59#include "llvm/IR/IntrinsicsAArch64.h"
60#include "llvm/IR/IntrinsicsAMDGPU.h"
61#include "llvm/IR/IntrinsicsRISCV.h"
62#include "llvm/IR/IntrinsicsX86.h"
100 if (
unsigned BitWidth = Ty->getScalarSizeInBits())
103 return DL.getPointerTypeSizeInBits(Ty);
123 const APInt &DemandedElts,
127 DemandedLHS = DemandedRHS = DemandedElts;
134 DemandedElts, DemandedLHS, DemandedRHS);
155 bool UseInstrInfo,
unsigned Depth) {
230 R->uge(
LHS->getType()->getScalarSizeInBits()))
243 assert(LHS->getType() == RHS->getType() &&
244 "LHS and RHS should have the same type");
245 assert(LHS->getType()->isIntOrIntVectorTy() &&
246 "LHS and RHS should be integers");
257 return !
I->user_empty() &&
262 return !
I->user_empty() &&
all_of(
I->users(), [](
const User *U) {
264 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
273 return ::isKnownToBeAPowerOfTwo(
289 return CI->getValue().isStrictlyPositive();
315 return ::isKnownNonEqual(V1, V2, DemandedElts, Q,
Depth);
322 return Mask.isSubsetOf(Known.
Zero);
329 unsigned Depth = 0) {
340 return ::ComputeNumSignBits(
350 return V->getType()->getScalarSizeInBits() - SignBits + 1;
373 const APInt &DemandedElts,
379 const unsigned BitWidth = Ty->getScalarSizeInBits();
382 if (Ty->isVectorTy())
387 const Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
390 const auto MatchSubBC = [&]() {
407 const auto MatchASubBC = [&]() {
415 const auto MatchCD = [&]() {
432 if (!Match(Op0, Op1) && !Match(Op1, Op0))
435 const auto ComputeKnownBitsOrOne = [&](
const Value *V) {
443 const KnownBits KnownA = ComputeKnownBitsOrOne(
A);
447 const KnownBits KnownD = ComputeKnownBitsOrOne(
D);
464 if (SubBC->
getOpcode() == Instruction::Xor &&
482 const unsigned MinimumNumberOfLeadingZeros = UpperBound.
countl_zero();
488 const APInt &DemandedElts,
495 if (KnownOut.
isUnknown() && !NSW && !NUW)
512 bool NUW,
const APInt &DemandedElts,
529 bool isKnownNegativeOp0 = Known2.
isNegative();
532 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
544 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
546 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.
isNonZero());
550 bool SelfMultiply = Op0 == Op1;
559 unsigned OutValidBits = 2 * (TyBits - SignBits + 1);
561 if (OutValidBits < TyBits) {
562 APInt KnownZeroMask =
564 Known.
Zero |= KnownZeroMask;
582 unsigned NumRanges = Ranges.getNumOperands() / 2;
587 for (
unsigned i = 0; i < NumRanges; ++i) {
596 "Known bit width must match range bit width!");
599 unsigned CommonPrefixBits =
600 (
Range.getUnsignedMax() ^
Range.getUnsignedMin()).countl_zero();
603 Known.
One &= UnsignedMax & Mask;
604 Known.
Zero &= ~UnsignedMax & Mask;
619 while (!WorkSet.
empty()) {
621 if (!Visited.
insert(V).second)
626 return EphValues.count(cast<Instruction>(U));
631 if (V ==
I || (!V->mayHaveSideEffects() && !V->isTerminator())) {
635 for (
const Use &U : U->operands()) {
650 return CI->isAssumeLikeIntrinsic();
658 bool AllowEphemerals) {
676 if (!AllowEphemerals && Inv == CxtI)
708 auto hasNoFreeCalls = [](
auto Range) {
713 if (!CB->hasFnAttr(Attribute::NoFree))
726 const BasicBlock *AssumeBB = Assume->getParent();
728 if (CtxBB != AssumeBB) {
735 CtxIter = AssumeBB->
end();
738 if (!Assume->comesBefore(CtxI))
744 return hasNoFreeCalls(
make_range(Assume->getIterator(), CtxIter));
773 for (
unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
776 Pred, VC->getElementAsAPInt(ElemIdx));
785 const PHINode **PhiOut =
nullptr) {
789 CtxIOut =
PHI->getIncomingBlock(*U)->getTerminator();
805 IncPhi && IncPhi->getNumIncomingValues() == 2) {
806 for (
int Idx = 0; Idx < 2; ++Idx) {
807 if (IncPhi->getIncomingValue(Idx) ==
PHI) {
808 ValOut = IncPhi->getIncomingValue(1 - Idx);
811 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator();
830 "Got assumption for the wrong function!");
833 if (!V->getType()->isPointerTy())
836 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
838 (RK.AttrKind == Attribute::NonNull ||
839 (RK.AttrKind == Attribute::Dereferenceable &&
868 if (
RHS->getType()->isPointerTy()) {
910 Known.
Zero |= ~*
C & *Mask;
916 Known.
One |= *
C & ~*Mask;
975 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
981 KnownBits DstKnown(
LHS->getType()->getScalarSizeInBits());
995 bool Invert,
unsigned Depth) {
1077 "Got assumption for the wrong function!");
1080 if (!V->getType()->isPointerTy())
1083 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
1087 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
1099 Value *Arg =
I->getArgOperand(0);
1115 if (Trunc && Trunc->getOperand(0) == V &&
1117 if (Trunc->hasNoUnsignedWrap()) {
1165 Known = KF(Known2, Known, ShAmtNonZero);
1176 Value *
X =
nullptr, *
Y =
nullptr;
1178 switch (
I->getOpcode()) {
1179 case Instruction::And:
1180 KnownOut = KnownLHS & KnownRHS;
1190 KnownOut = KnownLHS.
blsi();
1192 KnownOut = KnownRHS.
blsi();
1195 case Instruction::Or:
1196 KnownOut = KnownLHS | KnownRHS;
1198 case Instruction::Xor:
1199 KnownOut = KnownLHS ^ KnownRHS;
1209 const KnownBits &XBits =
I->getOperand(0) ==
X ? KnownLHS : KnownRHS;
1210 KnownOut = XBits.
blsmsk();
1223 if (!KnownOut.
Zero[0] && !KnownOut.
One[0] &&
1244 APInt DemandedEltsLHS, DemandedEltsRHS;
1246 DemandedElts, DemandedEltsLHS,
1249 const auto ComputeForSingleOpFunc =
1251 return KnownBitsFunc(
1256 if (DemandedEltsRHS.
isZero())
1257 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS);
1258 if (DemandedEltsLHS.
isZero())
1259 return ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS);
1261 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS)
1262 .intersectWith(ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS));
1272 APInt DemandedElts =
1280 Attribute Attr =
F->getFnAttribute(Attribute::VScaleRange);
1288 return ConstantRange::getEmpty(
BitWidth);
1299 Value *Arm,
bool Invert,
1338 "Input should be a Select!");
1348 const Value *LHS2 =
nullptr, *RHS2 =
nullptr;
1360 return CLow->
sle(*CHigh);
1365 const APInt *&CHigh) {
1366 assert((
II->getIntrinsicID() == Intrinsic::smin ||
1367 II->getIntrinsicID() == Intrinsic::smax) &&
1368 "Must be smin/smax");
1372 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
1377 if (
II->getIntrinsicID() == Intrinsic::smin)
1379 return CLow->
sle(*CHigh);
1384 const APInt *CLow, *CHigh;
1391 const APInt &DemandedElts,
1398 switch (
I->getOpcode()) {
1400 case Instruction::Load:
1405 case Instruction::And:
1411 case Instruction::Or:
1417 case Instruction::Xor:
1423 case Instruction::Mul: {
1427 DemandedElts, Known, Known2, Q,
Depth);
1430 case Instruction::UDiv: {
1437 case Instruction::SDiv: {
1444 case Instruction::Select: {
1445 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
1453 ComputeForArm(
I->getOperand(1),
false)
1457 case Instruction::FPTrunc:
1458 case Instruction::FPExt:
1459 case Instruction::FPToUI:
1460 case Instruction::FPToSI:
1461 case Instruction::SIToFP:
1462 case Instruction::UIToFP:
1464 case Instruction::PtrToInt:
1465 case Instruction::PtrToAddr:
1466 case Instruction::IntToPtr:
1469 case Instruction::ZExt:
1470 case Instruction::Trunc: {
1471 Type *SrcTy =
I->getOperand(0)->getType();
1473 unsigned SrcBitWidth;
1481 assert(SrcBitWidth &&
"SrcBitWidth can't be zero");
1485 Inst && Inst->hasNonNeg() && !Known.
isNegative())
1490 case Instruction::BitCast: {
1491 Type *SrcTy =
I->getOperand(0)->getType();
1492 if (SrcTy->isIntOrPtrTy() &&
1495 !
I->getType()->isVectorTy()) {
1503 V->getType()->isFPOrFPVectorTy()) {
1504 Type *FPType = V->getType()->getScalarType();
1516 if (FPClasses &
fcInf)
1528 if (Result.SignBit) {
1529 if (*Result.SignBit)
1540 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1541 !
I->getType()->isIntOrIntVectorTy() ||
1549 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1565 unsigned SubScale =
BitWidth / SubBitWidth;
1567 for (
unsigned i = 0; i != NumElts; ++i) {
1568 if (DemandedElts[i])
1569 SubDemandedElts.
setBit(i * SubScale);
1573 for (
unsigned i = 0; i != SubScale; ++i) {
1576 unsigned ShiftElt = IsLE ? i : SubScale - 1 - i;
1577 Known.
insertBits(KnownSrc, ShiftElt * SubBitWidth);
1583 unsigned SubScale = SubBitWidth /
BitWidth;
1585 APInt SubDemandedElts =
1591 for (
unsigned i = 0; i != NumElts; ++i) {
1592 if (DemandedElts[i]) {
1593 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
1603 case Instruction::SExt: {
1605 unsigned SrcBitWidth =
I->getOperand(0)->getType()->getScalarSizeInBits();
1607 Known = Known.
trunc(SrcBitWidth);
1614 case Instruction::Shl: {
1618 bool ShAmtNonZero) {
1619 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1629 case Instruction::LShr: {
1632 bool ShAmtNonZero) {
1643 case Instruction::AShr: {
1646 bool ShAmtNonZero) {
1653 case Instruction::Sub: {
1657 DemandedElts, Known, Known2, Q,
Depth);
1660 case Instruction::Add: {
1664 DemandedElts, Known, Known2, Q,
Depth);
1667 case Instruction::SRem:
1673 case Instruction::URem:
1678 case Instruction::Alloca:
1681 case Instruction::GetElementPtr: {
1688 APInt AccConstIndices(IndexWidth, 0);
1690 auto AddIndexToKnown = [&](
KnownBits IndexBits) {
1699 "Index width can't be larger than pointer width");
1705 for (
unsigned i = 1, e =
I->getNumOperands(); i != e; ++i, ++GTI) {
1710 Value *Index =
I->getOperand(i);
1721 "Access to structure field must be known at compile time");
1729 AccConstIndices +=
Offset;
