LLVM 20.0.0git
APInt.h
Go to the documentation of this file.
1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <optional>
25#include <utility>
26
27namespace llvm {
28class FoldingSetNodeID;
29class StringRef;
30class hash_code;
31class raw_ostream;
32struct Align;
33class DynamicAPInt;
34
35template <typename T> class SmallVectorImpl;
36template <typename T> class ArrayRef;
37template <typename T, typename Enable> struct DenseMapInfo;
38
39class APInt;
40
41inline APInt operator-(APInt);
42
43//===----------------------------------------------------------------------===//
44// APInt Class
45//===----------------------------------------------------------------------===//
46
47/// Class for arbitrary precision integers.
48///
49/// APInt is a functional replacement for common case unsigned integer type like
50/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
51/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
52/// than 64-bits of precision. APInt provides a variety of arithmetic operators
53/// and methods to manipulate integer values of any bit-width. It supports both
54/// the typical integer arithmetic and comparison operations as well as bitwise
55/// manipulation.
56///
57/// The class has several invariants worth noting:
58/// * All bit, byte, and word positions are zero-based.
59/// * Once the bit width is set, it doesn't change except by the Truncate,
60/// SignExtend, or ZeroExtend operations.
61/// * All binary operators must be on APInt instances of the same bit width.
62/// Attempting to use these operators on instances with different bit
63/// widths will yield an assertion.
64/// * The value is stored canonically as an unsigned value. For operations
65/// where it makes a difference, there are both signed and unsigned variants
66/// of the operation. For example, sdiv and udiv. However, because the bit
67/// widths must be the same, operations such as Mul and Add produce the same
68/// results regardless of whether the values are interpreted as signed or
69/// not.
70/// * In general, the class tries to follow the style of computation that LLVM
71/// uses in its IR. This simplifies its use for LLVM.
72/// * APInt supports zero-bit-width values, but operations that require bits
73/// are not defined on it (e.g. you cannot ask for the sign of a zero-bit
74/// integer). This means that operations like zero extension and logical
75/// shifts are defined, but sign extension and ashr is not. Zero bit values
76/// compare and hash equal to themselves, and countLeadingZeros returns 0.
77///
78class [[nodiscard]] APInt {
79public:
81
82 /// Byte size of a word.
83 static constexpr unsigned APINT_WORD_SIZE = sizeof(WordType);
84
85 /// Bits in a word.
86 static constexpr unsigned APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT;
87
88 enum class Rounding {
89 DOWN,
90 TOWARD_ZERO,
91 UP,
92 };
93
94 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
95
96 /// \name Constructors
97 /// @{
98
99 /// Create a new APInt of numBits width, initialized as val.
100 ///
101 /// If isSigned is true then val is treated as if it were a signed value
102 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
103 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
104 /// the range of val are zero filled).
105 ///
106 /// \param numBits the bit width of the constructed APInt
107 /// \param val the initial value of the APInt
108 /// \param isSigned how to treat signedness of val
109 /// \param implicitTrunc allow implicit truncation of non-zero/sign bits of
110 /// val beyond the range of numBits
111 APInt(unsigned numBits, uint64_t val, bool isSigned = false,
112 bool implicitTrunc = false)
113 : BitWidth(numBits) {
114 if (!implicitTrunc) {
115 if (isSigned) {
116 if (BitWidth == 0) {
117 assert((val == 0 || val == uint64_t(-1)) &&
118 "Value must be 0 or -1 for signed 0-bit APInt");
119 } else {
121 "Value is not an N-bit signed value");
122 }
123 } else {
124 if (BitWidth == 0) {
125 assert(val == 0 && "Value must be zero for unsigned 0-bit APInt");
126 } else {
128 "Value is not an N-bit unsigned value");
129 }
130 }
131 }
132 if (isSingleWord()) {
133 U.VAL = val;
134 if (implicitTrunc || isSigned)
136 } else {
137 initSlowCase(val, isSigned);
138 }
139 }
140
141 /// Construct an APInt of numBits width, initialized as bigVal[].
142 ///
143 /// Note that bigVal.size() can be smaller or larger than the corresponding
144 /// bit width but any extraneous bits will be dropped.
145 ///
146 /// \param numBits the bit width of the constructed APInt
147 /// \param bigVal a sequence of words to form the initial value of the APInt
148 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
149
150 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
151 /// deprecated because this constructor is prone to ambiguity with the
152 /// APInt(unsigned, uint64_t, bool) constructor.
153 ///
154 /// If this overload is ever deleted, care should be taken to prevent calls
155 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
156 /// constructor.
157 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
158
159 /// Construct an APInt from a string representation.
160 ///
161 /// This constructor interprets the string \p str in the given radix. The
162 /// interpretation stops when the first character that is not suitable for the
163 /// radix is encountered, or the end of the string. Acceptable radix values
164 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
165 /// string to require more bits than numBits.
166 ///
167 /// \param numBits the bit width of the constructed APInt
168 /// \param str the string to be interpreted
169 /// \param radix the radix to use for the conversion
170 APInt(unsigned numBits, StringRef str, uint8_t radix);
171
172 /// Default constructor that creates an APInt with a 1-bit zero value.
173 explicit APInt() { U.VAL = 0; }
174
175 /// Copy Constructor.
176 APInt(const APInt &that) : BitWidth(that.BitWidth) {
177 if (isSingleWord())
178 U.VAL = that.U.VAL;
179 else
180 initSlowCase(that);
181 }
182
183 /// Move Constructor.
184 APInt(APInt &&that) : BitWidth(that.BitWidth) {
185 memcpy(&U, &that.U, sizeof(U));
186 that.BitWidth = 0;
187 }
188
189 /// Destructor.
191 if (needsCleanup())
192 delete[] U.pVal;
193 }
194
195 /// @}
196 /// \name Value Generators
197 /// @{
198
199 /// Get the '0' value for the specified bit-width.
200 static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
201
202 /// Return an APInt zero bits wide.
203 static APInt getZeroWidth() { return getZero(0); }
204
205 /// Gets maximum unsigned value of APInt for specific bit width.
206 static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
207
208 /// Gets maximum signed value of APInt for a specific bit width.
209 static APInt getSignedMaxValue(unsigned numBits) {
210 APInt API = getAllOnes(numBits);
211 API.clearBit(numBits - 1);
212 return API;
213 }
214
215 /// Gets minimum unsigned value of APInt for a specific bit width.
216 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
217
218 /// Gets minimum signed value of APInt for a specific bit width.
219 static APInt getSignedMinValue(unsigned numBits) {
220 APInt API(numBits, 0);
221 API.setBit(numBits - 1);
222 return API;
223 }
224
225 /// Get the SignMask for a specific bit width.
226 ///
227 /// This is just a wrapper function of getSignedMinValue(), and it helps code
228 /// readability when we want to get a SignMask.
229 static APInt getSignMask(unsigned BitWidth) {
230 return getSignedMinValue(BitWidth);
231 }
232
233 /// Return an APInt of a specified width with all bits set.
234 static APInt getAllOnes(unsigned numBits) {
235 return APInt(numBits, WORDTYPE_MAX, true);
236 }
237
238 /// Return an APInt with exactly one bit set in the result.
239 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
240 APInt Res(numBits, 0);
241 Res.setBit(BitNo);
242 return Res;
243 }
244
245 /// Get a value with a block of bits set.
246 ///
247 /// Constructs an APInt value that has a contiguous range of bits set. The
248 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
249 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
250 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
251 /// \p hiBit.
252 ///
253 /// \param numBits the intended bit width of the result
254 /// \param loBit the index of the lowest bit set.
255 /// \param hiBit the index of the highest bit set.
256 ///
257 /// \returns An APInt value with the requested bits set.
258 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
259 APInt Res(numBits, 0);
260 Res.setBits(loBit, hiBit);
261 return Res;
262 }
263
264 /// Wrap version of getBitsSet.
265 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
266 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
267 /// with parameters (32, 28, 4), you would get 0xF000000F.
268 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
269 /// set.
270 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
271 unsigned hiBit) {
272 APInt Res(numBits, 0);
273 Res.setBitsWithWrap(loBit, hiBit);
274 return Res;
275 }
276
277 /// Constructs an APInt value that has a contiguous range of bits set. The
278 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
279 /// bits will be zero. For example, with parameters(32, 12) you would get
280 /// 0xFFFFF000.
281 ///
282 /// \param numBits the intended bit width of the result
283 /// \param loBit the index of the lowest bit to set.
284 ///
285 /// \returns An APInt value with the requested bits set.
286 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
287 APInt Res(numBits, 0);
288 Res.setBitsFrom(loBit);
289 return Res;
290 }
291
292 /// Constructs an APInt value that has the top hiBitsSet bits set.
293 ///
294 /// \param numBits the bitwidth of the result
295 /// \param hiBitsSet the number of high-order bits set in the result.
296 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
297 APInt Res(numBits, 0);
298 Res.setHighBits(hiBitsSet);
299 return Res;
300 }
301
302 /// Constructs an APInt value that has the bottom loBitsSet bits set.
303 ///
304 /// \param numBits the bitwidth of the result
305 /// \param loBitsSet the number of low-order bits set in the result.
306 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
307 APInt Res(numBits, 0);
308 Res.setLowBits(loBitsSet);
309 return Res;
310 }
311
312 /// Return a value containing V broadcasted over NewLen bits.
313 static APInt getSplat(unsigned NewLen, const APInt &V);
314
315 /// @}
316 /// \name Value Tests
317 /// @{
318
319 /// Determine if this APInt just has one word to store value.
320 ///
321 /// \returns true if the number of bits <= 64, false otherwise.
322 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
323
324 /// Determine sign of this APInt.
325 ///
326 /// This tests the high bit of this APInt to determine if it is set.
327 ///
328 /// \returns true if this APInt is negative, false otherwise
329 bool isNegative() const { return (*this)[BitWidth - 1]; }
330
331 /// Determine if this APInt Value is non-negative (>= 0)
332 ///
333 /// This tests the high bit of the APInt to determine if it is unset.
334 bool isNonNegative() const { return !isNegative(); }
335
336 /// Determine if sign bit of this APInt is set.
337 ///
338 /// This tests the high bit of this APInt to determine if it is set.
339 ///
340 /// \returns true if this APInt has its sign bit set, false otherwise.
341 bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
342
343 /// Determine if sign bit of this APInt is clear.
344 ///
345 /// This tests the high bit of this APInt to determine if it is clear.
346 ///
347 /// \returns true if this APInt has its sign bit clear, false otherwise.
348 bool isSignBitClear() const { return !isSignBitSet(); }
349
350 /// Determine if this APInt Value is positive.
351 ///
352 /// This tests if the value of this APInt is positive (> 0). Note
353 /// that 0 is not a positive value.
354 ///
355 /// \returns true if this APInt is positive.
356 bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
357
358 /// Determine if this APInt Value is non-positive (<= 0).
359 ///
360 /// \returns true if this APInt is non-positive.
361 bool isNonPositive() const { return !isStrictlyPositive(); }
362
363 /// Determine if this APInt Value only has the specified bit set.
364 ///
365 /// \returns true if this APInt only has the specified bit set.
366 bool isOneBitSet(unsigned BitNo) const {
367 return (*this)[BitNo] && popcount() == 1;
368 }
369
370 /// Determine if all bits are set. This is true for zero-width values.
