59#include "llvm/IR/IntrinsicsAArch64.h"
60#include "llvm/IR/IntrinsicsAMDGPU.h"
61#include "llvm/IR/IntrinsicsRISCV.h"
62#include "llvm/IR/IntrinsicsX86.h"
100 if (
unsigned BitWidth = Ty->getScalarSizeInBits())
103 return DL.getPointerTypeSizeInBits(Ty);
123 const APInt &DemandedElts,
127 DemandedLHS = DemandedRHS = DemandedElts;
134 DemandedElts, DemandedLHS, DemandedRHS);
155 bool UseInstrInfo,
unsigned Depth) {
230 R->uge(
LHS->getType()->getScalarSizeInBits()))
243 assert(LHS->getType() == RHS->getType() &&
244 "LHS and RHS should have the same type");
245 assert(LHS->getType()->isIntOrIntVectorTy() &&
246 "LHS and RHS should be integers");
257 return !
I->user_empty() &&
262 return !
I->user_empty() &&
all_of(
I->users(), [](
const User *U) {
264 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
273 return ::isKnownToBeAPowerOfTwo(
289 return CI->getValue().isStrictlyPositive();
315 return ::isKnownNonEqual(V1, V2, DemandedElts, Q,
Depth);
322 return Mask.isSubsetOf(Known.
Zero);
329 unsigned Depth = 0) {
340 return ::ComputeNumSignBits(
350 return V->getType()->getScalarSizeInBits() - SignBits + 1;
373 const APInt &DemandedElts,
379 const unsigned BitWidth = Ty->getScalarSizeInBits();
382 if (Ty->isVectorTy())
387 const Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
390 const auto MatchSubBC = [&]() {
407 const auto MatchASubBC = [&]() {
415 const auto MatchCD = [&]() {
432 if (!Match(Op0, Op1) && !Match(Op1, Op0))
435 const auto ComputeKnownBitsOrOne = [&](
const Value *V) {
443 const KnownBits KnownA = ComputeKnownBitsOrOne(
A);
447 const KnownBits KnownD = ComputeKnownBitsOrOne(
D);
464 if (SubBC->
getOpcode() == Instruction::Xor &&
482 const unsigned MinimumNumberOfLeadingZeros = UpperBound.
countl_zero();
488 const APInt &DemandedElts,
495 if (KnownOut.
isUnknown() && !NSW && !NUW)
512 bool NUW,
const APInt &DemandedElts,
529 bool isKnownNegativeOp0 = Known2.
isNegative();
532 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
544 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
546 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.
isNonZero());
550 bool SelfMultiply = Op0 == Op1;
559 unsigned OutValidBits = 2 * (TyBits - SignBits + 1);
561 if (OutValidBits < TyBits) {
562 APInt KnownZeroMask =
564 Known.
Zero |= KnownZeroMask;
582 unsigned NumRanges = Ranges.getNumOperands() / 2;
587 for (
unsigned i = 0; i < NumRanges; ++i) {
596 "Known bit width must match range bit width!");
599 unsigned CommonPrefixBits =
600 (
Range.getUnsignedMax() ^
Range.getUnsignedMin()).countl_zero();
603 Known.
One &= UnsignedMax & Mask;
604 Known.
Zero &= ~UnsignedMax & Mask;
619 while (!WorkSet.
empty()) {
621 if (!Visited.
insert(V).second)
626 return EphValues.count(cast<Instruction>(U));
631 if (V ==
I || (!V->mayHaveSideEffects() && !V->isTerminator())) {
635 for (
const Use &U : U->operands()) {
650 return CI->isAssumeLikeIntrinsic();
658 bool AllowEphemerals) {
676 if (!AllowEphemerals && Inv == CxtI)
708 auto hasNoFreeCalls = [](
auto Range) {
713 if (!CB->hasFnAttr(Attribute::NoFree))
726 const BasicBlock *AssumeBB = Assume->getParent();
728 if (CtxBB != AssumeBB) {
735 CtxIter = AssumeBB->
end();
738 if (!Assume->comesBefore(CtxI))
744 return hasNoFreeCalls(
make_range(Assume->getIterator(), CtxIter));
773 for (
unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
776 Pred, VC->getElementAsAPInt(ElemIdx));
785 const PHINode **PhiOut =
nullptr) {
789 CtxIOut =
PHI->getIncomingBlock(*U)->getTerminator();
805 IncPhi && IncPhi->getNumIncomingValues() == 2) {
806 for (
int Idx = 0; Idx < 2; ++Idx) {
807 if (IncPhi->getIncomingValue(Idx) ==
PHI) {
808 ValOut = IncPhi->getIncomingValue(1 - Idx);
811 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator();
830 "Got assumption for the wrong function!");
833 if (!V->getType()->isPointerTy())
836 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
838 (RK.AttrKind == Attribute::NonNull ||
839 (RK.AttrKind == Attribute::Dereferenceable &&
868 if (
RHS->getType()->isPointerTy()) {
910 Known.
Zero |= ~*
C & *Mask;
916 Known.
One |= *
C & ~*Mask;
975 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
981 KnownBits DstKnown(
LHS->getType()->getScalarSizeInBits());
995 bool Invert,
unsigned Depth) {
1077 "Got assumption for the wrong function!");
1080 if (!V->getType()->isPointerTy())
1083 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
1087 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
1099 Value *Arg =
I->getArgOperand(0);
1115 if (Trunc && Trunc->getOperand(0) == V &&
1117 if (Trunc->hasNoUnsignedWrap()) {
1165 Known = KF(Known2, Known, ShAmtNonZero);
1176 Value *
X =
nullptr, *
Y =
nullptr;
1178 switch (
I->getOpcode()) {
1179 case Instruction::And:
1180 KnownOut = KnownLHS & KnownRHS;
1190 KnownOut = KnownLHS.
blsi();
1192 KnownOut = KnownRHS.
blsi();
1195 case Instruction::Or:
1196 KnownOut = KnownLHS | KnownRHS;
1198 case Instruction::Xor:
1199 KnownOut = KnownLHS ^ KnownRHS;
1209 const KnownBits &XBits =
I->getOperand(0) ==
X ? KnownLHS : KnownRHS;
1210 KnownOut = XBits.
blsmsk();
1223 if (!KnownOut.
Zero[0] && !KnownOut.
One[0] &&
1244 APInt DemandedEltsLHS, DemandedEltsRHS;
1246 DemandedElts, DemandedEltsLHS,
1249 const auto ComputeForSingleOpFunc =
1251 return KnownBitsFunc(
1256 if (DemandedEltsRHS.
isZero())
1257 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS);
1258 if (DemandedEltsLHS.
isZero())
1259 return ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS);
1261 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS)
1262 .intersectWith(ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS));
1272 APInt DemandedElts =
1280 Attribute Attr =
F->getFnAttribute(Attribute::VScaleRange);
1288 return ConstantRange::getEmpty(
BitWidth);
1299 Value *Arm,
bool Invert,
1338 "Input should be a Select!");
1348 const Value *LHS2 =
nullptr, *RHS2 =
nullptr;
1360 return CLow->
sle(*CHigh);
1365 const APInt *&CHigh) {
1366 assert((
II->getIntrinsicID() == Intrinsic::smin ||
1367 II->getIntrinsicID() == Intrinsic::smax) &&
1368 "Must be smin/smax");
1372 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
1377 if (
II->getIntrinsicID() == Intrinsic::smin)
1379 return CLow->
sle(*CHigh);
1384 const APInt *CLow, *CHigh;
1391 const APInt &DemandedElts,
1398 switch (
I->getOpcode()) {
1400 case Instruction::Load:
1405 case Instruction::And:
1411 case Instruction::Or:
1417 case Instruction::Xor:
1423 case Instruction::Mul: {
1427 DemandedElts, Known, Known2, Q,
Depth);
1430 case Instruction::UDiv: {
1437 case Instruction::SDiv: {
1444 case Instruction::Select: {
1445 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
1453 ComputeForArm(
I->getOperand(1),
false)
1457 case Instruction::FPTrunc:
1458 case Instruction::FPExt:
1459 case Instruction::FPToUI:
1460 case Instruction::FPToSI:
1461 case Instruction::SIToFP:
1462 case Instruction::UIToFP:
1464 case Instruction::PtrToInt:
1465 case Instruction::IntToPtr:
1468 case Instruction::ZExt:
1469 case Instruction::Trunc: {
1470 Type *SrcTy =
I->getOperand(0)->getType();
1472 unsigned SrcBitWidth;
1480 assert(SrcBitWidth &&
"SrcBitWidth can't be zero");
1484 Inst && Inst->hasNonNeg() && !Known.
isNegative())
1489 case Instruction::BitCast: {
1490 Type *SrcTy =
I->getOperand(0)->getType();
1491 if (SrcTy->isIntOrPtrTy() &&
1494 !
I->getType()->isVectorTy()) {
1502 V->getType()->isFPOrFPVectorTy()) {
1503 Type *FPType = V->getType()->getScalarType();
1515 if (FPClasses &
fcInf)
1527 if (Result.SignBit) {
1528 if (*Result.SignBit)
1539 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1540 !
I->getType()->isIntOrIntVectorTy() ||
1548 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1564 unsigned SubScale =
BitWidth / SubBitWidth;
1566 for (
unsigned i = 0; i != NumElts; ++i) {
1567 if (DemandedElts[i])
1568 SubDemandedElts.
setBit(i * SubScale);
1572 for (
unsigned i = 0; i != SubScale; ++i) {
1575 unsigned ShiftElt = IsLE ? i : SubScale - 1 - i;
1576 Known.
insertBits(KnownSrc, ShiftElt * SubBitWidth);
1582 unsigned SubScale = SubBitWidth /
BitWidth;
1584 APInt SubDemandedElts =
1590 for (
unsigned i = 0; i != NumElts; ++i) {
1591 if (DemandedElts[i]) {
1592 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
1602 case Instruction::SExt: {
1604 unsigned SrcBitWidth =
I->getOperand(0)->getType()->getScalarSizeInBits();
1606 Known = Known.
trunc(SrcBitWidth);
1613 case Instruction::Shl: {
1617 bool ShAmtNonZero) {
1618 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1628 case Instruction::LShr: {
1631 bool ShAmtNonZero) {
1642 case Instruction::AShr: {
1645 bool ShAmtNonZero) {
1652 case Instruction::Sub: {
1656 DemandedElts, Known, Known2, Q,
Depth);
1659 case Instruction::Add: {
1663 DemandedElts, Known, Known2, Q,
Depth);
1666 case Instruction::SRem:
1672 case Instruction::URem:
1677 case Instruction::Alloca:
1680 case Instruction::GetElementPtr: {
1687 APInt AccConstIndices(IndexWidth, 0);
1689 auto AddIndexToKnown = [&](
KnownBits IndexBits) {
1698 "Index width can't be larger than pointer width");
1704 for (
unsigned i = 1, e =
I->getNumOperands(); i != e; ++i, ++GTI) {
1709 Value *Index =
I->getOperand(i);
1720 "Access to structure field must be known at compile time");
1728 AccConstIndices +=
Offset;