1746 CI->getValue().
sextOrTrunc(IndexWidth) * StrideInBytes;
1770 case Instruction::PHI: {
1773 Value *R =
nullptr, *L =
nullptr;
1786 case Instruction::LShr:
1787 case Instruction::AShr:
1788 case Instruction::Shl:
1789 case Instruction::UDiv:
1796 case Instruction::URem: {
1809 case Instruction::Shl:
1813 case Instruction::LShr:
1814 case Instruction::UDiv:
1815 case Instruction::URem:
1820 case Instruction::AShr:
1832 case Instruction::Add:
1833 case Instruction::Sub:
1834 case Instruction::And:
1835 case Instruction::Or:
1836 case Instruction::Mul: {
1843 unsigned OpNum =
P->getOperand(0) == R ? 0 : 1;
1844 Instruction *RInst =
P->getIncomingBlock(OpNum)->getTerminator();
1845 Instruction *LInst =
P->getIncomingBlock(1 - OpNum)->getTerminator();
1874 case Instruction::Add: {
1884 case Instruction::Sub: {
1895 case Instruction::Mul:
1912 if (
P->getNumIncomingValues() == 0)
1923 for (
const Use &U :
P->operands()) {
1958 if ((TrueSucc == CxtPhi->
getParent()) !=
1975 Known2 = KnownUnion;
1989 case Instruction::Call:
1990 case Instruction::Invoke: {
2000 if (std::optional<ConstantRange>
Range = CB->getRange())
2003 if (
const Value *RV = CB->getReturnedArgOperand()) {
2004 if (RV->getType() ==
I->getType()) {
2016 switch (
II->getIntrinsicID()) {
2019 case Intrinsic::abs: {
2021 bool IntMinIsPoison =
match(
II->getArgOperand(1),
m_One());
2025 case Intrinsic::bitreverse:
2029 case Intrinsic::bswap:
2033 case Intrinsic::ctlz: {
2039 PossibleLZ = std::min(PossibleLZ,
BitWidth - 1);
2044 case Intrinsic::cttz: {
2050 PossibleTZ = std::min(PossibleTZ,
BitWidth - 1);
2055 case Intrinsic::ctpop: {
2066 case Intrinsic::fshr:
2067 case Intrinsic::fshl: {
2074 if (
II->getIntrinsicID() == Intrinsic::fshr)
2081 Known2 <<= ShiftAmt;
2086 case Intrinsic::uadd_sat:
2091 case Intrinsic::usub_sat:
2096 case Intrinsic::sadd_sat:
2101 case Intrinsic::ssub_sat:
2107 case Intrinsic::vector_reverse:
2113 case Intrinsic::vector_reduce_and:
2114 case Intrinsic::vector_reduce_or:
2115 case Intrinsic::vector_reduce_umax:
2116 case Intrinsic::vector_reduce_umin:
2117 case Intrinsic::vector_reduce_smax:
2118 case Intrinsic::vector_reduce_smin:
2121 case Intrinsic::vector_reduce_xor: {
2128 bool EvenCnt = VecTy->getElementCount().isKnownEven();
2132 if (VecTy->isScalableTy() || EvenCnt)
2136 case Intrinsic::vector_reduce_add: {
2141 Known = Known.
reduceAdd(VecTy->getNumElements());
2144 case Intrinsic::umin:
2149 case Intrinsic::umax:
2154 case Intrinsic::smin:
2160 case Intrinsic::smax:
2166 case Intrinsic::ptrmask: {
2169 const Value *Mask =
I->getOperand(1);
2170 Known2 =
KnownBits(Mask->getType()->getScalarSizeInBits());
2176 case Intrinsic::x86_sse2_pmulh_w:
2177 case Intrinsic::x86_avx2_pmulh_w:
2178 case Intrinsic::x86_avx512_pmulh_w_512:
2183 case Intrinsic::x86_sse2_pmulhu_w:
2184 case Intrinsic::x86_avx2_pmulhu_w:
2185 case Intrinsic::x86_avx512_pmulhu_w_512:
2190 case Intrinsic::x86_sse42_crc32_64_64:
2193 case Intrinsic::x86_ssse3_phadd_d_128:
2194 case Intrinsic::x86_ssse3_phadd_w_128:
2195 case Intrinsic::x86_avx2_phadd_d:
2196 case Intrinsic::x86_avx2_phadd_w: {
2198 I, DemandedElts, Q,
Depth,
2204 case Intrinsic::x86_ssse3_phadd_sw_128:
2205 case Intrinsic::x86_avx2_phadd_sw: {
2210 case Intrinsic::x86_ssse3_phsub_d_128:
2211 case Intrinsic::x86_ssse3_phsub_w_128:
2212 case Intrinsic::x86_avx2_phsub_d:
2213 case Intrinsic::x86_avx2_phsub_w: {
2215 I, DemandedElts, Q,
Depth,
2221 case Intrinsic::x86_ssse3_phsub_sw_128:
2222 case Intrinsic::x86_avx2_phsub_sw: {
2227 case Intrinsic::riscv_vsetvli:
2228 case Intrinsic::riscv_vsetvlimax: {
2229 bool HasAVL =
II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
2242 MaxVL = std::min(MaxVL, CI->getZExtValue());
2244 unsigned KnownZeroFirstBit =
Log2_32(MaxVL) + 1;
2249 case Intrinsic::vscale: {
2250 if (!
II->getParent() || !
II->getFunction())
2260 case Instruction::ShuffleVector: {
2274 APInt DemandedLHS, DemandedRHS;
2280 if (!!DemandedLHS) {
2281 const Value *
LHS = Shuf->getOperand(0);
2287 if (!!DemandedRHS) {
2288 const Value *
RHS = Shuf->getOperand(1);
2294 case Instruction::InsertElement: {
2299 const Value *Vec =
I->getOperand(0);
2300 const Value *Elt =
I->getOperand(1);
2303 APInt DemandedVecElts = DemandedElts;
2304 bool NeedsElt =
true;
2306 if (CIdx && CIdx->getValue().ult(NumElts)) {
2307 DemandedVecElts.
clearBit(CIdx->getZExtValue());
2308 NeedsElt = DemandedElts[CIdx->getZExtValue()];
2319 if (!DemandedVecElts.
isZero()) {
2325 case Instruction::ExtractElement: {
2328 const Value *Vec =
I->getOperand(0);
2329 const Value *Idx =
I->getOperand(1);
2338 if (CIdx && CIdx->getValue().ult(NumElts))
2343 case Instruction::ExtractValue:
2348 switch (
II->getIntrinsicID()) {
2350 case Intrinsic::uadd_with_overflow:
2351 case Intrinsic::sadd_with_overflow:
2353 true,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2354 false, DemandedElts, Known, Known2, Q,
Depth);
2356 case Intrinsic::usub_with_overflow:
2357 case Intrinsic::ssub_with_overflow:
2359 false,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2360 false, DemandedElts, Known, Known2, Q,
Depth);
2362 case Intrinsic::umul_with_overflow:
2363 case Intrinsic::smul_with_overflow:
2365 false, DemandedElts, Known, Known2, Q,
Depth);
2371 case Instruction::Freeze:
2415 if (!DemandedElts) {
2421 assert(V &&
"No Value?");
2425 Type *Ty = V->getType();
2428 assert((Ty->isIntOrIntVectorTy(
BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2429 "Not integer or pointer type!");
2433 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
2434 "DemandedElt width should equal the fixed vector number of elements");
2437 "DemandedElt width should be 1 for scalars or scalable vectors");
2443 "V and Known should have same BitWidth");
2446 "V and Known should have same BitWidth");
2468 for (
unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2469 if (!DemandedElts[i])
2471 APInt Elt = CDV->getElementAsAPInt(i);
2485 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2486 if (!DemandedElts[i])
2496 const APInt &Elt = ElementCI->getValue();
2517 if (std::optional<ConstantRange>
Range =
A->getRange())
2518 Known =
Range->toKnownBits();
2527 if (!GA->isInterposable())
2535 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2536 Known = CR->toKnownBits();
2541 Align Alignment = V->getPointerAlignment(Q.
DL);
2557 Value *Start =
nullptr, *Step =
nullptr;
2563 if (U.get() == Start) {
2579 case Instruction::Mul:
2584 case Instruction::SDiv:
2590 case Instruction::UDiv:
2596 case Instruction::Shl:
2598 case Instruction::AShr:
2602 case Instruction::LShr:
2640 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2682 return F->hasFnAttribute(Attribute::VScaleRange);
2699 switch (
I->getOpcode()) {
2700 case Instruction::ZExt:
2702 case Instruction::Trunc:
2704 case Instruction::Shl:
2708 case Instruction::LShr:
2712 case Instruction::UDiv:
2716 case Instruction::Mul:
2720 case Instruction::And:
2731 case Instruction::Add: {
2737 if (
match(
I->getOperand(0),
2741 if (
match(
I->getOperand(1),
2746 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2755 if ((~(LHSBits.
Zero & RHSBits.
Zero)).isPowerOf2())
2768 case Instruction::Select:
2771 case Instruction::PHI: {
2792 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2793 return isKnownToBeAPowerOfTwo(U.get(), OrZero, RecQ, NewDepth);
2796 case Instruction::Invoke:
2797 case Instruction::Call: {
2799 switch (
II->getIntrinsicID()) {
2800 case Intrinsic::umax:
2801 case Intrinsic::smax:
2802 case Intrinsic::umin:
2803 case Intrinsic::smin:
2808 case Intrinsic::bitreverse:
2809 case Intrinsic::bswap:
2811 case Intrinsic::fshr:
2812 case Intrinsic::fshl:
2814 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
2838 F =
I->getFunction();
2842 if (!
GEP->hasNoUnsignedWrap() &&
2843 !(
GEP->isInBounds() &&
2848 assert(
GEP->getType()->isPointerTy() &&
"We only support plain pointer GEP");
2859 GTI != GTE; ++GTI) {
2861 if (
StructType *STy = GTI.getStructTypeOrNull()) {
2866 if (ElementOffset > 0)
2872 if (GTI.getSequentialElementStride(Q.
DL).isZero())
2906 unsigned NumUsesExplored = 0;
2907 for (
auto &U : V->uses()) {
2916 if (V->getType()->isPointerTy()) {
2918 if (CB->isArgOperand(&U) &&
2919 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
2947 NonNullIfTrue =
true;
2949 NonNullIfTrue =
false;
2955 for (
const auto *CmpU : UI->
users()) {
2957 if (Visited.
insert(CmpU).second)
2960 while (!WorkList.
empty()) {
2969 for (
const auto *CurrU : Curr->users())
2970 if (Visited.
insert(CurrU).second)
2976 assert(BI->isConditional() &&
"uses a comparison!");
2979 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2983 }
else if (NonNullIfTrue &&
isGuard(Curr) &&
2998 const unsigned NumRanges = Ranges->getNumOperands() / 2;
3000 for (
unsigned i = 0; i < NumRanges; ++i) {
3016 Value *Start =
nullptr, *Step =
nullptr;
3017 const APInt *StartC, *StepC;
3023 case Instruction::Add:
3029 case Instruction::Mul:
3032 case Instruction::Shl:
3034 case Instruction::AShr:
3035 case Instruction::LShr:
3051 bool NUW,
unsigned Depth) {
3108 return ::isKnownNonEqual(
X,
Y, DemandedElts, Q,
Depth);
3113 bool NUW,
unsigned Depth) {
3142 auto ShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
3143 switch (
I->getOpcode()) {
3144 case Instruction::Shl:
3145 return Lhs.
shl(Rhs);
3146 case Instruction::LShr:
3147 return Lhs.
lshr(Rhs);
3148 case Instruction::AShr:
3149 return Lhs.
ashr(Rhs);
3155 auto InvShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
3156 switch (
I->getOpcode()) {
3157 case Instruction::Shl:
3158 return Lhs.
lshr(Rhs);
3159 case Instruction::LShr:
3160 case Instruction::AShr:
3161 return Lhs.
shl(Rhs);
3174 if (MaxShift.
uge(NumBits))
3177 if (!ShiftOp(KnownVal.
One, MaxShift).isZero())
3182 if (InvShiftOp(KnownVal.
Zero, NumBits - MaxShift)
3191 const APInt &DemandedElts,
3194 switch (
I->getOpcode()) {
3195 case Instruction::Alloca:
3197 return I->getType()->getPointerAddressSpace() == 0;
3198 case Instruction::GetElementPtr:
3199 if (
I->getType()->isPointerTy())
3202 case Instruction::BitCast: {
3230 Type *FromTy =
I->getOperand(0)->getType();
3235 case Instruction::IntToPtr:
3244 case Instruction::PtrToAddr:
3248 case Instruction::PtrToInt:
3252 I->getType()->getScalarSizeInBits())
3255 case Instruction::Trunc:
3258 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
3264 case Instruction::Xor:
3265 case Instruction::Sub:
3267 I->getOperand(1),
Depth);
3268 case Instruction::Or:
3279 case Instruction::SExt:
3280 case Instruction::ZExt:
3284 case Instruction::Shl: {
3299 case Instruction::LShr:
3300 case Instruction::AShr: {
3315 case Instruction::UDiv:
3316 case Instruction::SDiv: {
3331 if (
I->getOpcode() == Instruction::SDiv) {
3333 XKnown = XKnown.
abs(
false);
3334 YKnown = YKnown.
abs(
false);
3340 return XUgeY && *XUgeY;
3342 case Instruction::Add: {
3352 case Instruction::Mul: {
3358 case Instruction::Select: {
3365 auto SelectArmIsNonZero = [&](
bool IsTrueArm) {
3367 Op = IsTrueArm ?
I->getOperand(1) :
I->getOperand(2);
3385 if (SelectArmIsNonZero(
true) &&
3386 SelectArmIsNonZero(
false))
3390 case Instruction::PHI: {
3401 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
3405 BasicBlock *TrueSucc, *FalseSucc;
3406 if (match(RecQ.CxtI,
3407 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
3408 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
3410 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
3412 if (FalseSucc == PN->getParent())
3413 Pred = CmpInst::getInversePredicate(Pred);
3414 if (cmpExcludesZero(Pred, X))
3422 case Instruction::InsertElement: {
3426 const Value *Vec =
I->getOperand(0);
3427 const Value *Elt =
I->getOperand(1);
3431 APInt DemandedVecElts = DemandedElts;
3432 bool SkipElt =
false;
3434 if (CIdx && CIdx->getValue().ult(NumElts)) {
3435 DemandedVecElts.
clearBit(CIdx->getZExtValue());
3436 SkipElt = !DemandedElts[CIdx->getZExtValue()];
3442 (DemandedVecElts.
isZero() ||
3445 case Instruction::ExtractElement:
3447 const Value *Vec = EEI->getVectorOperand();
3448 const Value *Idx = EEI->getIndexOperand();
3451 unsigned NumElts = VecTy->getNumElements();
3453 if (CIdx && CIdx->getValue().ult(NumElts))
3459 case Instruction::ShuffleVector: {
3463 APInt DemandedLHS, DemandedRHS;
3469 return (DemandedRHS.
isZero() ||
3474 case Instruction::Freeze:
3478 case Instruction::Load: {
3495 case Instruction::ExtractValue: {
3501 case Instruction::Add:
3506 case Instruction::Sub:
3509 case Instruction::Mul:
3512 false,
false,
Depth);
3518 case Instruction::Call:
3519 case Instruction::Invoke: {
3521 if (
I->getType()->isPointerTy()) {
3522 if (
Call->isReturnNonNull())
3529 if (std::optional<ConstantRange>
Range =
Call->getRange()) {
3530 const APInt ZeroValue(
Range->getBitWidth(), 0);
3531 if (!