371 bool isAllOnes() const {
372 if (BitWidth == 0)
373 return true;
374 if (isSingleWord())
375 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
376 return countTrailingOnesSlowCase() == BitWidth;
377 }
378
379 /// Determine if this value is zero, i.e. all bits are clear.
380 bool isZero() const {
381 if (isSingleWord())
382 return U.VAL == 0;
383 return countLeadingZerosSlowCase() == BitWidth;
384 }
385
386 /// Determine if this is a value of 1.
387 ///
388 /// This checks to see if the value of this APInt is one.
389 bool isOne() const {
390 if (isSingleWord())
391 return U.VAL == 1;
392 return countLeadingZerosSlowCase() == BitWidth - 1;
393 }
394
395 /// Determine if this is the largest unsigned value.
396 ///
397 /// This checks to see if the value of this APInt is the maximum unsigned
398 /// value for the APInt's bit width.
399 bool isMaxValue() const { return isAllOnes(); }
400
401 /// Determine if this is the largest signed value.
402 ///
403 /// This checks to see if the value of this APInt is the maximum signed
404 /// value for the APInt's bit width.
405 bool isMaxSignedValue() const {
406 if (isSingleWord()) {
407 assert(BitWidth && "zero width values not allowed");
408 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
409 }
410 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
411 }
412
413 /// Determine if this is the smallest unsigned value.
414 ///
415 /// This checks to see if the value of this APInt is the minimum unsigned
416 /// value for the APInt's bit width.
417 bool isMinValue() const { return isZero(); }
418
419 /// Determine if this is the smallest signed value.
420 ///
421 /// This checks to see if the value of this APInt is the minimum signed
422 /// value for the APInt's bit width.
423 bool isMinSignedValue() const {
424 if (isSingleWord()) {
425 assert(BitWidth && "zero width values not allowed");
426 return U.VAL == (WordType(1) << (BitWidth - 1));
427 }
428 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
429 }
430
431 /// Check if this APInt has an N-bits unsigned integer value.
432 bool isIntN(unsigned N) const { return getActiveBits() <= N; }
433
434 /// Check if this APInt has an N-bits signed integer value.
435 bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
436
437 /// Check if this APInt's value is a power of two greater than zero.
438 ///
439 /// \returns true if the argument APInt value is a power of two > 0.
440 bool isPowerOf2() const {
441 if (isSingleWord()) {
442 assert(BitWidth && "zero width values not allowed");
443 return isPowerOf2_64(U.VAL);
444 }
445 return countPopulationSlowCase() == 1;
446 }
447
448 /// Check if this APInt's negated value is a power of two greater than zero.
449 bool isNegatedPowerOf2() const {
450 assert(BitWidth && "zero width values not allowed");
451 if (isNonNegative())
452 return false;
453 // NegatedPowerOf2 - shifted mask in the top bits.
454 unsigned LO = countl_one();
455 unsigned TZ = countr_zero();
456 return (LO + TZ) == BitWidth;
457 }
458
459 /// Checks if this APInt -interpreted as an address- is aligned to the
460 /// provided value.
461 bool isAligned(Align A) const;
462
463 /// Check if the APInt's value is returned by getSignMask.
464 ///
465 /// \returns true if this is the value returned by getSignMask.
466 bool isSignMask() const { return isMinSignedValue(); }
467
468 /// Convert APInt to a boolean value.
469 ///
470 /// This converts the APInt to a boolean value as a test against zero.
471 bool getBoolValue() const { return !isZero(); }
472
473 /// If this value is smaller than the specified limit, return it, otherwise
474 /// return the limit value. This causes the value to saturate to the limit.
476 return ugt(Limit) ? Limit : getZExtValue();
477 }
478
479 /// Check if the APInt consists of a repeated bit pattern.
480 ///
481 /// e.g. 0x01010101 satisfies isSplat(8).
482 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
483 /// width without remainder.
484 bool isSplat(unsigned SplatSizeInBits) const;
485
486 /// \returns true if this APInt value is a sequence of \param numBits ones
487 /// starting at the least significant bit with the remainder zero.
488 bool isMask(unsigned numBits) const {
489 assert(numBits != 0 && "numBits must be non-zero");
490 assert(numBits <= BitWidth && "numBits out of range");
491 if (isSingleWord())
492 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
493 unsigned Ones = countTrailingOnesSlowCase();
494 return (numBits == Ones) &&
495 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
496 }
497
498 /// \returns true if this APInt is a non-empty sequence of ones starting at
499 /// the least significant bit with the remainder zero.
500 /// Ex. isMask(0x0000FFFFU) == true.
501 bool isMask() const {
502 if (isSingleWord())
503 return isMask_64(U.VAL);
504 unsigned Ones = countTrailingOnesSlowCase();
505 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
506 }
507
508 /// Return true if this APInt value contains a non-empty sequence of ones with
509 /// the remainder zero.
510 bool isShiftedMask() const {
511 if (isSingleWord())
512 return isShiftedMask_64(U.VAL);
513 unsigned Ones = countPopulationSlowCase();
514 unsigned LeadZ = countLeadingZerosSlowCase();
515 return (Ones + LeadZ + countTrailingZerosSlowCase()) == BitWidth;
516 }
517
518 /// Return true if this APInt value contains a non-empty sequence of ones with
519 /// the remainder zero. If true, \p MaskIdx will specify the index of the
520 /// lowest set bit and \p MaskLen is updated to specify the length of the
521 /// mask, else neither are updated.
522 bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
523 if (isSingleWord())
524 return isShiftedMask_64(U.VAL, MaskIdx, MaskLen);
525 unsigned Ones = countPopulationSlowCase();
526 unsigned LeadZ = countLeadingZerosSlowCase();
527 unsigned TrailZ = countTrailingZerosSlowCase();
528 if ((Ones + LeadZ + TrailZ) != BitWidth)
529 return false;
530 MaskLen = Ones;
531 MaskIdx = TrailZ;
532 return true;
533 }
534
535 /// Compute an APInt containing numBits highbits from this APInt.
536 ///
537 /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
538 /// bits and right shift to the least significant bit.
539 ///
540 /// \returns the high "numBits" bits of this APInt.
541 APInt getHiBits(unsigned numBits) const;
542
543 /// Compute an APInt containing numBits lowbits from this APInt.
544 ///
545 /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
546 /// bits.
547 ///
548 /// \returns the low "numBits" bits of this APInt.
549 APInt getLoBits(unsigned numBits) const;
550
551 /// Determine if two APInts have the same value, after zero-extending
552 /// one of them (if needed!) to ensure that the bit-widths match.
553 static bool isSameValue(const APInt &I1, const APInt &I2) {
554 if (I1.getBitWidth() == I2.getBitWidth())
555 return I1 == I2;
556
557 if (I1.getBitWidth() > I2.getBitWidth())
558 return I1 == I2.zext(I1.getBitWidth());
559
560 return I1.zext(I2.getBitWidth()) == I2;
561 }
562
563 /// Overload to compute a hash_code for an APInt value.
564 friend hash_code hash_value(const APInt &Arg);
565
566 /// This function returns a pointer to the internal storage of the APInt.
567 /// This is useful for writing out the APInt in binary form without any
568 /// conversions.
569 const uint64_t *getRawData() const {
570 if (isSingleWord())
571 return &U.VAL;
572 return &U.pVal[0];
573 }
574
575 /// @}
576 /// \name Unary Operators
577 /// @{
578
579 /// Postfix increment operator. Increment *this by 1.
580 ///
581 /// \returns a new APInt value representing the original value of *this.
583 APInt API(*this);
584 ++(*this);
585 return API;
586 }
587
588 /// Prefix increment operator.
589 ///
590 /// \returns *this incremented by one
591 APInt &operator++();
592
593 /// Postfix decrement operator. Decrement *this by 1.
594 ///
595 /// \returns a new APInt value representing the original value of *this.
597 APInt API(*this);
598 --(*this);
599 return API;
600 }
601
602 /// Prefix decrement operator.
603 ///
604 /// \returns *this decremented by one.
605 APInt &operator--();
606
607 /// Logical negation operation on this APInt returns true if zero, like normal
608 /// integers.
609 bool operator!() const { return isZero(); }
610
611 /// @}
612 /// \name Assignment Operators
613 /// @{
614
615 /// Copy assignment operator.
616 ///
617 /// \returns *this after assignment of RHS.
619 // The common case (both source or dest being inline) doesn't require
620 // allocation or deallocation.
621 if (isSingleWord() && RHS.isSingleWord()) {
622 U.VAL = RHS.U.VAL;
623 BitWidth = RHS.BitWidth;
624 return *this;
625 }
626
627 assignSlowCase(RHS);
628 return *this;
629 }
630
631 /// Move assignment operator.
633#ifdef EXPENSIVE_CHECKS
634 // Some std::shuffle implementations still do self-assignment.
635 if (this == &that)
636 return *this;
637#endif
638 assert(this != &that && "Self-move not supported");
639 if (!isSingleWord())
640 delete[] U.pVal;
641
642 // Use memcpy so that type based alias analysis sees both VAL and pVal
643 // as modified.
644 memcpy(&U, &that.U, sizeof(U));
645
646 BitWidth = that.BitWidth;
647 that.BitWidth = 0;
648 return *this;
649 }
650
651 /// Assignment operator.
652 ///
653 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
654 /// the bit width, the excess bits are truncated. If the bit width is larger
655 /// than 64, the value is zero filled in the unspecified high order bits.
656 ///
657 /// \returns *this after assignment of RHS value.
659 if (isSingleWord()) {
660 U.VAL = RHS;
661 return clearUnusedBits();
662 }
663 U.pVal[0] = RHS;
664 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
665 return *this;
666 }
667
668 /// Bitwise AND assignment operator.
669 ///
670 /// Performs a bitwise AND operation on this APInt and RHS. The result is
671 /// assigned to *this.
672 ///
673 /// \returns *this after ANDing with RHS.
675 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
676 if (isSingleWord())
677 U.VAL &= RHS.U.VAL;
678 else
679 andAssignSlowCase(RHS);
680 return *this;
681 }
682
683 /// Bitwise AND assignment operator.
684 ///
685 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
686 /// logically zero-extended or truncated to match the bit-width of
687 /// the LHS.
689 if (isSingleWord()) {
690 U.VAL &= RHS;
691 return *this;
692 }
693 U.pVal[0] &= RHS;
694 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
695 return *this;
696 }
697
698 /// Bitwise OR assignment operator.
699 ///
700 /// Performs a bitwise OR operation on this APInt and RHS. The result is
701 /// assigned *this;
702 ///
703 /// \returns *this after ORing with RHS.
705 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
706 if (isSingleWord())
707 U.VAL |= RHS.U.VAL;
708 else
709 orAssignSlowCase(RHS);
710 return *this;
711 }
712
713 /// Bitwise OR assignment operator.
714 ///
715 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
716 /// logically zero-extended or truncated to match the bit-width of
717 /// the LHS.
719 if (isSingleWord()) {
720 U.VAL |= RHS;
721 return clearUnusedBits();
722 }
723 U.pVal[0] |= RHS;
724 return *this;
725 }
726
727 /// Bitwise XOR assignment operator.
728 ///
729 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
730 /// assigned to *this.
731 ///
732 /// \returns *this after XORing with RHS.
734 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
735 if (isSingleWord())
736 U.VAL ^= RHS.U.VAL;
737 else
738 xorAssignSlowCase(RHS);
739 return *this;
740 }
741
742 /// Bitwise XOR assignment operator.