1745 CI->getValue().
sextOrTrunc(IndexWidth) * StrideInBytes;
1769 case Instruction::PHI: {
1772 Value *R =
nullptr, *L =
nullptr;
1785 case Instruction::LShr:
1786 case Instruction::AShr:
1787 case Instruction::Shl:
1788 case Instruction::UDiv:
1795 case Instruction::URem: {
1808 case Instruction::Shl:
1812 case Instruction::LShr:
1813 case Instruction::UDiv:
1814 case Instruction::URem:
1819 case Instruction::AShr:
1831 case Instruction::Add:
1832 case Instruction::Sub:
1833 case Instruction::And:
1834 case Instruction::Or:
1835 case Instruction::Mul: {
1842 unsigned OpNum =
P->getOperand(0) == R ? 0 : 1;
1843 Instruction *RInst =
P->getIncomingBlock(OpNum)->getTerminator();
1844 Instruction *LInst =
P->getIncomingBlock(1 - OpNum)->getTerminator();
1873 case Instruction::Add: {
1883 case Instruction::Sub: {
1894 case Instruction::Mul:
1911 if (
P->getNumIncomingValues() == 0)
1922 for (
const Use &U :
P->operands()) {
1957 if ((TrueSucc == CxtPhi->
getParent()) !=
1974 Known2 = KnownUnion;
1988 case Instruction::Call:
1989 case Instruction::Invoke: {
1999 if (std::optional<ConstantRange>
Range = CB->getRange())
2002 if (
const Value *RV = CB->getReturnedArgOperand()) {
2003 if (RV->getType() ==
I->getType()) {
2015 switch (
II->getIntrinsicID()) {
2018 case Intrinsic::abs: {
2020 bool IntMinIsPoison =
match(
II->getArgOperand(1),
m_One());
2024 case Intrinsic::bitreverse:
2028 case Intrinsic::bswap:
2032 case Intrinsic::ctlz: {
2038 PossibleLZ = std::min(PossibleLZ,
BitWidth - 1);
2043 case Intrinsic::cttz: {
2049 PossibleTZ = std::min(PossibleTZ,
BitWidth - 1);
2054 case Intrinsic::ctpop: {
2065 case Intrinsic::fshr:
2066 case Intrinsic::fshl: {
2073 if (
II->getIntrinsicID() == Intrinsic::fshr)
2080 Known2 <<= ShiftAmt;
2085 case Intrinsic::uadd_sat:
2090 case Intrinsic::usub_sat:
2095 case Intrinsic::sadd_sat:
2100 case Intrinsic::ssub_sat:
2106 case Intrinsic::vector_reverse:
2112 case Intrinsic::vector_reduce_and:
2113 case Intrinsic::vector_reduce_or:
2114 case Intrinsic::vector_reduce_umax:
2115 case Intrinsic::vector_reduce_umin:
2116 case Intrinsic::vector_reduce_smax:
2117 case Intrinsic::vector_reduce_smin:
2120 case Intrinsic::vector_reduce_xor: {
2127 bool EvenCnt = VecTy->getElementCount().isKnownEven();
2131 if (VecTy->isScalableTy() || EvenCnt)
2135 case Intrinsic::umin:
2140 case Intrinsic::umax:
2145 case Intrinsic::smin:
2151 case Intrinsic::smax:
2157 case Intrinsic::ptrmask: {
2160 const Value *Mask =
I->getOperand(1);
2161 Known2 =
KnownBits(Mask->getType()->getScalarSizeInBits());
2167 case Intrinsic::x86_sse2_pmulh_w:
2168 case Intrinsic::x86_avx2_pmulh_w:
2169 case Intrinsic::x86_avx512_pmulh_w_512:
2174 case Intrinsic::x86_sse2_pmulhu_w:
2175 case Intrinsic::x86_avx2_pmulhu_w:
2176 case Intrinsic::x86_avx512_pmulhu_w_512:
2181 case Intrinsic::x86_sse42_crc32_64_64:
2184 case Intrinsic::x86_ssse3_phadd_d_128:
2185 case Intrinsic::x86_ssse3_phadd_w_128:
2186 case Intrinsic::x86_avx2_phadd_d:
2187 case Intrinsic::x86_avx2_phadd_w: {
2189 I, DemandedElts, Q,
Depth,
2195 case Intrinsic::x86_ssse3_phadd_sw_128:
2196 case Intrinsic::x86_avx2_phadd_sw: {
2201 case Intrinsic::x86_ssse3_phsub_d_128:
2202 case Intrinsic::x86_ssse3_phsub_w_128:
2203 case Intrinsic::x86_avx2_phsub_d:
2204 case Intrinsic::x86_avx2_phsub_w: {
2206 I, DemandedElts, Q,
Depth,
2212 case Intrinsic::x86_ssse3_phsub_sw_128:
2213 case Intrinsic::x86_avx2_phsub_sw: {
2218 case Intrinsic::riscv_vsetvli:
2219 case Intrinsic::riscv_vsetvlimax: {
2220 bool HasAVL =
II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
2233 MaxVL = std::min(MaxVL, CI->getZExtValue());
2235 unsigned KnownZeroFirstBit =
Log2_32(MaxVL) + 1;
2240 case Intrinsic::vscale: {
2241 if (!
II->getParent() || !
II->getFunction())
2251 case Instruction::ShuffleVector: {
2265 APInt DemandedLHS, DemandedRHS;
2271 if (!!DemandedLHS) {
2272 const Value *
LHS = Shuf->getOperand(0);
2278 if (!!DemandedRHS) {
2279 const Value *
RHS = Shuf->getOperand(1);
2285 case Instruction::InsertElement: {
2290 const Value *Vec =
I->getOperand(0);
2291 const Value *Elt =
I->getOperand(1);
2294 APInt DemandedVecElts = DemandedElts;
2295 bool NeedsElt =
true;
2297 if (CIdx && CIdx->getValue().ult(NumElts)) {
2298 DemandedVecElts.
clearBit(CIdx->getZExtValue());
2299 NeedsElt = DemandedElts[CIdx->getZExtValue()];
2310 if (!DemandedVecElts.
isZero()) {
2316 case Instruction::ExtractElement: {
2319 const Value *Vec =
I->getOperand(0);
2320 const Value *Idx =
I->getOperand(1);
2329 if (CIdx && CIdx->getValue().ult(NumElts))
2334 case Instruction::ExtractValue:
2339 switch (
II->getIntrinsicID()) {
2341 case Intrinsic::uadd_with_overflow:
2342 case Intrinsic::sadd_with_overflow:
2344 true,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2345 false, DemandedElts, Known, Known2, Q,
Depth);
2347 case Intrinsic::usub_with_overflow:
2348 case Intrinsic::ssub_with_overflow:
2350 false,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2351 false, DemandedElts, Known, Known2, Q,
Depth);
2353 case Intrinsic::umul_with_overflow:
2354 case Intrinsic::smul_with_overflow:
2356 false, DemandedElts, Known, Known2, Q,
Depth);
2362 case Instruction::Freeze:
2406 if (!DemandedElts) {
2412 assert(V &&
"No Value?");
2416 Type *Ty = V->getType();
2419 assert((Ty->isIntOrIntVectorTy(
BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2420 "Not integer or pointer type!");
2424 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
2425 "DemandedElt width should equal the fixed vector number of elements");
2428 "DemandedElt width should be 1 for scalars or scalable vectors");
2434 "V and Known should have same BitWidth");
2437 "V and Known should have same BitWidth");
2459 for (
unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2460 if (!DemandedElts[i])
2462 APInt Elt = CDV->getElementAsAPInt(i);
2476 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2477 if (!DemandedElts[i])
2487 const APInt &Elt = ElementCI->getValue();
2508 if (std::optional<ConstantRange>
Range =
A->getRange())
2509 Known =
Range->toKnownBits();
2518 if (!GA->isInterposable())
2526 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2527 Known = CR->toKnownBits();
2532 Align Alignment = V->getPointerAlignment(Q.
DL);
2548 Value *Start =
nullptr, *Step =
nullptr;
2554 if (U.get() == Start) {
2570 case Instruction::Mul:
2575 case Instruction::SDiv:
2581 case Instruction::UDiv:
2587 case Instruction::Shl:
2589 case Instruction::AShr:
2593 case Instruction::LShr:
2631 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2673 return F->hasFnAttribute(Attribute::VScaleRange);
2690 switch (
I->getOpcode()) {
2691 case Instruction::ZExt:
2693 case Instruction::Trunc:
2695 case Instruction::Shl:
2699 case Instruction::LShr:
2703 case Instruction::UDiv:
2707 case Instruction::Mul:
2711 case Instruction::And:
2722 case Instruction::Add: {
2728 if (
match(
I->getOperand(0),
2732 if (
match(
I->getOperand(1),
2737 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2746 if ((~(LHSBits.
Zero & RHSBits.
Zero)).isPowerOf2())
2759 case Instruction::Select:
2762 case Instruction::PHI: {
2783 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2784 return isKnownToBeAPowerOfTwo(U.get(), OrZero, RecQ, NewDepth);
2787 case Instruction::Invoke:
2788 case Instruction::Call: {
2790 switch (
II->getIntrinsicID()) {
2791 case Intrinsic::umax:
2792 case Intrinsic::smax:
2793 case Intrinsic::umin:
2794 case Intrinsic::smin:
2799 case Intrinsic::bitreverse:
2800 case Intrinsic::bswap:
2802 case Intrinsic::fshr:
2803 case Intrinsic::fshl:
2805 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
2829 F =
I->getFunction();
2833 if (!
GEP->hasNoUnsignedWrap() &&
2834 !(
GEP->isInBounds() &&
2839 assert(
GEP->getType()->isPointerTy() &&
"We only support plain pointer GEP");
2850 GTI != GTE; ++GTI) {
2852 if (
StructType *STy = GTI.getStructTypeOrNull()) {
2857 if (ElementOffset > 0)
2863 if (GTI.getSequentialElementStride(Q.
DL).isZero())
2897 unsigned NumUsesExplored = 0;
2898 for (
auto &U : V->uses()) {
2907 if (V->getType()->isPointerTy()) {
2909 if (CB->isArgOperand(&U) &&
2910 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
2938 NonNullIfTrue =
true;
2940 NonNullIfTrue =
false;
2946 for (
const auto *CmpU : UI->
users()) {
2948 if (Visited.
insert(CmpU).second)
2951 while (!WorkList.
empty()) {
2960 for (
const auto *CurrU : Curr->users())
2961 if (Visited.
insert(CurrU).second)
2967 assert(BI->isConditional() &&
"uses a comparison!");
2970 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2974 }
else if (NonNullIfTrue &&
isGuard(Curr) &&
2989 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2991 for (
unsigned i = 0; i < NumRanges; ++i) {
3007 Value *Start =
nullptr, *Step =
nullptr;
3008 const APInt *StartC, *StepC;
3014 case Instruction::Add:
3020 case Instruction::Mul:
3023 case Instruction::Shl:
3025 case Instruction::AShr:
3026 case Instruction::LShr:
3042 bool NUW,
unsigned Depth) {
3099 return ::isKnownNonEqual(
X,
Y, DemandedElts, Q,
Depth);
3104 bool NUW,
unsigned Depth) {
3133 auto ShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
3134 switch (
I->getOpcode()) {
3135 case Instruction::Shl:
3136 return Lhs.
shl(Rhs);
3137 case Instruction::LShr:
3138 return Lhs.
lshr(Rhs);
3139 case Instruction::AShr:
3140 return Lhs.
ashr(Rhs);
3146 auto InvShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
3147 switch (
I->getOpcode()) {
3148 case Instruction::Shl:
3149 return Lhs.
lshr(Rhs);
3150 case Instruction::LShr:
3151 case Instruction::AShr:
3152 return Lhs.
shl(Rhs);
3165 if (MaxShift.
uge(NumBits))
3168 if (!ShiftOp(KnownVal.
One, MaxShift).isZero())
3173 if (InvShiftOp(KnownVal.
Zero, NumBits - MaxShift)
3182 const APInt &DemandedElts,
3185 switch (
I->getOpcode()) {
3186 case Instruction::Alloca:
3188 return I->getType()->getPointerAddressSpace() == 0;
3189 case Instruction::GetElementPtr:
3190 if (
I->getType()->isPointerTy())
3193 case Instruction::BitCast: {
3221 Type *FromTy =
I->getOperand(0)->getType();
3226 case Instruction::IntToPtr:
3235 case Instruction::PtrToAddr:
3239 case Instruction::PtrToInt:
3243 I->getType()->getScalarSizeInBits())
3246 case Instruction::Trunc:
3249 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
3255 case Instruction::Xor:
3256 case Instruction::Sub:
3258 I->getOperand(1),
Depth);
3259 case Instruction::Or:
3270 case Instruction::SExt:
3271 case Instruction::ZExt:
3275 case Instruction::Shl: {
3290 case Instruction::LShr:
3291 case Instruction::AShr: {
3306 case Instruction::UDiv:
3307 case Instruction::SDiv: {
3322 if (
I->getOpcode() == Instruction::SDiv) {
3324 XKnown = XKnown.
abs(
false);
3325 YKnown = YKnown.
abs(
false);
3331 return XUgeY && *XUgeY;
3333 case Instruction::Add: {
3343 case Instruction::Mul: {
3349 case Instruction::Select: {
3356 auto SelectArmIsNonZero = [&](
bool IsTrueArm) {
3358 Op = IsTrueArm ?
I->getOperand(1) :
I->getOperand(2);
3376 if (SelectArmIsNonZero(
true) &&
3377 SelectArmIsNonZero(
false))
3381 case Instruction::PHI: {
3392 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
3396 BasicBlock *TrueSucc, *FalseSucc;
3397 if (match(RecQ.CxtI,
3398 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
3399 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
3401 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
3403 if (FalseSucc == PN->getParent())
3404 Pred = CmpInst::getInversePredicate(Pred);
3405 if (cmpExcludesZero(Pred, X))
3413 case Instruction::InsertElement: {
3417 const Value *Vec =
I->getOperand(0);
3418 const Value *Elt =
I->getOperand(1);
3422 APInt DemandedVecElts = DemandedElts;
3423 bool SkipElt =
false;
3425 if (CIdx && CIdx->getValue().ult(NumElts)) {
3426 DemandedVecElts.
clearBit(CIdx->getZExtValue());
3427 SkipElt = !DemandedElts[CIdx->getZExtValue()];
3433 (DemandedVecElts.
isZero() ||
3436 case Instruction::ExtractElement:
3438 const Value *Vec = EEI->getVectorOperand();
3439 const Value *Idx = EEI->getIndexOperand();
3442 unsigned NumElts = VecTy->getNumElements();
3444 if (CIdx && CIdx->getValue().ult(NumElts))
3450 case Instruction::ShuffleVector: {
3454 APInt DemandedLHS, DemandedRHS;
3460 return (DemandedRHS.
isZero() ||
3465 case Instruction::Freeze:
3469 case Instruction::Load: {
3486 case Instruction::ExtractValue: {
3492 case Instruction::Add:
3497 case Instruction::Sub:
3500 case Instruction::Mul:
3503 false,
false,
Depth);
3509 case Instruction::Call:
3510 case Instruction::Invoke: {
3512 if (
I->getType()->isPointerTy()) {
3513 if (
Call->isReturnNonNull())
3520 if (std::optional<ConstantRange>
Range =
Call->getRange()) {
3521 const APInt ZeroValue(
Range->getBitWidth(), 0);
3522 if (!