Range->contains(ZeroValue))
3534 if (
const Value *RV =
Call->getReturnedArgOperand())
3540 switch (
II->getIntrinsicID()) {
3541 case Intrinsic::sshl_sat:
3542 case Intrinsic::ushl_sat:
3543 case Intrinsic::abs:
3544 case Intrinsic::bitreverse:
3545 case Intrinsic::bswap:
3546 case Intrinsic::ctpop:
3550 case Intrinsic::ssub_sat:
3558 case Intrinsic::sadd_sat:
3560 II->getArgOperand(1),
3561 true,
false,
Depth);
3563 case Intrinsic::vector_reverse:
3567 case Intrinsic::vector_reduce_or:
3568 case Intrinsic::vector_reduce_umax:
3569 case Intrinsic::vector_reduce_umin:
3570 case Intrinsic::vector_reduce_smax:
3571 case Intrinsic::vector_reduce_smin:
3573 case Intrinsic::umax:
3574 case Intrinsic::uadd_sat:
3582 case Intrinsic::smax: {
3585 auto IsNonZero = [&](
Value *
Op, std::optional<bool> &OpNonZero,
3587 if (!OpNonZero.has_value())
3588 OpNonZero = OpKnown.isNonZero() ||
3593 std::optional<bool> Op0NonZero, Op1NonZero;
3597 IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known))
3602 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known))
3604 return IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known) &&
3605 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known);
3607 case Intrinsic::smin: {
3623 case Intrinsic::umin:
3626 case Intrinsic::cttz:
3629 case Intrinsic::ctlz:
3632 case Intrinsic::fshr:
3633 case Intrinsic::fshl:
3635 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
3638 case Intrinsic::vscale:
3640 case Intrinsic::experimental_get_vector_length:
3654 return Known.
One != 0;
3665 Type *Ty = V->getType();
3672 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
3673 "DemandedElt width should equal the fixed vector number of elements");
3676 "DemandedElt width should be 1 for scalars");
3681 if (
C->isNullValue())
3690 for (
unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3691 if (!DemandedElts[i])
3693 Constant *Elt =
C->getAggregateElement(i);
3710 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3711 GV->getType()->getAddressSpace() == 0)
3721 if (std::optional<ConstantRange>
Range =
A->getRange()) {
3722 const APInt ZeroValue(
Range->getBitWidth(), 0);
3723 if (!
Range->contains(ZeroValue))
3740 if (((
A->hasPassPointeeByValueCopyAttr() &&
3742 A->hasNonNullAttr()))
3764 APInt DemandedElts =
3766 return ::isKnownNonZero(V, DemandedElts, Q,
Depth);
3775static std::optional<std::pair<Value*, Value*>>
3779 return std::nullopt;
3788 case Instruction::Or:
3793 case Instruction::Xor:
3794 case Instruction::Add: {
3802 case Instruction::Sub:
3808 case Instruction::Mul: {
3814 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3815 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3825 case Instruction::Shl: {
3830 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3831 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3838 case Instruction::AShr:
3839 case Instruction::LShr: {
3842 if (!PEO1->isExact() || !PEO2->isExact())
3849 case Instruction::SExt:
3850 case Instruction::ZExt:
3854 case Instruction::PHI: {
3862 Value *Start1 =
nullptr, *Step1 =
nullptr;
3864 Value *Start2 =
nullptr, *Step2 =
nullptr;
3880 if (Values->first != PN1 || Values->second != PN2)
3883 return std::make_pair(Start1, Start2);
3886 return std::nullopt;
3893 const APInt &DemandedElts,
3901 case Instruction::Or:
3905 case Instruction::Xor:
3906 case Instruction::Add:
3927 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3928 !
C->isZero() && !
C->isOne() &&
3942 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3956 bool UsedFullRecursion =
false;
3958 if (!VisitedBBs.
insert(IncomBB).second)
3962 const APInt *C1, *C2;
3967 if (UsedFullRecursion)
3971 RecQ.
CxtI = IncomBB->getTerminator();
3974 UsedFullRecursion =
true;
3988 const Value *Cond2 = SI2->getCondition();
3991 DemandedElts, Q,
Depth + 1) &&
3993 DemandedElts, Q,
Depth + 1);
4006 if (!
A->getType()->isPointerTy() || !
B->getType()->isPointerTy())
4010 if (!GEPA || GEPA->getNumIndices() != 1 || !
isa<Constant>(GEPA->idx_begin()))
4015 if (!PN || PN->getNumIncomingValues() != 2)
4020 Value *Start =
nullptr;
4022 if (PN->getIncomingValue(0) == Step)
4023 Start = PN->getIncomingValue(1);
4024 else if (PN->getIncomingValue(1) == Step)
4025 Start = PN->getIncomingValue(0);
4036 APInt StartOffset(IndexWidth, 0);
4037 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, StartOffset);
4038 APInt StepOffset(IndexWidth, 0);
4044 APInt OffsetB(IndexWidth, 0);
4045 B =
B->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, OffsetB);
4046 return Start ==
B &&
4058 auto IsKnownNonEqualFromDominatingCondition = [&](
const Value *V) {
4079 if (IsKnownNonEqualFromDominatingCondition(V1) ||
4080 IsKnownNonEqualFromDominatingCondition(V2))
4094 "Got assumption for the wrong function!");
4095 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4096 "must be an assume intrinsic");
4126 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
4128 return isKnownNonEqual(Values->first, Values->second, DemandedElts, Q,
4190 const APInt &DemandedElts,
4196 unsigned MinSignBits = TyBits;
4198 for (
unsigned i = 0; i != NumElts; ++i) {
4199 if (!DemandedElts[i])
4206 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
4213 const APInt &DemandedElts,
4219 assert(Result > 0 &&
"At least one sign bit needs to be present!");
4231 const APInt &DemandedElts,
4233 Type *Ty = V->getType();
4239 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
4240 "DemandedElt width should equal the fixed vector number of elements");
4243 "DemandedElt width should be 1 for scalars");
4257 unsigned FirstAnswer = 1;
4268 case Instruction::BitCast: {
4269 Value *Src = U->getOperand(0);
4270 Type *SrcTy = Src->getType();
4274 if (!SrcTy->isIntOrIntVectorTy())
4280 if ((SrcBits % TyBits) != 0)
4293 case Instruction::SExt:
4294 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
4298 case Instruction::SDiv: {
4299 const APInt *Denominator;
4312 return std::min(TyBits, NumBits + Denominator->
logBase2());
4317 case Instruction::SRem: {
4320 const APInt *Denominator;
4341 unsigned ResBits = TyBits - Denominator->
ceilLogBase2();
4342 Tmp = std::max(Tmp, ResBits);
4348 case Instruction::AShr: {
4353 if (ShAmt->
uge(TyBits))
4356 Tmp += ShAmtLimited;
4357 if (Tmp > TyBits) Tmp = TyBits;
4361 case Instruction::Shl: {
4366 if (ShAmt->
uge(TyBits))
4371 ShAmt->
uge(TyBits -
X->getType()->getScalarSizeInBits())) {
4373 Tmp += TyBits -
X->getType()->getScalarSizeInBits();
4377 if (ShAmt->
uge(Tmp))
4384 case Instruction::And:
4385 case Instruction::Or:
4386 case Instruction::Xor:
4391 FirstAnswer = std::min(Tmp, Tmp2);
4398 case Instruction::Select: {
4402 const APInt *CLow, *CHigh;
4410 return std::min(Tmp, Tmp2);
4413 case Instruction::Add:
4417 if (Tmp == 1)
break;
4421 if (CRHS->isAllOnesValue()) {
4427 if ((Known.
Zero | 1).isAllOnes())
4439 return std::min(Tmp, Tmp2) - 1;
4441 case Instruction::Sub:
4448 if (CLHS->isNullValue()) {
4453 if ((Known.
Zero | 1).isAllOnes())
4470 return std::min(Tmp, Tmp2) - 1;
4472 case Instruction::Mul: {
4475 unsigned SignBitsOp0 =
4477 if (SignBitsOp0 == 1)
4479 unsigned SignBitsOp1 =
4481 if (SignBitsOp1 == 1)
4483 unsigned OutValidBits =
4484 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
4485 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
4488 case Instruction::PHI: {
4492 if (NumIncomingValues > 4)
break;
4494 if (NumIncomingValues == 0)
break;
4500 for (
unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4501 if (Tmp == 1)
return Tmp;
4504 DemandedElts, RecQ,
Depth + 1));
4509 case Instruction::Trunc: {
4514 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4515 if (Tmp > (OperandTyBits - TyBits))
4516 return Tmp - (OperandTyBits - TyBits);
4521 case Instruction::ExtractElement:
4528 case Instruction::ShuffleVector: {
4536 APInt DemandedLHS, DemandedRHS;
4541 Tmp = std::numeric_limits<unsigned>::max();
4542 if (!!DemandedLHS) {
4543 const Value *
LHS = Shuf->getOperand(0);
4550 if (!!DemandedRHS) {
4551 const Value *
RHS = Shuf->getOperand(1);
4553 Tmp = std::min(Tmp, Tmp2);
4559 assert(Tmp <= TyBits &&
"Failed to determine minimum sign bits");
4562 case Instruction::Call: {
4564 switch (
II->getIntrinsicID()) {
4567 case Intrinsic::abs:
4575 case Intrinsic::smin:
4576 case Intrinsic::smax: {
4577 const APInt *CLow, *CHigh;
4592 if (
unsigned VecSignBits =
4610 if (
F->isIntrinsic())
4611 return F->getIntrinsicID();
4617 if (
F->hasLocalLinkage() || !TLI || !TLI->
getLibFunc(CB, Func) ||
4627 return Intrinsic::sin;
4631 return Intrinsic::cos;
4635 return Intrinsic::tan;
4639 return Intrinsic::asin;
4643 return Intrinsic::acos;
4647 return Intrinsic::atan;
4649 case LibFunc_atan2f:
4650 case LibFunc_atan2l:
4651 return Intrinsic::atan2;
4655 return Intrinsic::sinh;
4659 return Intrinsic::cosh;
4663 return Intrinsic::tanh;
4667 return Intrinsic::exp;
4671 return Intrinsic::exp2;
4673 case LibFunc_exp10f:
4674 case LibFunc_exp10l:
4675 return Intrinsic::exp10;
4679 return Intrinsic::log;
4681 case LibFunc_log10f:
4682 case LibFunc_log10l:
4683 return Intrinsic::log10;
4687 return Intrinsic::log2;
4691 return Intrinsic::fabs;
4695 return Intrinsic::minnum;
4699 return Intrinsic::maxnum;
4700 case LibFunc_copysign:
4701 case LibFunc_copysignf:
4702 case LibFunc_copysignl:
4703 return Intrinsic::copysign;
4705 case LibFunc_floorf:
4706 case LibFunc_floorl:
4707 return Intrinsic::floor;
4711 return Intrinsic::ceil;
4713 case LibFunc_truncf:
4714 case LibFunc_truncl:
4715 return Intrinsic::trunc;
4719 return Intrinsic::rint;
4720 case LibFunc_nearbyint:
4721 case LibFunc_nearbyintf:
4722 case LibFunc_nearbyintl:
4723 return Intrinsic::nearbyint;
4725 case LibFunc_roundf:
4726 case LibFunc_roundl:
4727 return Intrinsic::round;
4728 case LibFunc_roundeven:
4729 case LibFunc_roundevenf:
4730 case LibFunc_roundevenl:
4731 return Intrinsic::roundeven;
4735 return Intrinsic::pow;
4739 return Intrinsic::sqrt;
4749 bool &TrueIfSigned) {
4752 TrueIfSigned =
true;
4753 return RHS.isZero();
4755 TrueIfSigned =
true;
4756 return RHS.isAllOnes();
4758 TrueIfSigned =
false;
4759 return RHS.isAllOnes();
4761 TrueIfSigned =
false;
4762 return RHS.isZero();
4765 TrueIfSigned =
true;
4766 return RHS.isMaxSignedValue();
4769 TrueIfSigned =
true;
4770 return RHS.isMinSignedValue();
4773 TrueIfSigned =
false;
4774 return RHS.isMinSignedValue();
4777 TrueIfSigned =
false;
4778 return RHS.isMaxSignedValue();
4788 unsigned Depth = 0) {
4814 KnownFromContext.
knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4818 KnownFromContext.
knownNot(CondIsTrue ? ~Mask : Mask);
4824 if (TrueIfSigned == CondIsTrue)
4840 return KnownFromContext;
4860 return KnownFromContext;
4870 "Got assumption for the wrong function!");
4871 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4872 "must be an assume intrinsic");
4878 true, Q.