743 ///
744 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
745 /// logically zero-extended or truncated to match the bit-width of
746 /// the LHS.
748 if (isSingleWord()) {
749 U.VAL ^= RHS;
750 return clearUnusedBits();
751 }
752 U.pVal[0] ^= RHS;
753 return *this;
754 }
755
756 /// Multiplication assignment operator.
757 ///
758 /// Multiplies this APInt by RHS and assigns the result to *this.
759 ///
760 /// \returns *this
761 APInt &operator*=(const APInt &RHS);
763
764 /// Addition assignment operator.
765 ///
766 /// Adds RHS to *this and assigns the result to *this.
767 ///
768 /// \returns *this
769 APInt &operator+=(const APInt &RHS);
771
772 /// Subtraction assignment operator.
773 ///
774 /// Subtracts RHS from *this and assigns the result to *this.
775 ///
776 /// \returns *this
777 APInt &operator-=(const APInt &RHS);
779
780 /// Left-shift assignment function.
781 ///
782 /// Shifts *this left by shiftAmt and assigns the result to *this.
783 ///
784 /// \returns *this after shifting left by ShiftAmt
785 APInt &operator<<=(unsigned ShiftAmt) {
786 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
787 if (isSingleWord()) {
788 if (ShiftAmt == BitWidth)
789 U.VAL = 0;
790 else
791 U.VAL <<= ShiftAmt;
792 return clearUnusedBits();
793 }
794 shlSlowCase(ShiftAmt);
795 return *this;
796 }
797
798 /// Left-shift assignment function.
799 ///
800 /// Shifts *this left by shiftAmt and assigns the result to *this.
801 ///
802 /// \returns *this after shifting left by ShiftAmt
803 APInt &operator<<=(const APInt &ShiftAmt);
804
805 /// @}
806 /// \name Binary Operators
807 /// @{
808
809 /// Multiplication operator.
810 ///
811 /// Multiplies this APInt by RHS and returns the result.
812 APInt operator*(const APInt &RHS) const;
813
814 /// Left logical shift operator.
815 ///
816 /// Shifts this APInt left by \p Bits and returns the result.
817 APInt operator<<(unsigned Bits) const { return shl(Bits); }
818
819 /// Left logical shift operator.
820 ///
821 /// Shifts this APInt left by \p Bits and returns the result.
822 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
823
824 /// Arithmetic right-shift function.
825 ///
826 /// Arithmetic right-shift this APInt by shiftAmt.
827 APInt ashr(unsigned ShiftAmt) const {
828 APInt R(*this);
829 R.ashrInPlace(ShiftAmt);
830 return R;
831 }
832
833 /// Arithmetic right-shift this APInt by ShiftAmt in place.
834 void ashrInPlace(unsigned ShiftAmt) {
835 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
836 if (isSingleWord()) {
837 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
838 if (ShiftAmt == BitWidth)
839 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
840 else
841 U.VAL = SExtVAL >> ShiftAmt;
843 return;
844 }
845 ashrSlowCase(ShiftAmt);
846 }
847
848 /// Logical right-shift function.
849 ///
850 /// Logical right-shift this APInt by shiftAmt.
851 APInt lshr(unsigned shiftAmt) const {
852 APInt R(*this);
853 R.lshrInPlace(shiftAmt);
854 return R;
855 }
856
857 /// Logical right-shift this APInt by ShiftAmt in place.
858 void lshrInPlace(unsigned ShiftAmt) {
859 assert(ShiftAmt <= BitWidth && "Invalid shift amount");
860 if (isSingleWord()) {
861 if (ShiftAmt == BitWidth)
862 U.VAL = 0;
863 else
864 U.VAL >>= ShiftAmt;
865 return;
866 }
867 lshrSlowCase(ShiftAmt);
868 }
869
870 /// Left-shift function.
871 ///
872 /// Left-shift this APInt by shiftAmt.
873 APInt shl(unsigned shiftAmt) const {
874 APInt R(*this);
875 R <<= shiftAmt;
876 return R;
877 }
878
879 /// relative logical shift right
880 APInt relativeLShr(int RelativeShift) const {
881 return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
882 }
883
884 /// relative logical shift left
885 APInt relativeLShl(int RelativeShift) const {
886 return relativeLShr(-RelativeShift);
887 }
888
889 /// relative arithmetic shift right
890 APInt relativeAShr(int RelativeShift) const {
891 return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
892 }
893
894 /// relative arithmetic shift left
895 APInt relativeAShl(int RelativeShift) const {
896 return relativeAShr(-RelativeShift);
897 }
898
899 /// Rotate left by rotateAmt.
900 APInt rotl(unsigned rotateAmt) const;
901
902 /// Rotate right by rotateAmt.
903 APInt rotr(unsigned rotateAmt) const;
904
905 /// Arithmetic right-shift function.
906 ///
907 /// Arithmetic right-shift this APInt by shiftAmt.
908 APInt ashr(const APInt &ShiftAmt) const {
909 APInt R(*this);
910 R.ashrInPlace(ShiftAmt);
911 return R;
912 }
913
914 /// Arithmetic right-shift this APInt by shiftAmt in place.
915 void ashrInPlace(const APInt &shiftAmt);
916
917 /// Logical right-shift function.
918 ///
919 /// Logical right-shift this APInt by shiftAmt.
920 APInt lshr(const APInt &ShiftAmt) const {
921 APInt R(*this);
922 R.lshrInPlace(ShiftAmt);
923 return R;
924 }
925
926 /// Logical right-shift this APInt by ShiftAmt in place.
927 void lshrInPlace(const APInt &ShiftAmt);
928
929 /// Left-shift function.
930 ///
931 /// Left-shift this APInt by shiftAmt.
932 APInt shl(const APInt &ShiftAmt) const {
933 APInt R(*this);
934 R <<= ShiftAmt;
935 return R;
936 }
937
938 /// Rotate left by rotateAmt.
939 APInt rotl(const APInt &rotateAmt) const;
940
941 /// Rotate right by rotateAmt.
942 APInt rotr(const APInt &rotateAmt) const;
943
944 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
945 /// equivalent to:
946 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
947 APInt concat(const APInt &NewLSB) const {
948 /// If the result will be small, then both the merged values are small.
949 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
950 if (NewWidth <= APINT_BITS_PER_WORD)
951 return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
952 return concatSlowCase(NewLSB);
953 }
954
955 /// Unsigned division operation.
956 ///
957 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
958 /// RHS are treated as unsigned quantities for purposes of this division.
959 ///
960 /// \returns a new APInt value containing the division result, rounded towards
961 /// zero.
962 APInt udiv(const APInt &RHS) const;
963 APInt udiv(uint64_t RHS) const;
964
965 /// Signed division function for APInt.
966 ///
967 /// Signed divide this APInt by APInt RHS.
968 ///
969 /// The result is rounded towards zero.
970 APInt sdiv(const APInt &RHS) const;
971 APInt sdiv(int64_t RHS) const;
972
973 /// Unsigned remainder operation.
974 ///
975 /// Perform an unsigned remainder operation on this APInt with RHS being the
976 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
977 /// of this operation.
978 ///
979 /// \returns a new APInt value containing the remainder result
980 APInt urem(const APInt &RHS) const;
981 uint64_t urem(uint64_t RHS) const;
982
983 /// Function for signed remainder operation.
984 ///
985 /// Signed remainder operation on APInt.
986 ///
987 /// Note that this is a true remainder operation and not a modulo operation
988 /// because the sign follows the sign of the dividend which is *this.
989 APInt srem(const APInt &RHS) const;
990 int64_t srem(int64_t RHS) const;
991
992 /// Dual division/remainder interface.
993 ///
994 /// Sometimes it is convenient to divide two APInt values and obtain both the
995 /// quotient and remainder. This function does both operations in the same
996 /// computation making it a little more efficient. The pair of input arguments
997 /// may overlap with the pair of output arguments. It is safe to call
998 /// udivrem(X, Y, X, Y), for example.
999 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1000 APInt &Remainder);
1001 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1002 uint64_t &Remainder);
1003
1004 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1005 APInt &Remainder);
1006 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1007 int64_t &Remainder);
1008
1009 // Operations that return overflow indicators.
1010 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1011 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1012 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1013 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1014 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1015 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1016 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1017 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1018 APInt sshl_ov(unsigned Amt, bool &Overflow) const;
1019 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1020 APInt ushl_ov(unsigned Amt, bool &Overflow) const;
1021
1022 /// Signed integer floor division operation.
1023 ///
1024 /// Rounds towards negative infinity, i.e. 5 / -2 = -3. Iff minimum value
1025 /// divided by -1 set Overflow to true.
1026 APInt sfloordiv_ov(const APInt &RHS, bool &Overflow) const;
1027
1028 // Operations that saturate
1029 APInt sadd_sat(const APInt &RHS) const;
1030 APInt uadd_sat(const APInt &RHS) const;
1031 APInt ssub_sat(const APInt &RHS) const;
1032 APInt usub_sat(const APInt &RHS) const;
1033 APInt smul_sat(const APInt &RHS) const;
1034 APInt umul_sat(const APInt &RHS) const;
1035 APInt sshl_sat(const APInt &RHS) const;
1036 APInt sshl_sat(unsigned RHS) const;
1037 APInt ushl_sat(const APInt &RHS) const;
1038 APInt ushl_sat(unsigned RHS) const;
1039
1040 /// Array-indexing support.
1041 ///
1042 /// \returns the bit value at bitPosition
1043 bool operator[](unsigned bitPosition) const {
1044 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1045 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1046 }
1047
1048 /// @}
1049 /// \name Comparison Operators
1050 /// @{
1051
1052 /// Equality operator.
1053 ///
1054 /// Compares this APInt with RHS for the validity of the equality
1055 /// relationship.
1056 bool operator==(const APInt &RHS) const {
1057 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1058 if (isSingleWord())
1059 return U.VAL == RHS.U.VAL;
1060 return equalSlowCase(RHS);
1061 }
1062
1063 /// Equality operator.
1064 ///
1065 /// Compares this APInt with a uint64_t for the validity of the equality
1066 /// relationship.
1067 ///
1068 /// \returns true if *this == Val
1069 bool operator==(uint64_t Val) const {
1070 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1071 }
1072
1073 /// Equality comparison.
1074 ///
1075 /// Compares this APInt with RHS for the validity of the equality
1076 /// relationship.
1077 ///
1078 /// \returns true if *this == Val
1079 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1080
1081 /// Inequality operator.
1082 ///
1083 /// Compares this APInt with RHS for the validity of the inequality
1084 /// relationship.
1085 ///
1086 /// \returns true if *this != Val
1087 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1088
1089 /// Inequality operator.
1090 ///
1091 /// Compares this APInt with a uint64_t for the validity of the inequality
1092 /// relationship.
1093 ///
1094 /// \returns true if *this != Val
1095 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1096
1097 /// Inequality comparison
1098 ///
1099 /// Compares this APInt with RHS for the validity of the inequality
1100 /// relationship.
1101 ///
1102 /// \returns true if *this != Val
1103 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1104
1105 /// Unsigned less than comparison
1106 ///
1107 /// Regards both *this and RHS as unsigned quantities and compares them for
1108 /// the validity of the less-than relationship.
1109 ///
1110 /// \returns true if *this < RHS when both are considered unsigned.
