(ElemTy)) {
944 ElemTy = ArrTy->getElementType();
945 return getElementIndex(getTypeAllocSize(ElemTy), Offset);
946 }
947
948 if (isa<VectorType>(ElemTy)) {
949 // Vector GEPs are partially broken (e.g. for overaligned element types),
950 // and may be forbidden in the future, so avoid generating GEPs into
951 // vectors. See https://discourse.llvm.org/t/67497
952 return std::nullopt;
953 }
954
955 if (auto *STy = dyn_cast<StructType>(ElemTy)) {
956 const StructLayout *SL = getStructLayout(STy);
957 uint64_t IntOffset = Offset.getZExtValue();
958 if (IntOffset >= SL->getSizeInBytes())
959 return std::nullopt;
960
961 unsigned Index = SL->getElementContainingOffset(IntOffset);
962 Offset -= SL->getElementOffset(Index);
963 ElemTy = STy->getElementType(Index);
964 return APInt(32, Index);
965 }
966
967 // Non-aggregate type.
968 return std::nullopt;
969}
970
972 APInt &Offset) const {
973 assert(ElemTy->isSized() && "Element type must be sized");
974 SmallVector<APInt> Indices;
976 while (Offset != 0) {
977 std::optional<APInt> Index = getGEPIndexForOffset(ElemTy, Offset);
978 if (!Index)
979 break;
980 Indices.push_back(*Index);
981 }
982
983 return Indices;
984}
985
986/// getPreferredAlign - Return the preferred alignment of the specified global.
987/// This includes an explicitly requested alignment (if the global has one).
989 MaybeAlign GVAlignment = GV->getAlign();
990 // If a section is specified, always precisely honor explicit alignment,
991 // so we don't insert padding into a section we don't control.
992 if (GVAlignment && GV->hasSection())
993 return *GVAlignment;
994
995 // If no explicit alignment is specified, compute the alignment based on
996 // the IR type. If an alignment is specified, increase it to match the ABI
997 // alignment of the IR type.
998 //
999 // FIXME: Not sure it makes sense to use the alignment of the type if
1000 // there's already an explicit alignment specification.
1001 Type *ElemType = GV->getValueType();
1002 Align Alignment = getPrefTypeAlign(ElemType);
1003 if (GVAlignment) {
1004 if (*GVAlignment >= Alignment)
1005 Alignment = *GVAlignment;
1006 else
1007 Alignment = std::max(*GVAlignment, getABITypeAlign(ElemType));
1008 }
1009
1010 // If no explicit alignment is specified, and the global is large, increase
1011 // the alignment to 16.
1012 // FIXME: Why 16, specifically?
1013 if (GV->hasInitializer() && !GVAlignment) {
1014 if (Alignment < Align(16)) {
1015 // If the global is not external, see if it is large. If so, give it a
1016 // larger alignment.
1017 if (getTypeSizeInBits(ElemType) > 128)
1018 Alignment = Align(16); // 16-byte alignment.
1019 }
1020 }
1021 return Alignment;
1022}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static Error parseSize(StringRef Str, unsigned &BitWidth, StringRef Name="size")
Attempts to parse a size component of a specification.
Definition: DataLayout.cpp:288
static APInt getElementIndex(TypeSize ElemSize, APInt &Offset)
Definition: DataLayout.cpp:920
static Error parseAddrSpace(StringRef Str, unsigned &AddrSpace)
Attempts to parse an address space component of a specification.
Definition: DataLayout.cpp:277
static Error createSpecFormatError(Twine Format)
Definition: DataLayout.cpp:271
static Error parseAlignment(StringRef Str, Align &Alignment, StringRef Name, bool AllowZero=false)
Attempts to parse an alignment component of a specification.