CxtI, KnownFromContext);
4881 return KnownFromContext;
4885 Value *Arm,
bool Invert,
4891 !Invert, SQ.
CxtI, KnownSrc,
4909 APInt DemandedElts =
4915 const APInt &DemandedElts,
4920 if ((InterestedClasses &
4926 KnownSrc, Q,
Depth + 1);
4940 case Intrinsic::minimum:
4942 case Intrinsic::maximum:
4944 case Intrinsic::minimumnum:
4946 case Intrinsic::maximumnum:
4948 case Intrinsic::minnum:
4950 case Intrinsic::maxnum:
4960 assert(Known.
isUnknown() &&
"should not be called with known information");
4962 if (!DemandedElts) {
4992 bool SignBitAllZero =
true;
4993 bool SignBitAllOne =
true;
4996 unsigned NumElts = VFVTy->getNumElements();
4997 for (
unsigned i = 0; i != NumElts; ++i) {
4998 if (!DemandedElts[i])
5014 const APFloat &
C = CElt->getValueAPF();
5017 SignBitAllZero =
false;
5019 SignBitAllOne =
false;
5021 if (SignBitAllOne != SignBitAllZero)
5022 Known.
SignBit = SignBitAllOne;
5028 KnownNotFromFlags |= CB->getRetNoFPClass();
5030 KnownNotFromFlags |= Arg->getNoFPClass();
5034 if (FPOp->hasNoNaNs())
5035 KnownNotFromFlags |=
fcNan;
5036 if (FPOp->hasNoInfs())
5037 KnownNotFromFlags |=
fcInf;
5041 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
5045 InterestedClasses &= ~KnownNotFromFlags;
5064 const unsigned Opc =
Op->getOpcode();
5066 case Instruction::FNeg: {
5068 Known, Q,
Depth + 1);
5072 case Instruction::Select: {
5073 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
5083 ComputeForArm(
Op->getOperand(1),
false)
5087 case Instruction::Call: {
5091 case Intrinsic::fabs: {
5096 InterestedClasses, Known, Q,
Depth + 1);
5102 case Intrinsic::copysign: {
5106 Known, Q,
Depth + 1);
5108 KnownSign, Q,
Depth + 1);
5112 case Intrinsic::fma:
5113 case Intrinsic::fmuladd: {
5117 if (
II->getArgOperand(0) !=
II->getArgOperand(1) ||
5128 KnownAddend, Q,
Depth + 1);
5134 case Intrinsic::sqrt:
5135 case Intrinsic::experimental_constrained_sqrt: {
5138 if (InterestedClasses &
fcNan)
5142 KnownSrc, Q,
Depth + 1);
5150 II->getType()->getScalarType()->getFltSemantics();
5160 case Intrinsic::sin:
5161 case Intrinsic::cos: {
5165 KnownSrc, Q,
Depth + 1);
5171 case Intrinsic::maxnum:
5172 case Intrinsic::minnum:
5173 case Intrinsic::minimum:
5174 case Intrinsic::maximum:
5175 case Intrinsic::minimumnum:
5176 case Intrinsic::maximumnum: {
5179 KnownLHS, Q,
Depth + 1);
5181 KnownRHS, Q,
Depth + 1);
5186 F ?
F->getDenormalMode(
5187 II->getType()->getScalarType()->getFltSemantics())
5194 case Intrinsic::canonicalize: {
5197 KnownSrc, Q,
Depth + 1);
5201 F ?
F->getDenormalMode(
5202 II->getType()->getScalarType()->getFltSemantics())
5207 case Intrinsic::vector_reduce_fmax:
5208 case Intrinsic::vector_reduce_fmin:
5209 case Intrinsic::vector_reduce_fmaximum:
5210 case Intrinsic::vector_reduce_fminimum: {
5214 InterestedClasses, Q,
Depth + 1);
5221 case Intrinsic::vector_reverse:
5224 II->getFastMathFlags(), InterestedClasses, Q,
Depth + 1);
5226 case Intrinsic::trunc:
5227 case Intrinsic::floor:
5228 case Intrinsic::ceil:
5229 case Intrinsic::rint:
5230 case Intrinsic::nearbyint:
5231 case Intrinsic::round:
5232 case Intrinsic::roundeven: {
5240 KnownSrc, Q,
Depth + 1);
5243 KnownSrc, IID == Intrinsic::trunc,
5244 V->getType()->getScalarType()->isMultiUnitFPType());
5247 case Intrinsic::exp:
5248 case Intrinsic::exp2:
5249 case Intrinsic::exp10:
5250 case Intrinsic::amdgcn_exp2: {
5253 KnownSrc, Q,
Depth + 1);
5257 Type *EltTy =
II->getType()->getScalarType();
5258 if (IID == Intrinsic::amdgcn_exp2 && EltTy->
isFloatTy())
5263 case Intrinsic::fptrunc_round: {
5268 case Intrinsic::log:
5269 case Intrinsic::log10:
5270 case Intrinsic::log2:
5271 case Intrinsic::experimental_constrained_log:
5272 case Intrinsic::experimental_constrained_log10:
5273 case Intrinsic::experimental_constrained_log2:
5274 case Intrinsic::amdgcn_log: {
5275 Type *EltTy =
II->getType()->getScalarType();
5290 KnownSrc, Q,
Depth + 1);
5298 if (IID == Intrinsic::amdgcn_log && EltTy->
isFloatTy())
5302 case Intrinsic::powi: {
5306 const Value *Exp =
II->getArgOperand(1);
5307 Type *ExpTy = Exp->getType();
5311 ExponentKnownBits, Q,
Depth + 1);
5313 if (ExponentKnownBits.
Zero[0]) {
5328 KnownSrc, Q,
Depth + 1);
5333 case Intrinsic::ldexp: {
5336 KnownSrc, Q,
Depth + 1);
5352 if ((InterestedClasses & ExpInfoMask) ==
fcNone)
5358 II->getType()->getScalarType()->getFltSemantics();
5360 const Value *ExpArg =
II->getArgOperand(1);
5364 const int MantissaBits = Precision - 1;
5371 II->getType()->getScalarType()->getFltSemantics();
5372 if (ConstVal && ConstVal->
isZero()) {
5397 case Intrinsic::arithmetic_fence: {
5399 Known, Q,
Depth + 1);
5402 case Intrinsic::experimental_constrained_sitofp:
5403 case Intrinsic::experimental_constrained_uitofp:
5413 if (IID == Intrinsic::experimental_constrained_uitofp)
5418 case Intrinsic::amdgcn_rcp: {
5421 KnownSrc, Q,
Depth + 1);
5425 Type *EltTy =
II->getType()->getScalarType();
5448 case Intrinsic::amdgcn_rsq: {
5454 KnownSrc, Q,
Depth + 1);
5466 Type *EltTy =
II->getType()->getScalarType();
5492 case Instruction::FAdd:
5493 case Instruction::FSub: {
5496 Op->getOpcode() == Instruction::FAdd &&
5498 bool WantNaN = (InterestedClasses &
fcNan) !=
fcNone;
5501 if (!WantNaN && !WantNegative && !WantNegZero)
5507 if (InterestedClasses &
fcNan)
5508 InterestedSrcs |=
fcInf;
5510 KnownRHS, Q,
Depth + 1);
5513 bool SelfAdd =
Op->getOperand(0) ==
Op->getOperand(1) &&
5517 KnownLHS = KnownRHS;
5521 WantNegZero ||
Opc == Instruction::FSub) {
5527 KnownLHS, Q,
Depth + 1);
5539 if (
Op->getOpcode() == Instruction::FAdd) {
5551 Op->getType()->getScalarType()->getFltSemantics();
5575 Op->getType()->getScalarType()->getFltSemantics();
5590 case Instruction::FMul: {
5593 F ?
F->getDenormalMode(
5594 Op->getType()->getScalarType()->getFltSemantics())
5598 if (
Op->getOperand(0) ==
Op->getOperand(1) &&
5609 bool CannotBeSubnormal =
false;
5618 Op->getType()->getScalarType()->getFltSemantics();
5620 const int MantissaBits = Precision - 1;
5622 int MinKnownExponent =
ilogb(*CRHS);
5623 if (MinKnownExponent >= MantissaBits)
5624 CannotBeSubnormal =
true;
5636 if (CannotBeSubnormal)
5640 case Instruction::FDiv:
5641 case Instruction::FRem: {
5642 const bool WantNan = (InterestedClasses &
fcNan) !=
fcNone;
5644 if (
Op->getOperand(0) ==
Op->getOperand(1) &&
5646 if (
Op->getOpcode() == Instruction::FDiv) {
5663 Op->getType()->getScalarType()->getFltSemantics();
5676 const bool WantPositive =
5678 if (!WantNan && !WantNegative && !WantPositive)
5691 if (KnowSomethingUseful || WantPositive) {
5698 Op->getType()->getScalarType()->getFltSemantics();
5700 if (
Op->getOpcode() == Instruction::FDiv) {
5757 case Instruction::FPExt: {
5760 KnownSrc, Q,
Depth + 1);
5763 Op->getType()->getScalarType()->getFltSemantics();
5765 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5770 case Instruction::FPTrunc: {
5775 case Instruction::SIToFP:
5776 case Instruction::UIToFP: {
5785 if (
Op->getOpcode() == Instruction::UIToFP)
5788 if (InterestedClasses &
fcInf) {
5792 int IntSize =
Op->getOperand(0)->getType()->getScalarSizeInBits();
5793 if (
Op->getOpcode() == Instruction::SIToFP)
5798 Type *FPTy =
Op->getType()->getScalarType();
5805 case Instruction::ExtractElement: {
5808 const Value *Vec =
Op->getOperand(0);
5810 APInt DemandedVecElts;
5812 unsigned NumElts = VecTy->getNumElements();
5815 if (CIdx && CIdx->getValue().ult(NumElts))
5818 DemandedVecElts =
APInt(1, 1);
5824 case Instruction::InsertElement: {
5828 const Value *Vec =
Op->getOperand(0);
5829 const Value *Elt =
Op->getOperand(1);
5832 APInt DemandedVecElts = DemandedElts;
5833 bool NeedsElt =
true;
5835 if (CIdx && CIdx->getValue().ult(NumElts)) {
5836 DemandedVecElts.
clearBit(CIdx->getZExtValue());
5837 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5851 if (!DemandedVecElts.
isZero()) {
5860 case Instruction::ShuffleVector: {
5869 APInt DemandedLHS, DemandedRHS;
5874 if (!!DemandedLHS) {
5875 const Value *
LHS = Shuf->getOperand(0);
5886 if (!!DemandedRHS) {
5888 const Value *
RHS = Shuf->getOperand(1);
5896 case Instruction::ExtractValue: {
5903 switch (
II->getIntrinsicID()) {
5904 case Intrinsic::frexp: {
5909 InterestedClasses, KnownSrc, Q,
Depth + 1);
5913 Op->getType()->getScalarType()->getFltSemantics();
5948 case Instruction::PHI: {
5951 if (
P->getNumIncomingValues() == 0)
5958 if (
Depth < PhiRecursionLimit) {
5965 for (
const Use &U :
P->operands()) {
5995 case Instruction::BitCast: {
5998 !Src->getType()->isIntOrIntVectorTy())
6001 const Type *Ty =
Op->getType()->getScalarType();
6002 KnownBits Bits(Ty->getScalarSizeInBits());
6006 if (Bits.isNonNegative())
6008 else if (Bits.isNegative())
6011 if (Ty->isIEEELikeFPTy()) {
6021 else if (!