1111 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1112
1113 /// Unsigned less than comparison
1114 ///
1115 /// Regards both *this as an unsigned quantity and compares it with RHS for
1116 /// the validity of the less-than relationship.
1117 ///
1118 /// \returns true if *this < RHS when considered unsigned.
1119 bool ult(uint64_t RHS) const {
1120 // Only need to check active bits if not a single word.
1121 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1122 }
1123
1124 /// Signed less than comparison
1125 ///
1126 /// Regards both *this and RHS as signed quantities and compares them for
1127 /// validity of the less-than relationship.
1128 ///
1129 /// \returns true if *this < RHS when both are considered signed.
1130 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1131
1132 /// Signed less than comparison
1133 ///
1134 /// Regards both *this as a signed quantity and compares it with RHS for
1135 /// the validity of the less-than relationship.
1136 ///
1137 /// \returns true if *this < RHS when considered signed.
1138 bool slt(int64_t RHS) const {
1139 return (!isSingleWord() && getSignificantBits() > 64)
1140 ? isNegative()
1141 : getSExtValue() < RHS;
1142 }
1143
1144 /// Unsigned less or equal comparison
1145 ///
1146 /// Regards both *this and RHS as unsigned quantities and compares them for
1147 /// validity of the less-or-equal relationship.
1148 ///
1149 /// \returns true if *this <= RHS when both are considered unsigned.
1150 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1151
1152 /// Unsigned less or equal comparison
1153 ///
1154 /// Regards both *this as an unsigned quantity and compares it with RHS for
1155 /// the validity of the less-or-equal relationship.
1156 ///
1157 /// \returns true if *this <= RHS when considered unsigned.
1158 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1159
1160 /// Signed less or equal comparison
1161 ///
1162 /// Regards both *this and RHS as signed quantities and compares them for
1163 /// validity of the less-or-equal relationship.
1164 ///
1165 /// \returns true if *this <= RHS when both are considered signed.
1166 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1167
1168 /// Signed less or equal comparison
1169 ///
1170 /// Regards both *this as a signed quantity and compares it with RHS for the
1171 /// validity of the less-or-equal relationship.
1172 ///
1173 /// \returns true if *this <= RHS when considered signed.
1174 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1175
1176 /// Unsigned greater than comparison
1177 ///
1178 /// Regards both *this and RHS as unsigned quantities and compares them for
1179 /// the validity of the greater-than relationship.
1180 ///
1181 /// \returns true if *this > RHS when both are considered unsigned.
1182 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1183
1184 /// Unsigned greater than comparison
1185 ///
1186 /// Regards both *this as an unsigned quantity and compares it with RHS for
1187 /// the validity of the greater-than relationship.
1188 ///
1189 /// \returns true if *this > RHS when considered unsigned.
1190 bool ugt(uint64_t RHS) const {
1191 // Only need to check active bits if not a single word.
1192 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1193 }
1194
1195 /// Signed greater than comparison
1196 ///
1197 /// Regards both *this and RHS as signed quantities and compares them for the
1198 /// validity of the greater-than relationship.
1199 ///
1200 /// \returns true if *this > RHS when both are considered signed.
1201 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1202
1203 /// Signed greater than comparison
1204 ///
1205 /// Regards both *this as a signed quantity and compares it with RHS for
1206 /// the validity of the greater-than relationship.
1207 ///
1208 /// \returns true if *this > RHS when considered signed.
1209 bool sgt(int64_t RHS) const {
1210 return (!isSingleWord() && getSignificantBits() > 64)
1211 ? !isNegative()
1212 : getSExtValue() > RHS;
1213 }
1214
1215 /// Unsigned greater or equal comparison
1216 ///
1217 /// Regards both *this and RHS as unsigned quantities and compares them for
1218 /// validity of the greater-or-equal relationship.
1219 ///
1220 /// \returns true if *this >= RHS when both are considered unsigned.
1221 bool uge(const APInt &RHS) const { return !ult(RHS); }
1222
1223 /// Unsigned greater or equal comparison
1224 ///
1225 /// Regards both *this as an unsigned quantity and compares it with RHS for
1226 /// the validity of the greater-or-equal relationship.
1227 ///
1228 /// \returns true if *this >= RHS when considered unsigned.
1229 bool uge(uint64_t RHS) const { return !ult(RHS); }
1230
1231 /// Signed greater or equal comparison
1232 ///
1233 /// Regards both *this and RHS as signed quantities and compares them for
1234 /// validity of the greater-or-equal relationship.
1235 ///
1236 /// \returns true if *this >= RHS when both are considered signed.
1237 bool sge(const APInt &RHS) const { return !slt(RHS); }
1238
1239 /// Signed greater or equal comparison
1240 ///
1241 /// Regards both *this as a signed quantity and compares it with RHS for
1242 /// the validity of the greater-or-equal relationship.
1243 ///
1244 /// \returns true if *this >= RHS when considered signed.
1245 bool sge(int64_t RHS) const { return !slt(RHS); }
1246
1247 /// This operation tests if there are any pairs of corresponding bits
1248 /// between this APInt and RHS that are both set.
1249 bool intersects(const APInt &RHS) const {
1250 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1251 if (isSingleWord())
1252 return (U.VAL & RHS.U.VAL) != 0;
1253 return intersectsSlowCase(RHS);
1254 }
1255
1256 /// This operation checks that all bits set in this APInt are also set in RHS.
1257 bool isSubsetOf(const APInt &RHS) const {
1258 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1259 if (isSingleWord())
1260 return (U.VAL & ~RHS.U.VAL) == 0;
1261 return isSubsetOfSlowCase(RHS);
1262 }
1263
1264 /// @}
1265 /// \name Resizing Operators
1266 /// @{
1267
1268 /// Truncate to new width.
1269 ///
1270 /// Truncate the APInt to a specified width. It is an error to specify a width
1271 /// that is greater than the current width.
1272 APInt trunc(unsigned width) const;
1273
1274 /// Truncate to new width with unsigned saturation.
1275 ///
1276 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1277 /// the new bitwidth, then return truncated APInt. Else, return max value.
1278 APInt truncUSat(unsigned width) const;
1279
1280 /// Truncate to new width with signed saturation.
1281 ///
1282 /// If this APInt, treated as signed integer, can be losslessly truncated to
1283 /// the new bitwidth, then return truncated APInt. Else, return either
1284 /// signed min value if the APInt was negative, or signed max value.
1285 APInt truncSSat(unsigned width) const;
1286
1287 /// Sign extend to a new width.
1288 ///
1289 /// This operation sign extends the APInt to a new width. If the high order
1290 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1291 /// It is an error to specify a width that is less than the
1292 /// current width.
1293 APInt sext(unsigned width) const;
1294
1295 /// Zero extend to a new width.
1296 ///
1297 /// This operation zero extends the APInt to a new width. The high order bits
1298 /// are filled with 0 bits. It is an error to specify a width that is less
1299 /// than the current width.
1300 APInt zext(unsigned width) const;
1301
1302 /// Sign extend or truncate to width
1303 ///
1304 /// Make this APInt have the bit width given by \p width. The value is sign
1305 /// extended, truncated, or left alone to make it that width.
1306 APInt sextOrTrunc(unsigned width) const;
1307
1308 /// Zero extend or truncate to width
1309 ///
1310 /// Make this APInt have the bit width given by \p width. The value is zero
1311 /// extended, truncated, or left alone to make it that width.
1312 APInt zextOrTrunc(unsigned width) const;
1313
1314 /// @}
1315 /// \name Bit Manipulation Operators
1316 /// @{
1317
1318 /// Set every bit to 1.
1319 void setAllBits() {
1320 if (isSingleWord())
1321 U.VAL = WORDTYPE_MAX;
1322 else
1323 // Set all the bits in all the words.
1324 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1325 // Clear the unused ones
1327 }
1328
1329 /// Set the given bit to 1 whose position is given as "bitPosition".
1330 void setBit(unsigned BitPosition) {
1331 assert(BitPosition < BitWidth && "BitPosition out of range");
1332 WordType Mask = maskBit(BitPosition);
1333 if (isSingleWord())
1334 U.VAL |= Mask;
1335 else
1336 U.pVal[whichWord(BitPosition)] |= Mask;
1337 }
1338
1339 /// Set the sign bit to 1.
1340 void setSignBit() { setBit(BitWidth - 1); }
1341
1342 /// Set a given bit to a given value.
1343 void setBitVal(unsigned BitPosition, bool BitValue) {
1344 if (BitValue)
1345 setBit(BitPosition);
1346 else
1347 clearBit(BitPosition);
1348 }
1349
1350 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1351 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1352 /// setBits when \p loBit < \p hiBit.
1353 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1354 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1355 assert(hiBit <= BitWidth && "hiBit out of range");
1356 assert(loBit <= BitWidth && "loBit out of range");
1357 if (loBit < hiBit) {
1358 setBits(loBit, hiBit);
1359 return;
1360 }
1361 setLowBits(hiBit);
1362 setHighBits(BitWidth - loBit);
1363 }
1364
1365 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1366 /// This function handles case when \p loBit <= \p hiBit.
1367 void setBits(unsigned loBit, unsigned hiBit) {
1368 assert(hiBit <= BitWidth && "hiBit out of range");
1369 assert(loBit <= BitWidth && "loBit out of range");
1370 assert(loBit <= hiBit && "loBit greater than hiBit");
1371 if (loBit == hiBit)
1372 return;
1373 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1374 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1375 mask <<= loBit;
1376 if (isSingleWord())
1377 U.VAL |= mask;
1378 else
1379 U.pVal[0] |= mask;
1380 } else {
1381 setBitsSlowCase(loBit, hiBit);
1382 }
1383 }
1384
1385 /// Set the top bits starting from loBit.
1386 void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1387
1388 /// Set the bottom loBits bits.
1389 void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1390
1391 /// Set the top hiBits bits.
1392 void setHighBits(unsigned hiBits) {
1393 return setBits(BitWidth - hiBits, BitWidth);
1394 }
1395
1396 /// Set every bit to 0.
1398 if (isSingleWord())
1399 U.VAL = 0;
1400 else
1401 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1402 }
1403
1404 /// Set a given bit to 0.
1405 ///
1406 /// Set the given bit to 0 whose position is given as "bitPosition".
1407 void clearBit(unsigned BitPosition) {
1408 assert(BitPosition < BitWidth && "BitPosition out of range");
1409 WordType Mask = ~maskBit(BitPosition);
1410 if (isSingleWord())
1411 U.VAL &= Mask;
1412 else
1413 U.pVal[whichWord(BitPosition)] &= Mask;
1414 }
1415
1416 /// Set bottom loBits bits to 0.
1417 void clearLowBits(unsigned loBits) {
1418 assert(loBits <= BitWidth && "More bits than bitwidth");
1419 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1420 *this &= Keep;
1421 }
1422
1423 /// Set top hiBits bits to 0.
1424 void clearHighBits(unsigned hiBits) {
1425 assert(hiBits <= BitWidth && "More bits than bitwidth");
1426 APInt Keep = getLowBitsSet(BitWidth, BitWidth - hiBits);
1427 *this &= Keep;
1428 }
1429
1430 /// Set the sign bit to 0.
1431 void clearSignBit() { clearBit(BitWidth - 1); }
1432
1433 /// Toggle every bit to its opposite value.