Range->contains(ZeroValue))
3525 if (
const Value *RV =
Call->getReturnedArgOperand())
3531 switch (
II->getIntrinsicID()) {
3532 case Intrinsic::sshl_sat:
3533 case Intrinsic::ushl_sat:
3534 case Intrinsic::abs:
3535 case Intrinsic::bitreverse:
3536 case Intrinsic::bswap:
3537 case Intrinsic::ctpop:
3541 case Intrinsic::ssub_sat:
3544 case Intrinsic::sadd_sat:
3546 II->getArgOperand(1),
3547 true,
false,
Depth);
3549 case Intrinsic::vector_reverse:
3553 case Intrinsic::vector_reduce_or:
3554 case Intrinsic::vector_reduce_umax:
3555 case Intrinsic::vector_reduce_umin:
3556 case Intrinsic::vector_reduce_smax:
3557 case Intrinsic::vector_reduce_smin:
3559 case Intrinsic::umax:
3560 case Intrinsic::uadd_sat:
3568 case Intrinsic::smax: {
3571 auto IsNonZero = [&](
Value *
Op, std::optional<bool> &OpNonZero,
3573 if (!OpNonZero.has_value())
3574 OpNonZero = OpKnown.isNonZero() ||
3579 std::optional<bool> Op0NonZero, Op1NonZero;
3583 IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known))
3588 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known))
3590 return IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known) &&
3591 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known);
3593 case Intrinsic::smin: {
3609 case Intrinsic::umin:
3612 case Intrinsic::cttz:
3615 case Intrinsic::ctlz:
3618 case Intrinsic::fshr:
3619 case Intrinsic::fshl:
3621 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
3624 case Intrinsic::vscale:
3626 case Intrinsic::experimental_get_vector_length:
3640 return Known.
One != 0;
3651 Type *Ty = V->getType();
3658 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
3659 "DemandedElt width should equal the fixed vector number of elements");
3662 "DemandedElt width should be 1 for scalars");
3667 if (
C->isNullValue())
3676 for (
unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3677 if (!DemandedElts[i])
3679 Constant *Elt =
C->getAggregateElement(i);
3696 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3697 GV->getType()->getAddressSpace() == 0)
3707 if (std::optional<ConstantRange>
Range =
A->getRange()) {
3708 const APInt ZeroValue(
Range->getBitWidth(), 0);
3709 if (!
Range->contains(ZeroValue))
3726 if (((
A->hasPassPointeeByValueCopyAttr() &&
3728 A->hasNonNullAttr()))
3750 APInt DemandedElts =
3752 return ::isKnownNonZero(V, DemandedElts, Q,
Depth);
3761static std::optional<std::pair<Value*, Value*>>
3765 return std::nullopt;
3774 case Instruction::Or:
3779 case Instruction::Xor:
3780 case Instruction::Add: {
3788 case Instruction::Sub:
3794 case Instruction::Mul: {
3800 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3801 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3811 case Instruction::Shl: {
3816 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3817 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3824 case Instruction::AShr:
3825 case Instruction::LShr: {
3828 if (!PEO1->isExact() || !PEO2->isExact())
3835 case Instruction::SExt:
3836 case Instruction::ZExt:
3840 case Instruction::PHI: {
3848 Value *Start1 =
nullptr, *Step1 =
nullptr;
3850 Value *Start2 =
nullptr, *Step2 =
nullptr;
3866 if (Values->first != PN1 || Values->second != PN2)
3869 return std::make_pair(Start1, Start2);
3872 return std::nullopt;
3879 const APInt &DemandedElts,
3887 case Instruction::Or:
3891 case Instruction::Xor:
3892 case Instruction::Add:
3913 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3914 !
C->isZero() && !
C->isOne() &&
3928 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3942 bool UsedFullRecursion =
false;
3944 if (!VisitedBBs.
insert(IncomBB).second)
3948 const APInt *C1, *C2;
3953 if (UsedFullRecursion)
3957 RecQ.
CxtI = IncomBB->getTerminator();
3960 UsedFullRecursion =
true;
3974 const Value *Cond2 = SI2->getCondition();
3977 DemandedElts, Q,
Depth + 1) &&
3979 DemandedElts, Q,
Depth + 1);
3992 if (!
A->getType()->isPointerTy() || !
B->getType()->isPointerTy())
3996 if (!GEPA || GEPA->getNumIndices() != 1 || !
isa<Constant>(GEPA->idx_begin()))
4001 if (!PN || PN->getNumIncomingValues() != 2)
4006 Value *Start =
nullptr;
4008 if (PN->getIncomingValue(0) == Step)
4009 Start = PN->getIncomingValue(1);
4010 else if (PN->getIncomingValue(1) == Step)
4011 Start = PN->getIncomingValue(0);
4022 APInt StartOffset(IndexWidth, 0);
4023 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, StartOffset);
4024 APInt StepOffset(IndexWidth, 0);
4030 APInt OffsetB(IndexWidth, 0);
4031 B =
B->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, OffsetB);
4032 return Start ==
B &&
4044 auto IsKnownNonEqualFromDominatingCondition = [&](
const Value *V) {
4065 if (IsKnownNonEqualFromDominatingCondition(V1) ||
4066 IsKnownNonEqualFromDominatingCondition(V2))
4080 "Got assumption for the wrong function!");
4081 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4082 "must be an assume intrinsic");
4112 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
4114 return isKnownNonEqual(Values->first, Values->second, DemandedElts, Q,
4176 const APInt &DemandedElts,
4182 unsigned MinSignBits = TyBits;
4184 for (
unsigned i = 0; i != NumElts; ++i) {
4185 if (!DemandedElts[i])
4192 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
4199 const APInt &DemandedElts,
4205 assert(Result > 0 &&
"At least one sign bit needs to be present!");
4217 const APInt &DemandedElts,
4219 Type *Ty = V->getType();
4225 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
4226 "DemandedElt width should equal the fixed vector number of elements");
4229 "DemandedElt width should be 1 for scalars");
4243 unsigned FirstAnswer = 1;
4254 case Instruction::BitCast: {
4255 Value *Src = U->getOperand(0);
4256 Type *SrcTy = Src->getType();
4260 if (!SrcTy->isIntOrIntVectorTy())
4266 if ((SrcBits % TyBits) != 0)
4279 case Instruction::SExt:
4280 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
4284 case Instruction::SDiv: {
4285 const APInt *Denominator;
4298 return std::min(TyBits, NumBits + Denominator->
logBase2());
4303 case Instruction::SRem: {
4306 const APInt *Denominator;
4327 unsigned ResBits = TyBits - Denominator->
ceilLogBase2();
4328 Tmp = std::max(Tmp, ResBits);
4334 case Instruction::AShr: {
4339 if (ShAmt->
uge(TyBits))
4342 Tmp += ShAmtLimited;
4343 if (Tmp > TyBits) Tmp = TyBits;
4347 case Instruction::Shl: {
4352 if (ShAmt->
uge(TyBits))
4357 ShAmt->
uge(TyBits -
X->getType()->getScalarSizeInBits())) {
4359 Tmp += TyBits -
X->getType()->getScalarSizeInBits();
4363 if (ShAmt->
uge(Tmp))
4370 case Instruction::And:
4371 case Instruction::Or:
4372 case Instruction::Xor:
4377 FirstAnswer = std::min(Tmp, Tmp2);
4384 case Instruction::Select: {
4388 const APInt *CLow, *CHigh;
4396 return std::min(Tmp, Tmp2);
4399 case Instruction::Add:
4403 if (Tmp == 1)
break;
4407 if (CRHS->isAllOnesValue()) {
4413 if ((Known.
Zero | 1).isAllOnes())
4425 return std::min(Tmp, Tmp2) - 1;
4427 case Instruction::Sub:
4434 if (CLHS->isNullValue()) {
4439 if ((Known.
Zero | 1).isAllOnes())
4456 return std::min(Tmp, Tmp2) - 1;
4458 case Instruction::Mul: {
4461 unsigned SignBitsOp0 =
4463 if (SignBitsOp0 == 1)
4465 unsigned SignBitsOp1 =
4467 if (SignBitsOp1 == 1)
4469 unsigned OutValidBits =
4470 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
4471 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
4474 case Instruction::PHI: {
4478 if (NumIncomingValues > 4)
break;
4480 if (NumIncomingValues == 0)
break;
4486 for (
unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4487 if (Tmp == 1)
return Tmp;
4490 DemandedElts, RecQ,
Depth + 1));
4495 case Instruction::Trunc: {
4500 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4501 if (Tmp > (OperandTyBits - TyBits))
4502 return Tmp - (OperandTyBits - TyBits);
4507 case Instruction::ExtractElement:
4514 case Instruction::ShuffleVector: {
4522 APInt DemandedLHS, DemandedRHS;
4527 Tmp = std::numeric_limits<unsigned>::max();
4528 if (!!DemandedLHS) {
4529 const Value *
LHS = Shuf->getOperand(0);
4536 if (!!DemandedRHS) {
4537 const Value *
RHS = Shuf->getOperand(1);
4539 Tmp = std::min(Tmp, Tmp2);
4545 assert(Tmp <= TyBits &&
"Failed to determine minimum sign bits");
4548 case Instruction::Call: {
4550 switch (
II->getIntrinsicID()) {
4553 case Intrinsic::abs:
4561 case Intrinsic::smin:
4562 case Intrinsic::smax: {
4563 const APInt *CLow, *CHigh;
4578 if (
unsigned VecSignBits =
4596 if (
F->isIntrinsic())
4597 return F->getIntrinsicID();
4603 if (
F->hasLocalLinkage() || !TLI || !TLI->
getLibFunc(CB, Func) ||
4613 return Intrinsic::sin;
4617 return Intrinsic::cos;
4621 return Intrinsic::tan;
4625 return Intrinsic::asin;
4629 return Intrinsic::acos;
4633 return Intrinsic::atan;
4635 case LibFunc_atan2f:
4636 case LibFunc_atan2l:
4637 return Intrinsic::atan2;
4641 return Intrinsic::sinh;
4645 return Intrinsic::cosh;
4649 return Intrinsic::tanh;
4653 return Intrinsic::exp;
4657 return Intrinsic::exp2;
4659 case LibFunc_exp10f:
4660 case LibFunc_exp10l:
4661 return Intrinsic::exp10;
4665 return Intrinsic::log;
4667 case LibFunc_log10f:
4668 case LibFunc_log10l:
4669 return Intrinsic::log10;
4673 return Intrinsic::log2;
4677 return Intrinsic::fabs;
4681 return Intrinsic::minnum;
4685 return Intrinsic::maxnum;
4686 case LibFunc_copysign:
4687 case LibFunc_copysignf:
4688 case LibFunc_copysignl:
4689 return Intrinsic::copysign;
4691 case LibFunc_floorf:
4692 case LibFunc_floorl:
4693 return Intrinsic::floor;
4697 return Intrinsic::ceil;
4699 case LibFunc_truncf:
4700 case LibFunc_truncl:
4701 return Intrinsic::trunc;
4705 return Intrinsic::rint;
4706 case LibFunc_nearbyint:
4707 case LibFunc_nearbyintf:
4708 case LibFunc_nearbyintl:
4709 return Intrinsic::nearbyint;
4711 case LibFunc_roundf:
4712 case LibFunc_roundl:
4713 return Intrinsic::round;
4714 case LibFunc_roundeven:
4715 case LibFunc_roundevenf:
4716 case LibFunc_roundevenl:
4717 return Intrinsic::roundeven;
4721 return Intrinsic::pow;
4725 return Intrinsic::sqrt;
4732 Ty = Ty->getScalarType();
4741 bool &TrueIfSigned) {
4744 TrueIfSigned =
true;
4745 return RHS.isZero();
4747 TrueIfSigned =
true;
4748 return RHS.isAllOnes();
4750 TrueIfSigned =
false;
4751 return RHS.isAllOnes();
4753 TrueIfSigned =
false;
4754 return RHS.isZero();
4757 TrueIfSigned =
true;
4758 return RHS.isMaxSignedValue();
4761 TrueIfSigned =
true;
4762 return RHS.isMinSignedValue();
4765 TrueIfSigned =
false;
4766 return RHS.isMinSignedValue();
4769 TrueIfSigned =
false;
4770 return RHS.isMaxSignedValue();
4780 unsigned Depth = 0) {
4805 KnownFromContext.
knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4809 KnownFromContext.
knownNot(CondIsTrue ? ~Mask : Mask);
4815 if (TrueIfSigned == CondIsTrue)
4831 return KnownFromContext;
4851 return KnownFromContext;
4861 "Got assumption for the wrong function!");
4862 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4863 "must be an assume intrinsic");
4869 true, Q.