APFloat(Ty->getFltSemantics(), ~Bits.Zero).
isNaN())
6028 InfKB.Zero.clearSignBit();
6030 assert(!InfResult.value());
6032 }
else if (Bits == InfKB) {
6040 ZeroKB.Zero.clearSignBit();
6042 assert(!ZeroResult.value());
6044 }
else if (Bits == ZeroKB) {
6057 const APInt &DemandedElts,
6064 return KnownClasses;
6090 InterestedClasses &=
~fcNan;
6092 InterestedClasses &=
~fcInf;
6098 Result.KnownFPClasses &=
~fcNan;
6100 Result.KnownFPClasses &=
~fcInf;
6109 APInt DemandedElts =
6163 if (FPOp->hasNoSignedZeros())
6167 switch (
User->getOpcode()) {
6168 case Instruction::FPToSI:
6169 case Instruction::FPToUI:
6171 case Instruction::FCmp:
6174 case Instruction::Call:
6176 switch (
II->getIntrinsicID()) {
6177 case Intrinsic::fabs:
6179 case Intrinsic::copysign:
6180 return U.getOperandNo() == 0;
6181 case Intrinsic::is_fpclass:
6182 case Intrinsic::vp_is_fpclass: {
6202 if (FPOp->hasNoNaNs())
6206 switch (
User->getOpcode()) {
6207 case Instruction::FPToSI:
6208 case Instruction::FPToUI:
6211 case Instruction::FAdd:
6212 case Instruction::FSub:
6213 case Instruction::FMul:
6214 case Instruction::FDiv:
6215 case Instruction::FRem:
6216 case Instruction::FPTrunc:
6217 case Instruction::FPExt:
6218 case Instruction::FCmp:
6221 case Instruction::FNeg:
6222 case Instruction::Select:
6223 case Instruction::PHI:
6225 case Instruction::Ret:
6226 return User->getFunction()->getAttributes().getRetNoFPClass() &
6228 case Instruction::Call:
6229 case Instruction::Invoke: {
6231 switch (
II->getIntrinsicID()) {
6232 case Intrinsic::fabs:
6234 case Intrinsic::copysign:
6235 return U.getOperandNo() == 0;
6237 case Intrinsic::maxnum:
6238 case Intrinsic::minnum:
6239 case Intrinsic::maximum:
6240 case Intrinsic::minimum:
6241 case Intrinsic::maximumnum:
6242 case Intrinsic::minimumnum:
6243 case Intrinsic::canonicalize:
6244 case Intrinsic::fma:
6245 case Intrinsic::fmuladd:
6246 case Intrinsic::sqrt:
6247 case Intrinsic::pow:
6248 case Intrinsic::powi:
6249 case Intrinsic::fptoui_sat:
6250 case Intrinsic::fptosi_sat:
6251 case Intrinsic::is_fpclass:
6252 case Intrinsic::vp_is_fpclass:
6271 if (V->getType()->isIntegerTy(8))
6282 if (
DL.getTypeStoreSize(V->getType()).isZero())
6297 if (
C->isNullValue())
6304 if (CFP->getType()->isHalfTy())
6306 else if (CFP->getType()->isFloatTy())
6308 else if (CFP->getType()->isDoubleTy())
6317 if (CI->getBitWidth() % 8 == 0) {
6318 assert(CI->getBitWidth() > 8 &&
"8 bits should be handled above!");
6319 if (!CI->getValue().isSplat(8))
6321 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6326 if (CE->getOpcode() == Instruction::IntToPtr) {
6328 unsigned BitWidth =
DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6341 if (LHS == UndefInt8)
6343 if (RHS == UndefInt8)
6349 Value *Val = UndefInt8;
6350 for (
uint64_t I = 0, E = CA->getNumElements();
I != E; ++
I)
6357 Value *Val = UndefInt8;
6392 while (PrevTo != OrigTo) {
6439 unsigned IdxSkip = Idxs.
size();
6452 std::optional<BasicBlock::iterator> InsertBefore) {
6455 if (idx_range.
empty())
6458 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6459 "Not looking at a struct or array?");
6461 "Invalid indices for type?");
6464 C =
C->getAggregateElement(idx_range[0]);
6465 if (!
C)
return nullptr;
6472 const unsigned *req_idx = idx_range.
begin();
6473 for (
const unsigned *i =
I->idx_begin(), *e =
I->idx_end();
6474 i != e; ++i, ++req_idx) {
6475 if (req_idx == idx_range.
end()) {
6505 ArrayRef(req_idx, idx_range.
end()), InsertBefore);
6514 unsigned size =
I->getNumIndices() + idx_range.
size();
6519 Idxs.
append(
I->idx_begin(),
I->idx_end());
6525 &&
"Number of indices added not correct?");
6542 assert(V &&
"V should not be null.");
6543 assert((ElementSize % 8) == 0 &&
6544 "ElementSize expected to be a multiple of the size of a byte.");
6545 unsigned ElementSizeInBytes = ElementSize / 8;
6557 APInt Off(
DL.getIndexTypeSizeInBits(V->getType()), 0);
6564 uint64_t StartIdx = Off.getLimitedValue();
6571 if ((StartIdx % ElementSizeInBytes) != 0)
6574 Offset += StartIdx / ElementSizeInBytes;
6580 uint64_t SizeInBytes =
DL.getTypeStoreSize(GVTy).getFixedValue();
6583 Slice.Array =
nullptr;
6595 Type *InitElTy = ArrayInit->getElementType();
6600 ArrayTy = ArrayInit->getType();
6605 if (ElementSize != 8)
6624 Slice.Array = Array;
6626 Slice.Length = NumElts -
Offset;
6640 if (Slice.Array ==
nullptr) {
6651 if (Slice.Length == 1) {
6663 Str = Str.
substr(Slice.Offset);
6669 Str = Str.substr(0, Str.find(
'\0'));
6682 unsigned CharSize) {
6684 V = V->stripPointerCasts();
6689 if (!PHIs.
insert(PN).second)
6694 for (
Value *IncValue : PN->incoming_values()) {
6696 if (Len == 0)
return 0;
6698 if (Len == ~0ULL)
continue;
6700 if (Len != LenSoFar && LenSoFar != ~0ULL)
6712 if (Len1 == 0)
return 0;
6714 if (Len2 == 0)
return 0;
6715 if (Len1 == ~0ULL)
return Len2;
6716 if (Len2 == ~0ULL)
return Len1;
6717 if (Len1 != Len2)
return 0;
6726 if (Slice.Array ==
nullptr)
6734 unsigned NullIndex = 0;
6735 for (
unsigned E = Slice.Length; NullIndex <
E; ++NullIndex) {
6736 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6740 return NullIndex + 1;
6746 if (!V->getType()->isPointerTy())
6753 return Len == ~0ULL ? 1 : Len;
6758 bool MustPreserveNullness) {
6760 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6761 if (
const Value *RV =
Call->getReturnedArgOperand())
6765 Call, MustPreserveNullness))
6766 return Call->getArgOperand(0);
6772 switch (
Call->getIntrinsicID()) {
6773 case Intrinsic::launder_invariant_group:
6774 case Intrinsic::strip_invariant_group:
6775 case Intrinsic::aarch64_irg:
6776 case Intrinsic::aarch64_tagp:
6786 case Intrinsic::amdgcn_make_buffer_rsrc:
6788 case Intrinsic::ptrmask:
6789 return !MustPreserveNullness;
6790 case Intrinsic::threadlocal_address:
6793 return !
Call->getParent()->getParent()->isPresplitCoroutine();
6810 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6812 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6821 if (!L->isLoopInvariant(Load->getPointerOperand()))
6827 for (
unsigned Count = 0; MaxLookup == 0 ||
Count < MaxLookup; ++
Count) {
6829 const Value *PtrOp =
GEP->getPointerOperand();
6840 if (GA->isInterposable())
6842 V = GA->getAliasee();
6846 if (
PHI->getNumIncomingValues() == 1) {
6847 V =
PHI->getIncomingValue(0);
6868 assert(V->getType()->isPointerTy() &&
"Unexpected operand type!");
6875 const LoopInfo *LI,
unsigned MaxLookup) {
6883 if (!Visited.
insert(
P).second)
6912 }
while (!Worklist.
empty());
6916 const unsigned MaxVisited = 8;
6921 const Value *Object =
nullptr;
6931 if (!Visited.
insert(
P).second)
6934 if (Visited.
size() == MaxVisited)
6950 else if (Object !=
P)
6952 }
while (!Worklist.
empty());
6954 return Object ? Object : FirstObject;
6964 if (U->getOpcode() == Instruction::PtrToInt)
6965 return U->getOperand(0);
6972 if (U->getOpcode() != Instruction::Add ||
6977 V = U->getOperand(0);
6981 assert(V->getType()->isIntegerTy() &&
"Unexpected operand type!");
6998 for (
const Value *V : Objs) {
6999 if (!Visited.
insert(V).second)
7004 if (O->getType()->isPointerTy()) {
7017 }
while (!Working.
empty());
7026 auto AddWork = [&](
Value *V) {
7027 if (Visited.
insert(V).second)
7037 if (Result && Result != AI)
7041 AddWork(CI->getOperand(0));
7043 for (
Value *IncValue : PN->incoming_values())
7046 AddWork(
SI->getTrueValue());
7047 AddWork(
SI->getFalseValue());
7049 if (OffsetZero && !
GEP->hasAllZeroIndices())
7051 AddWork(
GEP->getPointerOperand());
7053 Value *Returned = CB->getReturnedArgOperand();
7061 }
while (!Worklist.
empty());
7067 const Value *V,
bool AllowLifetime,
bool AllowDroppable) {
7073 if (AllowLifetime &&
II->isLifetimeStartOrEnd())
7076 if (AllowDroppable &&
II->isDroppable())
7097 return (!Shuffle || Shuffle->isSelect()) &&
7104 bool IgnoreUBImplyingAttrs) {
7106 AC, DT, TLI, UseVariableInfo,
7107 IgnoreUBImplyingAttrs);
7113 bool UseVariableInfo,
bool IgnoreUBImplyingAttrs) {
7117 auto hasEqualReturnAndLeadingOperandTypes =
7118 [](
const Instruction *Inst,
unsigned NumLeadingOperands) {
7122 for (
unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
7128 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
7130 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
7137 case Instruction::UDiv:
7138 case Instruction::URem: {
7145 case Instruction::SDiv:
7146 case Instruction::SRem: {
7148 const APInt *Numerator, *Denominator;
7152 if (*Denominator == 0)
7164 case Instruction::Load: {
7165 if (!UseVariableInfo)
7178 case Instruction::Call: {
7182 const Function *Callee = CI->getCalledFunction();
7186 if (!Callee || !Callee->isSpeculatable())
7190 return IgnoreUBImplyingAttrs || !CI->hasUBImplyingAttrs();
7192 case Instruction::VAArg:
7193 case Instruction::Alloca:
7194 case Instruction::Invoke:
7195 case Instruction::CallBr:
7196 case Instruction::PHI:
7197 case Instruction::Store:
7198 case Instruction::Ret:
7199 case Instruction::Br:
7200 case Instruction::IndirectBr:
7201 case Instruction::Switch:
7202 case Instruction::Unreachable:
7203 case Instruction::Fence:
7204 case Instruction::AtomicRMW:
7205 case Instruction::AtomicCmpXchg:
7206 case Instruction::LandingPad:
7207 case Instruction::Resume:
7208 case Instruction::CatchSwitch:
7209 case Instruction::CatchPad:
7210 case Instruction::CatchRet:
7211 case Instruction::CleanupPad:
7212 case Instruction::CleanupRet:
7218 if (
I.mayReadOrWriteMemory())
7286 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
7331 if (
Add &&
Add->hasNoSignedWrap()) {
7370 bool LHSOrRHSKnownNonNegative =
7372 bool LHSOrRHSKnownNegative =
7374 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7377 if ((AddKnown.
isNonNegative() && LHSOrRHSKnownNonNegative) ||
7378 (AddKnown.
isNegative() && LHSOrRHSKnownNegative))
7453 assert(EVI->getNumIndices() == 1 &&
"Obvious from CI's type");
7455 if (EVI->getIndices()[0] == 0)
7458 assert(EVI->getIndices()[0] == 1 &&
"Obvious from CI's type");
7460 for (
const auto *U : EVI->users())
7462 assert(
B->isConditional() &&
"How else is it using an i1?");
7473 auto AllUsesGuardedByBranch = [&](
const BranchInst *BI) {
7479 for (
const auto *Result :
Results) {
7482 if (DT.