1435 if (isSingleWord()) {
1436 U.VAL ^= WORDTYPE_MAX;
1438 } else {
1439 flipAllBitsSlowCase();
1440 }
1441 }
1442
1443 /// Toggles a given bit to its opposite value.
1444 ///
1445 /// Toggle a given bit to its opposite value whose position is given
1446 /// as "bitPosition".
1447 void flipBit(unsigned bitPosition);
1448
1449 /// Negate this APInt in place.
1450 void negate() {
1451 flipAllBits();
1452 ++(*this);
1453 }
1454
1455 /// Insert the bits from a smaller APInt starting at bitPosition.
1456 void insertBits(const APInt &SubBits, unsigned bitPosition);
1457 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1458
1459 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1460 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1461 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1462
1463 /// @}
1464 /// \name Value Characterization Functions
1465 /// @{
1466
1467 /// Return the number of bits in the APInt.
1468 unsigned getBitWidth() const { return BitWidth; }
1469
1470 /// Get the number of words.
1471 ///
1472 /// Here one word's bitwidth equals to that of uint64_t.
1473 ///
1474 /// \returns the number of words to hold the integer value of this APInt.
1475 unsigned getNumWords() const { return getNumWords(BitWidth); }
1476
1477 /// Get the number of words.
1478 ///
1479 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1480 ///
1481 /// \returns the number of words to hold the integer value with a given bit
1482 /// width.
1483 static unsigned getNumWords(unsigned BitWidth) {
1484 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1485 }
1486
1487 /// Compute the number of active bits in the value
1488 ///
1489 /// This function returns the number of active bits which is defined as the
1490 /// bit width minus the number of leading zeros. This is used in several
1491 /// computations to see how "wide" the value is.
1492 unsigned getActiveBits() const { return BitWidth - countl_zero(); }
1493
1494 /// Compute the number of active words in the value of this APInt.
1495 ///
1496 /// This is used in conjunction with getActiveData to extract the raw value of
1497 /// the APInt.
1498 unsigned getActiveWords() const {
1499 unsigned numActiveBits = getActiveBits();
1500 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1501 }
1502
1503 /// Get the minimum bit size for this signed APInt
1504 ///
1505 /// Computes the minimum bit width for this APInt while considering it to be a
1506 /// signed (and probably negative) value. If the value is not negative, this
1507 /// function returns the same value as getActiveBits()+1. Otherwise, it
1508 /// returns the smallest bit width that will retain the negative value. For
1509 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1510 /// for -1, this function will always return 1.
1511 unsigned getSignificantBits() const {
1512 return BitWidth - getNumSignBits() + 1;
1513 }
1514
1515 /// Get zero extended value
1516 ///
1517 /// This method attempts to return the value of this APInt as a zero extended
1518 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1519 /// uint64_t. Otherwise an assertion will result.
1521 if (isSingleWord())
1522 return U.VAL;
1523 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1524 return U.pVal[0];
1525 }
1526
1527 /// Get zero extended value if possible
1528 ///
1529 /// This method attempts to return the value of this APInt as a zero extended
1530 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1531 /// uint64_t. Otherwise no value is returned.
1532 std::optional<uint64_t> tryZExtValue() const {
1533 return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1534 : std::nullopt;
1535 };
1536
1537 /// Get sign extended value
1538 ///
1539 /// This method attempts to return the value of this APInt as a sign extended
1540 /// int64_t. The bit width must be <= 64 or the value must fit within an
1541 /// int64_t. Otherwise an assertion will result.
1542 int64_t getSExtValue() const {
1543 if (isSingleWord())
1544 return SignExtend64(U.VAL, BitWidth);
1545 assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1546 return int64_t(U.pVal[0]);
1547 }
1548
1549 /// Get sign extended value if possible
1550 ///
1551 /// This method attempts to return the value of this APInt as a sign extended
1552 /// int64_t. The bitwidth must be <= 64 or the value must fit within an
1553 /// int64_t. Otherwise no value is returned.
1554 std::optional<int64_t> trySExtValue() const {
1555 return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1556 : std::nullopt;
1557 };
1558
1559 /// Get bits required for string value.
1560 ///
1561 /// This method determines how many bits are required to hold the APInt
1562 /// equivalent of the string given by \p str.
1563 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1564
1565 /// Get the bits that are sufficient to represent the string value. This may
1566 /// over estimate the amount of bits required, but it does not require
1567 /// parsing the value in the string.
1568 static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
1569
1570 /// The APInt version of std::countl_zero.
1571 ///
1572 /// It counts the number of zeros from the most significant bit to the first
1573 /// one bit.
1574 ///
1575 /// \returns BitWidth if the value is zero, otherwise returns the number of
1576 /// zeros from the most significant bit to the first one bits.
1577 unsigned countl_zero() const {
1578 if (isSingleWord()) {
1579 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1580 return llvm::countl_zero(U.VAL) - unusedBits;
1581 }
1582 return countLeadingZerosSlowCase();
1583 }
1584
1585 unsigned countLeadingZeros() const { return countl_zero(); }
1586
1587 /// Count the number of leading one bits.
1588 ///
1589 /// This function is an APInt version of std::countl_one. It counts the number
1590 /// of ones from the most significant bit to the first zero bit.
1591 ///
1592 /// \returns 0 if the high order bit is not set, otherwise returns the number
1593 /// of 1 bits from the most significant to the least
1594 unsigned countl_one() const {
1595 if (isSingleWord()) {
1596 if (LLVM_UNLIKELY(BitWidth == 0))
1597 return 0;
1598 return llvm::countl_one(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1599 }
1600 return countLeadingOnesSlowCase();
1601 }
1602
1603 unsigned countLeadingOnes() const { return countl_one(); }
1604
1605 /// Computes the number of leading bits of this APInt that are equal to its
1606 /// sign bit.
1607 unsigned getNumSignBits() const {
1608 return isNegative() ? countl_one() : countl_zero();
1609 }
1610
1611 /// Count the number of trailing zero bits.
1612 ///
1613 /// This function is an APInt version of std::countr_zero. It counts the
1614 /// number of zeros from the least significant bit to the first set bit.
1615 ///
1616 /// \returns BitWidth if the value is zero, otherwise returns the number of
1617 /// zeros from the least significant bit to the first one bit.
1618 unsigned countr_zero() const {
1619 if (isSingleWord()) {
1620 unsigned TrailingZeros = llvm::countr_zero(U.VAL);
1621 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1622 }
1623 return countTrailingZerosSlowCase();
1624 }
1625
1626 unsigned countTrailingZeros() const { return countr_zero(); }
1627
1628 /// Count the number of trailing one bits.
1629 ///
1630 /// This function is an APInt version of std::countr_one. It counts the number
1631 /// of ones from the least significant bit to the first zero bit.
1632 ///
1633 /// \returns BitWidth if the value is all ones, otherwise returns the number
1634 /// of ones from the least significant bit to the first zero bit.
1635 unsigned countr_one() const {
1636 if (isSingleWord())
1637 return llvm::countr_one(U.VAL);
1638 return countTrailingOnesSlowCase();
1639 }
1640
1641 unsigned countTrailingOnes() const { return countr_one(); }
1642
1643 /// Count the number of bits set.
1644 ///
1645 /// This function is an APInt version of std::popcount. It counts the number
1646 /// of 1 bits in the APInt value.
1647 ///
1648 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1649 unsigned popcount() const {
1650 if (isSingleWord())
1651 return llvm::popcount(U.VAL);
1652 return countPopulationSlowCase();
1653 }
1654
1655 /// @}
1656 /// \name Conversion Functions
1657 /// @{
1658 void print(raw_ostream &OS, bool isSigned) const;
1659
1660 /// Converts an APInt to a string and append it to Str. Str is commonly a
1661 /// SmallString. If Radix > 10, UpperCase determine the case of letter
1662 /// digits.
1663 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1664 bool formatAsCLiteral = false, bool UpperCase = true,
1665 bool InsertSeparators = false) const;
1666
1667 /// Considers the APInt to be unsigned and converts it into a string in the
1668 /// radix given. The radix can be 2, 8, 10 16, or 36.
1669 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1670 toString(Str, Radix, false, false);
1671 }
1672
1673 /// Considers the APInt to be signed and converts it into a string in the
1674 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1675 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1676 toString(Str, Radix, true, false);
1677 }
1678
1679 /// \returns a byte-swapped representation of this APInt Value.
1680 APInt byteSwap() const;
1681
1682 /// \returns the value with the bit representation reversed of this APInt
1683 /// Value.
1684 APInt reverseBits() const;
1685
1686 /// Converts this APInt to a double value.
1687 double roundToDouble(bool isSigned) const;
1688
1689 /// Converts this unsigned APInt to a double value.
1690 double roundToDouble() const { return roundToDouble(false); }
1691
1692 /// Converts this signed APInt to a double value.
1693 double signedRoundToDouble() const { return roundToDouble(true); }
1694
1695 /// Converts APInt bits to a double
1696 ///
1697 /// The conversion does not do a translation from integer to double, it just
1698 /// re-interprets the bits as a double. Note that it is valid to do this on
1699 /// any bit width. Exactly 64 bits will be translated.
1700 double bitsToDouble() const { return llvm::bit_cast<double>(getWord(0)); }
1701
1702#ifdef HAS_IEE754_FLOAT128
1703 float128 bitsToQuad() const {
1704 __uint128_t ul = ((__uint128_t)U.pVal[1] << 64) + U.pVal[0];
1705 return llvm::bit_cast<float128>(ul);
1706 }
1707#endif
1708
1709 /// Converts APInt bits to a float
1710 ///
1711 /// The conversion does not do a translation from integer to float, it just
1712 /// re-interprets the bits as a float. Note that it is valid to do this on
1713 /// any bit width. Exactly 32 bits will be translated.
1714 float bitsToFloat() const {
1715 return llvm::bit_cast<float>(static_cast<uint32_t>(getWord(0)));
1716 }
1717
1718 /// Converts a double to APInt bits.
1719 ///
1720 /// The conversion does not do a translation from double to integer, it just
1721 /// re-interprets the bits of the double.
1722 static APInt doubleToBits(double V) {
1723 return APInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(V));
1724 }
1725
1726 /// Converts a float to APInt bits.
1727 ///
1728 /// The conversion does not do a translation from float to integer, it just
1729 /// re-interprets the bits of the float.
1730 static APInt floatToBits(float V) {
1731 return APInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(V));
1732 }
1733
1734 /// @}
1735 /// \name Mathematics Operations
1736 /// @{
1737
1738 /// \returns the floor log base 2 of this APInt.
1739 unsigned logBase2() const { return getActiveBits() - 1; }
1740
1741 /// \returns the ceil log base 2 of this APInt.
1742 unsigned ceilLogBase2() const {
1743 APInt temp(*this);
1744 --temp;
1745 return temp.getActiveBits();
1746 }
1747
1748 /// \returns the nearest log base 2 of this APInt. Ties round up.
1749 ///
1750 /// NOTE: When we have a BitWidth of 1, we define:
1751 ///
1752 /// log2(0) = UINT32_MAX
1753 /// log2(1) = 0
1754 ///
1755 /// to get around any mathematical concerns resulting from
1756 /// referencing 2 in a space where 2 does no exist.
1757 unsigned nearestLogBase2() const;
1758
1759 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1760 /// otherwise
1761 int32_t exactLogBase2() const {
1762 if (!isPowerOf2())
1763 return -1;
1764 return logBase2();
1765 }
1766
1767 /// Compute the square root.