CxtI, KnownFromContext);
4872 return KnownFromContext;
4883 APInt DemandedElts =
4889 const APInt &DemandedElts,
4894 if ((InterestedClasses &
4900 KnownSrc, Q,
Depth + 1);
4915 assert(Known.
isUnknown() &&
"should not be called with known information");
4917 if (!DemandedElts) {
4947 bool SignBitAllZero =
true;
4948 bool SignBitAllOne =
true;
4951 unsigned NumElts = VFVTy->getNumElements();
4952 for (
unsigned i = 0; i != NumElts; ++i) {
4953 if (!DemandedElts[i])
4969 const APFloat &
C = CElt->getValueAPF();
4972 SignBitAllZero =
false;
4974 SignBitAllOne =
false;
4976 if (SignBitAllOne != SignBitAllZero)
4977 Known.
SignBit = SignBitAllOne;
4983 KnownNotFromFlags |= CB->getRetNoFPClass();
4985 KnownNotFromFlags |= Arg->getNoFPClass();
4989 if (FPOp->hasNoNaNs())
4990 KnownNotFromFlags |=
fcNan;
4991 if (FPOp->hasNoInfs())
4992 KnownNotFromFlags |=
fcInf;
4996 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
5000 InterestedClasses &= ~KnownNotFromFlags;
5019 const unsigned Opc =
Op->getOpcode();
5021 case Instruction::FNeg: {
5023 Known, Q,
Depth + 1);
5027 case Instruction::Select: {
5035 Value *TestedValue =
nullptr;
5041 Value *CmpLHS, *CmpRHS;
5048 bool LookThroughFAbsFNeg = CmpLHS !=
LHS && CmpLHS !=
RHS;
5049 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
5055 MaskIfTrue = TestedMask;
5056 MaskIfFalse = ~TestedMask;
5059 if (TestedValue ==
LHS) {
5061 FilterLHS = MaskIfTrue;
5062 }
else if (TestedValue ==
RHS) {
5064 FilterRHS = MaskIfFalse;
5073 Known2, Q,
Depth + 1);
5079 case Instruction::Call: {
5083 case Intrinsic::fabs: {
5088 InterestedClasses, Known, Q,
Depth + 1);
5094 case Intrinsic::copysign: {
5098 Known, Q,
Depth + 1);
5100 KnownSign, Q,
Depth + 1);
5104 case Intrinsic::fma:
5105 case Intrinsic::fmuladd: {
5109 if (
II->getArgOperand(0) !=
II->getArgOperand(1))
5118 KnownAddend, Q,
Depth + 1);
5124 case Intrinsic::sqrt:
5125 case Intrinsic::experimental_constrained_sqrt: {
5128 if (InterestedClasses &
fcNan)
5132 KnownSrc, Q,
Depth + 1);
5150 II->getType()->getScalarType()->getFltSemantics();
5159 case Intrinsic::sin:
5160 case Intrinsic::cos: {
5164 KnownSrc, Q,
Depth + 1);
5170 case Intrinsic::maxnum:
5171 case Intrinsic::minnum:
5172 case Intrinsic::minimum:
5173 case Intrinsic::maximum:
5174 case Intrinsic::minimumnum:
5175 case Intrinsic::maximumnum: {
5178 KnownLHS, Q,
Depth + 1);
5180 KnownRHS, Q,
Depth + 1);
5183 Known = KnownLHS | KnownRHS;
5187 (IID == Intrinsic::minnum || IID == Intrinsic::maxnum ||
5188 IID == Intrinsic::minimumnum || IID == Intrinsic::maximumnum))
5191 if (IID == Intrinsic::maxnum || IID == Intrinsic::maximumnum) {
5199 }
else if (IID == Intrinsic::maximum) {
5205 }
else if (IID == Intrinsic::minnum || IID == Intrinsic::minimumnum) {
5213 }
else if (IID == Intrinsic::minimum) {
5236 II->getType()->getScalarType()->getFltSemantics());
5248 }
else if ((IID == Intrinsic::maximum || IID == Intrinsic::minimum ||
5249 IID == Intrinsic::maximumnum ||
5250 IID == Intrinsic::minimumnum) ||
5258 KnownLHS.
SignBit = std::nullopt;
5260 KnownRHS.
SignBit = std::nullopt;
5261 if ((IID == Intrinsic::maximum || IID == Intrinsic::maximumnum ||
5262 IID == Intrinsic::maxnum) &&
5265 else if ((IID == Intrinsic::minimum || IID == Intrinsic::minimumnum ||
5266 IID == Intrinsic::minnum) &&
5273 case Intrinsic::canonicalize: {
5276 KnownSrc, Q,
Depth + 1);
5280 F ?
F->getDenormalMode(
5281 II->getType()->getScalarType()->getFltSemantics())
5286 case Intrinsic::vector_reduce_fmax:
5287 case Intrinsic::vector_reduce_fmin:
5288 case Intrinsic::vector_reduce_fmaximum:
5289 case Intrinsic::vector_reduce_fminimum: {
5293 InterestedClasses, Q,
Depth + 1);
5300 case Intrinsic::vector_reverse:
5303 II->getFastMathFlags(), InterestedClasses, Q,
Depth + 1);
5305 case Intrinsic::trunc:
5306 case Intrinsic::floor:
5307 case Intrinsic::ceil:
5308 case Intrinsic::rint:
5309 case Intrinsic::nearbyint:
5310 case Intrinsic::round:
5311 case Intrinsic::roundeven: {
5319 KnownSrc, Q,
Depth + 1);
5328 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
5343 case Intrinsic::exp:
5344 case Intrinsic::exp2:
5345 case Intrinsic::exp10:
5346 case Intrinsic::amdgcn_exp2: {
5349 KnownSrc, Q,
Depth + 1);
5353 Type *EltTy =
II->getType()->getScalarType();
5354 if (IID == Intrinsic::amdgcn_exp2 && EltTy->
isFloatTy())
5359 case Intrinsic::fptrunc_round: {
5364 case Intrinsic::log:
5365 case Intrinsic::log10:
5366 case Intrinsic::log2:
5367 case Intrinsic::experimental_constrained_log:
5368 case Intrinsic::experimental_constrained_log10:
5369 case Intrinsic::experimental_constrained_log2:
5370 case Intrinsic::amdgcn_log: {
5371 Type *EltTy =
II->getType()->getScalarType();
5372 if (IID == Intrinsic::amdgcn_log && EltTy->
isFloatTy())
5392 KnownSrc, Q,
Depth + 1);
5412 case Intrinsic::powi: {
5416 const Value *Exp =
II->getArgOperand(1);
5417 Type *ExpTy = Exp->getType();
5421 ExponentKnownBits, Q,
Depth + 1);
5423 if (ExponentKnownBits.
Zero[0]) {
5438 KnownSrc, Q,
Depth + 1);
5443 case Intrinsic::ldexp: {
5446 KnownSrc, Q,
Depth + 1);
5462 if ((InterestedClasses & ExpInfoMask) ==
fcNone)
5468 II->getType()->getScalarType()->getFltSemantics();
5470 const Value *ExpArg =
II->getArgOperand(1);
5474 const int MantissaBits = Precision - 1;
5481 II->getType()->getScalarType()->getFltSemantics();
5482 if (ConstVal && ConstVal->
isZero()) {
5507 case Intrinsic::arithmetic_fence: {
5509 Known, Q,
Depth + 1);
5512 case Intrinsic::experimental_constrained_sitofp:
5513 case Intrinsic::experimental_constrained_uitofp:
5523 if (IID == Intrinsic::experimental_constrained_uitofp)
5528 case Intrinsic::amdgcn_rcp: {
5531 KnownSrc, Q,
Depth + 1);
5535 Type *EltTy =
II->getType()->getScalarType();
5558 case Intrinsic::amdgcn_rsq: {
5564 KnownSrc, Q,
Depth + 1);
5576 Type *EltTy =
II->getType()->getScalarType();
5602 case Instruction::FAdd:
5603 case Instruction::FSub: {
5606 Op->getOpcode() == Instruction::FAdd &&
5608 bool WantNaN = (InterestedClasses &
fcNan) !=
fcNone;
5611 if (!WantNaN && !WantNegative && !WantNegZero)
5617 if (InterestedClasses &
fcNan)
5618 InterestedSrcs |=
fcInf;
5620 KnownRHS, Q,
Depth + 1);
5624 WantNegZero ||
Opc == Instruction::FSub) {
5629 KnownLHS, Q,
Depth + 1);
5639 if (
Op->getOpcode() == Instruction::FAdd) {
5647 Op->getType()->getScalarType()->getFltSemantics();
5661 Op->getType()->getScalarType()->getFltSemantics();
5675 case Instruction::FMul: {
5677 if (
Op->getOperand(0) ==
Op->getOperand(1))
5690 Op->getType()->getScalarType()->getFltSemantics();
5692 const int MantissaBits = Precision - 1;
5694 int MinKnownExponent =
ilogb(*CRHS);
5695 if (MinKnownExponent >= MantissaBits)
5757 Type *OpTy =
Op->getType()->getScalarType();
5769 case Instruction::FDiv:
5770 case Instruction::FRem: {
5771 if (
Op->getOperand(0) ==
Op->getOperand(1)) {
5773 if (
Op->getOpcode() == Instruction::FDiv) {
5784 const bool WantNan = (InterestedClasses &
fcNan) !=
fcNone;
5786 const bool WantPositive =
5788 if (!WantNan && !WantNegative && !WantPositive)
5797 bool KnowSomethingUseful =
5800 if (KnowSomethingUseful || WantPositive) {
5806 InterestedClasses & InterestedLHS, KnownLHS, Q,
5812 Op->getType()->getScalarType()->getFltSemantics();
5814 if (
Op->getOpcode() == Instruction::FDiv) {
5853 case Instruction::FPExt: {
5856 Known, Q,
Depth + 1);
5859 Op->getType()->getScalarType()->getFltSemantics();
5861 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5877 case Instruction::FPTrunc: {
5882 case Instruction::SIToFP:
5883 case Instruction::UIToFP: {
5892 if (
Op->getOpcode() == Instruction::UIToFP)
5895 if (InterestedClasses &
fcInf) {
5899 int IntSize =
Op->getOperand(0)->getType()->getScalarSizeInBits();
5900 if (
Op->getOpcode() == Instruction::SIToFP)
5905 Type *FPTy =
Op->getType()->getScalarType();
5912 case Instruction::ExtractElement: {
5915 const Value *Vec =
Op->getOperand(0);
5917 APInt DemandedVecElts;
5919 unsigned NumElts = VecTy->getNumElements();
5922 if (CIdx && CIdx->getValue().ult(NumElts))
5925 DemandedVecElts =
APInt(1, 1);
5931 case Instruction::InsertElement: {
5935 const Value *Vec =
Op->getOperand(0);
5936 const Value *Elt =
Op->getOperand(1);
5939 APInt DemandedVecElts = DemandedElts;
5940 bool NeedsElt =
true;
5942 if (CIdx && CIdx->getValue().ult(NumElts)) {
5943 DemandedVecElts.
clearBit(CIdx->getZExtValue());
5944 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5958 if (!DemandedVecElts.
isZero()) {
5967 case Instruction::ShuffleVector: {
5976 APInt DemandedLHS, DemandedRHS;
5981 if (!!DemandedLHS) {
5982 const Value *
LHS = Shuf->getOperand(0);
5993 if (!!DemandedRHS) {
5995 const Value *
RHS = Shuf->getOperand(1);
6003 case Instruction::ExtractValue: {
6010 switch (
II->getIntrinsicID()) {
6011 case Intrinsic::frexp: {
6016 InterestedClasses, KnownSrc, Q,
Depth + 1);
6020 Op->getType()->getScalarType()->getFltSemantics();
6055 case Instruction::PHI: {
6058 if (
P->getNumIncomingValues() == 0)
6065 if (
Depth < PhiRecursionLimit) {
6072 for (
const Use &U :
P->operands()) {
6102 case Instruction::BitCast: {
6105 !Src->getType()->isIntOrIntVectorTy())
6108 const Type *Ty =
Op->getType()->getScalarType();
6109 KnownBits Bits(Ty->getScalarSizeInBits());
6113 if (Bits.isNonNegative())
6115 else if (Bits.isNegative())
6118 if (Ty->isIEEELikeFPTy()) {
6128 else if (!