Definition: DataLayout.cpp:310
constexpr DataLayout::PrimitiveSpec DefaultFloatSpecs[]
Definition: DataLayout.cpp:197
constexpr DataLayout::PrimitiveSpec DefaultVectorSpecs[]
Definition: DataLayout.cpp:203
constexpr DataLayout::PointerSpec DefaultPointerSpecs[]
Definition: DataLayout.cpp:209
constexpr DataLayout::PrimitiveSpec DefaultIntSpecs[]
Definition: DataLayout.cpp:190
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
std::string Name
#define I(x, y, z)
Definition: MD5.cpp:58
This file defines counterparts of C library allocation functions defined in the namespace 'std'.
static unsigned getAddressSpace(const Value *V, unsigned MaxLookup)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some functions that are useful when dealing with strings.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition: APInt.h:200
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator end() const
Definition: ArrayRef.h:157
iterator begin() const
Definition: ArrayRef.h:156
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
static const char * getManglingComponent(const Triple &T)
Definition: DataLayout.cpp:176
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:364
@ MultipleOfFunctionAlign
The function pointer alignment is a multiple of the function alignment.
@ Independent
The function pointer alignment is independent of the function alignment.
SmallVector< APInt > getGEPIndicesForOffset(Type *&ElemTy, APInt &Offset) const
Get GEP indices to access Offset inside ElemTy.
Definition: DataLayout.cpp:971
unsigned getLargestLegalIntTypeSizeInBits() const
Returns the size of largest legal integer type size, or 0 if none are set.
Definition: DataLayout.cpp:873
unsigned getIndexSize(unsigned AS) const
rounded up to a whole number of bytes.
Definition: DataLayout.cpp:750
const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:709
DataLayout()
Constructs a DataLayout with default values.
Definition: DataLayout.cpp:214
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
Definition: DataLayout.cpp:851
Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
Definition: DataLayout.cpp:843
unsigned getIndexTypeSizeInBits(Type *Ty) const
Layout size of the index used in GEP calculation.
Definition: DataLayout.cpp:754
unsigned getPointerTypeSizeInBits(Type *) const
Layout pointer size, in bits, based on the type.
Definition: DataLayout.cpp:743
DataLayout & operator=(const DataLayout &Other)
Definition: DataLayout.cpp:225
IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
Definition: DataLayout.cpp:878
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:457
std::optional< APInt > getGEPIndexForOffset(Type *&ElemTy, APInt &Offset) const
Get single GEP index to access Offset inside ElemTy.
Definition: DataLayout.cpp:941
Type * getSmallestLegalIntType(LLVMContext &C, unsigned Width=0) const
Returns the smallest integer type with size at least as big as Width bits.
Definition: DataLayout.cpp:866
Align getPreferredAlign(const GlobalVariable *GV) const
Returns the preferred alignment of the specified global.
Definition: DataLayout.cpp:988
unsigned getPointerSize(unsigned AS=0) const
Layout pointer size in bytes, rounded up to a whole number of bytes.
Definition: DataLayout.cpp:739
Align getPointerPrefAlignment(unsigned AS=0) const
Return target's alignment for stack-based pointers FIXME: The defaults need to be removed once all of...
Definition: DataLayout.cpp:735
unsigned getIndexSizeInBits(unsigned AS) const
Size in bits of index used for address calculation in getelementptr.
Definition: DataLayout.h:369
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:617
TypeSize getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type.
Definition: DataLayout.h:421
bool operator==(const DataLayout &Other) const
Definition: DataLayout.cpp:247
int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef< Value * > Indices) const
Returns the offset from the beginning of the type for the specified indices.
Definition: DataLayout.cpp:893
Align getPointerABIAlignment(unsigned AS) const
Layout pointer alignment.
Definition: DataLayout.cpp:731
Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Definition: DataLayout.cpp:847
static Expected< DataLayout > parse(StringRef LayoutString)
Parse a data layout string and return the layout.
Definition: DataLayout.cpp:264
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
static ErrorSuccess success()
Create a success value.
Definition: Error.h:337
Tagged union holding either a T or a Error.
Definition: Error.h:481
MaybeAlign getAlign() const
Returns the alignment of the given variable or function.
Definition: GlobalObject.h:79
bool hasSection() const
Check if this global has a custom object file section.