1768 APInt sqrt() const;
1769
1770 /// Get the absolute value. If *this is < 0 then return -(*this), otherwise
1771 /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit
1772 /// wide APInt) is unchanged due to how negation works.
1773 APInt abs() const {
1774 if (isNegative())
1775 return -(*this);
1776 return *this;
1777 }
1778
1779 /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
1780 APInt multiplicativeInverse() const;
1781
1782 /// @}
1783 /// \name Building-block Operations for APInt and APFloat
1784 /// @{
1785
1786 // These building block operations operate on a representation of arbitrary
1787 // precision, two's-complement, bignum integer values. They should be
1788 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1789 // generally a pointer to the base of an array of integer parts, representing
1790 // an unsigned bignum, and a count of how many parts there are.
1791
1792 /// Sets the least significant part of a bignum to the input value, and zeroes
1793 /// out higher parts.
1794 static void tcSet(WordType *, WordType, unsigned);
1795
1796 /// Assign one bignum to another.
1797 static void tcAssign(WordType *, const WordType *, unsigned);
1798
1799 /// Returns true if a bignum is zero, false otherwise.
1800 static bool tcIsZero(const WordType *, unsigned);
1801
1802 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1803 static int tcExtractBit(const WordType *, unsigned bit);
1804
1805 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1806 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1807 /// significant bit of DST. All high bits above srcBITS in DST are
1808 /// zero-filled.
1809 static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1810 unsigned srcBits, unsigned srcLSB);
1811
1812 /// Set the given bit of a bignum. Zero-based.
1813 static void tcSetBit(WordType *, unsigned bit);
1814
1815 /// Clear the given bit of a bignum. Zero-based.
1816 static void tcClearBit(WordType *, unsigned bit);
1817
1818 /// Returns the bit number of the least or most significant set bit of a
1819 /// number. If the input number has no bits set -1U is returned.
1820 static unsigned tcLSB(const WordType *, unsigned n);
1821 static unsigned tcMSB(const WordType *parts, unsigned n);
1822
1823 /// Negate a bignum in-place.
1824 static void tcNegate(WordType *, unsigned);
1825
1826 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1827 static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1828 /// DST += RHS. Returns the carry flag.
1829 static WordType tcAddPart(WordType *, WordType, unsigned);
1830
1831 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1832 static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1833 unsigned);
1834 /// DST -= RHS. Returns the carry flag.
1835 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1836
1837 /// DST += SRC * MULTIPLIER + PART if add is true
1838 /// DST = SRC * MULTIPLIER + PART if add is false
1839 ///
1840 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1841 /// start at the same point, i.e. DST == SRC.
1842 ///
1843 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1844 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1845 /// result, and if all of the omitted higher parts were zero return zero,
1846 /// otherwise overflow occurred and return one.
1847 static int tcMultiplyPart(WordType *dst, const WordType *src,
1848 WordType multiplier, WordType carry,
1849 unsigned srcParts, unsigned dstParts, bool add);
1850
1851 /// DST = LHS * RHS, where DST has the same width as the operands and is
1852 /// filled with the least significant parts of the result. Returns one if
1853 /// overflow occurred, otherwise zero. DST must be disjoint from both
1854 /// operands.
1855 static int tcMultiply(WordType *, const WordType *, const WordType *,
1856 unsigned);
1857
1858 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1859 /// operands. No overflow occurs. DST must be disjoint from both operands.
1860 static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1861 unsigned, unsigned);
1862
1863 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1864 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1865 /// REMAINDER to the remainder, return zero. i.e.
1866 ///
1867 /// OLD_LHS = RHS * LHS + REMAINDER
1868 ///
1869 /// SCRATCH is a bignum of the same size as the operands and result for use by
1870 /// the routine; its contents need not be initialized and are destroyed. LHS,
1871 /// REMAINDER and SCRATCH must be distinct.
1872 static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1873 WordType *scratch, unsigned parts);
1874
1875 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1876 /// restrictions on Count.
1877 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1878
1879 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1880 /// restrictions on Count.
1881 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1882
1883 /// Comparison (unsigned) of two bignums.
1884 static int tcCompare(const WordType *, const WordType *, unsigned);
1885
1886 /// Increment a bignum in-place. Return the carry flag.
1887 static WordType tcIncrement(WordType *dst, unsigned parts) {
1888 return tcAddPart(dst, 1, parts);
1889 }
1890
1891 /// Decrement a bignum in-place. Return the borrow flag.
1892 static WordType tcDecrement(WordType *dst, unsigned parts) {
1893 return tcSubtractPart(dst, 1, parts);
1894 }
1895
1896 /// Used to insert APInt objects, or objects that contain APInt objects, into
1897 /// FoldingSets.
1898 void Profile(FoldingSetNodeID &id) const;
1899
1900 /// debug method
1901 void dump() const;
1902
1903 /// Returns whether this instance allocated memory.
1904 bool needsCleanup() const { return !isSingleWord(); }
1905
1906private:
1907 /// This union is used to store the integer value. When the
1908 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1909 union {
1910 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1911 uint64_t *pVal; ///< Used to store the >64 bits integer value.
1912 } U;
1913
1914 unsigned BitWidth = 1; ///< The number of bits in this APInt.
1915
1916 friend struct DenseMapInfo<APInt, void>;
1917 friend class APSInt;
1918
1919 // Make DynamicAPInt a friend so it can access BitWidth directly.
1920 friend DynamicAPInt;
1921
1922 /// This constructor is used only internally for speed of construction of
1923 /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1924 /// is not public.
1925 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1926
1927 /// Determine which word a bit is in.
1928 ///
1929 /// \returns the word position for the specified bit position.
1930 static unsigned whichWord(unsigned bitPosition) {
1931 return bitPosition / APINT_BITS_PER_WORD;
1932 }
1933
1934 /// Determine which bit in a word the specified bit position is in.
1935 static unsigned whichBit(unsigned bitPosition) {
1936 return bitPosition % APINT_BITS_PER_WORD;
1937 }
1938
1939 /// Get a single bit mask.
1940 ///
1941 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1942 /// This method generates and returns a uint64_t (word) mask for a single
1943 /// bit at a specific bit position. This is used to mask the bit in the
1944 /// corresponding word.
1945 static uint64_t maskBit(unsigned bitPosition) {
1946 return 1ULL << whichBit(bitPosition);
1947 }
1948
1949 /// Clear unused high order bits
1950 ///
1951 /// This method is used internally to clear the top "N" bits in the high order
1952 /// word that are not used by the APInt. This is needed after the most
1953 /// significant word is assigned a value to ensure that those bits are
1954 /// zero'd out.
1955 APInt &clearUnusedBits() {
1956 // Compute how many bits are used in the final word.
1957 unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1958
1959 // Mask out the high bits.
1960 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1961 if (LLVM_UNLIKELY(BitWidth == 0))
1962 mask = 0;
1963
1964 if (isSingleWord())
1965 U.VAL &= mask;
1966 else
1967 U.pVal[getNumWords() - 1] &= mask;
1968 return *this;
1969 }
1970
1971 /// Get the word corresponding to a bit position
1972 /// \returns the corresponding word for the specified bit position.
1973 uint64_t getWord(unsigned bitPosition) const {
1974 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1975 }
1976
1977 /// Utility method to change the bit width of this APInt to new bit width,
1978 /// allocating and/or deallocating as necessary. There is no guarantee on the
1979 /// value of any bits upon return. Caller should populate the bits after.
1980 void reallocate(unsigned NewBitWidth);
1981
1982 /// Convert a char array into an APInt
1983 ///
1984 /// \param radix 2, 8, 10, 16, or 36
1985 /// Converts a string into a number. The string must be non-empty
1986 /// and well-formed as a number of the given base. The bit-width
1987 /// must be sufficient to hold the result.
1988 ///
1989 /// This is used by the constructors that take string arguments.
1990 ///
1991 /// StringRef::getAsInteger is superficially similar but (1) does
1992 /// not assume that the string is well-formed and (2) grows the
1993 /// result to hold the input.
1994 void fromString(unsigned numBits, StringRef str, uint8_t radix);
1995
1996 /// An internal division function for dividing APInts.
1997 ///
1998 /// This is used by the toString method to divide by the radix. It simply
1999 /// provides a more convenient form of divide for internal use since KnuthDiv
2000 /// has specific constraints on its inputs. If those constraints are not met
2001 /// then it provides a simpler form of divide.
2002 static void divide(const WordType *LHS, unsigned lhsWords,
2003 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
2004 WordType *Remainder);
2005
2006 /// out-of-line slow case for inline constructor
2007 void initSlowCase(uint64_t val, bool isSigned);
2008
2009 /// shared code between two array constructors
2010 void initFromArray(ArrayRef<uint64_t> array);
2011
2012 /// out-of-line slow case for inline copy constructor
2013 void initSlowCase(const APInt &that);
2014
2015 /// out-of-line slow case for shl
2016 void shlSlowCase(unsigned ShiftAmt);
2017
2018 /// out-of-line slow case for lshr.
2019 void lshrSlowCase(unsigned ShiftAmt);
2020
2021 /// out-of-line slow case for ashr.
2022 void ashrSlowCase(unsigned ShiftAmt);
2023
2024 /// out-of-line slow case for operator=
2025 void assignSlowCase(const APInt &RHS);
2026
2027 /// out-of-line slow case for operator==
2028 bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
2029
2030 /// out-of-line slow case for countLeadingZeros
2031 unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
2032
2033 /// out-of-line slow case for countLeadingOnes.
2034 unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
2035
2036 /// out-of-line slow case for countTrailingZeros.
2037 unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
2038
2039 /// out-of-line slow case for countTrailingOnes
2040 unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
2041
2042 /// out-of-line slow case for countPopulation
2043 unsigned countPopulationSlowCase() const LLVM_READONLY;
2044
2045 /// out-of-line slow case for intersects.
2046 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
2047
2048 /// out-of-line slow case for isSubsetOf.
2049 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
2050
2051 /// out-of-line slow case for setBits.
2052 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
2053
2054 /// out-of-line slow case for flipAllBits.
2055 void flipAllBitsSlowCase();
2056
2057 /// out-of-line slow case for concat.
2058 APInt concatSlowCase(const APInt &NewLSB) const;
2059
2060 /// out-of-line slow case for operator&=.
2061 void andAssignSlowCase(const APInt &RHS);
2062
2063 /// out-of-line slow case for operator|=.
2064 void orAssignSlowCase(const APInt &RHS);
2065
2066 /// out-of-line slow case for operator^=.
2067 void xorAssignSlowCase(const APInt &RHS);
2068
2069 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2070 /// to, or greater than RHS.
2071 int compare(const APInt &RHS) const LLVM_READONLY;
2072
2073 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2074 /// to, or greater than RHS.
2075 int compareSigned(const APInt &RHS) const LLVM_READONLY;
2076
2077 /// @}
2078};
2079
2080inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2081
2082inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2083
2084/// Unary bitwise complement operator.
2085///
2086/// \returns an APInt that is the bitwise complement of \p v.