APFloat(Ty->getFltSemantics(), ~Bits.Zero).
isNaN())
6135 InfKB.Zero.clearSignBit();
6137 assert(!InfResult.value());
6139 }
else if (Bits == InfKB) {
6147 ZeroKB.Zero.clearSignBit();
6149 assert(!ZeroResult.value());
6151 }
else if (Bits == ZeroKB) {
6164 const APInt &DemandedElts,
6171 return KnownClasses;
6197 InterestedClasses &=
~fcNan;
6199 InterestedClasses &=
~fcInf;
6205 Result.KnownFPClasses &=
~fcNan;
6207 Result.KnownFPClasses &=
~fcInf;
6216 APInt DemandedElts =
6270 if (FPOp->hasNoSignedZeros())
6274 switch (
User->getOpcode()) {
6275 case Instruction::FPToSI:
6276 case Instruction::FPToUI:
6278 case Instruction::FCmp:
6281 case Instruction::Call:
6283 switch (
II->getIntrinsicID()) {
6284 case Intrinsic::fabs:
6286 case Intrinsic::copysign:
6287 return U.getOperandNo() == 0;
6288 case Intrinsic::is_fpclass:
6289 case Intrinsic::vp_is_fpclass: {
6309 if (FPOp->hasNoNaNs())
6313 switch (
User->getOpcode()) {
6314 case Instruction::FPToSI:
6315 case Instruction::FPToUI:
6318 case Instruction::FAdd:
6319 case Instruction::FSub:
6320 case Instruction::FMul:
6321 case Instruction::FDiv:
6322 case Instruction::FRem:
6323 case Instruction::FPTrunc:
6324 case Instruction::FPExt:
6325 case Instruction::FCmp:
6328 case Instruction::FNeg:
6329 case Instruction::Select:
6330 case Instruction::PHI:
6332 case Instruction::Ret:
6333 return User->getFunction()->getAttributes().getRetNoFPClass() &
6335 case Instruction::Call:
6336 case Instruction::Invoke: {
6338 switch (
II->getIntrinsicID()) {
6339 case Intrinsic::fabs:
6341 case Intrinsic::copysign:
6342 return U.getOperandNo() == 0;
6344 case Intrinsic::maxnum:
6345 case Intrinsic::minnum:
6346 case Intrinsic::maximum:
6347 case Intrinsic::minimum:
6348 case Intrinsic::maximumnum:
6349 case Intrinsic::minimumnum:
6350 case Intrinsic::canonicalize:
6351 case Intrinsic::fma:
6352 case Intrinsic::fmuladd:
6353 case Intrinsic::sqrt:
6354 case Intrinsic::pow:
6355 case Intrinsic::powi:
6356 case Intrinsic::fptoui_sat:
6357 case Intrinsic::fptosi_sat:
6358 case Intrinsic::is_fpclass:
6359 case Intrinsic::vp_is_fpclass:
6378 if (V->getType()->isIntegerTy(8))
6389 if (
DL.getTypeStoreSize(V->getType()).isZero())
6404 if (
C->isNullValue())
6411 if (CFP->getType()->isHalfTy())
6413 else if (CFP->getType()->isFloatTy())
6415 else if (CFP->getType()->isDoubleTy())
6424 if (CI->getBitWidth() % 8 == 0) {
6425 assert(CI->getBitWidth() > 8 &&
"8 bits should be handled above!");
6426 if (!CI->getValue().isSplat(8))
6428 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6433 if (CE->getOpcode() == Instruction::IntToPtr) {
6435 unsigned BitWidth =
DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6448 if (LHS == UndefInt8)
6450 if (RHS == UndefInt8)
6456 Value *Val = UndefInt8;
6457 for (
uint64_t I = 0, E = CA->getNumElements();
I != E; ++
I)
6464 Value *Val = UndefInt8;
6499 while (PrevTo != OrigTo) {
6546 unsigned IdxSkip = Idxs.
size();
6559 std::optional<BasicBlock::iterator> InsertBefore) {
6562 if (idx_range.
empty())
6565 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6566 "Not looking at a struct or array?");
6568 "Invalid indices for type?");
6571 C =
C->getAggregateElement(idx_range[0]);
6572 if (!
C)
return nullptr;
6579 const unsigned *req_idx = idx_range.
begin();
6580 for (
const unsigned *i =
I->idx_begin(), *e =
I->idx_end();
6581 i != e; ++i, ++req_idx) {
6582 if (req_idx == idx_range.
end()) {
6612 ArrayRef(req_idx, idx_range.
end()), InsertBefore);
6621 unsigned size =
I->getNumIndices() + idx_range.
size();
6626 Idxs.
append(
I->idx_begin(),
I->idx_end());
6632 &&
"Number of indices added not correct?");
6649 assert(V &&
"V should not be null.");
6650 assert((ElementSize % 8) == 0 &&
6651 "ElementSize expected to be a multiple of the size of a byte.");
6652 unsigned ElementSizeInBytes = ElementSize / 8;
6664 APInt Off(
DL.getIndexTypeSizeInBits(V->getType()), 0);
6671 uint64_t StartIdx = Off.getLimitedValue();
6678 if ((StartIdx % ElementSizeInBytes) != 0)
6681 Offset += StartIdx / ElementSizeInBytes;
6687 uint64_t SizeInBytes =
DL.getTypeStoreSize(GVTy).getFixedValue();
6690 Slice.Array =
nullptr;
6702 Type *InitElTy = ArrayInit->getElementType();
6707 ArrayTy = ArrayInit->getType();
6712 if (ElementSize != 8)
6731 Slice.Array = Array;
6733 Slice.Length = NumElts -
Offset;
6747 if (Slice.Array ==
nullptr) {
6758 if (Slice.Length == 1) {
6770 Str = Str.
substr(Slice.Offset);
6776 Str = Str.substr(0, Str.find(
'\0'));
6789 unsigned CharSize) {
6791 V = V->stripPointerCasts();
6796 if (!PHIs.
insert(PN).second)
6801 for (
Value *IncValue : PN->incoming_values()) {
6803 if (Len == 0)
return 0;
6805 if (Len == ~0ULL)
continue;
6807 if (Len != LenSoFar && LenSoFar != ~0ULL)
6819 if (Len1 == 0)
return 0;
6821 if (Len2 == 0)
return 0;
6822 if (Len1 == ~0ULL)
return Len2;
6823 if (Len2 == ~0ULL)
return Len1;
6824 if (Len1 != Len2)
return 0;
6833 if (Slice.Array ==
nullptr)
6841 unsigned NullIndex = 0;
6842 for (
unsigned E = Slice.Length; NullIndex <
E; ++NullIndex) {
6843 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6847 return NullIndex + 1;
6853 if (!V->getType()->isPointerTy())
6860 return Len == ~0ULL ? 1 : Len;
6865 bool MustPreserveNullness) {
6867 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6868 if (
const Value *RV =
Call->getReturnedArgOperand())
6872 Call, MustPreserveNullness))
6873 return Call->getArgOperand(0);
6879 switch (
Call->getIntrinsicID()) {
6880 case Intrinsic::launder_invariant_group:
6881 case Intrinsic::strip_invariant_group:
6882 case Intrinsic::aarch64_irg:
6883 case Intrinsic::aarch64_tagp:
6893 case Intrinsic::amdgcn_make_buffer_rsrc:
6895 case Intrinsic::ptrmask:
6896 return !MustPreserveNullness;
6897 case Intrinsic::threadlocal_address:
6900 return !
Call->getParent()->getParent()->isPresplitCoroutine();
6917 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6919 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6928 if (!L->isLoopInvariant(Load->getPointerOperand()))
6934 for (
unsigned Count = 0; MaxLookup == 0 ||
Count < MaxLookup; ++
Count) {
6936 const Value *PtrOp =
GEP->getPointerOperand();
6947 if (GA->isInterposable())
6949 V = GA->getAliasee();
6953 if (
PHI->getNumIncomingValues() == 1) {
6954 V =
PHI->getIncomingValue(0);
6975 assert(V->getType()->isPointerTy() &&
"Unexpected operand type!");
6982 const LoopInfo *LI,
unsigned MaxLookup) {
6990 if (!Visited.
insert(
P).second)
7019 }
while (!Worklist.
empty());
7023 const unsigned MaxVisited = 8;
7028 const Value *Object =
nullptr;
7038 if (!Visited.
insert(
P).second)
7041 if (Visited.
size() == MaxVisited)
7057 else if (Object !=
P)
7059 }
while (!Worklist.
empty());
7061 return Object ? Object : FirstObject;
7071 if (U->getOpcode() == Instruction::PtrToInt)
7072 return U->getOperand(0);
7079 if (U->getOpcode() != Instruction::Add ||
7084 V = U->getOperand(0);
7088 assert(V->getType()->isIntegerTy() &&
"Unexpected operand type!");
7105 for (
const Value *V : Objs) {
7106 if (!Visited.
insert(V).second)
7111 if (O->getType()->isPointerTy()) {
7124 }
while (!Working.
empty());
7133 auto AddWork = [&](
Value *V) {
7134 if (Visited.
insert(V).second)
7144 if (Result && Result != AI)
7148 AddWork(CI->getOperand(0));
7150 for (
Value *IncValue : PN->incoming_values())
7153 AddWork(
SI->getTrueValue());
7154 AddWork(
SI->getFalseValue());
7156 if (OffsetZero && !