dominates(NoWrapEdge, Result->getParent()))
7485 for (
const auto &RU : Result->uses())
7493 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7505 unsigned NumElts = FVTy->getNumElements();
7506 for (
unsigned i = 0; i < NumElts; ++i)
7507 ShiftAmounts.
push_back(
C->getAggregateElement(i));
7515 return CI && CI->getValue().ult(
C->getType()->getIntegerBitWidth());
7536 bool ConsiderFlagsAndMetadata) {
7539 Op->hasPoisonGeneratingAnnotations())
7542 unsigned Opcode =
Op->getOpcode();
7546 case Instruction::Shl:
7547 case Instruction::AShr:
7548 case Instruction::LShr:
7550 case Instruction::FPToSI:
7551 case Instruction::FPToUI:
7555 case Instruction::Call:
7557 switch (
II->getIntrinsicID()) {
7559 case Intrinsic::ctlz:
7560 case Intrinsic::cttz:
7561 case Intrinsic::abs:
7565 case Intrinsic::sshl_sat:
7566 case Intrinsic::ushl_sat:
7574 case Instruction::CallBr:
7575 case Instruction::Invoke: {
7577 return !CB->hasRetAttr(Attribute::NoUndef) &&
7578 !CB->hasFnAttr(Attribute::NoCreateUndefOrPoison);
7580 case Instruction::InsertElement:
7581 case Instruction::ExtractElement: {
7584 unsigned IdxOp =
Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7588 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7591 case Instruction::ShuffleVector: {
7597 case Instruction::FNeg:
7598 case Instruction::PHI:
7599 case Instruction::Select:
7600 case Instruction::ExtractValue:
7601 case Instruction::InsertValue:
7602 case Instruction::Freeze:
7603 case Instruction::ICmp:
7604 case Instruction::FCmp:
7605 case Instruction::GetElementPtr:
7607 case Instruction::AddrSpaceCast:
7622 bool ConsiderFlagsAndMetadata) {
7624 ConsiderFlagsAndMetadata);
7629 ConsiderFlagsAndMetadata);
7634 if (ValAssumedPoison == V)
7637 const unsigned MaxDepth = 2;
7638 if (
Depth >= MaxDepth)
7643 return propagatesPoison(Op) &&
7644 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7668 const unsigned MaxDepth = 2;
7669 if (
Depth >= MaxDepth)
7675 return impliesPoison(Op, V, Depth + 1);
7682 return ::impliesPoison(ValAssumedPoison, V, 0);
7697 if (
A->hasAttribute(Attribute::NoUndef) ||
7698 A->hasAttribute(Attribute::Dereferenceable) ||
7699 A->hasAttribute(Attribute::DereferenceableOrNull))
7714 if (
C->getType()->isVectorTy()) {
7717 if (
Constant *SplatC =
C->getSplatValue())
7725 return !
C->containsConstantExpression();
7738 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7743 auto OpCheck = [&](
const Value *V) {
7754 if (CB->hasRetAttr(Attribute::NoUndef) ||
7755 CB->hasRetAttr(Attribute::Dereferenceable) ||
7756 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7763 unsigned Num = PN->getNumIncomingValues();
7764 bool IsWellDefined =
true;
7765 for (
unsigned i = 0; i < Num; ++i) {
7766 if (PN == PN->getIncomingValue(i))
7768 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7770 DT,
Depth + 1, Kind)) {
7771 IsWellDefined =
false;
7782 }
else if (
all_of(Opr->operands(), OpCheck))
7788 if (
I->hasMetadata(LLVMContext::MD_noundef) ||
7789 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7790 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7810 auto *Dominator = DNode->
getIDom();
7815 auto *TI = Dominator->getBlock()->getTerminator();
7819 if (BI->isConditional())
7820 Cond = BI->getCondition();
7822 Cond =
SI->getCondition();
7831 if (
any_of(Opr->operands(), [V](
const Use &U) {
7832 return V == U && propagatesPoison(U);
7838 Dominator = Dominator->getIDom();
7851 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7858 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7865 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7889 while (!Worklist.
empty()) {
7898 if (
I != Root && !
any_of(
I->operands(), [&KnownPoison](
const Use &U) {
7899 return KnownPoison.contains(U) && propagatesPoison(U);
7903 if (KnownPoison.
insert(
I).second)
7915 return ::computeOverflowForSignedAdd(
Add->getOperand(0),
Add->getOperand(1),
7923 return ::computeOverflowForSignedAdd(LHS, RHS,
nullptr, SQ);
7955 return !
I->mayThrow() &&
I->willReturn();
7969 unsigned ScanLimit) {
7976 assert(ScanLimit &&
"scan limit must be non-zero");
7978 if (--ScanLimit == 0)
7992 if (
I->getParent() != L->getHeader())
return false;
7995 if (&LI ==
I)
return true;
7998 llvm_unreachable(
"Instruction not contained in its own parent basic block.");
8004 case Intrinsic::sadd_with_overflow:
8005 case Intrinsic::ssub_with_overflow:
8006 case Intrinsic::smul_with_overflow:
8007 case Intrinsic::uadd_with_overflow:
8008 case Intrinsic::usub_with_overflow:
8009 case Intrinsic::umul_with_overflow:
8014 case Intrinsic::ctpop:
8015 case Intrinsic::ctlz:
8016 case Intrinsic::cttz:
8017 case Intrinsic::abs:
8018 case Intrinsic::smax:
8019 case Intrinsic::smin:
8020 case Intrinsic::umax:
8021 case Intrinsic::umin:
8022 case Intrinsic::scmp:
8023 case Intrinsic::is_fpclass:
8024 case Intrinsic::ptrmask:
8025 case Intrinsic::ucmp:
8026 case Intrinsic::bitreverse:
8027 case Intrinsic::bswap:
8028 case Intrinsic::sadd_sat:
8029 case Intrinsic::ssub_sat:
8030 case Intrinsic::sshl_sat:
8031 case Intrinsic::uadd_sat:
8032 case Intrinsic::usub_sat:
8033 case Intrinsic::ushl_sat:
8034 case Intrinsic::smul_fix:
8035 case Intrinsic::smul_fix_sat:
8036 case Intrinsic::umul_fix:
8037 case Intrinsic::umul_fix_sat:
8038 case Intrinsic::pow:
8039 case Intrinsic::powi:
8040 case Intrinsic::sin:
8041 case Intrinsic::sinh:
8042 case Intrinsic::cos:
8043 case Intrinsic::cosh:
8044 case Intrinsic::sincos:
8045 case Intrinsic::sincospi:
8046 case Intrinsic::tan:
8047 case Intrinsic::tanh:
8048 case Intrinsic::asin:
8049 case Intrinsic::acos:
8050 case Intrinsic::atan:
8051 case Intrinsic::atan2:
8052 case Intrinsic::canonicalize:
8053 case Intrinsic::sqrt:
8054 case Intrinsic::exp:
8055 case Intrinsic::exp2:
8056 case Intrinsic::exp10:
8057 case Intrinsic::log:
8058 case Intrinsic::log2:
8059 case Intrinsic::log10:
8060 case Intrinsic::modf:
8061 case Intrinsic::floor:
8062 case Intrinsic::ceil:
8063 case Intrinsic::trunc:
8064 case Intrinsic::rint:
8065 case Intrinsic::nearbyint:
8066 case Intrinsic::round:
8067 case Intrinsic::roundeven:
8068 case Intrinsic::lrint:
8069 case Intrinsic::llrint:
8070 case Intrinsic::fshl:
8071 case Intrinsic::fshr:
8080 switch (
I->getOpcode()) {
8081 case Instruction::Freeze:
8082 case Instruction::PHI:
8083 case Instruction::Invoke:
8085 case Instruction::Select:
8087 case Instruction::Call:
8091 case Instruction::ICmp:
8092 case Instruction::FCmp:
8093 case Instruction::GetElementPtr:
8107template <
typename CallableT>
8109 const CallableT &Handle) {
8110 switch (
I->getOpcode()) {
8111 case Instruction::Store:
8116 case Instruction::Load:
8123 case Instruction::AtomicCmpXchg:
8128 case Instruction::AtomicRMW:
8133 case Instruction::Call:
8134 case Instruction::Invoke: {
8138 for (
unsigned i = 0; i < CB->
arg_size(); ++i)
8141 CB->
paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
8146 case Instruction::Ret:
8147 if (
I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
8148 Handle(
I->getOperand(0)))
8151 case Instruction::Switch:
8155 case Instruction::Br: {
8157 if (BR->isConditional() && Handle(BR->getCondition()))
8169template <
typename CallableT>
8171 const CallableT &Handle) {
8174 switch (
I->getOpcode()) {
8176 case Instruction::UDiv:
8177 case Instruction::SDiv:
8178 case Instruction::URem:
8179 case Instruction::SRem:
8180 return Handle(
I->getOperand(1));
8189 I, [&](
const Value *V) {
return KnownPoison.
count(V); });
8208 if (Arg->getParent()->isDeclaration())
8211 Begin = BB->
begin();
8218 unsigned ScanLimit = 32;
8227 if (--ScanLimit == 0)
8231 return WellDefinedOp == V;
8251 if (--ScanLimit == 0)
8259 for (
const Use &
Op :
I.operands()) {
8269 if (
I.getOpcode() == Instruction::Select &&
8270 YieldsPoison.
count(
I.getOperand(1)) &&
8271 YieldsPoison.
count(
I.getOperand(2))) {
8277 if (!BB || !Visited.
insert(BB).second)
8287 return ::programUndefinedIfUndefOrPoison(Inst,
false);
8291 return ::programUndefinedIfUndefOrPoison(Inst,
true);
8302 if (!
C->getElementType()->isFloatingPointTy())
8304 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8305 if (
C->getElementAsAPFloat(
I).isNaN())
8319 return !
C->isZero();
8322 if (!
C->getElementType()->isFloatingPointTy())
8324 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8325 if (
C->getElementAsAPFloat(
I).isZero())
8348 if (CmpRHS == FalseVal) {
8392 if (CmpRHS != TrueVal) {
8431 Value *
A =
nullptr, *
B =
nullptr;
8436 Value *
C =
nullptr, *
D =
nullptr;
8438 if (L.Flavor != R.Flavor)
8490 return {L.Flavor,
SPNB_NA,
false};
8497 return {L.Flavor,
SPNB_NA,
false};
8504 return {L.Flavor,
SPNB_NA,
false};
8511 return {L.Flavor,
SPNB_NA,
false};
8527 return ConstantInt::get(V->getType(), ~(*
C));
8584 if ((CmpLHS == TrueVal &&
match(FalseVal,
m_APInt(C2))) ||
8604 assert(
X &&
Y &&
"Invalid operand");
8606 auto IsNegationOf = [&](
const Value *
X,
const Value *
Y) {
8611 if (NeedNSW && !BO->hasNoSignedWrap())
8615 if (!AllowPoison && !Zero->isNullValue())
8622 if (IsNegationOf(
X,
Y) || IsNegationOf(
Y,
X))
8649 const APInt *RHSC1, *RHSC2;
8660 return CR1.inverse() == CR2;
8694std::optional<std::pair<CmpPredicate, Constant *>>
8697 "Only for relational integer predicates.");
8699 return std::nullopt;
8705 bool WillIncrement =
8710 auto ConstantIsOk = [WillIncrement, IsSigned](
ConstantInt *
C) {
8711 return WillIncrement ? !
C->isMaxValue(IsSigned) : !