2088 v.flipAllBits();
2089 return v;
2090}
2091
2092inline APInt operator&(APInt a, const APInt &b) {
2093 a &= b;
2094 return a;
2095}
2096
2097inline APInt operator&(const APInt &a, APInt &&b) {
2098 b &= a;
2099 return std::move(b);
2100}
2101
2103 a &= RHS;
2104 return a;
2105}
2106
2108 b &= LHS;
2109 return b;
2110}
2111
2112inline APInt operator|(APInt a, const APInt &b) {
2113 a |= b;
2114 return a;
2115}
2116
2117inline APInt operator|(const APInt &a, APInt &&b) {
2118 b |= a;
2119 return std::move(b);
2120}
2121
2123 a |= RHS;
2124 return a;
2125}
2126
2128 b |= LHS;
2129 return b;
2130}
2131
2132inline APInt operator^(APInt a, const APInt &b) {
2133 a ^= b;
2134 return a;
2135}
2136
2137inline APInt operator^(const APInt &a, APInt &&b) {
2138 b ^= a;
2139 return std::move(b);
2140}
2141
2143 a ^= RHS;
2144 return a;
2145}
2146
2148 b ^= LHS;
2149 return b;
2150}
2151
2153 I.print(OS, true);
2154 return OS;
2155}
2156
2158 v.negate();
2159 return v;
2160}
2161
2162inline APInt operator+(APInt a, const APInt &b) {
2163 a += b;
2164 return a;
2165}
2166
2167inline APInt operator+(const APInt &a, APInt &&b) {
2168 b += a;
2169 return std::move(b);
2170}
2171
2173 a += RHS;
2174 return a;
2175}
2176
2178 b += LHS;
2179 return b;
2180}
2181
2182inline APInt operator-(APInt a, const APInt &b) {
2183 a -= b;
2184 return a;
2185}
2186
2187inline APInt operator-(const APInt &a, APInt &&b) {
2188 b.negate();
2189 b += a;
2190 return std::move(b);
2191}
2192
2194 a -= RHS;
2195 return a;
2196}
2197
2199 b.negate();
2200 b += LHS;
2201 return b;
2202}
2203
2205 a *= RHS;
2206 return a;
2207}
2208
2210 b *= LHS;
2211 return b;
2212}
2213
2214namespace APIntOps {
2215
2216/// Determine the smaller of two APInts considered to be signed.
2217inline const APInt &smin(const APInt &A, const APInt &B) {
2218 return A.slt(B) ? A : B;
2219}
2220
2221/// Determine the larger of two APInts considered to be signed.
2222inline const APInt &smax(const APInt &A, const APInt &B) {
2223 return A.sgt(B) ? A : B;
2224}
2225
2226/// Determine the smaller of two APInts considered to be unsigned.
2227inline const APInt &umin(const APInt &A, const APInt &B) {
2228 return A.ult(B) ? A : B;
2229}
2230
2231/// Determine the larger of two APInts considered to be unsigned.
2232inline const APInt &umax(const APInt &A, const APInt &B) {
2233 return A.ugt(B) ? A : B;
2234}
2235
2236/// Determine the absolute difference of two APInts considered to be signed.
2237inline const APInt abds(const APInt &A, const APInt &B) {
2238 return A.sge(B) ? (A - B) : (B - A);
2239}
2240
2241/// Determine the absolute difference of two APInts considered to be unsigned.
2242inline const APInt abdu(const APInt &A, const APInt &B) {
2243 return A.uge(B) ? (A - B) : (B - A);
2244}
2245
2246/// Compute the floor of the signed average of C1 and C2
2247APInt avgFloorS(const APInt &C1, const APInt &C2);
2248
2249/// Compute the floor of the unsigned average of C1 and C2
2250APInt avgFloorU(const APInt &C1, const APInt &C2);
2251
2252/// Compute the ceil of the signed average of C1 and C2
2253APInt avgCeilS(const APInt &C1, const APInt &C2);
2254
2255/// Compute the ceil of the unsigned average of C1 and C2
2256APInt avgCeilU(const APInt &C1, const APInt &C2);
2257
2258/// Performs (2*N)-bit multiplication on sign-extended operands.
2259/// Returns the high N bits of the multiplication result.
2260APInt mulhs(const APInt &C1, const APInt &C2);
2261
2262/// Performs (2*N)-bit multiplication on zero-extended operands.
2263/// Returns the high N bits of the multiplication result.
2264APInt mulhu(const APInt &C1, const APInt &C2);
2265
2266/// Compute GCD of two unsigned APInt values.
2267///
2268/// This function returns the greatest common divisor of the two APInt values
2269/// using Stein's algorithm.
2270///
2271/// \returns the greatest common divisor of A and B.
2272APInt GreatestCommonDivisor(APInt A, APInt B);
2273
2274/// Converts the given APInt to a double value.
2275///
2276/// Treats the APInt as an unsigned value for conversion purposes.
2277inline double RoundAPIntToDouble(const APInt &APIVal) {
2278 return APIVal.roundToDouble();
2279}
2280
2281/// Converts the given APInt to a double value.
2282///
2283/// Treats the APInt as a signed value for conversion purposes.
2284inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2285 return APIVal.signedRoundToDouble();
2286}
2287
2288/// Converts the given APInt to a float value.
2289inline float RoundAPIntToFloat(const APInt &APIVal) {
2290 return float(RoundAPIntToDouble(APIVal));
2291}
2292
2293/// Converts the given APInt to a float value.
2294///
2295/// Treats the APInt as a signed value for conversion purposes.
2296inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2297 return float(APIVal.signedRoundToDouble());
2298}
2299
2300/// Converts the given double value into a APInt.
2301///
2302/// This function convert a double value to an APInt value.
2303APInt RoundDoubleToAPInt(double Double, unsigned width);
2304
2305/// Converts a float value into a APInt.
2306///
2307/// Converts a float value into an APInt value.
2308inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2309 return RoundDoubleToAPInt(double(Float), width);
2310}
2311
2312/// Return A unsign-divided by B, rounded by the given rounding mode.
2313APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2314
2315/// Return A sign-divided by B, rounded by the given rounding mode.
2316APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2317
2318/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2319/// (e.g. 32 for i32).
2320/// This function finds the smallest number n, such that
2321/// (a) n >= 0 and q(n) = 0, or
2322/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2323/// integers, belong to two different intervals [Rk, Rk+R),
2324/// where R = 2^BW, and k is an integer.
2325/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2326/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2327/// subtraction (treated as addition of negated numbers) would always
2328/// count as an overflow, but here we want to allow values to decrease
2329/// and increase as long as they are within the same interval.
2330/// Specifically, adding of two negative numbers should not cause an
2331/// overflow (as long as the magnitude does not exceed the bit width).
2332/// On the other hand, given a positive number, adding a negative
2333/// number to it can give a negative result, which would cause the
2334/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2335/// treated as a special case of an overflow.
2336///
2337/// This function returns std::nullopt if after finding k that minimizes the
2338/// positive solution to q(n) = kR, both solutions are contained between
2339/// two consecutive integers.
2340///
2341/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2342/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2343/// virtue of *signed* overflow. This function will *not* find such an n,
2344/// however it may find a value of n satisfying the inequalities due to
2345/// an *unsigned* overflow (if the values are treated as unsigned).
2346/// To find a solution for a signed overflow, treat it as a problem of
2347/// finding an unsigned overflow with a range with of BW-1.
2348///
2349/// The returned value may have a different bit width from the input
2350/// coefficients.
2351std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2352 unsigned RangeWidth);
2353
2354/// Compare two values, and if they are different, return the position of the
2355/// most significant bit that is different in the values.
2356std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2357 const APInt &B);
2358
2359/// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2360/// by \param A to \param NewBitWidth bits.
2361///
2362/// MatchAnyBits: (Default)
2363/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2364/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2365///
2366/// MatchAllBits:
2367/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2368/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2369/// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2370APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2371 bool MatchAllBits = false);
2372} // namespace APIntOps
2373
2374// See friend declaration above. This additional declaration is required in
2375// order to compile LLVM with IBM xlC compiler.
2376hash_code hash_value(const APInt &Arg);
2377
2378/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2379/// with the integer held in IntVal.
2380void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2381
2382/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2383/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2384void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2385
2386/// Provide DenseMapInfo for APInt.
2387template <> struct DenseMapInfo<APInt, void> {
2388 static inline APInt getEmptyKey() {
2389 APInt V(nullptr, 0);
2390 V.U.VAL = ~0ULL;
2391 return V;
2392 }
2393
2394 static inline APInt getTombstoneKey() {
2395 APInt V(nullptr, 0);
2396 V.U.VAL = ~1ULL;
2397 return V;
2398 }
2399
2400 static unsigned getHashValue(const APInt &Key);
2401
2402 static bool isEqual(const APInt &LHS, const APInt &RHS) {
2403 return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2404 }
2405};
2406
2407} // namespace llvm
2408
2409#endif
aarch64 promote const
always inline
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< ShadowStackGC > C("shadow-stack", "Very portable GC for uncooperative code generators")
raw_ostream & operator<<(raw_ostream &OS, const binary_le_impl< value_type > &BLE)
#define LLVM_UNLIKELY(EXPR)
Definition: Compiler.h:320
#define LLVM_READONLY
Definition: Compiler.h:306
uint64_t Align
static bool isSigned(unsigned int Opcode)
static KnownBits extractBits(unsigned BitWidth, const KnownBits &SrcOpKnown, const KnownBits &OffsetKnown, const KnownBits &WidthKnown)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:533
static bool isAligned(const Value *Base, const APInt &Offset, Align Alignment, const DataLayout &DL)
Definition: Loads.cpp:28
static bool isSplat(Value *V)
Return true if V is a splat of a value (which is used when multiplying a matrix with a scalar).
#define I(x, y, z)
Definition: MD5.cpp:58
static const char * toString(MIToken::TokenKind TokenKind)
Definition: MIParser.cpp:625
Load MIR Sample Profile
const uint64_t BitWidth
static uint64_t clearUnusedBits(uint64_t Val, unsigned Size)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:78
std::optional< uint64_t > tryZExtValue() const
Get zero extended value if possible.
Definition: APInt.h:1532
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition: APInt.h:234
bool slt(int64_t RHS) const
Signed less than comparison.
Definition: APInt.h:1138
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition: APInt.h:1407
APInt relativeLShr(int RelativeShift) const
relative logical shift right
Definition: APInt.h:880
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition: APInt.h:449
APInt zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:986
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition: APInt.h:229
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:423
APInt operator--(int)
Postfix decrement operator.
Definition: APInt.h:596
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1520
uint64_t * pVal
Used to store the >64 bits integer value.
Definition: APInt.h:1911
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition: APInt.h:1392
unsigned popcount() const
Count the number of bits set.
Definition: APInt.h:1649
~APInt()
Destructor.
Definition: APInt.h:190
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition: APInt.h:1386
APInt operator<<(const APInt &Bits) const
Left logical shift operator.
Definition: APInt.h:822
bool isMask() const
Definition: APInt.h:501
APInt operator<<(unsigned Bits) const
Left logical shift operator.
Definition: APInt.h:817
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1492
bool sgt(int64_t RHS) const
Signed greater than comparison.
Definition: APInt.h:1209
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:206
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition: APInt.h:1330
bool operator[](unsigned bitPosition) const
Array-indexing support.
Definition: APInt.h:1043
bool operator!=(const APInt &RHS) const
Inequality operator.
Definition: APInt.h:1087
void toStringUnsigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be unsigned and converts it into a string in the radix given.
Definition: APInt.h:1669
APInt & operator&=(const APInt &RHS)
Bitwise AND assignment operator.