GEP->hasAllZeroIndices())
7158 AddWork(
GEP->getPointerOperand());
7160 Value *Returned = CB->getReturnedArgOperand();
7168 }
while (!Worklist.
empty());
7174 const Value *V,
bool AllowLifetime,
bool AllowDroppable) {
7180 if (AllowLifetime &&
II->isLifetimeStartOrEnd())
7183 if (AllowDroppable &&
II->isDroppable())
7204 return (!Shuffle || Shuffle->isSelect()) &&
7211 bool IgnoreUBImplyingAttrs) {
7213 AC, DT, TLI, UseVariableInfo,
7214 IgnoreUBImplyingAttrs);
7220 bool UseVariableInfo,
bool IgnoreUBImplyingAttrs) {
7224 auto hasEqualReturnAndLeadingOperandTypes =
7225 [](
const Instruction *Inst,
unsigned NumLeadingOperands) {
7229 for (
unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
7235 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
7237 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
7244 case Instruction::UDiv:
7245 case Instruction::URem: {
7252 case Instruction::SDiv:
7253 case Instruction::SRem: {
7255 const APInt *Numerator, *Denominator;
7259 if (*Denominator == 0)
7271 case Instruction::Load: {
7272 if (!UseVariableInfo)
7285 case Instruction::Call: {
7289 const Function *Callee = CI->getCalledFunction();
7293 if (!Callee || !Callee->isSpeculatable())
7297 return IgnoreUBImplyingAttrs || !CI->hasUBImplyingAttrs();
7299 case Instruction::VAArg:
7300 case Instruction::Alloca:
7301 case Instruction::Invoke:
7302 case Instruction::CallBr:
7303 case Instruction::PHI:
7304 case Instruction::Store:
7305 case Instruction::Ret:
7306 case Instruction::Br:
7307 case Instruction::IndirectBr:
7308 case Instruction::Switch:
7309 case Instruction::Unreachable:
7310 case Instruction::Fence:
7311 case Instruction::AtomicRMW:
7312 case Instruction::AtomicCmpXchg:
7313 case Instruction::LandingPad:
7314 case Instruction::Resume:
7315 case Instruction::CatchSwitch:
7316 case Instruction::CatchPad:
7317 case Instruction::CatchRet:
7318 case Instruction::CleanupPad:
7319 case Instruction::CleanupRet:
7325 if (
I.mayReadOrWriteMemory())
7393 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
7438 if (
Add &&
Add->hasNoSignedWrap()) {
7477 bool LHSOrRHSKnownNonNegative =
7479 bool LHSOrRHSKnownNegative =
7481 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7484 if ((AddKnown.
isNonNegative() && LHSOrRHSKnownNonNegative) ||
7485 (AddKnown.
isNegative() && LHSOrRHSKnownNegative))
7560 assert(EVI->getNumIndices() == 1 &&
"Obvious from CI's type");
7562 if (EVI->getIndices()[0] == 0)
7565 assert(EVI->getIndices()[0] == 1 &&
"Obvious from CI's type");
7567 for (
const auto *U : EVI->users())
7569 assert(
B->isConditional() &&
"How else is it using an i1?");
7580 auto AllUsesGuardedByBranch = [&](
const BranchInst *BI) {
7586 for (
const auto *Result :
Results) {
7589 if (DT.
dominates(NoWrapEdge, Result->getParent()))
7592 for (
const auto &RU : Result->uses())
7600 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7612 unsigned NumElts = FVTy->getNumElements();
7613 for (
unsigned i = 0; i < NumElts; ++i)
7614 ShiftAmounts.
push_back(
C->getAggregateElement(i));
7622 return CI && CI->getValue().ult(
C->getType()->getIntegerBitWidth());
7643 bool ConsiderFlagsAndMetadata) {
7646 Op->hasPoisonGeneratingAnnotations())
7649 unsigned Opcode =
Op->getOpcode();
7653 case Instruction::Shl:
7654 case Instruction::AShr:
7655 case Instruction::LShr:
7657 case Instruction::FPToSI:
7658 case Instruction::FPToUI:
7662 case Instruction::Call:
7664 switch (
II->getIntrinsicID()) {
7666 case Intrinsic::ctlz:
7667 case Intrinsic::cttz:
7668 case Intrinsic::abs:
7672 case Intrinsic::sshl_sat:
7673 case Intrinsic::ushl_sat:
7681 case Instruction::CallBr:
7682 case Instruction::Invoke: {
7684 return !CB->hasRetAttr(Attribute::NoUndef) &&
7685 !CB->hasFnAttr(Attribute::NoCreateUndefOrPoison);
7687 case Instruction::InsertElement:
7688 case Instruction::ExtractElement: {
7691 unsigned IdxOp =
Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7695 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7698 case Instruction::ShuffleVector: {
7704 case Instruction::FNeg:
7705 case Instruction::PHI:
7706 case Instruction::Select:
7707 case Instruction::ExtractValue:
7708 case Instruction::InsertValue:
7709 case Instruction::Freeze:
7710 case Instruction::ICmp:
7711 case Instruction::FCmp:
7712 case Instruction::GetElementPtr:
7714 case Instruction::AddrSpaceCast:
7729 bool ConsiderFlagsAndMetadata) {
7731 ConsiderFlagsAndMetadata);
7736 ConsiderFlagsAndMetadata);
7741 if (ValAssumedPoison == V)
7744 const unsigned MaxDepth = 2;
7745 if (
Depth >= MaxDepth)
7750 return propagatesPoison(Op) &&
7751 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7775 const unsigned MaxDepth = 2;
7776 if (
Depth >= MaxDepth)
7782 return impliesPoison(Op, V, Depth + 1);
7789 return ::impliesPoison(ValAssumedPoison, V, 0);
7804 if (
A->hasAttribute(Attribute::NoUndef) ||
7805 A->hasAttribute(Attribute::Dereferenceable) ||
7806 A->hasAttribute(Attribute::DereferenceableOrNull))
7821 if (
C->getType()->isVectorTy()) {
7824 if (
Constant *SplatC =
C->getSplatValue())
7832 return !
C->containsConstantExpression();
7845 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7850 auto OpCheck = [&](
const Value *V) {
7861 if (CB->hasRetAttr(Attribute::NoUndef) ||
7862 CB->hasRetAttr(Attribute::Dereferenceable) ||
7863 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7870 unsigned Num = PN->getNumIncomingValues();
7871 bool IsWellDefined =
true;
7872 for (
unsigned i = 0; i < Num; ++i) {
7873 if (PN == PN->getIncomingValue(i))
7875 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7877 DT,
Depth + 1, Kind)) {
7878 IsWellDefined =
false;
7889 }
else if (
all_of(Opr->operands(), OpCheck))
7895 if (
I->hasMetadata(LLVMContext::MD_noundef) ||
7896 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7897 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7917 auto *Dominator = DNode->
getIDom();
7922 auto *TI = Dominator->getBlock()->getTerminator();
7926 if (BI->isConditional())
7927 Cond = BI->getCondition();
7929 Cond =
SI->getCondition();
7938 if (
any_of(Opr->operands(), [V](
const Use &U) {
7939 return V == U && propagatesPoison(U);
7945 Dominator = Dominator->getIDom();
7958 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7965 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7972 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7996 while (!Worklist.
empty()) {
8005 if (
I != Root && !
any_of(
I->operands(), [&KnownPoison](
const Use &U) {
8006 return KnownPoison.contains(U) && propagatesPoison(U);
8010 if (KnownPoison.
insert(
I).second)
8022 return ::computeOverflowForSignedAdd(
Add->getOperand(0),
Add->getOperand(1),
8030 return ::computeOverflowForSignedAdd(LHS, RHS,
nullptr, SQ);
8062 return !
I->mayThrow() &&
I->willReturn();
8076 unsigned ScanLimit) {
8083 assert(ScanLimit &&
"scan limit must be non-zero");
8085 if (--ScanLimit == 0)
8099 if (
I->getParent() != L->getHeader())
return false;
8102 if (&LI ==
I)
return true;
8105 llvm_unreachable(
"Instruction not contained in its own parent basic block.");
8111 case Intrinsic::sadd_with_overflow:
8112 case Intrinsic::ssub_with_overflow:
8113 case Intrinsic::smul_with_overflow:
8114 case Intrinsic::uadd_with_overflow:
8115 case Intrinsic::usub_with_overflow:
8116 case Intrinsic::umul_with_overflow:
8121 case Intrinsic::ctpop:
8122 case Intrinsic::ctlz:
8123 case Intrinsic::cttz:
8124 case Intrinsic::abs:
8125 case Intrinsic::smax:
8126 case Intrinsic::smin:
8127 case Intrinsic::umax:
8128 case Intrinsic::umin:
8129 case Intrinsic::scmp:
8130 case Intrinsic::is_fpclass:
8131 case Intrinsic::ptrmask:
8132 case Intrinsic::ucmp:
8133 case Intrinsic::bitreverse:
8134 case Intrinsic::bswap:
8135 case Intrinsic::sadd_sat:
8136 case Intrinsic::ssub_sat:
8137 case Intrinsic::sshl_sat:
8138 case Intrinsic::uadd_sat:
8139 case Intrinsic::usub_sat:
8140 case Intrinsic::ushl_sat:
8141 case Intrinsic::smul_fix:
8142 case Intrinsic::smul_fix_sat:
8143 case Intrinsic::umul_fix:
8144 case Intrinsic::umul_fix_sat:
8145 case Intrinsic::pow:
8146 case Intrinsic::powi:
8147 case Intrinsic::sin:
8148 case Intrinsic::sinh:
8149 case Intrinsic::cos:
8150 case Intrinsic::cosh:
8151 case Intrinsic::sincos:
8152 case Intrinsic::sincospi:
8153 case Intrinsic::tan:
8154 case Intrinsic::tanh:
8155 case Intrinsic::asin:
8156 case Intrinsic::acos:
8157 case Intrinsic::atan:
8158 case Intrinsic::atan2:
8159 case Intrinsic::canonicalize:
8160 case Intrinsic::sqrt:
8161 case Intrinsic::exp:
8162 case Intrinsic::exp2:
8163 case Intrinsic::exp10:
8164 case Intrinsic::log:
8165 case Intrinsic::log2:
8166 case Intrinsic::log10:
8167 case Intrinsic::modf:
8168 case Intrinsic::floor:
8169 case Intrinsic::ceil:
8170 case Intrinsic::trunc:
8171 case Intrinsic::rint:
8172 case Intrinsic::nearbyint:
8173 case Intrinsic::round:
8174 case Intrinsic::roundeven:
8175 case Intrinsic::lrint:
8176 case Intrinsic::llrint:
8177 case Intrinsic::fshl:
8178 case Intrinsic::fshr:
8187 switch (
I->getOpcode()) {
8188 case Instruction::Freeze:
8189 case Instruction::PHI:
8190 case Instruction::Invoke:
8192 case Instruction::Select:
8194 case Instruction::Call:
8198 case Instruction::ICmp:
8199 case Instruction::FCmp:
8200 case Instruction::GetElementPtr:
8214template <
typename CallableT>
8216 const CallableT &Handle) {
8217 switch (
I->getOpcode()) {
8218 case Instruction::Store:
8223 case Instruction::Load:
8230 case Instruction::AtomicCmpXchg:
8235 case Instruction::AtomicRMW:
8240 case Instruction::Call:
8241 case Instruction::Invoke: {
8245 for (
unsigned i = 0; i < CB->
arg_size(); ++i)
8248 CB->
paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
8253 case Instruction::Ret:
8254 if (
I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
8255 Handle(
I->getOperand(0)))
8258 case Instruction::Switch:
8262 case Instruction::Br: {
8264 if (BR->isConditional() && Handle(BR->getCondition()))
8276template <
typename CallableT>
8278 const CallableT &Handle) {
8281 switch (
I->getOpcode()) {
8283 case Instruction::UDiv:
8284 case Instruction::SDiv:
8285 case Instruction::URem:
8286 case Instruction::SRem:
8287 return Handle(
I->getOperand(1));
8296 I, [&](
const Value *V) {
return KnownPoison.
count(V); });
8315 if (Arg->getParent()->isDeclaration())
8318 Begin = BB->
begin();
8325 unsigned ScanLimit = 32;
8334 if (--ScanLimit == 0)
8338 return WellDefinedOp == V;
8358 if (--ScanLimit == 0)
8366 for (
const Use &
Op :
I.operands()) {
8376 if (
I.getOpcode() == Instruction::Select &&
8377 YieldsPoison.
count(
I.getOperand(1)) &&
8378 YieldsPoison.
count(
I.getOperand(2))) {
8384 if (!BB || !Visited.
insert(BB).second)
8394 return ::programUndefinedIfUndefOrPoison(Inst,
false);
8398 return ::programUndefinedIfUndefOrPoison(Inst,
true);
8409 if (!
C->getElementType()->isFloatingPointTy())
8411 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8412 if (
C->getElementAsAPFloat(
I).isNaN())
8426 return !
C->isZero();
8429 if (!
C->getElementType()->isFloatingPointTy())
8431 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8432 if (
C->getElementAsAPFloat(
I).isZero())
8455 if (CmpRHS == FalseVal) {
8499 if (CmpRHS != TrueVal) {
8538 Value *
A =
nullptr, *
B =
nullptr;
8543 Value *
C =
nullptr, *
D =
nullptr;
8545 if (L.Flavor != R.Flavor)
8597 return {L.Flavor,
SPNB_NA,
false};
8604 return {L.Flavor,
SPNB_NA,
false};
8611 return {L.Flavor,
SPNB_NA,
false};
8618 return {L.Flavor,
SPNB_NA,
false};
8634 return ConstantInt::get(V->getType(), ~(*
C));
8691 if ((CmpLHS == TrueVal &&
match(FalseVal,
m_APInt(C2))) ||
8711 assert(
X &&
Y &&
"Invalid operand");
8713 auto IsNegationOf = [&](
const Value *
X,
const Value *
Y) {
8718 if (NeedNSW && !BO->hasNoSignedWrap())
8722 if (!AllowPoison && !Zero->isNullValue())
8729 if (IsNegationOf(
X,
Y) || IsNegationOf(
Y,
X))
8756 const APInt *RHSC1, *RHSC2;
8767 return CR1.inverse() == CR2;
8801std::optional<std::pair<CmpPredicate, Constant *>>
8804 "Only for relational integer predicates.");
8806 return std::nullopt;
8812 bool WillIncrement =
8817 auto ConstantIsOk = [WillIncrement, IsSigned](
ConstantInt *
C) {
8818 return WillIncrement ? !