Definition: GlobalObject.h:109
Type * getValueType() const
Definition: GlobalValue.h:296
bool hasInitializer() const
Definitions have initializers, declarations don't.
Class to represent integer types.
Definition: DerivedTypes.h:42
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:311
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:805
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:147
StringRef drop_front(size_t N=1) const
Return a StringRef equal to 'this' but with the first N elements dropped.
Definition: StringRef.h:609
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:150
char front() const
front - Get the first character in the string.
Definition: StringRef.h:153
bool consume_front(StringRef Prefix)
Returns true if this StringRef has the given prefix and removes that prefix.
Definition: StringRef.h:635
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:567
TypeSize getSizeInBytes() const
Definition: DataLayout.h:574
MutableArrayRef< TypeSize > getMemberOffsets()
Definition: DataLayout.h:588
unsigned getElementContainingOffset(uint64_t FixedOffset) const
Given a valid byte offset into the structure, returns the structure index that contains it.
Definition: DataLayout.cpp:92
TypeSize getElementOffset(unsigned Idx) const
Definition: DataLayout.h:596
Align getAlignment() const
Definition: DataLayout.h:578
Class to represent struct types.
Definition: DerivedTypes.h:218
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:365
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition: TypeSize.h:345
static constexpr TypeSize getScalable(ScalarTy MinimumSize)
Definition: TypeSize.h:348
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getIntegerBitWidth() const
@ X86_AMXTyID
AMX vectors (8192 bits, X86 specific)
Definition: Type.h:66
@ ArrayTyID
Arrays.
Definition: Type.h:74
@ HalfTyID
16-bit floating point type
Definition: Type.h:56
@ TargetExtTyID
Target extension type.
Definition: Type.h:78
@ ScalableVectorTyID
Scalable SIMD vector type.
Definition: Type.h:76
@ LabelTyID
Labels.
Definition: Type.h:64
@ FloatTyID
32-bit floating point type
Definition: Type.h:58
@ StructTyID
Structures.
Definition: Type.h:73
@ IntegerTyID
Arbitrary bit width integers.
Definition: Type.h:70
@ FixedVectorTyID
Fixed width SIMD vector type.
Definition: Type.h:75
@ BFloatTyID
16-bit floating point type (7-bit significand)
Definition: Type.h:57
@ DoubleTyID
64-bit floating point type
Definition: Type.h:59
@ X86_FP80TyID
80-bit floating point type (X87)
Definition: Type.h:60
@ PPC_FP128TyID
128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:62
@ PointerTyID
Pointers.
Definition: Type.h:72
@ FP128TyID
128-bit floating point type (112-bit significand)
Definition: Type.h:61
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:310
bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
Definition: Type.h:267
TypeID getTypeID() const
Return the type id for the type.
Definition: Type.h:136
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:355
LLVM Value Representation.
Definition: Value.h:74
Base class of all SIMD vector types.
Definition: DerivedTypes.h:427
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:202
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:232
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:171
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:168
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:225
TypeSize getSequentialElementStride(const DataLayout &DL) const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
constexpr double e
Definition: MathExtras.h:47
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:255
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition: Alignment.h:145
gep_type_iterator gep_type_end(const User *GEP)
Error createStringError(std::error_code EC, char const *Fmt, const Ts &... Vals)
Create formatted StringError object.
Definition: Error.h:1291
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition: MathExtras.h:394
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:291
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
LLVM_ATTRIBUTE_RETURNS_NONNULL void * safe_malloc(size_t Sz)
Definition: MemAlloc.h:25
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition: MathExtras.h:403
@ Other
Any other memory.
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1978
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
auto max_element(R &&Range)
Provide wrappers to std::max_element which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:2014
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:217
gep_type_iterator gep_type_begin(const User *GEP)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Pointer type specification.
Definition: DataLayout.h:75
bool operator==(const PointerSpec &Other) const
Definition: DataLayout.cpp:151
Primitive type specification.
Definition: DataLayout.h:66
bool operator==(const PrimitiveSpec &Other) const
Definition: DataLayout.cpp:146
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117