Definition: APInt.h:674
APInt abs() const
Get the absolute value.
Definition: APInt.h:1773
unsigned ceilLogBase2() const
Definition: APInt.h:1742
unsigned countLeadingOnes() const
Definition: APInt.h:1603
APInt relativeLShl(int RelativeShift) const
relative logical shift left
Definition: APInt.h:885
APInt & operator=(const APInt &RHS)
Copy assignment operator.
Definition: APInt.h:618
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition: APInt.h:1201
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition: APInt.h:371
APInt(unsigned numBits, uint64_t val, bool isSigned=false, bool implicitTrunc=false)
Create a new APInt of numBits width, initialized as val.
Definition: APInt.h:111
APInt & operator^=(uint64_t RHS)
Bitwise XOR assignment operator.
Definition: APInt.h:747
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition: APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition: APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:380
APInt & operator|=(uint64_t RHS)
Bitwise OR assignment operator.
Definition: APInt.h:718
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition: APInt.h:466
static APInt floatToBits(float V)
Converts a float to APInt bits.
Definition: APInt.h:1730
void setSignBit()
Set the sign bit to 1.
Definition: APInt.h:1340
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1468
uint64_t WordType
Definition: APInt.h:80
bool sle(uint64_t RHS) const
Signed less or equal comparison.
Definition: APInt.h:1174
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1111
bool uge(uint64_t RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1229
bool operator!() const
Logical negation operation on this APInt returns true if zero, like normal integers.
Definition: APInt.h:609
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:209
APInt & operator=(uint64_t RHS)
Assignment operator.
Definition: APInt.h:658
APInt relativeAShr(int RelativeShift) const
relative arithmetic shift right
Definition: APInt.h:890
friend hash_code hash_value(const APInt &Arg)
Overload to compute a hash_code for an APInt value.
APInt(const APInt &that)
Copy Constructor.
Definition: APInt.h:176
APInt & operator|=(const APInt &RHS)
Bitwise OR assignment operator.
Definition: APInt.h:704
bool isSingleWord() const
Determine if this APInt just has one word to store value.
Definition: APInt.h:322
bool operator==(uint64_t Val) const
Equality operator.
Definition: APInt.h:1069
APInt operator++(int)
Postfix increment operator.
Definition: APInt.h:582
unsigned getNumWords() const
Get the number of words.
Definition: APInt.h:1475
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:417
APInt ashr(const APInt &ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:908
APInt()
Default constructor that creates an APInt with a 1-bit zero value.
Definition: APInt.h:173
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition: APInt.h:216
APInt(APInt &&that)
Move Constructor.
Definition: APInt.h:184
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:329
APInt concat(const APInt &NewLSB) const
Concatenate the bits from "NewLSB" onto the bottom of *this.
Definition: APInt.h:947
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition: APInt.h:1249
bool eq(const APInt &RHS) const
Equality comparison.
Definition: APInt.h:1079
int32_t exactLogBase2() const
Definition: APInt.h:1761
APInt & operator<<=(unsigned ShiftAmt)
Left-shift assignment function.
Definition: APInt.h:785
double roundToDouble() const
Converts this unsigned APInt to a double value.
Definition: APInt.h:1690
void clearAllBits()
Set every bit to 0.
Definition: APInt.h:1397
APInt relativeAShl(int RelativeShift) const
relative arithmetic shift left
Definition: APInt.h:895
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition: APInt.h:834
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition: APInt.h:1166
void negate()
Negate this APInt in place.
Definition: APInt.h:1450
static WordType tcDecrement(WordType *dst, unsigned parts)
Decrement a bignum in-place. Return the borrow flag.
Definition: APInt.h:1892
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition: APInt.h:1618
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
Definition: APInt.h:435
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition: APInt.h:1607
bool isOneBitSet(unsigned BitNo) const
Determine if this APInt Value only has the specified bit set.
Definition: APInt.h:366
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition: APInt.h:1577
bool operator==(const APInt &RHS) const
Equality operator.
Definition: APInt.h:1056
APInt shl(const APInt &ShiftAmt) const
Left-shift function.
Definition: APInt.h:932
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:219
bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
Definition: APInt.h:522
void setBitsWithWrap(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition: APInt.h:1354
APInt lshr(const APInt &ShiftAmt) const
Logical right-shift function.
Definition: APInt.h:920
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
Definition: APInt.h:361
unsigned countTrailingZeros() const
Definition: APInt.h:1626
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition: APInt.h:1511
unsigned countLeadingZeros() const
Definition: APInt.h:1585
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition: APInt.h:356
void flipAllBits()
Toggle every bit to its opposite value.
Definition: APInt.h:1434
static unsigned getNumWords(unsigned BitWidth)
Get the number of words.
Definition: APInt.h:1483
bool needsCleanup() const
Returns whether this instance allocated memory.
Definition: APInt.h:1904
unsigned countl_one() const
Count the number of leading one bits.
Definition: APInt.h:1594
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition: APInt.h:1417
unsigned logBase2() const
Definition: APInt.h:1739
static APInt getZeroWidth()
Return an APInt zero bits wide.
Definition: APInt.h:203
double signedRoundToDouble() const
Converts this signed APInt to a double value.
Definition: APInt.h:1693
bool isShiftedMask() const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
Definition: APInt.h:510
float bitsToFloat() const
Converts APInt bits to a float.
Definition: APInt.h:1714
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition: APInt.h:475
bool ule(uint64_t RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1158
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:827
void setAllBits()
Set every bit to 1.
Definition: APInt.h:1319
uint64_t VAL
Used to store the <= 64 bits integer value.
Definition: APInt.h:1910
bool ugt(uint64_t RHS) const
Unsigned greater than comparison.
Definition: APInt.h:1190
bool sge(int64_t RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1245
bool getBoolValue() const
Convert APInt to a boolean value.
Definition: APInt.h:471
static APInt doubleToBits(double V)
Converts a double to APInt bits.
Definition: APInt.h:1722
bool isMask(unsigned numBits) const
Definition: APInt.h:488
APInt & operator=(APInt &&that)
Move assignment operator.
Definition: APInt.h:632
static WordType tcIncrement(WordType *dst, unsigned parts)
Increment a bignum in-place. Return the carry flag.
Definition: APInt.h:1887
APInt & operator^=(const APInt &RHS)
Bitwise XOR assignment operator.
Definition: APInt.h:733
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition: APInt.h:405
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:334
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1150
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition: APInt.h:1367
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:873
double bitsToDouble() const
Converts APInt bits to a double.
Definition: APInt.h:1700
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition: APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:440
unsigned getActiveWords() const
Compute the number of active words in the value of this APInt.
Definition: APInt.h:1498
bool ne(const APInt &RHS) const
Inequality comparison.
Definition: APInt.h:1103
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition: APInt.h:553
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:306
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
Definition: APInt.h:341
const uint64_t * getRawData() const
This function returns a pointer to the internal storage of the APInt.
Definition: APInt.h:569
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.h:1130
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition: APInt.h:296
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition: APInt.h:200
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition: APInt.h:1389
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
Definition: APInt.h:432
unsigned countTrailingOnes() const
Definition: APInt.h:1641
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition: APInt.h:1237
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
Definition: APInt.h:1554
APInt & operator&=(uint64_t RHS)
Bitwise AND assignment operator.
Definition: APInt.h:688
double roundToDouble(bool isSigned) const
Converts this APInt to a double value.
Definition: APInt.cpp:853
bool isOne() const
Determine if this is a value of 1.
Definition: APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition: APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:239
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
Definition: APInt.h:1424
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1542
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition: APInt.h:858
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.h:851
unsigned countr_one() const
Count the number of trailing one bits.
Definition: APInt.h:1635
static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, unsigned hiBit)
Wrap version of getBitsSet.
Definition: APInt.h:270
bool isSignBitClear() const
Determine if sign bit of this APInt is clear.
Definition: APInt.h:348
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1221
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
Definition: APInt.h:1343
void clearSignBit()
Set the sign bit to 0.
Definition: APInt.h:1431
bool isMaxValue() const
Determine if this is the largest unsigned value.
Definition: APInt.h:399
void toStringSigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be signed and converts it into a string in the radix given.
Definition: APInt.h:1675
bool ult(uint64_t RHS) const
Unsigned less than comparison.
Definition: APInt.h:1119
bool operator!=(uint64_t Val) const
Inequality operator.
Definition: APInt.h:1095
An arbitrary precision integer that knows its signedness.
Definition: APSInt.h:23
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
This class provides support for dynamic arbitrary-precision arithmetic.
Definition: DynamicAPInt.h:46
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition: FoldingSet.h:327
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
An opaque object representing a hash code.
Definition: Hashing.h:75
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define UINT64_MAX
Definition: DataTypes.h:77
std::error_code fromString(StringRef String, Metadata &HSAMetadata)
Converts String to HSAMetadata.
float RoundAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition: APInt.h:2289
const APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
Definition: APInt.h:2242
const APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
Definition: APInt.h:2237
double RoundAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:2277
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition: APInt.h:2217
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition: APInt.h:2222
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition: APInt.h:2227
APInt RoundFloatToAPInt(float Float, unsigned width)
Converts a float value into a APInt.
Definition: APInt.h:2308
APInt RoundDoubleToAPInt(double Double, unsigned width)
Converts the given double value into a APInt.
Definition: APInt.cpp:814
double RoundSignedAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:2284
float RoundSignedAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition: APInt.h:2296
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition: APInt.h:2232
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
constexpr T rotr(T V, int R)
Definition: bit.h:407
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition: bit.h:385
bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:255
APInt operator&(APInt a, const APInt &b)
Definition: APInt.h:2092
APInt operator*(APInt a, uint64_t RHS)
Definition: APInt.h:2204
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition: bit.h:307
bool operator!=(uint64_t V1, const APInt &V2)
Definition: APInt.h:2082
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator+=(DynamicAPInt &A, int64_t B)
Definition: DynamicAPInt.h:518
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator-=(DynamicAPInt &A, int64_t B)
Definition: DynamicAPInt.h:522
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:296
APInt operator~(APInt v)
Unary bitwise complement operator.
Definition: APInt.h:2087
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition: bit.h:215
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
Definition: MathExtras.h:285
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator*=(DynamicAPInt &A, int64_t B)
Definition: DynamicAPInt.h:526
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition: bit.h:281
APInt operator^(APInt a, const APInt &b)
Definition: APInt.h:2132
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
Definition: MathExtras.h:273
int countl_one(T Value)
Count the number of ones from the most significant bit to the first zero bit.
Definition: bit.h:294
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:260
ArrayRef(const T &OneElt) -> ArrayRef< T >
APInt operator-(APInt)
Definition: APInt.h:2157
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:581
APInt operator+(APInt a, const APInt &b)
Definition: APInt.h:2162
APInt operator|(APInt a, const APInt &b)
Definition: APInt.h:2112
T reverseBits(T Val)
Reverse the bits in Val.
Definition: MathExtras.h:122
constexpr T rotl(T V, int R)
Definition: bit.h:394
@ Keep
No function return thunk.
auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
static APInt getTombstoneKey()
Definition: APInt.h:2394
static bool isEqual(const APInt &LHS, const APInt &RHS)
Definition: APInt.h:2402
static unsigned getHashValue(const APInt &Key)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:52