C->isMaxValue(IsSigned) : !
C->isMinValue(IsSigned);
8821 Constant *SafeReplacementConstant =
nullptr;
8824 if (!ConstantIsOk(CI))
8825 return std::nullopt;
8827 unsigned NumElts = FVTy->getNumElements();
8828 for (
unsigned i = 0; i != NumElts; ++i) {
8829 Constant *Elt =
C->getAggregateElement(i);
8831 return std::nullopt;
8839 if (!CI || !ConstantIsOk(CI))
8840 return std::nullopt;
8842 if (!SafeReplacementConstant)
8843 SafeReplacementConstant = CI;
8847 Value *SplatC =
C->getSplatValue();
8850 if (!CI || !ConstantIsOk(CI))
8851 return std::nullopt;
8854 return std::nullopt;
8861 if (
C->containsUndefOrPoisonElement()) {
8862 assert(SafeReplacementConstant &&
"Replacement constant not set");
8869 Constant *OneOrNegOne = ConstantInt::get(
Type, WillIncrement ? 1 : -1,
true);
8872 return std::make_pair(NewPred, NewC);
8881 bool HasMismatchedZeros =
false;
8887 Value *OutputZeroVal =
nullptr;
8890 OutputZeroVal = TrueVal;
8893 OutputZeroVal = FalseVal;
8895 if (OutputZeroVal) {
8897 HasMismatchedZeros =
true;
8898 CmpLHS = OutputZeroVal;
8901 HasMismatchedZeros =
true;
8902 CmpRHS = OutputZeroVal;
8919 if (!HasMismatchedZeros)
8930 bool Ordered =
false;
8941 if (LHSSafe && RHSSafe) {
8972 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8983 if (TrueVal == CmpLHS && FalseVal == CmpRHS)
8989 auto MaybeSExtCmpLHS =
8993 if (
match(TrueVal, MaybeSExtCmpLHS)) {
9015 else if (
match(FalseVal, MaybeSExtCmpLHS)) {
9055 case Instruction::ZExt:
9059 case Instruction::SExt:
9063 case Instruction::Trunc:
9066 CmpConst->
getType() == SrcTy) {
9088 CastedTo = CmpConst;
9090 unsigned ExtOp = CmpI->
isSigned() ? Instruction::SExt : Instruction::ZExt;
9094 case Instruction::FPTrunc:
9097 case Instruction::FPExt:
9100 case Instruction::FPToUI:
9103 case Instruction::FPToSI:
9106 case Instruction::UIToFP:
9109 case Instruction::SIToFP:
9122 if (CastedBack && CastedBack !=
C)
9150 *CastOp = Cast1->getOpcode();
9151 Type *SrcTy = Cast1->getSrcTy();
9154 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
9155 return Cast2->getOperand(0);
9163 Value *CastedTo =
nullptr;
9164 if (*CastOp == Instruction::Trunc) {
9178 "V2 and Cast1 should be the same type.");
9197 Value *TrueVal =
SI->getTrueValue();
9198 Value *FalseVal =
SI->getFalseValue();
9201 CmpI, TrueVal, FalseVal, LHS, RHS,
9220 if (CastOp && CmpLHS->
getType() != TrueVal->getType()) {
9224 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9226 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9233 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9235 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9240 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
9259 return Intrinsic::umin;
9261 return Intrinsic::umax;
9263 return Intrinsic::smin;
9265 return Intrinsic::smax;
9281 case Intrinsic::smax:
return Intrinsic::smin;
9282 case Intrinsic::smin:
return Intrinsic::smax;
9283 case Intrinsic::umax:
return Intrinsic::umin;
9284 case Intrinsic::umin:
return Intrinsic::umax;
9287 case Intrinsic::maximum:
return Intrinsic::minimum;
9288 case Intrinsic::minimum:
return Intrinsic::maximum;
9289 case Intrinsic::maxnum:
return Intrinsic::minnum;
9290 case Intrinsic::minnum:
return Intrinsic::maxnum;
9291 case Intrinsic::maximumnum:
9292 return Intrinsic::minimumnum;
9293 case Intrinsic::minimumnum:
9294 return Intrinsic::maximumnum;
9309std::pair<Intrinsic::ID, bool>
9314 bool AllCmpSingleUse =
true;
9317 if (
all_of(VL, [&SelectPattern, &AllCmpSingleUse](
Value *
I) {
9323 SelectPattern.
Flavor != CurrentPattern.Flavor)
9325 SelectPattern = CurrentPattern;
9330 switch (SelectPattern.
Flavor) {
9332 return {Intrinsic::smin, AllCmpSingleUse};
9334 return {Intrinsic::umin, AllCmpSingleUse};
9336 return {Intrinsic::smax, AllCmpSingleUse};
9338 return {Intrinsic::umax, AllCmpSingleUse};
9340 return {Intrinsic::maxnum, AllCmpSingleUse};
9342 return {Intrinsic::minnum, AllCmpSingleUse};
9350template <
typename InstTy>
9360 for (
unsigned I = 0;
I != 2; ++
I) {
9365 if (
LHS != PN &&
RHS != PN)
9401 if (
I->arg_size() != 2 ||
I->getType() !=
I->getArgOperand(0)->getType() ||
9402 I->getType() !=
I->getArgOperand(1)->getType())
9430 return !
C->isNegative();
9442 const APInt *CLHS, *CRHS;
9445 return CLHS->
sle(*CRHS);
9483 const APInt *CLHS, *CRHS;
9486 return CLHS->
ule(*CRHS);
9495static std::optional<bool>
9500 return std::nullopt;
9507 return std::nullopt;
9514 return std::nullopt;
9521 return std::nullopt;
9528 return std::nullopt;
9535static std::optional<bool>
9541 if (CR.
icmp(Pred, RCR))
9548 return std::nullopt;
9561 return std::nullopt;
9567static std::optional<bool>
9598 const APInt *Unused;
9617 return std::nullopt;
9621 if (L0 == R0 && L1 == R1)
9654 ((
A == R0 &&
B == R1) || (
A == R1 &&
B == R0) ||
9672 return std::nullopt;
9678static std::optional<bool>
9708 if (L0 == R0 && L1 == R1) {
9709 if ((LPred & RPred) == LPred)
9711 if ((LPred & ~RPred) == LPred)
9719 if (std::optional<ConstantFPRange> DomCR =
9721 if (std::optional<ConstantFPRange> ImpliedCR =
9723 if (ImpliedCR->contains(*DomCR))
9726 if (std::optional<ConstantFPRange> ImpliedCR =
9729 if (ImpliedCR->contains(*DomCR))
9735 return std::nullopt;
9742static std::optional<bool>
9747 assert((
LHS->getOpcode() == Instruction::And ||
9748 LHS->getOpcode() == Instruction::Or ||
9749 LHS->getOpcode() == Instruction::Select) &&
9750 "Expected LHS to be 'and', 'or', or 'select'.");
9757 const Value *ALHS, *ARHS;
9762 ALHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9765 ARHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9767 return std::nullopt;
9769 return std::nullopt;
9778 return std::nullopt;
9783 return std::nullopt;
9785 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9786 "Expected integer type only!");
9790 LHSIsTrue = !LHSIsTrue;
9796 LHSCmp->getOperand(0), LHSCmp->getOperand(1),
9797 RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue);
9801 ConstantInt::get(V->getType(), 0), RHSPred,
9802 RHSOp0, RHSOp1,
DL, LHSIsTrue);
9805 "Expected floating point type only!");
9808 LHSCmp->getOperand(1), RHSPred, RHSOp0, RHSOp1,
9816 if ((LHSI->getOpcode() == Instruction::And ||
9817 LHSI->getOpcode() == Instruction::Or ||
9818 LHSI->getOpcode() == Instruction::Select))
9822 return std::nullopt;
9827 bool LHSIsTrue,
unsigned Depth) {
9833 bool InvertRHS =
false;
9842 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0),
9843 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9844 return InvertRHS ? !*Implied : *Implied;
9845 return std::nullopt;
9849 LHS, RHSCmp->getPredicate(), RHSCmp->getOperand(0),
9850 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9851 return InvertRHS ? !*Implied : *Implied;
9852 return std::nullopt;
9858 ConstantInt::get(V->getType(), 0),
DL,
9860 return InvertRHS ? !*Implied : *Implied;
9861 return std::nullopt;
9865 return std::nullopt;
9869 const Value *RHS1, *RHS2;
9871 if (std::optional<bool> Imp =
9875 if (std::optional<bool> Imp =
9881 if (std::optional<bool> Imp =
9885 if (std::optional<bool> Imp =
9891 return std::nullopt;
9896static std::pair<Value *, bool>
9898 if (!ContextI || !ContextI->
getParent())
9899 return {
nullptr,
false};
9906 return {
nullptr,
false};
9912 return {
nullptr,
false};
9915 if (TrueBB == FalseBB)
9916 return {
nullptr,
false};
9918 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9919 "Predecessor block does not point to successor?");
9922 return {PredCond, TrueBB == ContextBB};
9928 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
"Condition must be bool");
9932 return std::nullopt;
9944 return std::nullopt;
9949 bool PreferSignedRange) {
9950 unsigned Width =
Lower.getBitWidth();
9953 case Instruction::Sub:
9963 if (PreferSignedRange && HasNSW && HasNUW)
9969 }
else if (HasNSW) {
9970 if (
C->isNegative()) {
9983 case Instruction::Add:
9992 if (PreferSignedRange && HasNSW && HasNUW)
9998 }
else if (HasNSW) {
9999 if (
C->isNegative()) {
10012 case Instruction::And:
10023 case Instruction::Or:
10029 case Instruction::AShr:
10035 unsigned ShiftAmount = Width - 1;
10036 if (!
C->isZero() && IIQ.
isExact(&BO))
10037 ShiftAmount =
C->countr_zero();
10038 if (
C->isNegative()) {
10041 Upper =
C->ashr(ShiftAmount) + 1;
10044 Lower =
C->ashr(ShiftAmount);
10050 case Instruction::LShr:
10056 unsigned ShiftAmount = Width - 1;
10057 if (!
C->isZero() && IIQ.
isExact(&BO))
10058 ShiftAmount =
C->countr_zero();
10059 Lower =
C->lshr(ShiftAmount);
10064 case Instruction::Shl:
10071 if (
C->isNegative()) {
10073 unsigned ShiftAmount =
C->countl_one() - 1;
10074 Lower =
C->shl(ShiftAmount);
10078 unsigned ShiftAmount =
C->countl_zero() - 1;
10080 Upper =
C->shl(ShiftAmount) + 1;
10099 case Instruction::SDiv:
10103 if (
C->isAllOnes()) {
10106 Lower = IntMin + 1;
10107 Upper = IntMax + 1;
10108 }
else if (
C->countl_zero() < Width - 1) {
10119 if (
C->isMinSignedValue()) {
10131 case Instruction::UDiv:
10141 case Instruction::SRem:
10147 if (
C->isNegative()) {
10158 case Instruction::URem:
10173 bool UseInstrInfo) {
10174 unsigned Width =
II.getType()->getScalarSizeInBits();
10176 switch (
II.getIntrinsicID()) {
10177 case Intrinsic::ctlz:
10178 case Intrinsic::cttz: {
10180 if (!UseInstrInfo || !
match(
II.getArgOperand(1),
m_One()))
10185 case Intrinsic::ctpop:
10188 APInt(Width, Width) + 1);
10189 case Intrinsic::uadd_sat:
10195 case Intrinsic::sadd_sat:
10198 if (
C->isNegative())
10209 case Intrinsic::usub_sat:
10219 case Intrinsic::ssub_sat:
10221 if (
C->isNegative())
10231 if (
C->isNegative())
10242 case Intrinsic::umin:
10243 case Intrinsic::umax:
10244 case Intrinsic::smin:
10245 case Intrinsic::smax:
10250 switch (
II.getIntrinsicID()) {
10251 case Intrinsic::umin:
10253 case Intrinsic::umax:
10255 case Intrinsic::smin:
10258 case Intrinsic::smax:
10265 case Intrinsic::abs:
10274 case Intrinsic::vscale:
10275 if (!