C->isMinValue(IsSigned);
8714 Constant *SafeReplacementConstant =
nullptr;
8717 if (!ConstantIsOk(CI))
8718 return std::nullopt;
8720 unsigned NumElts = FVTy->getNumElements();
8721 for (
unsigned i = 0; i != NumElts; ++i) {
8722 Constant *Elt =
C->getAggregateElement(i);
8724 return std::nullopt;
8732 if (!CI || !ConstantIsOk(CI))
8733 return std::nullopt;
8735 if (!SafeReplacementConstant)
8736 SafeReplacementConstant = CI;
8740 Value *SplatC =
C->getSplatValue();
8743 if (!CI || !ConstantIsOk(CI))
8744 return std::nullopt;
8747 return std::nullopt;
8754 if (
C->containsUndefOrPoisonElement()) {
8755 assert(SafeReplacementConstant &&
"Replacement constant not set");
8762 Constant *OneOrNegOne = ConstantInt::get(
Type, WillIncrement ? 1 : -1,
true);
8765 return std::make_pair(NewPred, NewC);
8774 bool HasMismatchedZeros =
false;
8780 Value *OutputZeroVal =
nullptr;
8783 OutputZeroVal = TrueVal;
8786 OutputZeroVal = FalseVal;
8788 if (OutputZeroVal) {
8790 HasMismatchedZeros =
true;
8791 CmpLHS = OutputZeroVal;
8794 HasMismatchedZeros =
true;
8795 CmpRHS = OutputZeroVal;
8812 if (!HasMismatchedZeros)
8823 bool Ordered =
false;
8834 if (LHSSafe && RHSSafe) {
8865 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8876 if (TrueVal == CmpLHS && FalseVal == CmpRHS)
8882 auto MaybeSExtCmpLHS =
8886 if (
match(TrueVal, MaybeSExtCmpLHS)) {
8908 else if (
match(FalseVal, MaybeSExtCmpLHS)) {
8948 case Instruction::ZExt:
8952 case Instruction::SExt:
8956 case Instruction::Trunc:
8959 CmpConst->
getType() == SrcTy) {
8981 CastedTo = CmpConst;
8983 unsigned ExtOp = CmpI->
isSigned() ? Instruction::SExt : Instruction::ZExt;
8987 case Instruction::FPTrunc:
8990 case Instruction::FPExt:
8993 case Instruction::FPToUI:
8996 case Instruction::FPToSI:
8999 case Instruction::UIToFP:
9002 case Instruction::SIToFP:
9015 if (CastedBack && CastedBack !=
C)
9043 *CastOp = Cast1->getOpcode();
9044 Type *SrcTy = Cast1->getSrcTy();
9047 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
9048 return Cast2->getOperand(0);
9056 Value *CastedTo =
nullptr;
9057 if (*CastOp == Instruction::Trunc) {
9071 "V2 and Cast1 should be the same type.");
9090 Value *TrueVal =
SI->getTrueValue();
9091 Value *FalseVal =
SI->getFalseValue();
9094 CmpI, TrueVal, FalseVal, LHS, RHS,
9113 if (CastOp && CmpLHS->
getType() != TrueVal->getType()) {
9117 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9119 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9126 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9128 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9133 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
9152 return Intrinsic::umin;
9154 return Intrinsic::umax;
9156 return Intrinsic::smin;
9158 return Intrinsic::smax;
9174 case Intrinsic::smax:
return Intrinsic::smin;
9175 case Intrinsic::smin:
return Intrinsic::smax;
9176 case Intrinsic::umax:
return Intrinsic::umin;
9177 case Intrinsic::umin:
return Intrinsic::umax;
9180 case Intrinsic::maximum:
return Intrinsic::minimum;
9181 case Intrinsic::minimum:
return Intrinsic::maximum;
9182 case Intrinsic::maxnum:
return Intrinsic::minnum;
9183 case Intrinsic::minnum:
return Intrinsic::maxnum;
9184 case Intrinsic::maximumnum:
9185 return Intrinsic::minimumnum;
9186 case Intrinsic::minimumnum:
9187 return Intrinsic::maximumnum;
9202std::pair<Intrinsic::ID, bool>
9207 bool AllCmpSingleUse =
true;
9210 if (
all_of(VL, [&SelectPattern, &AllCmpSingleUse](
Value *
I) {
9216 SelectPattern.
Flavor != CurrentPattern.Flavor)
9218 SelectPattern = CurrentPattern;
9223 switch (SelectPattern.
Flavor) {
9225 return {Intrinsic::smin, AllCmpSingleUse};
9227 return {Intrinsic::umin, AllCmpSingleUse};
9229 return {Intrinsic::smax, AllCmpSingleUse};
9231 return {Intrinsic::umax, AllCmpSingleUse};
9233 return {Intrinsic::maxnum, AllCmpSingleUse};
9235 return {Intrinsic::minnum, AllCmpSingleUse};
9243template <
typename InstTy>
9253 for (
unsigned I = 0;
I != 2; ++
I) {
9258 if (
LHS != PN &&
RHS != PN)
9294 if (
I->arg_size() != 2 ||
I->getType() !=
I->getArgOperand(0)->getType() ||
9295 I->getType() !=
I->getArgOperand(1)->getType())
9323 return !
C->isNegative();
9335 const APInt *CLHS, *CRHS;
9338 return CLHS->
sle(*CRHS);
9376 const APInt *CLHS, *CRHS;
9379 return CLHS->
ule(*CRHS);
9388static std::optional<bool>
9393 return std::nullopt;
9400 return std::nullopt;
9407 return std::nullopt;
9414 return std::nullopt;
9421 return std::nullopt;
9428static std::optional<bool>
9434 if (CR.
icmp(Pred, RCR))
9441 return std::nullopt;
9454 return std::nullopt;
9460static std::optional<bool>
9491 const APInt *Unused;
9510 return std::nullopt;
9514 if (L0 == R0 && L1 == R1)
9547 ((
A == R0 &&
B == R1) || (
A == R1 &&
B == R0) ||
9565 return std::nullopt;
9571static std::optional<bool>
9601 if (L0 == R0 && L1 == R1) {
9602 if ((LPred & RPred) == LPred)
9604 if ((LPred & ~RPred) == LPred)
9612 if (std::optional<ConstantFPRange> DomCR =
9614 if (std::optional<ConstantFPRange> ImpliedCR =
9616 if (ImpliedCR->contains(*DomCR))
9619 if (std::optional<ConstantFPRange> ImpliedCR =
9622 if (ImpliedCR->contains(*DomCR))
9628 return std::nullopt;
9635static std::optional<bool>
9640 assert((
LHS->getOpcode() == Instruction::And ||
9641 LHS->getOpcode() == Instruction::Or ||
9642 LHS->getOpcode() == Instruction::Select) &&
9643 "Expected LHS to be 'and', 'or', or 'select'.");
9650 const Value *ALHS, *ARHS;
9655 ALHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9658 ARHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9660 return std::nullopt;
9662 return std::nullopt;
9671 return std::nullopt;
9676 return std::nullopt;
9678 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9679 "Expected integer type only!");
9683 LHSIsTrue = !LHSIsTrue;
9689 LHSCmp->getOperand(0), LHSCmp->getOperand(1),
9690 RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue);
9694 ConstantInt::get(V->getType(), 0), RHSPred,
9695 RHSOp0, RHSOp1,
DL, LHSIsTrue);
9698 "Expected floating point type only!");
9701 LHSCmp->getOperand(1), RHSPred, RHSOp0, RHSOp1,
9709 if ((LHSI->getOpcode() == Instruction::And ||
9710 LHSI->getOpcode() == Instruction::Or ||
9711 LHSI->getOpcode() == Instruction::Select))
9715 return std::nullopt;
9720 bool LHSIsTrue,
unsigned Depth) {
9726 bool InvertRHS =
false;
9735 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0),
9736 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9737 return InvertRHS ? !*Implied : *Implied;
9738 return std::nullopt;
9742 LHS, RHSCmp->getPredicate(), RHSCmp->getOperand(0),
9743 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9744 return InvertRHS ? !*Implied : *Implied;
9745 return std::nullopt;
9751 ConstantInt::get(V->getType(), 0),
DL,
9753 return InvertRHS ? !*Implied : *Implied;
9754 return std::nullopt;
9758 return std::nullopt;
9762 const Value *RHS1, *RHS2;
9764 if (std::optional<bool> Imp =
9768 if (std::optional<bool> Imp =
9774 if (std::optional<bool> Imp =
9778 if (std::optional<bool> Imp =
9784 return std::nullopt;
9789static std::pair<Value *, bool>
9791 if (!ContextI || !ContextI->
getParent())
9792 return {
nullptr,
false};
9799 return {
nullptr,
false};
9805 return {
nullptr,
false};
9808 if (TrueBB == FalseBB)
9809 return {
nullptr,
false};
9811 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9812 "Predecessor block does not point to successor?");
9815 return {PredCond, TrueBB == ContextBB};
9821 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
"Condition must be bool");
9825 return std::nullopt;
9837 return std::nullopt;
9842 bool PreferSignedRange) {
9843 unsigned Width =
Lower.getBitWidth();
9846 case Instruction::Sub:
9856 if (PreferSignedRange && HasNSW && HasNUW)
9862 }
else if (HasNSW) {
9863 if (
C->isNegative()) {
9876 case Instruction::Add:
9885 if (PreferSignedRange && HasNSW && HasNUW)
9891 }
else if (HasNSW) {
9892 if (
C->isNegative()) {
9905 case Instruction::And:
9916 case Instruction::Or:
9922 case Instruction::AShr:
9928 unsigned ShiftAmount = Width - 1;
9929 if (!
C->isZero() && IIQ.
isExact(&BO))
9930 ShiftAmount =
C->countr_zero();
9931 if (
C->isNegative()) {
9934 Upper =
C->ashr(ShiftAmount) + 1;
9937 Lower =
C->ashr(ShiftAmount);
9943 case Instruction::LShr:
9949 unsigned ShiftAmount = Width - 1;
9950 if (!
C->isZero() && IIQ.
isExact(&BO))
9951 ShiftAmount =
C->countr_zero();
9952 Lower =
C->lshr(ShiftAmount);
9957 case Instruction::Shl:
9964 if (
C->isNegative()) {
9966 unsigned ShiftAmount =
C->countl_one() - 1;
9967 Lower =
C->shl(ShiftAmount);
9971 unsigned ShiftAmount =
C->countl_zero() - 1;
9973 Upper =
C->shl(ShiftAmount) + 1;
9992 case Instruction::SDiv:
9996 if (
C->isAllOnes()) {
10000 Upper = IntMax + 1;
10001 }
else if (
C->countl_zero() < Width - 1) {
10012 if (
C->isMinSignedValue()) {
10024 case Instruction::UDiv:
10034 case Instruction::SRem:
10040 if (
C->isNegative()) {
10051 case Instruction::URem:
10066 bool UseInstrInfo) {
10067 unsigned Width =
II.getType()->getScalarSizeInBits();
10069 switch (
II.getIntrinsicID()) {
10070 case Intrinsic::ctlz:
10071 case Intrinsic::cttz: {
10073 if (!UseInstrInfo || !
match(
II.getArgOperand(1),
m_One()))
10078 case Intrinsic::ctpop:
10081 APInt(Width, Width) + 1);
10082 case Intrinsic::uadd_sat:
10088 case Intrinsic::sadd_sat:
10091 if (
C->isNegative())
10102 case Intrinsic::usub_sat:
10112 case Intrinsic::ssub_sat:
10114 if (
C->isNegative())
10124 if (
C->isNegative())
10135 case Intrinsic::umin:
10136 case Intrinsic::umax:
10137 case Intrinsic::smin:
10138 case Intrinsic::smax:
10143 switch (
II.getIntrinsicID()) {
10144 case Intrinsic::umin:
10146 case Intrinsic::umax:
10148 case Intrinsic::smin:
10151 case Intrinsic::smax:
10158 case Intrinsic::abs:
10167 case Intrinsic::vscale:
10168 if (!
II.getParent() || !
II.getFunction())
10175 return ConstantRange::getFull(Width);
10180 unsigned BitWidth =
SI.getType()->getScalarSizeInBits();
10184 return ConstantRange::getFull(
BitWidth);
10207 return ConstantRange::getFull(
BitWidth);
10209 switch (R.Flavor) {
10221 return ConstantRange::getFull(
BitWidth);
10228 unsigned BitWidth =
I->getType()->getScalarSizeInBits();
10229 if (!