II.getParent() || !
II.getFunction())
10282 return ConstantRange::getFull(Width);
10287 unsigned BitWidth =
SI.getType()->getScalarSizeInBits();
10291 return ConstantRange::getFull(
BitWidth);
10314 return ConstantRange::getFull(
BitWidth);
10316 switch (R.Flavor) {
10328 return ConstantRange::getFull(
BitWidth);
10335 unsigned BitWidth =
I->getType()->getScalarSizeInBits();
10336 if (!
I->getOperand(0)->getType()->getScalarType()->isHalfTy())
10354 assert(V->getType()->isIntOrIntVectorTy() &&
"Expected integer instruction");
10357 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
10360 return C->toConstantRange();
10362 unsigned BitWidth = V->getType()->getScalarSizeInBits();
10375 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10377 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10387 if (std::optional<ConstantRange>
Range =
A->getRange())
10395 if (std::optional<ConstantRange>
Range = CB->getRange())
10406 "Got assumption for the wrong function!");
10407 assert(
I->getIntrinsicID() == Intrinsic::assume &&
10408 "must be an assume intrinsic");
10412 Value *Arg =
I->getArgOperand(0);
10415 if (!Cmp || Cmp->getOperand(0) != V)
10420 UseInstrInfo, AC,
I, DT,
Depth + 1);
10442 InsertAffected(
Op);
10449 auto AddAffected = [&InsertAffected](
Value *V) {
10453 auto AddCmpOperands = [&AddAffected, IsAssume](
Value *LHS,
Value *RHS) {
10464 while (!Worklist.
empty()) {
10466 if (!Visited.
insert(V).second)
10512 AddCmpOperands(
A,
B);
10549 AddCmpOperands(
A,
B);
10577 if (BO->getOpcode() == Instruction::Add ||
10578 BO->getOpcode() == Instruction::Or) {
10580 const APInt *C1, *C2;
10599 unsigned MaxCount,
bool AllowUndefOrPoison) {
10602 auto Push = [&](
const Value *V) ->
bool {
10608 if (Constants.contains(
C))
10610 if (Constants.size() == MaxCount)
10612 Constants.insert(
C);
10617 if (Visited.
insert(Inst).second)
10625 while (!Worklist.
empty()) {
10628 case Instruction::Select:
10634 case Instruction::PHI:
10637 if (IncomingValue == CurInst)
10639 if (!Push(IncomingValue))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Utilities for dealing with flags related to floating point properties and mode controls.
static Value * getCondition(Instruction *I)
Module.h This file contains the declarations for the Module class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
std::pair< BasicBlock *, BasicBlock * > Edge
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SmallVector< VPValue *, 4 > getOperands(ArrayRef< VPValue * > Values, unsigned OperandIndex)
static void computeKnownFPClassFromCond(const Value *V, Value *Cond, bool CondIsTrue, const Instruction *CxtI, KnownFPClass &KnownFromContext, unsigned Depth=0)
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, SimplifyQuery &Q, unsigned Depth)
Try to detect a recurrence that the value of the induction variable is always a power of two (or zero...
static cl::opt< unsigned > DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20))
static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits)
For vector constants, loop over the elements and find the constant with the minimum number of sign bi...
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS)
Return true if "icmp Pred LHS RHS" is always true.
static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V1 == (binop V2, X), where X is known non-zero.
static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q, unsigned Depth)
Test whether a GEP's result is known to be non-null.
static bool isNonEqualShl(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and the shift is nuw or nsw.
static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT)
static const Value * getUnderlyingObjectFromInt(const Value *V)
This is the function that does the work of looking through basic ptrtoint+arithmetic+inttoptr sequenc...
static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool rangeMetadataExcludesValue(const MDNode *Ranges, const APInt &Value)
Does the 'Range' metadata (which must be a valid MD_range operand list) ensure that the value it's at...
static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty)
static KnownBits getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &Q, unsigned Depth)
static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, Value *&ValOut, Instruction *&CtxIOut, const PHINode **PhiOut=nullptr)
static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, unsigned Depth)
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static void addValueAffectedByCondition(Value *V, function_ref< void(Value *)> InsertAffected)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange)
static Value * lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp)
Helps to match a select pattern in case of a type mismatch.
static std::pair< Value *, bool > getDomPredecessorCondition(const Instruction *ContextI)
static constexpr unsigned MaxInstrsToCheckForFree
Maximum number of instructions to check between assume and context instruction.
static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, const KnownBits &KnownVal, unsigned Depth)
static std::optional< bool > isImpliedCondFCmps(FCmpInst::Predicate LPred, const Value *L0, const Value *L1, FCmpInst::Predicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2, const SimplifyQuery &Q, unsigned Depth)
static bool includesPoison(UndefPoisonKind Kind)
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS)
Match clamp pattern for float types without care about NaNs or signed zeros.
static std::optional< bool > isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1, CmpPredicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool includesUndef(UndefPoisonKind Kind)
static std::optional< bool > isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, CmpPredicate RPred, const ConstantRange &RCR)
Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
static ConstantRange getRangeForSelectPattern(const SelectInst &SI, const InstrInfoQuery &IIQ)
static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth)
static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl< const PHINode * > &PHIs, unsigned CharSize)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
static void computeKnownBitsFromShiftOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth, function_ref< KnownBits(const KnownBits &, const KnownBits &, bool)> KF)
Compute known bits from a shift operator, including those with a non-constant shift amount.
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value *V, bool AllowLifetime, bool AllowDroppable)
static std::optional< bool > isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth)
Return true if LHS implies RHS is true.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh)
static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth)
static bool isNonEqualSelect(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst, Value *&Init, Value *&OtherOp)
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS, KnownBits &Known, const SimplifyQuery &Q)
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth)
Recognize variations of: a < c ?
static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, KnownBits &Known)
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper)
static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI)
PN defines a loop-variant pointer to an object.
static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, const SimplifyQuery &Q)
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh)
static Value * lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, Instruction::CastOps *CastOp)
static bool handleGuaranteedWellDefinedOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be undef or poison.
static void computeKnownBitsFromLerpPattern(const Value *Op0, const Value *Op1, const APInt &DemandedElts, KnownBits &KnownOut, const SimplifyQuery &Q, unsigned Depth)
Try to detect the lerp pattern: a * (b - c) + c * d where a >= 0, b >= 0, c >= 0, d >= 0,...
static KnownFPClass computeKnownFPClassFromContext(const Value *V, const SimplifyQuery &Q)
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static Value * getNotValue(Value *V)
If the input value is the result of a 'not' op, constant integer, or vector splat of a constant integ...
static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return the number of times the sign bit of the register is replicated into the other bits.
static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, KnownBits &Known, const SimplifyQuery &SQ, bool Invert)
static bool isKnownNonZeroFromOperator(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchOpWithOpEqZero(Value *Op0, Value *Op1)
static bool isNonZeroRecurrence(const PHINode *PN)
Try to detect a recurrence that monotonically increases/decreases from a non-zero starting value.
static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal)
Recognize variations of: CLAMP(v,l,h) ==> ((v) < (l) ?
static bool shiftAmountKnownInRange(const Value *ShiftAmount)
Shifts return poison if shiftwidth is larger than the bitwidth.
static bool isEphemeralValueOf(const Instruction *I, const Value *E)
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth)
Match non-obvious integer minimum and maximum sequences.
static KnownBits computeKnownBitsForHorizontalOperation(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth, const function_ref< KnownBits(const KnownBits &, const KnownBits &)> KnownBitsFunc)
static bool handleGuaranteedNonPoisonOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be poison.
static std::optional< std::pair< Value *, Value * > > getInvertibleOperands(const Operator *Op1, const Operator *Op2)
If the pair of operators are the same invertible function, return the the operands of the function co...
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS)
static void computeKnownBitsFromCond(const Value *V, Value *Cond, KnownBits &Known, const SimplifyQuery &SQ, bool Invert, unsigned Depth)
static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q)
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
static const Instruction * safeCxtI(const Value *V, const Instruction *CxtI)
static bool isNonEqualMul(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and the multiplication is nuw o...
static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, const Value *Cond, bool CondIsTrue)
Return true if we can infer that V is known to be a power of 2 from dominating condition Cond (e....
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF)
static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, bool UseInstrInfo)
static void computeKnownFPClassForFPTrunc(const Operator *Op, const APInt &DemandedElts, FPClassTest InterestedClasses, KnownFPClass &Known, const SimplifyQuery &Q, unsigned Depth)
static Value * BuildSubAggregate(Value *From, Value *To, Type *IndexedType, SmallVectorImpl< unsigned > &Idxs, unsigned IdxSkip, BasicBlock::iterator InsertBefore)
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
static LLVM_ABI bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned ceilLogBase2() const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt reverseBits() const
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool getBoolValue() const
Convert APInt to a boolean value.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
bool hasSameSign() const
Query samesign information, for optimizations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI std::optional< ConstantFPRange > makeExactFCmpRegion(FCmpInst::Predicate Pred, const APFloat &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This class represents a range of values.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI bool isAllNegative() const
Return true if all values in this range are negative.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI bool isAllNonNegative() const
Return true if all values in this range are non-negative.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
unsigned getAddressSizeInBits(unsigned AS) const
The size in bits of an address in for the given AS.
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
ArrayRef< BranchInst * > conditionsFor(const Value *V) const
Access the list of branches which affect this value.
DomTreeNodeBase * getIDom() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
const BasicBlock & getEntryBlock() const
bool hasNoSync() const
Determine if the call can synchroize with other threads.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getAggregateOperand()
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
This is a utility class that provides an abstraction for the common functionality between Instruction...
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
iterator_range< const_block_iterator > blocks() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A udiv, sdiv, lshr, or ashr instruction, which can be marked as "exact", indicating that no bits are ...
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
const KnownBits & getKnownBits(const SimplifyQuery &Q) const
PointerType getValue() const
Represents an op.with.overflow intrinsic.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
StructType * getStructTypeOrNull() const
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
static unsigned decodeVSEW(unsigned VSEW)
LLVM_ABI unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0)
Merge bits known from context-dependent facts into Known.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
LLVM_ABI std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
gep_type_iterator gep_type_end(const User *GEP)
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
bool isa_and_nonnull(const Y &Val)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI bool collectPossibleValues(const Value *V, SmallPtrSetImpl< const Constant * > &Constants, unsigned MaxCount, bool AllowUndefOrPoison=true)
Enumerates all possible immediate values of V and inserts them into the set Constants.
FunctionAddr VTableAddr Count
LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
auto make_scope_exit(Callable &&F)
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &SQ, unsigned Depth=0)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
gep_type_iterator gep_type_begin(const User *GEP)
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Get the upper bound on bit size for this Value Op as a signed integer.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_ABI Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
SmallPtrSet< Value *, 4 > AffectedValues
Represents offset+length into a ConstantDataArray.
const ConstantDataArray * Array
ConstantDataArray pointer.
Represent subnormal handling kind for floating point instruction inputs and outputs.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
static constexpr DenormalMode getDynamic()
static constexpr DenormalMode getIEEE()
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedZeros(const InstT *Op) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
bool hasConflict() const
Returns true if there is conflicting information.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
bool isConstant() const
Returns true if we know the value of all bits.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinTrailingOnes() const
Returns the minimum number of trailing one bits.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void setAllOnes()
Make all bits known to be one and discard any previous information.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
KnownBits sextOrTrunc(unsigned BitWidth) const
Return known bits for a sign extension or truncation of the value we're tracking.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
bool isKnownAlways(FPClassTest Mask) const
static LLVM_ABI KnownFPClass canonicalize(const KnownFPClass &Src, DenormalMode DenormMode=DenormalMode::getDynamic())
Apply the canonicalize intrinsic to this value.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a zero.
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
static LLVM_ABI KnownFPClass exp(const KnownFPClass &Src)
Report known values for exp, exp2 and exp10.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
LLVM_ABI void propagateCanonicalizingSrc(const KnownFPClass &Src, DenormalMode Mode)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void signBitMustBeZero()
Assume the sign bit is zero.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a negative zero.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
Represent one information held inside an operand bundle of an llvm.assume.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithoutCondContext() const
SimplifyQuery getWithInstruction(const Instruction *I) const
const DomConditionCache * DC