I->getOperand(0)->getType()->getScalarType()->isHalfTy())
10247 assert(V->getType()->isIntOrIntVectorTy() &&
"Expected integer instruction");
10250 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
10253 return C->toConstantRange();
10255 unsigned BitWidth = V->getType()->getScalarSizeInBits();
10268 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10270 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10280 if (std::optional<ConstantRange>
Range =
A->getRange())
10288 if (std::optional<ConstantRange>
Range = CB->getRange())
10299 "Got assumption for the wrong function!");
10300 assert(
I->getIntrinsicID() == Intrinsic::assume &&
10301 "must be an assume intrinsic");
10305 Value *Arg =
I->getArgOperand(0);
10308 if (!Cmp || Cmp->getOperand(0) != V)
10313 UseInstrInfo, AC,
I, DT,
Depth + 1);
10336 InsertAffected(
Op);
10343 auto AddAffected = [&InsertAffected](
Value *V) {
10347 auto AddCmpOperands = [&AddAffected, IsAssume](
Value *LHS,
Value *RHS) {
10358 while (!Worklist.
empty()) {
10360 if (!Visited.
insert(V).second)
10406 AddCmpOperands(
A,
B);
10443 AddCmpOperands(
A,
B);
10471 if (BO->getOpcode() == Instruction::Add ||
10472 BO->getOpcode() == Instruction::Or) {
10474 const APInt *C1, *C2;
10493 unsigned MaxCount,
bool AllowUndefOrPoison) {
10496 auto Push = [&](
const Value *V) ->
bool {
10502 if (Constants.contains(
C))
10504 if (Constants.size() == MaxCount)
10506 Constants.insert(
C);
10511 if (Visited.
insert(Inst).second)
10519 while (!Worklist.
empty()) {
10522 case Instruction::Select:
10528 case Instruction::PHI:
10531 if (IncomingValue == CurInst)
10533 if (!Push(IncomingValue))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Utilities for dealing with flags related to floating point properties and mode controls.
static Value * getCondition(Instruction *I)
Module.h This file contains the declarations for the Module class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
std::pair< BasicBlock *, BasicBlock * > Edge
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SmallVector< VPValue *, 4 > getOperands(ArrayRef< VPValue * > Values, unsigned OperandIndex)
static void computeKnownFPClassFromCond(const Value *V, Value *Cond, bool CondIsTrue, const Instruction *CxtI, KnownFPClass &KnownFromContext, unsigned Depth=0)
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, SimplifyQuery &Q, unsigned Depth)
Try to detect a recurrence that the value of the induction variable is always a power of two (or zero...
static cl::opt< unsigned > DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20))
static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits)
For vector constants, loop over the elements and find the constant with the minimum number of sign bi...
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS)
Return true if "icmp Pred LHS RHS" is always true.
static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V1 == (binop V2, X), where X is known non-zero.
static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q, unsigned Depth)
Test whether a GEP's result is known to be non-null.
static bool isNonEqualShl(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and the shift is nuw or nsw.
static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT)
static const Value * getUnderlyingObjectFromInt(const Value *V)
This is the function that does the work of looking through basic ptrtoint+arithmetic+inttoptr sequenc...
static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool rangeMetadataExcludesValue(const MDNode *Ranges, const APInt &Value)
Does the 'Range' metadata (which must be a valid MD_range operand list) ensure that the value it's at...
static KnownBits getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &Q, unsigned Depth)
static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, Value *&ValOut, Instruction *&CtxIOut, const PHINode **PhiOut=nullptr)
static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, unsigned Depth)
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static void addValueAffectedByCondition(Value *V, function_ref< void(Value *)> InsertAffected)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange)
static Value * lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp)
Helps to match a select pattern in case of a type mismatch.
static std::pair< Value *, bool > getDomPredecessorCondition(const Instruction *ContextI)
static constexpr unsigned MaxInstrsToCheckForFree
Maximum number of instructions to check between assume and context instruction.
static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, const KnownBits &KnownVal, unsigned Depth)
static std::optional< bool > isImpliedCondFCmps(FCmpInst::Predicate LPred, const Value *L0, const Value *L1, FCmpInst::Predicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2, const SimplifyQuery &Q, unsigned Depth)
static bool includesPoison(UndefPoisonKind Kind)
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS)
Match clamp pattern for float types without care about NaNs or signed zeros.
static std::optional< bool > isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1, CmpPredicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool includesUndef(UndefPoisonKind Kind)
static std::optional< bool > isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, CmpPredicate RPred, const ConstantRange &RCR)
Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
static ConstantRange getRangeForSelectPattern(const SelectInst &SI, const InstrInfoQuery &IIQ)
static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth)
static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl< const PHINode * > &PHIs, unsigned CharSize)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
static void computeKnownBitsFromShiftOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth, function_ref< KnownBits(const KnownBits &, const KnownBits &, bool)> KF)
Compute known bits from a shift operator, including those with a non-constant shift amount.
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value *V, bool AllowLifetime, bool AllowDroppable)
static std::optional< bool > isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth)
Return true if LHS implies RHS is true.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh)
static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth)
static bool isNonEqualSelect(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst, Value *&Init, Value *&OtherOp)
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS, KnownBits &Known, const SimplifyQuery &Q)
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth)
Recognize variations of: a < c ?
static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, KnownBits &Known)
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper)
static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI)
PN defines a loop-variant pointer to an object.
static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, const SimplifyQuery &Q)
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh)
static Value * lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, Instruction::CastOps *CastOp)
static bool handleGuaranteedWellDefinedOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be undef or poison.
static void computeKnownBitsFromLerpPattern(const Value *Op0, const Value *Op1, const APInt &DemandedElts, KnownBits &KnownOut, const SimplifyQuery &Q, unsigned Depth)
Try to detect the lerp pattern: a * (b - c) + c * d where a >= 0, b >= 0, c >= 0, d >= 0,...
static KnownFPClass computeKnownFPClassFromContext(const Value *V, const SimplifyQuery &Q)
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static Value * getNotValue(Value *V)
If the input value is the result of a 'not' op, constant integer, or vector splat of a constant integ...
static constexpr KnownFPClass::MinMaxKind getMinMaxKind(Intrinsic::ID IID)
static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return the number of times the sign bit of the register is replicated into the other bits.
static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, KnownBits &Known, const SimplifyQuery &SQ, bool Invert)
static bool isKnownNonZeroFromOperator(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchOpWithOpEqZero(Value *Op0, Value *Op1)
static bool isNonZeroRecurrence(const PHINode *PN)
Try to detect a recurrence that monotonically increases/decreases from a non-zero starting value.
static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal)
Recognize variations of: CLAMP(v,l,h) ==> ((v) < (l) ?
static bool shiftAmountKnownInRange(const Value *ShiftAmount)
Shifts return poison if shiftwidth is larger than the bitwidth.
static bool isEphemeralValueOf(const Instruction *I, const Value *E)
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth)
Match non-obvious integer minimum and maximum sequences.
static KnownBits computeKnownBitsForHorizontalOperation(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth, const function_ref< KnownBits(const KnownBits &, const KnownBits &)> KnownBitsFunc)
static bool handleGuaranteedNonPoisonOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be poison.
static std::optional< std::pair< Value *, Value * > > getInvertibleOperands(const Operator *Op1, const Operator *Op2)
If the pair of operators are the same invertible function, return the the operands of the function co...
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS)
static void computeKnownBitsFromCond(const Value *V, Value *Cond, KnownBits &Known, const SimplifyQuery &SQ, bool Invert, unsigned Depth)
static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q)
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
static const Instruction * safeCxtI(const Value *V, const Instruction *CxtI)
static bool isNonEqualMul(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and the multiplication is nuw o...
static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, const Value *Cond, bool CondIsTrue)
Return true if we can infer that V is known to be a power of 2 from dominating condition Cond (e....
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF)
static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, bool UseInstrInfo)
static void computeKnownFPClassForFPTrunc(const Operator *Op, const APInt &DemandedElts, FPClassTest InterestedClasses, KnownFPClass &Known, const SimplifyQuery &Q, unsigned Depth)
static Value * BuildSubAggregate(Value *From, Value *To, Type *IndexedType, SmallVectorImpl< unsigned > &Idxs, unsigned IdxSkip, BasicBlock::iterator InsertBefore)
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned ceilLogBase2() const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt reverseBits() const
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool getBoolValue() const
Convert APInt to a boolean value.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
bool hasSameSign() const
Query samesign information, for optimizations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI std::optional< ConstantFPRange > makeExactFCmpRegion(FCmpInst::Predicate Pred, const APFloat &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This class represents a range of values.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI bool isAllNegative() const
Return true if all values in this range are negative.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI bool isAllNonNegative() const
Return true if all values in this range are non-negative.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
unsigned getAddressSizeInBits(unsigned AS) const
The size in bits of an address in for the given AS.
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
ArrayRef< BranchInst * > conditionsFor(const Value *V) const
Access the list of branches which affect this value.
DomTreeNodeBase * getIDom() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
const BasicBlock & getEntryBlock() const
bool hasNoSync() const
Determine if the call can synchroize with other threads.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getAggregateOperand()
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
This is a utility class that provides an abstraction for the common functionality between Instruction...
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
iterator_range< const_block_iterator > blocks() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A udiv, sdiv, lshr, or ashr instruction, which can be marked as "exact", indicating that no bits are ...
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
User * getUser() const
Returns the User that contains this Use.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
const KnownBits & getKnownBits(const SimplifyQuery &Q) const
PointerType getValue() const
Represents an op.with.overflow intrinsic.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
StructType * getStructTypeOrNull() const
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
auto m_PtrToIntOrAddr(const OpTy &Op)
Matches PtrToInt or PtrToAddr.
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
static unsigned decodeVSEW(unsigned VSEW)
LLVM_ABI unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI bool willNotFreeBetween(const Instruction *Assume, const Instruction *CtxI)
Returns true, if no instruction between Assume and CtxI may free memory and the function is marked as...
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0)
Merge bits known from context-dependent facts into Known.
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
LLVM_ABI AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
LLVM_ABI std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
gep_type_iterator gep_type_end(const User *GEP)
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
bool isa_and_nonnull(const Y &Val)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
LLVM_ABI void adjustKnownFPClassForSelectArm(KnownFPClass &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI bool collectPossibleValues(const Value *V, SmallPtrSetImpl< const Constant * > &Constants, unsigned MaxCount, bool AllowUndefOrPoison=true)
Enumerates all possible immediate values of V and inserts them into the set Constants.
FunctionAddr VTableAddr Count
LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &SQ, unsigned Depth=0)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
gep_type_iterator gep_type_begin(const User *GEP)
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Get the upper bound on bit size for this Value Op as a signed integer.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_ABI Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
SmallPtrSet< Value *, 4 > AffectedValues
Represents offset+length into a ConstantDataArray.
const ConstantDataArray * Array
ConstantDataArray pointer.
Represent subnormal handling kind for floating point instruction inputs and outputs.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
static constexpr DenormalMode getDynamic()
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedZeros(const InstT *Op) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
LLVM_ABI KnownBits reduceAdd(unsigned NumElts) const
Compute known bits for horizontal add for a vector with NumElts elements, where each element has the ...
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
bool hasConflict() const
Returns true if there is conflicting information.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
bool isConstant() const
Returns true if we know the value of all bits.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinTrailingOnes() const
Returns the minimum number of trailing one bits.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void setAllOnes()
Make all bits known to be one and discard any previous information.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
KnownBits sextOrTrunc(unsigned BitWidth) const
Return known bits for a sign extension or truncation of the value we're tracking.
bool isKnownNeverInfOrNaN() const
Return true if it's known this can never be an infinity or nan.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
static LLVM_ABI KnownFPClass fmul(const KnownFPClass &LHS, const KnownFPClass &RHS, DenormalMode Mode=DenormalMode::getDynamic())
Report known values for fmul.
void copysign(const KnownFPClass &Sign)
static KnownFPClass square(const KnownFPClass &Src, DenormalMode Mode=DenormalMode::getDynamic())
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
bool isKnownAlways(FPClassTest Mask) const
KnownFPClass unionWith(const KnownFPClass &RHS) const
static LLVM_ABI KnownFPClass canonicalize(const KnownFPClass &Src, DenormalMode DenormMode=DenormalMode::getDynamic())
Apply the canonicalize intrinsic to this value.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's known this can never be interpreted as a zero.
static LLVM_ABI KnownFPClass log(const KnownFPClass &Src, DenormalMode Mode=DenormalMode::getDynamic())
Propagate known class for log/log2/log10.
static LLVM_ABI KnownFPClass roundToIntegral(const KnownFPClass &Src, bool IsTrunc, bool IsMultiUnitFPType)
Propagate known class for rounding intrinsics (trunc, floor, ceil, rint, nearbyint,...
static LLVM_ABI KnownFPClass minMaxLike(const KnownFPClass &LHS, const KnownFPClass &RHS, MinMaxKind Kind, DenormalMode DenormMode=DenormalMode::getDynamic())
KnownFPClass intersectWith(const KnownFPClass &RHS) const
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
static LLVM_ABI KnownFPClass exp(const KnownFPClass &Src)
Report known values for exp, exp2 and exp10.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
static LLVM_ABI KnownFPClass fpext(const KnownFPClass &KnownSrc, const fltSemantics &DstTy, const fltSemantics &SrcTy)
Propagate known class for fpext.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
LLVM_ABI void propagateCanonicalizingSrc(const KnownFPClass &Src, DenormalMode Mode)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void signBitMustBeZero()
Assume the sign bit is zero.
static LLVM_ABI KnownFPClass sqrt(const KnownFPClass &Src, DenormalMode Mode=DenormalMode::getDynamic())
Propagate known class for sqrt.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's known this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's known this can never be interpreted as a negative zero.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
Represent one information held inside an operand bundle of an llvm.assume.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithoutCondContext() const
SimplifyQuery getWithInstruction(const Instruction *I) const
const DomConditionCache * DC